
JOURNAL OF
COMPUTATIONAL AND
APPLIED MATHEMATICS

ELSEVIER Journal of Computational and Applied Mathematics 74 (1996) 91-109

Algorithmic bombardment for the iterative solution of linear
systems: A poly-iterative approach

Richard Barrett a, Michael Berry b, Jack Dongarra b'c'*, Victor Eijkhout u, Charles Romine c
a Distributed Computin9 Group, Los Alamos National Laboratory, Los Alamos, N M 87544, USA

b Department o f Computer Science, University o f Tennessee, Knoxville, TN 37996, USA
c Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831-8083, USA

Received 1 July 1995; revised 27 December 1995

Abstract

Many algorithms employing short recurrences have been developed for iteratively solving linear systems. Yet when the
matrix is nonsymmetric or indefinite, or both, it is difficult to predict which method will perform best, or indeed, converge
at all. Attempts have been made to classify the matrix properties for which a particular method will yield a satisfactory
solution, but "luck" still plays large role. This report describes the implementation of a poly-iterative solver. Here we
apply three algorithms simultaneously to the system, in the hope that at least one will converge to the solution. While
this approach has merit in a sequential computing environment, it is even more valuable in a parallel environment. By
combining global communications, the cost of three methods can be reduced to that of a single method.

Keywords: Algorithmic bombardment, lterative methods, Linear systems of equations, Poly-iterative approach

A M S class~cation." 65F10, 65N22, 65Y05

1. Introduction

Many iterative methods have been proposed for solving real nonsymmetric linear systems

A x = b (1)

have been proposed. Even though theoretically certain statements concerning the convergence such
methods hold, in practice we often cannot choose a 'best' method in advance, for a variety of
reasons.

For instance, the popular choice of the GMRES method [17], in the absence of rounding error,
guarantees convergence in n steps for an order n matrix, but its memory requirements often rule out

* Corresponding author.

0377-0427/96/$15.00 (~) 1996 Elsevier Science B.V. All rights reserved
PH S0377-0427(96)00019-2

92 R. Barrett et al./Journal of Computational and Applied Mathematics 74 (1996) 91-109

solving large systems. Variations for reducing the length of the recurrences have been proposed (using
restart or truncation), but this compromises convergence theory I . Also, in a distributed memory
environment, the communication requirements of the increasing number of inner products that must
be performed can severely slow the time to solution 2.

Recent developments have made less memory and communication intensive algorithms more vi-
able. Each offers theoretical justification for its convergence properties, and if the user has certain
information concerning the spectrum of the matrix, it is possible to select a method which should
work well. However, when this is not the case, time (and expense) may be wasted when an algo-
rithm terminates without convergence. For example, one might hope that for a sequence of similar
problems the same method will consistently outperform the others, but that is not the case. Small
variations in the PDE coefficients, or choosing a different grid size for the same problem, is often
enough to reverse the relative ranking of two iterative methods.

In this paper we propose a simple strategy for combining iterative methods that increases the
chance of finding the solution in a reasonable amount of time. The poly-iterative approach (informally
called "algorithmic bombardment" since it unleashes multiple methods on a single problem) consists
of

• choosing a number of iterative methods that are a priori suited for the problem at hand;
• applying these methods simultaneously (or more precisely, interleaved; this will be discussed

in detail later) on the data set;
• removing methods from the process that break down;
• terminating this process when one method has converged.
Although the number of operations per iterative step equals the sum of the operations of the

individual methods, we believe that when knowledge of matrix properties is lacking or incomplete,
the extra floating point computation and memory requirements are outweighed by three factors:
(1) An increased probability of finding the solution.
(2) An efficient parallel implementation. By iterating in lock-step, i.e., the algorithms are always

on the same iteration count, we gain time savings by combining overlapping communication
(inner products, matrix-vector products, preconditioner solves).

(3) Increased floating point performance. Depending upon the structure of the matrix, an efficient
matrix-vector product may be constructed so as to make use of data locality. This may also be
true for preconditioning.

2. The Algorithms

In this section we give a brief description of the methods that make up our implementation of the
algorithmic bombardment algorithm.

When the coefficient matrix of the linear system is a symmetric positive definite matrix, the
traditional iterative algorithm of choice is the conjugate gradient (CG) method [15]. However, when
the coefficient matrix is nonsymmetric, CG typically fails to find the solution. The biconjugate

1 Indeed, there are examples in which the convergence of GMRES with any length recurrence less that n will stagnate.
2 It is possible to combine the communication of these inner products (using the unmodified Gram-Schmidt), but this

is often unstable.

R. Barre t t et aL / J o u r n a l o f C ompu t a t i ona l and App l i ed M a t h e m a t i c s 74 (1996) 9 1 - 1 0 9 93

gradient method [9, 16], rather than relying on a single sequence of residuals (as does CG), creates
/~ n r n another sequence { };=0 using A T, which is orthogonal to { };=0, as follows:

r j = r j _ l -- ~ j A T p / ,

where

The biorthogonality requirements between rj with Yj and pj with /Sj (with respect to the A inner
product) are enforced by choosing

~T ~T rj rj rj-lrJ-I and ~ j - - ~T "
O~J - - ~ T ~ ' p;Ap; r;_,r;_l

2.1. Quasi-minimal residual (QMR)

BiCG can be erratic in practice, making no progress towards the solution for several iterations.
QMR is designed to smooth out this problem, and make progress even when BiCG stalls. This
algorithm was initially developed for complex symmetric linear systems [10], then later adapted to
nonsymmetric systems [11].

