
CONCURRENCY: PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper., Vol. 10(11–13), 1117–1129 (1998)

Developing numerical libraries in Java

RONALD F. BOISVERT1∗, JACK J. DONGARRA2, ROLDAN POZO1, KARIN A. REMINGTON1 AND
G. W. STEWART1,3

1Mathematical and Computational Sciences Division, Information Technology Laboratory, National Institute of
Standards and Technology, Gaithersburg, MD 20899, USA
(e-mail: {boisvert,pozo,karin}@nist.gov)

2Computer Science Department, University of Tennessee at Knoxville, Knoxville, TN 37996, USA and Oak Ridge
National Laboratory, Oak Ridge, TN, USA
(e-mail: dongarra@cs.utk.edu)

3Department of Computer Science, University of Maryland, College Park, MD 20742, USA
(e-mail: stewart@cs.umd.edu)

SUMMARY
The rapid and widespread adoption of Java has created a demand for reliable and reusable
mathematical software components to support the growing number of computationally in-
tensive applications now under development, particularly in science and engineering. In this
paper we address practical issues of the Java language and environment which have an effect
on numerical library design and development. Benchmarks which illustrate the current levels
of performance of key numerical kernels on a variety of Java platforms are presented. Finally,
a strategy for the development of a fundamental numerical toolkit for Java is proposed and its
current status is described. 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

Mathematical software libraries were introduced in the 1960s both to promote software
reuse and as a means of transferring numerical analysis and algorithmic expertise to prac-
titioners. Many successful libraries have since been developed, resulting in a variety of
commercial products, as well as public repositories of reusable components such as netlib
and the Guide to Available Mathematical Software[1].

Library users want components which run fast, are easily moved among computing plat-
forms, invariably produce the right answer, and are easy to understand and integrate with
their applications. Thus, efficiency, portability, reliability and usability are of primary con-
cern to library developers. Unfortunately, these properties are often competing, portability
and reliability often taking a toll on performance, for example. Hence, the development
of high-quality portable mathematical software libraries for widely differing computing
environments continues to be a challenging task.

Java technology[2,3] is leading to a revolution in network-based computing. One of the
main reasons for this is the promise of new levels of portability across a very wide range
of platforms. Java is only beginning to affect the scientific computing world. Some of

∗Correspondence to: R. F. Boisvert, Mathematical and Computational Sciences Division, Information Tech-
nology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. (e-mail:
boisvert@nist.gov)

Contract grant sponsor: US Army Research Office; Contract grant number: DAAH04-95-1-0595.

CCC 1040–3108/98/111117–13$17.50 Received 28 February 1998
1998 John Wiley & Sons, Ltd. Revised 27 March 1998

1118 R. F. BOISVERT ET AL.

the barriers to its adoption in this domain are the perception of inadequate efficiency, lan-
guage constraints which make mathematical processing awkward, and lack of a substantial
existing base of high-quality numerical software components.

In this paper we assess the suitability of the Java language for the development of
mathematical software libraries. We focus on features of the language and environment
which may lead to awkward or inefficient numerical applications. We present case studies
illustrating the performance of Java on key numerical kernels in a variety of environments.
Finally, we outline the Java Numerical Toolkit∗ (JNT), which is meant to provide a base of
computational kernels to aid the development of numerical applications and to serve as a
basis for reference implementations of community defined frameworks for computational
science in Java.

2. NUMERICAL COMPUTING IN JAVA

Java is both a computer language and a runtime environment. The Java language[2] is
an object-oriented language similar to, but much simpler than, C++. Compilers translate
Java programs into bytecodes for execution on the Java Virtual Machine (JVM)[3]. The
JVM presents a fixed computational environment which can be provided on any computer
platform.

The resulting computing environment has many desirable features: a simple object-
oriented language, a high degree of portability, a runtime system that enforces array bounds
checking, built-in exception handling, and an automated memory manager (supported by a
garbage collector), all of which lead to more reliable software.

In this Section we review key features of the Java language, assessing their effect on
both performance and convenience for use in numerical computing. In doing this we point
out a number of deficiencies in the language. It is important to note, however, that many
of Java’s desirable features, such as its portability, are derived from the JVM rather than
the language itself. Other languages can be compiled into Java bytecodes for execution by
the JVM, and several compilers for Java extensions are under development.† Precompilers
which translate other languages, including C++, into pure Java are also under development.
If such tools achieve a high enough level of maturity and support, they too can provide the
basis for a Java-based development environment for scientific computing.

