SIAM REVIEW © 1984 Society for Industrial and Applied Mathematics
Vol. 26, No. 1, January, 1984 0036-1445/84/2601-0003 $01.25/0

IMPLEMENTING LINEAR ALGEBRA ALGORITHMS FOR DENSE MATRICES
ON A VECTOR PIPELINE MACHINE*

J. J. DONGARRA,} F. G. GUSTAVSON{ AND A. KARP§

Abstract. This paper examines common implementations of linear algebra algorithms, such as matrix-
vector multiplication, matrix-matrix multiplication and the solution of linear equations. The different versions
are examined for efficiency on a computer architecture which uses vector processing and has pipelined
instruction execution. By using the advanced architectural features of such machines, one can usually achieve
maximum performance, and tremendous improvements in terms of execution speed can be seen over
conventional computers.

1. Introduction. In this paper we describe why existing algorithms for linear algebra
are not usually suited for computers that employ advanced concepts such as pipelining
and vector constructs to achieve enhanced performance. We examine the process of
refitting or reorganizing an underlying algorithm to conform to the computer architec-
ture, thereby gaining tremendous improvements in execution speeds while sacrificing
neither accuracy nor algorithm clarity. This reorganization, where it can be done, is
usually conceptually simple at the algorithm level. This paper will not address the issues
involved with parallel processing. For a survey of parallel algorithms in linear algebra see
the review paper by Heller [8].

We will not concern ourselves here with an actual implementation on a specific
architecture: To do so, one must understand all the subtlety and nuances of that
architecture and risk obscuring the fundamental ideas. Rather, we use the features of a
vector pipeline machine to understand how various aspects interrelate and how they can
be put together to achieve very high execution rates.

We use the term architecture in reference to the organization of the computer as seen
by the programmer or algorithm designer. Within the architecture we focus on the
instruction set and memory references, and their interaction in terms of performance.

We will concentrate our examination on the behavior of linear algebra algorithms for
dense problems that can be accommodated in the main memory of a computer. The
solutions proposed here do not, in general, carry over to sparse matrices because of the
short vector lengths and the indirect addressing schemes that are so prevalent in sparse
matrix calculations. For a discussion of methods for handling the sparse matrix case, see
(51, [7].

We will focus in particular on algorithms written in Fortran and assembly language.
Fortran is an appropriate language, given the scientific nature of the application;
occasional use of assembly language enables us to gain the maximum speed possible. The
use of Fortran implies some storage organization for array elements. By definition
Fortran must have matrix elements stored sequentially by column. As one accesses
consecutive elements in a column of an array, the next element is found in the adjacent
location. If references are made by rows of the array, accesses to the next element of a row
must be offset by the number of elements in a column of the array. This organization will
be important in the actual implementation.

*Received by the editors September 21, 1982, and in revised form June 28, 1983. This research was
supported in part by IBM.

tArgonne National Laboratory, Argonne, Illinois 60439. The research of this author was supported in
part by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of
the U.S. Department of Energy under contract W-31-109-Eng-38.

FIBM T. J. Watson Research Center, Yorktown Heights, New York 10598.

§1BM Palo Alto Scientific Center, Palo Alto, California 94304.

91

92 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

2. Vector pipeline concepts. As background we will describe some of the basic
features found in supercomputers, concentrating on those features that are particularly
relevant to implementing linear algebra algorithms. For a more thorough discussion of
supercomputers, see [9], [11], [13]. We will concentrate our attention on an architecture
that is “Cray-like” in structure, i.e., one that performs vector operations in a vector
register configuration with concurrency provided by pipelining and independent instruc-
tion execution. We choose a configuration like the Cray-1 [16] for a number of reasons: It
performs well on short vectors, it has a simple instruction set, and it has an extremely fast
execution rate for dense, in-core linear algebra problems. Nevertheless, the underlying
concepts can be applied to other machines in its class, e.g., the Cyber 205. (A few words of
caution: Not everything can be carried over. For instance, in the Cyber 205 access must be
made by column to allow for sequential referencing of matrix elements.)

A computer that is “Cray-like” derives its performance from several advanced
concepts. One of the most obvious is the use of vector instructions. By means of a single
instruction, all elementwise operations that make up the total vector operation are carried
out. The instructions are performed in vector registers. The machine may have k such
elements in a vector register in addition to having a conventional set of registers for scalar
operations. A typical sequence of instructions would be as follows:

Load a scalar register from memory
Load a vector register from memory
Perform a scalar-vector multiplication
Load a vector register from memory
Perform a vector-vector addition
Store the results in memory.

These six instructions would correspond to perhaps 6k + 1 instructions on a conventional
computer, where k instructions are necessary for loop branching. Clearly, then, the time
to interpret the instructions has been reduced by almost a factor of k, resulting in a
significant savings in overhead.

Cray-like hardware typically provides for “simultaneous” execution of a number of
elementwise operations through pipelining. Pipelining generally takes the approach of
splitting the function to be performed into smaller pieces or stages and allocating separate
hardware to each of these stages. Pipelining is analogous to an industrial assembly line
where a product moves through a sequence of stations. Each station carries out one step in
the manufacturing process, and each of the stations works simultaneously on different
units in different phases of completion. With pipelining, the functional units (floating
point adder, floating point multiplier, etc.) can be divided into several suboperations that
must be carried out in sequence. A pipelined functional unit, then, is divided into stages,
each of which does a portion of the work in, say, one clock period. At the end of each clock
period, partial results are passed to the next stage and partial results are accepted from
the previous stage.

