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ABSTRACT 

This paper describes a computational method for dealing with a class of matrices 
which arise in~quantum mechanics involving time reversal and inversion symmetry. 
The algorithms presented here have greatly reduced the computational effort required 
to solve this problem and also produce a stable, more accurate solution. 

1. INTRODUCTION 

An important problem in quantum mechanics involving time reversal and 
inversion symmetry is the computation of the eigensystem of a 2n X 2n 
complex Hermitian matrix. This problem arises from the use of relativistic 
kinematics in the calculation of electronic structure for molecules and solids 
containing heavy atoms [4, 51. The complex Hermitian matrix H is expressible 
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in the form 

J. J. DONGARRA ET AL. 

H=[_$ !j; (1.1) 

here and elsewhere the bar denotes the complex conjugate. From the Hermi- 
tian property of H we have 

A=AH, B= -jfff= -@-. 0.2) 

The first of these implies that A is Hermitian; the second implies that B is 
complex skew symmetric. Notice that B is not skew Hermitian and in general 
will not even be normal. 

If X is an eigenvalue of H (necessarily real) and 

then 

Ax+By=Xx and -Bx+Ay=Xy. (1.4) 

Hence, 

&+gq=Af and -B%+Aij=Xij. (1.5) 

and 

[ _*g ;I[ y=q _q7 (1.6) 

showing that if [x, y] T is an eigenvector corresponding to A, then [ y, - i] T is 
also an eigenvector corresponding to A. It is clear that the two vectors are 
orthogonal. Hence, the 2n eigenvalues of H consist of n pairs of equal 
eigenvalues. 

In what follows it is assumed that the reader is familiar with the Givens 
and Householder algorithms for the reduction of a Hermitian matrix to a real 
symmetric tridiagonal matrix via elementary similarity transformations based 
on plane rotations and elementary Hermitians respectively. 

The eigenvalues of H may be found simply by treating it as a complex 
2n X 2n Hermitian matrix, ignoring its structure. If this is done by reducing it 
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to tridiagonal form with the Householder algorithm, then the structure of H is 
immediately destroyed by the first transformation. Since every eigenvalue of 
H appears twice, there is a similarity transformation by a unitary matrix of 
eigenvectors which reduces H to 

H’= D 0 
[ 1 0 D' 

(1.7) 

where D is a diagonal matrix containing in general distinct elements. 
It follows that there are also unitary transformations of possibly simpler 

form which reduce H to 

H’= K o 
[ 1 0 K 

or H”= 0’ F , 
[ 1 (1.8) 

where K is Hermitian and T is real tridiagonal. 
The transformations which reduce H to diagonal form must have elements 

from the Galois field of the characteristic equation, since they solve that 
equation. The questicn for us is whether reduction to the K or T form can be 
done without access to that Galois field. 

Usually in cases where symmetry leads to multiple eigenvalues there are 
unitary matrices U which are elements of a finite group and commute with H. 
In these cases the Galois field of each U is easily accessible, and reduction to 
the K form is straightforward from Schur’s lemma. But in the case of time 
reversal these techniques cannot be used. From a group theoretical point of 
view, this paper shows that the T form with T real can be reached from H in 
Equation (1.1) by the standard numerical techniques of linear algebra. 

2. MOTIVATION 

The motivation for the algorithm we shall describe sprang from a consid- 
eration of the eigenvalue problem for a simple n x n complex Hermitian 
matrix X. We may write X = Y + 2, where Y and iZ are the real and 
imaginary parts. The Hermitian property of X implies that 

Y=YT and Z= -ZT, (2.1) 

i.e., Y is real and symmetric and Z is real and skew symmetric. The matrix X 
may be reduced to real tridiagonal form in n - 2 major steps. Each major step 
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consists of two minor steps. (We emphasize that we are not recommending 
this as an efficient method of solving the standard Hermitian problem.) If we 
write 

x = x(l) > (2.2) 

then the rth major step may be expressed in the form 

x(r+ 1) = p(‘)@‘)xw( p’yHp(‘), 
(2.3) 

where DC’) is a complex unitary diagonal matrix and PC’) is a real elementary 
Hermitian matrix of the form I - 2u(*)(u(‘))r. The first step is wholly typical 
and is adequately illustrated by considering a matrix of order 4. We have then 

