
PARALLEL
COMPUTING

ELSEVIER Parallel Computing 23 (1997) 49-70

Key concepts for parallel out-of-core LU
factorization

Jack J. Dongarra a3*, Sven Hammarling b, David W. Walker ’
a Depurtmmt oj’Computrr Science. University ofTenne.wre. Knoxville. TN 37996-1301, USA

b NAG Ltd., Wilkinson House, Jordun Hill Rod. Oxjhl OX2 8DR. UK

’ Mutlremuticul Sciences Section. Ouk Ridge Nutionul Luhorutory, Ouk Ridge, TN 37831-6367. USA

Abstract

This paper considers key ideas in the design of out-of-core dense LU factorization routines. A
left-looking variant of the LU factorization algorithm is shown to require less I/O to disk than the
right-looking variant, and is used to develop a parallel, out-of-core implemen@ion. This imple-
mentation makes use of a small library of parallel I/O routines, together with ScaLAPACK and
PBLAS routines. Results for runs on an Intel Paragon are presented and interpreted using a simple
performance model.

Keywords: Out-of-core computation; LU factorization; Parallel computing; Parallel I/O

1. Introduction

The in-core solution of dense linear systems typically takes less than one hour on the
largest parallel computers, even when the system occupies all of memory. For example,
on 1,000 processors of an Intel Paragon supercomputer, each with 16 Mb of memory, it
takes about 22 min to factor and solve at 64-bit precision a dense linear system of order
40,000 that fills up all the memory available to applications. This indicates that the
processing power of such machines is underutilized in problems that require the solution
of a single linear system in the sense that much larger systems could be solved before
the run time became prohibitively large. In the absence of substantial increases in the
ratio of memory to processing power it is natural to develop out-of-core solvers to tackle
very large linear systems. These types of large linear systems arise, for example, in

. Corresponding author.

0 167-8 I91 /97/$17.00 Copyright 0 I997 Elsevier Science B.V. All rights reserved,

PII SOl67-Sl9l(96)00096-8

50 J-I. Donprru et aI./ Parullel Computing 23 (1997) 49-70

three-dimensional electromagnetic scattering problems and in fluid flow past complex
objects [11,121.

This paper presents a prototype for the design of a parallel software library for the
out-of-core solution of dense linear systems, and presents timing results for runs on an
Intel Paragon. Other research into parallel, dense, out-of-core, linear algebra software
includes Intel’s ProsolverTM package [6], the SOLAR library for out-of-core parallel
linear algebra [181, and solvers by Womble et al. [193, and Klimkowski and van de Geijn
[141. This last paper discusses the approaches taken in the other two papers, as well as
giving an overview of the issues involved.

In Section 2, we consider left- and right-looking, out-of-core parallel LU factoriza-
tion routines and propose a hybrid version that balances the degree of parallelism with
the amount of I/O. In Section 4 different approaches to parallel I/O are discussed.
Section 5 outlines the main components of a library of routines for performing I/O on
dense matrices. A complete parallel, out-of-core LU factorization routine is described in
Section 6. This algorithm is implemented in terms of the BLACS [lo], PBLAS [3], and
ScaLAPACK [2] routines. Section 7 presents some preliminary performance results on
the Intel Paragon. A summary and conclusions are presented in Section 8.

2. Sequential out-of-core LU factorization

Let us consider the decomposition of the matrix A into its LU factorization with the’
matrix partitioned in the following way. Let us suppose that we have factored A as
A = LCJ. We write the factors in block-partitioned form and observe the consequences.

Multiplying L and lJ together and equating terms with A, we have

A,, =L,,U,,* A,2 = L,,U,2 9 43 =L,,U,,,

A,, =L,,fJ,,7 A22 = L,,U,, +L22u22 9 A23 = L21”,3 + L22”23-

A,, = L3,“,, 9 A32 = L3,“,2 + L32”22 9 A33 F L31”~3 + L32”23 + L33”33*

With these simple relationships we can develop variants by postponing the formation of
certain components and also by manipulating the order in which they are formed. A
crucial factor for performance is the choice of the blocksize, k (i.e., the column width)
of the second block column. A blocksize of 1 will produce matrix-vector algorithms,
while a blocksize of k > 1 will produce matrix-matrix algorithms. Machine-dependent
parameters such as cache size, number of vector registers, and memory bandwidth will
dictate the best choice for the blocksize.

Two natural variants occur: right-looking and left-looking. (There are several other
variants possible, we examine only two here.) The terms right and left refer to the
regions of data access, as shown in Fig. 1.

J.J. Dongorru et nl./Purulld Cr)mputmg 23 (1997) 49-70 51

Left-looking variant Right-looking variant

Fig. I. Memory access patterns for variants of LU decomposition. The shaded parts indicate the matrix

elements accessed in forming a block row or column, and the darker shading indicates the block row or

column being modified.

The left-looking variant computes one block column at a time, using previously
computed columns. The right-looking variant (the familiar recursive algorithm) com-
putes a block row and column at each step and uses them to update the trailing
submatrix. These variants have been called the i, j, k varianrs owing to the arrangement
of loops in the algorithm. For a more complete discussion of the different variants, see

[9,151.
We now develop these block variants of LU factorization with partial pivoting.

2.1. Right-looking algorithm

Suppose that a partial factorization of A has been obtained so that the first k columns
of L and the first k rows of lJ have been evaluated. Then we may write the partial
factorization in block partitioned form, with square blocks along the leading diagonal, as

where I!,,, and U,, are k X k matrices, and P is a permutation matrix representing the
effects of pivoting. Pivoting is performed to improve the numerical stabilcy of the
algorithm and involves the interchange of matrix rows. The blocks labeled Aij in IQ.
(1) are the updated portion of A that has not yet been factored, and will be referred to as
the acrive submatrix.

We next advance the factorization by evaluating the next block column of L and the
next block row of iJ, so that

(2)

52 J.J. Donp~rro rf (11. / Purullel Compuring 23 f 1997149-70

where P, is a permutation matrix of order M-k. Comparing Eqs. (1) and (2) we see that
the factorization is advanced by first factorin, 0 the first block column of the active
submatrix which will be referred to as the current column,

This gives the next block column of L. We then pivot the active submatrix to the right
of the current column and the partial L matrix to the left of the current column,

and solve the triangular system

u,, = L;2’223 (5)
to compl_ete the next block row of U. Finally, a matrix-matrix product is performed to
update A,, ,

*
A33 * i33 - L32”23. (6)

Now, one simply needs to relabel the blocks to advance to the next block step.
The main advantage of the block partitioned form of the LU factorization algorithm

is that the updating of A,, (see Eq. (6)) involves a matrix-matrix operation if the block
size is greater than 1. Matrix-matrix operations generally perform more efficiently than
matrix-vector operations on high performance computers. However, if the block size is
equal to 1, then a matrix-vector operation is used to perform an outer product -
generally the least efficient of the Level 2 BLAS [8] since it updates the whole
submatrix.

