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Abstract 

This paper considers key ideas in the design of out-of-core dense LU factorization routines. A 
left-looking variant of the LU factorization algorithm is shown to require less I/O to disk than the 
right-looking variant, and is used to develop a parallel, out-of-core implemen@ion. This imple- 
mentation makes use of a small library of parallel I/O routines, together with ScaLAPACK and 
PBLAS routines. Results for runs on an Intel Paragon are presented and interpreted using a simple 
performance model. 
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1. Introduction 

The in-core solution of dense linear systems typically takes less than one hour on the 
largest parallel computers, even when the system occupies all of memory. For example, 
on 1,000 processors of an Intel Paragon supercomputer, each with 16 Mb of memory, it 
takes about 22 min to factor and solve at 64-bit precision a dense linear system of order 
40,000 that fills up all the memory available to applications. This indicates that the 
processing power of such machines is underutilized in problems that require the solution 
of a single linear system in the sense that much larger systems could be solved before 
the run time became prohibitively large. In the absence of substantial increases in the 
ratio of memory to processing power it is natural to develop out-of-core solvers to tackle 
very large linear systems. These types of large linear systems arise, for example, in 
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three-dimensional electromagnetic scattering problems and in fluid flow past complex 
objects [ 11,121. 

This paper presents a prototype for the design of a parallel software library for the 
out-of-core solution of dense linear systems, and presents timing results for runs on an 
Intel Paragon. Other research into parallel, dense, out-of-core, linear algebra software 
includes Intel’s ProsolverTM package [6], the SOLAR library for out-of-core parallel 
linear algebra [ 181, and solvers by Womble et al. [ 193, and Klimkowski and van de Geijn 
[ 141. This last paper discusses the approaches taken in the other two papers, as well as 
giving an overview of the issues involved. 

In Section 2, we consider left- and right-looking, out-of-core parallel LU factoriza- 
tion routines and propose a hybrid version that balances the degree of parallelism with 
the amount of I/O. In Section 4 different approaches to parallel I/O are discussed. 
Section 5 outlines the main components of a library of routines for performing I/O on 
dense matrices. A complete parallel, out-of-core LU factorization routine is described in 
Section 6. This algorithm is implemented in terms of the BLACS [lo], PBLAS [3], and 
ScaLAPACK [2] routines. Section 7 presents some preliminary performance results on 
the Intel Paragon. A summary and conclusions are presented in Section 8. 

2. Sequential out-of-core LU factorization 

Let us consider the decomposition of the matrix A into its LU factorization with the’ 
matrix partitioned in the following way. Let us suppose that we have factored A as 
A = LCJ. We write the factors in block-partitioned form and observe the consequences. 

Multiplying L and lJ together and equating terms with A, we have 

A,, =L,,U,,* A,2 = L,,U,2 9 43 =L,,U,,, 

A,, =L,,fJ,,7 A22 = L,,U,, +L22u22 9 A23 = L21”,3 + L22”23- 

A,, = L3,“,, 9 A32 = L3,“,2 + L32”22 9 A33 F L31”~3 + L32”23 + L33”33* 

With these simple relationships we can develop variants by postponing the formation of 
certain components and also by manipulating the order in which they are formed. A 
crucial factor for performance is the choice of the blocksize, k (i.e., the column width) 
of the second block column. A blocksize of 1 will produce matrix-vector algorithms, 
while a blocksize of k > 1 will produce matrix-matrix algorithms. Machine-dependent 
parameters such as cache size, number of vector registers, and memory bandwidth will 
dictate the best choice for the blocksize. 

Two natural variants occur: right-looking and left-looking. (There are several other 
variants possible, we examine only two here.) The terms right and left refer to the 
regions of data access, as shown in Fig. 1. 
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Left-looking variant Right-looking variant 

Fig. I. Memory access patterns for variants of LU decomposition. The shaded parts indicate the matrix 

elements accessed in forming a block row or column, and the darker shading indicates the block row or 

column being modified. 

The left-looking variant computes one block column at a time, using previously 
computed columns. The right-looking variant (the familiar recursive algorithm) com- 
putes a block row and column at each step and uses them to update the trailing 
submatrix. These variants have been called the i, j, k varianrs owing to the arrangement 
of loops in the algorithm. For a more complete discussion of the different variants, see 

[9,151. 
We now develop these block variants of LU factorization with partial pivoting. 

2.1. Right-looking algorithm 

Suppose that a partial factorization of A has been obtained so that the first k columns 
of L and the first k rows of lJ have been evaluated. Then we may write the partial 
factorization in block partitioned form, with square blocks along the leading diagonal, as 

where I!,,, and U,, are k X k matrices, and P is a permutation matrix representing the 
effects of pivoting. Pivoting is performed to improve the numerical stabilcy of the 
algorithm and involves the interchange of matrix rows. The blocks labeled Aij in IQ. 
(1) are the updated portion of A that has not yet been factored, and will be referred to as 
the acrive submatrix. 

We next advance the factorization by evaluating the next block column of L and the 
next block row of iJ, so that 

(2) 
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where P, is a permutation matrix of order M-k. Comparing Eqs. (1) and (2) we see that 
the factorization is advanced by first factorin, 0 the first block column of the active 
submatrix which will be referred to as the current column, 

This gives the next block column of L. We then pivot the active submatrix to the right 
of the current column and the partial L matrix to the left of the current column, 

and solve the triangular system 

u,, = L;2’223 (5) 
to compl_ete the next block row of U. Finally, a matrix-matrix product is performed to 
update A,, , 

* 
A33 * i33 - L32”23. (6) 

Now, one simply needs to relabel the blocks to advance to the next block step. 
The main advantage of the block partitioned form of the LU factorization algorithm 

is that the updating of A,, (see Eq. (6)) involves a matrix-matrix operation if the block 
size is greater than 1. Matrix-matrix operations generally perform more efficiently than 
matrix-vector operations on high performance computers. However, if the block size is 
equal to 1, then a matrix-vector operation is used to perform an outer product - 
generally the least efficient of the Level 2 BLAS [8] since it updates the whole 
submatrix. 

