
 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/11/3/212
The online version of this article can be found at:

DOI: 10.1177/109434209701100304

 1997 11: 212International Journal of High Performance Computing Applications
Henri Casanova and Jack Dongarra

Netsolve: a Network-Enabled Server for Solving Computational Science Problems

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for

 http://hpc.sagepub.com/cgi/alertsEmail Alerts:

 http://hpc.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/content/11/3/212.refs.htmlCitations:

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/11/3/212
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/11/3/212.refs.html
http://hpc.sagepub.com/

212

NETSOLVE: A
NETWORK-ENABLED SERVER
FOR SOLVING COMPUTATIONAL
SCIENCE PROBLEMS

Henri Casanova

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY
OF TENNESSEE, KNOXVILLE, TN 37996-1301

Jack Dongarra

MATHEMATICAL SCIENCE SECTION, OAK RIDGE
NATIONAL LABORATORY, OAK RIDGE, TN 37831

Summary

This paper presents a new system, called NetSolve, that
allows users to access computational resources, such as
hardware and software, distributed across the network.
The development of NetSolve was motivated by the need
for an easy-to-use, efficient mechanism for using compu-
tational resources remotely. Ease of use is obtained as a
result of different interfaces, some of which require no
programming effort from the user. Good performance is
ensured by a load-balancing policy that enables NetSolve
to use the computational resources available as efficiently
as possible. NetSolve offers the ability to look for compu-
tational resources on a network, choose the best one
available, solve a problem (with retry for fault tolerance),
and return the answer to the user.

Address correspondence to Henri Casanova, Department of
Computer Science, University of Tennessee, 104 Ayres Hall,
Knoxville, TN 37996-1301, telephone (423) 974-8298, fax (423)
974-8296, e-mail casanova@cs.utk.edu.

1 Introduction

An ongoing thread of research in scientific computing is
the efficient solution of large problems. Various mecha-
nisms have been developed to perform computations
across diverse platforms. The most common mechanism
involves software libraries. Unfortunately, the use of such
libraries presents several difficulties. Some software li-
braries are highly optimized for only certain platforms and
do not provide a convenient interface to other computer
systems. Other libraries demand considerable program-
ming effort from the user, who may not have the time to
learn the required programming techniques. Although a
limited number of tools have been developed to alleviate
these difficulties, such tools themselves are usually avail-
able only on a limited number of computer systems.
MATLAB (Math Works, Inc., 1992) is an example of such
a tool.

These considerations motivated the establishment of

the NetSolve project. NetSolve is a client-server applica-
tion designed to solve computational science problems
over a network. A number of different interfaces have been

developed to the NetSolve software so that users of C,
FORTRAN, MATLAB, or the World Wide Web can easily
use the NetSolve system. The underlying computational
software can be any scientific package, thereby ensuring
good performance results. Moreover, NetSolve uses a
load-balancing strategy to improve the use of the compu-
tational resources available. Some other systems are cur-

rently being developed to achieve somewhat similar goals.
Among them, we can mention the network-based infor-
mation library for high performance computing (Ninf)
(Sekiguchi et al., 1996). This project is very comparable
to NetSolve in its philosophy, and because the two projects
are very young and constantly evolving, it is rather diffi-
cult to give an accurate comparison. According to the
latest information available on Ninf, it does not provide
facilities to solve iterative computations requiring a user-
supplied function, unlike NetSolve. NetSolve provides a
MATLAB interface that is not provided by Ninf. On the
other hand, Ninf offers some other functionalities that are
not part of NetSolve, so far. We can also mention the
remote computation system (RCS) (Arbenz, Gander, and
Oettli, 1996), which is a remote procedure call facility to
provide uniform access to a variety of supercomputers.
Unlike NetSolve, RCS is based on a parallel virtual ma-
chine (PVM) (Geist et al., 1994).

This paper introduces the NetSolve system, its archi-

tecture, and the concepts on which it is based. We then

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

213

describe how NetSolve can be used to solve complex
scientific problems.

2 The NetSolve System

This section briefly describes the NetSolve system, the
protocols in use, and the issues involved in managing such
a system.

