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Networks of workstations (NOWs) offer a cost-effective plat-
form for high-performance, long-running parallel computations.
However, these computations must be able to tolerate the chang-
ing and often faulty nature of NOW environments. We present
high-performance implementations of several fault-tolerant algo-
rithms for distributed scientific computing. The fault-tolerance
is based on diskless checkpointing, a paradigm that uses proces-
sor redundancy rather than stable storage as the fault-tolerant
medium. These algorithms are able to run on clusters of work-
stations that change over time due to failure, load, or availability.
As long as there are at leastn processors in the cluster, and fail-
ures occur singly, the computation will complete in an efficient
manner. We discuss the details of how the algorithms are tuned
for fault-tolerance and present the performance results on a PVM
network of Sun workstations connected by a fast, switched eth-
ernet. © 1997 Academic Press

1. INTRODUCTION

Scientific computation has been a driving force behind par-
allel and distributed computing. Traditionally such computa-
tions have been performed on the largest and most expensive
supercomputers: the Cray C90, Intel Paragon, and Maspar
MP-2. Recently the price and performance of uniprocessor
workstations and off-the-shelf networking has improved to the
point that networks of workstations (NOWs) provide a parallel
processing platform that is competitive with the supercomput-
ers. The popularity of NOW programming environments such
as PVM [19] and MPI [34, 42] and the availability of high-
performance libraries for scientific computing on NOWs like
ScaLAPACK [13] show that networks of workstations are al-
ready in heavy use for scientific programming.

The major problem with programming on a NOW is the
fact that it is prone to change. Idle workstations may be
available for computation at one moment, and gone the next
due to failure, load, or ownership. We term any such event
a failure. Thus, on the wish list of scientific programmers is
a way to perform computation on a NOW whose components
may change over time.

This paper provides a solution to this problem, especially
tailored to the needs of scientific programmers. The solution
is based ondiskless checkpointing,a means of providing fault-
tolerance without any dependence on disk. The end result is
that as long as there aren processors available in the NOW
(wheren is defined by the user), and as long as failures come
singly, the computation can progress reliably.

We describe our approach of incorporating diskless check-
pointing into four well-known algorithms in linear algebra:
Cholesky factorization, LU factorization, QR factorization,
and Preconditioned Conjugate Gradient (PCG) [4, 16]. Sub-
routines such as these at are the heart of scientific computation.
We show the performance of these subroutines on a cluster of
17 Sun Sparc5 workstations connected by a fast (100 megabit)
switched ethernet.

The importance of this work is that it demonstrates a
novel technique for executing high-performance scientific
computations on a changing pool of resources.

2. SUPERCOMPUTERS VS NOWS

A supercomputer is a single computing resource. We usu-
ally think of each processor in a supercomputer as being iden-
tical—every node is a uniform part of the whole. Typically,
a supercomputer is allocated exclusively for a single applica-
tion, such as a grand challenge. If it can be partitioned, then
each partition is allocated exclusively. The file system is often
implemented using special disks and processors at the periph-
ery of the supercomputer so that files are uniformly available,
regardless of the partition being used. If one processor or part
of the network fails, the whole computational platform is ren-
dered useless until the faulty part is fixed.

For this reason, fault-tolerance in supercomputers is straight-
forward. Consistent checkpointingcan be used to save the state
of a parallel program to stable storage. In consistent check-
pointing, all processors cooperate to save a global checkpoint.
This checkpoint is composed of uniprocessor checkpoints for
every processor in the system, and a log of messages that are
in transit during checkpointing. Many algorithms exist for tak-
ing consistent checkpoints [12, 26, 30] and implementations
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have shown that the simplest of these, a two-phase commit
called “Sync-and-stop,” yields performance on a par with the
most complex [38]. Checkpointing performance is dependent
on the size of the individual checkpoints, the speed of the
file system, and the amount of physical memory available for
buffering [17, 38]. These conclusions are not likely to change
as new machines are released unless the model of exclusive
node partitioning and wholesale partition failures is changed.

In contrast, a NOW is a distributed computing resource that
is highly shared. Processors usually run a general-purpose
time-sharing operating system, and each is often owned by a
different user. Although the processing capacity of the NOW
as a whole may be consistently large, individual processors
can run the gamut from idle to unavailable (e.g., in use by
the owner) back to idle in a relatively small time frame [35].
Programs for NOWs are generally written using some NOW
programming environment such as PVM or MPI that provides
convenient primitives for message passing. Such programming
environments allow individual processors to enter or leave the
NOW dynamically due to availability, load, or failure. We
term all such events failures. Thus, NOWs present a far more
flexible failure model than supercomputers.