Yl2 + %2 Yl3 + 2213 

Y2.3 + %.3 

Yz.3 - %!.3 Y23 
(2.4) 

y24 - iz24 Ye - h4 

where we have suppressed the upper suffix in the elements of X(l). The 
diagonal matrix Do) is chosen so as to make the first column of D(‘)Xo)( D(l))H 
real and hence also the first row real, since the Hermitian property is 
obviously preserved. Clearly the diagonal elements of D(l) must be 

1, 
Yl2 + 2212 Yl3 + 2213 Y14 + 2214 

, 3 
r12 T13 *14 

where 

and we have 

rli = (yl”, + z$” 

‘Yll r12 9.13 r14 

r12 Y22 Y, + izs y24 + “24 

T13 Y!z3---%3 Y33 Y34 + 2234 

f.14 Y, - 2224 Y, - %4 y44 

(2.5) 

(2.6) 

1 , (2.7) 

where we use yij, zij to denote the new values. This is the first minor step. 
The real elementary Hermitian matrix Z’(l) may now be chosen so that 

p(‘)~(l)X(‘)(~(‘))Hp(l) is tridiagonal as far as its first row and first columns 
are concerned, exactly as in the standard Householder reduction of a real 
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matrix. This is the second minor step. At the end of the rth step, Xc’+ ‘) is of 
the form illustrated when n = 7, r = 3: 

$4) = 

x x 
x x x 

x x x 
x x x x x 

x x x x 
x x x x 
x x x x 

(2.8) 

where the matrix in the bottom right hand comer is a Hermitian matrix of 
order n - r. The r + 1st major step is determined by this matrix of order n - r 
in exactly the same way as the first step was determined by the original 
matrix of order n. At the end of the n - 2nd major step X(“-‘) will be a real 
symmetric tridiagonal matrix apart from the last pair of off-diagonal elements, 
which will in general be complex. These can be made real by doing the first 
minor step of the n - 1st major step. The second minor step is not required. 

Let us now relate this somewhat more closely to the problem of Section I. 
The eigenvalues of X may be found via those of the 2n X2n real symmetric 
matrix 

fi=[ _i z,]. (2.9) 

[The symmetry of this matrix follows from the relations (2.1).] Notice that the 
matrix H of (1.1) would reduce to this form if the matrices A and B were real. 
If the eigenvalues (real) of X are hi, A,, . . . , A,, then those of Z? are 
A,, A,, A,, L..., X,, A,. Let P be a permutation matrix such that in PfiPT 
rows 1,2,3 ,..., 2n of H have become rows l,n+1,2,n+2 ,..., n,2n, and 
similarly for the columns. We have then typically, when n = 4, 

Yll 0 Yl2 212 Y13 213 Y14 214 

0 Yll - 212 Yl2 - 213 Y13 - 214 Y14 

Yl2 - 212 Y22 0 Y2.3 22.3 Y24 ‘24 

212 YlZ 0 Y22 - 22.3 YB - ‘24 Y24 
s 

Yl3 - 213 Y23 -22.3 Y33 0 Y34 234 

213 Yl3 22.3 Y23 0 Y33 -234 Y34 

Y14 - 214 Y24 -z24 Y34 -234 Y44 0 

214 Y14 224 Y24 234 Y34 0 Y44 

(2.10) 
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If we compare this with (2.4), then we see that each element a + ib in (2.4) is 
represented by the real 2 x 2 matrix 

[“b :I’ 
When b is zero (i.e. for a real entry) we have 

[ 1 a O=& 
Oa 2’ 

We observe that 

(2.11) 

(2.12) 

(2.13) 

where r = (a2 + b’)‘/’ and the first 2 X 2 matrix in (2.13) is clearly a real 
orthogonal matrix. 