The goal of pipelined functional units is clearly performance. After some initial
startup time, which depends on the number of stages (called the length of the pipeline, or
pipe length), the functional unit can turn out one result per clock period as long as a new
pair of operands is supplied to the first stage every clock period. Thus, the rate is
independent of the length of the pipeline and depends only on the rate at which operands
are fed into the pipeline. Therefore, if two vectors of length k are to be added, and if the
floating point adder requires 3 clock periods to complete, it would take 3 + k clock
periods to add the two vectors together, as opposed to 3 * k clock periods in a conventional
computer.

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE 93

Another feature that is used to achieve high rates of execution is chaining. Chaining
is a technique whereby the output register of one vector instruction is the same as one of
the input registers for the next vector instruction. If the instructions use separate
functional units, the hardware will start the second vector operation during the clock
period when the first result from the first operation is just leaving its functional unit. A
copy of the result is forwarded directly to the second functional unit and the first
execution of the second vector is started. The net result is that the execution of both vector
operations takes only the second functional unit startup time longer than the first vector
operation. The effect is that of having a new instruction which performs the same
operation as that of the two functional units that have been chained together. On the Cray
in addition to the arithmetic operations, vector loads from memory to vector registers can
be chained with other arithmetic operations.

For example, let us consider a case involving a scalar-vector multiplication, followed
by a vector-vector addition, where the addition operation depends on the results of the
multiplication. Without chaining, but with pipelined functional units, the operation would
takea + k + m + k clock periods, where a is the time to start the vector addition (length
of the vector addition pipeline) and m is the time to start a vector multiplication (length of
the vector multiplication pipeline). With chaining, as soon as a result is produced from the
adder, it is fed directly into the multiplication unit, so the total time is a + m + k. We
may represent this process graphically as in Fig. 1.

UNCHAINED CHAINED

VM
rrrrrrrn

VA
rrrrrrrza

VM
VA

INSTRUCTIONS
INSTRUCTIONS

TIME TIME

FiG. 1.

It is also possible to overlap operations if the two operations are independent. If a
vector addition and an independent vector multiplication are to be processed, the resulting
timing graph might look like Fig. 2.

To describe the time to complete a vector operation, we use the concept of a chime
[6]. A chime (for chaining time) is a measure of the time needed to complete a sequence
of vector operations. To compute the number of chimes necessary for a sequence of
operations, one divides the total time to complete the operations by the vector length.
Overhead of startup and scalar work are usually ignored in counting chimes, and only the
integer part is reported. For example, in the graph for unchained operations above there
are two chimes, whereas in the graph for the chained operation there is one chime.

OVERLAPPED

2| ww

o ZZZZTZ7TZA

=

S| v

a

%

E

TIME

FiG. 2.

94 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

As Fong and Jordan [6] have pointed out, there are three performance levels for
algorithms on the Cray. The two obvious ones are scalar and vector performance. Scalar
performance is achieved when operations are carried out on scalar quantities, with no use
of the vector functional units. Vector performance is achieved when vectors are loaded
from memory into registers, operations such as multiplication or addition are performed,
and the results are stored into memory. The third performance level is called supervector
[6], [10]. This level is achieved when vectors are retained in registers, operations are
performed using chaining, and the results are stored in registers.

Dramatic improvements in rates of execution are realized in going from scalar to
vector and from vector to supervector speeds. We show in Fig. 3 a graph of the execution
rate in MFLOPS (million floating point operations per second) for LU decomposition of a
matrix of order n as performed on the Cray-1. When supervector rates are achieved, the
hardware is being driven at close to its highest potential. Later in this paper we describe
what leads to this supervector performance.

In summary, then, vector machines rely on a number of techniques to enhance their
performance over conventional computers:

Fast cycle time,

Vector instructions to reduce the number of instructions interpreted,

Pipelining to utilize a functional unit fully and to deliver one result per cycle,
Chaining to overlap functional unit execution, and

Overlapping to execute more than one independent vector instruction concurrently.

Programs that use these features properly will fully utilize the potential of the vector
machine.

140 T T T T | — T

SUPER VECTOR

40+ —
VECTOR
20— /”__—
SCALAR
0 | L + 4 1 t +
0 50 100 150 200 250 300 350 400
ORDER

FiG. 3.

3. Matrix-vector example. We are now ready to examine a simple but important
operation that pervades scientific computations: the matrix-vector product y «— A4 # x,
where y is a vector with m elements, 4 is a matrix with m rows and n columns, and x is a
vector with n elements. We will write the matrix-vector product as follows:

Generic matrix-vector multiplication algorithm.

for =1to
for =1to
Yi=Yit+ a;*Xx;
end

end

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE 95

We have intentionally left blank the loop indices and termination points of the loop
indices. There are basically two ways to encode this operation:

fori=1tom fori=1tom
yi=0 y,'=0
forj=1ton end
Vi=Yi+ a;* x; forj=1ton
end fori=1tom
end Yi=yit+a;*x;
end
end
y+—A*x y—A*x
Form ij Form ji

In form ij, references to the matrix 4 are made by accessing across the rows. Since
Fortran stores matrix elements consecutively by column, accesses made to elements in a
row need to have an increment, or stride, different from one in order to reference the next
element of the row. For most machines a stride of one or any other constant value can be
accommodated.

With a “Cray-like” computer in which the memory cycle time is longer than the
processor cycle time, however, there exists the possibility of a memory bank conflict.

After an access, a memory bank requires a certain amount of time before another
reference can be made. This delay time is referred to as the “memory bank cycle time.”
This memory cycle time on both the Cray-1 and the Cyber 205 is four processor cycles.
The operation of loading elements of a vector from memory into a vector register can be
pipelined, so that after some initial startup following vector load, vector elements arrive in
the register at the rate of one element per cycle. To keep vector operands streaming at this
rate, sequential elements are stored in different banks in an “interleaved” memory. If a
memory bank is accessed before the memory has a chance to cycle, chaining operations
will stop. Instead of delivering one result per cycle, the machine will deliver one result per
functional unit time. In other words, it will operate at scalar speeds, seriously degrading
performance. Note, too, that the Cyber 205 must gather data that is not contiguous in
memory before it can begin computing.

