
Applying Netsolve’s 
Network-Enabled Server 

HENRI CASANOVA 
University of Tennessee 

JACK DONGARRA 
University of  Tennessee and Oak Ridge National Laboratory 

4h 

The scientific community has long used the Internet for communication of e-mail, 
software, andpapers. Until recently, there has been little use of the network for  

actual computations. This situation is changing rapidly and will have an enormous 
impact on the future. The NetSolve system described here has a signijicant role to 

play in these developments. 

he NetSolve project, underway a t  the Uni- 
ersity of Tennessee and Oak Ridge National 

Laboratory, lets users access computational 
resources, both hardware and software, dis- 

tributed across the network. Thanks to a variety of in- 
terfaces, users can easily perform scientific computing 
tasks without having any computing resources installed 
on their computers. Research issues involved in the Net- 
Solve system include fault tolerance, load balancing, 
user-interface design, computational servers, virtual li- 
braries, and network-based computing. As the project 
matures, several promising extensions and applications 
of NetSolve will emerge. 

In this article, we describe the project and examine 
some of the extensions being developed for Netsolve: an 
interface to the Condor system, an interface to the 
ScaLapack parallel library, a bridge with the Ninf sys- 
tem, and an integration of NetSolve and Imagevision. 

Competing paradigms 
Ongoing advances in hardware, networking infrastruc- 
ture, and algorithms let us successfully attack a wide range 
of computationally intensive problems using networked, 
scientific computing. The networked-computing para- 
digm spreads vital pieces of software and information 

used by a computing process across the network, identi- 
fying and linking them only a t  runtime. By contrast, in 
the current software usage model, users acquire a copy 
(or copies) of task-specific software packages for use on 
local hosts. 

There are three main paradigms for such networked 
computing paradigms: proxy computing, code shipping, and 
remote computing. These paradigms differ in the way they 
handle the user’s data and in the program that operates 
on this data. In proxy computing, the data and the pro- 
gram reside on the user’s machine; both travel to a server 
that runs the code on the data and returns the result. In 
code shipping, the program resides on the server and is 
downloaded to the user’s machine, where it operates on 
the data and generates the result on that machine. This is 
the paradigm Java applets use within Web browsers. In 
remote computing, the program resides on the server. 
The user’s data travels to the server, where the programs 
or numerical libraries operate on it; the result then re- 
turns to the user’s machine. 

The NetSolve system uses this third paradigm (see 
Figure 1). NetSolve provides the user with a pool of 
computational resources. These resources are computa- 
tional servers that have access to ready-to-use numeri- 
cal software. As the figure shows, the computational 
servers can be running on single workstations, networks 

JULY-SEPTEMBER 1998 1070-9924/98/$10.00 0 1998 IEEE 57 



Figure 1. Netsolve’s organization. 

of workstations that can collaborate for solving a 
problem, or massively parallel processor sys- 
tems. Using one of the NetSolve client inter- 
faces, users can send requests to the NetSolve 
system, aslung that one of the servers carry out 
their numerical computation. As its main role, 
the NetSolve agent processes this request and 
chooses the most suitable server for this partic- 
ular computation. Once the agent chooses a 
server, that server is assigned the computation, 
uses its available numerical software, and even- 
tually returns the results to the user. 

As Figure 1 shows, there can be multiple in- 
stances of the NetSolve agent on the network, 
and different clients can contact different agents 
depending on their locations. The agents can 
exchange information about their different 
servers and allow access from any client to any 
server, if desirable. Suppose, for example, that 
the set of computational resources spans seeera1 
local-area networks and that users on each net- 
work want to use NetSolve to perform scientific 
computations. A NetSolve agent can be started 
on each network, so user requests always go to 
the “closest” agent for processing. NetSolve can 
operate either via the Internet or on an intranet, 
such as inside a research department or a uni- 
versity, without participating in any Internet- 
based computation. Also, Netsolve’s system 
configuration is entirely flexible: any server or 
agent can stop and start or restart a t  any time 
without jeopardizing the system’s integrity. 

The NetSolve agent is the primary participant 
in the management of the different computa- 
tional resources (hardware and software) as it is 
in charge of load balancing and fault tolerance. 

