JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING43, 125-138 (1997)
ARTICLE NO. PC971336

Fault-Tolerant Matrix Operations for Networks of
Workstations Using Diskless Checkpointing

James S. Plank,* Youngbae Kim,T and Jack J. Dongsrra*

*Department of Computer Science, University of Tennessee, Knoxville, TennesseetB&i@dial Energy Research Scientific Computing Center,
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720Mathematical Science Section,
Oak Ridge National Laboratory, P.O. Box 2008, Building 6012, Oak Ridge, Tennessee 37821-6367

This paper provides a solution to this problem, especially

Networks of workstations (NOWSs) offer a cost-effective plat- tailored to the needs of scientific programmers. The solution
form for high-performance, long-running parallel computations. s based omliskless checkpointing, means of providing fault-
However, these computations must be aple to tolerate the chang- tglerance without any dependence on disk. The end result is
ing and often faulty nature of NOW environments. We present ¢ a5 |ong as there areprocessors available in the NOW
high-performance implementations of several fault-tolerant algo- (wheren is defined by the user), and as long as failures come
rithms for distributed scientific computing. The fault-tolerance . ; ’ .

singly, the computation can progress reliably.

is based on diskless checkpointing, a paradigm that uses proces-) . . .
sor redundancy rather than stable storage as the fault-tolerant We describe our approach of incorporating diskless check-

medium. These algorithms are able to run on clusters of work- POinting into four well-known algorithms in linear algebra:
stations that change over time due to failure, load, or availability,. Cholesky factorization, LU factorization, QR factorization,
As long as there are at leash processors in the cluster, and fail- and Preconditioned Conjugate Gradient (PCG) [4, 16]. Sub-
ures occur singly, the computation will complete in an efficient routines such as these at are the heart of scientific computation.
manner. We discuss the details of how the algorithms are tuned We show the performance of these subroutines on a cluster of
for fault-tolerance and present the performance results on a PYM 17 Sun Sparc5 workstations connected by a fast (100 megabit)
network of Sun workstations connected by a fast, switched eth- gwitched ethernet.

ernet. ©1997 Academic Press The importance of this work is that it demonstrates a
novel technique for executing high-performance scientific
computations on a changing pool of resources.

1. INTRODUCTION
2. SUPERCOMPUTERS VS NOWS

Scientific computation has been a driving force behind par-
allel and distributed computing. Traditionally such computa- A supercomputer is a single computing resource. We usu-
tions have been performed on the largest and most expengillg think of each processor in a supercomputer as being iden-
supercomputers: the Cray C90, Intel Paragon, and Maspiaal—every node is a uniform part of the whole. Typically,
MP-2. Recently the price and performance of uniprocessarsupercomputer is allocated exclusively for a single applica-
workstations and off-the-shelf networking has improved to th®n, such as a grand challenge. If it can be partitioned, then
point that networks of workstations (NOWSs) provide a parall&ach partition is allocated exclusively. The file system is often
processing platform that is competitive with the supercomputaplemented using special disks and processors at the periph-
ers. The popularity of NOW programming environments suary of the supercomputer so that files are uniformly available,
as PVM [19] and MPI [34, 42] and the availability of high-regardless of the partition being used. If one processor or part
performance libraries for scientific computing on NOWs likef the network fails, the whole computational platform is ren-
ScaLAPACK [13] show that networks of workstations are aHered useless until the faulty part is fixed.
ready in heavy use for scientific programming. For this reason, fault-tolerance in supercomputers is straight-

The major problem with programming on a NOW is thdorward. Consistent checkpointirgan be used to save the state
fact that it is prone to change. Idle workstations may bef a parallel program to stable storage. In consistent check-
available for computation at one moment, and gone the ngdinting, all processors cooperate to save a global checkpoint.
due to failure, load, or ownership. We term any such evemhis checkpoint is composed of uniprocessor checkpoints for
a failure. Thus, on the wish list of scientific programmers isvery processor in the system, and a log of messages that are
a way to perform computation on a NOW whose componeritstransit during checkpointing. Many algorithms exist for tak-
may change over time. ing consistent checkpoints [12, 26, 30] and implementations

125

0743-7315/97 $25.00
Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.

126 PLANK, KIM, AND DONGARRA

have shown that the simplest of these, a two-phase commiffo retain high performance, we assume that the program
called “Sync-and-stop,” yields performance on a par with thie optimized to run on exactly processors. Our computing
most complex [38]. Checkpointing performance is dependepiitform is assumed to be a NOW, which can contain any
on the size of the individual checkpoints, the speed of tmimber of processors at any one time. Our model of
file system, and the amount of physical memory available foomputation for fault-tolerance is as follows.
buffering [17, 38]. These conclusions are not likely to change Whenever the NOW contains at leastprocessors, the
as new machines are released unless the model of exclusiemputation should be running on of the processors.
node partitioning and wholesale partition failures is changetiVvhenever the NOW contains fewer thanprocessors, the
In contrast, a NOW is a distributed computing resource thedmputation isswapped ofthe NOW. This can be done by a
is highly shared. Processors usually run a general-purpa@smsistent checkpointing scheme that saves a global checkpoint
time-sharing operating system, and each is often owned byoaa central file server at very coarse intervals (for example,
different user. Although the processing capacity of the NOWhce every hour or day). Such checkpointing schemes are
as a whole may be consistently large, individual processatsaightforward and have been discussed and implemented
can run the gamut from idle to unavailable (e.g., in use isewhere [11, 17, 18, 26, 29, 36, 38, 43].
the owner) back to idle in a relatively small time frame [35]. Whenever the NOW containmore than nprocessors, then
Programs for NOWSs are generally written using some NOW#e computation should be running in such a manner that if
programming environment such as PVM or MPI that providesny processor that is running the computation drops out of the
convenient primitives for message passing. Such programmiR@W, due to failure, load, or ownership, it can be replaced
environments allow individual processors to enter or leave taickly by another processor in the NOW. This is the important
NOW dynamically due to availability, load, or failure. Wepart of the computing model, because it means that as long
term all such events failures. Thus, NOWs present a far magg the pool of processors in the NOW numbers more than
flexible failure model than supercomputers. members, then even if the pool itself changes, the computation
In such systems, consistent checkpointing to disk is overkihould be progressing efficiently, while still maintaining fault-
If one processor becomes unavailable, the whole collectigflerance to wholesale failures.
of processors must restart themselves from stable storagqf a processor fails but is still available in a limited capac-
Moreover, if the failed processor cannot be brought bag (for example, due to high load or some forms of owner-
online, then its checkpoint file will be unavailable unless &hip revocation), then its process should be migrated to a free
has been saved on a central file server which will then bepgocessor. Migration systems are efficient and straightforward
source of contention during checkpointing [36]. Therefore, #nd have been implemented for popular programming environ-
more relaxed model of checkpointing is needed—one thatigents like PVM and MPI [11, 43]. However, if a processor

tailored to the dynamic nature of NOWs. fails completely and its resources are totally unavailable, then
migration strategies do not work.
3. A MODEL FOR SCIENTIFIC PROGRAMS In their survey of internet host reliability, Longt al.
THAT LIVE ON A NOW measured a mean time to failure of 12.99 days for an average