When matrix elements are referenced by column, a bank conflict cannot occur; but if
accesses are by row, there is a real potential of such a conflict. (Whether or not conflicts
occur depends on the number of memory banks and on the size of the array used to contain
the matrix.) The moral is that column accesses should be used whenever possible in a
Fortran environment. (Note also that in computers which use virtual memory and/or
cache memory, row accesses greatly increase the frequency of page faults.) As we shall
see, in most situations by a simple reorganization the inner product can be replaced by a
complete vector operation.

Form ji uses column operations exclusively. The basic operation here is taking a
scalar multiple of one vector, adding it to another vector and storing the result. We refer
to this operation as SAXPY, the name given it in the BLAS (Basic Linear Algebra
Subprograms) [12]. If we examine Form ji, we see that the vector y can reside in a vector
register and that it need not be stored into memory until the entire operation is completed.
Columns of the matrix A4 are loaded into a register and scaled by the appropriate element
of x; a vector accumulation is made with the intermediate result. In a sense what we have
here is a generalized from of the SAXPY. We give the name GAXPY to the operation of

96 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

loading a sequence of vectors from memory, multiplying the vectors by a sequence of
scalars and accumulating the sum in a vector register. As we shall see, the GAXPY is a
fundamental operation for many forms of linear algebra algorithms and utilizes a
machine like the Cray to its full potential. We use the term GAXPY to conform to the
style of the BLAS. GAXPY is simply a matrix vector product.

We recommend that in general that Form ji be used over Form ij. This suggestion
holds when m and n are roughly the same size. Indeed, Form ji usually provides the best
results. Nevertheless, the following caveat should be made: When m is much less than n
and less than the number of elements in a vector register, Form ij should be given
consideration. In such cases, Form ji will have short vector lengths, whereas Form ij will
have long vectors.

In some situations it may be necessary to calculate a matrix vector product with
additional precision, e.g., when a residual calculation is needed. One immediately thinks
of using accumulation of inner product; but from our discussion above, we see that a
GAXPY can be used to accomplish the same task in a purely vector fashion, provided that
vector operations can use extended precision arithmetic.

4. Matrix multiplication. We will now look at another fundamental operation in
linear algebra: the process of multiplying two matrices together. The process is concep-
tually simple, but the number of operations to carry out the procedure is large. In
comparison to other processes such as solving systems of equations (2/3 n* operations) or
performing the QR factorization of a matrix (4/3 n’ operations [17]), matrix multiplica-
tion requires more operations (2rn* operations). (Here we have used matrices of order # for
the comparisons. The operation counts reflect floating point multiplication as well as
floating point addition. Since addition and multiplication take roughly the same amount
of time to execute and each unit can deliver one result per cycle, the standard practice is to
count separately each floating point multiplication and floating point addition.)

We wish to find the product of 4 and B and store the result in C. From relationships
in linear algebra we know that if 4 and B are of dimension m x nand n x p, respectively,
then the matrix C is of dimension m x p. We will write the matrix multiplication
algorithm as

Generic matrix multiplication algorithm.

for =1to
for =1to
for =1to
Cj=cCy+ ay* by
end
end
end

We have intentionally left blank the loop indices and termination points. The loop indices
will have variable names i, j, and k, and the termination points for the indices will be m, p,
and n, respectively.

Six permutations are possible for arranging the three loop indices. The generic
algorithm will give rise to six forms of matrix multiplication. Each implementation will
have quite different memory access patterns, which will have an important impact on the
performance of the algorithm on a “Cray-like” processor. For an alternative derivation of
these six variants, see [1].

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE

We summarize the algorithms below.

fori=1tom forj=1top
forj=1top fori=1tom
;=0 c;=0
fork=1ton fork=1ton
Cij = Cyj + Qi * by, Cij = Cyj + Ay * by
end end
end end
end end
Form ijk Form jik
fori=1tom forj=1top
forj=1top fori=1tom
c;=0 c;=0
end end
end end
fork=1ton fork=1ton
fori=1tom forj=1top
forj=1top fori=1tom
Cij=Cyj + ay * by; cj=Cy+ ay* by
end end
end end
end end
Form kij Form kji
fori=1tom forj=1top
forj=1top fori=1tom
c;=0 c;=0
end end
fork=1ton fork=1ton
forj=1top fori=1tom
Cij=Cy + ay* by Cij=Cy+ ay * by
end end
end end
end end
Form ikj Form jki

97

We have placed the initialization of the array in natural locations within each of the
algorithms. All the algorithms displayed above perform the same arithmetic operations
but in a different sequence; even the roundoff errors are the same. Their performance
when implemented in Fortran can vary greatly because of the way information is
accessed. What we have done is simply “interchanged the loops™ [14]. This rearrange-
ment dramatically affects performance on a “Cray-like”” machine.

The algorithms of the form ijk and jik are related by the fact that the inner loop is
performing an inner product calculation. We will describe the vector operation and data

98 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

sequencing graphically by means of a diagram:

Form ijk

The diagram describes the sequence that the inner products of all columns of B with a row
of A4 are computed to produce a row of C, one element at a time.
For the form jik the data are referenced slightly differently so that the diagram is of

the form [}«[fH |]

Form jik

Both descriptions use an inner product as the basic operation. For reasons stated earlier
about bank conflicts when accessing elements in a row of a matrix, we do not recommend
the use of inner products such as in form jik on a “Cray-like” machine.

