
Linear Algebra on High Performance Computers

JJ. Dongarra and D.C. Sorensen

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Avenue
Argonne, Illinois 60439

ABSTRACT

This is a survey of some work recently done at Argonne National

Laboratory in an attempt to discover ways to construct numerical software for

high performance computers. The numerical algorithms discussed are taken

from several areas of numerical linear algebra. We discuss certain architectural

features of advanced computer architectures that will affect the design of algo-

rithms. The technique of restructuring algorithms in terms of certain modules

is reviewed. This technique has proved very successful in obtaining a high

level of transportability without severe loss of performance on a wide variety

of both vector and parallel computers.

The module technique is demonstrably effective for dense linear algebra

problems. However, in the case of sparse and structured problems it may be

difficult to identify general modules that will be as effective. New algorithms

have been devised for certain problems in this category. We present examples

in three important areas: banded systems, sparse QR - factorization, and sym-

metric eigenvalue problems.

1. Introduction

This is a survey of some work recently done at Argonne National Laboratory in an

attempt to discover ways to construct numerical software for high performance computers. We

have concentrated on numerical linear algebra problems involving dense matrices since we feel

that the algorithms for these problems are well understood in most cases. This has allowed us

to focus on utilization of the new hardware rather than on development of new algorithms for

Work wupponed in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S
Department of Energy under Contracts W-31-109.Eng-38 and DE-AC05.840R214M1.

58

many of the standard problems. Nevertheless, there are instances when efficient use of the

architecture begs for new algorithms.

Within the last ten years many who work on the development of numerical algorithms

have come to realize the need to get directly involved in the software development process.

Issues such as robustness, ease of use, and portability are now standard in any discussion of

numerical algorithm design and implementation. New and exotic architectures are evolving

which depend on the technology of concurrent processing, shared memory, pipelining, and vec-

tor components to increase performance capabilities. Within this new computing environment

the portability issue, in particular, can be very challenging. One feels compelled to structure

algorithms that are tuned to particular hardware features in order to exploit these new capabili-

ties; yet, the sheer number of different machines appearing makes this approach inuactable. It

is very tempting to assume that an unavoidable byproduct of portability will be an unacceptable

degradation in performance on any specific machine architecture. Nevertheless, we contend that

it is possible to achieve a reasonable fraction of the performance of a wide variety of different

architectures through the use of certain programming constructs.

Complete portability is an impossible goal at this point in time, but it is possible to

achieve a level of transportability through the isolation of machine dependent code within cer-

tain modules. Such an approach is essential in our view, to even begin to address the portabil-

ity problem.

The current generation of vector computers exploits several advanced concepts to enhance

their performance over conventional computers:

Fast cycle time,

Vector instructions to reduce the number of instructions interpreted,

Pipelining to utilize a functional unit fully and to deliver one result per cycle,

Chaining to overlap functional unit execution, and

Overlapping to execute more than one independent vector instruction concurrently.

The key to utilizing a high performance computer effectively is to avoid unnecessary memory

references. In most computers, data flows from memory into and out of registers; and from

registers into and out of functional units, which perform the given instructions on the data.

Performance of algorithms can be dominated by the amount of memory traffic, rather than the

number of floating point operations involved. The movement of data between memory and

registers can be as costly as arithmetic operations on the data. This provides considerable

motivation to restructure existing algorithms and to devise new algorithms that minimize data

movement.

59

Many of the algorithms in linear algebra can be expressed in terms of a SAXPY opera-

tion: y t y+ax , i.e. adding a multiple a of a vector x to another vector y. This would result in

three vector memory references for each two vector floating point operations. If this operation

comprises the body of an inner loop which updates the same vector y many times then a con-

siderable amount of unnecessary data movement will occur. Usually, a SAXPY occurring in

an inner loop will indicate that the algorithm may be recast in terms of some matrix vector

operation, such as y c y!44*n, which is just a sequence of SAXPYs involving the columns of

the matrix M and the corresponding components of the vector x. The advantage of this is the y

vector and the length of the columns of M are a fixed size throughout. This makes it relatively

easy to automatically recognize that only the columns of M need be moved into registers while

accumulating the result y in a vector register, avoiding two of the three memory references in

the inner most loop. This also allows chaining to occur on vector machines, and results in a

factor of three increase in performance on the CRAY 1. The cost of the algorithm in these

cases is not determined by floating point operations, but by memory references.

2. Structure of the Algorithms

In this section we discuss the way algorithms may be restructured to take advantage of

the modules introduced above. Typical recasting that occurs within LINPACK and EISPACK

type subroutines is discussed here. We begin with definitions and a description of the efficient

implementation of the modules themselves,

2.1 The Modules.

Only three modules are required for the recasting of LINPACK in a way that achieves

the super-vector performance reported above. They are

z=Mw (matrix x vector).

h? = M - wrT (rank one md$icarion).

z = Tz (solve a triangular system).

Efficient coding of these three routines is all that is needed to transport the entire package from

one machine to another while retaining close to top performance.

We shall describe some of the considerations that are important when coding the matrix

vector product module. The other modules require similar techniques. For a vector machine

such as the CRAY-1 the vector times matrix operation should be coded in the form

(2.1.1) y(*) c y(*) + M(*j)x(j) for j = I,2 ,..., n

In (2.1.1) the * in the first entry implies this is a column operation and the intent here is that a

vector register is reserved for the result while the columns of M are successively read into VW-

tor registers, multiplied by the corresponding component of x and then added to the result

60

register in place. In terms of ratios of data movement to floating point operations this arrange-

ment is most favorable. It involves one vector move for two vector-floating point operations.

Comparing this to the three vector moves to get the same two floating point operations when a

sequence of SAXPY operations are used shows the advantage of using the matrix vector opera-

tion.

This arrangement is perhaps inappropriate for a parallel machine because one would have

to synchronize the access to y by each of the processes, and this would cause busy waiting to

occur. One might do better to partition the vector y and the rows of the matrix M into blocks

and self-schedule individual vector operations on each of the blocks in parallel:

Y, + x + M& for i = 1,2,...,k

That is, the subproblem indexed by i is picked up by a processor as it becomes available and

the entire matrix vector product is reported done when all of these subproblems have been

completed.

If the parallel machine has vector capabilities on each of the processors this partitioning

introduces short vectors and defeats the potential of the vector capabilities for small to medium

size matrices. A better way to partition in this case is

Y + Y + CM, , M, , , 4)

w
Again, subproblems are computed by individual processors. However, in this scheme, we must

either synchronize the contribution of adding in each term ,44,x, or write each of these into tem-

porary locations and hold them until all are complete before adding them to get the final result.