The computational resources 
One challenge in building the NetSolve sys- 

tem was to design a suitable model for the com- 
putational servers. For users to invoke numeri- 
cal s o h a r e  directly through our servers, three 
major features seemed to emerge as mandatory 
for the servers: 

Uniform access to the sojhalye: The servers 
should give users the illusion that they have 
access to a uniform set of subroutines and 
functions. This is a critical point because 
we want to hide, as much as possible, the 
specifics of the underlying numerical soft- 
wares. In this way, users need not undergo 
long learning phases when using a new set 
of functions. 
Configurability: The servers should not be 
limited to any particular software. We 
therefore needed to provide a framework to 
easily add functionality to a computational 
server. T h s  would let the system extend and 
encompass new numerical applications at 
will. 
Preinstallation: Of course, the user should 
not be responsible for installing anynumer- 
ical software directly. The numerical soft- 
ware available through the servers should be 
ready to use and already compiled to the tar- 
get architecture. Or, more generally, the sys- 
tem could dynamically handle installation 
and compilation itself, without any inter- 
vention from the user. 

The cuwent design. For implementing such 
a computational server, we have designed a gen- 
eral, machine-independent way of describing a 
numerical computation, as well as a set of tools 
to easily generate new computational modules. 
This framework’s main component is a descrip- 
tive language used to describe each separate nu- 
merical functionality of a computational server. 
NetSolve can compile the description files writ- 
ten in this language into actual computational 
modules executable on any Unix or NT plat- 
form. These files are really NetSolve wrappers 
around the scientific libraries and should not 
contain any numerical code. 

The NetSolve problem description contains 
information about what numerical-library func- 
tion to use, what input to expect, and what out- 
put will be generated. The file must also con- 
tain an estimate of the problem’s algorithmic 
complexity as a function of the input size. Such 
an estimate can be well known (such as for di- 

58 IEEE COMPUTATIONAL SCIENCE & ENGINEERING 



rect solvers) or can depend on the input data it- 
self (such as for iterative solvers). The latter case 
is still an open question in NetSolve. 

This approach offers several advantages. Ma- 
chine independence is one, as is the ability to in- 
tegrate arbitrary software components into Net- 
Solve. But this framework also allows increased 
collaboration between research teams and insti- 
tutions. Indeed, description files for a given nu- 
merical library need to be written only once. Any 
institution wanting to set up servers can then ex- 
change these files. Each time a new description 
file is created, the capabilities of the entire Net- 
Solve system increase. 

These advantages, however, are effective only 
if the process of creating new problems and 
adding them to a computational server is rea- 
sonably straightforward. For this reason, we de- 
veloped a graphical user interface to handle de- 
scription-file generation. The interface performs 
various error checks on the user input, which 
mostly consists of mouse clicks and choices in 
menus. Using the interface is much easier than 
creating a description file manually, especially as 
the sophistication of the problem increases. 

Ultimately, we want to have a NetSolve de- 
scription file repository on the Web. From such 
a repository, users could download description 
files at will to set up computational servers. The 
actual numerical software should also be avail- 
able to make the creation of these servers nearly 
immediate. 

Existing resources. The NetSolve team has 
generated a number of description files for nu- 
merical libraries that cover several fields of com- 
putational science-linear algebra, optimization, 
and fast Fourier transforms, for example. Net- 
Solve computational servers providing access to 
these libraries are currently running at the Uni- 
versity of Tennessee and at other locations world- 
wide. NetSolve users have also developed their 
own description files to start servers that answer 
their particular needs. For real-time information 
on the running servers, check the NetSolve Web 
page at  http://www.cs.utk.edu/zetsolve/. 

The client interfaces 
In designing Netsolve, we were most interested 

in providing several interfaces for a wide range of 
users. Users can invoke NetSolve through C, For- 
tran, Java, as well as on Matlab.’ In addition, there 
is a Web-based Java GUI that lets users solve 
problems remotely. We also wanted to keep the 
interfaces as simple as possible. For example, there 
are only two calls in the Matlab interface, and they 

are sufficient to let users submit problems to the 
NetSolve system. Each interface provides asyn- 
chronous calls to NetSolve in addition to tradi- 
tional synchronous or blocking calls. When 
several asynchronous requests travel to a NetSolve 
agent, they are dispatched 
among the available com- 
putational resources accord- 
ing to the load-balancing 
schemes implemented by the 
agent. Hence, the user- 
with virtually no effort-can 
achieve coarse-grained paral- 
lelism from either a C or 
Fortran program, or from in- 
teraction with a high-level in- 
terface. User requests never 
contain numeric problem- 
solving code, but rather ask to 
use code that is preexisting on 
the NetSolve servers. (Our 
Climt User? Guide to NetSolve 
describes all the interfaces2) 

In designing Netsolve, we 
were most interested in 

providing several 
interfaces for a wide range 
of users. Users can invoke 

NetSolve through C, 
Fortran, Java, as well as 

on Matlab. 