Note that the original array A may be used to store the factorization, since the L is
unit lower triangular and U is upper triangular. Of course, in this and all of the other
versions of LU factorization, the additional zeros and ones appearing in the representa-
tion do not need to be stored explicitly.

We now derive the cost for performing I/O to and from disk for the block-parti-
tioned, right-looking LU factorization of an M X M matrix A with a block size of nb.
For clarity assume M is exactly divisible by nb. The factorization proceeds in M/n,
steps which we shall index k = 0, 1,. . . , M/n, - 1. For some general step k, the active
submatrix is the M, X M, matrix in the lower right comer of A, where M, = M - kn,.
In step k it is necessary to both read and write all of the active submatrix, so the total
I/O cost for the right-looking algorithm is

M/n,- I

(R+W) c (M-knb)2=$(l +O(n,/M))(R+W) (7)
k-0 b

where R and W are the times to read and write one matrix element, respectively, and we
assume there is no startup cost when doing I/O.

JJ. Don~urru ef ul./Purullel Computing 23 (1997149-70 53

2.2. Left-looking algorithm

As we shall see, from the standpoint of data access, the left-looking variant is better
than the right-looking variant. To begin, we assume that

and that we wish to advance the factorization to the form

i’ pjPA= 1;;; ;:I d(“’ ;: ;;;I (9)

Comparing Eqs. (8) and (9) we see that the factorization is advanced by first solving the
triangular system

IJ,, = GA,2 (10)
and then performing a matrix-matrix product to update the rest of the middle block
column of U,

Next we perform the factorization

p2

and lastly the pivoting

(12)

I
(13)

Observe that data accesses all occur to the left of the block column being updated.
Moreover, the only write access occurs within this block column. Matrix elements to the
right are referenced only for pivoting purposes, and even this procedure may be
postponed until needed with a simple rearrangement of the above operations.

In evaluating the I/O cost for the left-looking out-of-core LU factorization algorithm
two variants of the left-looking algorithm will be considered. In the first we always store
the matrix on disk in unpivoted form at all intermediate phases of the algorithm, writing
out the whole matrix in pivoted form only in the last step of the algorithm. In this case
pivoting has to be done ‘on the fly’ when matrix blocks are read in from disk. In the
second version of the algorithm the matrix is stored on disk in pivoted form.

Consider the version in which the matrix is stored in unpivoted form. Whenever a
block is read in the whole M X n,, block must be read so that it can be pivoted. Upon

54 J.J. Donpm~ et ul./ Purullrl Compurin~ 23 (1997) 49-70

completion of a step the newly-factored block is the only block that is written to disk,
except in the last step in which we write out all blocks in pivoted form so that the final
matrix stored on disk is pivoted (although in some cases these writes may be omitted if
an unpivoted matrix is called for - the pivots can always be applied later since they are
stored in the pivot vector). At some general step k of the algorithm the I/O cost is

(R+W)Mn,+RMn,k (14)

where the first term corresponds to reading and writing the block to be factored in this
step and the second term to reading in the blocks to the left. Summing over k and
adding in the time to write out all pivoted blocks in the last step, the total cost for this
version of the left-looking algorithm is

$1 + O(rib/M)))) + 2M2(1 + O(n,/M))W
b

(15)

Thus, to order n,/M the time to do the writes can be ignored. If we assume that reads
and writes take approximately the same time (i.e., R = W), then comparison with Eq.
(7) shows that this version of the left-looking algorithm should perform less I/O than
the right-looking algorithm.

Now consider the version of the left-looking algorithm in which blocks are always
stored on disk in pivoted form. In this case it is no longer necessary to read in all rows
of an M X nb block, but it is necessary to write out partial blocks in each step. This is
because the pivoting performed in the factorization of the block column must also be
applied to the blocks to the left, which must then be written to disk. In some general step
k all of the block to be updated must be read in and written out. The parts of the blocks
to the left that must be read in form a stepped trapezoidal shape (see Fig. 2a), while the
parts of the blocks to the left that must be written out after applying the pivots for this

Fig. 2. This figure pertains to the left-looking LU factorization algorithm that stores the matrix in pivoted

form. (a) The shaded blocks show the block columns read from disk in step k = 5. The dark shaded block is

the block being updated in this step. (b) The shaded blocks show the block columns written to disk in step

k= 5.

J.J. Don~urrcr rruI./PvrullrlCompurrn~ 23 (1997) 49-70 55

step form a rectangle (see Fig. 2b). Thus for step k > 0 the I/O cost is
k-l

(R+W)Mn,+Rn,C(M-in,)+Wn,(M-kn,)k
i=o

(16)

and for step k = 0 the I/O cost is (R + W)Mn,. Thus, the total I/O cost is

$(I +O(n,/M))R+
b

$(I + %,/M))W
b

(17)

It is interesting to note that if reads and writes take the same time the two left-looking
versions of the algorithm have the same I/O cost, and they both have a lower I/O cost
than the right-looking algorithm. We therefore expect a left-looking algorithm to be
better than a right-looking algorithm for out-of-core LU factorization.

3. Implementation of the left-looking algorithm

In this section the implementation of the sequential, left-looking, out-of-core LU
factorization routine will be discussed. As we shall see in Section 6, once the sequential
version has been implemented it is a relatively easy task to parallelize it using the
BLACS, PBLAS, and ScaLAPACK, and the parallel out-of-core routines described in
Section 5.

In the out-of-core algorithm only two block columns of width nb may be in-core at
any time. One of these is the block column being updated and factored which we shall
refer to as the active block. The other is one of the block columns lying to the left of the
active block column which we shall refer to as a remporury block. As we saw in Section
2.2, the three main computational tasks in a step of the left-looking algorithm are a
triangular solve (Eq. (IO)), a matrix-matrix multiplication (Eq. (1 l)), and an LU
factorization (Eq. (12)). In the out-of-core algorithm the triangular solve and matrix-ma-
trix multiplication steps are intermingled so that a temporary block can play its part in
both of these operations but be read only once. To clarify this, consider the role that
block column i plays in the factorization of block column k (where i < k). In Fig. 3, the
first i rows of block column i play no role in factoring block column k. The lower

I k

Fig. 3. Partitioning of temporary block i and active block k.

