
CONCURRENCY: PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper.,Vol. 11(3), 139–153 (1999)

Tiling on systems with
communication/computation overlap

PIERRE-YVES CALLAND1, JACK DONGARRA2,3 AND YVES ROBERT2∗
1LIP, Ecole Normale Sup´erieure de Lyon, 69364 Lyon Cedex 07, France
(e-mail: pycallan@lip.ens-lyon.fr)
2Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, USA
(e-mail: [dongarra, yrobert]@cs.utk.edu)
3Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

SUMMARY
In the framework of fully permutable loops, tiling is a compiler technique (also known as ‘loop
blocking’) that has been extensively studied as a source-to-source program transformation.
Little work has been devoted to the mapping and scheduling of the tiles on to physical
parallel processors. We present several new results in the context of limited computational
resources and assuming communication–computation overlap. In particular, under some
reasonable assumptions, we derive the optimal mapping and scheduling of tiles to physical
processors. Copyright 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

Tiling is a widely used compiler technique to increase the granularity of computations and
the locality of data references. Indeed, as pointed out by Carteret al.[1], ‘Good parallel
algorithms are not enough; computer features such as the memory hierarchy and processor
architecture need to be exploited to achieve high-performance on parallel machines’. The
basic idea of tiling (also known as ‘loop blocking’) is to group elemental computation
points into tiles that will be viewed as computational units. The larger the tiles, the
more efficient the computations performed using state-of-the-art processors with pipelined
arithmetic units and a multilevel memory hierarchy. This is best illustrated by the recasting
of numerical linear algebra algorithms in terms of blocked Level 3 BLAS kernels[2,3].
Another advantage of tiling is the decrease in communication time (which is proportional
to the surface of the tile) relative to the computation time (which is proportional to the
volume of the tile). The price to pay for tiling may be an increased latency (if there are data
dependencies, for example, we need to wait for the first processor to complete the whole
execution of the first tile before another processor can start the execution of the second one,
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and so on), as well as some load-imbalance problems (the larger the tile, the more difficult
to distribute computations equally among the processors).

The tiling technique was originally restricted to perfect loop nests with uniform
dependencies, as defined by Banerjee[4], but has been extended to sets of fully permutable
loops[5–7]. Tiling has been studied by several researchers and in different contexts[8–21].†

Most of the work amounts to partitioning the iteration space of a uniform loop nest into tiles
whose shape and size are optimized according to some criteria (such as the communication-
to-computation ratio): see Section2 for an example. Once the tile shape and size are
defined, there remains to distribute the tiles to physical processors and to compute the
final scheduling. Little attention has been paid to this last problem. For example, if each
physical processor is assigned several tiles, what should be the computation ordering of
these tiles? An in-depth study has been presented by Ohtaet al.[15], who have extended
results of Hiranandaniet al.[22] on fine grain pipelining forDOACROSSloops. We survey
their work in Section3.

In this paper, we build upon the work of Ohtaet al.[15]. We reformulate the problem
of tiling with limited resources using more realistic assumptions on data dependences and
communication–computation overlap than those used in [15]. Our most important result
is the derivation of an optimal mapping to assign tiles to physical processors. This result
is important because it has clear practical implications: indeed, it turns out that, in most
situations, a columnwise or rowwise mapping is optimal, which greatly simplifies the task
of code generation. All our results are presented in Sections4 and5. Finally, we state some
conclusions in Section6.

2. TILING AS A LOOP TRANSFORMATION TECHNIQUE

When targeting a data-parallel or SPMD style of programming, classical constraints in the
literature to define tiles are the following:

1. Tiles are bounded. For scalability reasons, we want the number of points inside a
tile to be bounded by a constant independent of the domain size.

2. Tiles are identical by translation. This constraint is imposed to allow for automatic
code generation: a tile must be the image by a translation of any other one unless it
crosses the computation domain boundaries.