How the NetSolve agent works 
The NetSolve agent operates both as a data- 

base and as a resource broker. The agent keeps 
track of information about all the servers in its 
resource pool, including their availability, load, 
network accessibility, and the range of compu- 
tational tasks that they can perform. The agent 
then selects a server to perform the task, and the 
server responds to the client’s request. 

The agent as a database. Keeping track of 
what software resources are available and on 
which servers they are located is perhaps the 
NetSolve agent’s most fundamental task. Because 
the computational servers use the same frame- 
work to contribute software to the system, the 
agent can maintain a database of different nu- 
merical functionalities available to the users. The 
protocol is fairly straightforward. Each time a 
new server starts, it sends an application request 
to an instance of the NetSolve agent. This re- 
quest contains general information about the 
server (including its location), as well as the list of 
numerical functions it intends to contribute to 
the system. Eventually, the server is integrated 
into the system and can answer user requests. 

The agent as a resource broker. The NetSolve 
agent’s goal is to choose the best-suited compu- 
tational server for each incoming request to the 
system. For each user request, the agent deter- 
mines the set of servers that can handle the com- 
putation and ranks those servers from most suit- 

JULY-SEPTEMBER 1998 59 

http://www.cs.utk.edu/zetsolve


able to least. The agent is a resource broker in 
that once it returns the list of ranked computa- 
tional servers to the client, it is not involved in 
the computation itself. 

To perform the ranking, the agent uses com- 
putation-specific and resource-specific infor- 
mation. Computation-specific information is 
mostly included in the user request: size in bytes 
of the input data, size of the problem to be 
solved (such as dimensions of the matrices for a 
linear algebra computation), and so forth. Re- 
source-specific information is composed of sta- 
tic and dynamic data. Each server communicates 
static system-specific data to the agent when the 
server first starts and is accepted in the system. 
This data mainly contains the server’s host 
processor speed, the number of processors, and 
the complexity of the algorithms used by its nu- 
merical software. Dynamic data represents the 
load of the server’s host, the network delays, and 
transmission rates to contact that host.3 

Fault tolerance. As we’ve said, different insti- 
tutions can administer the hosts in the NetSolve 
system. That’s why NetSolve does not try to im- 
pose any control on the different resources. In- 
deed, we have said earlier that any NetSolve 
server can be stopped at any time (either will- 
ingly or because of a networldhosdsoftware fail- 
ure). Although this approach is flexible, it re- 
quires NetSolve to implement some kind of 
fault-tolerance mechanisms. 

The NetSolve system ensures that a user re- 
quest will be completed unless every single re- 
source capable of servicing the request has failed. 
When a client sends a request to a NetSolve 
agent, it receives a sorted list of computational 
servers to try. When the client has succeeded in 
contacting one of these servers, the numerical 
computation starts. If the contacted server fails 
during the computation, then another server is 
contacted and the computation restarts. In the 
current implementation, all input data resides on 

60 IEEE COMPUTATIONAL SCIENCE & ENGINEERING 



A major issue still needs to be addressed: how doe 

ient requests to computation 
unclear how these metrics can 

ning in the Condor pool could collect sta- 
tistics on the pool behavior. The NetSolve 
agent could then use these statistics to 
compute predictions of job execution 
times in that pool. Finding the appropri- 
ate prediction technique will be the fo- 
cus of the next step in Netsolve-Condor 
collaboration. 

stations,” Proc. Eighth Int? Conf. Dntrib- 
uted Computing Systems, IEEE Computer 

Condor central manager I 

NetSolve machine 

Condor pool 

NetSolve system 

tal Distributed Systems, IEEE CS Press, 
1990. 

the user’s machine during the computation and 
can then travel to another server after a failure. 
Future implementations will hand off the input 
data to NetSolve storage servers, where it will 
stay until the computation has finished (after 
possible failures and restarts). The whole restart 
process is transparent to the user. 

This fault-tolerance mechanism is rather 
primitive (even though effective), and we are in- 
vestigating techniques to allow task-check- 
pointing among servers. A first step is the Con- 
dor interface we discuss in the “An Interface to 
the Condor System” sidebar. 

Using NetSolve 
As an example of Netsolve’s capabilities, let’s 

look at  two applications, once in neuroscience 
and another in performing simple parallelism 
with Matlab. 

Neuroscience. The kind of network comput- 
ing enabled by NetSolve is particularly appro- 

priate for applications where the code is much 
larger than the data (such as PDE solvers, opti- 
mization, and symbolic mathematics). MCell, 
developed at the Computational Neurobiology 
Lab of the Salk Institute, is one such applica- 
t i ~ n . ~  This software performs 3D Monte Carlo 
simulations of cellular microphysiology for bi- 
ologists and biochemists. MCell simulations 
take a few (typically small) files as input and pro- 
duce a few small output files, making MCell an 
ideal application for NetSolve. 