This scheme does prove to be effective for increasing the performance of the factorization sub-

routines on the smaller (order less than 100) matrices. One can easily see this if the data

access scheme for LU decomposition shown in Figure 2.1 is studied. We see that during the

final stages of the factorization vector lengths become short regardless of matrix size. For the

smaller matrices, subproblems with vector lengths that are below a certain performance level

represent a larger percentage of the calculation. This problem is magnified when the row-wise

partitioning is used.

61

2.2 Recasting LINPACK subroutines

We now turn to some examples of how to use the modules to obtain various standard

matrix factorizations. We begin with the LU decomposition of a general nonsingular matrix.

Resmxtming the algorithm in terms of the basic modules described above is not so obvious in

the case of LU decomposition. The approach described here is inspired by the work of Fong

and Jordan [ill. They produced an assembly language code for LU decomposition for the

CRAY- 1. This code differed significantly in structure from those commonly in use because it

did not modify the entire k-th reduced submanix at each step but only the k-th column of that

matrix. This step was essentially matrix-vector multiplication operation.

Dongarra and Eisenstat [4] showed how to restructure the Fong and Jordan implementa-

tion explicitly in terms of matrix-vector operations and were able to achieve nearly the same

performance from a FORTRAN code as Fong and Jordan had done with their assembly

language implementation. The pattern of data references for factoring a square matrix A into

PA = LU (with P a pm-mutation matrix, L unit lower triangular, U upper triangular) is shown

below in Figure 2.1.1.

ema STEP 1

D STEP 2

Figure 2.1.1. LU Data References

At the k-th step of this algorithm, a matrix formed from columns 1 through k-l and rows k

through n is multiplied by a vector constrtxted from the k-th column, rows 1 through k-l, with

the results added to the k-th column, rows k through n. The second part of the k-th step

involves a vector-matrix product, where the vector is constructed from the k-th row, columns 1

through k-l, and a matrix constructed from rows 1 through k-l and columns k+l through n,

with the results added to the k-th row, columns kc1 through n.

One can construct the factorization by analyzing the way in which the various pieces of

the factorization interact. Let us consider decomposition of the matrix A into its LU factoriza-

tion with the matrix partitioned in the following way:

62

Multiplying L and U together and equate terms with A we have:

AII = LIIUII 012 = Lll~12 AIS = LIIUI,
4* = G u11 022 = ~~Pi2 + 1122 a;3 = r&u,3 + IL:

A,, = L~IUII a32 = L3Pl2 + u**4* A33 = L3163 + 13*~:3 + L33U33

We can now construct the various factorizations for LU decomposition by determining

how to form the unknown parts of L and U given various parts of A, L and (1. We give the

basic algoritmic step for three variants in the following examples:

(i) Given the triangular matrices L,, and U,,, to construct vectors ITI and u,* and scalar u** we

must perform, ul* = LTiall, l& = &la;,, u** = a** - I:,u,*.

Since these operations deal with triangular matrix L,, and U,, they can be expressed in terms of

solving triangular systems of equations.

(ii) Given the rectangular matrices L 31 and U,*, and the vectors & and IL,*, we can form vec-

tors I,, and u& and scalar u** by forming uz3 = ui3 - I&U13, u** = a** - l~,u,*, and

I,* = (023 - L3A*w4**~

Since these operations deal with rectangular matrices and vectors they can be expressed in

terms of simple matrix-vector operations.

(iii) Given the triangular matrix L,,, the rectangular matrix L31. and the vector & we can con-

struct vectors ul* and 13* and scalar u** by forming u,* = L;:al*, u** = a** - &uI*,

4, = (a,* - L,,u,*)~u**.

These operations deal with a triangular solve and a matrix vector multiply.

The same ideas for use of high-level modules can be applied to other algorithms, includ-

ing marrix multiply, Cholesky decomposition, and QR factorization.

63

For the Cholesky decomposition the matrix dealt with is symmetric and positive definite.

The factorization is of the form

A=LLT ,

where A = AT and is positive definite. If we assume the algorithm proceeds as in LU decompo-

sition, but reference only the lower triangular part of the matrix, we have an algorithm based

on matrix-vector operations which accomplishes the desired factorization.

The final method we shall discuss is the QR factorization using Householder uansforma-

tions. Given a real mxn matrix A, the routine must produce an mxm orthogonal matrix Q and an

nxn upper triangular maaix R such that

A=Q; [I
Householder’s method consists of constructing a sequence of transformations of the form

(2.2.1) I - awwT ,where a wTw = 2.

The vector w is constructed to transform the first column of a given matrix into a multiple of

the first coordinate vector e,. At the k-th stage of the algorithm one has

Q:,A = R,, Sk-,
[1 0 A,, ’

and wt is constructed such that

(2.2.2)

The factorization is then updated to the form

with

However, this product is not explicitly formed, since it is available in product form if we sim-

ply record the vectors w in place of the columns they have been used to annihilate. This is the

basic algorithm used in LINPACK [8] for computing the QR factorization of a matrix. This

algorithm may be coded in terms of two of the modules. To see this, just note that the opera-

tion of applying a aansformation shown on the left hand side of (2.2.2) above may be broken

into two steps:

(2.2.3)

and

zT = wTA (vecmr x nmrix)

A=A-lJJT (rank one modijhrion)

64

2.3 Restructuring EISPACK subroutines

As we have seen, all of the main routines of LINPACK can be expressed in terms of the

three modules described in Section 2.1. The same type of restructuring may be used to obtain

efficient performance from EISPACK subroutines. A detailed description of this may be found

in [lo]. In the following discussion we just outline some of the basic ideas used there. Many

of the algorithms implemented in EISPACK have the following form:

Algorithm (2.3.1):

For i = l,....

Generate matrix T,

Perform uansformation A,,, t T,A,?;’

End .

Because we are applying similarity aansformations, the eigenvalues of Ai+I are those of A,.

Since the application of these similarity transformations represents the bulk of the work, it is

important to have efficient methods for this operation. The main difference between this situa-

tion and that encountered with linear equations is that these transformations are applied from

both sides. The transformation matrices T, used in (2.3.1) are of different types depending

upon the particular algorithm.

The simplest are the stabilized elementary transformation matrices which have the form

T = LP, where P is a permutation matrix, required to maintain numerical stability [12,29,32],

and L has the form

The inverse of L has the same structure as L and may be written in terms of a rank one

modification of the identity in the following way:

I 0
L-1 = 1 I 0 I-we: ’

with e:w = 0. If we put

AB
PAPT= c D ,

[1

65

B - be: 1

where CT = e:C, dT = e$, b = Bw , f = Dw , 6 = dTw and el is the first co-ordinate vector (of

appropriate size). The appropriate module to use therefore, is the rank one modification.

However, more can be done with the rank two correction that takes place in the modification

of the matrix D above.