2.1. Arithmetic

The idea that results produced on every JVM should be bitwise identical[2] on all platforms
threatens the usability of Java for high-performance scientific computing. While there may
be some scientific applications where such certainty would be useful, its strict implementa-
tion could severely degrade performance on many platforms. Systems with hardware that
supports extended precision accumulators (which enhance accuracy) would be penalized,
for example, and certain code optimizations (including runtime translation to native code)
would be disallowed.

It is also unfortunate that Java has not provided programmers with full access to the
facilities of IEEE floating-point arithmetic. Programmers do not have control of the round-
ing mode, for example (although this is rarely available in high-level languages). Also, the

∗http://math.nist.gov/jnt/.
†Many of these are listed at http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html.

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

DEVELOPING NUMERICAL LIBRARIES 1119

ability to (optionally) have floating-point arithmetic throw exceptions (on the generation
of a NaN, for example), would simplify coding and debugging.

2.2. Complex arithmetic

Complex arithmetic is essential in scientific computing. Java does not have a complex
data type, although this is not a fatal flaw since new types are easy to define. However,
since Java does not support operator overloading, one cannot make such types behave
like the primitive types float or double. More important than syntactic convenience,
however, is that not having complex arithmetic in the language can severely affect the
performance of applications. This is because compilers, as well as the JVM, will be unable
to perform conventional optimizations on complex arithmetic because they are unaware of
the semantics of the class.

Since complex arithmetic is so pervasive it is necessary to establish community consensus
on a Java interface for complex classes[4].

2.3. Memory model

Perhaps the biggest difference in developing numerical code in Java rather than in Fortran
or C results from Java’s memory model. Numerical software designers typically take
information about the physical layout of data in memory into account when designing
algorithms to achieve high performance. For example, LINPACK[5] used column-oriented
algorithms and the Level 1 BLAS in order to localize memory references for efficiency in
paged virtual memory environments. LAPACK[6] used block-oriented algorithms and the
Level 2 and 3 BLAS to localize references for efficiency in modern cache-based systems.
The ability to do this hinged on the fact that Fortran requires two-dimensional arrays be
stored contiguously by columns.

Unfortunately, there is no similar requirement for multidimensional arrays in Java. Here,
a two-dimensional array is an array of one-dimensional arrays. Although we might expect
that elements of rows are stored contiguously, one cannot depend upon the rows themselves
being stored contiguously. In fact, there is no way to check whether rows have been stored
contiguously after they have been allocated. The row-orientation of Java arrays means that,
as in C, row-oriented algorithms may be preferred over column-oriented algorithms. The
possible non-contiguity of rows implies that the effectiveness of block-oriented algorithms
may be highly dependent on the particular implementation of the JVM as well as the current
state of the memory manager.

The Java language has no facilities for explicitly referencing subvectors or subarrays. In
particular, the approach commonly used in Fortran and C of passing the address of an array
element to a subprogram which then operates on the appropriate subarray does not work.∗

2.4. Java’s vector class

Despite its name, Java’s vector class java.util.Vector is not really appropriate for
numerics. This class is similar in spirit to those found in the Standard Template Library

∗In C one would explicitly pass an address to the procedure, but address arithmetic does not exist in Java. In
Fortran one passes an array element, which amounts to the same thing since all parameters are passed by address,
but scalars are passed by value in Java.

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

1120 R. F. BOISVERT ET AL.

of C++, that is, they are merely containers which represent objects logically stored in
contiguous locations.

Because there is no operator overloading, access to vectors via this class must be through
a functional interface. Also, Vector stores generic Objects, not simple data types. This
allows a vector to contain heterogeneous data elements – an elegant feature, but it adds
overhead, and, unfortunately, complicates its use for simple data types. To use a vector of
double, for example, one needs to use Java’s wrapper Double class and perform explicit
coercions.