2.1 ARCHITECTURE

The NetSolve system is a set of loosely connected ma-
chines. By loosely connected, we mean that these ma-
chines can be on the same local network or on an interna-
tional network. Moreover, the NetSolve system can be

running in a heterogeneous environment, which means
that machines with different data formats can be in the

system at the same time.
The current implementation sees the system as a com-

pletely connected graph without any hierarchical struc-
ture. This initial implementation was adopted for simplic-
ity and is viable for now. Our current idea of the NetSolve
world is of a set of independent NetSolve systems in
different locations, possibly providing different services.
Users can then contact the system they want, depending
on the task they want to have performed and on their own
location. To manage efficiently a pool of hosts scattered
on a large-scale network, future implementations might
provide greater structure (e.g., a tree structure), which
would limit and group large-range communications.

Figure 1 shows the global conceptual picture of the
NetSolve system. In this figure, a NetSolve client sends a
request to the NetSolve agent. The agent chooses the
&dquo;best&dquo; NetSolve resource according to the size and nature
of the problem to be solved.

Several instances of the NetSolve agent can exist on
the network. A good strategy is to have an instance of the
agent on each local network where there are NetSolve
clients. Of course, this is not mandatory; indeed, one may
have only a single instance of the agent per NetSolve
system.

Every host in the NetSolve system runs a NetSolve
computational server (also called a resource, as shown in
Figure 1). The NetSolve resources have access to scien-
tific packages (libraries or stand-alone systems).
An important aspect of this server-based system is that

each instance of the agent has its own view of the system.
Therefore, some instances may be aware of more details
than others, depending on their locations. But eventually,

&dquo;NetSolve is a client-server application
designed to solve computational science

problems over a network.&dquo;

Fig.1 1 The NetSolve system

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

214

the system reaches a stable state in which every instance

possesses all the available information on the system.

2.2 PROTOCOL CHOICES

Communication within the NetSolve system is achieved

through the socket layer. We chose to use the TCP/IP
protocol because it ensures reliable communication be-
tween processes. The fact that a process is limited to a

certain number of simultaneous TCP/IP connections was
not a problem (given the NetSolve specification).

To ensure the correct operation in a heterogeneous
environment, NetSolve uses the XDR protocol (Sun
Microsystems, Inc., 1987) between hosts with incompat-
ible data formats. Actually, this is the default protocol
before two hosts agree that they use the same data format.
Not using XDR when not necessary is an issue here,
because we expect to transfer large amounts of data over
the network (the user data).

2.3 NETSOLVE MANAGEMENT

The main philosophy behind the architecture of a Net-
Solve system is the following. Each NetSolve server (in-
stance of the agent or computational server) is an inde-

pendent entity. The system therefore can be modified
without endangering its integrity, because any NetSolve
server can be deleted or created at any time. For instance,
it is possible to have a NetSolve system with no agent.
Such a system is just not accessible by any user. An
instance of the agent can be restarted later on to make the

system accessible again.
Managing such a system can rapidly become difficult,

and a tool is needed to have a centralized view of the

system. To make this tool as convenient as possible, we
developed two common gateway interface (CGI) scripts
accessible from a World Wide Web browser. These scripts
take as input the location of an agent instance (the name
of the host where it is running) to identify the NetSolve
system to inspect. The first script outputs the list of agent
instances or computational resources available in the sys-
tem (a list of host names and IP addresses). The second
script outputs the list of problems solvable within the
system.

3 Problem Specification
and Server Management

This section describes what a NetSolve problem is and
how to configure, compile, and start a new computational
resource within a NetSolve system.

3.1 PROBLEM SPECIFICATION

To keep NetSolve as general as possible, we need to find
a formal way of describing a problem. Such a description
must be carefully chosen because it will affect the ability
to interface NetSolve with arbitrary software.
A problem is defined as a 3-tuple: <name, inputs,

outputs>, where

. name is a character string containing the name of the
problem,

. inputs is a list of input objects, and

. outputs is a list of output objects.

An object is itself described as follows: <object, data>,
where object can be MATRIX, VECTOR, or SCALAR,
and data can be any of the standard FORTRAN data types.

This description has proved to be sufficient to interface
NetSolve with numerous software packages. NetSolve is
still at an early stage of development and is likely to
undergo modifications in the future.

3.2 ARBITRARY CALLING SEQUENCES

We have just described what a problem is conceptually.
We now need a concrete way to describe how a problem
is to be specified by the user. Ideally, we would like users
already using scientific software packages from C or
FORTRAN to be able to switch to NetSolve with no

modification to their code. From this viewpoint, when
describing a problem as in the preceding subsection, we
also describe what we call its format. This is in effect

describing what the calling sequence to NetSolve for this
problem should be from C or FORTRAN. Moreover, a !

problem can have different calling sequences, and the user
can choose among them.