In most of the algorithms the transformation matrices T, are Householder matrices of the

form (2.2.1) shown above. This results in a rank two correction that might also be expressed

as a sequence of two rank on corrections. Thus, it would be straightforward to arrange the

similarity transformation as two successive applications of the scheme (2.2.3) discussed above.

However, more can be done with a rank two correction as we now show.

Fist suppose that we wish to form (I-awwT)A(I-pm’), where for a similarity aansfonna-

tion cz = p and w = u. We may replace the two rank one updates by a single rank two update

using the following algorithm.

Algorithm 2.3.2

1. v== wTA

2.x=Au

3. yr = vr-@J*)u’

4. Replace A by A-~x&awy*

As a second example that is applicable to the linear equation setting, suppose that we wish to

form (l-awwr)(l-puur)A, then as with Algorithm 2.3.2 we might proceed as follows.

Algorithm 2.3.3 :
1. vT= wTA

2. xT = u=A

3. rr = “r-(pw*u)xr

4. Replace A by A-puT-awyT

In both cases we can see that Steps 1 and 2 can be achieved by calls to the matrix vector and

vector matrix modules. Step 3 is a simple vector operation and Step 4 is now a rank-two

correction, and one gets four vector memory references for each four vector floating point

operations (rather than the three vector memory references for every two vector floating point

operations, as in Step 2 of (2.2.3)). The increased saving is not as much as is realized with the

initial substitution of SXMPY for the inner products in Step 1 of Algorithm C, but it more

66

than pays for the additional 2n operations incurred at Step 3 and exemplifies a technique that

might pay off in certain situations,

These techniques have been used quite successfully to increase the performance of

EISPACK on various vector and parallel machines. The results of these modifications is

reported in full detail in [lo]. As a typical example of the performance increase possible with

these techniques we offer the following table.

Comparison of EISPACK to

Matrix Vector version

Routine

ELMHES 1.5 2.2 CRAY 1

ORTHES 2.5 2.5 CRAY 1

ELMBAK 2.2 2.6 CRAY 1

ORTBAK 3.6 3.3 CRAY 1

TRED 1 1.5 1.5 CRAY X-MP- 1

TRBAKl 4.2 3.1 CRAY X-MP- 1

TRED2 1.6 1.6 CRAY X-MP-I

SVD no/vectors 1.7 2.0 Hitachi S-810/20

SVD with/vectors 1.6 1.7 Hitachi S-810120

REDUC 1.8 2.2 Fujitsu VP-200

REBAK 4.4 5.8 Fujitsu VP-200

50 100 Machine

(All versions in Fortran)

(Speedup of matrix vector versions over the EISPACK routines.)

3. Sparsity and Structured Problems

Modules work well for full dense matrix problems, but different techniques may be

needed for sparse or special structures. These techniques are likely to be specilic to parallel

machines and used in algorithms which typically cannot be based on the regular data structures

and operations in the modules described above. We give three examples of such algorithms

here. These algorithms all have portions that might take advantage of certain vector constructs,

but the primary gain in all of them is through the explicit use of parallel computation. In each

example there are requirements for synchronization, and in some cases additional computation

may be present that would not be needed for the serial algorithm. Nevertheless, all of these

have proved to be effective in terms of speed up over the corresponding serial algorithm. One

of the algorithms has even provided the startling result of being faster than the corresponding

serial code even when it is run on a serial machine.

3.1 Banded Systems

An important structured problem that arises in many applications such as numerical solu-

tion of certain PDE problems is the solution of banded systems of linear equations. We con-

sider algorithms for solving narrow-banded diagonally dominant linear systems which are suit-

able for multiprocessors. Let the linear system under consideration be denoted by

(3.1.1) Ax=f

where A is a banded diagonally dominant matrix of order n. We assume that the number of

superdiagonals m 4: n is equal to the number of subdiagonals. On a sequential machine such a

system would be solved via Gaussian elimination without pivoting at a cost of O(m*n) arith-

metic operations. We describe here an algorithm for solving this system on a multiprocessor of

p processing units. Each unit may be a sequential machine, a vector machine, or an array of

processors. In this paper, however, we consider only p sequential processing units.

Let the system (3.1.1) be partitioned into the block-tridiagonal form shown below

(3.1.2)

where A,, 1 Si 5~1, is a banded matrix of order 4 = [n/p] and bandwidth 2m + 1 (same as A),

(3.1.3a)
0 0

Bi= B, o , I I
and

0 c+,
(3.1.3b)

1 1 c,+t = (J 0 9

in which tii and e,, are lower and upper triangular matrices, respectively, each of order m. The

algorithm consists of four stages.

68

Stage 1

Obtain the LU-factorization

(3.1.4) A; = LiUi K&p

using Gaussian elimination without pivoting, one processor per factorization. Here L, is unit

lower triangular and U, is a nonsingular upper triangular matrix. Note that each A, is also diag-

onally dominant.

The cost of this stage is O(m*dp) arithmetic operations, no interprocessor communication

is required.

Srage 2

If we premultiply both sides of (3.1.2) by

diag(Ai’, Ai” ,A;‘)

we obtain a system of the form

(3.1.5)

where

Ei = (&, O), F, = (0, p,),

in which J’?; and pi are matrices of m columns given by

and

e pi = A;’ o’ [I
and will in general be full. In other words I$, fi,, and g, are obtained by solving the linear sys-

tems

LU[F E^.g] = [
0 6,

I I I’ I’ I [I[] g, . 0 Xl

for1 5 i 5 p, here 6, = 0 and bP = 0. Each processor 2 5 k S ~1 handles 2m + 1 linear systems

of the form L&p = r, while processors 1 and p each handles m+l linear systems of the same

69

form.

The cost at this stage is 0(m2n/p) arithmetic operations, no interprocessor communications

are needed.

srage 3

Let ii and P, be partitioned, in turn, as follows p, St
pi = M; , and&= N; , II II Qi T,

where P,, Qi, Si, and T,ER-. Also, let gi and xi be conformally partitioned:

gi= 1z-j ,and+= I:;]

As an illustration we show the system (3.1.5) for ~3,

Observe that the unknown vectors y,, y2, y3, and y4 (each of order m) are disjoint from the rest

of the unknowns. In other words, the m equations above and the m equations below each of

the pl partitioning lines form an independent system of order 2&p-l), which we shall refer to

as the “reduced system” Ky=h, which is of the form

70

(3.1.6)

The cost of the algorithm to be used for solving (3.1.6) depends on the interconnection net-

work. Processor 1 contains T, and h,, processor j, 2<j+l, contains P,, Q,, S,, T,, and h,_2,

hy-,, and processor p contains Pp, and h+*. Hence, if the processors are linearly connected we

can only solve (3.1.6) sequentially at the cost of 0(&p) steps, where a step is the cost of an

arithmetic operation or the cost of transmitting a floating-point number from one processor to

either of its immediate neighbors. We should add here that since A is diagonally dominant it

can be shown that (3.1.6) is also diagonally dominant and hence can be solved via Gaussian

elimination without pivoting.

