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SUMMARY

The rapid and widespread adoption of Java has created a demand for reliable and reusable
mathematical software components to support the growing number of computationally in-
tensive applications now under development, particularly in science and engineering. In this
paper we address practical issues of the Java language and environment which have an effect
on numerical library design and development. Benchmarks which illustrate the current levels
of performance of key numerical kernelson a variety of Java platformsare presented. Finally,
astrategy for the development of a fundamental numerical toolkit for Java is proposed and its
current statusis described. 01998 John Wiley & Sons, Ltd.

1. INTRODUCTION

Mathematical software libraries were introduced in the 1960s both to promote software
reuse and as a means of transferring numerical analysis and algorithmic expertise to prac-
titioners. Many successful libraries have since been developed, resulting in a variety of
commercial products, as well as public repositories of reusable components such as netlib
and the Guide to Available Mathematical Software[1].

Library userswant componentswhich run fast, are easily moved among computing plat-
forms, invariably produce the right answer, and are easy to understand and integrate with
their applications. Thus, efficiency, portability, reliability and usability are of primary con-
cernto library developers. Unfortunately, these properties are often competing, portability
and reliability often taking a toll on performance, for example. Hence, the development
of high-quality portable mathematical software libraries for widely differing computing
environments continues to be a challenging task.

Javatechnology([2,3] isleading to arevolution in network-based computing. One of the
main reasons for this is the promise of new levels of portability across a very wide range
of platforms. Java is only beginning to affect the scientific computing world. Some of
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1118 R. F. BOISVERT ETAL.

the barriers to its adoption in this domain are the perception of inadequate efficiency, lan-
guage constraints which make mathematical processing awkward, and lack of asubstantial
existing base of high-quality numerical software components.

In this paper we assess the suitability of the Java language for the development of
mathematical software libraries. We focus on features of the language and environment
which may lead to awkward or inefficient numerical applications. We present case studies
illustrating the performance of Javaon key numerical kernelsin avariety of environments.
Finally, we outline the Java Numerical Toolkit* (JNT), which is meant to provide a base of
computational kernels to aid the development of numerical applications and to serve as a
basis for reference implementations of community defined frameworks for computational
science in Java.

2. NUMERICAL COMPUTING IN JAVA

Java is both a computer language and a runtime environment. The Java language[2] is
an object-oriented language similar to, but much simpler than, C++. Compilers trandate
Java programs into bytecodes for execution on the Java Virtual Machine (JVM)[3]. The
JVM presents a fixed computational environment which can be provided on any computer
platform.

The resulting computing environment has many desirable features: a simple object-
oriented language, a high degree of portability, aruntime system that enforcesarray bounds
checking, built-in exception handling, and an automated memory manager (supported by a
garbage collector), all of which lead to more reliable software.

In this Section we review key features of the Java language, assessing their effect on
both performance and conveniencefor use in numerical computing. In doing this we point
out a number of deficienciesin the language. It is important to note, however, that many
of Java's desirable features, such as its portability, are derived from the VM rather than
the language itself. Other languages can be compiled into Java bytecodes for execution by
the VM, and several compilersfor Java extensions are under development.t Precompilers
which trandlate other languages, including C++, into pure Java are also under devel opment.
If such tools achieve a high enough level of maturity and support, they too can providethe
basisfor a Java-based development environment for scientific computing.

2.1. Arithmetic

Theideathat results produced on every VM should be bitwiseidentical[2] on all platforms
threatensthe usability of Javafor high-performance scientific computing. While there may
be some scientific applications where such certainty would be useful, its strict implementa-
tion could severely degrade performance on many platforms. Systems with hardware that
supports extended precision accumulators (which enhance accuracy) would be penalized,
for example, and certain code optimizations (including runtime tranglation to native code)
would be disallowed.

It is also unfortunate that Java has not provided programmers with full access to the
facilities of | EEE floating-point arithmetic. Programmers do not have control of the round-
ing mode, for example (although thisis rarely availablein high-level languages). Also, the

*http://math.nist.gov/jnt/.
TMany of these are listed at http: //grunge.cs.tu-berlin.de/ tolk/vmlanguages.html.
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ability to (optionaly) have floating-point arithmetic throw exceptions (on the generation
of aNaN, for example), would simplify coding and debugging.