3.3 CREATING A SERVER

Part of our design objective was to ensure that NetSolve
would have an extensive application range. Thus, we
wished to be able to add new problems to a computational
server. We considered it unacceptable to have the Net- ;
Solve administrator modify the NetSolve code itself for j
each new problem addition.

Two solutions were possible. We could have our server
spawn off executables, or we could have it call the numeri- ’I
cal software explicitly in its own code. The first solution
seems much easier to implement: a computational server
could have access to a directory containing all the ex-
ecutables for all the problems. However, this approach has I
the following drawbacks. First, maintaining such a direc-

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

216

tory may not be easy in a distributed file system environ-
ment or in the case when some servers want to provide
access to only a subset of the set of problems. Second, and
more important, such a design requires a stand-alone
executable for each problem. Moreover, because most of
the numerical software likely to be interfaced with Net-
Solve are actual libraries, it seems redundant to have our
computational servers start up an executable calling the
library itself. Therefore, we decided to take the second
approach and have our servers directly call the underlying
software.
We developed a simple tool to handle this code genera-

tion for this approach. The input for this tool is a configu-
ration file describing each problem in a formal way; the
output is the actual C code for the computational process
in charge of the problem solving. Thus, new problems can
be added without having to be concerned about the Net-
Solve internal data structure.

In its first version, this pseudo-compiler still requires
some effort from the NetSolve administrator. In fact,
because any arbitrary library is supposed to be accessible
from NetSolve, we cannot completely free the adminis-
trator from code writing. We can, however, provide the
administrator with a simple and efficient way of accessing
the parameters to the problem. In particular, the function
calls to the library have to be written in C, using a
predefined set of macros. To make the creation of this file
even easier, we designed a Java applet to handle this task.
This applet is of course accessible from the World Wide
Web. By clicking on buttons and selected items in lists,
the file is constructed step-by-step. This should be the
preferred way to set up a computational server.

Once a file is created to formally describe a problem,
it can be reused by anyone who wants to set up another
computational server elsewhere. Eventually, most nu-
merical libraries could have their own NetSolve descrip-
tion file, accessible from the World Wide Web. Setting up
a server would then just require downloading this file,
compiling it with the pseudo-compiler, and running the
server code.

3.4 SCIENTIFIC PACKAGES

NetSolve is able to use any scientific linear algebra pack-
age available on the platforms it is installed on, provided
that the formalism in the previous sections remains valid.
This feature allows the NetSolve administrator not only
to choose the best platform on which to install NetSolve
but also to select the best packages available on the chosen
pl atfortn.

The current implementation af NetSoIve at the Univer-
sity of Tennessee uses BLAS (Lawson et al., 1979; Don-
garra et al., 1988; Dongarra et al., 1990), LAPACK (An-
derson et al., 1995), ItPack (Young et al., 1996), FitPack
(Cline, 1974), and LINPACK (Dongarra et al., 1979).
These packages are available on a large number of plat-
forms and are freely distributed.

The use of ScaLAPACK (Dongarra and Walker, 1995)
on massively parallel processors would be a way to use
the power of high performance parallel machines via
NetSolve.

4 Client Interfaces

One of the main goals of NetSolve is to provide the user
with a large number of interfaces and to keep them as
simple as possible. We describe here the different inter-
faces currently available, classified into two groups.

4.1 INTERACTIVE INTERFACES

Interactive interfaces offer several advantages. First, they
are easy to use because they completely free the user from
any code writing. Second, the user still can exploit the
power of software libraries. Third, they provide good
performance by capitalizing on standard tools such as
MATLAB. Let us assume, for instance, that MATLAB is
installed on one machine on the local network. It is

possible to use NetSolve via the MATLAB interface on
this machine and in fact use the computational power of
another more powerful machine where MATLAB is not
available.

The current implementation of NetSolve contains two
interactive interfaces.

4.1.1 The MATLAB interface. Within MATLAB,
NetSolve may be used in two ways. It is possible to call
NetSolve in a blocking or nonblocking fashion. Here is an
example of the MATLAB interface to solve a linear sys-
tem computation using the blocking call:

This MATLAB script first creates a random 100 x 100
matrix, a, and a vector b of length 100. The call to the
netsolve () function returns with the solution. This
call manages all the NetSolve protocol, and the computa-
tion may be executed on a remote host.