Consider the difference between using native Java arrays:

double x[] = new double[10]; // using native Java arrays
double a[] = new double[10];
...
a[i] = (x[i+1] - x[i-1]) / 2.0;

and Java’s Vector class:

Vector x = new Vector(10); // using Java’s Vector class
Vector a = new Vector(10);
...
a.setElement(i, new Double((((Double) x.ElementAt(i+1)).doubleValue()

- ((Double) x.ElementAt(i-1)).doubleValue()) / 2.0);

Deriving a VectorDouble class from Vector which performed these coercions automat-
ically would clean the code up somewhat, but would introduce even more overhead by
making each reference x[i] a virtual functional call.

2.5. I/O facilities

Java’s JDK 1.1 defines over 40 I/O classes, many of them with only subtle differences,
making it difficult to choose the right one for a given task. For example, the average Java
user may not immediately recognize the difference between parsing tokens from strings via
StringTokenizer (String) and StreamTokenizer (StringReader(String)).

Ironically, despite these numerous I/O classes there is little support for reading floating
point numbers in exponential notation. Even if one resorts to low-level parsing routines
to read floating point numbers, the internal class java.io.StreamTokenizer parses
‘2.13e+6’ as four separate tokens (‘2.13’, ‘e’, ‘+’, ‘6.0’), even when the parseNumbers()
flag is set. Furthermore, no formatted output facilities are provided, making it very difficult
to produce readable tabulated output.

2.6. Other inconveniences

A number of other conveniences which library developers have come to depend upon
are not available in Java. Operator overloading, which would be particularly useful for
user-defined matrix, vector, and array classes, as well as for complex arithmetic, would be
quite useful. Finally, templates, such as those in C++, would eliminate the need to create
duplicate functions and classes for double, float, complex, etc. The loss of compile-time
polymorphism can also lead to inefficiencies at runtime. While these omissions are not
fatal, they significantly increase the burden of numerical library developers.

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

DEVELOPING NUMERICAL LIBRARIES 1121

Extensions to Java which provide such facilities are under development by various
groups, implemented as either precompilers producing pure Java, or as compilers for the
JVM.∗ This may provide a reasonable approach for a Java-centric development environment
for scientific computing.

3. JAVA PERFORMANCE ON NUMERICAL KERNELS

For numerical computation, performance is a critical concern. Early experience with Java
interpreters has led to the common perception that applications written in Java are slow.
One can get good performance in Java by using native methods, i.e. calls to optimized code
written in other languages[7]. However, this comes at the expense of portability, which is a
key feature of the language. Advances in just-in-time (JIT) compilers, and improvements
in Java runtime systems, have changed the landscape in recent months, suggesting that Java
itself may indeed be suitable for many types of numerical computations. In this Section we
provide a variety of benchmarks which provide a brief glimpse of the current performance
of Java for simple numerical kernels.

3.1. Run-time array bounds checking

Runtime array bounds checking is a requirement of the JVM, and improved reliability of
applications makes this feature very desirable. Fortunately, this does not necessarily imply
significant performance degradation in practice. Modern processors have the ability to
overlap index checks with other computation, allowing them to cost very little. Experiments
performed in C++ using the NIST Template Numerical Toolkit[8] on a Pentium Pro with
the Watcom C++ compiler (version 10.6) show that array bounds checking can add as little
as 20% overhead.

3.2. Elementary kernels

Timings for several BLAS 1 kernels with various unrolling strategies in several environ-
ments are presented in Table 1. The baseline kernel daxpy (unroll 1) is written with no
optimizations, i.e.

public static final void daxpy(int N, double a, double x[], double y[]) {
for (int i=0; i<N ; i++) y[i] += a*x[i]; }

The unroll 4 variant of daxpy uses the kernel

y[i] += a * x[i]; y[i+1] += a * x[i+1];
y[i+2] += a * x[i+2]; y[i+3] += a * x[i+3];

while the unroll 4-inc variant uses

y[i] += a * x[i]; i++; y[i] += a * x[i]; i++;
y[i] += a * x[i]; i++; y[i] += a * x[i]; i++;

The latter can provide performance improvements if the JVM’s inc opcode is used. The
ddot schemes are similar.

∗See http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html.