Whereas GMRES constructs and solves an upper Hessenberg matrix consisting of an orthogonal
Krylov subspace, the biorthogonality property of BiCG yields a tridiagonal matrix. Solving it in a
least squares sense provides a quasi-minimization of the residual, which can overcome the insta-
bility that often occurs in BiCG, allowing for smoother convergence, while maintaining three term
r e c u r r e n c e s .

Further research into this algorithm has resulted in a number of improvements. A two term
recurrence version has been developed [12]. Furthermore, van der Vorst has developed a relatively
inexpensive recurrence relation for the computation of the residual vector, as well as a reduction in
the number of preconditioning steps (from three to two) [3].

Note that as we have implemented it, QMR may break down. 3

2.2. Conjugate 9radient squared (CGS)

The goal of QMR is to further reduce the residual when the BiCG iteration stalls. In the case
of convergence for BiCG, both []rjl I and [[Fjl I converge to zero, yet only the convergence of rj
is exploited. Sonneveld [18] showed that by concentrating the effort on the rj, the speed of BiCG
convergence could be doubled.

If we write rj = Pj(A)ro and 7j = Pj(AT)~0, we see that

(rj, Fi) ---- (Pj(A)ro,Pi(AT)Fo) = (P~(A)Pj(A)ro, ~o) = 0

for i < j . This implies that we could construct Fj = p2(A)ro. This is the basis for the conjugate
gradient squared (CGS) method. Note that the savings is not only that the f ' s are not formed, but

3 A vers ion o f Q M R that includes a " look-ahead" a lgor i thm can avoid these problems, yet for s impl ic i ty we do not use
it.

94 R. Barrett et al./Journal of Computational and Applied Mathematics 74 (1996) 91-109

we also do not require the transpose of matrix A. The result is that the Krylov subspace is built up
twice as fast as BiCG, theoretically doubling the speed of convergence. Because of the "squaring"
of the polynomial, when the BiCG iterate makes progress towards the solution, CGS doubles that
progress. However, when the BiCG iterate turns away from the solution, that error is also doubled.
This explains the erratic behavior of the residual norm.

2.3. Biconjugate gradient stabilized (B iCGSTAB)

Van der Vorst [19] proposed that instead of building the basis vectors for the ith dimensional
Krylov subspace]Ci(tZ0,AT) using the same polynomial, i.e., Pi(A), as does CGS, the residual could
be smoothed using a different polynomial. He ruled out using Chebyshev polynomials since the
optimal parameters were not easily obtainable. Instead, he selected a polynomial of the form Qi(A) =
(1 -oglA)(1 - co2A) . . . (1 -ogiA), which gives an easy recurrence relation for updating Q. The choice
of ~o would be such that ri = Qi(A)PgA)ro is minimized. Experiments show that this often smooths
the peaks common to the residual norm in CGS, while maintaining the speed of convergence. Note
that finite termination is maintained by the orthogonality property (Pj(A)ro, Q~(AT)~0) = 0, for i < j .

3. The Algorithmic Bombardment Algorithm

As indicated earlier, none of the algorithms above are guaranteed to find the solution. They can
diverge, stall out, or break down. Thus, we are led to the idea of using all algorithms simultaneously,
on the same problem. As soon as one method has converged we stop the overall iteration; if a method
breaks down we drop it from the iterative scheme. The resulting poly-iterative algorithm takes more
time to converge than the best method, but it has an improved chance of finding the solution.

Since the choice of methods depends on the specific problem, we really have a parameterized
process

Po ly l t (A , b, method1, method2,.. .). (2)

In this paper, we report results with Po ly I t (A , b, CGS, BiCGstab, QMR) which uses three all-purpose
methods that do not need a great deal of storage. By no means do we claim that this particular
combination is the be-all and end-all of all iterative methods. For example, if the problem is indefinite,
it would make sense to include MINRES among the methods; if core memory is not at a premium,
GMRES (x) with x a large number would be appropriate for inclusion.

3.1. Parallel implementation

The poly-iteration requires the sum of the floating point operations of the included algorithms,
yet in context of message-passing parallel computers, we can increase the efficiency of the approach
with regard to the global data because of the high cost of communication.

The algorithms we consider are all based on some form of the conjugate gradient method, and
thereby they have a very similar structure: they begin by computing an inner product, followed by
vector updates, then a preconditioner solve, etc. The inner products, matrix-vector products, and
preconditioner solves all require a communication stage. We make the poly-iterative method more

R. Barrett et al./Journal of Computational and Applied Mathematics 74 (1996) 91-109 95

CGS BiCGSTAB QMR

91 3 SAXPY 2 SAXPY I Solve

-Vr ;-q

Fig. 1. Sequence of Operations. This figure illustrates the sequence of mathematical operations as performed by our
implementation of algorithmic bombardment. The operations in the circles combine the communication required of all three
methods into one message. The operations in the rectangles are performed in parallel (left to right: CGS, BiCGSTAB,
and QMR).

efficient by aligning these methods at these operations and combining the communication stages.
The other mathematical operations (vector updates, certain preconditioners, scalar operations, etc.)
are computed in parallel, requiring no communication. The overall effect of the extra work is a
function of the sparsity of the original coefficient matrix.

