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Abstract 

This paper describes parallel matrix transpose algorithms on distributed memory concur- 

rent processors. We assume that the matrix is distributed over a P x Q processor template 
with a block cyclic data distribution. P, Q, and the block size can be arbitrary, so the 
algorithms have wide applicability. 
The communication schemes of the algorithms are determined by the greatest common 
divisor (GCD) of P and Q. If P and Q are relatively prime, the matrix transpose algorithm 
involves complete exchange communication. If P and Q are not relatively prime, processors 
are divided into GCD groups and the communication operations are overlapped for 
different groups of processors. Processors transpose GCD wrapped diagonal blocks simulta- 
neously, and the matrix can be transposed with LCM/GCD steps, where LCM is the least 
common multiple of P and Q. 
The algorithms make use of non-blocking, point-to-point communication between proces- 
sors. The use of nonblocking communication allows a processor to overlap the messages that 
it sends to different processors, thereby avoiding unnecessary synchronization. 
Combined with the matrix multiplication routine, C = A. B, the algorithms are used to 
compute parallel multiplications of transposed matrices, C = AT. BT, in the PUMMA 
package [s]. Details of the parallel implementation of the algorithms are given, and results 
are presented for runs on the Intel Touchstone Delta computer. 
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1. Introduction 

Matrix transposition is a fundamental matrix operation of linear algebra [8,13] 
and arises in many scientific and engineering applications. On a uniprocessor, an 
algorithm involving a transposed matrix may not actually require the matrix data to 
be transposed in physical memory. Instead, it may be accessed simply by exchang- 
ing the row and column indices. However, in a distributed-memory multiprocessor 
environment, we cannot simply interchange the global row and column indices. 
Instead, the data must be physically moved from one processor to another. 

Transposition of a matrix is a redistribution of its elements. Many researchers 
have considered the problem for different architectures. In 1972, Eklundh [7] 
considered the problem of directly accessing rows or columns of a matrix when its 
size is larger than the available high-speed storage. O’Leary [12] implemented an 
algorithm for transposing an N X N matrix on a one-dimensional systolic array. 
Azari, Bojanczyk and Lee [ll developed an algorithm for transposing an MxN 

matrix on an N X N mesh-connected array processor, and Johnsson and Ho [lo] 
presented an algorithm for a Boolean n-cube, or hypercube. 

Current advanced architecture computers possess hierarchical memories in 
which accesses to data in the upper levels of the memory hierarchy (registers, 
cache, and/or local memory) are faster than those in lower levels (shared or 
off-processor memory). To exploit the power of such machines, block-partitioned 
algorithms are preferred for dense linear algebra computations, in which opera- 
tions are performed on submatrices, rather than individual matrix elements. In 
distributing matrix data over processors we therefore assume a block cyclic data 
distribution [4,6]. The block cyclic data distribution can reproduce the most 
common data distributions used in dense linear algebra, as described briefly in 
Section 2. 

In this paper, the parallel matrix transpose algorithms are presented based on 
the block cyclic data distribution. The algorithms are implemented on the Intel 
Touchstone Delta computer. The communication schemes of the algorithms are 
determined by the greatest common divisor (GCD) of the number of rows and 
columns (P and Q) of the processor template. If P and Q are relatively prime, the 
matrix transpose algorithm involves complete exchange communication. This is 
called all-to-all personalized communication, in which each of NP = P. Q proces- 
sors is required to send distinct subblocks to each of the remaining N, - 1 
processors, and receive distinct subblocks from each of them. Bokhari and Berry- 
man [2] and Takkella and Seidel [14] have developed binary exchange and 
quadrant exchange algorithms on a circuit switched mesh, where P and Q are 
powers of 2. The complete exchange communication in our transpose algorithms 
arises for any processor configuration, and is not limited to the case where P and 
Q are powers of 2. We implemented the two-dimensional complete exchange 
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communication problem based on direct point-to-point communication scheme. If 
P and Q are not relatively prime, processors are divided into GCD groups and the 
communication operations are overlapped for different groups of processors. 
Processors transpose GCD wrapped diagonal blocks simultaneously, and the 
matrix can be transposed with LCM/GCD steps, where LCM is the least common 
multiple of P and Q. Details of the algorithms are discussed in Section 3.3. 