If corresponding to the first minor step in connection with X(l) we form 
d(‘)@‘)(D(‘))r, where B(1) is a block diagonal matrix with diagonal blocks 

1 29 

(2.14) 

we have 

Z>cufp, [ jyl) 

Yll 0 r12 0 I.13 0 r14 0 

0 Yll 0 r12 0 f.13 0 r14 

r12 0 Y22 0 Y!23 x2.3 Y24 ‘24 

0 r12 0 Y,, - 223 Y23 - z24 Y24 

r13 0 Y23 - 223 Y3.3 0 Y34 z34 

0 r13 223 Y23 0 Y33 - x34 Y34 

*14 0 Y24 -224 Y34 - x34 Y44 0 

0 *14 ‘24 Y24 234 Y34 0 Y44 

(2.15) 
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(where we use yij, zij to denote the current values). Obviously (2.15) is 
related to (2.7) in the same way as (2.10) is related to (2.4), and elements 
denoted by yij and zij in (2.15) are the same as those in (2.7). The 
permutation of the rows served only as motivation; if we revert to original 
ordering we have 

Yll f.12 r13 *14 0 0 0 o- 

r12 Y22 Y23 Y24 0 0 223 ‘24 

r13 Y2.3 Y33 Y34 0 - 22.3 0 234 

Tl4 Y24 Y34 Y44 0 - ‘24 - ‘34 0 

0 0 0 0 Yll I.12 r13 7.14 

0 0 -223 -224 r12 Y22 Y23 Y24 

0 22.3 0 - 234 r13 Y2.3 Y33 Y34 

0 ‘24 234 0 *14 Y2A Y34 Y44 

. (2.16) 

This has the same structure as A, but the skew symmetric matrix now has a 
null first row and column. If we now premultiply and postmultiply (2.16) 
with the real orthogonal matrix 

[p:’ ;1J 

we are left with 

x x 0 ... 010 0 0 --- 0 

(2.17) 

(2.18) 

Obviously the reduction of the 2n x2n real matrix proceeds exactly as did 
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that of the n X n complex matrix, and in fact the same arithmetic is involved 
in the two methods. The 2n X 2n matrix retains the same structure throughout 
and is finally of the double tridiagonal form 

I 
x x 
x x x 

x x x 
x x 

x x 3 

x x x 
x x x 

x x_ 

(2.19) 

the two tridiagonal matrices being the same. At the beginning of the rth 
stage, the Y and Z matrices are of the forms illustrated when n = 7, r = 4 by 

and 

0 
0 

0 
0 x x x 

x 0 x x 

x x 0 x 
x x x 0 

(2.20) 

The current YCr) still is real and symmetric, and the Z(‘) is real and skew 
symmetric. The rth minor step effectively operates on the matrices of order 
n - T + 1 in the bottom right hand comer of YCr) and Z(“. In the first minor 
step of this rth step the elements of the first row and column of the remaining 
matrix in Z(” are annihilated; in the second minor step Ycr) is reduced to 
tridiagonal form as far as its rth row and column are concerned via a 
similarity transformation with a real elementary Hermitian matrix. This step is 
exactly the same as the rth minor step in the classical Householder tridi- 
agonahzation of a real symmetric matrix. When this real similarity transforma- 
tion is applied to Z(‘), none of the previously induced zeros are affected. 
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The elementary similarity transformations in the Householder tridiagonali- 
zation of a real symmetric matrix Y are usually coded via the relations 

(I - 2uuT)Y(Z - 2 UU~)=Y-~U(U~Y)-~(YU)U~+~UU(U~YU)U~ 

= Y - 2upr- 2puT+4UUT 

= Y - 2uqT - 2quT, (2.21) 

where 

p=Yu, a=uTp, q=p-au. (2.22) 