At the moment, MCell users manually start 
MCell jobs on different machines, where they 
have made the input files accessible, and manu- 
ally gather the output files. This is extremely in- 
convenient, especially because they would like 
to run hundreds of computations in parallel on 
machines that are not on the same network file 
server. Furthermore, there is no fault-tolerance 
or load-balancing mechanism, both mandatory 
for such a large number of tasks. 

JULY-SEPTEMBER 1998 61 



o NetSolve (Close Internet) 

+ NetSolve (Overseas Internet) 

2 4 6 8 10 12 14 16 
Number of 800 x 800 matrix operations 

Figure 2. Multiple 800 x 800 matrix multiplications. The lntranet, Close Internet, 
Continental Internet, and Overseas Internet curves are for a client located respec- 
tively at the University of Tennessee; the Oak Ridge National Laboratory; the Uni- 
versity of California, Berkeley; and the Danish Technical University in Denmark. 

We have written a prototype NetSolve driver 
for MCell. The user passes (via a script) the list 
of all the MCell simulations to be performed, 
and the driver submits all the requests asynchro- 
nously to Netsolve. When the driver returns, all 
the output files have been created and are avail- 
able to the user. The NetSolve agent ensures that 
the load balancing is correct and that the execu- 
tion was fault tolerant. Our first experiment con- 
sisted in running the driver at the Salk Lnstitute 
in La Jolla, California, and having 10 NetSolve 
MCell servers in Tennessee. We are working 
closely with the MCell team to modify MCell so 
that it calls NetSolve internally. 

Simple parallelism j+om Matlab. In this ex- 
ample, the user is using Matlab on a Sun Sparc 5 
workstation to compute the square of several 
matrices. In the experiment, matrices are 800 X 
800, and the user wants to perform up to 16 
computations. Seven NetSolve servers are avail- 
able on Sun Ultra Is. 

Figure 2 shows the total execution times for 
various numbers of computations when the user 
is using either Matlab only or NetSolve via Mat- 
lab. When the user is using Netsolve, we have 
performed different measurements for different 
geographical locations of the client. The servers 
are located at the University of Tennessee. 

When Matlab is used directly, the total execu- 

62 

tion time increases linearly with the 
number of operations because there 
is no parallelism. Using NetSolve 
improves performance considerably, 
except when the client is overseas. In 
fact, transferring the data and the re- 
sult overseas is much more costly 
than performing a matrix square. In 
all the other cases, it is always better 
to use Netsolve, even if only one 
square is needed. 

We can conduct the same experi- 
ment with any NetSolve client inter- 
face, including the Java GUI. Figure 
3 shows sketches of the Matlab script 
that we used in the experiment. The 
first part of the script is pure Matlab, 
and the second part uses NetSolve 
and handles the task parallelism. 

MultiMatlab,’ developed a t  the 
Cornel1 Theory Center, could be 
used to run such a parallel Matlab 
script. However, MultiMatlab pro- 
vides a low-level MPI-like interface 
and would not give the user the 
same service abstraction as Net- 

Solve does. We could then write a layer on top 
of MultiMatlab that would create such an ab- 
straction and implement fault-tolerance and 
load-balancing mechanisms, namely rewriting 
NetSolve with MultiMatlab. However, this ap- 
proach would be very limited because users 
could call NetSolve only from Matlab, and Mat- 
lab is not freely distributed. 

Related grid-oriented software 
Both Ninf6 and the Network-Enabled Opti- 

mization Server7 bear similarities to Netsolve, but 
the differences are significant. NEOS addresses a 
specific field of computational science (optimiza- 
tion), whereas NetSolve can integrate virtually 
any processing of user data. Also, Netsolve’s soft- 
ware architecture lets it be deployed on any scale 
with great flexibility, whereas NEOS is central- 
ized at  the Argonne National Laboratory. 

Other than Condor, which we discuss in the 
sidebar, the two leading middleware systems for 
creating computational grids are Globus8 and 
Legion.’ They address somewhat different au- 
diences. NetSolve targets any scientist or engi- 
neer, providing them with a high-level service. 
By contrast, both Globus and Legion are built 
on their own lower-level directory and commu- 
nication services, malung them significantly 
more elaborate to deploy. 