Note that the original array A may be used to store the factorization, since the L is 
unit lower triangular and U is upper triangular. Of course, in this and all of the other 
versions of LU factorization, the additional zeros and ones appearing in the representa- 
tion do not need to be stored explicitly. 

We now derive the cost for performing I/O to and from disk for the block-parti- 
tioned, right-looking LU factorization of an M X M matrix A with a block size of nb. 
For clarity assume M is exactly divisible by nb. The factorization proceeds in M/n, 
steps which we shall index k = 0, 1,. . . , M/n, - 1. For some general step k, the active 
submatrix is the M, X M, matrix in the lower right comer of A, where M, = M - kn,. 
In step k it is necessary to both read and write all of the active submatrix, so the total 
I/O cost for the right-looking algorithm is 

M/n,- I 

(R+W) c (M-knb)2=$(l +O(n,/M))(R+W) (7) 
k-0 b 

where R and W are the times to read and write one matrix element, respectively, and we 
assume there is no startup cost when doing I/O. 
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2.2. Left-looking algorithm 

As we shall see, from the standpoint of data access, the left-looking variant is better 
than the right-looking variant. To begin, we assume that 

and that we wish to advance the factorization to the form 

i’ pjPA= 1;;; ;:I d(“’ ;: ;;;I (9) 

Comparing Eqs. (8) and (9) we see that the factorization is advanced by first solving the 
triangular system 

IJ,, = GA,2 (10) 
and then performing a matrix-matrix product to update the rest of the middle block 
column of U, 

Next we perform the factorization 

p2 

and lastly the pivoting 

(12) 

I 
(13) 

Observe that data accesses all occur to the left of the block column being updated. 
Moreover, the only write access occurs within this block column. Matrix elements to the 
right are referenced only for pivoting purposes, and even this procedure may be 
postponed until needed with a simple rearrangement of the above operations. 

In evaluating the I/O cost for the left-looking out-of-core LU factorization algorithm 
two variants of the left-looking algorithm will be considered. In the first we always store 
the matrix on disk in unpivoted form at all intermediate phases of the algorithm, writing 
out the whole matrix in pivoted form only in the last step of the algorithm. In this case 
pivoting has to be done ‘on the fly’ when matrix blocks are read in from disk. In the 
second version of the algorithm the matrix is stored on disk in pivoted form. 

Consider the version in which the matrix is stored in unpivoted form. Whenever a 
block is read in the whole M X n,, block must be read so that it can be pivoted. Upon 
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completion of a step the newly-factored block is the only block that is written to disk, 
except in the last step in which we write out all blocks in pivoted form so that the final 
matrix stored on disk is pivoted (although in some cases these writes may be omitted if 
an unpivoted matrix is called for - the pivots can always be applied later since they are 
stored in the pivot vector). At some general step k of the algorithm the I/O cost is 

(R+W)Mn,+RMn,k (14) 

where the first term corresponds to reading and writing the block to be factored in this 
step and the second term to reading in the blocks to the left. Summing over k and 
adding in the time to write out all pivoted blocks in the last step, the total cost for this 
version of the left-looking algorithm is 

$1 + O( rib/M)))) + 2M2(1 + O( n,/M))W 
b 

( 15) 

Thus, to order n,/M the time to do the writes can be ignored. If we assume that reads 
and writes take approximately the same time (i.e., R = W ), then comparison with Eq. 
(7) shows that this version of the left-looking algorithm should perform less I/O than 
the right-looking algorithm. 

Now consider the version of the left-looking algorithm in which blocks are always 
stored on disk in pivoted form. In this case it is no longer necessary to read in all rows 
of an M X nb block, but it is necessary to write out partial blocks in each step. This is 
because the pivoting performed in the factorization of the block column must also be 
applied to the blocks to the left, which must then be written to disk. In some general step 
k all of the block to be updated must be read in and written out. The parts of the blocks 
to the left that must be read in form a stepped trapezoidal shape (see Fig. 2a), while the 
parts of the blocks to the left that must be written out after applying the pivots for this 

Fig. 2. This figure pertains to the left-looking LU factorization algorithm that stores the matrix in pivoted 

form. (a) The shaded blocks show the block columns read from disk in step k = 5. The dark shaded block is 

the block being updated in this step. (b) The shaded blocks show the block columns written to disk in step 

k= 5. 
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step form a rectangle (see Fig. 2b). Thus for step k > 0 the I/O cost is 
k-l 

(R+W)Mn,+Rn,C(M-in,)+Wn,(M-kn,)k 
i=o 

(16) 

and for step k = 0 the I/O cost is (R + W)Mn,. Thus, the total I/O cost is 

$(I +O(n,/M))R+ 
b 

$(I + %,/M))W 
b 

(17) 

It is interesting to note that if reads and writes take the same time the two left-looking 
versions of the algorithm have the same I/O cost, and they both have a lower I/O cost 
than the right-looking algorithm. We therefore expect a left-looking algorithm to be 
better than a right-looking algorithm for out-of-core LU factorization. 