Stage 4

Once the y,‘s are obtained, with y, in processor 1, y2+ and y2_, in processor j (2<jz+l),

and yzpz in processor p, the rest of the components of the solution vector of (3.1.5) may be

computed as follows. Processor k, l%p, evaluates

(3.1.7) zt = w*-M~~_,-NQ~

with processors 1 and p performing the additional tasks

YO = h&y,,

and

(3.1.8) YZ,I = b-QpYz++3.

respectively (M, and Np are nonexistent and are taken to be zero in this equation). The cost of

this stage is O(mn/p) steps, with no interprocessor communication.

It can be shown that for a linear array of processors, the speedup of this algorithm over

the classical sequential algorithm behaves as shown in the figure below

71

where p. and IS, are O(t%). Stage 2 dominates the computation until pO, then the communica-

tion costs impact the performance and Stage 3 has a greater influence.

3.2 QR - Factorization of a Sparse Matrix

The version of Householder’s method for the QR-factorization of a dense matrix given in

Section 4.2 is very well suited to vector and parallel-vector architectures. However, for paral-

lel processors without vector capabilities this may not be the algorithm of choice. An alrerna-

tive is to use a parallel version of Givens’ method. There are many papers on this subject

especially within the study of systolic arrays of processors[13,14,28]. Here we present a vari-

ant of these techniques that is suitable for parallel processors with far more computing power

in a single processor than considered in the systolic array case. This method was first

presented in [6] and it called the Pipelined Givens Method. The Pipelined Givens method is

well suited to the architecture and synchronization mechanism of the Denelcor HEP computer.

However, any parallel computer with globally shared memory and a relatively inexpensive syn-

chronization primitive could take advantage of this method.

The reasons this algorithm is more successful than Householder’s method on a such a

parallel computer are twofold. As demonstrated by the computational results presented in [6],

memory references play a far more important role in determining algorithm performance on a

parallel machine such as the HEP than they do on serial machines. The Givens algorithm

requires half as many array references as the Householder method. In addition, the Pipelined

Givens method offers a greater opportunity to keep many (virtual) processors busy because it

does nor employ a fork-join synchronization mechanism and does not have the inherent serial

bottlenecks present in the Householder method. Moreover, there is an opportunity to adjust the

level of granularity through the specification of a certain parameter (discussed below) in order

to mask synchronization costs with computation.

The serial variant of Givens’ method that we consider is as follows. Given a real WYN

matrix A, the goal of the algorithm is to apply elementary plane rotations G,, that are con-

structed to annihilate the ji-th element of the matrix A. Such a matrix may be thought of as a

2x2 orthogonal matrix of the form

where CT* + y = 1 If

represents a 2xn matrix, then, with proper choice of y and 6, a zero can be introduced into the

p position with left multiplication by G. When embedded in the nxn identity, the matrix Gil is

of the form

G;, = I + D,, ,

where all elements of D,, are zero except possibly the ii, ij, ji, and j entries. The matrices Gi,

are used to reduce A to upper triangular form in the following order:

The order of the zeroing pattern may be seen in the 6x5 example:

X X X X X

Q, X X X X

Q* Q3 x X X

Q4 Q5 % x x

Q7 Q8 0, QIO x

Q,, Qt,, QI, QM @I,

Figure 3.2.1. Zeroing Pattern of Givens Method

In Figure 3.2.1 the symbol x denotes a nonzero entry of the maw-ix and the symbol Qk means

that entry is zeroed out by the k-tb transformation. This order is important if one wishes to

“pipeline” the row reduction process. Pipelining may be achieved by expressing R as a linear

array in packed form by rows and then dividing this linear array into equal-length pipeline seg-

ments. A process is responsible for claiming an unreduced row of the original matrix and

reducing it to zero by combining it with the existing R matrix using Givens transformations. A

new row may enter the pipe immediately after the row ahead has been processed in the first

segment. Each row proceeds one behind the other until the entire matrix has been processed.

However, these rows cannot be allowed to get out of order, once they have entered the pipe,

because of data dependencies. The synchronization required to preserve this order ir accom-

plished using an array of locks, with each entry of the array protecting access to a segment of

the pipe. A process gains access to the next segment by locking the corresponding entry of the

lock array before unlocking the entry protecting the segment it currently occupies. Granularity

may be adjusted to hide the cost of this synchronization by simply altering the length of a seg-

ment. Segment boundaries do not correspond to row boundaries in R. This feature has the

73

advantage of balancing the amount of work between synchronization points but the disadvan-

tage of having to decide on one of two possible computations at each location within a seg-

ment: compute a transformation or apply one.

The method is more easily grasped if one considers the following three diagrams. In Fig-

ure 3.2.2 we represent the matrix A in a partially decomposed state. The upper triangle of the

array contains the current state of the triangular matrix R. The entries (a a a a a) and the

entries (p p p p p) represent the nonzero components of the next two rows of A that must be

reduced.

aaaaa

.P P P P P J

Figure 3.2.2. Partially Reduced Matrix

A natural way to pipeline this reduction process is shown in Figure 3.2.3. There we see the

row (a a a a a) being passed through the triangle R during the reduction process, with the row

@ p p p p) flowing immediately behind it. The position of p-row and the a-row interleaved

within the rows of R is meant to indicate that they are ready to be combined with the first and

second rows of R respectively. The first entry of the a-row has been zeroed by computing and

applying the appropriate Givens transformation as described above, and we are ready to zero

out the second entry. In a serial algorithm this a-row would be completely reduced to zero

before beginning to reduce the p-row. However, this process may be pipelined by beginning

to combine the p-row with the first row of R as soon as the a-row is ready to be combined

with the second row of R. Since the first row of R is modified during the introduction of a

zero in the first position of the a-row, it is important that the processing of the p-row be suit-

ably synchronized with the processing of the a-row. In practice, after initial startup, there

would be n rows in the pipe throughout the course of the computation.

14

xxxxx

PPPPP
xxxx

Baaaa
x x x

x x

x

Figure 3.2.3. Pipelined Row Reduction

A disadvantage suffered by the scheme we have just described is that the granularity

becomes finer as the process advances because the length of the nonzero entries in a row of R

decreases. A better load balance and a natural way to adjust the granularity may be achieved

by considering the matrix R as a linear array divided into segments of equal length.