IEEE COMPUTATIONAL SCIENCE & ENGINEERING 



Current and future directions 
As NetSolve increases both in number of 

users and resources, maintaining a coherent re- 
source space will become increasingly difficult. 
The issue of a robust and flexible naming strat- 
egy will undoubtedly arise. Several naming 
services have been designed (LDAP" and 
RCDS") and implementations are starting to 
become available. Such services would provide 
a good basis for a metacomputing project such 
as NetSolve and would prevent the NetSolve 
developers from taking naming responsibilities. 

The NetSolve model can accommodate both 
Globus and Legion (as agents and servers). As 
these systems gain maturity, we intend to review 
the current NetSolve design and implementation 
and gradually integrate new components from 
these systems. We have already integrated the 
Globus Heart Beat Monitor" into NetSolve to 
perform failure detection. Analogous investiga- 
tions of the integration of NetSolve with Legion's 
approach to grid computing are also underway, 
which would provide robust mechanisms for se- 
curity, data encryption and compression, and 
user-access control. 

We are also investigating ways of producing a 
more robust implementation on top of distrib- 
uted objects, for instance, with Corba13 or pos- 
sibly Java with NetSolve provides a 
much higher level of abstraction (service versus 
object) to the user than either Corba or RMI, 
but could implement this abstraction along with 
load-balancing and fault-tolerance mechanisms 
in a distributed-object environment. 

Finally, as the types of hardware resources and 
the types of numerical software available on the 
computational servers become more and more di- 
verse, the resource broker embedded in the agent 
will need to become increasingly sophisticated, 
leading to many open research questions. 

Integrating parallel numerical libraries 
Integrating parallel packages into NetSolve will 
let users on workstations access MPP systems to 
perform large computation. This access can be 
extremely simple and the users might not even 
be aware that they are using a parallel library. 
Furthermore, this parallel library will be acces- 
sible for C, Fortran, Matlab, Java programs, and 
even a Java GUI. 

NetSolve views a computational resource as a 
NetSolve server running on some platform. The 
specifics of that platform are totally hidden from 
the user. Therefore, a user could still use the 

% loading the matrices 
load 'matl'; ... ;load 'matl6'; 
Matfiles = {matl, ..., matl6); 
clear 'matl'; ... ;clear 'matl6'; 
nb = 16; 

% PURE MATLAB 
for i=l:l:nb 

Matfiles{i} * Matfiles{i}; 
end 

% NETSOLVE (non-blocking calls for parallelism) 
for i=l:l:nb 

request(i) = netsolve-nb('send,"square, 
'Matfiles{i),Matfiles{i}); 

end 

. . . do some work locally.. . 

for i=l:nb 
square{i} = netsolvegb('wait,'request(i) ) ;  

end 

Figure 3. Matlab script sketches. 

simple NetSolve interfaces to access the power 
of MPPs or networks of workstations to per- 
form large computations. 

Integrating parallel software packages into 
NetSolve 

ScaLapack (Scalable Linear Algebra Package) 
is a library of high-performance linear algebra 
routines for distributed-memory message- 
passing multiple-instruction, multiple-data com- 
puters as well as networks of workstations sup- 
porting PVM" or MPI.16 Developed at the Uni- 
versity of Tennessee, Knoxville, the Oak Ridge 
National Laboratory, and the University of Cal- 
ifornia, Berkeley, ScaLapack is a continuation of 
the Lapack project,I7 which designed and pro- 
duced analogous software for workstations, vec- 
tor supercomputers, and shared-memory paral- 
lel computers. The ScaLapack library contains 
routines for solving systems of linear equations, 
least-squares problems, and eigenvalue prob- 
lems. ScaLapack views the underlying multi- 
processor system as a rectangular process grid. 
Global data maps to the local memories of the 
processes in that grid assuming a 2D block-cyclic 
distribution of dense matrices. See the latest 
edition of the ScaLapack User's Guide for further 
details." 

JULY-SEPTEMBER 1998 63 



Figure 4. The ScaLapack NetSolve server paradigm. 

4,000 

h 

3,000 
0 

a, 
v 

._ z - 2,000 
U 

v) a 

W 
- 

1,000 

0 
I I I I 

1,000 2,000 3,000 4,000 
Problem size 

Figure 5. Using ScaLapack transparently from Matlab via Netsolve. 

Figure 4 is a sketch of the ScaLapack NetSolve 
server. The server receives data input from the 
client in the traditional way. After setting up the 
processor grid, the server distributes the input 
data in a 2D block-cyclic fashon and initiates the 
call to ScaLapack. When the ScaLapack call re- 
turns, the result of the computation is 2D block- 
cyclic distributed as well. The server then gath- 
ers that result and returns it to the client in the 
traditional way. This process is completely trans- 
parent to the user who does not even realize that 
a parallel execution is tahng place. 