56 J.J. Dongorru et ul. / Purullel Contpurin~ 23 f 1997149-70

triangular portion of the next nb rows of block column i are labeled T,,. and the next
k-i-n, rows are labeled T,. The last M-k rows are labeled D. The corresponding
portions of block column k are labeled C,, C,, and E. Then the part played by block
column i in factoring block column k can be expressed in the following three
operations,

C,+ 7-,-C, (18)

c, + c, - T,C, (19)

E+E-DC, (20)

where in Eqs. (19) and (20) we use the C 0 given by Eq. (I 8). It should be noted that
Eqs. (19) and (20) can be combined in a single matrix-matrix multiplication operation

(21)

In updating block column k, the out-of-core algorithm sweeps over all block columns
to the left of block column k and performs for each the triangular solve in Eq. (18) and
the matrix-matrix multiplication in Eq. (21) After all the block columns to the left of the
block have been processed in this way using the Level 3 BLAS routines _TRSM and
_GEMM [7], the matrix E is then factored using the LAPACK routine _GETRF [l].

If the matrix is stored on disk without applying the pivots to it, then whenever a
block column is read in the pivots found up to that point must be applied to it using
_LASWP, an LAPACK auxiliary routine. Also after updating and factoring the active
block, the pivots must be applied to it in reverse order to undo the effect of pivoting
before storing the block column to disk. In this version of the left-looking algorithm
complete block columns are always read or written. In the version of the algorithm in
which the matrix is stored on disk in pivoted form it is necessary to read in only those
parts of the temporary blocks that play a role in the computation. When a partial
temporary block is read in the pivots found when factoring E in the previous step must
be applied before using it, and it must then be written back out to disk.

for (each block column, k=O,l,...,M/n_b-1)
read block column k Into active block
_LASWP : apply pivots to active block
go to start of file
for (each block column to left, r=O,l,...k-1)

read block column i Into temporary block
_LASWP : apply pivots to temporary block
_TRSM : triangular solve
_GEMM : matrix multiply

end for
_GETRF : factor matrrx E
_LASWP : unpivot active block
wrote actrve block

end for

Fig. 4. Pseudocode for out-of-core, left-lookin, 0 LU factorization algorithm that leaves matrix in unpivoted

form.

J.J. Dot,~urnt er ul. / Porullel Con~/mri,r~ 23 f 1997) 49-70 57

In Fig. 4 the pseudocode is presented for the version of the left-looking algorithm in
which the matrix is stored in unpivoted form. Since a vector of pivot information is
maintained in-core, the factored matrix can always be read in later to be pivoted. It has
been assumed in Fig. 4 that the matrix is M X M and that M is divisible by the block
size nh. However, the general case is scarcely more complicated. It should be noted that
it is necessary to position the file pointer (at the start of the file) only once in each pass
through the outer loop.

4. Approaches to parallel I/O

Our discussion of parallel l/O for dense matrices assumes that in-core matrices are
distributed over processes using a block-cyclic data distribution as in ScaLAPACK [2,4].
Processes are viewed as being laid out with a two-dimensional logical topology, forming
a P x Q process mesh. Our approach to parallel l/O for dense matrices hinges on the
number of file pointers, and on which processes have access to the file pointers. We
divide parallel l/O modes into two broad classes

(i) There is one file pointer into the disk file. In this case some of the possibilities are:
(a) Only one process has access to the file pointer. Thus only that process can do l/O to
the file, and has to scatter to, or gather from, the other processes when reading or writing
the file. (b) All processes in a group have individual access to the file pointer.
Synchronization is required if the order in which data are written to, or read from, the
file is important. (c) All processes in a group have collective access to the file pointer
permitting collective l/O operations in which all processes can read the same data from
the file, or collectively write to the file in such a way that the data from exactly one of
the processes is actually written to the file.

(ii) Each process in a group has its own file pointer. We consider here two main
possibilities: (a) The file pointers can all access a global file space. In this case we refer
to the file as a ‘shared file.’ (b) Each file pointer can only access its own local file space.
This file space is physically and logically contiguous. In this case we refer to the file as
a ‘distributed file.’

Modes l(a) and l(b) correspond to the case in which there is no parallel l/O system,
and all l/O is bound to be sequential. Modes I(c), 2(a) and 2(b) corresponds to different
ways of doing parallel l/O. The shared file mode is the most general since it means a
file can be written using one particular process grid and block size and read later using a
different process grid and block size. A distributed file can only be read using the same
process grid and block size that it was written with. However, a major drawback of a
shared file is that, in general, each process can only read and write nb contiguous
elements at a time. This results in very poor performance unless block sizes are very
large or unless the process grid is chosen to be I X Q (for Fortran codes) so that each
column of the matrix lies in one process. The potential for poor performance arises
because most l/O systems work best when reading large blocks. Furthermore, if only a
small amount of data is written at a time systems such as the Intel Paragon will not
stripe the data across disks so I/O is essentially sequentialized.

58 J.J. Donp~ru er ul./ Purullei Compurin~ 23 (1997) 49-70

DISK MEMORY

Fig. 5. Fundamental 1/O operation for matrices.

5. Parallel I/O routines for dense matrices

We propose a prototype library of Basic Linear Algebra Parallel I/O Subprograms
(BLAPIOS) for dense matrices. As discussed in Section 3, we would like the BLAPIOS
to be compatible with any future standard for parallel I/O that emerges. Thus, we
describe only the high-level functionality of the BLAPIOS, and defer specifying the
detailed semantics and syntax. A similar approach has been taken by Toledo and
Gustavson in the matrix input-output subroutines (MIOS) which forms part of the
SOLAR library for out-of-core dense matrix computations [17].

Before describing the BLAPIOS we shall consider the fundamental I/O operation
supported by the BLAPIOS in which a rectangular array of data is read from (written to)
the out-of-core file into (from) a given in-core array. Suppose the data in the out-of-core
file and the in-core array are represented by the index ranges (k: k + m - 1, 1:
l+n- l), and (i: i + m - 1, j + n - l), respectively, as shown in Fig. 5. As in the
PBLAS and ScaLAPACK libraries, submatrices are regarded as global entities and are
referenced by global indices.