2.2. Complex arithmetic

Complex arithmetic is essential in scientific computing. Java does not have a complex
data type, athough thisis not a fatal flaw since new types are easy to define. However,
since Java does not support operator overloading, one cannot make such types behave
like the primitive types float or double. More important than syntactic convenience,
however, is that not having complex arithmetic in the language can severely affect the
performance of applications. Thisis because compilers, aswell asthe VM, will be unable
to perform conventional optimizations on complex arithmetic because they are unaware of
the semantics of the class.

Since complex arithmeticisso pervasiveit isnecessary to establish community consensus
on a Javainterface for complex classeq[4].

2.3. Memory model

Perhaps the biggest differencein developing numerical code in Javarather than in Fortran
or C results from Java's memory model. Numerical software designers typically take
information about the physical layout of data in memory into account when designing
algorithmsto achieve high performance. For example, LINPACK]5] used column-oriented
algorithmsand the Level 1 BLAS in order to localize memory references for efficiency in
paged virtual memory environments. LAPACK[6] used block-oriented algorithms and the
Level 2 and 3 BLAS to localize references for efficiency in modern cache-based systems.
The ability to do this hinged on the fact that Fortran requires two-dimensional arrays be
stored contiguously by columns.

Unfortunately, thereis no similar requirement for multidimensional arraysin Java. Here,
atwo-dimensiona array is an array of one-dimensional arrays. Although we might expect
that elements of rowsare stored contiguously, one cannot depend upon the rowsthemselves
being stored contiguoudly. In fact, thereis no way to check whether rows have been stored
contiguoudly after they have been allocated. The row-orientation of Javaarrays meansthat,
asin C, row-oriented algorithms may be preferred over column-oriented algorithms. The
possible hon-contiguity of rowsimpliesthat the effectiveness of block-oriented algorithms
may be highly dependent on the particular implementation of the VM aswell asthe current
state of the memory manager.

The Javalanguage has no facilities for explicitly referencing subvectors or subarrays. In
particular, the approach commonly used in Fortran and C of passing the address of an array
element to a subprogram which then operates on the appropriate subarray does not work.*

2.4. Java'svector class

Despite its name, Java's vector class java.util.Vector is not really appropriate for
numerics. This class is similar in spirit to those found in the Standard Template Library

*In C one would explicitly pass an address to the procedure, but address arithmetic does not exist in Java. In
Fortran one passes an array €lement, which amounts to the same thing since all parameters are passed by address,
but scalars are passed by value in Java
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of C++, that is, they are merely containers which represent objects logically stored in
contiguous locations.

Becausethereisno operator overloading, accessto vectorsviathis class must bethrough
afunctional interface. Also, Vector stores generic Objects, not simple data types. This
alows a vector to contain heterogeneous data elements — an elegant feature, but it adds
overhead, and, unfortunately, complicates its use for ssmple data types. To use a vector of
double, for example, one needs to use Java's wrapper Double class and perform explicit
coercions.

Consider the difference between using native Java arrays.

double x[]
double al]

new double[10]; // using native Java arrays
new double[10];

ali] = (x[i+1] - x[i-11) / 2.0;

and Java's Vector class:

Vector x = new Vector(10); // using Java’s Vector class
Vector a = new Vector(10);

é:éetElement(i, new Double((((Double) x.ElementAt(i+1)).doubleValue()
- ((Double) x.ElementAt(i-1)).doubleValue()) / 2.0);

Deriving aVectorDouble class from Vector which performed these coercions automat-
ically would clean the code up somewhat, but would introduce even more overhead by
making each reference x [1] avirtual functional call.

2.5. 1/O facilities

Java's IDK 1.1 defines over 40 1/O classes, many of them with only subtle differences,
making it difficult to choose the right one for a given task. For example, the average Java
user may not immediately recognize the difference between parsing tokensfrom stringsvia
StringTokenizer (String) and StreamTokenizer (StringReader(String)).