In such systems, consistent checkpointing to disk is overkill.
If one processor becomes unavailable, the whole collection
of processors must restart themselves from stable storage.
Moreover, if the failed processor cannot be brought back
online, then its checkpoint file will be unavailable unless it
has been saved on a central file server which will then be a
source of contention during checkpointing [36]. Therefore, a
more relaxed model of checkpointing is needed—one that is
tailored to the dynamic nature of NOWs.

3. A MODEL FOR SCIENTIFIC PROGRAMS
THAT LIVE ON A NOW

Ideally, a scientific program executing on a NOW should
be able to “live” on whatever pool of processors is currently
available. Processors should be able to leave the NOW
whenever they fail, and they should be able to join the
NOW when they become functional. We describe a model
of scientific computation that approaches this ideal.

We assume that we are running a high-performance sci-
entific program, such as electromagnetic scattering or atomic
structure calculation. The bulk of the work in such programs
is composed of well-known subproblems: solving partial dif-
ferential equations and linear systems. These subproblems
are typically solved using high-performance libraries, such as
ScaLAPACK [13], which are designed to get maximum per-
formance out of the computing platform. An important perfor-
mance consideration isdomain decomposition,which is how
the problem is partitioned among the available processors to
minimize cache misses and the effects of message transmis-
sion. To perform domain decomposition properly, the number
of processors is usually fixed at somen, often a perfect square
or power of 2.

To retain high performance, we assume that the program
is optimized to run on exactlyn processors. Our computing
platform is assumed to be a NOW, which can contain any
number of processors at any one time. Our model of
computation for fault-tolerance is as follows.

Whenever the NOW contains at leastn processors, the
computation should be running onn of the processors.
Whenever the NOW contains fewer thann processors, the
computation isswapped offthe NOW. This can be done by a
consistent checkpointing scheme that saves a global checkpoint
to a central file server at very coarse intervals (for example,
once every hour or day). Such checkpointing schemes are
straightforward and have been discussed and implemented
elsewhere [11, 17, 18, 26, 29, 36, 38, 43].

Whenever the NOW containsmore than nprocessors, then
the computation should be running in such a manner that if
any processor that is running the computation drops out of the
NOW, due to failure, load, or ownership, it can be replaced
quickly by another processor in the NOW. This is the important
part of the computing model, because it means that as long
as the pool of processors in the NOW numbers more thann
members, then even if the pool itself changes, the computation
should be progressing efficiently, while still maintaining fault-
tolerance to wholesale failures.

If a processor fails but is still available in a limited capac-
ity (for example, due to high load or some forms of owner-
ship revocation), then its process should be migrated to a free
processor. Migration systems are efficient and straightforward
and have been implemented for popular programming environ-
ments like PVM and MPI [11, 43]. However, if a processor
fails completely and its resources are totally unavailable, then
migration strategies do not work.

In their survey of internet host reliability, Longet al.
measured a mean time to failure of 12.99 days for an average
workstation [32]. Assuming independent failures, this means
that the MTTF of a collection of 16 workstations is 19.49 h,
which is significantly small. The algorithm described in this
paper focuses on this failure scenario. It is designed to recover
quickly from single processor failures where the state of the
processor is unavailable to the network following a failure.

Note that failure identification may be provided by moni-
toring tools such as CARMI [39], which can classify failures
into the proper category for efficient recovery.

4. THE CHECKPOINTING ALGORITHM

The algorithm is based ondiskless checkpointing[37]. If
the program is executing onn processors, then there is an
(n + 1)st processor called theparity processor. At all points
in time, a consistent checkpoint is held in then processors
in memory. Moreover, the bitwise exclusive-or (⊕) of the n
checkpoints is held in the parity processor. This is called the
parity checkpoint. If any processor fails, then its state can
be reconstructed on the parity processor as the exclusive-or
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of the parity checkpoint and the remainingn − 1 processors’
checkpoints.

Diskless checkpointing has been shown to be effective at
providing fault-tolerance for single processor failures as long
as there is enough memory to hold single checkpoints in
memory. To reduce the memory requirements, incremental
checkpointing can be used, and compression can be helpful in
reducing the load on network bandwidth [37].