Fig. 1 illustrates the poly-iterative idea. The operations listed in the circles take advantage of
combined communication. A listing of the other operations each algorithm performs in parallel (left
to right: CGS, BiCGSTAB, QMR) is also provided.

96 R. Barrett et al. /Journal o f Computational and Applied Mathematics 74 (1996) 91-109

Table 1
Summary of operations for a single iteration. "1/1" means an iteration requires
both a matrix times vector and matrix transpose times vector operation

Method Amount of work/iteration
c~ +-- xV y y +-- o~x + y y *--- Ax x ~--- M - l y

CGS 2 6 2 2
Bi-CGSTAB 4 6 2 2
QMR 2 8+4 ah 1/1 2/2

a True SAXPY operations + vector scalings
b Less for implementations that do not recursively update the residual.

Table 2
Summary of communication requirements for a single iteration. We assume the
preconditioning steps require communication, which may not be the case

Method Number of Communications/Iteration Storage
c~ +-- xr y y *-- ~:x + y y +-- Ax x +--- M - l y Requirements

CGS 2 0 2 2 matrix +6n
Bi-CGSTAB 3 0 2 2 matrix +6n
QMR 2 0 2 2 matrix + 16n h
Bombardment 3 0 2 3 matrix +26n b

3.2. S t r u c t u r e o f the i t e r a t i o n

The global structure o f an iteration o f the poly-i terative method is as follows:
• In each p a r a l l e l region, that is, a part o f the algorithm where there is no communicat ion, let

each processor per form in sequence the operations o f the individual methods on its part o f the

data.
• At the start o f a communicat ion stage, pack the data o f all methods that is to be transmitted

in one buffer, 4 then send this buffer in total.
Combining the communicat ions amortizes the communicat ion overhead over the methods. In the
case o f inner products where just a single floating point number per method is sent, this effectively

divides the communicat ion cost by the number o f methods.

3.3. C o s t m o d e l

Obviously this approach requires the combined floating point operations and workspace o f each
method. 5 This limits the size o f the linear system that may be solved, al though the actual impact is
a function o f the sparsity o f the matrix. Table 1 lists the computat ional requirements for each method

4 In certain communication schemes such as PVM [13] this buffering is prg~ided, in other schemes such as PICL [14]
and the BLACS [6] it has to be implemented as part of the poly-iterafivtalgorithm.

5 less 2n since the right-hand-side vector b need only be stored once.

R. Barrett et al./Journal of Computational and Applied Mathematics 74 (1996) 91-109 97

included in our implementation. Table 2 lists the communication requirements of each method, as
well as for bombardment, plus the storage requirements for each 6.

The scalar cost of an iteration of the poly-iterative method equals the sum of the costs of the
individual methods. In the case where one method is more expensive than the others and this method
is not the first to converge, we incur a relatively high cost. On the other hand, when using only
one method, and that method fails to converge, the cost is magnified by the number of iterations
performed until it is abandoned. The cost of the subsequent algorithms will be accumulated in a
similar fashion.

In addition to the storage of matrix A, bombardment requires 26 workspace vectors of length n.
GMRES with restart parameter m uses (m + 5)n = 5n + mn, so the amount of workspace is equal
when the restart parameter is 21. The problem is that restarting voids the guaranteed convergence
property of GMRES.

Another consideration is the amount of work per iteration. GMRES performs one matrix-vector
product and one preconditioner solve per iteration compared to two each for each algorithm in
bombardment. However, the number of inner products per iteration for GMRES grows linearly with
the restart parameter, whereas bombardment requires three (in terms of communication). While it is
true that it is possible to compute the GMRES inner products independently, this is known to cause
a loss of stability [5].

Parallel architectures require global communication, and this remains the over-riding factor in the
performance of these algorithms. For example, the computation of an inner product is an order n
operation, but each processor requires the global result. This requires the communication of a sin-
gle scalar. Each processor computes and sends its local result to all other processors, and receives
the partial sums from all other processors. Our method computes three inner products locally, then
packs them into one message for the same communication requirement as the single case. Our im-
plementation performs three combined inner products per iteration (one being a Euclidean norm; also
the two consecutive inner products in BiCGSTAB are combined, as they could be in an individual
implementation).

To perform the matrix-vector product Ax, we first collect the global multiplier vector x on each
processor 7, then the resulting local product stays on that processor. This means that we combine the
communication here by packing the three multiplier vectors Xl,X2, and x3 into one buffer x which is
broadcast to all participating processors. When the transpose of the matrix is explicitly stored, this
is the same procedure for performing ATx.

When the transpose is not stored, we can still combine communication as follows. First perform the
local matrix-vector product xrA. This results in a part&l sum of the global product. Each processor
needs the partial sums of the rows it is responsible for from each processor, so this is packed in
the above buffer for collecting the global multiplier.

That is,
(1) xVA is performed in parallel,
(2) the buffer is packed and broadcast, then

6 excluding scalar storage
7 Actually, the structure of the matrix determines how much of the global multiplier vector is needed. For example, if

the matrix is block tridiagonal, such as arises in five-point discretization methods, only nearest-neighbor information may
be needed.