We have presented the Parallel Universal Matrix Multiplication Algorithms 
(PUMMA) in [5’] for performing C * LY op(A) . op(B) + PC, where op(X) = X or XT, 
based on the block cyclic data distribution. One of the cases in the PUMMA 
package, C (= (Y AT. BT + PC is implemented in two steps (T e aB . A, C = T T + 
PC). The second step involves parallel matrix transposition. The performance of 
this algorithm for .evaluating C = AT * BT is compared with the algorithm for 
evaluating C = A * B on the Intel Delta machine in Section 4. 

2. Design issues 

The way in which an algorithm’s data is distributed over the processors of a 
concurrent computer has a major impact on the load balance and communication 
characteristics of the concurrent algorithm, and hence largely determines its 
performance and scalability. The block cyclic data distribution provides a simple, 
yet general-purpose way of distributing a block-partitioned matrix on distributed 
memory concurrent computers. In the block cyclic data distribution, described in 
detail in [4,6], an M X N matrix is partitioned into blocks of size r x c, and blocks 
separated by a fixed stride in the column and row directions are assigned to the 
same processor. If the stride in the column and row directions is P and Q blocks 
respectively, then we require that P * Q equal the number of processors, Np. Thus, 
it is useful to imagine the processors arranged as a P x Q mesh, or template. The 
processor at position (I?, 4) (0 sp < P, 0 I q < Q> in the template is assigned the 
blocks indexed by, 

(p+i*P, q+.i.Q), (1) 
where i = 0 , . . . ,l(Mb -p - 1)/P], j = 0,. . . ,[(Nb -q - 11/Q], and Mb x Nb is the 
size in blocks of the matrix (Mb = [M/r], Nb = [N/c]). 

Blocks are scattered in this way so that good load balance can be maintained in 
parallel algorithms, such as LU factorization [3,6]. The noncyclic distribution (or 
pure block distribution) is just a special case of the block cyclic distribution in 
which the block size is given by r = [M/PI and c = ]N/Ql. A purely cyclic 
distribution (or two-dimensional wrapped distribution) is another special case in 
which the block size is given by r = c = 1. 

If P and Q are relatively prime, the matrix transpose algorithm involves a 
two-dimensional complete exchange communication, where each of N, processors 
is required to send distinct subblocks to each of the remaining N, - 1 processors, 
and receive distinct subblocks from each of them. We investigated to find the most 
efficient communication scheme for one-dimensional complete exchange commu- 
nication, which can be applied to the complicated two-dimensional complete 
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(a) Binary Exchange (b) Rotating (c) Direct Communication 

Fig. 1. Three complete exchange communication schemes on 8 processors. The number in parentheses 
denotes the amount of data to transmit. 

exchange communication. Three one-dimensional complete exchange communica- 
tion schemes are shown in Fig. 1, where each processor needs one subblock from 
each other processor, and the number in parentheses denotes the number of 
subblocks to transmit. 

The binary exchange scheme completes in [log, PI steps and the amount of 
data transmitted in each step is fixed at 2r’0gz ‘l-l subblocks, where P is the 
number of processors. The rotating scheme can avoid network congestion, but 
requires P - 1 steps and the amount of data transmitted in the initial steps is 
large. In the direct point-to-point communication scheme, the number of steps is 
the same in the rotating scheme, but the amount of data transmitted in each step is 
only one subblock. 

The three schemes have been implemented on 16 nodes of the Delta and their 
performances are compared in Fig. 2. The binary exchange and the rotating 
schemes are implemented with an odd-even communication scheme, which is 
preferable to a simultaneous communication scheme on the Delta [5,11]. In this 
algorithm, odd-numbered processors send their own blocks and even-numbered 
processors receive them in the first step, and even-numbered processors send and 
odd-numbered processors receive in the next step. On P = 2d processors, as shown 
in Fig. 2, the binary exchange scheme is the fastest. However, if P is not a power 
of 2, then this scheme becomes very complicated and may be slower than the direct 
communication scheme. The direct communication scheme is about 20% slower 
than the binary exchange scheme for the worst case (P = 2d>, but it is simple to 
implement on an arbitrary number of processors. We adopted the simple direct 
communication scheme for the implementation of the matrix transpose algorithms, 
which are explained in detail in the next section. 

3. Matrix transpose algorithms 

We assume that a matrix is distributed over a two-dimensional processor mesh, 
or template, so that in general each processor has several blocks of the matrix as 
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Fig. 2. 