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

1122 R. F. BOISVERT ET AL.

Table 1. Performance of BLAS level 1 kernels in various environments. Vector length is 200. Also
varied is the depth of loop urollings. Results in MFLOPS

daxpy ddot

Unroll depth Unroll depth
Environment 1 4 4-inc 8 1 4 8

Pentium II, 266 MHz, Intel BLAS, Win95 96† 193†

Pentium II, 266 MHz, gcc 2.7.1 -O3, Linux 88.1 134.2 120.0 132.5 147.1 147.1 148.1
Pentium II, 266 MHz, Microsoft SDK 2.0, Win95 45.0 67.0 80.0 81.0 41.0 80.0 81.0

Pentium Pro, 200 MHz, Sun JDK 1.1.3, Linux 10.4 14.6 15.7 14.7 13.5 21.6 22.0

SGI R10000, 194 MHz, java 3.0.1, IRIX 6.2 12.0 15.0 16.7 16.1 14.4 22.0 24.4
SGI R10000, 194 MHz, f77 -O3, IRIX 6.2 128.7 128.9 129.3 133.3 188.4 188.7 186.3

†Actual loop unrolling strategy unknown.

The data in Table 1 show that Microsoft’s SDK 2.0, for example, appears to deliver about
half the performance of C code for daxpy and ddot on the Pentium II. This is encouraging.
The results also indicate that unrolling can favorably affect the performance of numerical
kernels in Java, but that the effect varies widely among JVMs. (No JIT is currently available
for the Sun JDK 1.1 under Linux.)

3.3. Dense matrix multiply

We next consider a straightforward matrix multiply loop, i.e.

for (int i=0; i<L; i++)

for (int j=0; j<M; j++)

for (int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

By interchanging the three for loops one can obtain six distinct matrix multiplication
algorithms. We consider three which contain row operations in the innermost loop, denoted
as (i,j,k), (k,i,j) and (i,k,j) according to the ordering of the loop indices. The first is the loop
displayed above; it computes each element of C in turn using a dot product. The second
sweeps through C N times row-wise, accumulating one term of the inner product in each
of C’s elements on each pass. The third uses a row-wise daxpy as the kernel.

In Table 2 we display the result in MFLOPS for these kernels on a 266 MHz Pentium
II using both Java SDK 2.0 under Windows 95 and C compiled with the Gnu C compiler
Version 2.7.2.1 under Linux. The C kernels were coded exactly as the loop above, and
compiled with the options -O3 -funroll-loops. We consider the case L = N = M =
100, as well as the case where L = M = 100 and N = 16. The latter represents a typical
rank K update in a right-looking LU factorization algorithm.

In Table 3 we explore the effect of two additional loop optimizations for this kernel in Java
on the Pentium II. In the first case we attempt to reduce overhead using one-dimensional
indexing. That is, we assign rows to separate variables (e.g. Ci[j] rather than C[i][j]),
while in the second we use both one-dimensional indexing and loop unrolling (to a level
of 4).

Efficient implementations of the Level 3 BLAS in Fortran useblocked algorithms to make
best use of cache. Because the memory model used in Java does not support contiguously
stored two-dimensional arrays, there has been some speculation that such algorithms would

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

DEVELOPING NUMERICAL LIBRARIES 1123

Table 2. Performance of matrix multiplication in C and Java. 266 MHz Pentium II using Gnu C
2.7.2.1 (Linux) and Microsoft Java SDK 2.0 (Windows 95). C = AB, where A is L × N and B is

N ×M . L = M = 100. Results in MFLOPS

Environments

Gnu C Microsoft Java

Loop order N = 100 N = 16 N = 100 N = 16

(i, j, k) 82.2 90.6 20.4 29.1
(k, i, j) 60.4 49.0 11.4 13.9
(i, k, j) 74.1 60.0 7.6 9.4

Table 3. Effect of loop optimizations on matrix multiplication in Java. 266 MHz Pentium II using
Microsoft Java SDK 2.0 (Windows 95). C = AB, where A isL×N and B isN×M .L = M = 100.

Results in MFLOPS

Loop Optimizations

1D indexing plus unrolling

Loop order N = 100 N = 16 N = 100 N = 16

(i, j, k) 30.4 36.4 38.3 49.2
(k, i, j) 18.2 20.8 22.0 26.0
(i, k, j) 10.4 11.2 15.8 18.5

be less effective in Java. We have implemented a blocked variant of the (i,j,k) matrix
multiply algorithm above with two-level blocking: 40 × 40 blocks with 8 × 8 unrolled
sub-blocks. Figure 1 compares the simplistic (i,j,k) algorithm with its blocked variant for
matrices of size 40×40 to 1000×1000 on a 266 MHz Pentium II system running Microsoft
Java SDK 2.0 under Windows 95. The performance of the blocked algorithm is far superior
to the unblocked algorithm, achieving 82.1 MFLOPS for the largest case. This is only 10%
slower than the smallest case, which fits completely in Level 1 cache.