The analogous relations for a real skew symmetric matrix Z are 

(I - 2uUr)Z(z - 2 UU~)=Z-~U(U~Z)-~(ZU)U~+~U(U~ZU)U~ 

= z + 2upr - 2pur, (2.23) 

where 

p = zu, &+ -&T, _ T Pa UTZU = 0, (2.24) 

the last two results following from the skew symmetry of Z. Equation (2.21) 
shows the obvious symmetry of the transformed Y, while Equation (2.23) 
shows the obvious skew symmetry of the transformed Z. These results are of 
great importance in connection with the problem defined in (1.3). 

The volume of computation involved in processing the 2n x 2n real matrix 
is identical with that in the processing of the n X n complex matrix described 
earlier; even the rounding errors are the same. 

We emphasize once again that we are not recommending that the 
standard eigenvalue problem for a complex Hermitian matrix should be solved 
in this way; it is most efficiently done by tridiagonalization of X using the 
complex equivalent of the usual Householder tridiagonalization. 

3. THE 2n X2n COMPLEX PROBLEM 

We turn now to the problem defined by Equation (1.3) and shall show 
that the matrix can be reduced to the form 

T 0 1 1 0 T’ (3.1) 
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where T is a real symmetric n x n tridiagonal matrix. There are n - 2 major 
steps, each of which consists of two minor steps. These steps have a great deal 
in common with those for the real 2n X 2n matrix, as can be seen from the 
following description of the first major step. If we reorder the rows and 
columns of the 2n X2n matrix as in the previous section, we obtain a matrix 
of the form 

) (3.2) 

a11 0 a12 b 12 a13 b 13 a14 b 14 

0 a11 - h2 a12 -&3 a13 -&4 514 

- 

a12 -h2 ~2 0 au b, ‘24 b 24 

h2 a12 0 a22 -zD a, -‘24 ‘24 

- 

a13 -b13 53 -bD a3 0 uM b, 

h3 a13 6, a23 0 a33 -7& a, 

- 

a14 - bl4 a24 -b24 a34 - b34 a44 0 

54 a14 $24 ‘24 &4 a34 0 a44 

where the a i j and bi j are complex and the a i i are real. We observe that 

where 

u = ax - bij, v = b% + ay, (3.4) 

so that the product of matrices of the form 

i-2 51 (3.5) 

is a matrix of the same form. Matrices of this type do not, in general, 
commute, though they do so if all of the elements are real. Fortunately we do 
not need this property. Applications of the above show that 

(3.6) 

(3.7) 

where 

r = ( la12 + lb12)"2, 



EIGENVALUE PROBLEM FOR HERMITIAN MATRICES 
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so that the first matrix in (3.6) is unitary. In the first minor step we perform a 
unitary similarity transformation on (3.2) with the 2 X 2 block diagonal matrix 
defined by 

From (3.3), (3.6), and (3.8) the transformed matrix is of the form 

a11 0 r12 0 T13 0 r14 0 

0 a11 0 T12 0 T13 0 I.14 

r12 0 as2 0 a23 b23 a24 b24 

0 r12 0 a22 -& a23 -$24 ‘24 

r13 0 ii, -b, a3 0 a34 b, 
3 (3.10) 

0 r13 bB UB 0 a33 A34 a,, 

7.14 0 ii, -b,, a, -b,, a44 0 

0 r14 ‘24 ‘24 &4 a34 0 a44 

where as usual aij, bij now denote values after the transformations. These 
new values are derived via relations of the type exemplified in Equation (3.3). 
The reordering was performed only for convenience; returning to the original 
ordering, we have 

