SIAM J. SCI. STAT. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 4, No. 4, December 1983 0196-5204/83/0404-0011 $01.25/0

IMPROVING THE ACCURACY OF COMPUTED SINGULAR VALUES*
J. J. DONGARRAT

Abstract. This paper describes a computational method for improving the accuracy of a given singular
value and its associated left and right singular vectors. The method is analogous to iterative improvement
for the solution of linear systems. That is, by means of a low-precision computation, an iterative algorithm
is applied to increase the accuracy of the singular value and vectors; extended precision computations are
used in the residual calculation. The method is related to Newton’s method applied to the singular value
problem and inverse iteration for the eigenvalue problem.
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1. The basic algorithm. In a recent paper, Dongarra, Moler and Wilkinson [1]
described an algorithm for improving an approximation to a simple eigenvalue and
the corresponding eigenvector. In this paper we extend and modify the algorithm to
cover the singular value problem. We know that the singular values of a matrix are
well conditioned in the sense that small changes in the matrix result in small changes
in the singular values. The singular vectors may not be well determined and may vary
drastically with small changes in the matrix. In [3], Stewart describes a somewhat
analogous procedure for determining error bounds and obtaining corrections to the
singular values and vectors associated with invariant subspaces. Here we describe a
procedure for improving a single or arbitrary singular value and singular vectors using
the previously computed factorization.

We begin with a brief description of the basic algorithm.

Given an m X n rectangular matrix A, we are interested in the decomposition

(1.1) A=UxVT

where U and V are unitary matrices and X is a rectangular diagonal matrix of the
same dimension as A with real nonnegative diagonal entries. The equations can also
be written as

(1.2) Avi= o
and
(1.3) ATu;=ow; foreach singular value o;.

If o, u, and v have been derived from some computation on a computer with finite
precision or by some insight into the problem, they are generally not the true singular
value and vectors, but approximations. We know, however, that there exist w1, w2,
y, and z such that

(1.4) Av+y)=(c+u)u+z)
and
(L.5) AT(w+z)=(c+p)w+y),

where w1, 2, y, and z, when added to computed o, u, and v, give the exact left and
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right singular vectors and the exact singular value. The corrections w1 and w, come
about by the separate nature of (1.2) and (1.3). We compute the correction to o as
p=(w1+u2)/2.

The above equations can be expanded to obtain

Ay —~oz~piu =ou—Av+u1z

and

(1.6) A"z —ay—pw=0v—ATu+py.
If the orthogonality conditions

(1.7) +y) w+y)=1

and

w+z)Tu+z)=1

are included, we then have m +n +2 equations in m +n +2 unknowns. We can now
rewrite the equations in matrix notation to obtain

—-of A -u O z ou—Av+uz

(1.8) AT —oI 0 -v BAE ov—ATu+uay
' 20T 0 0 0\ m 1-u"u—-2z"z |

0 207 0 0/ \u2 1-vTv—yTy

Note that this is a mildly nonlinear matrix equation. We can determine the unknowns
(z,y, 1, w2)" iteratively by solving

__a_(p)I A _u(p) 0 z(p+1) G(p)u(p)_AU(p)+M(lp)Z(p)
T
(1.9) A( . __o,(p)I 0 _U(p) y(p+1) _ o,(p)v(p)_ATu(p)+u(2p)y(p)
2u® 0 0 0 #(1p+1) 1— u(p)Tu (p) _z(p)TZ (p) >
0 ZU(D)T 0 0 M(2p+1) 1- v(p)TU () _ y(p)Ty (p)

)

to obtain corrections to u”, v, and u® by the updates

1 1
u®D =y @ 4 D

+1 1
p@*D = @ 4 FD

a_(p+1)=a_(p)+(u(lp+1) +‘L(2p+1))/2.

If A is m X n, then this is an (m +n +2) X (m +n +2) system to be solved. If this system
is solved, we can compute corrections y, y, and z to the singular value and the singular
vectors, thereby obtaining a more accurate value for the singular value and singular
vectors.

If we handle this as we do in the eigenvalue case [1], we will improve the accuracy
of o, u, and v. The accuracy obtained by the algorithm will be full working precision,

with only the residual calculations (the right-hand side of (1.9)) done in extended
precision.

2. Relationship to Newton’s method. The algorithm as described above can be

derived by the use of Newton’s method applied to (1.2) and (1.3). We define functions
fi and f as follows:

(2 1) fl(u, v, 01, 0'2) =Av — 01U, f3(u) v, 01, 0.2) =Uu Tu - 1)

T
frlu,v,01,02)=ATu—aw, falu,v,01,0)=vv-1,
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and
f(x) = (fl(x), fz(X), f3(JC), f4(x))’
where
u
v
x —3
g1
\02

The approach is to find the zeros of f(x). Newton’s method applied to this problem is

(2.2) f'(xi)(xiu —Xi)= —f(xi),
where
u®
_ v(i)
Xi 0_(1,-) .
o

The derivative of f(x) is

“0‘1[ A —Uu 0
, AT o 0 v

(2.3) fx)= w0 o ol
0 227 0 o0

The above method expressed in matrix notation is then just a restatement of (1.8),
ignoring the second order terms in the right-hand side.