For a shared file the indices k and 1 can refer to any element in the out-of-core file.
However, for a distributed file the submatrix referenced in the out-of-core file must have
the same data distribution as that in the in-core array. This is because both the
out-of-core distributed file and the in-core array are distributed data objects. An example
of compatible and incompatible data distributions for a distributed file and an in-core
matrix are shown in Fig. 6.

The routines comprising the BLAPIOS library are arranged in three groups.
- Routines for opening and closing files, and for manipulating file pointers.
l Routines for reading and writing.
l Auxiliary routines.

We shall now present the functionality of each of these routines.

5.1. File management routines

The BLAPIOS contain the following routines for handling shared and distributed
files.

J.J. DonXurrct et ul./ Purullrl Computing 23 (1997) 49-70

out-of-core files in-core array

59

compatible incompatible

Fig. 6. On the left we show two submatrices of a distributed file. On the right is an in-core anay. Both the

distributed file and the in-core array are distributed over a 2 X 3 mesh of processes. The smaller squares

represent nb x nb blocks of elements. The distribution of the submatrix in the lefthand distributed tile is

compatible with that in the in-core array, while the distribution of the submatrix in the righthand distributed

tile is not.

POPEN. Opens a file.
PCLOSE. Closes a file.
P_LSEEK. Independently positions the file pointer to a specific location in the file.
P_ASEEK. Positions the file pointers according to an explicit alignment. For a

distributed file the alignment must be compatible with the data distributions of the
out-of-core file and the in-core array.

P_GSEEK. Positions the file pointers according to an implicit alignment obtained by
applying a given data distribution over the out-of-core file. For a distributed file, the
data distribution applied must be that of the distributed file. This is useful when it is
known that a subsequent I/O operation will refer to a compatibly aligned in-core array.

5.2. I/O routines

The BLAPIOS provide the following blocking and nonblocking routines for reading
and writing submatrices of an out-of-core file. The nonblocking routines permit the
possibility of overlapping I/O to disk with computation and interprocess communica-
tion.

P-READ. Reads a submatrix into specified location of a matrix, and leaves the file
pointer for each process at the next data element for the process. This is a blocking call.

P-WRITE. Writes a submatrix from specified location of a matrix, and leaves the file
pointer for each process at the next data element for the process. This is a blocking call.

PJREAD. Reads a submatrix into specified location of a matrix, and leaves the file
pointer for each process at the next data element for the process. This is a nonblocking
call.

PJWRITE. Writes a submatrix from specified location of a matrix, and leaves the
file pointer for each process at the next data element for the process. This is a
nonblocking call.

PIOTEST. Tests if a nonblocking parallel I/O call has completed.
PIOWAIT. Blocks until a nonblocking parallel I/O call has completed.

60 J.J. Donp~rru rr ul./ Purullel Computitzl: 23 (1997) 49-70

5.3. Auxiliary routines

The BLAPIOS include the following auxiliary routines.
P_STOD. Converts a shared file to a distributed file.
P_DTOS. Converts a distributed file to a shared file.
P_RANM. Produces a random out-of-core file using a parallel random number

generator.

5.4. Implementation issues

The BLAPIOS outlined above have been implemented on the Intel Paragon using
Intel’s Parallel File System (PFS). In these PFS-BLAPIOS a distributed file is imple-
mented by having each process access its own distinct file, though it could also have
been implemented by partitionin g a single file into contiguous chunks and assigning
each process one chunk. For both shared and distributed modes the M_ASYNC I/O
mode of PFS is used. Although one might expect the best performance on a particular
platform to come from implementing the BLAPIOS directly on top of the native parallel
I/O system, there are also distinct advantages to being able to implement them on top of
a portable parallel I/O system. Parallel I/O is an area of much active research (see, for
example Ref. [13] and the parallel I/O archive at http://www.cs.dartmouth.edu/
pario.html for more information.) Although there is currently no generally accepted
parallel I/O standard, MPI-IO, the proposed extensions to MPI [16] for performing
parallel I/O, is a strong contender [5]. We shall, therefore, briefly consider how the
BLAPIOS might be implemented on top of MPI-IO.

MPI-IO contains routines for collective and independent I/O operations. All the I/O
operations in the BLAPIOS are independent. MPI-IO partitions a file using filetypes,
which are an extension of MPI datatypes. Each process in a given group (specified by an
MPI communicator) creates a filetype that picks out just the data assigned to it. A
routine for creating a filetype for block-cyclicly distributed matrices is provided by
MPI-IO. This filetype, together with MPI-IO’s absolute offset mode, can be used to
create and access the equivalent of a BLAPIOS shared file. A BLAPIOS distributed file
can be handled by creating a datatype that divides the file into contiguous segments with
one segment being assigned to each process. In this case MPI-IO’s relative offset mode
would be used to access data.

In MPI-IO the filetype and communicator are specified as input arguments when a
file is opened. This is somewhat more restrictive than access to a shared file using the
BLAPIOS in which the partitioning is determined dynamically by the distribution of the
in-core matrix being read from or written to. The usefulness of dynamic partitioning (or
alignment) is apparent when performing the LU factorization of A, an M X N matrix
with N > M. In this case there are two phases to the computation: first the LU
factorization of the first M columns is found (call this matrix B), and then the
transformations are applied to the remaining N-M columns (call this matrix C). It is
natural, and convenient, in performing the second phase of the algorithm to treat
matrices B and C as unrelated matrices with independent partitionings. However,
complications can arise if the number of columns spanning the process grid, Qn,, does

JJ. Dongyrru er ul./ Pumll~l Compuring 23 f 1997149-70 61

not exactly divide M, so that C begins in the middle of a block. If we are dealing with a
shared file the BLAPIOS routine P_ASEEK can be used to dynamically partition C so it
starts at the beginning of a block. For a distributed file, which has a fixed partitioning,
we have to offset the in-core matrix involved in I/O operations so that it is aligned with
the partitioning. To make the BLAPIOS compatible with MPI-IO we need to either
permit multiple alignments for a file in MPI-IO, or else permit only fixed alignments for
shared files in the BLAPIOS.