1.0 

0.5 

I I I I I 

.+ 
/’ 

,*’ 
,’ 

.*’ 

,*’ 
I’ Rotating 

,’ 
,f’ 

/’ 
.*’ 

0.0 
0 20 40 60 80 100 

Block Size (Kbytes) 

Comparison of three exchange communication schemes on 16 processors, 

shown in Fig. 3(a), where a matrix with 12 X 12 blocks is distributed over a 2 x 3 
template. Denoting the least common multiple of P and Q by LCM, we refer to a 
square of LCM x LCM blocks as an LCM block. Thus, the matrix may be viewed 
as a 2 x 2 array of LCM blocks, as shown in Fig. 3(b). The concept of the LCM 
block was introduced in Es], and is very useful for implementing algorithms that use 
a block cyclic data distribution. Blocks belong to the same processor if their 
relative locations are the same in each square LCh4 block. An algorithm may be 

0 12 3 4 5 6 7 6 QlOfl 0 7 2 3 4 5 6 7 6 Q 1017 
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Q Q 
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(a) block distribution over template (b) LCM bloci distribution 

Fig. 3. A matrix with 12 X 12 blocks is distributed over a 2 x 3 processor template. (a) Each shaded and 
unshaded area represents different templates. The numbered squares represent blocks of elements, and 
the number indicates at which location in the processor template the block is stored - all blocks labeled 
with the same number are stored in the same processor. The slanted numbers, on the left and on the 
top of the matrix, represent indices of row block and column block, respectively. (b) The matrix has 
2 x 2 LCM blocks. Blocks belong to the same processor if the relative locations of blocks are the same 
in each square LCM block. The definition of the LCM block is defined in the text. 
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(b) matrix transpose from processor point-of-view 

Fig. 4. An example of matrix transpose for a block cyclic data distribution, when P = 2, Q = 3, and 
M,, = Nb = 6. 

developed for the first LCit4 block, and then it can be directly applied to the other 
LCM blocks, which all have the same structure and the same data distribution as 
the first LCM block. That is, when an operation is executed on the first LCM 
block, the same operation can be done simultaneously on other LCM blocks, 
which have the same relative location in each LCM block. 

We now describe parallel matrix transpose algorithms. A matrix A, distributed 
over a P X Q processor template, has Mb X Nb blocks and each block consists of 
r x c elements, where I and c are arbitrary. Fig. 4(a) shows an example of a matrix 
transpose on a 2 x 3 template. If A is transposed, the transposed matrix AT is 
distributed over the same P x Q template, and it has Nb x Mb blocks and each 
block has c X r elements. The elements of each block remain in the same block, 
but may be in a different processor, and each block is itself transposed. Fig. 4(b) 
shows the same example from the processor point-of-view. If P and Q are 
relatively prime, as shown in the figure, blocks in the first processor PO are 
scattered to all processors. As shown in Fig. 5, which is the same example on a 
3 X 3 square template, the blocks in each processor are not dispersed, but they are 
moved as one entity to a different processor. Parallel matrix transpose algorithms 
for the block cyclic data distribution have several communication patterns deter- 
mined by the greatest common divisor (GCD) of P and Q. 
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3.1. P and Q: Relatively prime 

We start with the simple case where P and Q are relatively prime, i.e. 
GCD = 1. In this case blocks in P, are scattered to all processors after being 
locally transposed as shown in Fig. 4(b). This case involves the two-dimensional 
complete exchange communication. That is, every processor needs to communicate 
with every other processor. The complete exchange problem is implemented by 
direct communication between sender and receiver. 

Fig. 6 shows the pseudocode from the processor point-of-view, where P( p, q) 

represents PMOD(p,P),MOD(q,~) in the processor template. Processor P( p, q) (0 sp 
<P and 0 I q < Q) starts to transpose blocks whose transposed blocks belong to 
itself. Then it deals with blocks whose transpositions are in processors in the same 
column of the template (P( p - i, q), 0 5 i < P). The processor sends blocks to its 
top neighbor, P( p - 1, q), and receives blocks from its bottom neighbor, P( p + 
1, q). Before sending the blocks, it is necessary to copy the blocks to be sent into a 
contiguous message buffer. Next it sends blocks to the next top processor, P( p - 
2, q), and receives blocks from the next bottom processor, P( p + 2, q). 