98 R. Barrett et al./ Journal of Computational and Applied Mathematics 74 (1996) 91-109

(3) the local matrix-vector products Ax are performed.
By combining these operations where possible, the bombardment scheme requires eight communi-

cations per iteration, compared with five for CGS, seven for BiCGSTAB, and six for QMR (ignoring
preconditioning). The savings involved in the preconditioning step are a function of the structure of
the preconditioner. For example, if we apply diagonal scaling, no global communication is required,
so there are no savings. However, if an incomplete factorization is used, a relative savings will
occur, depending on the requirements of the solve.

4 . S o m e n u m e r i c a l r e s u l t s

In this section we present some examples as justification for the bombardment approach. For
comparison purposes, we define the best algorithm as the one that computes the solution in the least
amount of elapsed time.

4.1. Implementation details

• Software
- All codes were written in ANSI standard Fortran 77.
- The Distributed lterative Linear System Solvers [8] research software was adapted to the

bombardment algorithm.
- Also, we have adapted the PIM package [4]. In addition to writing the bombardment algorithm,

we changed the communication interface to the BLACS [6]. This allows for portability of the
code among the various platforms, while giving optimized communication patterns (especially
useful for the global sums required by the inner products), at a negligible cost due to the
added programming layer [21].

• Hardware
- Executed on an Intel iPSC860 Gamma [7] at Oak Ridge National Laboratory (ORNL).
- Virtual parallel machines were formed using Sun SPARCstation IPX workstations using PVM

[13] over ethernet.
For stopping criteria we use a tolerance TOE > Ilrk[[/llbl[. Since we use the initial guess x0 = 0,

this is equivalent to TOE > Ilrkll/llroll, i.e., we require that the initial residual is sufficiently reduced.
We note that this is not necessarily the optimal stopping criteria since the actual accuracy of the
reported solution is dependent upon the relationship between the norms of the matrix, the right-
hand-side and the true solution. However, for the examples we offer here, this is a reasonable
choice. For an overview of stopping criteria, see [3]. For the right-hand side we use the unit vector
b = [1 ,1] T.

4.2. Distributed memory parallel processing experiments

In a distributed memory parallel processing environment, we can combine the communication
of the three algorithms required for the matrix-vector products, preconditioner solvers, and inner
products. The actual time savings depends on the structure of the matrix and preconditioner, and

R. Barrett et al./ Journal of Computational and Applied Mathematics 74 (1996) 91-109 99

the resulting efficiency of the matrix-vector multiplier and preconditioner solver, as well as the
latencies involved with message passing. The following experiments were run on the Intel iPSC860
multiprocessor machine at Oak Ridge National Laboratory [7] and clusters of workstations which
communicate over ethernet using PVM. The overhead and latency of other machines, as well as
floating point performance, will affect these results. Note that time, unless otherwise noted, refers to
wall clock time.

Example 1 (Random sparse matrix). Our first example involves a matrix with random sparsity so
that an efficient matrix-vector product cannot be designed, and so that no method will converge
or break down. This allowed us to perform the algorithm for a fixed number of iterations (5000),
and compare the times for each method individually and the time for the poly-iterative method.
For example, executing on eight processors of the Intel iPSC860, the respective times per iteration
for CGS, BiCGSTAB, and QMR are 0.0274, 0.0276, and 0.0282 s. Bombardment took 0.0298 s
per iteration, only 8.8% longer than CGS, 8.0% longer than BiCGSTAB, and 5.7% longer than
QMR. These timings in some sense may be interpreted as the best case for bombardment since each
processor must communicate with all the others, and the messages sent during the matrix-vector
products are as long as they would ever be. Subsequent examples involve well-structured matrices
so that the matrix-vector product can be optimized in order to minimize communication.

Example 2 (The Poisson Problem). Mathematicians have spent, and are spending, a great deal of
time trying to identify the properties for which a particular method is optimal. For example:
• CGS tends to quickly diverge when the initial guess is close to the exact solution. Therefore, this

method should probably be avoided when solving time-dependent problems.
• BiCGSTAB tends to break down when the imaginary parts of the eigenvalues are large relative

to the real parts.
• QMR is designed to avoid the breakdown situations that may arise with CGS and BiCGSTAB,

but we have found that it is prone to stall.

Yet mysteries still remain, and careful analysis of the coefficient matrix may or may not provide
clues as to which method to use. Additionally, even small perturbations may change these properties
so that the method that worked well before no longer works at all. And even with this analysis,
rounding errors may alter our prediction.

We illustrate this problem using the 2-D Poisson problem. In its basic form, the resulting sym-
metric positive definite matrix is easily solved by all three methods. Yet if we perturb the basic
PDE, so that symmetry or definiteness is altered, a method that previously worked well may break
down, stall, or diverge. Mathematical reasons could probably be found to explain this behavior, but
when a user just wants the solution, the extra time and workspace needed by algorithmic bom-
bardment may be justified. Below are some experiments run on distributed memory parallel ma-
chines as well as networks of workstations. They involve perturbations of the 2-D Poisson equation,
solved using central differences on square grids. The goal of these experiments is to illustrate two
things:

(1) the difficulty in selecting the best algorithm, and
(2) the use of the bombardment scheme is not much more expensive than using an individual

routine.