6. A parallel algorithm

Although in Section 2 we saw that the left-looking LU factorization routine has a
lower I/O cost that the right-looking variant, the left-looking algorithm has less inherent
parallelism since it acts only on single blocks. We therefore propose a hybrid parallel
algorithm in which a single block actually spans several widths of the process grid, say
n,. In effect, the matrix is now blocked at two levels. It is divided into blocks of size n,,
elements, which are distributed cyclicly over the process grid, but we apply the
left-looking algorithm to ‘superblocks’ of width nbneQ columns where the process grid
is assumed to be of size P X Q. If ng is chos& large enough we have a pure
right-looking algorithm, and if n, and Q are both 1 we essentially recover the pure
left-looking algorithm. Within a superblock we use a right-looking LU factorization
algorithm (P_GETRF) to get good parallelism, but at the superblock level we employ a

Fig. 7. Schematic view of the parallel hybrid out-of-core algorithm for the case P X Q = 2 X 3 and nr = 2.

J.J. Donpm~ er d./ Puwllel Computing 23 (1997) 49-70

P_CSEEK : go to start of file

for (each super-block column, k=O,l,...,M/n_b-1)

P-READ : read superblock column k into active superblock

P_LAPIV : apply pivots to active superblock

P_CSEEK : go to start of file

for (each superblock column to left, i=O,l,...k-1)

P-READ : read superblock column i into temporary superblock

P_LAPIV : apply pivots to temporary superblock

P_TRSM : triangular solve

P_GEMM : matrix multiply

end for

P_GETRF : factor lower portion of active superblock

P_LAPIV : unpivot active superblock

P-WRITE : write active superblock

end for

Fig. 8. Pseudocode for parallel. out-of-core, left-looking .W factorization algorithm that leaves matrix in

unpivoted form.

left-looking algorithm to control I/O costs. The parameter ng can be used to trade off
parallelism and I/O cost.

In Fig. 7 we show an example for a 2 X 3 process grid, and ne = 2. For clarity we
consider here a matrix consisting of only four column superblocks, though in a ‘real’
application we would expect the number to be much larger. In Fig. 7 the first two
superblocks have been factored, while the third and fourth superblocks have not yet been
changed. We now consider the next stage of the algorithm in which the third superblock,
for which the data distribution is shown explicitly, is factored. Note that each of the
small numbered squares is actually an nb X nb block, with the numbering indicating the
position in the process grid to which it is assigned. At the end of this stage of the
algorithm the first three superblocks will have been factored, and the fourth will still be
unchanged. In the following we shall refer to the superblock being factored as the active
superblock.

The parallel implementation closely follows the sequential implementation presented
in Section 3. Block columns are read and written using the routines P-READ and
P-WRITE. The file pointer is positioned with P_GSEEK. These routines are part of the
BLAPIO library introduced in Section 5. The triangular solve and matrix multiplication
are done using PBLAS routines. Pivoting is performed by the ScaLAPACK auxiliary
routine P_LAPIV, while the factorization is done by the ScaLAPACK routine P_GETRF.
Since all these routines reference matrices as global data structures, parallelization of the
sequential algorithm is almost trivial. Pseudocode for the parallel version is given in Fig.
8.

7. Performance results

In this section some preliminary performance results are presented for the parallel
left-looking LU factorization algorithm running on an Intel Paragon concurrent com-

J.J. Dongurru rr uI./Purullel Computing 23 (1997) 49-70 63

Table I
Timings in seconds for the main phases of out-of-core I!& factorization of M X M matrices. Results are

shown for M = .5OCO, 8000 and 10000. In all cases n,, = 50, nr = 2, P = 4, and Q = 4. The version of the

algorithm that stores the matrix in unpivoted form and performs pivotin, 0 on the fly was used. The out-of-core

matrix was physically and logically distributed

Task 5,000 8@0 I 0,ooo

Read 67.32 196.73 325.16

Write 9.21 24.39 31.97

Pivot 156.55 538.38 1006.03

Triangular solve 52.88 139.14 219.75

Matrix multiply 115.21 483.37 955.33

Factorization 29.98 65.32 95.76

Total 427.74 1557.16 2802.84

puter. These results are intended to illustrate a few general points about the performance
of the algorithms used, and do not constitute a detailed performance study. In the work
presented here we were constrained by difficulties encountered in getting exclusive
access to the Paragon for sufficiently long periods. In addition we found that the parallel
file system of the Paragon to which we had access was close to full much of the time.
We hope to overcome these problems in the future and undertake a detailed performance
study in future work. All the runs were made in exclusive use mode, i.e., with logins
disabled to prevent other users accessing the system. This was done because the
performance of PFS is affected by the load on the service nodes, even if other users are
just editing or compiling.

The first runs were done using the version of the algorithm that maintains the
partially factored matrix in unpivoted form throughout the algorithm. Timing results are
shown for 4 X 4 and 8 X 8 process meshes in Tables 1 and 2 for a distributed
out-of-core matrix. In these cases we say that the matrix was both logically and
physically distributed because each processor opens a separate file. As expected for this
version of the algorithm, the time spent writing to PFS is much less than the time spent
reading. However, the most striking aspect of the timings is the fact that pivoting

Table 2

Timings in seconds for the main phases of out-of-core LU factorization of M X M matrices. Results are

shown for M = 5000, 8ooO and 10000. In all cases nb = 50, nr = 2, P = 8, and Q = 8. The version of the

algorithm that stores the matrix in unpivoted form and performs pivoting on the fly was used. The out-of-core
matrix was physically and logically distributed

Task 5,000 8.000 I o.ooo

Read 3 I .56 94.95 193.04
Write 7.93 IS.59 45.91
Pivot 56.62 159.55 319.34
Triangular solve 50.18 136.41 218.77
Matrix multiply 28.37 I 18.79 242.29
Factorization 22.74 45.18 63.87
Total 222.48 6 15.67 I 158.39

64 J.J. Don,qurru et ul./PurullrlCompurit~~ 23 fl997)49-70

Table 3

Timings in seconds for the main phases of out-of-core LU factorization of M X M matrices. Results are

shown for M = 5000, 8ooO and 10000. In all cases rz,, = 50, us = 2, P = 8, and Q = 8. The version of the

algorithm that stores the matrix in pivoted form was used. The out-of-core matrix was physically and logically

distributed

Task 5@0 8.000 10.000

Read 33.36 95.20 181.61

Write 18.85 53.87 117.91

Pivot II.01 28.98 47.19

Triangular solve 50.20 136.65 218.74

Matrix multiply 28.38 118.55 242.21

Factorization 22.70 45.24 63.91

Total 191.46 549.94 977.05

dominates. The large amount of time spent pivoting arises because each time a
superblock is read in all the pivots evaluated so far must be applied to it. For a
sequential algorithm (i.e., P = Q = n, = 11, a total of M3/(3n’,) superblocks of width
nb elements must be pivoted. Thus, pivoting entails M3/(3n,) exchanges of elements,
which is of the same order as the I/O cost. In the parallel case, we must replace n,, by
the width of a superblock, Qnrn,. Thus, in order for the version of the algorithm that
stores the matrix in unpivoted form to be asymptotically faster than the version that
stores the matrix in pivoted form we require

W R P

a<
sf-9

3 (22)

where W and R are the costs of writing and reading an element, respectively, and P is
the cost of pivoting an element.