3. Implementation of the left-looking algorithm 

In this section the implementation of the sequential, left-looking, out-of-core LU 
factorization routine will be discussed. As we shall see in Section 6, once the sequential 
version has been implemented it is a relatively easy task to parallelize it using the 
BLACS, PBLAS, and ScaLAPACK, and the parallel out-of-core routines described in 
Section 5. 

In the out-of-core algorithm only two block columns of width nb may be in-core at 
any time. One of these is the block column being updated and factored which we shall 
refer to as the active block. The other is one of the block columns lying to the left of the 
active block column which we shall refer to as a remporury block. As we saw in Section 
2.2, the three main computational tasks in a step of the left-looking algorithm are a 
triangular solve (Eq. (IO)), a matrix-matrix multiplication (Eq. (1 l)), and an LU 
factorization (Eq. (12)). In the out-of-core algorithm the triangular solve and matrix-ma- 
trix multiplication steps are intermingled so that a temporary block can play its part in 
both of these operations but be read only once. To clarify this, consider the role that 
block column i plays in the factorization of block column k (where i < k). In Fig. 3, the 
first i rows of block column i play no role in factoring block column k. The lower 

I k 

Fig. 3. Partitioning of temporary block i and active block k. 
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triangular portion of the next nb rows of block column i are labeled T,,. and the next 
k-i-n, rows are labeled T,. The last M-k rows are labeled D. The corresponding 
portions of block column k are labeled C,, C,, and E. Then the part played by block 
column i in factoring block column k can be expressed in the following three 
operations, 

C,+ 7-,-C, (18) 

c, + c, - T,C, (19) 

E+E-DC, (20) 

where in Eqs. (19) and (20) we use the C 0 given by Eq. (I 8). It should be noted that 
Eqs. (19) and (20) can be combined in a single matrix-matrix multiplication operation 

(21) 

In updating block column k, the out-of-core algorithm sweeps over all block columns 
to the left of block column k and performs for each the triangular solve in Eq. (18) and 
the matrix-matrix multiplication in Eq. (21) After all the block columns to the left of the 
block have been processed in this way using the Level 3 BLAS routines _TRSM and 
_GEMM [7], the matrix E is then factored using the LAPACK routine _GETRF [l]. 

If the matrix is stored on disk without applying the pivots to it, then whenever a 
block column is read in the pivots found up to that point must be applied to it using 
_LASWP, an LAPACK auxiliary routine. Also after updating and factoring the active 
block, the pivots must be applied to it in reverse order to undo the effect of pivoting 
before storing the block column to disk. In this version of the left-looking algorithm 
complete block columns are always read or written. In the version of the algorithm in 
which the matrix is stored on disk in pivoted form it is necessary to read in only those 
parts of the temporary blocks that play a role in the computation. When a partial 
temporary block is read in the pivots found when factoring E in the previous step must 
be applied before using it, and it must then be written back out to disk. 

for (each block column, k=O,l,...,M/n_b-1) 
read block column k Into active block 
_LASWP : apply pivots to active block 
go to start of file 
for (each block column to left, r=O,l,...k-1) 

read block column i Into temporary block 
_LASWP : apply pivots to temporary block 
_TRSM : triangular solve 
_GEMM : matrix multiply 

end for 
_GETRF : factor matrrx E 
_LASWP : unpivot active block 
wrote actrve block 

end for 

Fig. 4. Pseudocode for out-of-core, left-lookin, 0 LU factorization algorithm that leaves matrix in unpivoted 

form. 
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In Fig. 4 the pseudocode is presented for the version of the left-looking algorithm in 
which the matrix is stored in unpivoted form. Since a vector of pivot information is 
maintained in-core, the factored matrix can always be read in later to be pivoted. It has 
been assumed in Fig. 4 that the matrix is M X M and that M is divisible by the block 
size nh. However, the general case is scarcely more complicated. It should be noted that 
it is necessary to position the file pointer (at the start of the file) only once in each pass 
through the outer loop. 

4. Approaches to parallel I/O 

Our discussion of parallel l/O for dense matrices assumes that in-core matrices are 
distributed over processes using a block-cyclic data distribution as in ScaLAPACK [2,4]. 
Processes are viewed as being laid out with a two-dimensional logical topology, forming 
a P x Q process mesh. Our approach to parallel l/O for dense matrices hinges on the 
number of file pointers, and on which processes have access to the file pointers. We 
divide parallel l/O modes into two broad classes 

(i) There is one file pointer into the disk file. In this case some of the possibilities are: 
(a) Only one process has access to the file pointer. Thus only that process can do l/O to 
the file, and has to scatter to, or gather from, the other processes when reading or writing 
the file. (b) All processes in a group have individual access to the file pointer. 
Synchronization is required if the order in which data are written to, or read from, the 
file is important. (c) All processes in a group have collective access to the file pointer 
permitting collective l/O operations in which all processes can read the same data from 
the file, or collectively write to the file in such a way that the data from exactly one of 
the processes is actually written to the file. 

(ii) Each process in a group has its own file pointer. We consider here two main 
possibilities: (a) The file pointers can all access a global file space. In this case we refer 
to the file as a ‘shared file.’ (b) Each file pointer can only access its own local file space. 
This file space is physically and logically contiguous. In this case we refer to the file as 
a ‘distributed file.’ 

Modes l(a) and l(b) correspond to the case in which there is no parallel l/O system, 
and all l/O is bound to be sequential. Modes I(c), 2(a) and 2(b) corresponds to different 
ways of doing parallel l/O. The shared file mode is the most general since it means a 
file can be written using one particular process grid and block size and read later using a 
different process grid and block size. A distributed file can only be read using the same 
process grid and block size that it was written with. However, a major drawback of a 
shared file is that, in general, each process can only read and write nb contiguous 
elements at a time. This results in very poor performance unless block sizes are very 
large or unless the process grid is chosen to be I X Q (for Fortran codes) so that each 
column of the matrix lies in one process. The potential for poor performance arises 
because most l/O systems work best when reading large blocks. Furthermore, if only a 
small amount of data is written at a time systems such as the Intel Paragon will not 
stripe the data across disks so I/O is essentially sequentialized. 
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DISK MEMORY 

Fig. 5. Fundamental 1/O operation for matrices. 