The performance of the blocked algorithm is somewhat dependent on details of the
implementation. We observed a subtle tradeoff, for example, between including more
temporary variables and the use of explicit indexing. The choice of blocksize also has a big
effect; selecting 64× 64 blocks only yields 63 MFLOP performance for the 1000× 1000
case, for example. This indicates that it may be necessary to have a standard method call
which returns the optimal blocksize for the current virtual machine.

These results indicate that Java performance is still inferior to that obtained from C for
Level 3 BLAS operations, but that optimized Java can approach half the speed of C. (Note
that the highly optimized Intel BLAS ran this kernel (dgemm) at about 190 MFLOPS for
L = M = N = 200.) Also, relative performance of kernels in Java may be quite different
than in C. As expected, however, kernels based on dot products may be preferable in Java,
and strategies such as unrolling, one-dimensional indexing and blocking will help, although
the strength of the effect will undoubtably be highly dependent on the particular JVM and
JIT compiler.

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

1124 R. F. BOISVERT ET AL.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100
Java matrix multiply (SDK 2.0)

M
flo

ps

matrix size (NxN)

(i,j,k)

40x40 blocks, 8x8 sub−blocks

Figure 1. Blocked versus unblocked matrix multiplication in Java

3.4. Sparse matrix–vector multiply

Finally, we consider sparse matrix–vector multiplication based on a sparse coordinate stor-
age format[9]. In particular, we compare an implementation in Java with those based upon
the NIST Sparse BLAS Toolkit reference implementation[10] in C on a 266 MHz Pentium
II running Windows 95. The test cases, taken from the Harwell-Boeing collection[11,12],
represent fairly small sparse matrices, but may provide an indication of the relative perfor-
mance of these languages on kernels which contain indirect index computations. The results
are presented in Table 4. Note that the higher levels of performance for WEST0156 are due
to the fact that the matrix is small enough to completely fit in cache. The results indicate
that optimized Java code which is rich in indexing such as in sparse matrix operations can
perform at from 65% to 75% of the speed of optimized C code.

4. NUMERICAL LIBRARIES IN JAVA

Several development strategies exist for building numerical libraries in Java. First, numer-
ical classes can be coded directly in the language. This is, of course, labor-intensive, and
could lead to less than optimal code due to inefficiencies in the language. Nevertheless,
several groups have begun to undertake such projects[4,13,14]. A second option is to de-
velop tools to translate existing Fortran libraries into Java[15,16]. While this provides easy
access to a wealth of existing software, the severe mismatch between Fortran and Java
semantics is likely to lead to converted library source which is unnatural and inefficient.
A third option is to use Java’s native methods facility to provide an interface to existing
code in other languages such as Fortran and C. This requires one to develop a Java wrapper
to each library routine, although this is far simpler than recoding. The problem here, of
course, is that Java’s greatest advantage, its portability, is compromised.

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

DEVELOPING NUMERICAL LIBRARIES 1125

Table 4. Performance of sparse matrix–vector multiply in Java and C. 266 MHz Pentium II using
Microsoft Java SDK 2.0 and Watcom C 10.6 (Windows 95). Results in MFLOPS

Environments

Matrix Order Entries Microsoft Java Watcom C

WEST0156 156 371 33.7 43.9
SHERMAN3 5,505 20,033 14.0 21.4
MCFE 765 24,382 17.0 23.2
MEMPLUS 17,758 126,150 9.1 11.1

In this Section we discuss issues involved in the design of numerical libraries coded
directly in the Java language.

4.1. Basic design parameters

A number of elementary design decisions must be made when developing numerical
libraries in Java.