After it completes its operations with the processors in the same column, it 
sends blocks to the processors to the left in the template (P( p - q, q - l), 0 5 i < 
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Fig. 5. An example of matrix transpose for a block cyclic data distribution, when P = 3, Q = 3, and 

Mh = Nb = 6. 
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DOJ=O,Q-I 
DOI=O,P-1 

[ Copy all blocks of A required by P(p+ I, q - J) to T1 
(in condensed and transposed form) ] 
[ Send Tl to P(p+ I, 9 - J) ] 
[ Receive T2 from P(p - I, p + J) ] 
[ Copy T2 to C ] 

END DO 
END DO 

Fig. 6. A parallel matrix transpose algorithm from the processor point-of-view, when P and Q are 
relatively prime. P( p, q) represents PMOwp,P~,MOD(q,P~. Processor Pp,4 (0 I p < P and 0 s q < Q) 
communicates with P( p + I, q - J) to send, and P( p - I, q + J) to receive based on direct point-to- 
point communication. ‘p + I’ and ‘q - J’ can be replaced with a different combination of signs. 

P), and receives blocks from the processors to the right (P( p + i, q + 1)). All 
operations are completed in P x Q = LCM steps. 

We interpret the algorithm from the matrix point-of-view. In the first LCM 
block, the above algorithm transposes one (wrapped) diagonal block at one step. 
(Actually the algorithm transposes every LCM diagonal block of the whole matrix 
at each step.) The first step of the algorithm in Fig. 6 requires no explicit 
communication. It corresponds to an in-place transpose of the diagonal blocks of A 
(A& i)> (See Fig. 7(a)). Then every Pth diagonal block of A (A(i, j), MOD(j - 
i, P> = 0) (See Fig. 7(b)) is transposed in the first outer loop (J = 0) of Fig. 6. In 
the next outer loop (J = 11, the next Pth diagonal blocks (A(i, j), MOD( j - i, P) 
= 1) is transposed. In Figs. 7(c) and (d), PO (P(0, 0)) sends blocks to Pz (P(0, 2)), 
and receives from P, (P(0, l)), where P,,, P, and P2 are in the same row. Then 
PO sends blocks to Ps (P(1, 2)), and receives from P4 (P(1, l)), and so on. The 
pseudocode for the algorithm from the matrix point-of-view is shown in Fig. 8. 
Processors need to determine a diagonal block of A (A(i, j), MOD( j - i, LCM) = 
K) which they start to transpose in the outer J loop in order to communicate with 
other processors in the same row of the template. The last line of the inner 
DO-loop computes the value of K. 

.X2. P and Q: Noi relatively prime 

In the previous section, we have investigated the case when P and Q are 
relatively prime, which involves complete exchange communication. In this section 
we consider the case of GCD > 1. The former algorithm is a special case (GCD = 1) 
of this algorithm. 

Fig. 9 shows an example of transposing a 12 X 12 matrix on a 4 X 6 template 
from the processor point-of-view. Each processor has its own 3 X 2 (= LCM/P x 

LCM/Q) array of blocks. The processors can transpose the matrix with 6 (= 
LCM/P * LCM/Q = LCM/GCD) communications steps. As shown in Fig. 10, a 
processor P(p, q) starts to communicate with P( 5, @), where fi and 6 are 
computed from p and q (details are explained later in this section). Once P( jj, 4) 
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(a) zeroth diagonal (A(Q), MOD&i,LCM)=O) (b) third diagonal (A(ij), MOD&i,LCM)=3) 

(c) fourth diagonal (A(ij), MOD@i,LCM)=4) (d) fmt diagonal (A(ij), MOD&i,LCM)=l) 

(e) second diagonal (A(ij), MOD@i,LCM)=2) Q fifth diagoanl (A(ij), MOD(j-i,LCM)=5) 

Fig. 7. Snapshots of matrix transposition when P = 2, Q = 3 and Mb = Nb= 6. The small slanted 
number in the upper left corner in each block represents processor identification number. One 

wrapped block diagonal is transposed in each step. The darkly shaded area represents blocks to be 

shifted, and lightly shaded area stands for their transpositions. 
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DO J=O,Q-1 
K = J \* Determine K-th diagonal block to transpose *\ 
WHILE (MOD(K, P) # 0) DO K’ = MOD(K’ + Q, LCM) END DO 
DO I=O,P-1 