To make checkpointing as efficient as possible, we imple-
ment algorithm-based checkpointing. In other words, rather
than implement checkpointing transparently as in MIST [11],
Fail-Safe PVM [29], or CoCheck [43], we hardwire it into
the program. This is beneficial for several reasons. First, the
checkpointing can be placed at synchronization points in the
program, which means that checkpoint consistency (defining
network state [12]) is not a worry. Second, the checkpointed
state can be minimized because the checkpointer knows ex-
actly what to save and how to reconstruct state. This is
as opposed to a transparent checkpointer that must save all
program state because it knows nothing about the program.
Third, with transparent checkpointing, checkpoints are binary
memory dumps, which rules out a heterogeneous recovery.
With algorithm-based checkpointing, the recovery routines can
plan for recovery by a different kind of processor. In short,
algorithm-based checkpointing is good because it enables the
checkpointing to be as efficient as possible [28]. Its major
drawback is programmer effort, since the fault-tolerance must
be incorporated carefully into the program. However, if the
algorithms being checkpointed can be put into frequently used
library calls, then the extra work is justifiable [41].

It should be noted that this checkpointing algorithm can
be viewed as a highly optimized application of consistent
checkpointing that tailors the checkpointing to tolerate single-
processor failures with low overhead. This performance
optimization is achieved by a combination of application-based
incremental checkpointing, parity redundancy, and no reliance
on stable storage.

5. CHECKPOINTING HIGH-PERFORMANCE
DISTRIBUTED MATRIX OPERATIONS

We focus on two classes of matrix operations: direct, dense
factorizations and an iterative equation solver. The factoriza-
tions (Cholesky, LU, and QR) are operations for solving sys-
tems of simultaneous linear equations and finding least squares
solutions of linear systems. All have been implemented in LA-
PACK [1] and ScaLAPACK [13], which are public-domain li-
braries providing high-performance implementations of linear
algebra operations for uniprocessors and all kinds of parallel
processing platforms. The iterative equation solver called Pre-
conditioned Conjugate Gradient (PCG) is a well-known tech-
nique for solving sparse systems of linear equations [4].

We have implemented fault-tolerant versions of Cholesky,
LU, QR, and PCG. In the sections that follow, we provide
an overview of how each operation works and how we

make it fault-tolerant. Further details on the ScaLAPACK
implementations may be found in books by Dongarra [16]
and Golub [22].

5.1. Cholesky Factorization and the Basic Checkpointing
Scheme

Of the three factorizations, Cholesky is the simplest. In
Cholesky factorization, a dense, symmetric, positive definite
matrix A is factored into two matricesL andLT (i.e., A = LLT)
such thatL is lower triangular. The algorithm for performing
Cholesky factorization in ScaLAPACK is called “top-looking,”
and works as follows.

First, the matrixA is partitioned into square “blocks” of
user-specified block sizeb. ThenA is distributed among the
processorsP0 through Pn−1, logically reconfigured as ap ×
q mesh, as in Fig. 1. For obvious reasons, a row of blocks
is called a “row-block” and a column of blocks is called a
“column-block.” If there aren processors andA is anN × N
matrix, then each processor holdsN/bp row-blocks andN/bq
column-blocks, where it is assumed thatb, p, andq divide N.

The factorization ofA is performed in place, and proceeds
in N/b steps, one for each column-block of the matrix. At
the beginning of stepi, the leftmosti − 1 column-blocks are
assumed to be factored, and the remaining column-blocks are
unchanged. In stepi, the ith column-block gets factored using
a multiplication, subtraction, and factorization.

Thus, each step appears as in Fig. 2. Inherent in this
picture is communication—for example, to perform̂A22 ←
A22 − L21LT

12, all the involved blocks must be sent to the
processor holdingA22. Note also that Fig. 2 is a logical
representation of the system. SinceA is symmetric andLT

is the transpose ofL, only half of A and none ofLT need be
stored.

The key fact to notice from Fig. 2 is that at stepi, only A22
andA32 get modified. The rest of the blocks in the factorization
remain the same. Thus, only blocks from column-blocki are
modified during stepi.

FIG. 1. Data distribution of a matrix with 6× 6 blocks over a 2× 2 mesh
of processors.
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FIG. 2. Stepi for Cholesky factorization.

To make the Cholesky factorization fault-tolerant, we first
allocate a parity processorPn. For each panel ofn blocks
in the matrix, there is one block inPn containing the bitwise
exclusive-or of each block in the panel. This is depicted in
Fig. 3 for the example system of Fig. 1.

Each processorPj (including Pn) allocates room for an extra
column-block called CBj. Now, the algorithm for performing
fault-tolerant Cholesky factorization is as follows:

• Initialize the global state of the system.
• For each stepi:

FIG. 3. Configuring the system for checkpointing.

— Let Pj be a processor with blocks in column-block
i. Pj copies these blocks to CBj.

— Pn also copies its blocks corresponding to blocks in
column-blocki to CBn.

— The processors perform stepi.
— The processorsPj (0 ≤ j < n) cooperate withPn

to update the exclusive-or for the newly modified blocks in
column-blocki.

— The processors synchronize, and go to stepi + 1.