• Precision. What floating-point precisions should be supported? Most numerical com-
putations are currently carried out in IEEE double precision, and hence, support of
double is necessary.
• Naming. What naming convention should be used for numerical classes? Should

long descriptive names or short less cumbersome names be used? Should Float and
Double explicitly appear in class names to distinguish between precisions, as has
been done in early numeric class libraries?
• Vectors and matrices. Should native Java arrays be used instead of specialized classes

for vectors and matrices? Native Java arrays have the advantage of efficient process-
ing and automatic array bounds checking. If an elementary matrix class is devised,
should matrices be represented internally as one-dimensional arrays to ensure conti-
guity of data for block algorithms? If this is done, how can we provide for efficient
access to individual elements of arrays and vectors? (Preliminary experiments with
Microsoft SDK 1.1 using a five-point stencil kernel showed that use of explicit get
and set methods in a matrix class was five times slower than using native Java ar-
rays.) Should indexing of vectors and matrices be 0-based or 1-based? Should packed
storage schemes be supported? One can argue that storage is now so plentiful that
for many problems the complexity of packed storage schemes for triangular and
symmetric matrices is unnecessary in many cases.
• Serializable classes. Java provides a convention that allows for I/O of arbitrary

objects. Classes which implement the Serializable interface promise to provide
standard utilities for input and output of their instances. Should all numeric classes
be made Serializable?
• Functionality. How much functionality should be built into classes? Experience has

shown that extensive object-oriented design frameworks tend to restrict usability.

Because the design of object-oriented frameworks for numerical computing is a very dif-
ficult undertaking, and elaborate designs may, in fact, limit usability by being too complex
and specialized for many users, we propose that a toolkit approach be taken to the devel-

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

1126 R. F. BOISVERT ET AL.

opment of numerical libraries in Java. A toolkit is a collection of ‘raw’ classes which are
unencumbered by most of the trappings of object-oriented computing frameworks. They
provide a rich source of numerical algorithms implemented mostly as static methods which
need not be explicitly instantiated to be used. For simplicity and efficiency, native Java
arrays are used to represent vectors and matrices. A toolkit provides a low-level interface
to numerical algorithms similar to what one finds in C and Fortran. Toolkits provide a
source of basic numerical kernels and computational algorithms which can be used in the
construction of more facile object-oriented frameworks for particular applications[17].

4.2. Interface to the BLAS

Because the Java memory model for multidimensional arrays is different from the Fortran
model, some consideration must be given to the meaning and interpretation of function
interfaces for matrix/vector kernels like the BLAS which play a key role in any toolkit for
numerical linear algebra.

As in C and C++, Java stores matrices by rows, without any guarantee that consecutive
rows are actually contiguous in memory. Java goes one step further, however. Because
there are no capabilities to manipulate pointers directly, one cannot ‘alias’ subvectors, or
reshape vectors into matrices in a direct and efficient manner.

For example, in Fortran, if the functionSUM(N, X) sumsN elements from a given vector
X, then calling it SUM(K, X(I)) sums the elements xi, xi+1, . . . , xi+K . Unfortunately,
no analogue exists in Java. We must reference subvectors explicitly by describing the whole
vector and its offset separately, i.e. SUM(K, X, I).

If we are to provide the same level of functionality as the Fortran and C BLAS then we
must provide several versions of each vector operation. For example, the functionality of
a Fortran BLAS with calling sequence

(..., N, X, INCX, ...)

would have to be supported by

(..., int n, double x[], int xoffset, ...), and
(..., int n, double A[][], int Arow, int Acol, ...),

the former for a subvector, the latter for part of a column in a two-dimensional array. Thus,
a Fortran call to manipulate a subvector such as

CALL DAXPY(N, ALPHA, X(I), 1, Y(I), 1)

would be realized in Java as

BLAS.daxpy(N, alpha, x, i, y, i)

whereas a Fortran call to manipulate part of the column of an array such as

CALL DAXPY(N, ALPHA, A(I,J), LDA, B(I,J), LDB)

would be realized in Java as

BLAS.daxpy(N, alpha, A, i, j, B, i, j)

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

DEVELOPING NUMERICAL LIBRARIES 1127

One might also want to provide simplified, and more efficient, versions which operated on
entire vectors or columns, e.g.