workstation [32]. Assuming independent failures, this means
Ideally, a scientific program executing on a NOW shoulthat the MTTF of a collection of 16 workstations is 19.49 h,
be able to “live” on whatever pool of processors is currenthrhich is significantly small. The algorithm described in this
available. Processors should be able to leave the NQy&per focuses on this failure scenario. It is designed to recover
whenever they fail, and they should be able to join thguickly from single processor failures where the state of the
NOW when they become functional. We describe a modptocessor is unavailable to the network following a failure.
of scientific computation that approaches this ideal. Note that failure identification may be provided by moni-
We assume that we are running a high-performance stiring tools such as CARMI [39], which can classify failures
entific program, such as electromagnetic scattering or atorin¢o the proper category for efficient recovery.
structure calculation. The bulk of the work in such programs
is composed of well-known subproblems: solving partial dif-
ferential equations and linear systems. These subproblems
are typically solved using high-performance libraries, such as
ScalLAPACK [13], which are designed to get maximum per- The algorithm is based odiskless checkpointinf87]. If
formance out of the computing platform. An important perfoithe program is executing on processors, then there is an
mance consideration idomain decompositionyhich is how (n + 1)st processor called thearity processor At all points
the problem is partitioned among the available processorsifiotime, a consistent checkpoint is held in theprocessors
minimize cache misses and the effects of message transntismemory. Moreover, the bitwise exclusive-ap)(of the n
sion. To perform domain decomposition properly, the numbeheckpoints is held in the parity processor. This is called the
of processors is usually fixed at someoften a perfect square parity checkpoint If any processor fails, then its state can
or power of 2. be reconstructed on the parity processor as the exclusive-or

4. THE CHECKPOINTING ALGORITHM

FAULT-TOLERANT MATRIX OPERATIONS 127

of the parity checkpoint and the remaining- 1 processors’ make it fault-tolerant. Further details on the ScaLAPACK

checkpoints. implementations may be found in books by Dongarra [16]
Diskless checkpointing has been shown to be effective atd Golub [22].

providing fault-tolerance for single processor failures as long

as there is enough memory to hold single checkpoints $11. Cholesky Factorization and the Basic Checkpointing

memory. To reduce the memory requirements, incrementalScheme

checkpointing can be used, and compression can be helpful in o .)
reducing the load on network bandwidth [37]. Of the three _fact.onzatlons, Cholesky is the s!mplest._ !n
To make checkpointing as efficient as possible, we imp|g_holgsky factorlzatl'on, a dense,. symmetric, positive definite
ment algorithm-based checkpointing. In other words, rathBlatrix A'is factored into two matricels andL™ (i.e., A= LLT)
than implement checkpointing transparently as in MIST [11§uch thatl is lower triangular. The algorithm for performing
Fail-Safe PVM [29], or CoCheck [43], we hardwire it into holesky factorization in ScaLAPACK is called “top-looking,”
the program. This is beneficial for several reasons. First, tBd works as follows. N _
checkpointing can be placed at synchronization points in theFirst, the matrixA is partitioned into square “blocks” of
program, which means that checkpoint consistency (definiH§er-specified block size. ThenA is distributed among the
network state [12]) is not a worry. Second, the checkpointé0cessors>, through Pn_1, logically reconfigured as p x
state can be minimized because the checkpointer knows 8x7€sh, as in Fig. 1. For obvious reasons, a row of blocks
actly what to save and how to reconstruct state. This ig called a “row-block” and a column of blocks is called a
as opposed to a transparent checkpointer that must save ¢umn-block.” If there aren processors ané is anN x N
program state because it knows nothing about the prograf@trix, then each processor holtibp row-blocks and\/bg
Third, with transparent checkpointing, checkpoints are binaf@lumn-blocks, where it is assumed theatp, andq divide N.
memory dumps, which rules out a heterogeneous recove_ryThe factorization ofA is performed in place, and pro_ceeds
With algorithm-based checkpointing, the recovery routines cih /b steps, one for each column-block of the matrix. At
plan for recovery by a different kind of processor. In shorth® beginning of step, the leftmosti - 1 column-blocks are
algorithm-based checkpointing is good because it enables @&sumed to be factored, and the remaining column-blocks are
checkpointing to be as efficient as possible [28]. Its majéinchanged. In step theith column-block gets factored using
drawback is programmer effort, since the fault-tolerance mud&tmultiplication, subtraction, and factorization. o
be incorporated carefully into the program. However, if the Thus, each step appears as in Fig. 2. Inherent in this

algorithms being checkpointed can be put into frequently usBifture is communication—for example, to perforfpy <«
library calls, then the extra work is justifiable [41]. Agz — L21L],, all the involved blocks must be sent to the
It should be noted that this checkpointing algorithm caprocessor holdingh,,. Note also that Fig. 2 is a logical
be viewed as a highly optimized application of consistefigPresentation of the system. Sindeis symmetric and.”
checkpointing that tailors the checkpointing to tolerate singl& the transpose df, only half of A and none ofL™ need be
processor failures with low overhead. This performancgored. _ o .
optimization is achieved by a combination of application-based The key fact to notice from Fig. 2 is that at stenly Ay,

incremental checkpointing, parity redundancy, and no relian@8dAs, get modified. The rest of the blocks in the factorization
on stable storage. remain the same. Thus, only blocks from column-blocke

modified during step.

5. CHECKPOINTING HIGH-PERFORMANCE
DISTRIBUTED MATRIX OPERATIONS

S
<0
.
<°
-
s
v

We focus on two classes of matrix operations: direct, dense
factorizations and an iterative equation solver. The factoriza-
tions (Cholesky, LU, and QR) are operations for solving sys-
tems of simultaneous linear equations and finding least squares E PO P’ :Po P1 PO PI _
solutions of linear systems. All have been implemented in LA- Row block—= (| Py | P;{| Py | P31 Py | P3)
PACK [1] and ScalLAPACK [13], which are public-domain li- '

SIS
nnmny
NN Aoy

braries providing high-performance implementations of linear Po P] PO PJ P{) i
algebra operations for uniprocessors and all kinds of parallel o p3 p2 P3 P, P3 b
processing platforms. The iterative equation solver called Pre- =
conditioned Conjugate Gradient (PCG) is a well-known tech- , b
nique for solving sparse systems of linear equations [4]. Column block

We have implemented fault-tolerant versions of Cholesky,
LU, QR, 'and PCG. In the secﬂong that follow, we provide FiG. 1. Data distribution of a matrix with & 6 blocks over a 2« 2 mesh
an overview of how each operation works and how we processors.

128 PLANK, KIM, AND DONGARRA

(i-1) (i)
factored factored
column column column
blocks block i b@gks

(I - Multiplication/Subtraction)

Az L3s
(IT - Factorization) = L3,
Asza L3o

FIG. 2. Stepi for Cholesky factorization.