3. Tiles are ‘atomic’. Each tile is a unit of computation: all synchronization points are
beginnings and ends of tiles. The order on tiles must be compatible with the order
on nodes: one must avoid two distinct tiles being interdependent.

Consider the following simple example:

for i = 0 to N1 do
for j = 0 to N2 do

a(i, j) = a(i − 3, j) + a(i, j − 2)

b(i, j) = a(i − 2, j − 3) + b(i − 2, j − 1)

enddo
enddo

†This small list is far from being exhaustive.
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Figure 1. Optimal tiling for a computation volumeVcomp= 96

This loop nest has depth 2. The dependences are uniform (intuitively, dependence
vectors are translations), and they can be encapsulated into the dependence matrix

D =
(

3 0 2 2
0 2 3 1

)
.

The atomicity constraint can be expressed by the analytical conditionH D ≥ 0, where
H is the matrix of vectors normal to the faces (or the edges in two-dimensional problems)
of the tile[8]. In Figure1 we sketch a valid tiling for our example. The matrixH is the one
derived using the scalable communication-to-computation criteria of Bouletet al.[13]:

H = 1

16

(
0 1

3
1
2 0

)

We check thatH D ≥ 0. Note that the volume of the tile, which represents the number of
computations per tile, is given by the determinant ofH −1: Vcomp = det(H −1) = 96. The
number of communications is the following: each tile sends

• 24 data items to its right neighbor
• 34 data items to its lower neighbor and
• 6 data items to its lower-right neighbor.

Note that the third message (the diagonal communication) may be routed horizontally and
then vertically, or the other way round, and may even be combined with any of the first two
messages.

It is important to point out that the dependences between tiles are summarized by the
vector pair {(

1
0

)
,

(
0
1

)}

In other words, the computation of a tile cannot be started before both its left and upper
neighbor tiles have been executed.
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As stated above, the atomicity constraint implies that interprocessor communications
only take place at the end of the processing of each tile. Note that current architectures
do allow for communications and computations to overlap, and it is important to point
out that the atomicity constraint does not prevent a given processor from simultaneously
communicating boundary data of one tile (whose execution it just completed) and starting
the computation of another tile. Also, minimizing communication start-up overheads is a
‘sine-qua-non’ condition towards achieving good performance. Even though sophisticated
routing strategies are designed and implemented in hardware, communication start-up
costs remain very expensive as opposed to the elemental time for communicating one
data item (and even worse for performing a computation). Frequent exchanges of short
messages should therefore be replaced by fewer sends and receives of longer messages.
To summarize, in the context of distributed memory architectures, tiling is a technique that
permits optimization of communications while increasing the granularity of computations.

3. TILING WITH RESOURCE CONSTRAINTS

Ohtaet al.[15] aim at determining the best tile size under the following hypotheses:

H1. There areP available processors interconnected as a ring.
H2. The computation domain is a two-dimensional rectangle of sizeN1 × N2.
H3. Tiles are rectangular and their edges are parallel to the axes (see Figure2). The size

of a tile isn1 × n2, wheren1 andn2 are unknowns.
H4. Dependences between tiles are summarized by the vector pair{(1

0

)
,
(0
1

)} (as in the
example of Section2).

H5. Tiles are assigned to processors using a one-dimensional cyclic distribution: in other
words, tile(i, j) is allocated to processorj mod P.

H6. The scheduling of the tiles is columnwise: at step 0, processorP0 executes tile
(0, 0) and the computed value is communicated to the adjacent processorP1 (more
precisely, a rectangular slice of widthw and heightn2 is sent). At step 1, processors
P0 and P1 execute tiles(0, 1) and (1, 0) simultaneously. After having executed a
whole column of tiles, a processor moves on to its next column.

A step is the time required to compute a tile and to communicate data. Ohtaet al.[15]
use the following expression:

Ttile = Tcomp+ Tcomm = n1n2t + (a + bn2)

where t is the elemental computation time,a is a communication start-up andb is
the inverse of the communication bandwidth times the widthw of the slice being
communicated (the communication cost is a linear expression in the message size).