5. Parallel I/O routines for dense matrices 

We propose a prototype library of Basic Linear Algebra Parallel I/O Subprograms 
(BLAPIOS) for dense matrices. As discussed in Section 3, we would like the BLAPIOS 
to be compatible with any future standard for parallel I/O that emerges. Thus, we 
describe only the high-level functionality of the BLAPIOS, and defer specifying the 
detailed semantics and syntax. A similar approach has been taken by Toledo and 
Gustavson in the matrix input-output subroutines (MIOS) which forms part of the 
SOLAR library for out-of-core dense matrix computations [17]. 

Before describing the BLAPIOS we shall consider the fundamental I/O operation 
supported by the BLAPIOS in which a rectangular array of data is read from (written to) 
the out-of-core file into (from) a given in-core array. Suppose the data in the out-of-core 
file and the in-core array are represented by the index ranges (k: k + m - 1, 1: 
l+n- l), and (i: i + m - 1, j + n - l), respectively, as shown in Fig. 5. As in the 
PBLAS and ScaLAPACK libraries, submatrices are regarded as global entities and are 
referenced by global indices. 

For a shared file the indices k and 1 can refer to any element in the out-of-core file. 
However, for a distributed file the submatrix referenced in the out-of-core file must have 
the same data distribution as that in the in-core array. This is because both the 
out-of-core distributed file and the in-core array are distributed data objects. An example 
of compatible and incompatible data distributions for a distributed file and an in-core 
matrix are shown in Fig. 6. 

The routines comprising the BLAPIOS library are arranged in three groups. 
- Routines for opening and closing files, and for manipulating file pointers. 
l Routines for reading and writing. 
l Auxiliary routines. 

We shall now present the functionality of each of these routines. 

5.1. File management routines 

The BLAPIOS contain the following routines for handling shared and distributed 
files. 
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out-of-core files in-core array 

59 

compatible incompatible 

Fig. 6. On the left we show two submatrices of a distributed file. On the right is an in-core anay. Both the 

distributed file and the in-core array are distributed over a 2 X 3 mesh of processes. The smaller squares 

represent nb x nb blocks of elements. The distribution of the submatrix in the lefthand distributed tile is 

compatible with that in the in-core array, while the distribution of the submatrix in the righthand distributed 

tile is not. 

POPEN. Opens a file. 
PCLOSE. Closes a file. 
P_LSEEK. Independently positions the file pointer to a specific location in the file. 
P_ASEEK. Positions the file pointers according to an explicit alignment. For a 

distributed file the alignment must be compatible with the data distributions of the 
out-of-core file and the in-core array. 

P_GSEEK. Positions the file pointers according to an implicit alignment obtained by 
applying a given data distribution over the out-of-core file. For a distributed file, the 
data distribution applied must be that of the distributed file. This is useful when it is 
known that a subsequent I/O operation will refer to a compatibly aligned in-core array. 

5.2. I/O routines 

The BLAPIOS provide the following blocking and nonblocking routines for reading 
and writing submatrices of an out-of-core file. The nonblocking routines permit the 
possibility of overlapping I/O to disk with computation and interprocess communica- 
tion. 

P-READ. Reads a submatrix into specified location of a matrix, and leaves the file 
pointer for each process at the next data element for the process. This is a blocking call. 

P-WRITE. Writes a submatrix from specified location of a matrix, and leaves the file 
pointer for each process at the next data element for the process. This is a blocking call. 

PJREAD. Reads a submatrix into specified location of a matrix, and leaves the file 
pointer for each process at the next data element for the process. This is a nonblocking 
call. 

PJWRITE. Writes a submatrix from specified location of a matrix, and leaves the 
file pointer for each process at the next data element for the process. This is a 
nonblocking call. 

PIOTEST. Tests if a nonblocking parallel I/O call has completed. 
PIOWAIT. Blocks until a nonblocking parallel I/O call has completed. 
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5.3. Auxiliary routines 

The BLAPIOS include the following auxiliary routines. 
P_STOD. Converts a shared file to a distributed file. 
P_DTOS. Converts a distributed file to a shared file. 
P_RANM. Produces a random out-of-core file using a parallel random number 

generator. 

5.4. Implementation issues 

The BLAPIOS outlined above have been implemented on the Intel Paragon using 
Intel’s Parallel File System (PFS). In these PFS-BLAPIOS a distributed file is imple- 
mented by having each process access its own distinct file, though it could also have 
been implemented by partitionin g a single file into contiguous chunks and assigning 
each process one chunk. For both shared and distributed modes the M_ASYNC I/O 
mode of PFS is used. Although one might expect the best performance on a particular 
platform to come from implementing the BLAPIOS directly on top of the native parallel 
I/O system, there are also distinct advantages to being able to implement them on top of 
a portable parallel I/O system. Parallel I/O is an area of much active research (see, for 
example Ref. [13] and the parallel I/O archive at http://www.cs.dartmouth.edu/ 
pario.html for more information.) Although there is currently no generally accepted 
parallel I/O standard, MPI-IO, the proposed extensions to MPI [16] for performing 
parallel I/O, is a strong contender [5]. We shall, therefore, briefly consider how the 
BLAPIOS might be implemented on top of MPI-IO. 