Thus, at the beginning of each step, the processors hold the
state of the factorization as depicted in Fig. 3. If any one
processorPj fails, then it can be replaced byPn, or by a new
processor. This new processor calculatesPj ’s state from the
bitwise exclusive-or of the remaining processors. Obviously,
Pn can be replaced in a similar manner.

If any one processorPj fails in the middle of a step, then
the remaining processors can roll back to the beginning of the
step by copying CB back to column-blocki. Then Pj can be
recovered as described in the preceding paragraph.

It is assumed here that failure detection is provided by the
computing platform. For example, PVM detects processor and
certain network failures, and a resource manager like CARMI
[39] can be added to PVM to detect failures due to load and
ownership.
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5.2. LU Factorization

In LU factorization, a dense matrixA is factored using a
sequence of elementary eliminations with pivoting such that
ρA = LU, where L is a lower triangular matrix with ones
on the diagonal andU is an upper triangular matrix.ρ is a
permutation matrix necessary for numerical stability: a proper
permutation of the rows ofA minimizes the growth of roundoff
error during the elimination. LU factorization involves a
general non-symmetric matrix, and is computationally more
complex than Cholesky factorization.

There are three well-known algorithm variants for imple-
menting LU factorization on parallel machines: left-looking,
right-looking, and Crout. These variants differ in the regions
of data that are accessed and computed during each step (see
[16] for details). Below, we describe the Crout variant and
how it is checkpointed. We discuss the ramifications of algo-
rithm selection and checkpointing performance in Section 7.3.

Like Cholesky factorization, LU factorization is performed
in place, replacingA with L andU. Moreover, the permutation
matrix ρ is generated as output from the subroutine. Since a
permutation matrix is simply the identity matrixI with rows
permuted, it may be represented by a one-dimensional array,
where theith entry contains the index of the nonzero element
in row i of ρ. Like A, ρ is distributed among the processors.
Each processorPj contains its portion ofρ in ρ j .

As before, the matrix is partitioned into blocks and dis-
tributed among the processors. The factorization proceeds in
steps, one for each column/row block inA. In step i, the ith
column-block is factored, and the result of this factoring is
used to factor theith row-block. The details are in Fig. 4.

The memory update patterns in Crout LU are more complex
than in Cholesky factorization. In stepi, both column-block
i and row-blocki are modified. Moreover, the permutation
matrix ρ is altered, and at mostb rows in L31 and A33 are
swapped with rows in row-blocki due to pivoting. Thus, the

FIG. 4. Stepi for Crout LU factorization.
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algorithm to make Crout LU fault-tolerant, though similar to
Cholesky factorization, is necessarily more complex.

To be specific,Pn starts as in Cholesky factorization, with
blocks containing the exclusive-or of panels of blocks of
A. Moreover, Pn has some memoryρn, which contains the
bitwise exclusive-or of each processor’sρ j . Each processor
Pj (including Pn) allocates room for an extra column-block,
CBj, an extra row-block, RBj, and a cache ofρ j called ρ′j .
Finally, each processorPj (including Pn) allocates room for
a row-block’s worth of pivoting rows PRj. The fault-tolerant
LU factorization proceeds as follows:

• Initialize the global state of the system (includingPn).
• For each stepi:

— Let Pj be a processor with blocks in column-block
i. Pj copies these blocks to CBj.

— Let Pj be a processor with blocks in row-blocki.
Pj copies these blocks to RBj.

— Pn copies its blocks corresponding to blocks in
column-blocki and row-blocki to CBn and RBn.

— All Pj (0 ≤ j ≤ n) copy ρ j to ρ′j .
— The processors perform substeps I and II of stepi.
— In substep III,b rows of the matrix are swapped

with rows in row-blocki. Before doing so, the processorsPj

that own these rows copy them to PRj. Pn copies its rows
corresponding to these rows to PRn.

— Now the processors perform substeps III and IV.
— The processorsPj (0 ≤ j < n) cooperate withPn

to update the exclusive-or for the newly modified blocks in
column-blocki, row-block i, the swapped pivot rows, andρ.

— The processors synchronize and go to stepi + 1.

As in Cholesky factorization, if a processorPj fails during
step i of the computation it can be replaced byPn, or by a
new processor. The replacement proceeds as follows:

• For all remaining processorsPk (this includesPn), if Pk

had started substep III, then it copies any rows back from PRk

to their original position.
• All Pk copy their data from CBk, RBk, andρ′k back to

column-blocki, row-block i, andρ j , respectively.
• Pj ’s state is reconstructed from the bitwise exclusive-or

of the blocks in the otherPk.
• The computation proceeds from the beginning of stepi.