This approach is very promising. A first 
prototype of the ScaLapack NetSolve server 
is available in NetSolve version 1.1 .b. Fig- 
ure 5 shows the results of an experiment 
where a Matlab user can possibly contact a 
ScaLapack NetSolve server running on a 
cluster of eight processors that are identical 
to the processor running Matlab. The graph 
shows the elapsed times using Matlab or 
NetSolve for solving a linear system with in- 
creasing matrix sizes. As expected, for large 
matrices, the use of ScaLapack leads to 
much better performance. Users only need 
to make a small syntactic change to their in- 
put to obtain such performance. Namely, to 
use Matlab directly, users should type in 

[XI = a\b; 

and to use NetSolve from Matlab 

[XI = netsolve(’linsol,’a,b); 

There are many research issues arising 
with integrating parallel libraries in Net- 
Solve. First, the agent needs to perform per- 
formance predictions for parallel algorithms 
running in various distributed systems. Such 
predictions will be much more involved than 
those the agent currently performs. Fur- 
thermore, the agent might have to make 
choices regarding, for example, the use of 
ScaLapack or Lapack for a given problem. 
Answering the question ((is it better to send 
this particular computation to a sequential 
Lapack server or a parallel ScaLapack 
server?” will certainly be difficult in many 
cases. Second, the server itself must make 
choices concerning the processor grid size 
and the block size of the 2D block-cyclic dis- 
tribution. This choice usually depends on 
the nature and size of the computation to be 
performed. In the current prototype, we did 

iot pay much attention to such choices, but a 
nore realistic version must yield the best per- 
brmance for the number of processors avail- 
ible. Other issues are related to the actual op- 
:rating system of the hardware platform and 
nclude processor availability and batch systems. 

VetSolve and Ninf 
Vinf, developed at the Electrotechnical Labora- 
-ory, Tsuhba, allows users to access computa- 
ional resources including hardware, software, 

64 IEEE COMPUTATIONAL SCIENCE & ENGINEERING 



and scientific data distributed across a 
wide-area network.6 To facilitate loca- 
tion transparency and network-wide 
parallelism, the Ninf MetaServer main- 
tains global resource information re- 
garding computational server and data- 
bases. It can therefore allocate and 
schedule coarse-grained computations 
to achieve good global load balancing. 
Clearly, NetSolve and Ninf bear strong 
similarities both in motivation and gen- 
eral design. 

A gateway between Ninf and 
NetSolve 

A collaboration between the two 
projects seems natural. However, the 
Ninf MetaServer and the NetSolve 
Agent, even though similar in intent, 
have different philosophies. The Net- 

server 

(a) 

Ninf 
client NetSolve 

agent 

U \ 

Solve Agent is really a resource bro- 
ker, whereas the Ninf MetaServer is 
a proxy. This, along with many other 

Figure 6. Gateway: (a) going from NetSolve to Ninf; (b) going from Ninf 
to Netsolve. 

less fundamental issues, prevents 
a seamless integration of the two 
systems. 

To overcome these issues, the Ninf team 
started developing an adapter so that Ninf 
clients can use NetSolve resources and vice 
versa. This first implementation of the adapter is 
written in Java, and is depicted in Figure 6. 

Figure 6a shows the Ninf-NetSolve adapter 
allowing access to Ninf resource from a Net- 
Solve client. The adapter is just seen by the Net- 
Solve agent as any other NetSolve server. The 
adapter performs protocol translation, interface 
translation, and data transfer that is transparent 
to the NetSolve client. The Ninf server per- 
forms a computation and returns the result to 
the user. 

In Figure 6b, the Netsolve-Ninf adapter is 
seen by the Ninf MetaServer as a Ninf server, 
but in fact plays the role of a NetSolve client. 
This is a little different from the Ninf-NetSolve 
adapter because, as we've said, the NetSolve 
agent is a resource broker, whereas the Ninf 
MetaServer is a proxy server. Once the adapter 
receives the result of the computation from 
some NetSolve server, it transfers that result 
back to the Ninf MetaServer that forwards it to 
the Ninf client. 

Evaluations of the first implementation show 
that using either system via an adapter causes ac- 
ceptable overheads, mainly due to additional 
data transfers. 