To make the Cholesky factorization fault-tolerant, we first — Let Pj be a processor with blocks in column-block
allocate a parity processd?,. For each panel oh blocks i. Pj copies these blocks to GB
in the matrix, there is one block iR, containing the bitwise — P, also copies its blocks corresponding to blocks in
exclusive-or of each block in the panel. This is depicted ieolumn-blocki to CB,,.
Fig. 3 for the example system of Fig. 1. — The processors perform stép

Each processdp; (including P,) allocates room for an extra — The processor®; (0 < j < n) cooperate withP,
column-block called CB Now, the algorithm for performing to update the exclusive-or for the newly modified blocks in
fault-tolerant Cholesky factorization is as follows: column-blocki.

. — The processors synchronize, and go to stepl.
» Initialize the global state of the system.

« For each step: Thus, at the beginning of each step, the processors hold the
state of the factorization as depicted in Fig. 3. If any one
processoiP; fails, then it can be replaced Wy, or by a new
= processor. This new processor calculalgss state from the
Bol Py bitwise exclusive-or of the remaining processors. Obviously,
P. P, can be replaced in a similar manner.
If any one processoP; fails in the middle of a step, then
P, P PP PP the remaining processors can roll back to the beginning of the
e o e step by copying CB back to column-block Then Pj can be
recovered as described in the preceding paragraph.
It is assumed here that failure detection is provided by the

P, P, P, P, .
P P P computing platform. For example, PVM detects processor and
9 P15, BIP, puting p p p

[l
®
]
=[5

i

certain network failures, and a resource manager like CARMI
[39] can be added to PVM to detect failures due to load and
FIG. 3. Configuring the system for checkpointing. ownership.

FAULT-TOLERANT MATRIX OPERATIONS 129

5.2. LU Factorization Like Cholesky factorization, LU factorization is performed
in place, replacindg\ with L andU. Moreover, the permutation
In LU factorization, a dense matriR is factored using a matrix p is generated as output from the subroutine. Since a
sequence of elementary eliminations with pivoting such thpérmutation matrix is simply the identity matrixwith rows
pA = LU, whereL is a lower triangular matrix with ones permuted, it may be represented by a one-dimensional array,
on the diagonal andl is an upper triangular matrixp is a where theith entry contains the index of the nonzero element
permutation matrix necessary for numerical stability: a propér row i of p. Like A, p is distributed among the processors.
permutation of the rows o4& minimizes the growth of roundoff Each processoP; contains its portion op in p;.
error during the elimination. LU factorization involves a As before, the matrix is partitioned into blocks and dis-
general non-symmetric matrix, and is computationally motebuted among the processors. The factorization proceeds in
complex than Cholesky factorization. steps, one for each column/row block An In stepi, theith
There are three well-known algorithm variants for impleeolumn-block is factored, and the result of this factoring is
menting LU factorization on parallel machines: left-lookingused to factor théth row-block. The details are in Fig. 4.
right-looking, and Crout. These variants differ in the regions The memory update patterns in Crout LU are more complex
of data that are accessed and computed during each step {sae in Cholesky factorization. In stépboth column-block
[16] for details). Below, we describe the Crout variant andand row-blocki are modified. Moreover, the permutation
how it is checkpointed. We discuss the ramifications of algoaatrix p is altered, and at modi rows in L5; and Az, are
rithm selection and checkpointing performance in Section 7 8vapped with rows in row-block due to pivoting. Thus, the

(i-1) ()
factored factored
column column . column
blocks block i i-

i Ai—l Li—l
(I - Multiplication/Subtraction) 2« 12: - fil Uiz

32 Az, Lay

i
(I — Factorization / Definition of p) p ?2 = Usa
Asy
L: Loy Abs At
ITI - Pivotin . ; , _ 7 . , P opt~
P. . g 21 . - 1 — > <__pp, 1
31 Lz 33 Ass

(IV - Solve/Multiplication/Subtraction) Uss (Liy) ' Alg — Loy Uns

FIG. 4. Stepi for Crout LU factorization.

130 PLANK, KIM, AND DONGARRA

algorithm to make Crout LU fault-tolerant, though similar to ¢ For all remaining processoi® (this includesP,), if P

Cholesky factorization, is necessarily more complex. had started substep lll, then it copies any rows back from PR
To be specific,P, starts as in Cholesky factorization, withto their original position.

blocks containing the exclusive-or of panels of blocks of « All Pk copy their data from CB RB,, and p, back to

A. Moreover, P, has some memoryn, which contains the column-blocki, row-blocki, andpj, respectively.

bitwise exclusive-or of each processops. Each processor « Pj’s state is reconstructed from the bitwise exclusive-or

P;j (including P,) allocates room for an extra column-blockof the blocks in the otheP.

CB;, an extra row-block, RB and a cache op; called ,03. e The computation proceeds from the beginning of step

Finally, each processdP; (including P,) allocates room for

a row-block’s worth of pivoting rows PR The fault-tolerant 5.3. QR Factorization

LU factorization proceeds as follows: In QR factorization a reaM x N matrix A is factored so

« |Initialize the global state of the system (includifg). that
* For each stej:
— Let P;j be a processor with blocks in column-block A=Q < R) ,
i. Pj copies these blocks to CB 0
— Let Pj be a processor with blocks in row-blogk

Pj copies these blocks to RB whereQ is anM x N orthogonal matrix andR an N x N
— Pn copies its blocks corresponding to blocks ipper triangular matrix. In the ScaLAPACK implementation
column-blocki and row-blocki to CB, and RE,. of QR factorization, the matriQ is not generated explicitly
— All Pj (0<j <n)copypj to pj. since it would require too much extra storage. Inste@d,

— The processors perform substeps | and Il of step can be applied or manipulated through the iden@ty= | —

— In substep lil,b rows of the matrix are swappedyTVT whereV is a lower triangular matrix of “Householder”
with rows in row-blocki. Before doing so, the processdP$ vectors andT is an upper triangular matrix constructed from
that own these rows copy them to PRP, copies its rows information in V. When the factorization is complete, the
corresponding to these rows to PR matrix A is transformed int®/, T, andR, whereV is in the lower

— Now the processors perform substeps Ill and IV. triangle of the original matrid, Ris in the upper triangle, and

— The processor®; (0 < j < n) cooperate withP, T is stored in a one-dimensional array.
to update the exclusive-or for the newly modified blocks in [jke LU factorization, there are multiple algorithms for
column-blocki, row-blocki, the swapped pivot rows, and QR factorization. We focus on the left-looking algorithm.

— The processors synchronize and go to stepl. Complete details of the implementation of this algorithm are

beyond the scope of this paper but may be found in Dongarra’s
As in Cholesky factorization, if a processBj fails during book [16]. A high-level picture is provided in Fig. 5.
stepi of the computation it can be replaced By, or by a It should be clear from Fig. 5 that only column-block

new processor. The replacement proceeds as follows: of matrix A is changed during factoring step Therefore
(i-1) (1)
factored Sactored
column column column

blocks block i blocks

FIG. 5. Stepi of QR factorization.