5.3. QR Factorization

In QR factorization a realM × N matrix A is factored so
that

A = Q

(
R
0

)
,

where Q is an M × N orthogonal matrix andR an N × N
upper triangular matrix. In the ScaLAPACK implementation
of QR factorization, the matrixQ is not generated explicitly
since it would require too much extra storage. Instead,Q
can be applied or manipulated through the identityQ = I −
VTVT, whereV is a lower triangular matrix of “Householder”
vectors andT is an upper triangular matrix constructed from
information in V. When the factorization is complete, the
matrixA is transformed intoV, T, andR, whereV is in the lower
triangle of the original matrixA, R is in the upper triangle, and
T is stored in a one-dimensional array.

Like LU factorization, there are multiple algorithms for
QR factorization. We focus on the left-looking algorithm.
Complete details of the implementation of this algorithm are
beyond the scope of this paper but may be found in Dongarra’s
book [16]. A high-level picture is provided in Fig. 5.

It should be clear from Fig. 5 that only column-blocki
of matrix A is changed during factoring stepi. Therefore

FIG. 5. Stepi of QR factorization.
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the fault-tolerant version of QR works exactly like the fault-
tolerant version of Cholesky—each processorPj allocates an
extra column-block CBj to hold the initial value of column-
block i during stepi, so that the computation can be rolled
back to the beginning of stepi if there is a failure.

5.4. Iterative Equation Solver (PCG)

Iterative equation solvers are used for the following prob-
lem: given a large sparse matrixA and a vectorb, find the
vectorx such thatAx = b. Iterative equation solvers work as
follows. Given an initial approximation tox, the method iter-
atively refines this approximation untilAx = b to within some
error tolerance. Unfortunately, no single iterative method is ro-
bust enough to solve all sparse linear systems accurately and
efficiently. Therefore, we limit our scope to one such method,
known as “Preconditioned Conjugate Gradient” (PCG).

If A is positive definite symmetric, then PCG can be used
to solve the systemAx = b by projectingA onto a “Krylov
subspace” and then solving the system in this subspace. The
details of the algorithm are beyond the scope of this paper
[4, 16, 22]. However its mechanics as they impact fault-
tolerance are simple. First, the sparse matrixA is represented
in a dense form, and is then distributed along withb and two
preconditionersM1 andM2 to the processorsP0 throughPn−1.
M1 andM2 are diagonal matrices and thus may be represented
by linear arrays. After this point,A, b, M1, and M2 are not
altered.

Now, the vectorsp0, r 0, w0, and ξ0 are calculated from
A, b, M1, and M2. These intermediate vectors are used to
calculate the vectorx0, which is the first approximation tox.
The algorithm then iterates as follows: The values ofA, b,
M1, M2, xi−1, pi−1, ri−1, wi−1, andξi−1 are used to calculate
pi , ri , wi andξi . These are then used to calculatexi , the ith
approximation tox. The iterations continue untilAxi = b to
within a given error tolerance.

Adding fault-tolerance to the PCG algorithm is straight-
forard. First, the processors distributeA, b, M1, andM2 and
allocate memory forxi , pi , ri , wi , andξi . The extra proces-
sor Pn is initialized to contain the bitwise exclusive-or of all
these variables. Now, each processor (includingPn) must in-
clude extra vectors for each ofx, p, r, w, andξ. These extra
vectors are maintained like CB in the factorization examples.
They hold the values ofxi−1, pi−1, ri−1, wi−1, andξi−1 during
stepi so that the step can be rolled back following a failure.

Note that in PCG, we can checkpoint everyk steps
by copying xi , pi , ri , wi , and ξi to the extra vectors and
computing the bitwise exclusive-or ofx, p, r, w, and ξ only
wheni is a multiple ofk. The result is that processors may roll
back up tok steps to the previous checkpoint upon a failure.
However, since checkpoints are only taken everyk steps, the
overhead of checkpointing will be reduced by a factor ofk.

6. IMPLEMENTATION RESULTS

We implemented and executed these programs on a network
of Sparc-5 workstations running PVM [19]. This network
consists of 24 workstations, each with 96 Mbytes of RAM,
connected by a switched 100 megabit ethernet. The peak
measured bandwidth in this configuration is 40 megabits per
second between two random workstations. These workstations
are generally allocated for undergraduate classwork, and thus
are usually idle during the evening and busy executing I/O-
bound and short CPU-bound jobs during the day. We ran our
experiments on these machines when we could allocate them
exclusively for our own use.