In general, there is no reason why writing should be substantially faster then reading,
so we would not expect Eq. (22) to hold. Thus, the version of the algorithm that stores
the matrix in pivoted form is expected to be faster. This is borne out by the timings
presented in Table 3 for an 8 X 8 process mesh. These timings are directly comparable
with those of Table 2, and show that the version of the algorithm that stores the matrix
in pivoted form is faster by lo- 15%. Note that the time for writing is slightly more than
half the time for reading, suggesting that it takes slightly longer to write a superblock
than to read it.

We next attempted to investigate the effect of varying the width of the superblock by
increasing ns from 2 to 10. The results are shown in Table 4. A problem will fit in core
if the memory required in each process to hold two superblocks exceeds that required to
hold the entire matrix, i.e., if

MM
2.;.nr.n,<-.-,

P Q

or 2Qn, nb < M. Thus, for the parameters of Table 4 the M = 5000 and M = 8000 cases
fit in core, so we just read in the whole matrix, factorize it using the standard
ScaLAPACK routine P_GETRF, and then write it out again. In Table 4 it takes about 58

J.J. Donp~rru rr ul./ Purollel CompurinK 23 (1997) 49-70 65

Table 4

Timings in seconds for the main phases of out-of-core LU factorization of M X M matrices. Results are

shown for M = 5OW. 8OCKl and 10000. In all cases nB = 50. np = IO, P = 8, and Q = 8. The version of the

algorithm that stores the matrix in pivoted form was used. Note that the M = 5000 and So00 cases ran in-core,

and that the M = 8000 case failed. The out-of-core matrix was physically and logically distributed

Task 5,OQo 8,cQO lO,OQO

Read 20.93 fail 273.08

Write 59.39 238.66

Pivot - 23.89

Triangular solve 177.48

Matrix multiply 117.24

Factorization 58.47 138.62

Total 148.86 I 104.66

s to perform an in-core factorization of a 5000 X 5000 matrix, compared with 191 s for
an out-of-core factorization (see Table 3). The M = 8000 case in Table 4 failed,
presumably because PFS was not able to handle the need to simultaneously read 8 Mb
from each of 64 separate files. The M = 10000 case ran successfully out-of-core, and
the results in Table 4 should be compared with those in Table 3, from which we observe
that increasing n, increases the time for I/O and factorization, but decreases the times
for all other phases of the algorithm. The increase in I/O is an unexpected result since
increasing ne should decrease the I/O cost. Perhaps the larger value of ne increases the
I/O cost because larger amounts of data are being read and written, leading to
congestion in the parallel I/O system.

To understand the effect of varyin g the superblock width on the time for the
triangular solve, matrix multiplication, and factorization phases of the algorithm we
derive the following expressions for the number of floating-point operations in each
phase,

Triangularsolve: = +M2n, - fMnt Matrixmultiply: = $M3 - M*n, + +Mnt

Factorization: = iM2n, + iA4ni

These expressions apply in the sequential case <Q = ns = 11, but the corresponding
expression for the parallel algorithm is obtained by replacing nb by Qni,no. It should be
noted that the total floating-point operation count for all three computational phases is
(2/3)M3, but th e a b ove expressions show that the way these operations are distributed
among the phases depends on the width of the superblock, nb. Thus, an increase in the
superblock width results in an increase in the factorization time, and a decrease in the
time for matrix multiplication. If the superblock width is sufficiently small compared
with the matrix size then a small increase results in an increase in the triangular solve
time. However, if the superblock width is large an increase will decrease the triangular
solve time. It should be remembered that all three of these phases are running in parallel
so communication time also influences the total running time. In general, increasing the
nb or ns should decrease communication time on the Paragon as data are communicated
in larger blocks. If the times for the computational phases in Tables 3 and 4 are summed

66 J.J. Dongurru er ol./ Purdlel Computing 23 (1997149-70

Table 5

Timings in seconds for the main phases of out-of-core LU factorization of M X M matrices. Results are

shown for M = 5000. 8000 and 10000. In all cases rrb = 50, II~ = 2, P = 4, and Q = 4. The version of the

algorithm that stores the matrix in pivoted form was used. The out-of-core matrix was logically distributed, but

physically shared

Task 5,000 8,ooO 10,000

Read 61.45 178.43 303.99

Write 36.61 124.1 I 211.67

Pivot 22.59 60.20 94.17

Triangular solve 52.84 139.09 2 19.66

Matrix multiply I 14.70 482.79 948.93

Factorization 29.16 64.00 93.92

Total 350.12 I 149.64 2042.41

we get about 524 s for n, = 2 and about 432 s for ng = 10 which suggests that a larger
value of ns results in more efficient parallel computation overall. Communication
overhead, together with the floating-point operation count, determines the performance
of the computational phases of the algorithm as ns changes.

The failure of the M = 8000 case in Table 3 prompted us to devise a second way of
implementing logically distributed files. Instead of opening a separate file for each
process, the new method opens a single file and divides it into blocks, assigning one
block to each process. This does not change the user interface to the BLAPIOS
described in Section 5. We refer to this type of file as a physically shared, logically
distributed file. It should be noted that the terms ‘physically shared’ and ‘logically
distributed’ refer to the view of the parallel file system from within the BLAPIOS. At
the hardware level the file, or files, may be striped across multiple disks, as is the case
for the Intel Paragon.