Using NetSolve to extend Imagevision 
NetSolve can serve as a building block for a 
general-purpose framework for basic image 
processing. 

integrating the Imagevision Library into Net- 
Solve 

A project under development at  the ICG In- 
stitute a t  Graz University of Technology, Aus- 
tria, focuses on making basic image-processing 
functions available for remote execution over a 
network. This project includes two objectives 
that can be leveraged by Netsolve. First, the re- 
sulting software should prevent the user from 
having to install complicated image-processing 
libraries. Second, the functionalities should be 
available via Java-based applications. The Im- 
ageusion Library (IL)19 developed by Silicon 
Graphics contains typical image-processing rou- 
tines to access, manipulate, display, and store im- 
age data. Because it is multithreaded, it can make 
use of multiprocessor machines and other spe- 
cial graphic hardware. Because the ICG research 
team judges that Imageusion is quite complete 
and mature, they think it is a good choice for an 
engine for building a remote-access image-pro- 
cessing framework. Such a framework will make 
IL accessible from any platform (and not only 
from SGI workstations).*' 

JULY-SEPTEMBER 1998 65 



have discussed through- 
ut this article how Net- 
olve can be customized, 

ended, and used for a va- 
riety of purposes. Perhaps the most impor- 
tant issue we raised concerns the agent re- 
source-management strategy. The NetSolve 
agent performs performance predictions for 
all the suitable resources when it receives a 
user request. Such predictions are much 
more difficult to realize for a Condor pool or 
a parallel machine than for a single worksta- 
tion. Much work will be devoted to unifymg 
our performance metrics so that they en- 
compass the specifics of these new types of 
resources. We have also shown how net- 
work-enabled servers, and NetSolve in par- 
ticular, have helped in developing a more 
general image-processing framework. All 
these developments take place at different 
levels in the NetSolve project and have had 

and will continue to have an impact on the proj- 
ect itself, causing it to improve and expand. 

NetSolve is an environment for networked 
computing whose goal is to deliver the power of 
computational grid environments to users who 
need processing power but are not expert com- 
puter scientists. It achieves this goal with its 
three-part client-agent-server architecture. In 
order to deliver the full capacity of grid re- 
sources, NetSolve must deal with the potential 
for these resources to be unstable, which means 
that fault-tolerance and/or computation migra- 
tion must be employed. We have described how 
the current version of NetSolve addresses these 
issues, and how NetSolve will evolve to address 
them more completely. 

Figure 7. Imagevision and Netsolve. 

NetSolve as an operating environment for 
I mag eVision 

choice for such a project are diverse: 
The reasons for makmg NetSolve the first 

NetSolve is easy to understand, extend, and 

NetSolve is freely available. 
NetSolve provides language bindmg to For- 

Netsolve's agent-based design allows load 

use at  the client level. 

tran, C, and Java. 

balancing among the available servers. 

The researchers at  ICG have created new Net- 
Solve computational modules corresponding to 
the desired image-processing functionalities, 
and the servers grant access to these functional- 
ities via all the NetSolve user interfaces. They 
have built a Java GUI to IL on top of the Net- 
Solve Java N I .  

Figure 7 shows a simple example of how Im- 
agexsion can be accessed via Netsolve. As 
shown, the Java GUI offers visualization capa- 
bilitles. For computabons, it uses an embedded 
NetSolve client and contacts SGI servers that 
have access to IL. The protocol depicted is sim- 
plistic for now. To obtain acceptable levels of 
performance, we must minimize the network 
traffic. There are several ways of approaching 
t h s  problem. We could keep a state in the server, 
meaning that some server always keeps the most 
recent image objects in memory. We could also 
pack several operations in one single request. We 
are currently investigating these possibilities. 

References 
1. Matlab Reference Guide, The Math 

Mass., 1992. 
2. H. Casanova, J. Dongarra, and K. Seymour, Client 

User's Guide to Netsolve, Tech. Report CS-96-343, 
Dept. of Computer Science, Univ. of Tennessee, 
Knoxville, 1996. 

3. H. Casanova and J. Dongarra, "Netsolve: A Net- 

66 IEEE COMPUTATIONAL SCIENCE & ENGINEERING 



~ 

4. 

5. 

6. 

7. 

8. 

9. 

I O .  