Ironically, despite these numerous 1/0 classes thereis little support for reading floating
point numbers in exponential notation. Even if one resorts to low-level parsing routines
to read floating point numbers, the internal class java.io.StreamTokenizer parses
‘2.13et6’ asfour separatetokens (‘2.13', ‘€', ‘+', '6.0’), even when the parseNumbers ()
flag is set. Furthermore, no formatted output facilities are provided, making it very difficult
to produce readabl e tabulated output.

2.6. Other inconveniences

A number of other conveniences which library developers have come to depend upon
are not available in Java. Operator overloading, which would be particularly useful for
user-defined matrix, vector, and array classes, as well as for complex arithmetic, would be
quite useful. Finally, templates, such as those in C++, would eliminate the need to create
duplicate functions and classes for double, float, complex, etc. The loss of compile-time
polymorphism can also lead to inefficiencies at runtime. While these omissions are not
fatal, they significantly increase the burden of numerical library developers.

[11998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117-1129 (1998)
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Extensions to Java which provide such facilities are under development by various
groups, implemented as either precompilers producing pure Java, or as compilers for the
JVM.* Thismay provideareasonable approach for aJava-centric devel opment environment
for scientific computing.

3. JAVA PERFORMANCE ON NUMERICAL KERNELS

For numerical computation, performanceis a critical concern. Early experience with Java
interpreters has led to the common perception that applications written in Java are slow.
One can get good performancein Javaby using native methods, i.e. callsto optimized code
written in other languages] 7]. However, this comes at the expense of portability, whichisa
key feature of the language. Advancesin just-in-time (JT) compilers, and improvements
in Javaruntime systems, have changed the landscape in recent months, suggesting that Java
itself may indeed be suitable for many types of numerical computations. In this Section we
provideavariety of benchmarkswhich provide abrief glimpse of the current performance
of Javafor simple numerical kernels.

3.1. Run-timearray bounds checking

Runtime array bounds checking is a requirement of the VM, and improved reliability of
applications makes this feature very desirable. Fortunately, this does not necessarily imply
significant performance degradation in practice. Modern processors have the ability to
overlapindex checkswith other computation, allowing themto cost very little. Experiments
performed in C++ using the NIST Template Numerical Toolkit[8] on a Pentium Pro with
the Watcom C++ compiler (version 10.6) show that array bounds checking can add aslittle
as 20% overhead.

3.2. Elementary kernels

Timings for several BLAS 1 kernels with various unrolling strategies in several environ-
ments are presented in Table 1. The baseline kernel daxpy (unroll 1) is written with no
optimizations, i.e.

public static final void daxpy(int N, double a, double x[], double y[]) {
for (int i=0; i<N ; i++) y[i] += axx[il; }

The unroll 4 variant of daxpy uses the kernel

yli 1 +=a* x[i 1; yli+1] += a * x[i+1];
y[i+2] += a * x[i+2]; y[i+3] += a * x[i+3];

while the unroll 4-inc variant uses

y[i] += a * x[i]; i++; yli] += a * x[i]; i++;
ylil += a * x[i]; i++; ylil += a * x[i]; i++;

The latter can provide performance improvementsif the VM’s inc opcode is used. The
ddot schemes are similar.

*Seehttp://grunge.cs.tu-berlin.de/"tolk/vmlanguages.html.
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Tablel. Performance of BLASIevel 1 kernelsin various environments. Vector length is 200. Also
varied isthe depth of loop urollings. Resultsin MFLOPS

daxpy ddot
Unroll depth Unroll depth
Environment 1 4 4-inc 8 1 4 8

Pentium 11, 266 MHz, Intel BLAS, Wing5 967 1937

Pentium 11, 266 MHz, gcc 2.7.1 -O3, Linux 88.1 134.2 120.0 1325 147.1 147.1 148.1
Pentium 11, 266 MHz, Microsoft SDK 2.0, Win95 45.0 67.0 80.0 81.0 41.0 80.0 81.0
Pentium Pro, 200 MHz, Sun JDK 1.1.3, Linux 10.4 14.6 15.7 147 135 21.6 220
SGI R10000, 194 MHz, java3.0.1, IRIX 6.2 12.0 15.0 16.7 16.1 144 22.0 24.4
SGI R10000, 194 MHz, f77 -03, IRIX 6.2 1287 1289 1293 1333 1884 188.7 186.3

T Actual loop unrolling strategy unknown.