To compute the total execution time, Ohtaet al.[15] use the formula(Ml + Mp)Ttile,
whereMl = P − 1 is the latency (the step at which the last processor begins to work) and
Mp = N1×N2

P×n1×n2
is the number of tiles per processor (assumed to be an integer). Using the

approximationMl = P, they derive the total execution timeT as

T =
(

P + N1N2

Pn1n2

)
(n1n2t + a + bn2)

The execution time is found to be minimal when choosingn1 = N1
P andn2 = √[(N2a)/

(N1t)].
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Figure 2. Mapping rectangular tiles onto a ring of processors

The objective of this paper is to discuss the hypotheses H1 to H6 of Ohtaet al.,
and to reformulate their results using a more accurate modeling of current architectures.
Indeed, their study is conducted while assuming that processors cannot simultaneously
communicate bordering data items of the last tile and perform computations for the next
tile. However, overlapping computations and communications is a facility provided by all
distributed memory computers, so we relax this restriction. This simple modification has a
tremendous effect on the determination of the best tile size.

4. ALLOWING FOR COMMUNICATION–COMPUTATION OVERLAP

4.1. On the model

Hypotheses H2, H3 and H4 may appear very restricting. However, we point out the
following justifications:

1. Tile shape. We assume that the tiles are rectangular. This is to be understood as the
outcome of previous program transformations. The first step in tiling amounts to
determining the best shape and size of the tiles, assuming an infinite grid of virtual
processors. Because this step will lead to tiles whose edges are parallel to extremal
dependence vectors in the convex hull of the dependence cone, we can perform a
unimodular transformation and rewrite the original loop nest along the edge axes.
The resulting domain may not be a rectangular, but we can approximate it using the
smallest bounding box (however, this approximation may impact the accuracy of our
results).

2. Dependence vectors. We assume that dependencies are summarized by the vector
pair V = {(1, 0)t, (0, 1)t}. Note that these are dependencies between tiles,
not between elementary computations. Hence, having right- and top-neighbor
dependencies is a very general situation if the tiles are large enough. In the example
of Section2, we had four dependence vectors in the original loop nest, but we ended
up with V after tiling. Technically, since we deal with a set of fully permutable

Copyright 1999 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.,11, 139–153 (1999)
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loops, all dependence vectors have non-negative components only, so thatV permits
all other dependence vectors to be generated by transitivity. Note that having a
dependence vector(0, a)t with a ≥ 2 between tiles,instead ofhaving vector(0, 1)t,
would mean unusually long dependencies in the original loop nest (in the example
of Section2, a(i, j) would depend upona(i, j −8) but not ona(i, j − x) for x ≤ 7),
while having (0, a)t in addition to (0, 1)t as a dependence vector between tiles
is simply redundant. In practical situations, we might have an additional diagonal
dependence vector(1, 1)t between tiles, but the diagonal communication may be
routed horizontally and then vertically, or the other way round, and even may be
combined with any of the other two messages (induced by dependence vectors(0, 1)t

and(1, 0)t).

On the other hand, hypotheses H5 and H6 are unnecessarily restrictive, because the
mapping and scheduling of the tiles should be an output decision of the procedure of tiling
with limited resources, rather than being given a priori. We overcome this restriction in
Section5.

4.2. Revisiting the results of Ohtaet al.

The total execution time is given by the following proposition:

Proposition 1. Under the hypotheses H1 to H6 of Section3, and allowing for
communication–computation overlap, the total computation timeT is (assuming all
fractions to be integer)

T =




T1=(P − 1)(n1n2t + a + bn2) + N1N2

P
t if N2n1t ≥ P(n1n2t + a + bn2)

T2=
(

N1

n1
− 1

)
(n1n2t + a + bn2) + N2n1t otherwise

(1)

Proof. According to hypothesis H4, the computation goes columnwise. When a processor
has completed the execution of a whole column of tiles, it starts the next column that has
been assigned to it. The time to process a whole column of tiles is the number of tiles in the
column, namelyN2

n2
, times the time to compute a tile, namelyTcomp = n1n2t . We obtain

the valueN2n1t for processing a whole tile column.
Now, according to hypothesis H5, tile columns are distributed cyclically to processors.