Here is the same computation performed in a non-
blocking fashion:

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

217

&dquo;One of the main goals of NetSolve is to

provide the user with a large number of
interfaces and to keep them as simple as

possible.&dquo;
Here, the first call to netsolve_nb () sends a re-

quest to the NetSolve agent and returns immediately with
a request identifier. One can then either probe for the
request or wait for it. Probing always returns immediately,
either signaling that the result is not available yet or, if I
available, stores the result in the user data space. Waiting
blocks until the result is available and then stores it in the

user data space. This approach allows user-level parallel-
ism and communication/computation overlapping (see
Section 7). Other functions are provided, for example, to ’
obtain information on the problems available or on the
status of the pending requests.

4.1.2 The shell interface. We also developed a shell It
interface. Here is the same example as above with the shell II
interface:

earth % netsolve ax=b A b solution

Here, A, b, and solution are files. This interface is

slightly different from the MATLAB interface because the
call to NetSolve does not make any difference between

inputs and outputs. The difference is made internally, and
the user must know the correct number of parameters. As
mentioned before, information on the problem specifica-
tions can be obtained by running the management scripts
(on the NetSolve Web site).

4.2 PROGRAMMING INTERFACES

In addition to interactive interfaces, we have developed
two programming interfaces, one for FORTRAN and one
for C. Unlike the interactive interfaces, programming ITinterfaces require some programming effort from the user.
But again, with a view to simplicity, the NetSolve libraries
contain only a few routines, and their use has been made
as straightforward as possible. As in MATLAB, the user
can call NetSolve asynchronously.

Simple examples of the C and FORTRAN interfaces
can be found in Appendices A and B.

5 Load Balancing in NetSolve

Load balancing is one of the most attractive features of the
NetSolve project. NetSolve performs computations over

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

218

a network containing a large number of machines with
different characteristics, and one of these machines is the
most suitable for a given problem. Before we consider
how NetSolve tries to determine which machine is to be

chosen, let us examine what criteria determine the best
machine.

5.1 CALCULATING THE BEST MACHINE

The hypothetical best machine yields the smallest execu-
tion time T for a given problem P. Therefore, we have to
estimate this time on every machine M in the NetSolve

system. Basically, we split the time T into Tn and T~, where

· T&dquo; is the time to send the data to M and receive the result
over the network, and

~ Tc is the time to perform the computation on M.

The time Tn can be computed by knowing the following:

1. network latency and bandwidth between the local
host and M,

2. size of the data to send,
3. size of the result to be received.

The computation of Tc involves knowledge of the following:

1. size of the problem,
2. complexity of the algorithm to be used,
3. performance of M, which depends on

~ the workload of M
~ the raw performance of M.

5.2 PERFORMANCE MODEL

We have developed a simple theoretical model enabling
us to estimate the performance, given the raw performance
and the workload. This model gives the estimated perfor-
mance, p, as a function of the workload, w; the raw

performance, P; and the number of processors on the
machine, n:

To validate this model, we performed several experi-
ments. The results of the experiments are plotted in Figure 2,
which shows the ratio pIP versus the workload of the
machine. Each measure gave one of the &dquo;+&dquo; marks. We
then computed the mean of all the measures for every
value of the workload. An asymptotic interpolation of

Fig. 2 p/P versus workload

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

these mean values is shown with a continuous curve. Our
theoretical model is shown with the dashed line.

In Figure 2a, we can see that the theoretical model is
close to the experimental results. In Figure 2b, because the
machine has four processors, the beginning of the curve
is a flat line, and the performance begins to drop when the
four processors are loaded. Our model is less accurate and

always optimistic because it does not take into account

any operating system delay to manage the different proc-
essors. The widely varying behavior of the four-processor
machine comes from the fact that the operating system
makes process migrations between the processors.

5.3 COMPUTATION OF T

The computation of T takes place on an instance of the
agent for each problem request and for each computa-
tional server M. This computation uses all the parameters
listed in the preceding section. We distinguish three dif-
ferent classes of the parameter:

~ The client-dependent parameters:
The size of the data to send
The size of the result to be received

The size of the problem
~ The static server-dependent parameters:

The network characteristics between the local host

and M
The complexity of the algorithm to be used on M
The raw performance of M

~ The dynamic server-dependent parameters:
The workload of M

The client-dependent parameters are included in the
problem request sent by the client to the agent. Their
evaluation is therefore completely straightforward. The
static server-dependent parameters are generally assessed
once, when a new server contacts the other NetSolve

servers already in the configuration.
Network characteristics. The network characteristics

are assessed several times, so that a reasonable average
value for the latency and bandwidth can be obtained. We
still call them static parameters, however, because they are
not supposed to change greatly once their mean value has
been computed.