(PI1 PI2 P&4 PI5 P22lP23 P24 P25lP33 P34 P35lP44 P45 P55)

Figure 3.2.4. R as a Segmented Pipe

In Figure 3.2.4 we depict the nonzero elements of R as p,, and note that in this linear array the

natural row boundaries occur at entries p+ The length of a segment is 3 in this example and

we denote pipe segment boundaries with 1. In general we specify the number of segments

desired and then the length of a segment is

[
n(n + 1)/2

number of se~menrs 1
The number of segments is an adjustable parameter in the program. The a-row and p-row are

represented as in Figure 3.2.3 with the a-row entering the second segment and the p-row enter-

ing the first segment. The difference between this scheme and the one depicted in Figure 3.2.3

is that the a-row is not fully combined with the first row of R before processing of the p-row

is begun. To keep the rows in order, a row must gain entry to the next segment before releas-

ing the current segment. If the number of segments is equal to the number of nonzero ele-

ments of R, then this algorithm reduces to a variant of the more rraditional dataflow algorithm

presented in [13,14,28]. Computational experience reported in [6] indicates that performance is

not extremely sensitive to this parameter. The optimal length of a segment appeared to be

around n, but performance degraded noticeably only with extremely large or extremely small

segment lengths.

We now turn to the main point of interest in this discussion, the case when the matrix A

is large and sparse. The algorithm we present was developed by Heath and Sorensen 1211 as

an generalization of the Pipelined Givens method to the sparse case. Specifically, we assume

that the matrix

15

A=A

is suitably sparse. In this case there are well-established techniques [17] for determining a per-

mutation matrix P such that

PTATAP = RTR

has a sparse Cholesky factor R. This permutation is obtained from the symbolic nonzero strut-

ture of the matrix A and is designed to reduce the number of nonzeros in the factor R as much

as possible. It is of considerable interest to parallelize this symbolic step of the factorization

procedure, but for this discussion we have concentrated only on parallelizing the numerical

portion of the algorithm, which consists of applying Givens transformations to the matrix AP to

produce R.

PI1 P12 PI4

P22 P24

PI3 P3s P36
R= P44 P45

Pss Psa Ps

P66 Pa

P7

DIAG PII PZZ ~33 PM PSS P66 P77

RNZ ~12 PM ~24 ~3s ~36 ~4s ~56 PST ~67

XRNZ 1 3 4 6 7 9 10

NZSUB 2 4 5 6 5 6 I

XNZSUB 1 2 3 5 6 6

Figure 3.2.5. Sparse Data Structure of R

The algorithm is virtually identical to the serial algorithm. There are some notable excep-

tions, however, an explanation of which requires an understanding of the data structure for R

as illustrated in Figure 3.2.5. The RNZ array contains the off-diagonal nonzero entries of R in

packed form. It is evident that the RNZ array lends itself to the same segmentation and that the

row reduction process may be pipelined in almost exactly the same way as the R array in the

dense case. The natural row boundaries are determined by the array XRNZ. The i-th entry of

this array points to tie location of the first nonzero in the i-th row of the full array R. The

arrays NZSCJB and XNZSUB are used to determine the column indices of entries in RNZ as

16

described in [15]. The RNZ array is divided into equal length segments as shown in Figure

3.2.6.

RNZ ~12 PW I ~24 ~35 I PM ~45 I PSS ~57 I ~67 I

Figure 3.2.6. RNZ as a Segmented Pipe

Just as in the dense case, a process is responsible for claiming a row and then combining

it with the current R array using Givens transformations. These processes synchronize as

before: The first nonzero of the unreduced row is determined, the location of the segment con-

taining the corresponding row boundary in RNZ is determined, entry is gained to that segment

(by reading an asynchronous variable on the HEP), and then the row reduction is started. To

preserve the correctness of the factorization, once the pipeline has been entered by a process, it

must stay in proper order. A process keeps itself in proper order by gaining access to the next

segment before releasing the segment it currently owns. In the dense case, every process has

work to do in every segment. In the sparse case, however, there may be segments where no

work is required because the spa&y pattern of the row currently being reduced allows it to

skip several rows of R This phenomenon is best understood when illustrated by example.

Consider a row which has the initial nonzero structure

a=(0 a 0 a 0 0 0),

and suppose this row is to be reduced to zero against the nonzero R structure shown in Figure

3.2.5 with RNZ segmented as shown in Figure 3.2.6. The first nonzero of the row a is in posi-

tion 2, so it is first combined with row number 2. This row starts at position 3, as indicated

by the second entry of XRNZ, and position 3 is in segment number 2 in RNZ. The diagonal

entry pu is used together with the first nonzero in a to compute the Givens transformation, and

then this transformation is applied to element pU together with the entry in the 4-th position of

a. No fill is created in a, so after the application there is one nonzero at position 4. This

means that row 3 may be skipped. Row 4 begins in the 6-th position of RNZ, which is in seg-

ment 3. Entry is gained to segment 3, and then segment 2 is released and the factorization

proceeds. In this example the next row boundary required happened to be in the adjacent seg-

ment. In general, however, there might be several segments between the relevant row boun-

daries. In that case, entry into each of the intervening segments must be gained and released

to ensure that the proper order is maintained between the various rows being processed.

Computational results reported in [21] show that this scheme achieves near perfect

speedup on typical problems such as those found in [16,20]. It has the advantage of using

existing data structures that are found in SPARSPACK and thus does not require modification

of the user interface in existing codes that rely on this package. Such routines can take advan-

tage of this speedup without modification.

II

3.3 Eigensystems of Tridiagonal Matrices

The final problem we consider is that of determining the eigensystem of a real nxn sym-

metric matrix A, find all of the eigenvalues and corresponding eigenvectors of A. It is well

known [30,32] that under these assumptions

(3.3.1) A=QDQT , withQrQ=I,

so that the columns of the matrix Q are the orthonormal eigenvectors of A and

D = o!iag(S,,6,,...,6.) is the diagonal matrix of eigenvalues. The standard algorithm for comput-

ing this decomposition is to lirst use a finite algorithm to reduce A to tridiagonal form using a

sequence of Householder transformations, and then to apply a version of the QR-algorithm to

obtain all the eigenvalues and eigenvectors of the tridiagonal matrix[12,29,30,32]. We have

already discussed a method for paralleliaing the initial reduction to aidiagonal form in Section

4.3. Now, we shall describe a method for parallelizing the computation of the eigensystem of

the tridiagonal matrix.

The method is based upon a divide and conquer algorithm suggested by Cuppen[3]. A

fundamental tool used to implement this algorithm is a method that was developed by Bunch,

Nielsen, and Sorensen[2] for updating the eigensystem of a symmetric matrix after modification

by a rank one change. This rank-one updating method was inspired by some earlier work of

Golub[l9] on modified eigenvalue problems. The basic idea of the new method is to use

rank-one modifications to tear out selected off-diagonal elements of the tridiagonal problem in

order to inaoduce a number of independent subproblems of smaller size. The subproblems are

solved at the lowest level using the subroutine TQL2 from EISPACK and then results of these

problems are successively glued together using the rank-one modification routine SESUPD that

we have developed based upon the ideas presented in [2].