If a processor starts the execution of the first tile in a given column at time-stept , its right
neighbor cannot start the execution of the first tile in the next column before time-step
t + Ttile, whereTtile = Tcomp+ Tcomm = n1n2t + (a + bn2) (this is due to the dependence
vector(1, 0)t). Note thatTtile is the same as in Section3, but we pay a communication cost
only when the processors owning the tiles are not the same. Two cases can occur:

1. either there are enough tiles in each column so that when a processor has completed
the execution of a whole tile column it does not have to wait for its next tile column
to be ready. This will happen ifN2

n2
Tcomp = N2n1t is greater than or equal to the

delay imposed by horizontal constraints, i.e. if

N2

n2
Tcomp ≥ PTtile

Copyright 1999 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.,11, 139–153 (1999)
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Figure 3. Scheduling tiles withTcomp= 1, Tcomm = 1 and P = 3

If this condition holds, all processors remain active throughout the entire
computation, once they have started execution. Since the last processor starts at time
(P − 1)Ttile and hasN1N2

Pn1n2
tiles to execute (each in timeTcomp = n1n2t), we obtain

T1, the first expression in equation(1); see Figure3, whereTcomp = Tcomm = 1 and
P = 3. There areN2

n2
= 8 tiles per column, andPTtile = 6; hence the condition is

satisfied
2. or each processor has to wait upon finishing a tile column until the next column is

ready. This translates into the conditionN2
n2

Tcomp ≤ PTtile. In that case, the total
computation time is equal to the time at which the last processor starts the execution
of the first tile in the last column, namely( N1

n1
− 1)Ttile plus the time needed to

process this column. We obtain the expression( N1
n1

− 1)Ttile + N2
n2

Tcomp, as stated in
the second formula of equation(1); see Figure4, whereTcomp = 1, Tcomm = 2 and
P = 3. There areN2

n2
= 8 tiles per column, andPTtile = 9; henceN2

n2
Tcomp ≤ PTtile.

Processors remain idle at the end of each tile column, waiting for their next column
to be ready. 2

The optimal number of processors that should be used so as to minimize the total
execution time is given by the following proposition.

Corollary 1. Under the hypotheses H2 to H6 of Section3, and allowing for
communication–computation overlap, let

Pα = √(
N1N2t

n1n2t + a + bn2

)
and Pβ = N2n1t

n1n2t + a + bn2

The number of processorsP that minimizes the total execution time is given by:

• if Pβ ≤ 1 or Pα ≤ 1 ≤ Pβ , thenP = 1
• if 1 ≤ Pβ ≤ Pα thenP = Pβ

• if 1 ≤ Pα ≤ Pβ thenP = Pα .

Copyright 1999 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.,11, 139–153 (1999)
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Figure 4. Scheduling tiles withTcomp= 1, Tcomm = 2 and P = 3

Proof. The ‘steady-state’ conditionN2n1t ≥ P(n1n2t + a + bn2) in equation(1) can be
rewritten as

P ≤ Pβ

ConsiderT1 = (P − 1)(n1n2t + a + bn2) + N1N2
P t (see equation(1)). The minimum of

T1 is obtained forP = Pα . The expression ofT1 shows that it is a non-increasing function
of P when P ≤ Pα , and then a non-decreasing function ofP when P ≥ Pα . Also, note
thatT2 does not depend onP (other than through the conditionP ≥ Pβ ). Then the result
follows according to a simple case analysis. 2

For large domains, we will have 1≤ Pβ ≤ Pα , and it is no surprise that the optimal
number of processors is the one required to ensure steady-state execution: equation(1) in
Proposition 1 states that all processors remain active once started if