Thedatain Table 1 show that Microsoft’s SDK 2.0, for example, appearsto deliver about
half the performance of C code for daxpy and ddot on the Pentium I1. Thisis encouraging.
The results also indicate that unrolling can favorably affect the performance of numerical
kernelsin Java, but that the effect varieswidely among JVMs. (No JIT iscurrently available
for the Sun JDK 1.1 under Linux.)

3.3. Densematrix multiply

We next consider a straightforward matrix multiply loop, i.e.

for (int i=0; i<L; i++)
for (int j=0; j<M; j++)
for (int k=0; k<N; k++)
Cli][j] += A[i1[x] * B[k][j1;

By interchanging the three for loops one can obtain six distinct matrix multiplication
a gorithms. We consider three which contain row operationsin the innermost |oop, denoted
as(i,j,k), (k,i,j)) and (i k,j) according to the ordering of theloop indices. Thefirst istheloop
displayed above; it computes each element of C in turn using a dot product. The second
sweeps through C N times row-wise, accumulating one term of the inner product in each
of C’s elementson each pass. The third uses a row-wise daxpy asthe kernel.

In Table 2 we display the result in MFLOPS for these kernels on a 266 MHz Pentium
I using both Java SDK 2.0 under Windows 95 and C compiled with the Gnu C compiler
Version 2.7.2.1 under Linux. The C kernels were coded exactly as the loop above, and
compiled with the options -03 -funroll-loops. Weconsiderthecase L = N = M =
100, aswell asthe casewhere L = M = 100 and N = 16. The latter represents atypical
rank K update in aright-looking LU factorization agorithm.

In Table 3weexploretheeffect of two additional |loop optimizationsfor thiskernel in Java
on the Pentium I1. In the first case we attempt to reduce overhead using one-dimensional
indexing. That is, we assign rows to separate variables (e.g. Ci [j] rather than C[1] [j]),
while in the second we use both one-dimensional indexing and loop unrolling (to alevel
of 4).

Efficientimplementationsof the Level 3BLASin Fortran useblocked algorithmsto make
best use of cache. Because the memory model used in Java does not support contiguously
stored two-dimensional arrays, there has been some specul ation that such algorithmswould

[11998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117-1129 (1998)
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Table 2. Performance of matrix multiplication in C and Java. 266 MHz Pentium Il using Gnu C
2.7.2.1 (Linux) and Microsoft Java SDK 2.0 (Windows 95). C = AB, where AisL x N and B is
N x M.L = M = 100. Resultsin MFLOPS

Environments

GnuC Microsoft Java

Looporder N=100 N=16 N=100 N =16

(i, 4, k) 82.2 90.6 20.4 29.1
(ki 5) 60.4 49.0 11.4 13.9
(i, k, 7) 741 60.0 76 9.4

Table3. Effect of loop optimizations on matrix multiplication in Java. 266 MHz Pentium |1 using
Microsoft Java SDK 2.0 (Windows 95). C = AB,whereAisL x NandBisN x M.L = M = 100.
Resultsin MFLOPS

L oop Optimizations

1D indexing plusunrolling

Looporder N=100 N=16 N=100 N =16

(i, 5, k) 30.4 36.4 38.3 49.2
(k)i,7) 18.2 20.8 22.0 26.0
(i, k,7) 10.4 11.2 15.8 185

be less effective in Java. We have implemented a blocked variant of the (i,j,k) matrix
multiply algorithm above with two-level blocking: 40 x 40 blocks with 8 x 8 unrolled
sub-blocks. Figure 1 compares the simplistic (i,j,k) agorithm with its blocked variant for
matricesof size40 x 40to 1000 x 10000n a266 MHz Pentium |1 system running Microsoft
JavaSDK 2.0 under Windows 95. The performance of the blocked algorithmisfar superior
to the unblocked a gorithm, achieving 82.1 MFLOPS for the largest case. Thisis only 10%
dlower than the smallest case, which fits completely in Level 1 cache.