In the following discussion we describe the partitioning of the tridiagonal problem into

smaller problems by rank-one tearing. Then we describe the numerical algorithm for gluing the

results back together. The organization of the parallel algorithm is laid out, and finally some

preliminary computational results are presented.

Partitioning by Rank-One Tearing

The crux of the algorithm is to divide a given problem into two smaller subproblems. To

do this, we consider the symmetric tridiagonal matrix

(3.3.2) T= [,3& “$1

where 1 Sk <n and e, represents the kj-th unit vector of appropriate dimension. The k-th

78

diagonal element of Tr has been modified to give ?r and the first diagonal element of T2 has

been modified to give fs. There are some numerical concerns here concerning possible cancel-

lation. A way to overcome these difficulties is discussed fully in [5].

Now we have two smaller uidiagonal eigenvalue problems to solve. According to equa-

tion (3.3.2) we compute the two eigensystems

This gives

where q1 = QTe, and q2 = Q&. The problem at hand now is to compute the eigensystem of the

interior matrix in equation (3.3.3). A numerical method for solving this problem has been pro-

vided in [2] and we shall discuss this method in the next section.

It should be fairly obvious how to proceed from here to exploit parallelism. One simply

repeats the tearing on each of the two halves recursively until the original problem has been

divided into the desired number of subproblems and then the rank one modification routine

may be applied from bottom up to glue the results together again.

The Updating Problem

The general problem we are required to solve is that of computing the eigensystem of a

matrix of the form

(3.3.4) ^ ̂ T QDQ = D + pzzT

where D is a real nxn diagonal matrix, p is a scalar, and z is a real vector of order n It is

assumed without loss of generality that z has Euclidian norm 1.

As shown in [2], if D = diag(61,6,, ,6,) with 6,+< 4, and no component ii of the

vector z is zero, then the updated eigenvalues 8, are roots of the equation

* s
f(h)sl+pC---=O.

/=I 6, - h

Golub[l9] refers to this as the secular equation and the behavior of its roots is completely

described by the following graph:

19

Figure 3.3.1. The Secular Equation

Moreover, as shown in 121 the eigenvectors (i.e

by the formula

(3.3.6) 4, = y,A;;‘z

the columns of Q in (3.3.4)) are given

with 1/, chosen to make l&ll = 1 , and with Aj = diag@-&,Z+$, ,6,-8;). Due to this sruc-

ture, an excellent numerical method may be devised to find the roots of the secular equation

and as a by-product to compute the eigenvectors to full accuracy.

In the following discussion we assume that p > 0 in (3.3.5). A simple change of vari-

ables may always be used to achieve this, so there is no loss of generality. The method we

shall describe was inspired by the work of More’ 1251 and ReinschI26,27], and relies on the

use of simple rational approximations to construct an iterative method for the solution of equa-

tion (3.2). Given that we wish to find the i-rh root 8, of the function f in (3.2) we may write

this function as

where

80

and

From the graph in Figure 3.3.1 it is seen that the root 8, lies in the open interval (&,&+r) and

for ,I in this interval all of the rerms of w are negative and all of the terms of 4 are positive.

We may derive an iterative method for solving the equation

-r+r(h) = 1 + qq(h)

by starting with an initial guess I,, in the appropriate interval and then consmrcting simple

rational interpolants of the form

where the parameters p, 4, r, s are defined by the interpolation conditions

- = ew) , - = g’&)
(4 - ho)* (5 - ho?

The new approximate h, to the root 8; is then found by solving

(3.3.8)

It is possible to construct an initial guess which lies in the open interval (Iii&. A sequence of

iterates {t> may then be constructed as we have just described with hs+t being derived from &

as A, was derived from & above. It is proved in [3] that this sequence of iterates converges

quadratically from one side of the root and does not need any safeguarding.

During the course of this iteration, the quantities 8, - & are maintained and the iterative

corrections to At are added to these differences directly. As the iteration converges the lower

order bits of these quantities are corrected to full accuracy. Since these differences make up

the diagonal entries of the matrix Ai appearing in (3.3.6), this allows computation of the

updated eigenvectors to full accuracy and avoids cancellation that would occur if we first com-

puted the roots and then formed the differences.

Another important numerical aspect of the updating problem is “deflation”. There are

two cases where such deflation occms. One when two given roots are nearly equal and the

other when certain components of the vector z are “small”. The effects of such deflation can

be dramatic, for the amount of computation required to perform the updating is greatly

reduced. We shall not present the details nor the numerical motivation for deflation here. We

just remark that the result of deflation is to replace the updating problem (3.3.4) with one of

smaller size. This is accomplished when appropriate by applying similarity transformations

consisting of several Givens transformations. If G represents the product of these transforma-

tions the result is

81

where

with E roughly the size of machine precision. The cumulative effect of such errors is additive

and thus the final computed eigensystem @@ which satisfies

where n is order 1 in magnitude. The reduction in size of D1 - pqzT over the original rank 1

modification can be spectacular in certain cases. The details of deflation and more numerical

results may be found in [5]. We shall indicate the potential in the following table. In this

table we report the results of this algorithm on a nidiagonal matrix with pseudo-random

nonzero entries in the interval [-l,l]. The table entries show ratios of execution time required

by TQL2 (from EISPACK) to that required by the parallel algorithm on the same machine with

the same compiler options and the same environment. In all cases the time reported by TQL2

was obtained by executing it as a single process. It should be emphasized that in all cases the

computations were carried out as though the tridiagonal matrix had come from Householder’s

reduction of a dense symmetric matrix to tridiagonal form. The identity was passed in place of

the orthogonal basis that would have been provided by this reduction, but the arithmetic opera-

tions performed were the same as those that would have been required to transform that basis

into the eigenvectors of the original symmetric matrix.

VAX 785/FPA Denelcor HEP Auiard FXl8 CRAY X-MP-I CRAY x-w-4

random 2.6 12 15.2 1.8 4s

order = 150

Ratio of execution time
TQL2 time

parallel lime

These results are remarkable because in all cages speedups greater than the number of

physical processors were obtained. The gain is due to the numerical properties of the deflation

portion of the parallel algorithm. In all cases the word length was 64 bits and the same level

of accuracy was achieved by both methods. The measurement of accuracy used was the max-

imum 2-norm of the residuals Tq - ‘hq and of the columns of Q’Q -I. The results are typical

of the performance of this algorithm on random problems with speedups becoming more

82

dramatic as the matrix order increases. In problems of order 500 speedups of 15 have been

observed on the CRAY-XMP-4 and speedups over 50 have been observed on the Alliant FX/8

which are 4 and 8 processor machines respectively. The CRAY results can actually be

improved because parallelism at the root finding level was not exploited in the implementation

run on the CRAY but was fully exploited on the Alliant. Finally, we remark that deflation

does not occur for all ma&es and examples of this are given in [S].