MPI-IO contains routines for collective and independent I/O operations. All the I/O 
operations in the BLAPIOS are independent. MPI-IO partitions a file using filetypes, 
which are an extension of MPI datatypes. Each process in a given group (specified by an 
MPI communicator) creates a filetype that picks out just the data assigned to it. A 
routine for creating a filetype for block-cyclicly distributed matrices is provided by 
MPI-IO. This filetype, together with MPI-IO’s absolute offset mode, can be used to 
create and access the equivalent of a BLAPIOS shared file. A BLAPIOS distributed file 
can be handled by creating a datatype that divides the file into contiguous segments with 
one segment being assigned to each process. In this case MPI-IO’s relative offset mode 
would be used to access data. 

In MPI-IO the filetype and communicator are specified as input arguments when a 
file is opened. This is somewhat more restrictive than access to a shared file using the 
BLAPIOS in which the partitioning is determined dynamically by the distribution of the 
in-core matrix being read from or written to. The usefulness of dynamic partitioning (or 
alignment) is apparent when performing the LU factorization of A, an M X N matrix 
with N > M. In this case there are two phases to the computation: first the LU 
factorization of the first M columns is found (call this matrix B), and then the 
transformations are applied to the remaining N-M columns (call this matrix C). It is 
natural, and convenient, in performing the second phase of the algorithm to treat 
matrices B and C as unrelated matrices with independent partitionings. However, 
complications can arise if the number of columns spanning the process grid, Qn,, does 
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not exactly divide M, so that C begins in the middle of a block. If we are dealing with a 
shared file the BLAPIOS routine P_ASEEK can be used to dynamically partition C so it 
starts at the beginning of a block. For a distributed file, which has a fixed partitioning, 
we have to offset the in-core matrix involved in I/O operations so that it is aligned with 
the partitioning. To make the BLAPIOS compatible with MPI-IO we need to either 
permit multiple alignments for a file in MPI-IO, or else permit only fixed alignments for 
shared files in the BLAPIOS. 

6. A parallel algorithm 

Although in Section 2 we saw that the left-looking LU factorization routine has a 
lower I/O cost that the right-looking variant, the left-looking algorithm has less inherent 
parallelism since it acts only on single blocks. We therefore propose a hybrid parallel 
algorithm in which a single block actually spans several widths of the process grid, say 
n,. In effect, the matrix is now blocked at two levels. It is divided into blocks of size n,, 
elements, which are distributed cyclicly over the process grid, but we apply the 
left-looking algorithm to ‘superblocks’ of width nbneQ columns where the process grid 
is assumed to be of size P X Q. If ng is chos& large enough we have a pure 
right-looking algorithm, and if n, and Q are both 1 we essentially recover the pure 
left-looking algorithm. Within a superblock we use a right-looking LU factorization 
algorithm (P_GETRF) to get good parallelism, but at the superblock level we employ a 

Fig. 7. Schematic view of the parallel hybrid out-of-core algorithm for the case P X Q = 2 X 3 and nr = 2. 
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P_CSEEK : go to start of file 

for (each super-block column, k=O,l,...,M/n_b-1) 

P-READ : read superblock column k into active superblock 

P_LAPIV : apply pivots to active superblock 

P_CSEEK : go to start of file 

for (each superblock column to left, i=O,l,...k-1) 

P-READ : read superblock column i into temporary superblock 

P_LAPIV : apply pivots to temporary superblock 

P_TRSM : triangular solve 

P_GEMM : matrix multiply 

end for 

P_GETRF : factor lower portion of active superblock 

P_LAPIV : unpivot active superblock 

P-WRITE : write active superblock 

end for 

Fig. 8. Pseudocode for parallel. out-of-core, left-looking .W factorization algorithm that leaves matrix in 

unpivoted form. 

left-looking algorithm to control I/O costs. The parameter ng can be used to trade off 
parallelism and I/O cost. 

In Fig. 7 we show an example for a 2 X 3 process grid, and ne = 2. For clarity we 
consider here a matrix consisting of only four column superblocks, though in a ‘real’ 
application we would expect the number to be much larger. In Fig. 7 the first two 
superblocks have been factored, while the third and fourth superblocks have not yet been 
changed. We now consider the next stage of the algorithm in which the third superblock, 
for which the data distribution is shown explicitly, is factored. Note that each of the 
small numbered squares is actually an nb X nb block, with the numbering indicating the 
position in the process grid to which it is assigned. At the end of this stage of the 
algorithm the first three superblocks will have been factored, and the fourth will still be 
unchanged. In the following we shall refer to the superblock being factored as the active 
superblock. 

The parallel implementation closely follows the sequential implementation presented 
in Section 3. Block columns are read and written using the routines P-READ and 
P-WRITE. The file pointer is positioned with P_GSEEK. These routines are part of the 
BLAPIO library introduced in Section 5. The triangular solve and matrix multiplication 
are done using PBLAS routines. Pivoting is performed by the ScaLAPACK auxiliary 
routine P_LAPIV, while the factorization is done by the ScaLAPACK routine P_GETRF. 
Since all these routines reference matrices as global data structures, parallelization of the 
sequential algorithm is almost trivial. Pseudocode for the parallel version is given in Fig. 
8. 