Complexity of the algorithm. When a new computa-
tional server joins the NetSolve system, it posts the com-
plexity of all the problems it is willing to service. This
complexity does not change thereafter, because it depends

only on the software used by the computational server. In
some cases, the complexity is an exact value (for a matrix-
multiply for instance). In other cases, it can be a coarse
approximation, especially for iterative methods. But we
must bear in mind that we just want to compare the
runtimes of the servers, not have an accurate absolute
value. Of course, in some cases, this approximation might
prevent the load-balancing strategy from being optimal.
Raw performance. By raw performance, we mean the

performance of the machine with no other process using
the CPU. Its value is determined by each computational
server at startup time. We use the LINPACK benchmark
to obtain the Kflop/s rate. The LINPACK benchmark

computes the user time for its run and therefore corre-

sponds to our definition of raw performance.

5.4 THE WORKLOAD MODEL

Workload parameters are the only dynamic server-depen-
dent parameters required to perform the computation of
the predicted execution time T.

Each instance of the agent possesses a cached value of
the workload of every computational server. By cached,
we mean that this value is directly used for ~s computa-
tion and that it is updated only periodically. Admittedly,
this value may be out of date and lead to an occasional

wrong estimate of T. Nevertheless, we prefer on the aver-
age to take the risk of having a wrong estimate than to pay
the cost for getting a constantly accurate one.
We emphasize that we have tried to make this estimate

as accurate as possible while minimizing the cost of its
computation. Figure 3 shows the scheme we used to
manage the workload broadcast.

Let us consider a computational server M and an in-
stance of the agent C. C performs the computation of T
according to the last value of M’s workload it knows. M
broadcasts its workload periodically. In Figure 3, we call
time slice the delay between workload broadcast from M. I

I
This figure shows the workload function of M versus the
time. The simplest solution would be to broadcast the
workload at the beginning of each time slice. However,
experience proves that the workload of a machine can stay
the same for a very long time. Therefore, most of the time,
the same value would be broadcast again and again over
the network. To avoid this useless communication, we
chose to broadcast the workload only when it had signifi-
cantly changed. In the figure, we see some shaded areas
called the confidence interval. Basically, each time the I
value of the workload is broadcast, the NetSolve compu-

II
,I

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

219

Fig. 3 Workload policy In NetSolve

tational server decides that the next value to be broadcast
should be different enough from the last broadcast one-
in other words, outside this confidence interval. In Figure 3,
the workload is broadcast three times during the first five
time slices.

Two parameters are involved in this workload manage-
ment : the width of a time slice and the width of the
confidence interval. These parameters must be chosen

carefully. A time slice that is too narrow causes the work-
load to be assessed often, which is costly in term of CPU
cycles. We have to remember that a NetSolve server is
supposed to run on a host for a long period of time; it is
impossible to let it monopolize a lot of CPU time. The
width of the confidence level must also be considered

carefully. A narrow confidence interval causes a lot of
useless workload broadcasting, which is costly in terms
of network bandwidth.

Choosing an effective time slice and confidence inter-
val serves another function. It helps to make the workload

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

220

information on the instances of the agent as accurate as

possible, so that the estimated value of T is reasonable. We
emphasize that experimentation is needed to determine
the most suitable time slice and confidence intervals. A

possibility investigated at the moment would be to have
each server dynamically tune its confidence interval and
time slice at runtime.

6 Fault Tolerance

Fault tolerance is an important issue in any loosely con-
nected distributed system such as NetSolve. The failure of
one or more components of the system should not cause

any catastrophic failure. Moreover, the number of side
effects generated by such a failure should be as low as
possible and minimize the drop in performance. Fault
tolerance in NetSolve takes place at different levels. Here,
we will justify some of our implementation choices.

6.1 FAILURE DETECTION

Failures may occur at different levels of the NetSolve

protocols. Generally, they are due to a network malfunc-
tion, a server disappearance, or a server failure. A Net-
Solve process (i.e., a client, a server, or a utility process
created by a server) detects such a failure when trying to
establish a TCP connection with a server. The connection

might have failed or have reached a time-out before com-
pletion. In this case, this NetSolve process reports the
error to the NetSolve agent, which takes the failure into
account.