100 R. Barrett et al./Journal of Computational and Applied Mathematics 74 (1996) 91-109

35C

30(3

25C

c 2 0 0
8

.~ 15C
I--

10C

50

N o convergence
t
ii
ii
I i

Bombardment: solid line J i

CGS: dashed line ~ t I
BiCGSTAB: dash-dot line i ~t . . -

i i . . " . . ~
QMR: dotted line = t " ~

I t .-'" /
I | . " " / /
I ' " l /

. . " ' I I I
I I / /

• """ ! I /

- ' - - i i i i i i
2 4 6 8 10 12

Matrix Order
14

X 10 '

Fig. 2. Times to solution on the Intel i860. Using 8 processors of the Intel iPSC860, with no precondition-
ing, we apply the individual algorithms and the bombardment algorithm to - ~ (#2u/gxZ+ ?~2u/~y2) + cos(-Tt/6)
Ou/Ox + sin (-7z/6) ~u/Sy = 0, discretized on a square grid.

We first consider the effects of the problem size on elapsed time. Suppose we wish to solve 8

-e\Ox2 + ~ y 2 / + cos (~) + sin (a) -----0, (3)

with e = - l , ~ = - r t/6, on square grids ranging from dimension 100 (order 10 000 matrix) to 400
(order 160000 matrix) on eight processors of the following parallel machines:
• The Intel iPSC860 (60 Mflop/s per node 9) and
• SUN SPARCstation IPX workstations using PVM over ethernet.

As expected, as the size of the problem increases (and thus the number of floating point operations
increases), the difference between executing the best algorithm (BiCGSTAB) and the bombardment
algorithm increases (see Figs. 2 and 3).

Because QMR takes many more iterations to converge than BiCGSTAB (see Table 3), the time
to solution for QMR is greater than the time to find the solution using bombardment. This difference
is of course more pronounced for the PVM implementation.

Again, the best algorithm is the one that gives us an accurate solution in the shortest amount of
time, regardless of the number of iterations performed. This means the best algorithm could change
based on the computing environment. For example, CGS takes more iterations to find the solution
for these examples than does BiCGSTAB, and at first glance it appears that these two algorithms
require about the same amount of work to perform an iteration. But BiCGSTAB requires an extra
global communication step to accomplish the two extra inner products per iteration it must perform.

8 This problem was used in Sonneveld's paper presenting CGS [18].
9 Millions of floating point operations per second.

R. Barrett et al./Journal of Computational and Applied Mathematics 74 (1996) 91-109 101

1800

1600

1400

1200

"o
~1ooo
=o

~ 800

600

400

200

0
0

Bombardment: solid line

CGS: dashed line

BiCGSTAB: dash-dot line

QMR: dotted line

i..

. . . . 'o '2 2 4 6 8 1 1
Matrix Order

14
X 104

Fig. 3+ Times to solution on Sun SPARCstation IPX workstations. Using a parallel machine consisting of 8 SPARC IPX
workstations connected with ethernet using PVM, with no preconditioning, we apply the individual algorithms and the
bombardment algorithm to - ~ (02u/~x 2 + ~2u/~y2" -}-COS (--n/6)Ou/~x + sin (--n/6)~u/~y = 0, discretized on a square
grid.

In the Intel environment, where communication latencies are not high, BiCGSTAB is the fastest
algorithm. However when the individual nodes are connected via ethernet, as is the case with the
PVM experiments, the extra communication becomes significant. The gap closes, and in fact CGS
converges faster for some matrix sizes. Although this result may be attributed to other network
traffic, it is the nature of ethernet message passing. The time spent in communication provides the
insight into why this is happening. Figs. 4 and 5 show the proportion of the time to solution spent
in message passing as opposed to floating point computation. As expected, the gap is a function of
the interconnection network. As expected, the floating point operation requirements increase as the
problem size increases, although the startup time to send a message remains constant.

We particularly note the difference in required iterations on the different machines (see Table 3).
This is due to the way the arithmetic is performed by the floating point unit. The SPARCstation IPX
uses IEEE arithmetic while the i860 does not. The i860 chip is designed to produce more accurate
computations, but since these iterative solvers are not self-correcting, any inexact arithmetic alters
convergence patterns, and m o r e a c c u r a t e does not necessarily correlate with fast convergence. In
fact, experiments have shown that an algorithm may converge on one machine yet fails to converge
on another [2]. This is illustrated here. For a grid size of 300, the IPX finds the solution, while the
iPSC does not. (However, the iPSC does converge for grid sizes slightly smaller and slightly larger
than 300.)

These experiments involved only 8 processors of the Intel machine so that results could be com-
pared with a network of workstations. It is of interest, however, to see how our implementation
performs on much larger problems, so we performed this experiment using 128 processors of the
Intel iPSC860.

102 R. Barrett et al./Journal of Computational and Applied Mathematics 74 (1996) 91-109

5(2

45

4G
g

"~ 35
E
E
o
o 30

I--

~25
o.

2(3

1(3

• "-~" ,. Bombarment: solid line
• "~.x

~ CGS: dashed line

~ BiCGSTAB: dash-dot line

". \ ~ QMR: dotted line

" ~ " ~.,~

"-...

I I

2 4 6 8 10 12 14
Matrix Order x 104

Fig. 4. Percentage communication time on the Intel i860. Using 8 processors of the Intel iPSC860, with no precondi-
tioning, we apply the individual algorithms and the bombardment algorithm to _ l (~2u/Ox2 + 82u/ay2) + c o s (- n / 6)
du/~x + s i n (- n / 6) ~ u / S y = 0, discretized on a square grid.