[ Copy every (K : Nb : LCM)-th wrapped diagonal blocks in PP,q to Tl ] 
[ Move Tl from PpIq to P(p + I, q - J) ] 
[ Copy the received Tl to C ] 
A’ = MOD(K + Q, LCM) 

END DO 
END DO 

Fig. 8. A parallel matrix transpose algorithm from the matrix point-of-view, when P and Q are 
relatively prime. One diagonal block is transposed at one step. The ‘While’ statement should be 
executed until MOD(K, PI becomes 0. (start:limit:intu) represents values of x, where x = start + intu 
’ y, y = 0, 1,. . . , and x can’t exceed limit. 

is determined, the processor communicates with other processors, whose vertical 
and horizontal intervals are GCD from P(j, 6). The two loops of the algorithm 
in Fig. 6 are changed from Q and P to LCM/P and LCM/Q. The pseudocode of 
the algorithm is shown in Fig. 11. 

Fig. 12 shows two snapshots of the same example, from the matrix point-of-view, 
to transpose the zeroth and the first diagonal blocks of A(A(i, j), MOD( j - 
i, LCM) = 0 and 1, respectively.) The processors which have the blocks to send out 
are shaded at the bottom. In the example, only P * Q/GCD processors are 
involved in block communication in each step. Processors are split into GCD 
groups of processors, and a processor P( p, q) belongs to a group g if it has the 
same value of g = MOD(q -p, GCD). Processors in a group g send and receive 
their blocks to other processors in another group g’ = MOD(GCD - g, GCD). The 
operations of each group can be overlapped. 
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Fig. 9. A matrix transpose example on a 4 X 6 template. 
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Fig. 10. Processor map for communication. A processor P( p, q) starts to communicate with P( ~5, @), 
then it communicates with other processors, whose vertical and horizontal intervals are GCD from 

The problem is interpreted from the matrix point-of-view. In general, for 
transposing the k-th diagonal block of A (A(i, j), MOD( j - i, LCM) = k), a group 
of processors g, = MOD(k, GCD) send the blocks to another group g; = 
MOD(GCD - g,, GCD). Since the operations are overlapped over different groups 
of processors, processors transpose GCD diagonal blocks simultaneously. The 
matrix can therefore be transposed with LCM/GCD steps. For the extreme case 

PARDO I( = 1,GCD 
g = MOD(q - p, GCD) 
6 = MOD(p + g, P); q = MOD(q - g, Q) 
DO J=O,LCM/P- 1 

DOI=O,LCM/Q-1 
[ Copy to Tl (in condensed and transposed form) all blocks of A 

required by P(j5 + I x GCD, i - J x GCD) ] 
[SendTltoP(fi+IxGCD,g-JxGCD)] 
[ Receive T2 from P(p - I x GCD, (I + J x GCD)] 
[ Copy T2 to C ] 

END DO 
END DO 

END PARDO 

Fig. 11. A modified matrix transpose algorithm from the processor point-of-view. Operations of GCD 
groups of processors arc overlapped. 
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<LCM 
block> 

template 

(a) transposing the zeroth wrapped block (b) transposing the first wrapped block 

Fig. 12. Two snapshots of matrix transposition for transposing the zeroth and first wrapped block 
diagonals, when P = 4, Q = 6 and Mb = Nb = 12. In this example, transposing of even numbered 
wrapped block diagonals can be overlapped with that of odd numbered. 

of P = Q = GCD = 3 as shown in Fig. 13, processors transpose 3 (= GCD) diago- 
nal blocks at one step. That is, the transposition is done in one step: the processor 
P( p, q) exchanges data with the processor P(q, p). The pseudocode of the 

Fig. 13. Matrix transposition when P = Q = GCD = 3. Processors transpose 3 ( = GCD) diagonal blocks 
at one step, so that the transposition is done in one step. 
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PARDO Ii = 1,GCD 
g = MOD(q - p, GCD) 
P = MOD(P + g, P); i = MOD(4. - 9, Q) 
DO .I = 0, LCM/P - 1 

Ii = J \* Determine I<-th diagonal block to transpose *\ 

WHILE (MOD(K - g, P) # 0) DO Ii = MOD(K + Q, LCM) END DO 
DO I=O,LCM/Q-1 

[ Copy every (I< : Nt, : LCM)-th diagonal blocks in P(p% q) to Tl ] 
[ Move Tl from P(p,q) to P(j+ I x GCD,i - J x GCD) ] 
[ Copy the received Tl to C ] 
Ii = MOD(Ii + Q, LCM) 

END DO 
END DO 

END PARDO 

Fig. 14. A modified matrix transpose algorithm from matrix point-of-view. GCD diagonal blocks are 
transposed simultaneously. 

algorithm from the matrix point-of-view is shown in Fig. 14. The code includes the 
case of GCD = 1. 