The algorithms of the form kij and kji are related in that they use the SAXPY as a
basic operation, taking a multiple of a vector added to another vector. For the form kij we

e

Form kij
In this case, a row of B is scaled by elements of a column of 4, and the result is used to

update rows of C.
For the form kji the access pattern appears as

-tl=L]

Form kji

3¢ 3¢

e

Since the access patterns for form kji are by column, we recommend it over kij in a
Fortran environment. It is important to point out that in a PL/1 or a Pascal environment,
form kij is preferred because of the row orientation. For Algol 60 and Ada no
specification in the language describes the array storage in memory, and Algol 68 allows
for either.

In the final two forms, ikj and jki, we see that the access patterns look like

e S o

Form ikj

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE 99

I

Form jki

and

e o0 3¢ 3
|

These forms use the GAXPY operation; that is, multiples of a set of vectors are
accumulated in a single vector before the storing of that vector is required. On a machine
like the Cray, algorithms that use the GAXPY perform at supervector speeds.

Operations such as load, multiplication, and addition can be chained together on the
Cray so that, after an initial startup, one result can be delivered per cycle. The store
operation, however, cannot be chained to any operation since one cannot then guarantee
the integrity of the data being loaded. That is, in a sequence like vector load—vector
multiplication—vector addition—vector store, the vector load will still be sending its
result to a vector register when the vector store is started, and a possible bank conflict may
arise (or worse yet, an element of a vector may be referenced first in a load and next in a
store operation, but because the increment or stride value on the vector in the store
operation may differ from that in the load, the store may overwrite an element before it is
loaded). Since such a check is not made in the hardware of the Cray-1, the store operation
is prohibited from chaining.

In terms of performance on the Cray-1, vector is 4 times faster than scalar, and
supervector 4 times faster than vector, so from scalar to supervector one can expect
performance to be 16 times faster. (These numbers are coarse and are meant to reflect
realistic values that have been gathered from experience with various linear algebra
programs on the Cray-1; they are not optimum values, [2].)

In terms of the six algorithms being discussed for matrix multiplication, only the
forms that use a GAXPY (forms ikj and jki) can achieve a supervector speed; and of them
only the form jki performs well in a Fortran environment because of its column
orientation.

Up to this point we have not been concerned with the lengths of vectors. We will now
assume that vector registers have some length, say v/ (in the case of the Cray-1, the vector
length is 64). When matrices have row and/or column dimensions greater than v/, an
additional level of structure must be imposed to handle this situation. (A machine like the
Cyber 205 does not have this problem since it is a memory to memory architecture; data is
streamed from memory to the functional units and back to memory.) Specifically with
algorithm jki, columns of the matrix can be segmented to look like the following:

s t.-- ¢ X
! 1 ot d :

¢ $.t X

where each segment is of length v/ except for the last segment which will contain the
remaining elements. The two ways to organize the algorithm are 1) to sequence column
segments across the matrix A, developing a single complete segment of C, or 2) to
sequence column segments down a column of 4, developing a partial segment of C.

These algorithms have an additional looping structure to take care of the vector
segmentation needed to process n elements in a vector register of length »/. The two
matrix multiplication algorithms for dealing with vectors of length greater than v/ are

100 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

shown below:

forj=1top forj=1top
fori=1tom for/ =1tomby vl
¢;=0 fori=1tomin(/ + vl — 1, m)
end ¢;=0
fork=1ton end
for /=1 to mby vl fork=1ton
fori =/tomin(/ + v/ — 1, m) fori=/tomin(/ + vl — 1, m)
Cji=Cy+ ay* by Cj=Cj+ ay * by
end end
end end
end end
end end
Form jki by block column Form jki by block row

The aims are to keep information in vector registers and to store the results only after
all operations are sequenced on that vector. The block row form accomplishes this goal: A
vector register is used to accumulate the sum of vector segments over all columns of a
matrix. In the block column form, however, after each multiple of a vector is added in a
register, it is stored and the next segment is processed.

Graphically we have the following situation:

S T S T
LA P
[i_bi}_ }

Block column

|: 'II 1J B .

Block row

¢3¢
| I |

Clearly we want to maintain the vector segment of C in a register to minimize data traffic
to and from memory, but mainly we want to avoid storing the information. The block
column algorithm does not allow the repeated accumulation of a column of C, since a
register cannot hold an entire column of the matrix C. It is interesting to note that while
sequential access is essential in a paged environment, a “Cray-like” architecture does not
suffer from paging problems. Therefore, the block row provides the best possible situation
and will lead to a very high rate of execution.

5. Linear equations. We now turn to one of the procedures that probably uses the
most computer time in a scientific environment: solving systems of equations. We will
concentrate our analysis on solving systems of equations by Gaussian elimination or, more
precisely, the reduction to upper triangular form by means of elementary elimination. To
retain clarity, we initially will omit the partial pivoting step; nevertheless, pivoting is vital
to ensure numerical stability and will be dealt with later.

Gaussian elimination usually transforms the original square matrix A4 into the
product of two matrices L and U, so that

A=LU.

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE 101

The matrices L and U have the same dimension as A4; L is unit lower triangular (i.e., zeros
above the diagonal and the value one on the diagonal), and U is upper triangular (i.e., zero
below the diagonal). The algorithm that produces L and U from A, in general, overwrites
the information in the space that 4 occupied, thereby saving storage. The algorithm,
when given the matrix in an array A, will produce in the upper triangular portion of the
array A the information describing U and in the lower triangular portion below the
diagonal the information describing L.