(..., double x[], ...) and
(..., double A[][], int Acol, ...),

the former for a vector, the latter for a column in a two-dimensional array.
Similarly, Level 2 and Level 3 BLAS which refer to matrices in Fortran as

(..., N, M, A, LDA, ...)

would require explicit offsets in Java to support operations on subarrays as in

(..., int n, int m, double A[][], int Arow, int Acol, ...)

whereas routines which manipulate whole Java arrays need only have

(..., double A[][], ...)

It is clear that providing efficient and capable linear algebra kernels in Java requires
much more coding than in Fortran or C.

4.3. Interfaces

It is also necessary to identify common mathematical operations to be defined as Java
interfaces. An interface is a promise to provide a particular set of methods. User-defined
objects implementing a well-defined interface can then be operated on by library routines
in a standard way.

Interfaces to generic mathematical functions are needed, for example, in order to be able
to pass user-defined functions to zero finders, minimizers, quadrature routines, plotting
routines, etc. If the following existed,

public interface UnivariateFunction {

double eval(double x);}

then instances of user-defined classes implementing UnivariateFunction could be passed as
arguments to zero finders, which in turn would use the eval method to sample the function.
Many variants of mathematical function interfaces would be required. For example, it would
also be necessary to define interfaces for bivariate, trivariate and multivariate functions. It
would also be necessary to define interfaces for transformations from Rm to Rn. Versions
for complex variables would also be required.

Interfaces are necessary to support iterative methods for the solution of sparse linear
systems. These would define standard method invocations for operations such as the ap-
plication of a linear operator (matrix–vector multiply) and preconditioner application, thus
allowing the development of iterative solvers that are independent of matrix representation.

5. THE JAVA NUMERICAL TOOLKIT

In order to promote widespread reuse, community defined standard class libraries and
interfaces are needed for basic mathematical operations. To promote the development of

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

1128 R. F. BOISVERT ET AL.

such class libraries, we have begun the construction of the Java Numerical Toolkit (JNT).
JNT will contain basic numerical functions and kernels which can be used to build more
capable class libraries. In particular, the initial version of JNT includes

1. elementary matrix/vector operations (BLAS)
2. dense LU and QR matrix factorizations
3. dense linear systems and least squares problems
4. sparse linear systems using iterative methods
5. elementary and special functions, such as sign and Bessel functions I0, I1, J0, J1,
K0, K1, Y0, Y1

6. random number generators
7. solution of non-linear equations of a single variable.

The toolkit includes interface definitions to support mathematical functions and linear
solvers as in Section 4.3. JNT will also include

1. solution of banded linear systems
2. dense eigenvalue problems
3. support for a variety of specialized matrix formats
4. additional special functions, such as hyperbolic functions, the error function, gamma

function, etc.
5. one-dimensional quadrature rules.

The toolkit has been initially developed using the floating-point type double. Class and
method names will not include the word Double (i.e., double will be the toolkit default).
Versions based upon floatwill be defined and developed later if there is sufficient demand.

We are using the initial version of the toolkit to develop prototype user-level classes
for numerical linear algebra. These will include explicit dense matrix classes which will
contain class variables for matrix factorizations. When a user solves a linear system with
such a matrix object, a factorization would automatically be computed if necessary and
would be available for future use, without explicit action or knowledge of the programmer.

The Web page for the JNT project is http://math.nist.gov/jnt/.

6. CONCLUSIONS

The high level of portability, along with support for GUIs and network-based computing
provided by Java is attracting interest from the scientific computing community. The Java
language itself provides many facilities needed for numerical computing, but many others
are lacking, such as complex arithmetic, operator overloading, a clear memory model, and
formatted I/O. These will lead to much additional effort on the part of programmers, and
brings the ability to achieve high levels of performance in some areas into doubt. On the
other hand, rapid progress is being made in the development of JIT compilers, and the
performance level of many Java systems are improving (delivering as much as 25–50%
of optimized Fortran and C for key kernels in some cases). A major impediment to quick
progress in this area is the lack of basic mathematical software which is plentiful in other
environments. The construction of basic numerical toolkits for Java needs to be undertaken
to bootstrap the development of more sophisticated numerical applications and to provide
a basis for the development of community supported standard numerical class libraries and
interfaces.

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

DEVELOPING NUMERICAL LIBRARIES 1129

ACKNOWLEDGEMENTS

This paper is a contribution of the National Institute of Standards and Technology and is
not subject to copyright. Certain commercial products are identified in this paper in order to
adequately document computational experiments. Identification of such products does not
constitute endorsement by NIST, nor does it imply that these are the most suitable products
for the task. This work is supported in part by Defense Advanced Research Projects Agency
under contract DAAH04-95-1-0595, administered by the US Army Research Office.