85

80

75

~. 70
g

.~ 65

Eo60
c

s5
n

50

45

40

~. Bombarment solid line
\ X

"k. '~ ~ ~ - ~ CGS: dashed line

. . . ~ BiCGSTAB: dash-dot line

QMR: dotted line

2 4 6 8 1 0 1 2

Matrix Order
14

xlO 4

Fig. 5. Percentage communication time on SPARC IPX workstations. Using a parallel machine consisting of 8 SPARC
IPX workstations connected with ethemet using PVM, with no preconditioning we apply the individual algorithms and the
bombardment algorithm to - ~ (O2u/Ox2 %-O2u/Oy2) q-cos (- r t /6)du/Ox + sin (-~t/6)Ou/Oy = O, discretized on a square
grid.

R. Barrett et aL/Journal of Computational and Applied Mathematics 74 (1996) 91-109 103

Table 3
Number of iterations to solution. This table lists the number of iterations required to find

the solution to - ~ (~2.~+~7~z~2u) + cos (%-3) '~",3S + sin(% 2) ~" = 0, discretized on square
/

grids (the order of the resulting matrix is the square of the grid size). The first line for
a grid size is from 8 processors of the iPSC860 and the second line is from 8 Sparc
IPX workstations connected with ethernet using PVM. "*" denotes a failure to converge.
(However, for grid size 295, CGS converges in 970 iterations and for grid size 310, it
converges after 1081 iterations.) "-" denotes that the data would not fit in the memory of
the machine for that grid size

Grid CGS BiCGSTAB QMR

100 181 145 296
181 156 296

150 356 205 459
271 220 479

200 427 289 581
480 269 587

250 1034 361 765
1157 377 765

300 * 532 1164
658 423 911

350 1529 557 1142
1589 522 1287

400 - - -
1247 597 1246

3000

2500

2 0 0 0

8
~ 1 5 0 0

i-=

1000

5 0 0

/ /
Bombardment: solid line
CGS: dashed line (no convergence) / /
BiCGSTAB: dash-dot line `` /
QMR: dotted line /

/
/

/
/

/
/

/ . .

/ . ,

0.5 1 1.5 2
Matrix Order

2.5
x 10 s

Fig. 6. Times to solution on the Intel i860. Using 128 processors of the Intel iPSC860, with no precondition-
ing, we apply the individual algorithms and the bombardment algorithm to -126 (C2u/~x 2 ..C2u/Cy 2) - -cos(-n/6)
Cu/Cx .. sin (- n / 6) ~ u / C y = 0, discretized on square grids ranging from dimension 400 to 1500.

104 R. Barrett et al./ Journal of Computational and Applied Mathematics 74 (1996) 91-109

90

8C

7c

E

(..) 61

c
~ 5q
I1.

4(2

313

Bombarment: solid line
~... CGS: dashed line (no convergence)
• " ~ , . . ,,. BiCGSTAB: dash-dot line
. . .

QMR: dot ted line

i i
01.5 1 11.5 2

Matrix Order
2.5

x 10 s

Fig. 7. Percentage communication time on the Intel i860. Using 128 processors of the Intel iPSC860, with no precon-
ditioning, we apply the individual algorithms and the bombardment algorithm to - ~ 0 (~2u/~x2 + ~2u/~Y 2) + cos (-r t /6)
~u/?x + sin (- r t / 6) ? u / ~ y = 0, discretized on square grids ranging from dimension 400 to 1500.

Again, we will apply bombardment to Eq. (3) on square grids, ranging from dimension 400
(order 160000 matrix) to 1500 (order 2225 0000 matrix). The time to solution of the bombardment
algorithm as well as the individual algorithms are shown in Fig. 6.

We see that there are no surprises with respect to time to the solution for the winning algorithm
(in this case BiCGSTAB) and bombardment. As the problem size increases, BiCGSTAB remains
about twice as fast as bombardment. Again, the time spent in communication provides the insight
into why this is happening. Fig. 7 shows the proportion of the time to solution spent in message
passing as opposed to floating point operations.

Notice the effects of the grid size upon convergence of CGS, which fails for these finer meshes.
Looking back at the coarser meshes in the 8 processor experiments, this is not completely unexpected.
For comparison purposes, we iterated for 2500, 5000, and 10000 iterations ~0 for grid sizes of
500 × 500, 1000 x 1000, and 1500 × 1500, respectively.

Next, we present some experiments in which bombardment finds the solution but one or more of
the included algorithms fail.

Example 3 (BiCGSTAB is preferable). Solving Eq. (3) on a 200 x 200 grid (40000 variables) and
1 and ~ = -re/6. BiCGSTAB converges while neither CGS nor no preconditioning, ~ we set e =

QMR converge. (See Table 4 for timings, and residual norm histories in Fig. 8.)

~0 Actually, we iterated for far more iterations to convince ourselves that convergence would not be achieved.
11 The result is similar when D-ILU preconditioning is used.

R. Barrett et aL /Journal of Computational and Applied Mathematics 74 (1996) 91-109 105

1033

1030

1023

1020
E

Z
10 TM

t r 101~

10 5

10 0

10 "s

I

I
/I

/
/

- OGS: dashed line
1"

¢
, , BiCGSTAB: dash-dot line

/
,, QMR: dot ted l i n e

/
/

/
_ t

. ".17.:~:~.,:,

i

50 i i i i
100 1511 200 250

N u m b e r o f I t e r a t i o n s

300

Fig. 8. Parallel example: BiCGSTAB wins. The residual norm history of each algorithm, using D-ILU preconditioning,
1 (~2u/~x2 + 02u/Oy2) + cos (- x / 6) Ou/Ox + sin (- x /6) Ou/Oy = 0, discretized on a 200 grid. (8 processors applied to -

of Intel i860 gamma at ORNL.)