N2n1t ≥ P(n1n2t + a + bn2)

So far, we have assumed thatn1 andn2 were input parameters, because the size and
shape of the tiles may be imposed by some a priori considerations (such as the cache size).
We can try to determine the values ofn1 andn2 in the range 1≤ n1 ≤ N1, 1 ≤ n2 ≤ N2
that would minimize the total execution time. We rewrite the steady-state inequality by
introducing the following functionf :

f (n1) = N2n1t − Pa

P(n1t + b)
(2)

f is defined so thatN2n1t ≥ P(n1n2t + a + bn2) ⇐⇒ n2 ≤ f (n1). We have the
following result.

Corollary 2. Under the hypotheses H1 to H6 of Section3, and allowing for
communication–computation overlap, the total execution time is minimum for

• n1 = √ [
N1(a+b)
(N2−1)t

]
andn2 = 1 if f ( N1

P ) ≤ 1

• n1 = P(a+b)
t (N2−P)

andn2 = 1 otherwise.

Copyright 1999 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.,11, 139–153 (1999)
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Proof. We break down the problem into two sub-cases depending on the values taken by
the functionf , whose argumentn1 ranges from1 to N1

P :

1. ∀n1, f (n1) ≤ 1. Since f is a non-decreasing function ofn1, this condition is
equivalent to f (

N1
P ) ≤ 1. In this case, equation(2) is never satisfied (n2 ≥ 1).

Then the minimum ofT is obtained by minimizingT2 with n2 = 1, namely

T =
(

N1

n1
− 1

)
(n1t + a + b) + N2n1t

This easily leads ton1 = √ [
N1(a+b)
(N2−1)t

]
, as stated in the theorem.

2. ∃n1, f (n1) ≥ 1. We taken0
1 such thatf (n0

1) = min f (n1) andn0
1 ≥ 1. Note that

all values ofn1 ≥ n0
1 will lead to admissible values forn2, because we always have

f (n1) ≤ N2
P by definition of f . Now consider the expression ofT for arbitraryn1

andn2:

• if n2 ≤ f (n1), thenT = T1 and is a non-increasing function of bothn1 andn2.
WhenT decreases, then the minimum is obtained withn2 = 1 andn1 = n0

1.
• if n2 ≥ f (n1), thenT = T2 and is a non-increasing function ofn2. Then the

minimum of T is reached ifn2 = f (n1). In that caseT2 = T1, and again the
minimum is reached whenn2 = 1 andn1 = n0

1. 2

This result is disappointing in that we end up with degenerate tiles in most practical
situations. For instance, ifP � N2 (which is very likely to happen in practice),f (1) ≥ 1,
and the optimal tile size isn1 = n2 = 1 – not a very coarse-grain tiling! For other values of
the problem parameters we would have an optimal tile size that depends upon the domain
size, thereby contradicting the assumption that tiles are bounded (Section2). Note that
Ohtaet al.[15] also have this problem in their original model. The flaw is that the model is
not accurate enough to take the impact of data locality and data reuse into account (which
are the main objectives of tiling, and the main motivation for designing blocked linear
algebra algorithms[2]). A first solution is to model the computation cost of a tile by an
affine expression likeTcomp = n1n2t + u, whereu represents some access overhead. It
is not difficult to plug this expression into the formula given for the total execution time
T , and to derive the optimal tile size. Another solution is to assume a fixed tile size that
would be imposed by some a priori considerations (such as the cache size). Again, we can
let n1n2 = S in equation(1), and minimizeT for n1, say.

4.3. Generalizing the model

Assuming communication–computation overlap seems a reasonable hypothesis for
current machines which have communication coprocessors and allow for asynchronous
communications (posting instructions ahead, or using active messages). We can think
of independent computations going along a thread while communication is initiated and
performed by another thread. As written in [23] p. 268, ‘if we have communication
coprocessors (and smart compilers). . . the actual running time [for performingk
computations and sending/receiving a message of lengthm] . . . might be max{ts +
mtc, kta}’ (with our notations,ta = t , ts = a andtc = b/w).