The rest of the results presented in this section are for physically shared, logically
distributed files, and the version of the algorithm that stores the matrix in pivoted form.
In Tables 5 and 6 results are presented for the same problems on 4 X 4 and 8 X 8
process meshes. It is interesting to note that increasing the number of processors from 16
to 64 results in only a very small decrease in the time for the triangular solve phase,

Table 6

Timings in seconds for the main phases of out-of-core LA./ factorization of M X M matrices. Results are

shown for M = 5000, 8000 and IOOOO. In all cases nb = 50, nb = 2, P = 8, and Q = 8. The version of the

algorithm that stores the matrix in pivoted form was used. ‘The out-of-core matrix was logically distributed, but

physically shared

Task 5,000 g.000 10,000

Read 34.29 95.74 201.18

Write 24.35 62.53 130.08

Pivot 10.94 28.85 47.27

Triangular solve 50.20 136.45 218.82

Matrix multiply 28.34 I 18.72 242.36

Factorization 22.70 45.05 63.87

Total 200.26 536.89 1006.34

JJ. Donpm-u et (II./ Purullel Computing 23 f 1997) 49-70 67

Table 7

Timings in seconds for the main phases of out-of-core Lf/ factorization of M X M matrices. Results are

shown for M = 5000, 8OC0 and 10000. In all cases nb = 50, nr = IO, P = 8, and Q = 8. The version of the

algorithm that stores the matrix in pivoted form was used. Note that the M = 5000 and 8000 cases ran in-core.

The out-of-core matrix was logically distributed, but physically shared

Task 5,000 8.000 10,000

Read 4.16 II.10 75.04

Write 3.59 14.25 99.60

Pivot - - 24. I3

Triangular solve - - 180.25

Matrix multiply - - 130.12

Factorization 58.57 181.55 141.17

Total 69.47 206.90 709.22

indicating that the parallel efficiency for this phase is low. This is in contrast with the
matrix multiplication phase which exhibits almost perfect speedup.

In Table 7 timings are presented for the case n, = 10 for an 8 X 8 process mesh.
Comparing these results first with those given in Table 4 for a physically and logically
distributed file, the decrease in the times for reading and writing is striking. Secondly, of
course, the physically shared case no longer fails for the M = 8000 in-core case.
Comparison between Tables 6 and 7 shows that for a physically shared file an increase
in ng results in a decrease in I/O time, as expected from the dependency of the I/O
time on M3/n,. However, the decrease is less than the expected factor of 5, particularly
for the writes. Results in Table 8 for the case nr = 5 show a read time for the
M = 10000 case which is about the same as for n8 = 10, and a write time that is
substantially less. This again shows that as n, increases, thereby increasing the amount
of data being read and written in each I/O operation, I/O performance starts to degrade
quite significantly once nB is sufficiently large.

Table 8 shows timings for the M = 10000 case for the same problem parameters as in
Table 7, but for nB = 5. Comparing the results in Tables 6 and 7, and 8 we see that the
time for writing data does not decrease montonically as ng increase, but is smallest for

Table 8

Timings in seconds for the main phases of out-of-core .LU factorization of M X M matrices. Results are

shown for M = 10000 with nb = 50, IZ~ = 5. P = 8. and Q = 8. The version of the algorithm that stores the

matrix in pivoted form was used. The out-of-core matrix was logically distributed, but physically shared

Task .5.000 8.000 10,c0O

Read - - 77.92

Write - - 56.30
Pivot - - 32.5 I
Triangular solve - - 209.22
Matrix multiply - 176.60
Factorization - - 92.69
Total - - 681 .a9

68 J.J. Donp~rru er al./ Purullel Computitt~ 23 (1997) 49-70

n, = 5. Again we ascribe this behavior to the apparent degradation in I/O performance
when the volume of simultaneous I/O is large.

8. Summary and conclusions

In this paper we have described a parallel left-looking algorithm for performing the
out-of-core LU factorization of dense matrices. Use of out-of-core storage adds an extra
layer to the hierarchical memory. In order to manage flexible and efficient access to this
extra layer of memory an extra level of partitionin, 0 over matrix columns has been
introduced into the standard ScaLAPACK algorithm. This is represented by the su-
perblocks in the hybrid algorithm that we have described. The hybrid algorithm is
left-looking at the outermost loop level, but uses a right-looking algorithm to factor the
individual superblocks. This permits the trade-offs between I/O cost, communication
cost, and load imbalance overhead to be controlled at the application level by varying
the parameters of the data distribution and the superblock width.

We have implemented the out-of-core LU factorization algorithm on an Intel Paragon
parallel computer. The implementation makes use of a small library of parallel I/O
routines called the BLAPIOS, together with ScaLAPACK and PBLAS routines. From a
preliminary performance study we have observed the following.

6) On the Paragon the version of the algorithm that stores the matrix in pivoted form
is faster than the version that stores matrices in unpivoted form.

(ii) On the Paragon the parallel I/O system cannot efficiently and reliably manage
large numbers of open files if the volume of data being read is sufficiently large. We
have therefore implemented logically distributed files using a single file partitioned
among the processes.

(iii) We have a broad qualitative understanding of the performance. Increasing the
superblock width by increasing n, should decrease I/O costs, but this was found to be
true only up to a point on the Paragon because when the volume of parallel I/O
becomes too great, I/O performance starts to degrade. Thus, although it might be
expected that the optimal approach would be to make the superblock as large as
possible, this will not be fastest on all systems.

Future work will follow two main directions. We will seek to implement our
out-of-core algorithm on other platforms, such as the IBM SP-2, symmetric multiproces-
sors, and clusters of workstations. The use of the MPI-IO library will be considered as a
means of providing portability for our code, rather than implementing the BLAPIOS
directly on each machine. We will also develop a more sophisticated analytical
performance model, and use it to interpret our timings. The IBM SP-2 will be of
particular interest as each processor is attached to its own disk. Hence, unlike our

Paragon implementation, it may prove appropriate on the IBM SP-2 to implement
logically distributed matrices as physically distributed matrices.