Table 4
Performance on Intel iPSC/860. Time (in seconds) to solution
for solving perturbations of the Poisson equation. * means con-
vergence not achieved

Example CGS BiCGSTAB QMR Bombardment

1 1.37e2 1.38e2 1.41e2 1.49e2
3 * 4.78el * 1.26e2
4 * * 7.98e0 1.32el
5 4.01e2 5.02e2 * 8.96e2

The nex t two e x a m p l e s per turb

c3x--7 + ~y2 + cc ~x + + f l u = 1. (4)

E x a m p l e 4 (Q M R is preferable). On a 100 x 100 grid (10,000 va r i ab les) and us ing no p recond i -
t ioning, we per turb fl (~ = 0). Q M R converges , ye t C G S and B i C G S T A B fail to converge . (See
Tab le 4 for t imings .)

E x a m p l e 5 (C G S is preferable). Solving Eq. (4) on a 400 × 400 grid (1 6 0 0 0 0 va r iab les) and
us ing b lock I L U precond i t ion ing 12 [1], we per turb fl (~ = 0). B i C G S T A B converges , but C G S

12 Block ILU preconditioning requires no communication.

106 R. Barrett et al./Journal of Computational and Applied Mathematics 74 (1996) 91-109

converges faster. QMR fails to determine the solution (even after 5000 iterations). (See Table 4 for
timings.)

5. Sharing information between algorithms

Since the individual algorithms are iterating in lock-step, it is tempting to share the information
from the methods that appears to be working best with the others. For example, if CGS is closer to
the solution than BiCGSTAB and QMR, why not restart them using the current iterate and residual
from CGS? This idea fails, because the methods depend on the full Krylov space built up during
the iterative process. Restarting causes this space to be cut short, and in effect the iterative process
to start anew. In fact, a restart too close to the solution may cause divergence of some methods.

This would have the effect of projecting the iterate of one algorithm onto the Krylov subspace
of another. Because Algorithmic Bombardment facilitaties the sharing of information between algo-
rithms, we experimented with this idea.

There are two ways to understand why this idea fails. First, we could examine the effects on the
various parameters of the algorithms. The problem is most easily seen in CGS with the computation
of fl = P i - 1 / P i - 2 ~- rTFi-l/rT?'i--2. In the step immediately following the restart, fl will be smaller
than it would have been without a restart. This causes a smaller than expected change in p and q,
carrying down to a smaller updating of the solution and residual. It is during the next step where the
big problem occurs. Now the denominator in the computation of fl is smaller than expected, while
the numerator is about the same size as it was during the previous step, causing fl to become too
large. This cascades down to the approximation, where the updating overshoots the solution. Since
the choice of an initial guess doesn't matter, we might expect the algorithm to settle down and
begin converging again. But these algorithms use information from all previous search directions,
so the root cause of the problem is that we have interfered with that process, contaminating all
previous work. Each algorithm builds up a different Krylov subspace in an attempt to find the
solution, and while it is true that each algorithm operates on the same matrix, they do so in different
ways.

This illustrates two important characteristics of these algorithms:

(1) The initial guess doesn't matter (except with CGS, which is likely to diverge if x0 is too close
to the true solution, and

(2) each method must build up, and remain in, its own Krylov subspace, based upon the algorithm
and the spectrum of the matrix.

6. Conclusions

Many algorithms have been developed for solving large sparse nonsymmetric linear systems which
use short recurrences. The downside is that convergence is no longer guaranteed, nor predictable
in practice. Therefore we have incorporated three of these algorithms into a poly-iterative scheme,
so that we may apply them simultaneously to the same data set. We have shown through various
experiments that this increases the chance of finding the solution, and in a parallel environment this

R. Barrett et aL /Journal of Computational and Applied Mathematics 74 (1996) 91-109 107

does not increase the time to solution threefold. In fact, even when all three algorithms would have
found the solution, bombardment may be faster than the slowest of the three.

The expected performance of a given application is dependent upon the combination of the struc-
ture of the matrix (sparsity, structure, etc.), the data structure used, the preconditioner, and these
effects upon the performance of the matrix-vector product and preconditioner solver. For example,
if the matrix is well-structured, a matrix-vector product can usually be implemented that requires
a small amount of communication. Also, if the matrix has a large number of nonzeros, it may be
possible to reduce the effects of the indirect addressing of the matrix-vector product.

Ultimately, the performance of the computing environment determines the performance. The new
Cray T3D is expected to have much lower communication overhead and latency than the lntel
iPSC/860. On the other hand, workstation clusters connected using PVM [13] exhibit high latency,
and are dependent upon the traffic interconnection network, often the Internet. Regardless, the in-
creased probability of convergence should justify using poly-iteration.

7. Future Work

The experiments presented above are frequently encountered in the scientific world, hence we
believe the results justify our implementation of the poly-iterative idea, including the choice of
algorithms as well as the scheme for performing the matrix-vector product and preconditioning.
However, different approaches may be more appropriate depending upon the problem being solved.
For example, some applications require solving many linear systems in a sequence of time steps.
Since the matrix may not change significantly from one step to the next, it has been suggested that
perhaps bombardment could be used during one such solve, then only the winning algorithm would
be used for the next few solves, then back to bombardment, and so on.