FAULT-TOLERANT MATRIX OPERATIONS 131

the fault-tolerant version of QR works exactly like the fault- 6. IMPLEMENTATION RESULTS

tolerant version of Cholesky—each procesgyrallocates an

extra column-block CBto hold the initial value of column- ~We implemented and executed these programs on a network

block i during stepi, so that the computation can be rolled®f Sparc-5 workstations running PVM [19]. This network

back to the beginning of stepif there is a failure. consists of 24 workstations, each with 96 Mbytes of RAM,
connected by a switched 100 megabit ethernet. The peak
measured bandwidth in this configuration is 40 megabits per
second between two random workstations. These workstations

5.4. Iterative Equation Solver (PCG) are generally allocated for undergraduate classwork, and thus
are usually idle during the evening and busy executing 1/O-

Iterative equation solvers are used for the following prolbound and short CPU-bound jobs during the day. We ran our

lem: given a large sparse matrix and a vectoib, find the experiments on these machines when we could allocate them

vectorx such thatAx = b. Iterative equation solvers work asexclusively for our own use.

follows. Given an initial approximation t®, the method iter- The results presented here are for a network of 17 proces-

atively refines this approximation un#lx = b to within some sors, where 16 are running the program=(16,p = q = 4)

error tolerance. Unfortunately, no single iterative method is rand one is calculating the parity. We ran three sets of tests

bust enough to solve all sparse linear systems accurately &mdeach instance of each problem. In the first there is no

efficiently. Therefore, we limit our scope to one such methodheckpointing. In the second, the program checkpoints, but

known as “Preconditioned Conjugate Gradient” (PCG). there are no failures, and in the third, a processor failure is

If Ais positive definite symmetric, then PCG can be usdgjected randomly to one of the processors, and the program

to solve the systemi\x = b by projectingA onto a “Krylov completes with 16 processors. In the results that follow, we

subspace” and then solving the system in this subspace. Tfiesent only the time to perform the recovery, since there is

details of the algorithm are beyond the scope of this papa® checkpointing after recovery.

[4, 16, 22]. However its mechanics as they impact fault-

tolerance are simple. First, the sparse mafiis represented 6.1. Cholesky Factorization

in a den_s_e form, and is then distributed along witand two We ran ten different instances of the Cholesky factorization,
preconditionerd/; andM, to the processom, throughPn—1. gne for each of ten matrix sizes from = 1,000 toN =

M, andM, are diagonal matrices and thus may be representfél,ooo_ In each run, the block size was 50. The data for
by linear arrays. After this point, b, M;, andM, are not his experiment is in Fig. 6.

altered. As displayed in the leftmost graph of Fig. 6, Cholesky
Now, the vectorsp,, o, Wo, andé, are calculated from factorization has a running time @(N3). The total overhead

A, b, My, and M. These intermediate vectors are used igf checkpointing consists of the following two components:
calculate the vectox,, which is the first approximation tg.

The algorithm then iterates as follows: The valuesfofb, ~ * Tint: The time to take the initial checkpoint of matrix A
My, My, Xi—1, Pi—1, fi—1, Wi_1, and& _1 are used to calculate In our calculations below, we assume that message bandwidth

h dominates the overhead of message-passing enough that we
can ignore message latency. Each entryAofs a double
precision floating point number (8 bytes). As stated in Section
t5.1 above, sincéA is symmetric, only half of it needs to

be stored. Therefore the total amount of storage needed for
A is 4N? bytes. These bytes are distributed evenly among
the n processors, which perform théRusing a binary tree
algorithm. Thus, the first checkpoint takesNBflog n)[/nR

pi, ri, wy andgj. These are then used to calculate the it
approximation tox. The iterations continue untihx, = b to
within a given error tolerance.

Adding fault-tolerance to the PCG algorithm is straigh
forard. First, the processors distribute b, M,;, and M, and
allocate memory fox;, pi, ri, w;, and&. The extra proces-
sor Py is initialized to contain the bitwise exclusive-or of all
these variables. Now, each processor (includfiy must in- seconds, wher® is the rate of sending a message ;
clude extra vectors for each &f p, r, w, andé. These extra | . .

o . ; . ing it, expressed in bytes per second.
vectors are maintained like CB in the factorization examples. - The ti ke th | block checkpoi
They hold the values ofi_1, pi—1, ri—1, Wi—1, andgj _1 during " Trest The time to take the column-block checkpoints
-1 B—1 -4, =1 -1 There areN/b of these checkpoints, with an average size

stepi so that the step can be rolled back following a failure, :
. . of 4bN. Since rocessors cooperate for each of these
Note that in PCG, we can checkpoint eveky steps PP b

. checkpoints, the total overhead of these checkpoints/ls
by copying i, pi, ri, Wi, and & to the extra vectors and (4bN[(log p)/pR]) = [4N2(log p)]/pR

computing the bitwise exclusive-or of p, r, w, and & only
wheni is a multiple ofk. The result is that processors may roll
back up tok steps to the previous checkpoint upon a failure.
However, since checkpoints are only taken evesteps, the aN? [log

overhead of checkpointing will be reduced by a factokof OVcholesky= = (T + |0ng>) (1)

Thus, the total overhead of checkpoint is

132 PLANK, KIM, AND DONGARRA

Matrix Size Running With Checkpointing Recovery
Total Time # of Checkpoint [Running Total Tinit | Trest: Avg. | Overhead Time
Size Check- Interval Time Overhead Per Ckp. %

N (Mbyte) (sec) points (sec) (sec) (sec) (sec) (sec) (sec)
1000 4 12 20(+1) 0.7 15 3 2 0.1 25.0 2
2000 16 58 40(+1) 1.6 70 12 6 0.1 20.7 6
3000 36 163 60(+1) 2.9 189 26 14 0.2 16.0 13
4000 64 331 80(+1) 4.4 379 48 26 0.3 14.5 23
5000 100 602 100(+1) 6.4 682 80 38 0.4 13.3 36
6000 144 992 120(+1) 8.8 1112 120 52 0.6 12.1 51
7000 196 1516 140(+41) 11.5 1681 165 70 0.7 10.9 69
8000 256 2244 160(+1) 14.9 2494 250 102 0.9 11.1 98
9000 324 3057 180(+1) 18.0 3367 310 134 1.0 10.1 132
10000 400 4112 200(+1) 21.7 4489 377 152 1.1 9.2 148

— X~— With checkpointing K 304 37
4000 9 —©— No checkpointing /]
3000 g 20 3 21
v L 4 h
kS £ g
2 2000 3 g
S 10 =
® 10—: = ! I—H*.ﬂ_.\‘_'_.
1000
0 T T 7] 0 T T T T 1 0 1 U 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
N N N
Running Time Percentage Checkpoint Overhead Experimental Determination of R

FIG. 6. Results for Cholesky factorization.