One of the prerequisites for NetSolve was that a server
could be stopped and restarted safely. Therefore, all the
error reports contain information to determine whether the
server was restarted after the error occurred. Indeed, be-
cause NetSolve can be used over a wide area network,
some old failure reports may very likely arrive after the
server that failed has been restarted. In other words, a
NetSolve server can always be stopped and restarted
safely.

When the agent takes a failure into account, it marks
the failed server in its data structures and does not remove

it. A server will be removed only after a given time and
only if it has not been restarted.

6.2 FAILURE ROBUSTNESS

Another aspect of fault tolerance is that it should minimize
the side effects of failures. To this end, we designed the
client-server protocol as the following. When the Net-
Solve agent receives a request for a problem to be solved,

it sends back a list of computational servers sorted from
the most to the least suitable one. The client tries all the
servers in sequence until one accepts the problem. This
strategy allows the client to avoid sending multiple re-
quests to the agent for the same problem if some of the
computational servers are stopped. If at the end of the list
no server has been able to answer, the client asks for

I
another list from the agent. Because it has reported all

I

these failures, it will receive a different list.
Once the connection has been established with a com-

putational server, there still is no guarantee that the prob-
lem will be solved. The computational process on the
remote host can die for some reason. In that case, the
failure is detected by the client, and the problem is sent to
another available computational server. This process is
transparent to the user but, of course, lengthens the exe-
cution time. The problem is migrated between the possible
computational servers until it is solved or no server re-
mains. I
6.3 TAKING FAILURES INTO ACCOUNT !I

I
When a failure occurs, the instances of the agent update ’

their view of the NetSolve system. They keep track of the I

status of the remote hosts: reachable or unreachable. They I
also keep track of the status of the NetSolve servers on II
these hosts: running, stopped, or failed. When a host is ,I I
unreachable or a NetSolve server is stopped for more than I

24 hours, the agent erases the corresponding entry in its I

view of the NetSolve system.
The agent also keeps track of the number of failures il

encountered when using a computational server. Once this
number reaches a limit value, the corresponding entry is
removed. Therefore, if a computational server is poorly
implemented, for instance, because it calls a library incor- I~
rectly, it will eventually disappear from the system. ,

7 Performance I
One of the challenges in designing NetSolve was to com- :1bine ease of use and excellence of performance. Several
factors ensure good performance without increasing the II
amount of work required of the user. In addition to the I
availability of diverse scientific packages (as discussed in I

the preceding section), these factors include load balanc- I
ing and the use of simultaneous resources. ILoad balancing. Given all the computational re- I

sources available, NetSolve provides the user with a best ,I

effort to find the most suitable resource for a given problem. ::1
Simultaneous resources. Using the nonblocking ,I

interfaces to NetSolve, the user can write a NetSolve

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

221

application that has some parallelism. In Figure 4, we see
the result of experiments conducted on a network of
SPARC workstations. The NetSolve program kept send-
ing requests so that ten 600 x 600 eigenvalues problems
were solved simultaneously over the network. We also
added computational servers to the NetSolve configura-
tion while running this program. Figure 4 shows the
execution time for each problem for each experiment. As
expected, the problems are solved simultaneously on dif-
ferent servers, and the average execution time for one

problem decreases when the number of computational
servers increases.

8 Future Work

Because the NetSolve project is still at an early develop-
ment stage, there is room for improvement at the interface
and conceptual levels.
We plan to increase the number of interactive inter-

faces. For instance, we could write Maple and Mathe-
matica interfaces, similar to the MATLAB one. Currently,
we are thinking of providing the user with a Java interface.
Such an interface should be easy to use and immediately
accessible via the Web.

The load-balancing strategy must be improved to
change the best guess into a best choice as much as
possible. The challenge is to come close to a best choice
without flooding the network. The danger is to waste more
time computing this best choice than the computation
would have taken in the case of a best guess only. Also,
we might wish to add a hierarchy in the NetSolve systems,
so that a single system could cover a large-scale network
efficiently.

Some new issues are raised also when trying to make
NetSolve easier to interface with any arbitrary software.
One of those is the user-defined function problem. Some
scientific packages require the user to provide a function
to solve a problem (typically with iterative methods). We
are investigating different approaches to allow this in
NetSolve. We had different implementations for this

scheme, but we still have not decided which one to include
in the final software.