Copyright 1999 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.,11, 139–153 (1999)
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A very interesting approach has been proposed by Andonov and Rajopadhye[21]: they
introduce thetile period Pt as the time elapsed between corresponding instructions of two
successive tiles that are mapped to thesameprocessor, while they define thetile latencyL t
to be the time between corresponding instructions of two successive tiles that are mapped
to differentprocessors. With these notations, the parallel execution time becomes[21]

T =




T1 = (P − 1)L t + N1

n1

N2

n2

1

P
Pt if

N2

n2
Pt ≥ P L t

T2 =
(

N1

n1
− 1

)
L t + N2

n2
Pt otherwise

(3)

The power of this approach is that the expressions forL t andPt can be modified to take
into account several architectural models, while equation(3) still remains valid. A very
detailed architectural model is presented in [21], and several other models are explored
in [24].

With our notations,Pt = TcompandL t = Tcomp+ Tcomm. We can rewrite equation(1) as

T =




T1=(P−1)(Tcomp+Tcomm)+ N1

n1

N2

n2

1

P
Tcomp if

N2

n2
Tcomp ≥ P(Tcomp+Tcomm)

T2=
(

N1

n1
− 1

)
(Tcomp+ Tcomm) + N2

n2
Tcomp otherwise

(4)

Equation(3), or its variant, equation(4), is the key to our tiling problem, because it
expresses the parallel execution time as a function of the domain size, of the number of
processors, and of the tile parametersPt andL t, or equivalentlyTcomp andTcomm.

5. OPTIMAL MAPPING AND SCHEDULING

Hypotheses H5 and H6 are very restrictive in that they impose the mapping of tiles to
processors as well as their scheduling. The intuitive motivation for H5 is that a cyclic
distribution of tiles is quite natural to load-balance computations. Once the distribution of
tiles to processors is fixed, there are several possible schedulings (any wavefront execution
that goes along a left-to-right diagonal is valid). Specifying a columnwise execution may
lead to the simplest code generation.

It turns out that H5 and H6 provide the best solution among all possible distributions of
tiles to processors, which is a very strong result. This result holds true under the assumption
that the communication cost for a tile is not larger than its computation cost. Since the
communication cost for a tile grows linearly with its size, while the computation costs
grows quadratically, this hypothesis will be satisfied if the tile is large enough.‡ This result
is formally stated in the theorem below. Beforehand, we need to refine the communication
cost as follows:

• Tcomm horiz = a+bn2 is the cost of communicating data from (the processor owning)
tile (i, j) to (the processor owning) its right neighbor tile(i + 1, j),

‡Of course, we can imagine theoretical situations where the communication cost is so large that a sequential
execution would lead to the best result.
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• Tcomm vert = a′+b′n1 is the cost of communicating data from (the processor owning)
tile (i, j) to (the processor owning) its bottom neighbor tile(i, j + 1).

We pay a communication cost only when the two processors that own the neighboring tiles
are not the same. So far we have never paid any cost for vertical communications, and
we always did for horizontal communications, because of hypothesis H5. We had to refine
the communication cost because, in this Section, we do not make any assumption on the
mapping of tiles to processors. Depending upon the values ofTcomm horiz andTcomm vert,
the best mapping will be columnwise or rowwise.

Theorem 1.Under the hypotheses H2 to H4 of Section3, and allowing for communication–
computation overlap, letn1 andn2 be chosen so that

max{Tcomm horiz, Tcomm vert} = max{a + bn2, a′ + b′n1} ≤ Tcomp = n1n2t

1. If Tcomm horiz ≤ Tcomm vert, assume that the steady-state equation holds:N2n1t ≥
P(n1n2t + a + bn2). Then the absolute minimum for the total execution time is

T1 = (P − 1)(Tcomp+ Tcomm horiz) + N1N2

P
t

and it is achieved by mapping and scheduling tiles according to hypotheses H5
and H6.