Since OVenlesky!S O(N?) and Cholesky factorization ©(N%), the calculation ofT,. is more complex. Each checkpoint
we expect the percentage overhead of checkpointing to densists of a portion of a column block, two row-blocks, and
crease ad\ increases. This is plotted in the middle graph ahe pivot vectorp. The overhead of sending the row-blocks
Fig. 6. is [16Nb(log g)]/qR and the overhead of sendingis 4b/R,

The rightmost graph of Fig. 6 ploR as determined by because onlyb elements ofp are altered per iteration, and
Eq. (1) for each value af. Since the peak observed networkheseb elements are contained entirely in one processor. The
performance is 40 megabits per second, we expect Rhataverage size oL}, is N/2b. Therefore the average overhead
will be somewhat lower than 5 Mbytes/s to take account of sending the column block is [log p)l/bpR This yields
synchronization and th®&ORtime. This is shown to be the the following equation for the overhead of checkpointing the
case. Crout LU factorization:

Recovery consists of taking the bitwise exclusive-or of every AN 4N2 /(o A o
processor's matriA. Thus, the overhead of recovery shouldovg, g, = — + (9P + (log @ + (log n)).
equal T;,;, which is reflected in the last column of Fig. 6. R R p q 5
Notice that the time it takes to recover is irrespective of the @
location of the failure.

The rightmost graph of Fig. 7 shows that Eq. (2) yields values
of R similar to those for Cholesky factorization. The recovery
time once again is roughly equal TG,;.
The results from the LU factorization are in Fig. 7. Again, o
the block size was 50. The results are very similar to the resufts: QR Factorization
from the Cholesky factorizations. Like Cholesky, Crout LU The results from the QR factorization are in Fig. 8. Once
consume®(N?3) floating point operations but its constants areore, the block size was 50. QR factorization is another
greater (by a factor of 2), resulting in longer running times. O(N®) algorithm whose constants are greater than the LU
Since the matrix is not symmetric, the first checkpoint dhctorizations. As such, only five values df were tested
A takes twice as long as in Cholesky factorization. Moreovdsecause of the large running times.

6.2. LU Factorization

FAULT-TOLERANT MATRIX OPERATIONS

Matrix Size Running With Checkpointing Recovery
Total Time # of Checkpoint | Running Total Tinit | Trest: Avg. | Overhead Time
Size Check- Interval Time Overhead Per Ckp. %

N (Mbyte) (sec) points (sec) (sec) (sec) (sec) (sec) (sec)
1000 8 56 20(+1) 3.3 66 10 3 0.3 17.9 3
2000 32 190 40(+1) 5.5 221 31 12 0.5 16.3 11
3000 72 451 60(+1) 8.7 519 68 25 0.7 15.1 24
4000 128 853 80(+1) 12.2 978 125 50 0.9 14.7 44
5000 200 1509 100(+1) 17.1 1715 206 79 1.3 13.7 69
6000 288 2294 120(+1) 21.7 2605 311 104 1.7 13.6 99
7000 392 3545 140(+1) 28.4 3978 433 148 2.0 12.2 136
8000 512 4959 160(+1) 34.5 5521 562 195 2.3 11.3 178
9000 648 6877 180(+1) 42.4 7627 750 253 2.8 10.9 248
10000 800 8850 200(+1) 49.0 9793 943 295 3.2 10.7 283

— x~- With checkpointing X 20 39
1 —o— No checkpointing ,I
8000 1
154
=] 9 2 -
w6000 g g
E £ g
8 g 107 >
D 1 =
@ 4000 - =)) s
® 1 1
5 .
2000 1
0 J T T 1 0 T 7 T] 0 T T]
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
N N N

Running Time

Percentage Checkpoint Overhead

Experimental Determination of R

FIG. 7. Results for LU factorization.

Matrix Size Running With Checkpointing Recovery
Total Time # of Checkpoint | Running Total Tinit | Trest: Avg. | Overhead Time
Size Check- Interval Time Overhead Per Ckp. %

N (Mbyte) (sec) points (sec) (sec) (sec) (sec) (sec) (sec)
1000 8 376 20(+1) 19.4 388 12 5 0.3 3.2 4
2000 32 1210 40(+1) 31.1 1246 36 14 0.6 3.0 12
3000 72 2909 60(+1) 49.8 2988 79 32 0.8 2.7 29
4000 128 6052 80(+1) 77.5 6197 145 55 1.1 2.4 52
5000 200 10934 100(+1) 111.6 11162 228 74 1.5 2.1 70

{ - %~- With checkpointing 10 39
10000 4 —©— No checkpointing
1 .
8000 — —
- § 2
L 2 o7 3
£ 6000 i
]] B
g 4 g
#4000] s
] w® ,___\.\.\. = 11
2000 24 —
0 —freererery T A 1 0 T T T T 1 0 TrrTT LA 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

N
Running Time

Percentage Checkpoint Overhead

N

N

Experimental Determination of R

FIG. 8.

Results for QR factorization.

133

134 PLANK, KIM, AND DONGARRA

QR checkpointing is exactly like Cholesky checkpointing,
except that all ofA is checkpointed initially, and every 8N (log n) 51
column-block is checkpointed in its entirety. Therefore, OVpce = " nrR <8+?>')
the overhead of QR checkpointing is exactly twice that of

Cholesky checkpointing: To recover, matrixA and all eight vectors need to be
8N2 /logn log p reconstructed. Thus, the overhead of recovery time should
OVor = = (T + T) . (3) be [104(log N)}/nR, which is the sum of thd;,; and T

columns of Fig. 9.

QR factorization has the lowest checkpointing overhead per-

centage of all the factorizations. 7. DISCUSSION

7.1. Checkpointing Overhead and Interval

6.4. Preconditioned Conjugate Gradient The results presented in the previous section show that
We executed an instance of PCG with Bnx N matrix on current NOWSs, the performance of this method for fault-
A for | iterations, whereN = 1,048,576 and = 5,000. This tolerant computation is surprisingly good. In the Cholesky and
calculatedx to within a tolerance of 1. The results of this LU factorizations, checkpoints are taken less than a minute
instance with varying values & (iterations per checkpoint) apart, yet the overhead is low. In the long-running instances,
are in Fig. 9. the total checkpointing overhead is under 15%. In the QR
As in the factorizations, the overhead of checkpointing factorizations, the overhead of checkpointing is under two
broken into two parts:T,,;, which is the time to checkpoint percent in all instances, while the checkpointing interval is
A, b, M;, and M,, and T, which accounts for all of the less than two minutes. In all the factorizations, the overhead
checkpoints ok, p, r, w andé. The dense representationaf of checkpointing iSO(N?), while the running time complexity
is a 5x N matrix, yielding a value of [6M(log n)//nRfor T;,,. is O(N3). Thus, the percentage of checkpointing overhead
The remaining checkpoints comprise five vectors of legith decreases as the problem size increases.
These should take [4f{log n)]/nR each. Since there aiék One interesting thing to notice is that there is no term for the
of these checkpoints, the overhead of checkpointing PCG iblock sizeb in Egs. (1), (2), and (3). This means that given

k Running With Checkpointing Recovery
Time # of Checkpoint | Running Total Tinit | Trest: Avg. | Overhead Time
Check- Interval Time Overhead Per Ckp. %
(sec) points (sec) (sec) (sec) (sec) {sec) (sec)
25 5789 200{+1) 47 9436 3647 28.9 18.1 63.0 41
50 5789 100(+1) 76 7607 1818 28.6 17.9 31.4 40
100 5789 50(+1) 134 6746 957 29.7 18.5 16.5 41
500 5789 10(+1) 600 6004 215 29.7 18.5 3.7 40
1000 5789 5(4+1) 1181 5909 120 29.1 18.2 2.1 41
2500 5789 2(+1) 2926 5853 64 28.4 17.8 1.1 41
5000 5789 1(+1) 5835 5835 46 28.3 17.7 0.8 42
10000 - - With checkpointing 39
No checkpointing 60 .
8000
) 2 24
g 6000 - - a £ 4 3
£ =
S] =
3 3 2
v 4000 g
R MR
2000 » - P
04— T T T 1 0w T T T T 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
k k k
Running Time Percentage Checkpoint Overhead Experimental Determination of R

FIG. 9. Results for PCG.