4. Results 

In this section we present performance results of the parallel matrix transpose 
algorithms on the Intel Touchstone Delta computer. The performance of the 
transpose algorithms cannot be represented in floating point operations per second 
(flops), since there are no multiplications or additions in the transpose algorithms. 
The algorithms are combined with a matrix multiplication routine of the PUMMA 
package to compute C = aAT. BT + PC in two steps (T= aB. A; C - TT + PC). 
We assume that cx = 1 and p = 0 in our test. The performance of AT. BT is 
compared with that of A * B. 

Matrix elements are generated uniformly on the interval [ - 1, 11 in double 
precision. Conversions between measured runtimes and performance in gigaflops 
(Gflops) are made assuming an operation count of 2MNK for the multiplication of 
a A4 X K by a L X K matrix. In our test examples, all processors have the same 
number of blocks so there is no load imbalance. The algorithms were implemented 
with force type communication [9]. 

First, we considered how, for a fixed number of processors N, = P x Q, perfor- 
mance depends on the configuration of the processor template. Some typical 
results are presented in Table 1 for a fixed number of processors. In the test, the 
block size is fixed at 5 x 5 elements. It may be seen that the template configuration 
does have some effect on performance. The performance difference is between 19 
and 24%. For rectangular templates with different aspect ratios, the algorithm 
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Table 1 
Dependence of performance on template configuration for fixed number of processors (M = N = 2400) 

96 processors 

PxQ Time (second) 

6X16 0.404 
8X12 0.330 

12x8 0.307 
16X6 0.381 

64 processors 

f=xQ Time (second) 

4x16 0.596 
8X8 0.572 

16x4 0.475 

48 processors 

PXQ Time (second) 

4x12 0.652 
6X8 0.546 
8X6 0.527 

12x4 0.547 

prefers those with small Q to those with small P. On the Delta, communication 
speed along vertical links seems faster than along horizontal links. 

Figs. 15-19 show the performance of the routines on 15 X 16 (GCD = 1, i.e., P 

and Q are relatively prime), 14 X 16 (GCD = 2), 12 X 16 (GCD = 4), 8 x 16 (GCD 

= 81, and 16 X 16 (P = Q = GCD = 16) templates, respectively. In all cases the 
block size is fixed at 5 X 5 elements. The solid and the dashed lines show the 
performance of AT * BT and A * B, respectively. The gap between the two lines 
shows the loss of performance due to matrix transposition. 

The transposed multiplication routine shows good performance relative to 
matrix multiplication. The loss of performance due to the matrix transpose routine 
is about 2 or 3%. The transpose routine has excellent performance if P and Q are 
relatively prime. In other cases (GCD 2 21, processors transpose several (= GCD) 

diagonal blocks simultaneously, that is, each GCD group of processors overlap 
their communication with other groups (see Section 3.2). This may cause network 
contention, which may slightly degrade the performance of the routine. 

Table 2 shows how the block size affects the performance of the algorithms. It 
includes three cases of the block size, two extreme cases - the smallest and largest 

I I 

B 8- ---- A xl3 

3 I- - ATxBT 

6- 

5- 

4- 

3- 

2- 

1- 

0 I I I I 1 I 
0 1200 2400 3600 4800 6ooO 7200 

Matrix Size, M 
Fig. 15. Performance comparison of A.B and AT.BT on 15X16 template. (P= 15, Q = 16, and 
GCD = 1). C=AT.BT is implemented in hvo steps, T=B.A, and then CeTT. 
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I I I 1 I I 

0 1120 2240 3360 4480 5600 6720 

Matrix Size, M 

Fig. 16. Performance comparison of A.B and AT.BT on 14x16 template. (P = 14, Q = 16, and 
GCD = 2). 

possible block sizes - and 5 X 5 block of elements. If P = Q, processors directly 
copy all blocks at once, so block size does not affect the performance. For the case 
of the smallest block size (1 X 1 element) when P # Q, processors make a copy 
element by element, so it takes a little more time to make a copy. The routines 
with the smallest block sizes are slower than those with the largest possible block 
sizes by between 15% and 31%. This difference is negligible, compared with the 
total elapsed time of the matrix multiplication. 