2. If Tcomm vert ≤ Tcomm horiz, assume that the steady-state equation holds:N1n2t ≥
P(n1n2t + a′ + b′n1). Then the absolute minimum for the total execution time is

T ′
1 = (P − 1)(Tcomp+ Tcomm vert) + N1N2

P
t

and it is achieved by mapping rows of tiles using a one-dimensional cyclic
distribution (tile (i, j) is allocated to processori mod P) and by scheduling the
tiles with rowwise ordering.

Proof. Without loss of generality, assume thatTcomm vert ≤ Tcomm horiz (the result is
symmetric in the rows and columns), and letTcomm = Tcomm vert. We begin the proof
with the following preliminary result, whereσ denotes any valid scheduling of the tiles
(σ(I ) is the time step at which the execution ofI begins).

Lemma 1.Let I = (i, j) be a tile index, and letI ′ = (i + 1, j) and I ′′ = (i, j + 1) be its
successor tiles. We have

max{σ(I ′′) − σ(I ), σ (I ′) − σ(I )} ≥ Tcomm+ Tcomp

Proof. Let proc(I ) be the processor that executes tileI . We have three cases to consider,
depending upon whetherproc(I ) also executes both successorsI ′ and I ′′, or exactly one
of them, or none of them:

both successors:proc(I ) = proc(I ′) = proc(I ′′)
The same processor executes both successors. They are executed sequentially and
the last one being executed cannot begin execution before time stepσ(I ) + 2Tcomp.
As Tcomm ≤ Tcomp the result is proven.
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one successor:proc(I ) = proc(I ′) andproc(I ) 6= proc(I ′′)
(respectively,proc(I ) = proc(I ′′) and proc(I ) 6= proc(I ′)). A communication
is needed betweenI and I ′′ (respectively,I and I ′); henceσ(I ′′) − σ(I ) ≥
Tcomm+ Tcomp(respectively,σ(I ′) − σ(I ) ≥ Tcomm+ Tcomp)

no successor:proc(I ) 6= proc(I ′) andproc(I ) 6= proc(I ′′)
This case is similar to the previous one. 2

Back to the proof of the theorem, letT// be the total execution time usingP processors.
Let Idle be the cumulated idle time of all processors during execution. Finally, letTseq =
N1N2t be the sequential execution time. Clearly,

PT// = Idle + Tseq

Hence, to show thatT// ≥ T1 = (P − 1)(Tcomp+ Tcomm) + Tseq
P , we need to show that

Idle ≥ P(P − 1)(Tcomp+ Tcomm)

The structure of the dependence graph does impose that some processors are idle at the
beginning of the computation, which will lead to a lower bound forIdle. For instance,
during the execution of tile(0, 0), there are necessarilyP − 1 idle processors. To go on,
we recursively definepivot tile(k) as follows (see Figure5):

(a) pivot tile(0) = (0, 0), and
(b) for k ≥ 1, pivot tile(k) is the one of the two successors ofpivot tile(k − 1) which is

executed last: ifpivot tile(k −1) = I = (i, j), let I ′ = (i +1, j) andI ′′ = (i, j +1)

be the successors of tileI :

(i) If σ(I ′) ≥ σ(I ′′), thenpivot tile(k) = I ′, and we defineS(k) as the remaining
tiles in columnj : S(k) = {(i, j + l), l ≥ 1}).

(ii) If σ(I ′′) ≥ σ(I ′), thenpivot tile(k) = I ′′, and we defineS(k) as the remaining
tiles in rowi : S(k) = {(i + l, j), l ≥ 1}.