All these improvements are intended to combine ease
of use, generality, and performance-the main purposes
of the NetSolve project.

&dquo;Given all the computational resources

available, NetSolve provides the user with
a best effort to find the most suitable

’

resource for a given problem.&dquo;

i=Ig. 4 Simultaneous request to an evolving NetSolve system

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

222

APPENDIX A Example: The NetS~o~ve C Interface

APPENDIX B Example: The NetSolve
FORTRAN Interface

BIOGRAPHIES

Henri Casanova received an engineering degree in computer
science and applied mathematics in 1993 from the Ecole Nation-
ale Supéerieure d’Electrotechnique, d’Electronique, d’lnforma-
tique et d’Hydraulique de Toulouse (ENSEEIHT), Toulouse,
France, and the Dipl6me d’Etudes Approfondies (DEA) in Fun-
damental Computer Science and Parallelism from the Universite
Paul Sabatier, Toulouse, France. In January 1995, he entered the
Ph.D. program in computer science at the University of Tennes-
see, Knoxville. His research interests include scientific comput-
ing, networking, and stochastic modeling.

Jack Dongarra received a B.S. in mathematics from Chicago
State University in 1972, an M.S. in computer science from the
Illinois Institute of Technology in 1973, and a Ph.D. in applied
mathematics from the University of New Mexico in 1980. He
currently holds a joint appointment as Distinguished Professor
of Computer Science in the Department of Computer Science at
the University of Tennessee (UT) and as Distinguished Scientist
in the Mathematical Sciences Section at Oak Ridge National
Laboratory (ORNL) under the UT/ORNL Science Alliance Pro-
gram. He specializes in numerical algorithms in linear algebra,
parallel computing, use of advanced-computer architectures,
programming methodology, and tools for parallel computers.
Other current research involves the development, testing, and
documentation of high-quality mathematical software.

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

223

REFERENCES

Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, and D. Sorensen. 1995. LAPACK users’

guide. 2d ed. Philadelphia: SIAM.
Arbenz, P., W. Gander, and M. Oettli. 1996. The remote compu-

tational system. Lecture Note in Computer Science: High-
Performance Computation and Network 1067:662-667.

Cline, A. 1974. Scalar- and planar-valued curve fitting using
splines under tension. Communications of the ACM 17:218-
220.

Dongarra, J., J. R. Bunch, C. B. Moler, and G. W. Stewart. 1979.
LINPACK users’guide. Philadelphia: SIAM.

Dongarra, J., J. Du Croz, I. Duff, and S. Hammarling. 1990. A
set of level 3 basic linear algebra subprograms. ACM Trans-
actions on Mathematical Software 16 (1):1-17.

Dongarra, J., J. Du Croz, S. Hammarling, and R. Hanson. 1988.
An extended set of Fortran basic linear algebra subprograms.
ACM Transactions on Mathematical Software 14 (1):1-32.

Dongarra, J., and D. Walker. 1995. Software libraries for linear
algebra computations on high performance computers. SIAM
Review 37 (2):51-180.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and
V. Sunderam. 1994. PVM: Parallel virtual machine: A users’

guide and tutorial for networked parallel computing. Cam-
bridge : MIT Press.

Lawson, C., R. Hanson, D. Kincaid, and F. Krogh. 1979. Basic
linear algebra subprograms for Fortran usage. ACM Trans-
actions on Mathematical Software 5:308-325.

Math Works, Inc. 1992. MATLAB reference guide. Natick, MA:
Math Works.

Sekiguchi, S., M. Sato, H. Nakada, S. Matsuoka, and U. Na-
gashima. 1996. Ninf: Network based information library for
globally high performance computing. In Proceedings of
Parallel Object-Oriented Methods and Applications
(POOMA), Santa Fe.

Sun Microsystems, Inc. 1987. XDR: External data repre-
sentation standard. RFC 1014, Sun Microsystems, Inc.,
Mountain View, CA.

Young, D., D. Kincaid, J. Respess, and R. Grimes. 1996. It-

pack2c: A FORTRAN package for solving large sparse linear
systems by adaptive accelerated iterative methods. Technical
Report, University of Texas at Austin, Boeing Computer
Services Company.

 at UNIV OF TENNESSEE on June 15, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