The results presented here are for a network of 17 proces-
sors, where 16 are running the program (n = 16, p = q = 4)
and one is calculating the parity. We ran three sets of tests
for each instance of each problem. In the first there is no
checkpointing. In the second, the program checkpoints, but
there are no failures, and in the third, a processor failure is
injected randomly to one of the processors, and the program
completes with 16 processors. In the results that follow, we
present only the time to perform the recovery, since there is
no checkpointing after recovery.

6.1. Cholesky Factorization

We ran ten different instances of the Cholesky factorization,
one for each of ten matrix sizes fromN = 1,000 to N =
10,000. In each run, the block size was 50. The data for
this experiment is in Fig. 6.

As displayed in the leftmost graph of Fig. 6, Cholesky
factorization has a running time ofO(N3). The total overhead
of checkpointing consists of the following two components:

• Tinit: The time to take the initial checkpoint of matrix A.
In our calculations below, we assume that message bandwidth
dominates the overhead of message-passing enough that we
can ignore message latency. Each entry ofA is a double
precision floating point number (8 bytes). As stated in Section
5.1 above, sinceA is symmetric, only half of it needs to
be stored. Therefore the total amount of storage needed for
A is 4N2 bytes. These bytes are distributed evenly among
the n processors, which perform theXORusing a binary tree
algorithm. Thus, the first checkpoint takes [4N2(log n)]/nR
seconds, whereR is the rate of sending a message andXOR-
ing it, expressed in bytes per second.

• Trest: The time to take the column-block checkpoints.
There areN/b of these checkpoints, with an average size
of 4bN. Since p processors cooperate for each of these
checkpoints, the total overhead of these checkpoints isN/b
(4bN[(log p)/pR]) = [4N2(log p)]/pR.

Thus, the total overhead of checkpoint is

OVCholesky= 4N2

R

(
log n

n
+ log p

p

)
. (1)
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FIG. 6. Results for Cholesky factorization.

Since OVCholeskyis O(N2) and Cholesky factorization isO(N3),
we expect the percentage overhead of checkpointing to de-
crease asN increases. This is plotted in the middle graph of
Fig. 6.

The rightmost graph of Fig. 6 plotsR as determined by
Eq. (1) for each value ofN. Since the peak observed network
performance is 40 megabits per second, we expect thatR
will be somewhat lower than 5 Mbytes/s to take account of
synchronization and theXOR time. This is shown to be the
case.

Recovery consists of taking the bitwise exclusive-or of every
processor’s matrixA. Thus, the overhead of recovery should
equal Tinit, which is reflected in the last column of Fig. 6.
Notice that the time it takes to recover is irrespective of the
location of the failure.

6.2. LU Factorization

The results from the LU factorization are in Fig. 7. Again,
the block size was 50. The results are very similar to the results
from the Cholesky factorizations. Like Cholesky, Crout LU
consumesO(N3) floating point operations but its constants are
greater (by a factor of 2), resulting in longer running times.

Since the matrix is not symmetric, the first checkpoint of
A takes twice as long as in Cholesky factorization. Moreover,

the calculation ofTrest is more complex. Each checkpoint
consists of a portion of a column block, two row-blocks, and
the pivot vectorρ. The overhead of sending the row-blocks
is [16Nb(log q)]/qR, and the overhead of sendingρ is 4b/R,
because onlyb elements ofρ are altered per iteration, and
theseb elements are contained entirely in one processor. The
average size ofLi

32 is N/2b. Therefore the average overhead
of sending the column block is [4N(log p)]/bpR. This yields
the following equation for the overhead of checkpointing the
Crout LU factorization:

OVCrout= 4N

R
+ 4N2

R

(
(log p)

p
+ 4(log q)

q
+ 2(log n)

n

)
.

(2)

The rightmost graph of Fig. 7 shows that Eq. (2) yields values
of R similar to those for Cholesky factorization. The recovery
time once again is roughly equal toTinit.

6.3. QR Factorization

The results from the QR factorization are in Fig. 8. Once
more, the block size was 50. QR factorization is another
O(N3) algorithm whose constants are greater than the LU
factorizations. As such, only five values ofN were tested
because of the large running times.
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FIG. 7. Results for LU factorization.

FIG. 8. Results for QR factorization.
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QR checkpointing is exactly like Cholesky checkpointing,
except that all ofA is checkpointed initially, and every
column-block is checkpointed in its entirety. Therefore,
the overhead of QR checkpointing is exactly twice that of
Cholesky checkpointing:

OVQR = 8N2

R

(
log n

n
+ log p

p

)
. (3)

QR factorization has the lowest checkpointing overhead per-
centage of all the factorizations.

6.4. Preconditioned Conjugate Gradient

We executed an instance of PCG with anN × N matrix
A for I iterations, whereN = 1,048,576 andI = 5,000. This
calculatedx to within a tolerance of 10−8. The results of this
instance with varying values ofk (iterations per checkpoint)
are in Fig. 9.