Perhaps incorporating more GMRES concepts into the poly-iteration would be valuable in some
cases. We originally ruled out using this valuable algorithm because of its linearly increasing
workspace requirements, yet perhaps we can find a way to overcome this limitation while still gain-
ing performance. BiCGSTAB is actually the combination of BiCG and GMRES(1). Recent work
[20] shows that increasing the effects of GMRES can be worthwhile, such as combining GMRES(2)
or GMRES(4) with BiCG.

There is limited freedom in varying the preconditioners over the methods. For any but totally par-
allel preconditioners we want to combine the communication step, which basically forces the same
preconditioner structure on the methods. Still, if the preconditioner has some form of relaxation
parameter, this can be varied independently for the different methods. Similarly, we could precon-
dition one method with SSOR and another with ILU, since these have the same communication
structure.

Further research into different matrix-vector product implementations may yield higher compu-
tational performance in some situations. For example, certain matrix structures may allow higher
efficiency. One possibility would be to interleave the elements of the multiplier of the algorithms
in order to force less indirect addressing, which slows the floating point performance. Dense ma-
trix computations perform O(n 3) operations on O(n 2) data. But for sparse matrices, this is actually
a vector-vector operation (O(n) operations on O(n) data), with the added degradation of indirect
addressing. And since three such operations must be performed, the effect is magnified. This can

108 R. Barrett et al./Journal of Computational and Applied Mathematics 74 (1996) 91-109

be reduced in the bombardment scheme. Suppose the multipliers are xCGS,x BiCGSTAB, and x QMR. The
obvious way to compute AxCCS,Ax BicosxAB, and Ax QMR is to perform the operations sequentially. But
the elements can be interleaved as

I-~,.CGS vBiCGSTAB a, QMR . ~.CGS yBiCGSTAB .rQMR]T

reducing the effects of indirect addressing threefold. Note that this scheme will cause indirect ad-
dressing of some vector updates, so its overall effect is dependent upon the number of nonzeros in
the matrix.

References

[1] O. Axelsson, Incomplete block matrix factorization preconditioning methods. The ultimate answer? J. Comput. Appl.
Math. 12&13 (1985) 3-18.

[2] R.F. Barrett, Algorithmic bombardment for the iterative solution of linear systems: a poly-iterative approach, Master's
Thesis, Univ. Tennessee, 1994.

[3] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der
Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. (SIAM, Philadelphia,
PA, 1994).

[4] R. D. da Cunha and T. Hopkins, Pim 1.1: the parallel iterative methods package for systems of linear equations
user's guide, Technical Report, Univ. Kent at Canterburg, 1993.

[5] J. Demmel, M.T. Heath and H.A. van der Vorst, Parallel numerical linear algebra, Acta Numer. 2 (1993)
111-197.

[6] J.J. Dongarra and R. Clint Whaley, Lapack working note 94: A users' guide to the blacs. Technical Report CS-95-
281, Computer Science Department, University of Tennessee, 1995.

[7] T.H. Dunigan, Performance of the intel ipsc/860 hypercube, Technical Report ORNL/TM-11491, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, 1990.

[8] V. Eijkhout, A library of distributed iterative linear system solvers. In Proceedings of the 14th Worm Congress on
Computation and Applied Mathematics, 1994.

[9] R. Fletcher, Conjugate gradient methods for indefinite systems, in: G.A. Watson, Ed., Numerical Analysis Dundee
1975 (Springer, New York, 1976) 73-89.

[10] R.W. Freund, Conjugate gradient-type methods for linear systems with complex symmetric coefficient maitrices,
SIAM J. Sci. Stat. Comp., 13:425-448, Jan 1992.

[11] R.W. Freund and N.M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer.
Math., 60:315-339, 1991.

[12] R.W. Freund and N.M. Nachtigal, An implementation of the QMR method based on coupled two-tema recurrences,
SIAM J. Sei. Comp., 15(2):313-337, Mar 1994.

[13] G.A. Geist, A.L. Beguelin, J.J. Dongarra, R.J. Manchek and V.S. Sunderam, PVM: Parallel Virtual Machine," A
Users' Guide and Tutorial for Networked Parallel Computing. MIT, 1994.

[14] G.A. Geist, M.T. Heath, B.W. Peyton, P.H. Worley and V.S. Sunderam. A users' guide to picl: a portable
instrumented communication library, Technical Report ORNL/TM-11130, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, 1990.

[15] M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand
49 (1952) 409-436.

[16] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur. Stand. 49 (1952)
33-53.

[17] Y. Saad and M.H. Schultz, GMRes: a generalized minimal residual algorithm for solving nonsymmetric linear
systems, SIAM J. Sci. Star. Comput. 7 (1986) 856-869.

[18] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 10
(1989) 36-52.

R. Barrett et al. / Journal of Computational and Applied Mathematics 74 (1996) 91-109 109

[19] H. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric
linear systems, SIAM J. Sci. Stat. Comput. 13 (1992) 631-644.

[20] H. van der Vorst, private communication, December 1993.
[21] R. Clint Whaley, Lapack working note 73: Basic linear algebra communication subprograms: Analysis and

implementation across multiple parallel architectures. Technical Report CS-94-234, Computer Science Department,
University of Tennessee, 1994.