The performance of the blocked algorithm is somewhat dependent on details of the
implementation. We observed a subtle tradeoff, for example, between including more
temporary variables and the use of explicit indexing. The choice of blocksize also hasabig
effect; selecting 64 x 64 blocks only yields 63 MFLOP performance for the 1000 x 1000
case, for example. This indicates that it may be necessary to have a standard method call
which returns the optimal blocksize for the current virtual machine.

These results indicate that Java performanceis till inferior to that obtained from C for
Level 3 BLAS operations, but that optimized Java can approach half the speed of C. (Note
that the highly optimized Intel BLAS ran this kernel (dgemm) at about 190 MFLOPS for
L =M = N = 200.) Also, relative performance of kernelsin Java may be quite different
thanin C. As expected, however, kernels based on dot products may be preferablein Java,
and strategies such as unrolling, one-dimensional indexing and blocking will help, although
the strength of the effect will undoubtably be highly dependent on the particular VM and
JT compiler.

[11998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117-1129 (1998)
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Java matrix multiply (SDK 2.0)
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Figurel. Blocked versus unblocked matrix multiplication in Java

3.4. Sparse matrix—vector multiply

Finally, we consider sparse matrix—vector multiplication based on a sparse coordinate stor-
age format[9]. In particular, we compare an implementation in Java with those based upon
the NIST Sparse BLAS Toolkit referenceimplementation[10] in C on a266 MHz Pentium
Il running Windows 95. The test cases, taken from the Harwell-Boeing collection[11,12],
represent fairly small sparse matrices, but may provide an indication of the relative perfor-
mance of these languageson kernelswhich containindirect index computations. Theresults
are presented in Table 4. Note that the higher levels of performancefor WEST0156 are due
to the fact that the matrix is small enough to completely fit in cache. The results indicate
that optimized Java code which isrich in indexing such asin sparse matrix operations can
perform at from 65% to 75% of the speed of optimized C code.

4. NUMERICAL LIBRARIESIN JAVA

Several development strategies exist for building numerical librariesin Java. First, numer-
ical classes can be coded directly in the language. Thisis, of course, labor-intensive, and
could lead to less than optimal code due to inefficiencies in the language. Nevertheless,
several groups have begun to undertake such projects4,13,14]. A second option is to de-
velop toolsto trandate existing Fortran librariesinto Javal 15,16]. While this provides easy
access to a wealth of existing software, the severe mismatch between Fortran and Java
semanticsis likely to lead to converted library source which is unnatural and inefficient.
A third option is to use Java's native methods facility to provide an interface to existing
codein other languages such as Fortran and C. Thisrequiresoneto develop a Javawrapper
to each library routine, although this is far simpler than recoding. The problem here, of
course, isthat Java's greatest advantage, its portability, is compromised.

[11998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117-1129 (1998)
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Table 4. Performance of sparse matrix—vector multiply in Java and C. 266 MHz Pentium Il using
Microsoft Java SDK 2.0 and Watcom C 10.6 (Windows 95). Resultsin MFLOPS

Environments

Matrix Order Entries Microsoft Java Watcom C
WEST0156 156 371 33.7 43.9
SHERMAN3 5,505 20,033 14.0 21.4
MCFE 765 24,382 17.0 23.2
MEMPLUS 17,758 126,150 9.1 111

In this Section we discuss issues involved in the design of numerical libraries coded
directly in the Javalanguage.