1 211 r12 

r12 a22 
- 

r13 a23 

7.14 ‘24 

0 0 

0 0 

0 623 

0 

r13 r14 

a23 a24 

a33 a34 
- 

a34 a44 

0 0 

-i& -i&$ 

0 -6, 

z3 0 

0 0 0 0 

’ ’ b23 b24 

0 -b, 0 b, 
0 - b,, -b, 0 

a11 r12 r13 r14 

r12 a22 a, 

_ 

‘24 

- 

r13 a23 a33 a34 

r14 a24 a34 a44 

(3.11) 
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This matrix has the same structure as the original, but the first row and 
column of the A part are now real, and the first row and column of the B part 
are null. We have now completed the first minor step of the first major step. 
In the second minor step we perform a real orthogonal similarity with the 
matrix 

(3.12) 

where P(l) is the real elementary Hermitian (i.e. a matrix of the form 
I - 2~~r) which annihiliates elements (1,3), (1,4),. . . ,(l, n) and 
(3, I), (4, I), * * * , (n, 1) of the A matrix. This is determined from the rii exactly 
as in the first major step of the classical Householder tridiagonalization 
algorithm. The null first row and column in the B part are obviously 
preserved. After r steps the configuration is of the form illustrated when 
n= 5, r = 2 by 

a1 &O 0 0 00 0 0 0 

p2 a2 p, 0 0 0 0 0 0 0 

0 P3 a33 a34 a34 0 0 0 b, b35 

0 0 a, U& a45 0 0 -b, 0 b45 

0 0 ii,, ii45 as 0 0 - b,, - b45 0 

000 0 0 ffl P2 0 0 0 

000 0 0 P2 a2 P3 0 0 

0 0 0 -&4 -b35 0 P3 a% ii, %5 

0 0 z3 0 -Z45 0 0 a3 a@ ii,5 

0 0 b35 b45 0 0 0 as a45 a55, 

(3.13) 

The Hermitian form of the A part is still preserved, and so is the complex 
skew symmetric form of the B part. The A part is already tridiagonal in the 
first r rows and columns, while the B part is null in its first r rows and 
columns. 

The first major step is wholly typical. In major step r + 1 we first make the 
elements in rows and columns r + 1 of the A part real, and the elements in 
rows and columns r + 1 of the B part are annihilated. We then construct a real 
elementary Hermitian PC’+‘) which will annihilate elements (r + 1, r + 2) 
(r+l,r+3);**,(r+l,n), and (r+2,~+l),(r+3,r+l);..,(n,r+l) of 
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the A part and apply the real orthogonal similarlity based on the matrix 

i 

p(r+ 1) 0 

0 p(‘+u 1 
(3.14) 

to the full 2n x2n array. On completion of the n - 2nd major step, the A 
parts will be tridiagonal and the B parts will be completely null. A will be real 
except for elements (n - 1, n) and (n, n - l), but they can be made real by 
doing what is in effect the first minor step of an n - 1st major step. 

Obviously we do not need to have the full 2n X 2n array; we need store 
only the current A array and the current B array, and in storing them we can 
take advantage of the symmetry and skew symmetry respectively. It is even 
more convenient to think of the A and B matrices as separated into their real 
and imaginary parts. Thus we write 

A”’ = UC’) + iv(‘) B(r) = Xc’) + iy(‘) (3.15) 

for each stage, where UC’), V(‘), Xc’), and Y(l) are real, UC’) being symmetric 
and V(‘), Xc’), and Y(‘) being skew symmetric. In the first minor step of each 
major step the formula for the elements of the transformed U, V, X, and Y 
matrices are derived from their original values by thinking in terms of the 
complex A(‘) and B (I). The transformation Per) is then determined entirely 
from rows T (or columns r) of UC’), and we compute P(‘)U(‘)P(‘), P(‘)V(‘)P(‘), 
P@,X(‘,P”,, and P(r,y(‘,P(‘)_ N o ‘ce that three of the four transformations b 

are of skew symmetric matrices and involve rather less work then the 
transformation of the real symmetric matrix. On completion, V, X, and Y are 
completely annihilated and U is a real symmetric tridiagonal matrix. 