7. Performance results 

In this section some preliminary performance results are presented for the parallel 
left-looking LU factorization algorithm running on an Intel Paragon concurrent com- 
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Table I 
Timings in seconds for the main phases of out-of-core I!& factorization of M X M matrices. Results are 

shown for M = .5OCO, 8000 and 10000. In all cases n,, = 50, nr = 2, P = 4, and Q = 4. The version of the 

algorithm that stores the matrix in unpivoted form and performs pivotin, 0 on the fly was used. The out-of-core 

matrix was physically and logically distributed 

Task 5,000 8@0 I 0,ooo 

Read 67.32 196.73 325.16 

Write 9.21 24.39 31.97 

Pivot 156.55 538.38 1006.03 

Triangular solve 52.88 139.14 219.75 

Matrix multiply 115.21 483.37 955.33 

Factorization 29.98 65.32 95.76 

Total 427.74 1557.16 2802.84 

puter. These results are intended to illustrate a few general points about the performance 
of the algorithms used, and do not constitute a detailed performance study. In the work 
presented here we were constrained by difficulties encountered in getting exclusive 
access to the Paragon for sufficiently long periods. In addition we found that the parallel 
file system of the Paragon to which we had access was close to full much of the time. 
We hope to overcome these problems in the future and undertake a detailed performance 
study in future work. All the runs were made in exclusive use mode, i.e., with logins 
disabled to prevent other users accessing the system. This was done because the 
performance of PFS is affected by the load on the service nodes, even if other users are 
just editing or compiling. 

The first runs were done using the version of the algorithm that maintains the 
partially factored matrix in unpivoted form throughout the algorithm. Timing results are 
shown for 4 X 4 and 8 X 8 process meshes in Tables 1 and 2 for a distributed 
out-of-core matrix. In these cases we say that the matrix was both logically and 
physically distributed because each processor opens a separate file. As expected for this 
version of the algorithm, the time spent writing to PFS is much less than the time spent 
reading. However, the most striking aspect of the timings is the fact that pivoting 

Table 2 

Timings in seconds for the main phases of out-of-core LU factorization of M X M matrices. Results are 

shown for M = 5000, 8ooO and 10000. In all cases nb = 50, nr = 2, P = 8, and Q = 8. The version of the 

algorithm that stores the matrix in unpivoted form and performs pivoting on the fly was used. The out-of-core 
matrix was physically and logically distributed 

Task 5,000 8.000 I o.ooo 

Read 3 I .56 94.95 193.04 
Write 7.93 IS.59 45.91 
Pivot 56.62 159.55 319.34 
Triangular solve 50.18 136.41 218.77 
Matrix multiply 28.37 I 18.79 242.29 
Factorization 22.74 45.18 63.87 
Total 222.48 6 15.67 I 158.39 



64 J.J. Don,qurru et ul./PurullrlCompurit~~ 23 fl997)49-70 

Table 3 

Timings in seconds for the main phases of out-of-core LU factorization of M X M matrices. Results are 

shown for M = 5000, 8ooO and 10000. In all cases rz,, = 50, us = 2, P = 8, and Q = 8. The version of the 

algorithm that stores the matrix in pivoted form was used. The out-of-core matrix was physically and logically 

distributed 

Task 5@0 8.000 10.000 

Read 33.36 95.20 181.61 

Write 18.85 53.87 117.91 

Pivot II.01 28.98 47.19 

Triangular solve 50.20 136.65 218.74 

Matrix multiply 28.38 118.55 242.21 

Factorization 22.70 45.24 63.91 

Total 191.46 549.94 977.05 

dominates. The large amount of time spent pivoting arises because each time a 
superblock is read in all the pivots evaluated so far must be applied to it. For a 
sequential algorithm (i.e., P = Q = n, = 11, a total of M3/(3n’,) superblocks of width 
nb elements must be pivoted. Thus, pivoting entails M3/(3n,) exchanges of elements, 
which is of the same order as the I/O cost. In the parallel case, we must replace n,, by 
the width of a superblock, Qnrn,. Thus, in order for the version of the algorithm that 
stores the matrix in unpivoted form to be asymptotically faster than the version that 
stores the matrix in pivoted form we require 

W R P 

a< 
sf-9 

3 (22) 

where W and R are the costs of writing and reading an element, respectively, and P is 
the cost of pivoting an element. 

In general, there is no reason why writing should be substantially faster then reading, 
so we would not expect Eq. (22) to hold. Thus, the version of the algorithm that stores 
the matrix in pivoted form is expected to be faster. This is borne out by the timings 
presented in Table 3 for an 8 X 8 process mesh. These timings are directly comparable 
with those of Table 2, and show that the version of the algorithm that stores the matrix 
in pivoted form is faster by lo- 15%. Note that the time for writing is slightly more than 
half the time for reading, suggesting that it takes slightly longer to write a superblock 
than to read it. 

We next attempted to investigate the effect of varying the width of the superblock by 
increasing ns from 2 to 10. The results are shown in Table 4. A problem will fit in core 
if the memory required in each process to hold two superblocks exceeds that required to 
hold the entire matrix, i.e., if 

MM 
2.;.nr.n,<-.-, 

P Q 

or 2Qn, nb < M. Thus, for the parameters of Table 4 the M = 5000 and M = 8000 cases 
fit in core, so we just read in the whole matrix, factorize it using the standard 
ScaLAPACK routine P_GETRF, and then write it out again. In Table 4 it takes about 58 
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Table 4 

Timings in seconds for the main phases of out-of-core LU factorization of M X M matrices. Results are 

shown for M = 5OW. 8OCKl and 10000. In all cases nB = 50. np = IO, P = 8, and Q = 8. The version of the 

algorithm that stores the matrix in pivoted form was used. Note that the M = 5000 and So00 cases ran in-core, 

and that the M = 8000 case failed. The out-of-core matrix was physically and logically distributed 