Like the matrix multiplication algorithm, the algorithm for Gaussian elimination
can be described as follows:

Generic Gaussian elimination algorithm.
for
for
for
a; = a; — (ay * ay;) /.
end
end
end

As before, we have intentionally left blank the information describing the loops. The
loop indices will have variable names i, j, and k, but their ranges will differ. Six
permutations are possible for arranging these loop indices.

If we fill in the blanks appropriately, we will derive six algorithmic forms of Gaussian
elimination. Each form produces exactly the same matrices L and U from A; even the
roundoff errors are the same. (We have omitted some numerically critical features, like
pivoting, in order to keep the structure simple.)

These six algorithms have radically different performance characteristics on a
“Cray-like” machine. As in the case of matrix multiplication, we can best investigate
these differences by analyzing the patterns of data access.

Forms ijk and jik are variants of the Crout algorithm of Gaussian elimination [17].
(To be more precise, these are variants of the Doolittle algorithm, but for simplicity we
refer to them as Crout.) The Crout algorithm can be characterized by its use of inner

products to accomplish the decomposition. At the ith step of the algorithm the matrix has
the form shown in Fig. 4.

>

FiG. 4.

For form ijk, inner products are formed with the ith column of U; and rows 1 through
n of the formed L to create the new elements of L;. A similar procedure is followed for
form jik, but with the roles of U and L interchanged. Notice that since inner products are

performed, if one accumulates the result in extended precision, a more accurate
factorization will result.

102 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

Form kij is the form most often taught students in a first course in linear algebra. In
brief, a multiple of a given row is subtracted from all successive rows to introduce zeros
between the diagonal elements of the given row k to the last row (see Fig. 5). After zeroing
out an element, the zeroing transformation is applied to the remainder of the matrix. This
algorithm references elements by rows and, as a result, is not really suited for Fortran.

FiG. §.

Form kji is the column variant of the kij row algorithm as described in [15] and is
used in the LINPACK collection [3]. This form is organized so that sweeps are made
down a column instead of across a row of the matrix. As with form kji, a zeroing
transformation is performed, and then that transformation is applied to the remainder of
the matrix. Since the operations occur within columns of the matrix, this algorithm is
more attractive in Fortran than either of the previous approaches. The basic operation is a
SAXPY. Since updates are made to all remaining columns of the matrix, there is no
opportunity to accumulate the intermediate result in extended precision.

The final two algorithms, forms ikj and jki, differ from forms kij and kji primarily in
how transformations are applied. Here, before zeros are introduced, all previous transfor-
mations are applied; and only afterwards is the zeroing transformation applied. Specifi-
cally, in form jki, columns 1 through i — 1 are applied to column i before zeros are
introduced in column i. This is the algorithm described in Fong and Jordan [6]; see
Fig. 6.

FiG. 6.

The basic operation of this algorithm is a GAXPY. As the previous transformations
are applied, a column of the matrix can remain in a register and need not be stored in
memory. Thus, the algorithm has the possibility of accumulating the intermediate vector
results in vector extended precision.

Since column orientation is preferable in a Fortran environment, we will concentrate
our attention on only three forms: jik, kji, jki which we will refer to as SDOT, SAXPY,
and GAXPY respectively. If we were dealing with some other language where row
orientation was desirable, then the other three forms would be appropriate for discussion.

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE 103

Notice that in choosing these forms, only in the Crout variants do we have to consider a
“stride” or worry about memory bank conflicts.

Appendix A lists the three forms implemented in Fortran 77.

We turn now to implementing the three forms in a pseudovector assembly language
(PVAL). This language is idealized to the extent that we assume that vector segmentation
and length of vector registers are not a problem. Segmentation is, nevertheless, an
important detail on some vector computers, and we will discuss it later. We also do not
label vector registers, but refer instead to their content.

In PVAL, then, we have the following instructions:

INCR i=nlton2 loop oni from nl to n2

LOOP i scope of loop on i

L s scalar load

ST s scalar store

VL v vector load

VST v vector store

VA ve—v+v vector-vector addition

VSM v« *s vector-scalar multiplication
VSD v<v/s vector-scalar division

VIP s+« s + v-v initialized vector inner product.

Appendix B lists the translations of the three algorithms into PVAL.
As one might expect, the three forms perform the same number of arithmetic
operations; see Table 1.

TABLE 1
number of divisions number of multiplications

n—1 n n—1 n n
SAXPY version > 3 3 Y1

k=1 i=k+1 k=1 j=k+1 i=k+1

n—1 n n j—1 n
GAXPY version >3 I IR

J=1 i=j+1 J=1 k=1 imk+1

n i n n j-1 i-1
SDOT version >3 > Z(1+ l)

=1 j=2 i=1 j=2 \ k=1 k=1
Total for each Vo(n? — n) Yan® — thn* + Yen

A more important quantity to measure with respect to vector machines is the
memory traffic, i.e., the loads and stores. In most situations the arithmetic will actually be
free; just the time spent in loading and storing results is actually observed, since the
arithmetic is often hidden under the cost of the loads and stores. We will use the word
“touch” to describe a load or a store operation. By examining the PVAL code found in
Appendix B we can count the vector load and store instructions used in the various
versions of LU decomposition; see Table 2.

In counting vector and scalar touches, some optimization has been performed.
Vectors are retained as long as possible in registers before storing. In sequences of
instructions where a scalar and vector are referred to and the scalar is located adjacent to
the vector, a vector load is performed of length one greater than the required vector; this
procedure saves the scalar load operation, thereby hiding the cost in the vector load. This

104 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

TABLE 2
Summary of loads and stores in LU decomposition
SAXPY GAXPY SboT
version version version
3 2 3 2 3 2
Total Touches 2L+n__'_1 14.31__53 n_+3l_5_”
3 2 6 3 2 6 3 2 6

optimization assumes that we can extract scalars from the vector registers; some
machines may require additional work to do the extraction.