00 
0 960 1920 2880 3840 4800 5760 6720 

Matrix Size, M 

Fig. 17. Performance comparison of A.B and AT.BT on 12x 16 template. (P = 12, Q = 16, and 
GCD = 4). 
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0 + I I I I I I -l- 
0 800 1600 2400 3200 4COO 4800 5600 

Matrix Size, M 

Fig. 18. Performance comparison of A.B and AT.BT on 8 X 16 template. (P = 8, Q = 16, and GCD = 8). 

Performance per node is shown in Table 3. The 1 x 1 template gives the 
performance of the assembly-coded level 3 BLAS matrix multiplication routine for 
the two cases A. B and AT. BT. Processors have about 85% efficiency for A - B, and 
87% for AT * BT if P = Q = 16. The routines perform better on templates for which 
P # Q. Processors achieve about 89% and 93% of efficiency for each case if P and 
Q are relatively prime. 

0 I I I I I 
0 1600 3200 4800 6400 8000 

Matrix Size, M 

Fig. 19. Performance comparison of A.B and AT.BT on 16 x 16 template. (P = Q = GCD = 16). 
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Table 2 
Dependence of performance on block size 

PxQ Matrix size 

8X16 4800 x 4800 

12x 16 4800x4800 

14x 16 5600 x 5600 

15x16 6000 x 6000 

16X16 6400x6400 

Block size Time (second) 

1x1 1.857 

.5X5 1.612 

300 x 300 1.564 

1x1 1.280 

5X.5 0.893 

100x 100 0.882 

1x1 1.484 

5x5 1.193 

50x50 1.161 
1x1 1.740 

5x5 1.437 
25x25 1.426 

1x1 1.967 

5x5 1.961 

400 x 400 1.967 

5. Conclusions and remarks 

We have presented parallel matrix transpose algorithms based on the block 
cyclic data distribution. The algorithms have good performance for arbitrary 
processor configurations on the Intel Delta computer. 

If P and Q are relatively prime, the transpose routine involves complete 
exchange communication on a two-dimensional template. We have approached 
this complicated problem with a direct point-to-point communication scheme (see 
Section 2). When P and Q are not relatively prime (GCD > l), the processors’ 
operations are overlapped over different groups, so that only LCM/GCD commu- 
nications are required. 

In our Fortran implementation, we assume that the first dimension of the 
matrix may be different from the number of rows of the matrix in a processor. 
Even when P = Q, the processor needs to copy blocks of A to a communication 
buffer before sending, and copy the received buffer to blocks of C after receiving. 

Table 3 
Performance per node in Mflops. Block size is fiied to 5 x 5 elements. 1 X 1 template gives performance 

of assembly-coded matrix multiplication. Numbers in parentheses represent efficiency compared with 

the performance on 1 processor 

PxQ Matrix size (A, B) A.B (%) AT.BT (%I 

1x1 500 x 500 36.70 (100.0) 35.04 (100.0) 
8X16 5600 x 5600 32.05 (87.3) 30.57 (87.3) 

12x16 6720 x 6720 32.09 (87.4) 31.64 (90.3) 
14x16 6720 x 6720 32.52 (88.6) 32.11 (91.6) 
15x16 7200~7200 32.78 (89.3) 32.43 (92.6) 
16X16 8000x8000 31.22 (85.1) 30.38 (86.7) 
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The parallel matrix transpose algorithms have been combined with matrix 
multiplication routines. The integrated routines comprise a general-purpose matrix 
multiplication package, called PUMMA [5], for MIMD message-passing comput- 
ers. The package has good performance for a wide range of decomposition 
parameters, that is, its performance depends weakly on processor configuration 
and block size. 

The PUMMA package is currently available for all numeric data types, i.e., 
single and double precision real and complex. To obtain a copy of the software and 
a description of how to use it, send the message, ‘send p umm a f r om s c a L a- 

pack’to netLib@ornL.gov. 
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