4. THE GENERALIZED PROBLEM 

The standard problem (1.3) has been presented first for convenience, but 
in practice the problem commonly arises in the form 

H,z = AH,z, (4.1) 

where both H, and Hz have the same structure as H in (1.1) and H, is positive 
definite. The generalized problem can be reduced to the standard problem if 
we can determine the matrix S such that 

We have then 

SH,SH = I. (4.2) 

SH,SH(S-Hz) = hSH,SH(S-Hz). (4.3) 
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Obviously for economy of computation it is desirable to determine S in a 
factorized form 

s = s,- . . s,s, 

and in such a way that 

S S H S”S” 21 1129 S,S,H,S,HS,H, (4.5) 

. . . 

have the same structure as H at every stage. 
This can be done in n - 1 major steps, each step being determined by the 

current H, matrix. The first major step is wholly typical. It consists of two 
minor steps. The first minor step is exactly that applied to H as described in 
Section 3 and is best motivated by thinking in terms of the permuted form of 
H,. This reduces H, to the form illustrated in (3.11) (with the original 
ordering). In the second minor step we premultiply by the real matrix 

Ll 0 
[ I 0 Ll (4.6) 

and postmultiply by the transpose of this, where L, is typically of the form 

I- - - r12/a1, r,,/a,, r14/a,, 1 0 0 0 1 0 0 0 I 0 0 0 I 1 (4.7) 

when n = 4. This annihilates the off-diagonal elements in the first rows and 
columns of the A part. The B part is unaffected, since its first row and column 
are null. The structure of H, is obviously preserved. If we think in terms of 
the real and the imaginary parts of the A and B matrices of H,, the second 
minor step obviously affects only the real part of A. 

After n - 1 steps of this kind, H, is reduced to the form 

D 0 
[ 1 0 D (4.8) 

where D is a real positive diagonal matrix. This can be reduced to the identity 
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matrix by premultication and postmultication with 

D-‘/z 0 

0 D-1/2 1 
(4.9) 

All transformations applied to H, must also be applied to Hi. The structure of 
H, is obviously presrved, though, of course, it remains a full matrix (i.e. no 
zeros are induced). More work is involved in the transformation of H, than of 
H,, both for this reason and also because all off-diagonal elements of H, 
remain complex throughout. 

5. RELATIVE PERFORMANCE 

The performance of the algorithms presented in this paper is best de- 
scribed by comparing them against standard methods as implemented in the 
EISPACK [3] collection of software. In EISPACK there are routines for dealing 
with Hermitian matrices, which is the closest we can get to the matrix 
described in Equation (1.1). The routine in EISPACK to handle this case is CH. 
This uses a sequence of Householder transformations to reduce the full 
2n X2n complex Hermitian matrix to real tridiagonal form; then the QR 
algorithm is used on this 2n X2n tridiagonal matrix to find the eigenvalues. 
For the generalized problem, the matrix H, can be decomposed using a 
Cholesky decomposition, say from LINPACK [l]. This would then be applied to 
the matrix H,, transforming the generalized problem into a standard one. The 
table below gives the ratios of execution time for the two approaches: 

Standard problem 
Hz = AZ 
EISPACK: OUTS 

Generalized problem 
H,z = AH,z 
LINPACK and 

EISPACK: OUTS 

A Xandz 

2.5 3 

2.25 2.75 

Thus, the procedures developed here are over twice as fast as standard 
available techniques. These ratios hold true for large order problems as well as 
small problems. 

For the standard problem, if just the eigenvalues are desired, the require 
ment for storage using the EISPACK routines is the same as our approach. For 
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the case where the eigenvalues and eigenvectors are required, our approach 
needs an additional n2/2 real locations to save information of the transforma- 
tions. In the generalized problem, if just the eigenvalues are computed, the 
storage requirements are the same. For computing both the eigenvalues and 
eigenvectors an additional n2 real locations are necessary for our procedure. 
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