We notice that the SAXPY approach has almost twice as many touches as the
GAXPY or SDOT approach. Most of this additional activity comes from vector store
operations, which will have a dramatic effect in machines where vector stores disrupt the
flow of computations. Even on a machine like the Cray X-MP, which has hardware
enhancements to avoid this bottleneck found on the Cray-1, the GAXPY version never
hinders performance. Experience on the Cray X-MP has shown that performance is
actually increased when a GAXPY is used; this results from fewer bank conflicts and poor
code generation by the compiler for the SAXPY version.

An important distinction to remember when comparing GAXPY and SDOT is that
the fundamental operation is different; GAXPY operates on vectors and produces a
vector, while SDOT operates on vectors and produces a scalar. The total number of
touches is roughly the same in the two algorithms.

We will next examine the execution times of the three algorithms. The sequence of
instructions in the innermost loop of the vector code is different for each implementation.
For the various versions the instructions are

L L L
VL VL VL
VSM VSM VIP
VA VA ST
VST

SAXPY GAXPY SDOT

We are interested in how these sequences are affected in different environments.
Specifically, we will look at four architectural settings:

No chaining or overlapping of operations.

Chaining of vector loads, vector addition, vector-scalar multiplication, but not vector
store.

Chaining of vector loads, vector addition, vector-scalar multiplication and vector
stores.

No chaining of operations, but overlapping of vector loads, vector addition, vector—
scalar multiplication and vector stores.

Throughout the different architectural settings we assume that each vector instruction is
pipelined in the sense that, after an initial startup, results are delivered at one per cycle.
Let us see how the architecture and the algorithm combine to give a measure of
performance. Consider first a machine that allows no chaining or overlapping of
instructions. The time taken by each algorithm then is the sum of the arithmetic time and
the number of touches. Since GAXPY and SDOT touch the data half as much as SAXPY,

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE 105

they take less time. If the inner product is implemented in a way that allows the
multiplication and addition to proceed in tandem, then the SDOT approach is fastest.
From the timing diagrams it is clear that SAXPY takes four chimes, GAXPY three
chimes, and SDOT only two chimes. (We assume that one vector has been prefetched and
remains in a register during the course of the operation.)

The situation is different on a machine that allows chaining. While the GAXPY
algorithm achieves supervector speeds, SAXPY only gives vector speeds; i.e., it takes two
chimes. The reason is simple: In GAXPY the vector store is outside the innermost loop,
while in SAXPY it is inside the loop. It is very difficult to analyze SDOT. The timing
diagram shows that SDOT and GAXPY both take one chime; the difference in time is due
to the different amounts of overhead. On the Cray-1, SDOT has the potential to seriously
degrade performance because of memory bank conflicts arising from row access patterns.

An interesting alternative to chaining is overlapping. Recall that on the Cray-1,
chaining will not occur if there are memory bank conflicts. The problem can be avoided if
memory access is overlapped with arithmetic. This approach allows data to be loaded into
the vector registers at an irregular rate while guaranteeing that the arithmetic units get
one input per machine cycle. The effect on timing can be seen by the first two passes
through the inner loops of SAXPY and GAXPY, see Fig. 7.

SAXPY takes two chimes per pass plus v/ machine cycles to get started; GAXPY and
SDOT each take only one chime plus v/ cycles to start. Although there is some overhead
that is not needed on a machine that chains, overlapping will reach vector or super-vector
speeds in situations that will not chain. Notice that we have allowed loads and stores of

L, .
VS0
—_
VST
| —
1)
H Y
! VST
: —_—
LINNER LOOPS 3

[—
vL
[')
] VM
H VA
1 V5D
] | S E— |

VL

]
1 INNER ! VST

] A)
L LOOPS 3

SDOT timing diagram with overlapping.

FiG. 7.

106 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

TABLE 3
Architecture SAXPY GAXPY SDoT
Sequential 4 3 2
Chain loads 2 1 1
Chain loads/stores 1 1 1
Overlap operations 2 1 1

independent data to proceed simultaneously. If this feature were not allowed, then
SAXPY would take three chimes.

These results are summarized in Table 3. The entries are the number of chimes
needed to complete the inner loop. However, the table tells only part of the story. Even
though SDOT looks as fast as GAXPY on a machine that chains, it can be slower on the
Cray-1 because of inefficient computation of inner product.

6. Segmentation of loops. Vector segmentation occurs when the vectors are longer
than the vector registers. As noted earlier, segmentation requires an extra loop. To study
segmentation, we extend the definitions of the PVAL instructions INCR and LOOP to
take an argument VSEG. Thus, the instruction

INCR vseg=mton

breaks vector loads and stores from element m to element 7 into segments of length »/. The
first v/ elements will be loaded or stored on the first pass, the next v/ elements on the next
pass, and so on. The vector load then looks like

VL avseg,j,

which will load the next segment of column j into the register.

If the segmentation is in the inner loop, then none of the algorithms is faster than
vector speed. The reason can be seen from the PVAL code for the inner loops of GAXPY,
given in Appendix B. The vector store is inside the loop on k instead of outside. (On a
paged machine architecture this would not be the optimum choice, see [4] for details.)
The timing diagram for the inner loop is given in Fig. 8.

If the segmentation is done outside the loop on j instead, the vector store can be kept
outside the inner loop. Supervector speed can then be achieved. Just as with the matrix
multiplication, we want to hold the result in the register as long as possible. Figure 9
shows the optimal access pattern.