As in the factorizations, the overhead of checkpointing is
broken into two parts:Tinit, which is the time to checkpoint
A, b, M1, and M2, and Trest, which accounts for all of the
checkpoints ofx, p, r, w, andξ. The dense representation ofA
is a 5× N matrix, yielding a value of [64N(log n)]/nR for Tinit.
The remaining checkpoints comprise five vectors of lengthN.
These should take [40N(log n)]/nR each. Since there areI/k
of these checkpoints, the overhead of checkpointing PCG is

OVPCG= 8N(log n)

nR

(
8+ 5I

k

)
. (4)

To recover, matrixA and all eight vectors need to be
reconstructed. Thus, the overhead of recovery time should
be [104N(log n)]/nR, which is the sum of theTinit and Trest
columns of Fig. 9.

7. DISCUSSION

7.1. Checkpointing Overhead and Interval

The results presented in the previous section show that
on current NOWs, the performance of this method for fault-
tolerant computation is surprisingly good. In the Cholesky and
LU factorizations, checkpoints are taken less than a minute
apart, yet the overhead is low. In the long-running instances,
the total checkpointing overhead is under 15%. In the QR
factorizations, the overhead of checkpointing is under two
percent in all instances, while the checkpointing interval is
less than two minutes. In all the factorizations, the overhead
of checkpointing isO(N2), while the running time complexity
is O(N3). Thus, the percentage of checkpointing overhead
decreases as the problem size increases.

One interesting thing to notice is that there is no term for the
block sizeb in Eqs. (1), (2), and (3). This means that given

FIG. 9. Results for PCG.
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the assumptions of these equations, the block size has little
impact on the overhead of checkpointing. This in turn means
that the checkpointing interval should have little impact on
the overhead of checkpointing. One key assumption made by
Eqs. (1), (2), and (3) is that message latency can be ignored.
While this is true for larger block sizes, message latency
becomes more significant asb decreases. Therefore, there
is an extra penalty for small block sizes that is not reflected
in the equations.

Also of interest is the fact that there is no term forq in
Eqs. (1) and (3). Thus, the best checkpointing performances
in Cholesky and QR factorization should be realized whenp =
n andq = 1. Of course, the selection ofp andq also impacts
the performance of the factorization [13].

In the PCG implementation, there is a tradeoff between
the checkpointing interval and the overhead of checkpointing.
This tradeoff is controlled by the variablek. In our example,
the total overhead of checkpointing is roughly (29 + 18 (5000/
k)) s. Therefore, one can choose a value ofk to achieve a
desired checkpointing overhead or interval. For example, to
achieve a 10% checkpointing overhead, one can choosek to be
164. This will yield roughly 578 s of checkpointing overhead
and checkpoints every 207 s.

7.2. Extra Parity Processors

The choice of one parity processorPn was made simply to
present the concept of diskless checkpointing. If the NOW
executing the computation containsn + m processors, then
there is no reason thatm − 1 of them should be idle. Instead
of having alln processors checkpoint toPn, we can partition
then processors intom groupsG0, · · · , Gm−1, and havePn+ j

be responsible for checkpointing the processors inG j , for 0 ≤
j < m. This is basically a 1-dimensional parity scheme, which
can tolerate up tom simultaneous processor failures, as long
as each failure occurs in a different group [21].

The extreme we have presented asm = 1. At the other
extreme are systems like Isis [5] or Targon [8] wherem = n,
and every processor has a backup processor to which it sends
checkpoints. Asm grows, the overhead of checkpointing and
recovery decreases because there is less contention for the
parity processors and there are fewerXORoperations.

To tolerate any combination of m processor failures,m
parity processors must be combined with more sophisticated
error-correction techniques [6, 9, 36]. This means that
every processor’s checkpoint must be sent to multiple parity
processors. In the absence of broadcast hardware, this kind of
fault-tolerance will likely impose too great an overhead.

7.3. Choice of Factorization Algorithm

As a final remark, the choice of the algorithms for the fac-
torization has an impact on both the performance of the fac-
torization and the performance of checkpointing. Specifically,
for Cholesky factorization, there are top-looking and right-
looking algorithm variants, and for LU factorization, there are
left-looking, right-looking, and Crout variants [16]. In gen-

eral, the right-looking algorithms perform the best because
they minimize communication overhead. However, when fac-
toring column-blocki, they modify all blocks in column-block
j and row-blockk such thatj ≥ i andk ≥ i. Thus, the average
iteration modifies

∑N/b
i=1 (bi)2 ≈ N3/3b matrix elements that

would have to be checkpointed. This would lead to prohibi-
tively high overheads in terms of both time and memory.