4.1. Basic design parameters

A number of elementary design decisions must be made when developing numerical
librariesin Java.

e Precision. What floating-point precisions should be supported? M ost numerical com-
putations are currently carried out in |EEE double precision, and hence, support of
doubleis necessary.

e Naming. What naming convention should be used for numerical classes? Should
long descriptive names or short less cumbersome names be used? Should Float and
Double explicitly appear in class hames to distinguish between precisions, as has
been done in early numeric class libraries?

e \ectorsand matrices. Should native Javaarraysbe used instead of specialized classes
for vectors and matrices? Native Java arrays have the advantage of efficient process-
ing and automatic array bounds checking. If an elementary matrix class is devised,
should matrices be represented internally as one-dimensional arraysto ensure conti-
guity of data for block algorithms? If this is done, how can we provide for efficient
access to individual elements of arrays and vectors? (Preliminary experiments with
Microsoft SDK 1.1 using afive-point stencil kernel showed that use of explicit get
and set methods in a matrix class was five times slower than using native Java ar-
rays.) Should indexing of vectorsand matrices be 0-based or 1-based? Should packed
storage schemes be supported? One can argue that storage is now so plentiful that
for many problems the complexity of packed storage schemes for triangular and
symmetric matricesis unnecessary in many cases.

e Serializable classes. Java provides a convention that allows for 1/0 of arbitrary
objects. Classes which implement the Serializable interface promise to provide
standard utilities for input and output of their instances. Should all numeric classes
bemade Serializable?

o Functionality. How much functionality should be built into classes? Experience has
shown that extensive object-oriented design frameworkstend to restrict usability.

Because the design of object-oriented frameworksfor numerical computingisavery dif-
ficult undertaking, and elaborate designs may, in fact, limit usability by being too complex
and specialized for many users, we propose that a toolkit approach be taken to the devel-
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opment of numerical librariesin Java. A toolkit is a collection of ‘raw’ classes which are
unencumbered by most of the trappings of object-oriented computing frameworks. They
providearich source of numerical algorithmsimplemented mostly as static methodswhich
need not be explicitly instantiated to be used. For simplicity and efficiency, native Java
arrays are used to represent vectors and matrices. A toolkit provides alow-level interface
to numerical agorithms similar to what one finds in C and Fortran. Toolkits provide a
source of basic numerical kernels and computational algorithms which can be used in the
construction of more facile object-oriented frameworksfor particular applications[17].

4.2. InterfacetotheBLAS

Because the Java memory model for multidimensional arraysis different from the Fortran
model, some consideration must be given to the meaning and interpretation of function
interfaces for matrix/vector kernelslike the BLAS which play akey role in any toolkit for
numerical linear algebra.

Asin C and C++, Java stores matrices by rows, without any guarantee that consecutive
rows are actually contiguous in memory. Java goes one step further, however. Because
there are no capabilities to manipulate pointers directly, one cannot ‘alias’ subvectors, or
reshape vectorsinto matrices in a direct and efficient manner.

For example, in Fortran, if thefunctionSUM(N, X) sums N elementsfromagiven vector
X, thencallingit SUM(K, X(I)) sumstheelementsz;,x;+1,...,z;+ K. Unfortunately,
no analogueexistsin Java. We must reference subvectorsexplicitly by describingthewhole
vector and its offset separately, i.e. SUM(K, X, I).

If we areto provide the same level of functionality as the Fortran and C BLAS then we
must provide several versions of each vector operation. For example, the functionality of
aFortran BLAS with calling sequence

(..., N, X, INCX, ... )
would have to be supported by
(..., int n, double x[], int xoffset, ... ),and
(..., int n, double A[][], int Arow, int Acol, ... ),

the former for a subvector, the latter for part of acolumnin atwo-dimensional array. Thus,
a Fortran call to manipulate a subvector such as

CALL DAXPY(N, ALPHA, X(I), 1, Y(I), 1)
would bereadlized in Javaas
BLAS.daxpy(N, alpha, x, i, y, i)
whereas a Fortran call to manipulate part of the column of an array such as
CALL DAXPY(N, ALPHA, A(I,J), LDA, B(I,J), LDB)
would berealized in Javaas

BLAS.daxpy(N, alpha, A, i, j, B, i, j)

[11998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117-1129 (1998)
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One might also want to provide simplified, and more efficient, versions which operated on
entire vectors or columns, e.g.