The PVAL code in Appendix C has been modified to allow for segmentation. In each
case, the segmentation has been chosen to minimize the overhead. The notation a,,. ;x
means that the corresponding operation is to be performed only for rows j + 1 through the
end of the segment. In addition, operations on zero-length vectors are ignored.

In summary, we can make the following statements about performance. If we can be
assured that memory bank conflicts will not occur, and if we use GAXPY, then chaining
as implemented on the Cray-1 gives nearly optimal performance. If, on the other hand,
memory bank conflicts are frequent or the vectors are sufficiently long, then overlapping
is a viable alternative. Here either SAXPY or GAXPY will run nearly as fast as when
chaining occurs. Some machines, such as array processors, have efficient inner-product
hardware; on such machines, SDOT will be fastest.

Notice that GAXPY is fast or almost as fast as SDOT and that SAXPY is always
slower. In addition, SAXPY touches the data twice as much, which can cause memory

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE 107

| T EEE—

VST

[S|
VL
1 VM
[T S————
: 1A
: VST ;
L INNERLOOPS _ _ _ _ 4

| W S —
VL
I VM
HERTY ?
[} [R—]
l..——/£ —— — =V¥SD
INNER !ST, s

GAXPY timing diagram with chaining.

L

=%
RE—
- W
VL
: VIP
b e | VS
INNER LOOPS =L

SDOT timing diagram with chaining.

FIG. 8.

bandwidth bottlenecks. Therefore, if there is any uncertainty about the characteristics of
the machine, the coding should probably be done using GAXPY. To gain the most in
terms of performance on the Cray, simple vector operations are not enough. The scope
must be expanded to include the next level, matrix—vector operations, such as the
matrix—vector multiplication of GAXPY.

7. Pivoting. Up to this point we have ignored pivoting in the LU factorization.
Pivoting is necessary to stabilize the underlying algorithm. If the algorithm is applied
without pivoting to a general matrix, the solution will almost certainly contain unaccept-
able errors. Pivoting is a relatively simple procedure; in partial pivoting an interchange
is performed based on the largest element in absolute value of a column of the matrix.
In algorithm jki the pivot procedure is performed before the scaling operation (see
Appendix A).

In terms of performance, the pivoting procedure is just some additional overhead and
does not significantly affect the performance. We must, however, qualify this statement

v N

SAXPY GAXPY SDOT

FiG. 9.

108 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

somewhat. A pivoting operation involves the interchange of two complete rows of the
matrix. Therefore, we must issue two vector loads and two vector stores for each vector
segment in the rows. However, the segmentation is done in the outer loop, i.e., once per
column, and takes only about 2n additional vector touches. Unfortunately, these are row
accesses that may produce memory bank conflicts.

8. Conclusions. Our aim was not to rewrite an existing program but to restructure
the algorithm. This is more than a matter of words, program or algorithm. In looking at a
program, one has a tendency to focus on statements, detecting one vector operation here,
another there. To produce a truly vectorized implementation, however one must go back
to the algorithm and restructure it with vectors or matrix—vector constructions in mind.
We hope in the future that compilers will routinely carry out the process of restructuring.

Looking back, we have been pleasantly relieved to see that algorithms restructured
for a vector pipeline architecture perform as well or better than their predecessors on
conventional machines.

Looking forward, we admit that we may again have to go through this exercise for
multiprocessor machines such as the Cray X-MP, Cray-2, Cyber 2xx and the Denelcor
HEP.

Appendix A. Column variants of the generic Gaussian elimination algorithm.
SUBROUTINE KJI(A,LDA,N)

SAXPY
FORM KIJI - SAXPY

[oNoNON®!

REAL A(LDA,N)
DO 40K = 1,N-1
DO 101=K+1,N
A(LK) = -A(LK)/A(K,K)
10 CONTINUE
DO30J =K+1,N
DO201=K+1,N
ALY = A(LY) + A(LK)*A(K,J)
20 CONTINUE
30 CONTINUE
40 CONTINUE
RETURN
END

Form KJI

SUBROUTINE JKI(A,LDA,N)

GAXPY
FORM JKI - GAXPY

[oNoNeoXe]

REAL A(LDA,N)
DO40J = IN
DO 20K = 1,J-1
DO 101=K+I,N
ALY) = A(LY) + A(LK)*A(K.J)
10 CONTINUE
20 CONTINUE
DO301=J+1,N
A(LY) = -A(LI)/AQJT)

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE 109

30 CONTINUE
40 CONTINUE
RETURN
END

Form JKI

SUBROUTINE IJK(A,LDA,N)

SDOT
FORM 1JK - DOT

[oNoNoXe!

REAL A(LDA,N)
DOSOI=1,N
DO20J =21
ALJ-1) = -A(L,J-1)/A(J-1,-1)
DO 10K = 1,J-1
ALY = A(LY) + A(LK)*A(K,J)
10 CONTINUE
20 CONTINUE
DO40J =1+1,N
DO 30K = 1,I-1
ALY = A(LY) + A(LK)*A(K,J)
30 CONTINUE
40 CONTINUE
50 CONTINUE
RETURN
END

Form IJK

SUBROUTINE JKIPVT(A,LDA,N)

GAXPY
FORM JKI - GAXPY
WITH PIVOTING

[eNeNoNoNe!

REAL A(LDA,N),T
DO60J = I,N
DO 20K = 1,J-1
DO 101=K+1,N
ALY = A(LY) + A(LK)*A(K,J)
10 CONTINUE
20 CONTINUE

PIVOT SEARCH

[oNeoXe!