Task 5,OQo 8,cQO lO,OQO 

Read 20.93 fail 273.08 

Write 59.39 238.66 

Pivot - 23.89 

Triangular solve 177.48 

Matrix multiply 117.24 

Factorization 58.47 138.62 

Total 148.86 I 104.66 

s to perform an in-core factorization of a 5000 X 5000 matrix, compared with 191 s for 
an out-of-core factorization (see Table 3). The M = 8000 case in Table 4 failed, 
presumably because PFS was not able to handle the need to simultaneously read 8 Mb 
from each of 64 separate files. The M = 10000 case ran successfully out-of-core, and 
the results in Table 4 should be compared with those in Table 3, from which we observe 
that increasing n, increases the time for I/O and factorization, but decreases the times 
for all other phases of the algorithm. The increase in I/O is an unexpected result since 
increasing ne should decrease the I/O cost. Perhaps the larger value of ne increases the 
I/O cost because larger amounts of data are being read and written, leading to 
congestion in the parallel I/O system. 

To understand the effect of varyin g the superblock width on the time for the 
triangular solve, matrix multiplication, and factorization phases of the algorithm we 
derive the following expressions for the number of floating-point operations in each 
phase, 

Triangularsolve: = +M2n, - fMnt Matrixmultiply: = $M3 - M*n, + +Mnt 

Factorization: = iM2n, + iA4ni 

These expressions apply in the sequential case <Q = ns = 11, but the corresponding 
expression for the parallel algorithm is obtained by replacing nb by Qni,no. It should be 
noted that the total floating-point operation count for all three computational phases is 
(2/3)M3, but th e a b ove expressions show that the way these operations are distributed 
among the phases depends on the width of the superblock, nb. Thus, an increase in the 
superblock width results in an increase in the factorization time, and a decrease in the 
time for matrix multiplication. If the superblock width is sufficiently small compared 
with the matrix size then a small increase results in an increase in the triangular solve 
time. However, if the superblock width is large an increase will decrease the triangular 
solve time. It should be remembered that all three of these phases are running in parallel 
so communication time also influences the total running time. In general, increasing the 
nb or ns should decrease communication time on the Paragon as data are communicated 
in larger blocks. If the times for the computational phases in Tables 3 and 4 are summed 
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Table 5 

Timings in seconds for the main phases of out-of-core LU factorization of M X M matrices. Results are 

shown for M = 5000. 8000 and 10000. In all cases rrb = 50, II~ = 2, P = 4, and Q = 4. The version of the 

algorithm that stores the matrix in pivoted form was used. The out-of-core matrix was logically distributed, but 

physically shared 

Task 5,000 8,ooO 10,000 

Read 61.45 178.43 303.99 

Write 36.61 124.1 I 211.67 

Pivot 22.59 60.20 94.17 

Triangular solve 52.84 139.09 2 19.66 

Matrix multiply I 14.70 482.79 948.93 

Factorization 29.16 64.00 93.92 

Total 350.12 I 149.64 2042.41 

we get about 524 s for n, = 2 and about 432 s for ng = 10 which suggests that a larger 
value of ns results in more efficient parallel computation overall. Communication 
overhead, together with the floating-point operation count, determines the performance 
of the computational phases of the algorithm as ns changes. 

The failure of the M = 8000 case in Table 3 prompted us to devise a second way of 
implementing logically distributed files. Instead of opening a separate file for each 
process, the new method opens a single file and divides it into blocks, assigning one 
block to each process. This does not change the user interface to the BLAPIOS 
described in Section 5. We refer to this type of file as a physically shared, logically 
distributed file. It should be noted that the terms ‘physically shared’ and ‘logically 
distributed’ refer to the view of the parallel file system from within the BLAPIOS. At 
the hardware level the file, or files, may be striped across multiple disks, as is the case 
for the Intel Paragon. 

The rest of the results presented in this section are for physically shared, logically 
distributed files, and the version of the algorithm that stores the matrix in pivoted form. 
In Tables 5 and 6 results are presented for the same problems on 4 X 4 and 8 X 8 
process meshes. It is interesting to note that increasing the number of processors from 16 
to 64 results in only a very small decrease in the time for the triangular solve phase, 

Table 6 

Timings in seconds for the main phases of out-of-core LA./ factorization of M X M matrices. Results are 

shown for M = 5000, 8000 and IOOOO. In all cases nb = 50, nb = 2, P = 8, and Q = 8. The version of the 

algorithm that stores the matrix in pivoted form was used. ‘The out-of-core matrix was logically distributed, but 

physically shared 

Task 5,000 g.000 10,000 

Read 34.29 95.74 201.18 

Write 24.35 62.53 130.08 

Pivot 10.94 28.85 47.27 

Triangular solve 50.20 136.45 218.82 

Matrix multiply 28.34 I 18.72 242.36 

Factorization 22.70 45.05 63.87 

Total 200.26 536.89 1006.34 
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Table 7 

Timings in seconds for the main phases of out-of-core Lf/ factorization of M X M matrices. Results are 

shown for M = 5000, 8OC0 and 10000. In all cases nb = 50, nr = IO, P = 8, and Q = 8. The version of the 

algorithm that stores the matrix in pivoted form was used. Note that the M = 5000 and 8000 cases ran in-core. 

The out-of-core matrix was logically distributed, but physically shared 

Task 5,000 8.000 10,000 

Read 4.16 II.10 75.04 

Write 3.59 14.25 99.60 

Pivot - - 24. I3 

Triangular solve - - 180.25 

Matrix multiply - - 130.12 

Factorization 58.57 181.55 141.17 

Total 69.47 206.90 709.22 

indicating that the parallel efficiency for this phase is low. This is in contrast with the 
matrix multiplication phase which exhibits almost perfect speedup. 