We know from Lemma 1 that, for allk ≥ 1,

σ(pivot tile(k)) − σ(pivot tile(k − 1)) ≥ Tcomm+ Tcomp

We prove by induction that, for 1≤ k ≤ P − 1, at leastP − k processors are kept idle
between the beginning of the execution ofpivot tile(k − 1) and that ofpivot tile(k). This
will lead to

Idle ≥ ((P − 1) + (P − 2) + · · · + 1)(Tcomm+ Tcomp) = P(P − 1)

2
(Tcomm+ Tcomp).

This will prove the desired result, because the same amount of idleness, so to speak, will
be spent at the end of the computation (by symmetry of the dependence graph). Now, for
the induction:

1. Letk = 1: pivot tile(1) is either(0, 1) or (1, 0). See Figure5, wherepivot tile(1) =
(1, 0) and S(1) = {(0, 0 + l), l ≥ 1}. Between the beginning of the execution of
pivot tile(0) and that ofpivot tile(1), the only successors ofpivot tile(0) that can
be executed are inS(1). But all tasks inS(1) must be executed sequentially; hence,
between the beginning of the execution ofpivot tile(0) and that ofpivot tile(1), at
leastP − 1 processors are kept idle.
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2. Assume that the hypothesis is true until stepk. Between the beginning of the
execution ofpivot tile(k) and that ofpivot tile(k + 1), at most one processor can
be active inS(1), at most another one inS(2), . . . , and at most one processor in
S(k + 1), so that at mostk + 1 processors can be active or, equivalently, at least
P − (k + 1) processors remain idle. 2

It is worth pointing out that Theorem 1 holds true in a large framework. Whatever the
model used for estimating the communication timeTcommand the computation timeTcomp,
the parallel execution time for a columnwise allocation of tiles to processors is given by
equation(4). Theorem 1 basically says that such a columnwise or rowwise allocation will
be optimal as soon as

1. Tcomm ≤ Tcomp
2. (steady-state condition) the weight of a tile column (or tile row) is greater than the

tile latency
L t = P(Tcomm+ Tcomp)

The first hypothesis will be fulfilled if the tile is large enough (because the communication
cost grows linearly while the computation cost grows quadratically). The second
hypothesis will be fulfilled as soon as the domain is large enough in front of the number of
processors, a situation very likely to happen in practice.

Finally, note that when the steady-state condition is not satisfied, we can still derive
similar results. For instance, assume a squareN × N tiled iteration space (N tiles per
row and per column). LetTcomp be the computation time for a tile, and letTcomm be
the communication time (either horizontal or vertical). WithP processors, ifNTcomp ≤
P(Tcomm + Tcomp), a columnwise allocation of tiles to processors leads to the parallel
execution timeT = (N − 1)(Tcomp+ Tcomm)+ NTcomp. If Tcomm ≤ Tcomp, this is optimal:
use Lemma 1 to show that the execution of a diagonal tile(i, i), 0 ≤ i < N , cannot start
before time step(i − 1)(2Tcomp+ Tcomm).
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6. CONCLUSION

In this paper, we have studied tiling techniques aimed at adapting the granularity of
permutable loop algorithms towards execution on distributed-memory machines. We view
tiling as a two-step process: the first step amounts to determining the best shape and
size of the tiles (assuming an infinite grid of virtual processors), while the second step
consists in mapping and scheduling the tiles to physical processors. We have concentrated
on the second step, assuming a realistic model where (independent) communication and
computation may overlap. We have obtained several new results, including a strong result
on the optimal mapping and scheduling. However, much remains to be done to extend these
results to arbitrary dimensions and domain shapes.

More generally, the relationship between tiling, scheduling and mapping is not yet well
understood, and the two-step approach may prove too complicated for practical problems.
Yet, such a two-step approach is typical in the field of parallelizing compilers (other
examples are general task graph scheduling, software pipelining and loop parallelization
algorithms).

Finally, the recent development of heterogeneous computing platforms may well lead
to using tiles whose size and shape will depend upon the characteristics of the processors
they are assigned to. . . a truly challenging problem!
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