FAULT-TOLERANT MATRIX OPERATIONS 135

the assumptions of these equations, the block size has litilal, the right-looking algorithms perform the best because
impact on the overhead of checkpointing. This in turn meatisey minimize communication overhead. However, when fac-
that the checkpointing interval should have little impact otoring column-block, they modify all blocks in column-block
the overhead of checkpointing. One key assumption made jbgnd row-blockk such that =i andk = i. Thus, the average
Egs. (1), (2), and (3) is that message latency can be ignorgdration modifieszi'\':/f(bi)2 ~ N3/3b matrix elements that
While this is true for larger block sizes, message lateneyould have to be checkpointed. This would lead to prohibi-
becomes more significant ds decreases. Therefore, thereively high overheads in terms of both time and memory.

is an extra penalty for small block sizes that is not reflected To assess the impact of our algorithm selection, we imple-
in the equations. mented all algorithm variants of Cholesky and LU factoriza-

Also of interest is the fact that there is no term fprin tion without checkpointing. Figure 10 plots the running times
Egs. (1) and (3). Thus, the best checkpointing performanasfsthese variants for all problem sizes and includes the results
in Cholesky and QR factorization should be realized when of checkpointing. The lower row of graphs plot the overhead
nandg = 1. Of course, the selection pfandq also impacts of checkpointing compared to the right-looking factorization
the performance of the factorization [13]. variants.

In the PCG implementation, there is a tradeoff between Figure 10 shows that the checkpointing overhead of both
the checkpointing interval and the overhead of checkpointinGholesky and LU factorizations is low even compared to the
This tradeoff is controlled by the variable In our example, right-looking variants. They too exhibit the trend of decreasing
the total overhead of checkpointing is roughly (29 + 18 (500@krcentage of overhead as the problem size increases.

k)) s. Therefore, one can choose a valuekab achieve a
desired checkpointing overhead or interval. For example, to 8. RELATED WORK
achieve a 10% checkpointing overhead, one can chiotsbe

164. This will yield roughly 578 s of checkpointing overhead There has been much research on algorithm-based fault-

and checkpoints every 207 s. tolerance for matrix operations on parallel platforms where
(unlike the above platform) the computing nodes are not
responsible for storage of the input and output elements [23,
The choice of one parity processBy was made simply to 33, 40]. These methods concentrate mainly on fault-detection,
present the concept of diskless checkpointing. If the NOWhd in some cases correction. It is future research to see
executing the computation contaims+ m processors, then whether these techniques or a combination of these techniques
there is no reason that — 1 of them should be idle. Insteadwith backward error assertions [7] can be used to further
of having alln processors checkpoint t8,, we can partition improve diskless checkpointing.
then processors inta groupsGo, - -+, Gm-1, and havePy | Checkpointing on parallel and distributed systems has been
be responsible for checkpointing the processor§jnfor 0< studied and implemented by many people [8, 14, 15, 17, 24,
j <m. This is basically a 1-dimensional parity scheme, whichp7, 31, 38, 41, 44-46]. All of this work, however, focuses
can tolerate up tan simultaneous processor failures, as longn either checkpointing to disk or process replication. The
as each failure occurs in a different group [21]. technique of using a collection of extra processors to provide
The extreme we have presentedras= 1. At the other fault-tolerance with no reliance on disk comes from Plank and
extreme are systems like Isis [5] or Targon [8] wheme= n, | j [37] and is unique to this work.
and every processor has a backup processor to which it sendan interesting comparison of this work to disk-based check-
checkpoints. Asn grows, the overhead of checkpointing angointing can be obtained using the results of Elnozehgl.
recovery decreases because there is less contention for[tg. In this paper, they checkpoint a prograguss , which
parity processors and there are few@Roperations. performs an LU factorization with partial pivoting on a 1024
To tolerate any combination ofm processor failuresm x 1024 matrix using 16 diskless Sun 3/60 processors. Check-
parity processors must be combined with more sophisticatggints are taken to two central file servers every 2 min and two
error-correction techniques [6, 9, 36]. This means thaptimizations are employed: copy-on-write and incremental
every processor’s checkpoint must be sent to multiple parigeckpointing. The checkpointing performance is excellent.
processors. In the absence of broadcast hardware, this kindc@ckpoints take about 14 s to commit, and with the copy-
fault-tolerance will likely impose too great an overhead. on-write optimization, the overhead is approximately 0.42 s
per checkpoint. By comparison, our method checkpoints the
same instance every 3.3 s with an average commit time and
As a final remark, the choice of the algorithms for the famverhead of 0.43 s per checkpoint. This is without the ben-
torization has an impact on both the performance of the fagfit of operating system modification or use of the memory
torization and the performance of checkpointing. Specificalljpanagement system. The employment of asynchronous mes-
for Cholesky factorization, there are top-looking and righsage sending similar to the asynchronous checkpoint writing
looking algorithm variants, and for LU factorization, there aref copy-on-write checkpointing could decrease the overhead
left-looking, right-looking, and Crout variants [16]. In gen-of our scheme even further.

7.2. Extra Parity Processors

7.3. Choice of Factorization Algorithm

136 PLANK, KIM, AND DONGARRA

—>— Top-looking, with ckp 10000 1 —a— Left-looking, no ckp
1 —o— Top-looking, no ckp | —— Crout, with ckp
4000 —m— Right-looking, no ckp —o— Crout, no ckp
] 8000 —®— Right-looking, no ckp
3000
3 6000 —
g 8
=] =}
=] <]
3 2000 g
/5] w 4000 —
1000 — 2000
0 —T T T 1 0 I T 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
n n
Cholesky Factorization LU Factorization
50 F
- = 3
5 g
‘= = k
< < 40 4
> 40 >]
o0 o0
= g
= 2
2 2 30
o 30)]
5 5
&~ &]
= = 20
S 20 2
=} o]
3 7
£ 10 = 104
7} o]
> >]
<) ©
S IS
0 | v U N U v J v | i |} 0 U i U v | U 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
n n
Cholesky Factorization LU Factorization
FIG. 10. Performance of checkpointing compared to all factorization variants.
There are efforts to provide programming platforms for 9. CONCLUSIONS

heterogeneous computing that can adapt to changing load.