(..., double x[], ...)and
(..., double A[]J[], int Acol, ... ),

the former for a vector, the latter for a column in atwo-dimensional array.
Similarly, Level 2 and Level 3 BLAS which refer to matricesin Fortran as

(..., N, M, A, LDA, ...)
would require explicit offsetsin Javato support operations on subarraysasin
(..., int n, int m, double A[]J[], int Arow, int Acol, ... )
whereas routines which manipulate whole Java arrays need only have
(..., double A[1[1, ... )

It is clear that providing efficient and capable linear algebra kernels in Java requires
much more coding than in Fortran or C.

4.3. Interfaces

It is a'so necessary to identify common mathematical operations to be defined as Java
interfaces. An interface is a promise to provide a particular set of methods. User-defined
objects implementing a well-defined interface can then be operated on by library routines
in astandard way.

Interfacesto generic mathematical functionsare needed, for example, in order to be able
to pass user-defined functions to zero finders, minimizers, quadrature routines, plotting
routines, etc. If the following existed,

public interface UnivariateFunction {
double eval(double x);}

then instances of user-defined classes implementing UnivariateFunction could be passed as
argumentsto zero finders, which in turn would use the eval method to sample the function.
Many variantsof mathematical functioninterfaceswould berequired. For example, it would
also be necessary to define interfaces for bivariate, trivariate and multivariate functions. It
would also be necessary to define interfaces for transformationsfrom R™ to R™. Versions
for complex variableswould also be required.

Interfaces are necessary to support iterative methods for the solution of sparse linear
systems. These would define standard method invocations for operations such as the ap-
plication of alinear operator (matrix—vector multiply) and preconditioner application, thus
alowing the development of iterative solversthat areindependent of matrix representation.

5. THE JAVA NUMERICAL TOOLKIT

In order to promote widespread reuse, community defined standard class libraries and
interfaces are needed for basic mathematical operations. To promote the development of

[11998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117-1129 (1998)
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such class libraries, we have begun the construction of the Java Numerical Toolkit (JNT).
JNT will contain basic numerical functions and kernels which can be used to build more
capable classlibraries. In particular, the initial version of INT includes

elementary matrix/vector operations (BLAYS)

dense LU and QR matrix factorizations

dense linear systems and least squares problems

sparse linear systems using iterative methods

elementary and specia functions, such as sign and Bessel functions Iy, 1, Jo, J1,
Ko, K1, Yo, V1

6. random number generators

7. solution of non-linear equations of asingle variable.

gk

The toolkit includes interface definitions to support mathematical functions and linear
solversasin Section 4.3. INT will aso include

1. solution of banded linear systems

2. dense eigenvalue problems

3. support for avariety of specialized matrix formats

4. additional special functions, such as hyperbolic functions, the error function, gamma
function, etc.

5. one-dimensional quadraturerules.

Thetoolkit has been initially developed using the floating-point type double. Class and
method names will not include the word Double (i.e., double will be the toolkit default).
Versionsbased upon £1oat will be defined and devel oped | ater if thereis sufficient demand.

We are using the initial version of the toolkit to develop prototype user-level classes
for numerical linear algebra. These will include explicit dense matrix classes which will
contain class variables for matrix factorizations. When a user solves a linear system with
such a matrix object, a factorization would automatically be computed if necessary and
would be availablefor future use, without explicit action or knowledge of the programmer.

The Web page for the INT projectishttp://math.nist.gov/jnt/.

6. CONCLUSIONS

The high level of portability, along with support for GUIs and network-based computing
provided by Javais attracting interest from the scientific computing community. The Java
language itself provides many facilities needed for numerical computing, but many others
are lacking, such as complex arithmetic, operator overloading, a clear memory model, and
formatted I/O. These will lead to much additional effort on the part of programmers, and
brings the ability to achieve high levels of performance in some areas into doubt. On the
other hand, rapid progress is being made in the development of JT compilers, and the
performance level of many Java systems are improving (delivering as much as 25-50%
of optimized Fortran and C for key kernelsin some cases). A major impediment to quick
progressin this areais the lack of basic mathematical software which is plentiful in other
environments. The construction of basic numerical toolkitsfor Java needsto be undertaken
to bootstrap the devel opment of more sophisticated numerical applications and to provide
abasisfor the development of community supported standard numerical classlibrariesand
interfaces.

[11998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1117-1129 (1998)
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