T = ABS(A(J,)))
L=J
DO301=J+1,N
IF(ABS(A(LJ)) .GT . T) THEN
T = ABS(A(LJ))
L-1
END IF
30 CONTINUE

110

[eXeXe}

40

50

J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

INTERCHANGE ROWS

DO40I=1,N
T =AU
AUD = A(LD
AL =T

CONTINUE

DO 50T =J+1,N
A(LJ) =-A(LY)/A(J))
CONTINUE

60 CONTINUE
RETURN

END

Form JKI

Appendix B. Translations into PVAL.

INCR
VL
VSD
VST
INCR

VL
VSM
VA
VST
LOOP
LOOP

INCR
VL
INCR

VL
VSM
VA
LOOP
VSD
VST
LOOP

INCR
VL
INCR

VL
VIP

k=1ton—1
xk:n*—ak:n,k

Xkt < —xk+l:n/xk
Atk < Xkylin
j=k+1ton
yk:n<_ak:n.j
Zhewtn < Xt * Vi
Yietin < Vivrn + Ziyin
ak+1:n,j‘_yk+lzn

J
k

SAXPY

j=1ton
xl:n<—a1:n,j
k=1toj—1
Yirtin <~ Ay nk
Viecrtn < Vi1 ¥ Xk
Xt <~ Xiytn + Virrm
xj+l:n e —xj+lzn/xj
al:n,j‘—xl:n
J

GAXPY

i=1ton
Xin €= Qi

j=2toi

Xj1 e =X /yi
Yijo1 a1
Xj«—X; + Vi jo1 X1 j-1

ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE

LOOP
INCR

j=i+1ton

VL Vi1 < Qs j
VIp Xj <= Xj + Yiio1 Xpioi

LOOP J
VST ai,l:n X
LOOP i
SDOT

Appendix C. PVAL code with segmentation.

INCR
INCR
VL
VSD
VST
INCR

VL
VSM
VA
VST
LOOP
LOOP
LOOP

INCR
INCR
VL
INCR
VL

VSM

VA
LOOP
VSD
VST
LOOP
LOOP

INCR
INCR
VL
INCR

VL
VIP

k=1ton—1

vseg, k:n

X < avseg,k

xvseg>k “— _xvseg>k/xk
avseg,k X
j=k+1lton

y “ avseg,j

Z < xvseg>k * Y

Y vseg>k)y vseg,k +z
av.\'eg,j)y

J
vseg

k
SAXPY

j=1ton
vseg, 1:n

Y avseg>k.k
Yy Y ¥ X
Xyseg>k < Xyseg=k +Y
k
Xyseg>j < —xvseg>j/xj
Ayseg,j < X
vseg
J
GAXPY

i=1ton
vseg, l:n
X ai,f/seg
j=2toi
Xj1 "xj—l/yj'—l

y avseg<j—l,j
Xij<—X;+ Y * Xygegaj1

112 J. J. DONGARRA, F. G. GUSTAVSON AND A. KARP

LOOP J
INCR j=it+lton
VL y e avseg<i—l.j
VIpP Xj<—=Xj+ YV * Xpygegai-i

LOOP J
VST Q;pog X
LOOP vseg
LOOP i

SDOT

REFERENCES

[1] J. M. BOYLE, Towards automatic synthesis of linear algebra programs, Proc. Conference on Production
and Assessment of Numerical Software, M. Delves and Hennel, ed., Academic Press, New York,
1980, pp. 223-245.
[2] J.J. DONGARRA, Some LINPACK timings on the CRAY-1, Tutorial in Parallel Processing, R. H. Kuhn
and D. A. Padua, eds., IEEE, 1981, pp. 363-380.
[3] J.J. DONGARRA, J. R. BUNCH, C. B. MOLER, AND G. W. STEWART, LINPACK Users’ Guide, Society for
Industrial and Applied Mathematics, Philadelphia, 1979.
[4] J.J.Du Croz,S. M. NUGENT, J. K. REID AND D. B. TAYLOR, Solving large full sets of linear equations in
a paged virtual store, ACM Trans. Math. Software, 7 (1981), pp. 527-536.
[S] 1. S. DUFF AND J. K. REID, Experience of sparse matrix codes on the Cray-1, Computer Science and
System Division, AERE Harwell CSS 116, October 1981.
[6] K. FONG AND T. L. JORDAN, Some linear algebra algorithms and their performance on CRAY-1, Los
Alamos Scientific Laboratory, UC-32, Los Alamos, NM, June 1977.
[7] F.G.GUSTAVSON, Some basic techniques for solving sparse systems of linear equations, Sparse Matrices
and Their Applications, D. J. Rose and R. A. Willoughby, eds. Plenum, New York, 1972, pp. 41-52.
[8] D. HELLER, A survey of parallel algorithms in numerical linear algebra, this Review, 20 (1978), pp.
740-7717.
[91 R. W.HOCKNEY AND C. R. JESSHOPE, Parallel Computers, J. W. Arrowsmith, Bristol, 1981.
[10] T.L.JORDAN, Private communications, 1982.
[11] P. M. KOGGE, The Architecture of Pipelined Computers, Academic Press, New York, 1981.
[12] C. LawsoN, R. HANSON, D. KINcAID, AND F. KROGH, Basic linear algebra subprograms for Fortran
usage, ACM Trans. Math. Software, 5 (1979), pp. 308-371.
[13] R.LEVINE, Supercomputers, Scientific American, January 1982, pp. 118-135.
[14] C. B. MOLER, Private communication, 1978.
[15] , Matrix computations with Fortran and paging, Comm. ACM, 15 (1972), pp. 268-270.
[16] R. M. RusSELL, The CRAY-1 computer system, Comm. ACM, 21 (1978), pp. 63-72.
[17]1 G. W. STEWART, Introduction to Matrix Computation, Academic Press, New York, 1973.