REFERENCES

1. R. F. Boisvert, S. Browne, J. Dongarra and E. Grosse, ‘Digital software and data repositories for
support of scientific computing’, in N. Adam, B. K. Bhargava and M. Halem (Eds), Advances in
Digital Libraries, no. 1082 in Lecture Notes in Computer Science, Springer-Verlag, New York,
1996, pp. 61–72.

2. J. Gosling, B. Joy and G. Steele, The Java Language Specification, Addison-Wesley, Reading,
MA, 1996.

3. T. Lindholm and F. Yellin, The Java Virtual Machine Specification, Addison-Wesley, Reading,
MA, 1996.

4. Java language proposal, Visual Numerics, Inc., 9990 Richmond Ave., Ste. 400, Houston, TX
77042-4548, available at
http://www.vni.com/products/wpd/jnl/JNL/docs/intro.html, 1997.

5. J. J. Dongarra, C. B. Moler, J. R. Bunch and G. W. Stewart, LINPACK Users’ Guide, SIAM,
Philadelphia, 1979.

6. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia,
1992.

7. A. J. C. Bik and D. B. Gannon, ‘A note on native level 1 BLAS in Java’, Concurrency: Pract.
Exp., 9(11), 1091–1099 (1997).

8. R. Pozo, ‘Template numerical toolkit for linear algebra: High performance programming with
C++ and the Standard Template Library’, Int. J. High Perform. Comput. Appl., 11(3), (1997).
Further information about TNT may be found at http://math.nist.gov/tnt/.

9. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, SIAM, Philadelphia, 1994.

10. K. Remington and R. Pozo, ‘Sparse blas’, Working document of the Basic Linear Algebra
Subprograms Technical (BLAST) Forum, available at
http://www.netlib.org/utk/papers/blast-forum.html.

11. R. F. Boisvert, R. Pozo, K. Remington, R. Barrett and J. J. Dongarra, ‘The Matrix Market: A web
resource for test matrix collections’, in R. F. Boisvert (Ed.), The Quality of Numerical Software:
Assessment and Enhancement, Chapman & Hall, London, 1997, pp. 125–137.

12. I. S. Duff, R. G. Grimes and J. G. Lewis, ‘Sparse matrix test problems’, ACM Trans. Math.
Softw., 15(1), 1–14 (1989).

13. S. Russell, L. Stiller and O. Hansson, ‘PNPACK: Computing with probabilities in Java’, Con-
currency: Pract. Exp., 9(11), 1333–1339 (1997).

14. T. H. Smith, A. E. Gower and D. S. Boning, ‘A matrix math library for Java’, Concurrency:
Pract. Exp., 9(11), 1127–1137 (1997).

15. H. Casanova, J. Dongarra and D. M. Doolin, ‘Java access to numerical libraries’, Concurrency:
Pract. Exp., 9(11), 1279–1291 (1997).

16. G. Fox, X. Li, Z. Qiang and W. Zhigang, ‘A prototype Fortran-to-Java converter’, Concurrency:
Pract. Exp., 9(11), 1047–1061 (1997).

17. M. B. Dwyer and V. Wallentine, ‘A framework for parallel adaptive grid simulations’, Concur-
rency: Pract. Exp., 9(11), 1293–1310 (1997).

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117–1129 (1998)

	1. INTRODUCTION
	2. NUMERICAL COMPUTING IN JAVA
	2.1. Arithmetic
	2.2. Complex arithmetic
	2.3. Memory model
	2.4. Java's vector class
	2.5. I/O facilities
	2.6. Other inconveniences

	3. JAVA PERFORMANCE ON NUMERICAL KERNELS
	3.1. Run-time array bounds checking
	3.2. Elementary kernels
	3.3. Dense matrix multiply
	3.4. Sparse matrix--vector multiply

	4. NUMERICAL LIBRARIES IN JAVA
	4.1. Basic design parameters
	4.2. Interface to the BLAS
	4.3. Interfaces

	5. THE JAVA NUMERICAL TOOLKIT
	6. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