The Parallel Algorithm

Although it is fairly straightforward to see how to obtain a parallel algorithm, certain

details are worth discussing further. We shall begin by describing the partitioning phase. This

phase amounts to constructing a binary tree with each node representing a rank-one tear and

hence a partition into two sub-problems. A tree of level 3 therefore represents a splitting of

the original problem into 8 smaller eigenvalue problems. Thus, there are two standard sym-

metric tridiagonal eigenvalue problems to be solved at each leaf of the tree. Each of these

problems may be spawned independently without fear of data conflicts. The tree is then

traversed in reverse order with the eigenvalue updating routine SESUPD applied at each node

joining the results from the left son and right son calculations. The leaves each define

independent rank-one updating problems and again there is no data conflicts between them.

The only data dependency at a node is that the left and right son calculations must have been

completed. As this condition is Ftisfied, the results of two adjacent eigenvalue subproblems

are ready to be joined through the rank-one updating process and this node may spawn the

updating process immediately. Information required at a node to define the problem consists of

the index of the element torn out together with the dimension of the left and right son prob-

lems. For example, if n = 50 with a tree of level 3 we have

figure 2. The Computational Tree

83

This tree defines 8 subproblems at the lowest level. The beginning indices of these problems

are 1,7,13,19,26,32,38,44 and the dimension of each of them may be read off from left to right

at the lowest level as 6,6,6,7,6,6,6,7 respectively. As soon as the calculation for the problems

beginning at indices 1 and 7 have been completed a rank-one update may proceed on the prob-

lem beginning at index 1 with dimension 12. The remaining updating problems at this level

begin at indices 13,26,38. There are then two updating problems at indices 1 and 26 each of

dimension 25 and a final updating problem at index 1 of dimension 50.

Evidently, we lose a degree of large grain parallelism as we move up the tree. However,

there is more parallelism to be found at the root finding level and the amount of this increases

as we travel up the tree so there is ample opportunity for load balancing in this scheme. The

parallelism at the root finding level stems from the fact that each of the root calculations is

independent and requires read only access to all but one array. That is the array that contains

the diagonal entries of the matrix A, described above. For computational efficiency we may

decide on an advantageous number of processes to create at the outset. In the example above

that number was 8. Then as we travel up the tree the root-finding procedure is split into

2,4,and finally 8 parallel parts in each node at level 3, 2, 1 respectively. As these computations

are roughly equivalent in complexity on a given level it is reasonable to expect to keep all pro-

cessors devoted to this computation busy throughout.

4. Implementation and Library Issues

The notion of intioducing parallelism at the level of the modules as presented in Section

4 presents an unpleasant situation. All of the algorithms presented here are properly con-

sidered low level library subroutines when taken in the context of a large scale applications

code. If properly designed, such codes rely upon software libraries to perform calculations of

the type discussed here. When designing a library, one wishes to conceal machine dependen-

cies as much as possible from the user. Also, in the case of transporting existing libraries to

new machines, one wishes to preserve user interfaces in order to avoid unnecessary

modification of existing code that references library subroutines. These important considera-

tions seem to be difficult to accommodate if we are to invoke parallelism at the level described

above. It would appear that the user must be conscious of the number of parallel processes

required by the library subroutines throughout his program. This is the result of physical limi-

tations on the total number of processes allowed to be be created. Should the library routines

be called from multiple branches of a parallel program, the user could inadvertently attempt to

create many more processes than is allowed.

A second issue arises within the context of merely programming the more explicitly

parallel algorithms discussed in Section 3. These algorithms present far more challenging syn-

chronization requirements than the simple fork-join construct used to implement the modules

on a parallel machine. How can these routines be coded in a transportable way?

A possible solution that will have impact on both situations has been inspired by work of

Lusk and Overbeek on methodology for implementing aansportable parallel codes. We have

adapted the “pool of problems ” approach they present in [23,24] to the problem of construct-

ing and implementing aansportable software libraries. We use a package called SCHEDULE

84

that we have been developing during the period that the algorithms presented within this paper

were being devised and tested. SCHEDULE is a package of Fortran subroutines designed to

aid in programming explicitly parallel algorithms for numerical calculations. The design goal

of SCHEDULE is to aid a programmer familiar with a Fortran programming environment to

implement a parallel algorithm in a style of Fortran programming that will lend itself to tran-

sporting the resulting program across a wide variety of parallel machines. The approach relies

upon the user adopting a particular style of expressing a parallel program. Once this has been

done the subroutines and data structure provided by SCHEDULE will allow implementation of

the parallel program without dependence on specific machine intrinsics. The user will be

required to fully understand the data dependencies, parallel structure and shared memory

requirements of the program.

The basic philosophy taken here is that Fornan programs are naturally broken into sub-

routines which identify units of computation that are self-contained and which operate on

shared data structures. Typically these data structures are rectangular arrays and the portion of

the data structure to be operated on is often identified by passing an element of the array that is

treated within the subroutine as the first element of the array to be operated on. This standard

technique is extremely useful in implementing a parallel algorithm in the style adopted in

SCHEDULE. Morever, it allows one to call upon existing library subroutines without any

modification, and without having to write an envelope around the library subroutine call in

order to conform to some unusual data passing conventions imposed by a given parallel pro-

gramming environment. One defines a shared data structure and subroutines to operate on this

data structure. Then a parallel(izable) program is written in terms of calls to these subroutines

which in principle may either be performed independently or according to data dependency

requirements which the user is responsible for defining. Once this has been done the result is

a serial program that could run in parallel if there was a way to schedule the units of computa-

tion on a system of parallel processors while obeying the data dependencies.

SCHEDULE works in a manner similar to an operating system to schedule processes that

are ready to execute. It consists of two queues: a process queue and a ready queue. A pro-

cess identifies a subroutine call and pointers to addresses needed to make the call. A process

tag is placed upon the ready queue when its data dependencies have been satisfied. In addition

to this Work routines are constructed which are capable of assuming the identity of any pro-

cess that will appear on the queue. A fixed number of these routines are devoted to the

library. They are activated (created, forked, etc.) at the outset of the computation and remain

activated throughout the course of this computation. Within this scheme calls to matrix vector

routines (for example) are not made explicitly, they are instead put on the process queue to be

performed as soon as they can be picked up by one of the workers through the scheduler

mechanism. Transportability is achieved because the actual references to machine specific syn-

chronization primitives are isolated in two low level SCHEDULE and are very few in number.