These can be divided into two groups—those presentingWe have given a method for executing certain scientific com-
new paradigms for parallel programming that facilitate faulputations on a changing or faulty Network of Workstations.
tolerance/migration [2, 3, 15, 20], and migration tools baséthis method enables a computation designed to execute on
on consistent checkpointing [10, 39, 43]. In the former grouprocessors to run on a NOW platform where individual pro-
the programmer must make his or her program conform tessors may leave and enter the NOW due to failures or load.
the programming model of the platform. None are gardeks long as the number of processors in the NOW is greater
variety message-passing environments such as PVM or MfPlann, and as long as processors leave the NOW singly, the
Those in the latter group achieve transparency, but canmoimputation can proceed efficiently.

migrate a process without that process’s participation. ThusWe have implemented this method on four scientific cal-
they cannot handle processor failures or revocation due dalations and shown performance results on a fast network
ownership without checkpointing to a central disk. of Sparc-5 workstations. The results show that our methods

FAULT-TOLERANT MATRIX

exhibit low overhead while checkpointing at a fine-grained in-
terval (in most cases less than 5 min).

Our continuing progress with this work has been in threer.
directions. First, we are adding the ability for processors to
join the NOW in the middle of a calculation and participate
in the fault-tolerant operation of the program. Currently,8'
once a processor quits, the system merely completes with
exactlyn processors and no checkpointing. Second, we havs_
added the capacity for multiple parity processors as outlined in
Section 7.2. Preliminary results have shown that this improves
both the reliability of the computation and the performanceo.
of checkpointing. Third, we are designing a technique to
checkpoint the right-looking factorizations using a checksum
approach and reverse computation to restore the bulk &F
processor state upon failure [25]. The result is a mechanism
that checkpoints at somewhat larger intervals, but with lower
overhead than the algorithms described in this paper.

For the future, we would like to integrate our scheme with
general load-balancing. In other words, if a few processors ajg
added to or deleted from the NOW, then the system continues
running using the mechanisms outlined in this paper. However,
if the size of the processor pool changes by an order of
magnitude, then it makes sense to reconfigure the system with
a different value ofn. Such an integration would represent
a truly adaptive, high-performance methodology for scientific
computations on NOWSs. 15.

ACKNOWLEDGMENTS
16.

The authors thank the following people for their help concerning this
research: Richard Barrett, Micah Beck, Randy Bond, Jaeyoung Choi, Brian
Davis, Chris Jepeway, Mark Jones, Kai Li, Bob Manchek, Nitin Vaidya, CIint17
Whaley, and the anonymous referees. '

James Plank was supported by National Science Foundation Grant CCR-
9409496 and the ORAU Junior Faculty Enhancement Award. Jack Dongarra is
supported by the Defense Advanced Research Projects Agency under Contidbt
DAALO03-91-C-0047, administered by the Army Research Office, by the
Office of Scientific Computing, U.S. Department of Energy, under Contract
DE-AC05-840R21400, and by the National Science Foundation Science ang.
Technology Center Cooperative Agreement CCR-8809615.

REFERENCES 20.

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz,
J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S21.
and Sorensen, DLapack User’'s GuideSIAM, Philadelphia, 1992.

Arabe, A. N. C., Beguelin, A., Lowekamp, B., Seligman, E., Starkey,
M., and Stephan, P. Dome: Parallel programming in a distributed
computing environmentProc. 10th International Parallel Processing 22.
SymposiumlEEE Comput. Soc., 1996.

Bakken, D. E., and Schilchting, R. D. Supporting fault-tolerant parallep3.
programming in Linda. IEEE Trans. Parallel Distrib. Systen, 3

(Mar. 1995), 287-302.

Barrett, R.et al. Templates for the Solution of Linear Systems: Building4.
Blocks for Iterative MethodsSIAM, Philadelphia, 1994.

Birman, K. P., and Marzullo, K. ISIS and the meta projestin Technol.
(1989). 25.
Blaum, M., Brady, J., Bruck, J., and Menon, J. EVENODD: An optimal
scheme for tolerating double disk failures in RAID architectuf@sc.

OPERATIONS 137

21st Annual International Symposium on Computer Architectli®®4,
245-254.

Boley, D., Golub, G. H., Makar, S., Saxena, N., and McCluskey, E.
J. Floating point fault tolerance with backward error assertidBEE
Trans. Computé4, 2 (Feb. 1995).

Borg, A., Blau, W., Graetsch, W., Herrman, F., and Oberle, W. Fault
tolerance under UNIXACM Trans. Comput. Systerisl (Feb. 1989),
1-24.

Burkhard, W. A., and Menon, J. Disk array storage system reliability.
Proc. 23rd International Symposium on Fault-Tolerant Computing.
IEEE Compt. Soc., 1993, pp. 432—-441.

Casas, J., Clark, D. L., Konuru, R., Otto, S. W., Prouty, R. M., and
Walpole, J. MPVM: A migration transparent version of PVEompt.
Systems, 2 (Spring 1995), 171-216.

Casas, J., Clark, D. L., Galbiati, P. S., Konuru, R., Otto, S. W., Prouty,
R. M., and Walpole, J. MIST: PVM with transparent migration and
checkpointing.3rd Annual PVM Users’ Group Meetind.995.

Chandy, K. M., and Lamport, L. Distributed snapshots: Determining
global states of distributed system®CM Trans. Comput. Syster@sl
(Feb. 1985), 3-75.

Choi, J., Dongarra, J., Pozo, R., and Walker, D. ScaLAPACK:
A scalable linear algebra library for distributed memory concurrent
computers.Proc. 4th Symposium on the Frontiers of Massively Parallel
Computation.|IEEE Compt. Soc., 1992, pp. 120-127.

Cristian, F., and Jahanain, F. A timestamp-based checkpointing protocol
for long-lived distributed computations.Proc. 10th Symposium on
Reliable Distributed System$991, pp. 12—-20.

Cummings, D., and Alkalaj, L. Checkpoint/rollback in a distributed
system using coarse-grained dataflowProc. 24th International
Symposium on Fault-Tolerant ComputintEEE Compt. Soc. 1994,
pp. 424-433.

Dongarra, J. J., Duff, I. S., Sorensen, D. C., and van der Vorst, H.
A. Solving Linear Systems on Vector and Shared Memory Computers.
SIAM, Philadelphia, 1991.

Elnozahy, E. N., Johnson, D. B., and Zwaenepoel, W. The performance
of consistent checkpointing. Proc. 11th Symposium on Reliable
Distributed Systemsl992, pp. 39-47.

Elnozahy, E. N., and Zwaenepoel, W. On the use and implementation of
message loggingProc. 24th International Symposium on Fault-Tolerant
Computing.1994, pp. 298-307.

Geist, A., Beguelin, A., Dongarra, J., Manchek, R., Jaing, W.,
and Sunderam, WWWM—A Users’ Guide and Tutorial for Networked
Parallel Computing.MIT Press, Boston, 1994.

Gelernter, D., and Kaminsky, D. Supercomputing out of recycled
garbage: Preliminary experience with piranh&roc. International
Conference on Supercomputirt§CM, 1992, pp. 417-427.