In Table 7 timings are presented for the case n, = 10 for an 8 X 8 process mesh. 
Comparing these results first with those given in Table 4 for a physically and logically 
distributed file, the decrease in the times for reading and writing is striking. Secondly, of 
course, the physically shared case no longer fails for the M = 8000 in-core case. 
Comparison between Tables 6 and 7 shows that for a physically shared file an increase 
in ng results in a decrease in I/O time, as expected from the dependency of the I/O 
time on M3/n,. However, the decrease is less than the expected factor of 5, particularly 
for the writes. Results in Table 8 for the case nr = 5 show a read time for the 
M = 10000 case which is about the same as for n8 = 10, and a write time that is 
substantially less. This again shows that as n, increases, thereby increasing the amount 
of data being read and written in each I/O operation, I/O performance starts to degrade 
quite significantly once nB is sufficiently large. 

Table 8 shows timings for the M = 10000 case for the same problem parameters as in 
Table 7, but for nB = 5. Comparing the results in Tables 6 and 7, and 8 we see that the 
time for writing data does not decrease montonically as ng increase, but is smallest for 

Table 8 

Timings in seconds for the main phases of out-of-core .LU factorization of M X M matrices. Results are 

shown for M = 10000 with nb = 50, IZ~ = 5. P = 8. and Q = 8. The version of the algorithm that stores the 

matrix in pivoted form was used. The out-of-core matrix was logically distributed, but physically shared 

Task .5.000 8.000 10,c0O 

Read - - 77.92 

Write - - 56.30 
Pivot - - 32.5 I 
Triangular solve - - 209.22 
Matrix multiply - 176.60 
Factorization - - 92.69 
Total - - 681 .a9 
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n, = 5. Again we ascribe this behavior to the apparent degradation in I/O performance 
when the volume of simultaneous I/O is large. 

8. Summary and conclusions 

In this paper we have described a parallel left-looking algorithm for performing the 
out-of-core LU factorization of dense matrices. Use of out-of-core storage adds an extra 
layer to the hierarchical memory. In order to manage flexible and efficient access to this 
extra layer of memory an extra level of partitionin, 0 over matrix columns has been 
introduced into the standard ScaLAPACK algorithm. This is represented by the su- 
perblocks in the hybrid algorithm that we have described. The hybrid algorithm is 
left-looking at the outermost loop level, but uses a right-looking algorithm to factor the 
individual superblocks. This permits the trade-offs between I/O cost, communication 
cost, and load imbalance overhead to be controlled at the application level by varying 
the parameters of the data distribution and the superblock width. 

We have implemented the out-of-core LU factorization algorithm on an Intel Paragon 
parallel computer. The implementation makes use of a small library of parallel I/O 
routines called the BLAPIOS, together with ScaLAPACK and PBLAS routines. From a 
preliminary performance study we have observed the following. 

6) On the Paragon the version of the algorithm that stores the matrix in pivoted form 
is faster than the version that stores matrices in unpivoted form. 

(ii) On the Paragon the parallel I/O system cannot efficiently and reliably manage 
large numbers of open files if the volume of data being read is sufficiently large. We 
have therefore implemented logically distributed files using a single file partitioned 
among the processes. 

(iii) We have a broad qualitative understanding of the performance. Increasing the 
superblock width by increasing n, should decrease I/O costs, but this was found to be 
true only up to a point on the Paragon because when the volume of parallel I/O 
becomes too great, I/O performance starts to degrade. Thus, although it might be 
expected that the optimal approach would be to make the superblock as large as 
possible, this will not be fastest on all systems. 

Future work will follow two main directions. We will seek to implement our 
out-of-core algorithm on other platforms, such as the IBM SP-2, symmetric multiproces- 
sors, and clusters of workstations. The use of the MPI-IO library will be considered as a 
means of providing portability for our code, rather than implementing the BLAPIOS 
directly on each machine. We will also develop a more sophisticated analytical 
performance model, and use it to interpret our timings. The IBM SP-2 will be of 
particular interest as each processor is attached to its own disk. Hence, unlike our 

Paragon implementation, it may prove appropriate on the IBM SP-2 to implement 
logically distributed matrices as physically distributed matrices. 

As network bandwidths continue to improve, networks of workstations may prove to 
be a good environment for research groups needing to perform very large LU factoriza- 
tions. Such a system is cost-effective compared with supercomputers such as the Intel 
Paragon, and is under the immediate control of the researchers using it. Moreover, disk 
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storage is cheap and easy to install. Consider the system requirements if we want to 
factor a lo5 X IO’ matrix in 24 h. In a balanced system we might expect to spend 8 h 
computing, 8 h communicating over the network, and 8 h doing I/O. Such a computa- 
tion would require about 6.7 X lOI4 floating-point operations, or 23 Gflop/s. If there 
are Np workstations arranged as a P X Q mesh and each has 128 Mb of memory, then 
the maximum superblock width is 8ONr elements. The I/O per workstation is then, 

or SOOOO/Nrz Gb per workstation. The total amount of data communicated between 
processes can be approximated by the communication volume of the matrix multiplica- 
tion operations that asymptotically dominate. The total amount of communication is 
approximately (2/3X M 3/~t;b) elements, where wst, is the superblock width. Assuming 
again that the superblock width is wst, = 8ON,, the total amount of communication is 
approximately (I/ 120)( M 3/N,) elements. So for 16 workstations, each would need to 
compute at about 1.5 Gflop/s, and perform I/O at about 6.8 Mb/s. A network 
bandwidth of about 145 Mb/s would be required. Each workstation would require 5 Gb 
of disk storage. These requirements are close to the capabilities of current workstation 
networks. 
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