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

work Server for Solving Computational Science 
Problems," Proc. Supercomputing '96, IEEE Com- 
puter Society Press, Los Alamitos, Calif., 1996. 
J.R. Stiles et al., "Miniature Endplate Current Rise 
Times i l 0 0  ps from Improved Dual Recordings 
Can Be Modeled with Passive Acetylcholine Diffu- 
sion from a Synaptic Vesicle,'' Proc. Nat l  Academy 
Science, National Academy of Science, Washing- 
ton, D.C., Vol. 93, 1996, pp. 5747-5752. 
V. Menon and A. Trefethen, "MultiMatlab: Inte- 
grating Matlab with High-Performance Parallel 
Computing," Proc. Supercomputing '97, IEEE CS 
Press, 1997. 
S. Sekiguchi e t  al., "Ninf: Network based Infor- 
mation Library for Globally High Performance 
Computing," Proc. of Parallel Object-Oriented Meth- 
ods and Applications (POOMA), 1996. 
J. Czyzyk, M. Mesnier, and J. More, NEOS: The 
Network-Enabled Optimization System, Tech. Re- 
port MCS-P65-1069, Mathematics and Computer 
Science Division, Argonne National Laboratory, 
Argonne, Ill., 1996. 
I. Foster and K. Kesselman, "Globus: A Metacom- 
puting Infrastructure Toolkit," to be published in 
Proc. Workshop on Environments and Tools, SIAM, 
Philadelphia, 1998. 
A. Crimshaw et al., A Synopsis of the legion Project, 
Tech. Report CS-94-20, Dept. of Computer Sci- 
ence, Univ. of Virginia, Charlottesville, Va., 1994. 
T.A. Howes, The Lightweight Directory Access Pro- 
tocol: X.500 Lite, Tech. Report CITI-95-8, CITI, 
Univ. of Michigan, Ann Arbor, Mich., 1995. 
K. Moore et al., Resource Cataloging and Distribu- 
tion System, Tech. Report CS-97-346, Computer 
Science Dept., Univ. of Tennessee, 1997. 
I. Foster et al., "A Fault Detection Service for Wide 
Area Distributed Computations," to be published 
in Proc. Symp. High Performance Distributed Com- 
puting, /E€€ CS Press. 
A. Pope, The CORBA Reference Guide, Addison- 
Wesley, New York, 1998. 
T.B. Downing, RMI-Remote Method Invocation, 
IDG Books Worldwide, Foster City, Calif., 1998. 
A. Ceist et  al., PVM: Parallel Virtual Machine. A 
Users' Guide and Tutorial for Networked Parallel 
Computing, MIT Press, Cambridge, Mass., 1994. 
M. Snir et al., MPl: The Complete Reference, MIT 
Press, 1996. 
E. Anderson et al., Lapack Users' Guide, Second Ed., 
SIAM, 1995. 
L.S. Blackford et al., ScuLupuck Users' Guide, SIAM, 
1997. 
G. Eckel, J. Neider, and E. Bassler, Imagevision 
Library Programming Guide, Silicon Graphics, 
Mountain View, Calif., 1996. 

20. M. Oberhuber, "Integrating Imagevision into 
Netsolve," 1 997; http://www.icg.tu-graz.ac.at/ 
mober/pu b. 

Henri Casanova is a postdoctoral research associate 
in the University of Tennessee's Computer Science De- 
partment. His research interests include all areas of 
metacomputing, theoretical models for predicting and 
forecasting the performance of globally or locally dis- 
tributed applications, stochastic methods, statistical 
inference, sampling theory, large-deviation theory, and 
time-series analysis. He received his BS in computer 
science and applied mathematics from the Ecole Na- 
tionale Superieure d'Electrotechnique, d'lnfomatique 
et d'Hydraulique de Toulouse (ENSEEIHT), his MS in 
parallel architectures and applied mathematics from 
the University Paul Sabatier, Toulouse, and his PhD in 
computer science from the University of Tennessee, 
Knoxville. Contact him a t  104 Ayres Hall, Dept. of 
Computer Science, Univ. of Tennessee, Knoxville, 
Tenn., 37996; casanova@cs.utk.edu; http://www.cs. 
utk.edu/-Casanova/. 

Jack Dongarra holds a joint appointment with the 
University of Tennessee and Oak Ridge National Lab- 
oratory under the UT/ORNL Science Alliance Pro- 
gram. He specializes in numerical algorithms, parallel 
computing, use of advanced computers, program- 
ming methodology, and tools for parallel computers, 
as well as the development, testing, and documenta- 
tion of high-quality mathematical software. He was 
involved in the design and implementation of the 
software packages Eispack, Linpack, the BLAS, Lapack, 
ScaLapack, Netlib, PVM, MPI, and the National High- 
Performance Software Exchange. He received his PhD 
in applied mathematics from the University of New 
Mexico. He is co-editor-in-chief of the International 
Journal of Supercomputer Applications, Netlib, and the 
SIAM Series on Software, Environments, and Tools for 
Scientific Computing. Contact him a t  104 Ayres Hall, 
Dept. of Computer Science, Univ. of Tennessee, 
Knoxville, Tenn., 37996; dongarra@cs.utk.edu; http:// 
www.netlib.org/utk/people/JackDongarra/. 

JULY-SEPTEMBER 1998 67 

http://www.icg.tu-graz.ac.at
http://www.cs