This together with the specific means for creating or forking processes are the only things that

need to be changed when moving from one machine to another. A schematic of the abstract

idea behind the scheduler is represented in Figure 6.2 below

85

Figure 6.2. Library Scheduler

5. Conclusions

This has been a sampling of some of the ideas for algorithms and implementation tech-

niques that we have been considering recently in the Mathematics and Computer Science Divi-

sion at Argonne National Laboratory. Traditionally, OUT activities have involved the develop-

ment of algorithms and techniques for implementing these algorithms in a transportable

manner. We view the work presented here as an extension of this theme that will aid us in

addressing similar problems that are arising with the advent of exotic computer architectures.

We find the subject challenging and rewarding in terms of its potential. We encourage others

to join us in pursuing the means to provide useful methodologies and software techniques to

enable us to make effective use of the developing hardware.

86

6. References

111

[21

[31

[41

PI

KY

[71

181

[91

R. G. Babb II, Parallel Processing with Large Grain Data Flow Techniques, IEEE Com-

puter, Vol. 17, No. 7 , pp. 55-61, July (1984).

J.R. Bunch, C.P. Nielsen, and D.C. Sorensen, Rank-One Modification of the Symmetric

Eigenproblem, Numerische Mathematik 31, pp. 31-48, (1978).

J.J.M. Cuppen A Divide and Conquer Method for the Symmetric Tridiagonal Eigenprob-

lem, Numerische Mathematik 36, pp. 177-195, (1981).

J.J. Dongarra and S.C. Eisenstat, Squeezing the Most out of an Algorithm in CRAY For-

tram ACM Trans. Math. Software, Vol. 10, No. 3, (1984).

J.J. Dongarra and D.C. Sorensen, A Fully Parallel Algorithm for the Symmetric Eigen-

value Problem. Argonne National Laboratory Report ANL/MCS-TM-62, (January 19X6),

J.J. Dongarra, A.H. Sameh, and D.C. Sorensen, “Some Implementations of the QR Fac-

torization on an MIMD Machine”, Argonne National Laboratory Report ANL/MCS-TM-

25, (October 1984), to appear in Parallel Computing.

J.J. Dongarra, Performance of Various Computers Using Standard Linear Equations

Sofhvare in a Fortran Environment, Argonne National Laboratory Report MCS-TM-23,

(updated August 1984).

J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’ Guide,

SIAM Publications, Philadelphia, (1979).

J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson, A Proposal for an Extended Set

of Fortran Basic Linear Algebra Subroutines, Argonne National Laboratory Report

MCS/TM 41, Revision 1 (October, 1985).

[IO] J.J. Dongma, L. Kaufman, and S. Hammarling Squeezing the Most out of Eigenvalue

Solvers on High-Performance Computers, Argonne National Laboratory Report ANL

MCS-TM 46, (January 1985), to appear in Linear Algebra and Its Applications.

Ill] K. Fong and T.L. Jordan, Some Linear Algebra Algorithms and Their Performance on

CRAY-1, Los Alamos Scientific Laboratory, UC-32, (June 1977).

87

[12] B.S. Garbow, J.M. Boyle, J.J. Dongarra, and C.B. Moler, Mark Eigensystem Roudnes -

EISPACK Guide Extension, Lecture Notes in Computer Science, Vol. 51, Springer-

Verlag, Berlin, (1977).

[13] W. Gentleman, Error Analysis of the QR Decomposition by Givens Trmsfomarions.

Linear Algebra and Ita Applications, Vol. 10, pp. 189-197, (1975).

[14] M. Gentleman and H. T. Kung, Mark Trinngularization by Systolic Arrays, in Proceed-

ings SPIE 298 Real-Time Signal Processing IV, San Diego, California, (1981).

[15] A. George and M. T. Heath, Solution of Sparse Linear Least Squares Problems Using

Givens Rotadons, Linear Algebra and Its Applications, Vol. 34, pp. 69-83, (1980).

[16] J. A. George, M. T. Heath and R. J. Plemmons, Solution of Large-Scale Sparse Least

Squares Problems Using Auxiliary Storage, SIAM Journal on Scientific and Statistical

Computing, Vol. 2, pp. 416-429, (1981).

[17] A. George and J. Liu, Computer Solution of Large Sparse Positive Dejinite Systems,

Prentice-Hall, Englewood Cliffs, New Jersey, (1981).

[la] W. Givens, Numerical Compuration of the Characrerisric Values of a Real Symmetric

Matrix. Oak Ridge National Laboratory Report ORNL-1574, Oak Ridge, Term., (1954).

[19] G.H. Golub, Some Modified Matrix Eigenvalue Problems, SIAM Review, 15, pp. 31%

334 (1973).

[20] G. H. Golub and R. J. Plemmons, krge Scale Geodetic Least Squares Adjustments by

Dissection and Orthogonal Decomposirion, Linear Algebra and Its Applications, Vol. 34,

pp. 3-28, (1980).

[21] M. T. Heath and D. C. Sorensen, A Pipelined Givens Method for Computing the QR-

Factorization of a Sparse Matrix ArgOMe National Laboratory Report ANL MCS-TM

47, (February 1985). Linear Algebra and Its Applications, (to appear).

[22] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic Linear Algebra Subprograms

for Fortran Usage. ACM Trans. Math. Software, 5 (1979), 308-371.

88

[23] E. Lusk and R. Overbeek, “Implementation of Monitors with Macros: A Programming

Aid for the HEP and Other Parallel Processors”, ANL-83-97, (1983).

[24] E. Lusk and R. Overbeek, “An Approach to Programming Multiprocessing Algorithms on

the Denelcor HEP”, ANL-83-96, (1983).

[25] J.J. More’ The Levenberg-Marquardt Algorirhm: Implementation and Theory, Proceedings

of the Dundee Conference on Numerical Analysis, G.A. Watson ed. Springer-Verlag

(1978).

[26] C.H. Reinsh, Smoorhing by Spline Functions. Numerische Mathematik 10, pp. 177-183,

(1967).

[27] C.H. Reinsh, Smoothing by Spline Functions II, Numerische Mathematik 16, pp. 451-454,

(1971).

[28] A. Sameh and D. Kuck, On Stable Parallel Linear System Solvers, Journal of the ACM,

Vol. 25, pp. 81-91, (1978).

[29] B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B.

Moler, Manix Eigensystem Routines - EISPACK Guide. Lecture Notes in Computer Sci-

ence, Vol. 6, 2nd edition, Springer-Verlag, Berlin, (1976).

[30] G.W. Stewart, Introduction to Matrix Computarionr, Academic Press, New York (1973).

[31] D.C. Sorensen, Buffering for Vector Performance on a Pipelined MIMD Machine. Paral-

lel Computing, Vol. 1, pp. 143-164, (1984).

[32] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford (1965).