As network bandwidths continue to improve, networks of workstations may prove to
be a good environment for research groups needing to perform very large LU factoriza-
tions. Such a system is cost-effective compared with supercomputers such as the Intel
Paragon, and is under the immediate control of the researchers using it. Moreover, disk

J.J. Don~orru rr ul./ Porullel Conrpuhq 23 f 1997) 49-70 69

storage is cheap and easy to install. Consider the system requirements if we want to
factor a lo5 X IO’ matrix in 24 h. In a balanced system we might expect to spend 8 h
computing, 8 h communicating over the network, and 8 h doing I/O. Such a computa-
tion would require about 6.7 X lOI4 floating-point operations, or 23 Gflop/s. If there
are Np workstations arranged as a P X Q mesh and each has 128 Mb of memory, then
the maximum superblock width is 8ONr elements. The I/O per workstation is then,

or SOOOO/Nrz Gb per workstation. The total amount of data communicated between
processes can be approximated by the communication volume of the matrix multiplica-
tion operations that asymptotically dominate. The total amount of communication is
approximately (2/3X M 3/~t;b) elements, where wst, is the superblock width. Assuming
again that the superblock width is wst, = 8ON,, the total amount of communication is
approximately (I/ 120)(M 3/N,) elements. So for 16 workstations, each would need to
compute at about 1.5 Gflop/s, and perform I/O at about 6.8 Mb/s. A network
bandwidth of about 145 Mb/s would be required. Each workstation would require 5 Gb
of disk storage. These requirements are close to the capabilities of current workstation
networks.

Acknowledgements

The authors acknowledge the use of the Intel Paragon XP/S 5 computer, located in
the Oak Ridge National Laboratory Center for Computational Sciences (CCS), funded
by the Department of Energy’s Mathematical, Information, and Computational Sciences
(MICS) Division of the Office of Computational and Technology Research (OCTR).

References

II] E. Anderson, 2. Bzi, C.H. Bischof. J. Demmel, J.J. Dongarra. J. Du Croz, A. Gmenbaum, S.

Hammarling, A. McKenney, S. Ostrouchov and D.C. Sorensen, LAPACK C/.W~.S~ Guide, 2nd Ed. (SIAM,

Philadelphia, PA, USA, 1995).

[21 J. Choi, J. Demmel, 1. Dhillon, J.J. Dongarra, S. Ostrouchov, A. P. Petitet, K. Stanley, D.W. Walker and

R.C. Whaley, ScaLAPACK: a portable linear algebra library for distributed memory computers - design

issues and performance. LAPACK Working Note No. 95. Technical Report CS-95-283, Department of

Computer Science. University of Tennessee, I07 Ayres Hall, Knoxville, TN 37996- 1301, USA, I 995.
131 J. Choi, J.J. Dongarra, S. Ostrouchov, A.P. Petitet. D.W. Walker and R.C. Whaley, A proposal for a set

of Parallel Basic Linear Algebra Subprograms. LAPACK Working Note No. 100. Technical Repon
CS-95-292, Department of Computer Science. University of Tennessee, 107 Ayres Hall. Knoxville, TN

37996-1301, USA, 199.5.

(41 J. Choi, J.J. Dongatra. R. POZO and D.W. Walker. ScaLAPACK: A scalable linear algebra library for

distributed memory concurrent computers, in: Proc. of’ rhr 4111 Symp. or1 rim Fronricys of Mu,ssiuely

Purullrl Crmpufution (IEEE Computer Society Press, 1992) I20- 127.

[51 P. Corbett, D. Feitelson. S. Fineberg, Y. Hsu, B. Nitzberg, J.P. Prost, M. Snir, B. Traversat and P. Wang.

70 J.J. Dongurru et ul./ Porullrl Compuriq 23 f 1997) 49-70

Overview of the MPI-IO parallel l/O interface, in: IPPS ‘95 Workshop on Input/Ourpur in Purullel und

Di.strihu!rd Systems, April (I 995) I - 15.
[6] Intel Corporation. Paragon system prosolver-des library software release 1.3. Technical report. Intel

Scalable Systems Division, Beaverton, Oregon, September 1995.

[7] J.J. Dongana, J. Du Croz. IS. Duff and S. Hammarling, A set of Level 3 Basic Linear Algebra

Subprograms. ACM Trans. Murh. Sofivure I6 (1990) I-28 (Algorithm 679).

[8] J.J. Dongarra. J. Du Croz, S. Hammarling and R.J. Hanson, An extended set of FORTRAN Basic Linear

Algebra Subprograms, ACM Tran.\. Mufh. Scj@ure I4 (I 988) I-32 (Algorithm 656).

[9] J.J. Dongarra, F.G. Gustavson and A. Karp, Implementing linear algebra algorithms for dense matrices on

a vector pipeline machine, S/AM Reoicw 26 (1984) 91-l 12.

[IO] J.J. Dongarra and R.C. Whaley, A users’ guide to the BLACS ~1.0. LAPACK Working Note No. 94,

Technical Report CS-95-281, Department of Computer Science University of Tennessee, 107 Ayres Hall,

Knoxville, TN 379%- 1301, USA, 1995.

[I I] A. Edelman, Large dense numerical linear algebra in 1993: The parallel computing influence, Int. J.

Supercompur. Appl. 7 (I 993) I l3- 128.

[121 A. Edelman, Large dense numerical linear algebra in 1994: The continuing influence of parallel

computing, in: Proc. of’ the 1994 Scukuhle High Perjiwmuncr Computing Conj: (IEEE Computer Society

Press, 1994) 781-787.

[131 Proc. of the Third Annual Workshop on J/O in Parallel and Distributed Systems, Held in conjunction

with IPPS’95, Santa Barbara, April (1995).

[141 K. Klimkowski and R.A. van de Geijn, Anatomy of a parallel out-of-core dense linear solver, in: Pmt. oj

the 1995 Inr. Conj: on Purullei Processing (CRC hess, 1995) 29-33.

[I51 J. Ortega and C. Romine, The ijk forms of factorization II. Parallel systems. Purullel Compur. 7(2)

(1988) 149-162.

(161 M. Snir, SW. Otto, S. Huss-Lederman, D.W. Walker and J.J. Dongarra, MPI: The Complete Refermcr

(MIT Press, Cambridge, MA, USA, 1996).

[171 S. Toledo and F. Gustavson. The design and implementation of SOLAR a portable library for scalable

out-of-core linear algebra computations, in: Fourth Annuul Workshop on I/ 0 in Purulld und Di.strihured

Systems (ACM Press, May, 1996).

[181 S. Toledo and F.G. Gustavson, The design and implementation of SOLAR a portable library for scalable

out-of-core linear algebra computations, in: Fourth Workshop on Input/Output in Puru/lrl und Dis-

rrihuted Systems (Philadelphia, May, 1996) 28-40.

[191 D.E. Womble, D.S. Greenberg, R.E. Riesen and S.R. Wheat, Out of core, out of mind: Practical parallel

I/O, in: PUK. of rhe 1993 Scuhhle Lihruries Conj: (IEEE Computer Society Press, October, 1993)

10-16.