To assess the impact of our algorithm selection, we imple-
mented all algorithm variants of Cholesky and LU factoriza-
tion without checkpointing. Figure 10 plots the running times
of these variants for all problem sizes and includes the results
of checkpointing. The lower row of graphs plot the overhead
of checkpointing compared to the right-looking factorization
variants.

Figure 10 shows that the checkpointing overhead of both
Cholesky and LU factorizations is low even compared to the
right-looking variants. They too exhibit the trend of decreasing
percentage of overhead as the problem size increases.

8. RELATED WORK

There has been much research on algorithm-based fault-
tolerance for matrix operations on parallel platforms where
(unlike the above platform) the computing nodes are not
responsible for storage of the input and output elements [23,
33, 40]. These methods concentrate mainly on fault-detection,
and in some cases correction. It is future research to see
whether these techniques or a combination of these techniques
with backward error assertions [7] can be used to further
improve diskless checkpointing.

Checkpointing on parallel and distributed systems has been
studied and implemented by many people [8, 14, 15, 17, 24,
27, 31, 38, 41, 44–46]. All of this work, however, focuses
on either checkpointing to disk or process replication. The
technique of using a collection of extra processors to provide
fault-tolerance with no reliance on disk comes from Plank and
Li [37] and is unique to this work.

An interesting comparison of this work to disk-based check-
pointing can be obtained using the results of Elnozahyet al.
[17]. In this paper, they checkpoint a programgauss , which
performs an LU factorization with partial pivoting on a 1024
× 1024 matrix using 16 diskless Sun 3/60 processors. Check-
points are taken to two central file servers every 2 min and two
optimizations are employed: copy-on-write and incremental
checkpointing. The checkpointing performance is excellent.
Checkpoints take about 14 s to commit, and with the copy-
on-write optimization, the overhead is approximately 0.42 s
per checkpoint. By comparison, our method checkpoints the
same instance every 3.3 s with an average commit time and
overhead of 0.43 s per checkpoint. This is without the ben-
efit of operating system modification or use of the memory
management system. The employment of asynchronous mes-
sage sending similar to the asynchronous checkpoint writing
of copy-on-write checkpointing could decrease the overhead
of our scheme even further.
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FIG. 10. Performance of checkpointing compared to all factorization variants.

There are efforts to provide programming platforms for
heterogeneous computing that can adapt to changing load.
These can be divided into two groups—those presenting
new paradigms for parallel programming that facilitate fault-
tolerance/migration [2, 3, 15, 20], and migration tools based
on consistent checkpointing [10, 39, 43]. In the former group,
the programmer must make his or her program conform to
the programming model of the platform. None are garden
variety message-passing environments such as PVM or MPI.
Those in the latter group achieve transparency, but cannot
migrate a process without that process’s participation. Thus,
they cannot handle processor failures or revocation due to
ownership without checkpointing to a central disk.

9. CONCLUSIONS

We have given a method for executing certain scientific com-
putations on a changing or faulty Network of Workstations.
This method enables a computation designed to execute onn
processors to run on a NOW platform where individual pro-
cessors may leave and enter the NOW due to failures or load.
As long as the number of processors in the NOW is greater
than n, and as long as processors leave the NOW singly, the
computation can proceed efficiently.

We have implemented this method on four scientific cal-
culations and shown performance results on a fast network
of Sparc-5 workstations. The results show that our methods
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exhibit low overhead while checkpointing at a fine-grained in-
terval (in most cases less than 5 min).

Our continuing progress with this work has been in three
directions. First, we are adding the ability for processors to
join the NOW in the middle of a calculation and participate
in the fault-tolerant operation of the program. Currently,
once a processor quits, the system merely completes with
exactlyn processors and no checkpointing. Second, we have
added the capacity for multiple parity processors as outlined in
Section 7.2. Preliminary results have shown that this improves
both the reliability of the computation and the performance
of checkpointing. Third, we are designing a technique to
checkpoint the right-looking factorizations using a checksum
approach and reverse computation to restore the bulk of
processor state upon failure [25]. The result is a mechanism
that checkpoints at somewhat larger intervals, but with lower
overhead than the algorithms described in this paper.

For the future, we would like to integrate our scheme with
general load-balancing. In other words, if a few processors are
added to or deleted from the NOW, then the system continues
running using the mechanisms outlined in this paper. However,
if the size of the processor pool changes by an order of
magnitude, then it makes sense to reconfigure the system with
a different value ofn. Such an integration would represent
a truly adaptive, high-performance methodology for scientific
computations on NOWs.
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