Gibson, G. A., Hellerstein, L., Karp, R. M., Katz, R. H., and Patterson,
D. A. Failure correction techniques for large disk array@roc. 3rd
International Conference on Architectural Support for Programming
Languages and Operating SystemMACM, 1989, pp. 123-132.

Golub, G. H., and Van Loan, C. Matrix Computations2nd ed. Johns
Hopkins Univ. Press, Baltimore, MD, 1989.

Huang, K-H., and Abraham, J. A. Algorithm-based fault tolerance for
matrix operations.|IEEE Trans. ComputC-33, 6 (June 1984), 518—
528.

Johnson, D. B., and Zwaenepoel, W. Recovery in distributed systems
using optimistic message logging and checkpointifigAlgorithms11,

3 (Sep. 1990), 462—-491.

Kim, Y., Plank, J. S., and Dongarra, J. Fault tolerant matrix operations
using checksum and reverse computati®noc. 6th Symposium on the
Frontiers of Massively Parallel Computatiod996.

138

PLANK, KIM, AND DONGARRA

26. Koo, R., and Toueg, S. Checkpointing and rollback-recovery fo43. Stellner, G. CoCheck: Checkpointing and process migration for MPI.
distributed systemdEEE Trans. Software EngrgSE-13,1 (Jan. 1987), Proc. 10th International Parallel Processing Symposiur@96.

23-31. 44. Strom, R. E., and Yemini, S. Optimistic recovery in distributed systems.

27. Lai, T. H., and Yang, T. H. On distributed snapshdtgorm. Process. ACM Trans. Comput. Syster8s3 (Aug. 1985), 204—-226.

Lett. 25 (May 1987), 153-158. 45. Sure, G., Janssens, R., and Fuchs, W. K. Reduced overhead logging

28. Laranjeira, L. A., Malek, M., and Jenevein, R. M. Space/time overhead for rollback recovery in distributed shared memoryProc. 25th
analysis and experiments with techniques for fault tolerafi@epend- International Symposium on Fault-Tolerant Computia§95, pp. 279—
able Comput. Fault-Tolerant Syste®s3 (1993), 303-318. 288.

29. Leodn, J., Fisher, A. L., and Steenkiste, P. Fail-safe PVM: A portablgs. Wang, Y. M., and Fuchs, W. K. Lazy checkpoint coordination for
package for distributed programming with transparent recovery. Tech. bounding rollback propagation.Proc. 12th Symposium on Reliable
Report CMU-CS-93-124, Carnegie Mellon University, Feb. 1993. Distributed Systemsl993, pp. 78-85.

30. Li, K., Naughton, J. F., and Plank, J. S. An efficient checkpointing
method for multicomputers with wormhole routingint. J. Parallel
Process.20, 3 (June 1992), 159-180.

31. Li, K, Naughton’ J. F., and Plank, J. S. Low_|atency’ concurrent JAMES PLANK received his B.S. from Yale in 1988, his M.A. from
checkpointing for parallel programslEEE Trans. Parallel Distrib. Princeton in 1990, and his Ph.D. from Princeton in 1993. He is currently
Systems, 8 (Aug. 1994), 874-879. an assistant professor in the Computer Science Department at the University

32. Long, D., Muir, A., and Golding, R. A longitudinal survey of internetOf Tenngss_ee. His research interests are in fa_ult tolerance, specn‘lcally fast
host reliability. Proc. 14th Symposium on Reliable Distributed Systemg_heckpomtmg and rollback recovery of sequential and parallel computations.
1995, pp. 2-9. YOUNGBAE KIM is currently a member of the Scientific Computing

33. Luk, F. T., and Park, H. An analysis of algorithm-based fault toleran@roup in the National Energy Research Scientific Computing Center (NERSC)
techniquesJ. Parallel Distrib. Comput5 (1988), 172—184. at Lawrence Berkeley National Laboratory (LBL), University of California,

34. Message Passing Interface Forum. MPI: A message-passing interfBegkeley. His research interests include parallel and distributed computing
standard.Int. J. Supercomputer App8, 3/4 (1994). focusing on scientific computing and numerical linear algebra, network

35. Mutka, M. W., and Livny, M. The available capacity of a privatelycom_pUtin_g' a_nd fault tolerance. He re(?eived his B.S. and MS in e_lectrgnics
owned workstation environmenBerformance Evaluatiofl991). engineering in 1982 and 1984, respectively, from Seoul National University at

. . . Seoul, Korea. He also earned a M.S. in electrical and computing engineering

36. Plank, J. S. Improving the performance of coordinated checkpointers . . . ;

. . - in 1990 from the University of Colorado at Boulder, and his Ph.D. in Computer
on networks of workstations using RAID techniquesroc. 15th Science in 1996 from the University of Tennessee at Knoxville
Symposium on Reliable Distributed Systet96, pp. 76—85. '

37. Plank, J. S., and Li, K. Faster checkpointing with+ 1 parity. Proc. JACK DONGARRA holds a joint appointment as Distinguished Professor
24th International Symposium on Fault-Tolerant Computif§94, pp. of Computer Science in the Computer Science Department at the University
288-297. of Tennessee (UT) and as Distinguished Scientist in the Mathematical

38. Plank, J. S., and Li, K. Ickp—a consistent checkpointer for multiconciences Section at Oak Ridge National Laboratory (ORNL) under the UT/
puters.IEEE Parallel Distrib. Technol2, 2 (Summer 1994), 62—67. ORNL Science AIIi_ance_ Pr_ogram. He receiv_ed a B.S. in ma}thematics from

39. Pruyne, J., and Livny, M. Parallel processing on dynamic resources W%H'C_ago S_tate University in 1.972’ a MsS.in computer science from t_he
CARMI. Proc. First IPPS Workshop on Job Scheduling Strategies f Inois |nst|tu_te Of. Technology in .197.3’ and a Ph.D. in _ap_plled_mathemgtlcs
Parallel Processing1995. rom _the U_nlvgrsny of New Mexico in 1980._ He specializes in numerical

) . . algorithms in linear algebra, parallel computing, use of advanced-computer

40. Roy-Chowdhury, A., and Banerjee, P. Algorithm-based fault locatiofy piectures, programming methodology, and tools for parallel computers.
and recpvery for matrix computatlohs.Proc. 24th International Other current research involves the development, testing, and documentation
Symposium on Fault-Tolerant Computiri94, pp. 38-47. of high quality mathematical software. He was involved in the design and

41. Silva, L. M., Silva, J. G., Chapple, S., and Clarke, L. Portablgnplementation of the software packages EISPACK, LINPACK, the BLAS,
checkpointing and recovery. Proc. HPDC-4, High-Performance | APACK, ScalAPACK, Netlib/XNetlib, PVM/HeNCE, and MPI and the
Distributed Computing1995, pp. 188—195. National High-Performance Software Exchange, and is currently involved

42. Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W., and Dongarria, the design of algorithms and techniques for high-performance computer

J. J.MPI: The Complete ReferencMIT Press, Boston, 1996. architectures.

Received March 1, 1996; revised April 1, 1997; accepted April 30, 1997