Notice that since the method is equivalent to Newton’s method, we could compute
the left and right singular vectors, given a close approximation to the singular value.

3. Effects of various factorizations. If we have computed the singular value
decomposition and retained the matrices produced during the factorization, each
singular value and the corresponding singular vectors can be improved in O(mn)
operations. We will assume that the matrices U, 2, and V are available such that
A=~UZVT Then the coefficient matrix in (1.8) can be decomposed into the form

U 0 0 0\/-ad X - 0\/UT 0 0 0

0 VO oy 2 —-of 0 —ell0o VvT 0 0
(3.1) - ,

0 0 1 0] e 0 0 oflo o 10

0 0 0 1/\ o0 el 0 o/\o o0 01

where e, is the sth column of the identity matrix and o is the approximation being
improved.

This factored form can be used to simplify (1.8). Since U and V are orthogonal,
systems of equations involving the left and the right matrices of (3.1) can be easily
solved by simply multiplying by the transposes. Systems of equations involving the
matrix in the center can be handled by solving 2 X2 or 4 X4 subsystems of equations
as can be seen from the nonzero structure of the matrix:
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- -
3.2)

~ *

If we have a bidiagonal factorization of A, say A = UBV ", where B is bidiagonal,
then we can improve the accuracy in O(mn) operations. Let us assume we have the

matrices V and B from the bidiagonalization procedure. We will concentrate only
on the matrix

A

This matrix is the interesting part of the one in (1.8) and can be thought of as a rank
2 modification of that equation. The matrix can then be written as

I 0\ [-al 0 I ——1~A
a .
34 1 1
3.4 -—AT V'[\ 0 —oI+=B™B| \ 0 V
a \ a
Note that solving systems based on this factored form is a simple task since V"= V",
The only actual need for an equation solver comes from

(3.5) —ol +lB B,
a

and this matrix is tridiagonal. Thus, given the bidiagonal matrix and the V matrix of
the transformation, we can improve the accuracy of the singular values.

If we have instead the QR factorization of A, namely A = QR, where R is upper
triangular and Q is orthogonal, then we can improve the accuracy of the singular
value in O(mn +n’) operations, provided we have some approximation to it. We will
concentrate on the matrix in (3.3). This matrix can be rewritten in factored form as

I 0\ —0ol 0 I - lA

a
(3.6) —-1—AT QT 0 —aI+1RTR 0 O
g ag

As in (3.4) it becomes a matter of solving equations with a matrix of the form

3.7 ol +1RTR.
a
Unlike (3.5), this matrix is full and, unfortunately, the factor R cannot be used to
simplify the process since the matrix R'R is being modified by a rank n matrix, ol.

Equation (3.7) requires a further factorization to solve systems based upon it.
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4. Convergence of the update process. The convergence results for this method
are the same as for the eigenvalue case. We state the results here but omit the proof
which can be found in [1].

In the presence of round-off error, if the initial error in the singular value is small
enough in some sense and the singular value is an isolated one, the iterative process will
converge.

If working precision is used in computing the approximate singular values and
extended precision is used in the residual calculation, then when the method converges,
it produces results that are accurate to at least full working precision.

The method is equivalent to Newton’s method; therefore, the convergence is
quadratic.

The method just described has a deficiency: When there are multiple singular
values, the matrix in (1.8) becomes ill-conditioned. The degree of ill-conditioning is
related to the separation between the singular value being improved and its closest
neighbor. Existence of close or multiple singular values can be monitored by examining
the condition number of the matrix in (1.8). If the matrix of (1.8) has a large condition
number, then the iteration will converge with a less than quadratic rate. For identical
singular values, the matrix involved is exactly singular.

This deficiency can be illustrated by an example. For a 2 X2 system the matrix

has the form
(o %)
ag; - ’

where o is an approximation to oy. If any g; is close to o, then this system will be
ill-conditioned, and the conditioning depends upon 1/(o —a;). In this situation one
cannot improve just one singular value but must work with a cluster of them, as well
as the invariant subspace of singular vectors.

5. Results. The following numerical tests were run on a VAX 11/780. The initial
reduction was performed in single precision; double precision was used only to compute
the residuals and to add the correction to the previous result. In single precision, the
working accuracy is 272*; in double precision, the accuracy is 27°°.

The matrices used here come from the original paper by Golub and Reinsch [2].
The first matrix has the form

2 10 2 3 7
14 7 10 0 8
-1 13 -1 -11 3
-3 =2 13 -2 4

A=l 9§ 1 -2 4|
9 1 -7 5 -1
2 6 6 5 1
4 5 0 -2 2

with singular values
o1=v1248, 0,=20, 03=v384, o4=05=0.
The results from the improvement algorithm on this problem are given in Table 1.

All results were achieved using single precision computations except to accumulate
the residuals. The method used was based on the factored form of (3.1).
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TABLE 1
Iteration T uTu vTo

0 35.3270149 0.999999718 0.999999683

1 35.327043465315658 1.000000000000101 1.000000000000304

2 35.327043465311387 1.000000000000000 1.000000000000000
true 35.327043465311387419

0 19.9999790 0.999999520 0.999999326

1 20.000000000006048 1.000000000003621 1.000000000003431

2 20.000000000000000 1.000000000000000 1.000000000000000
true 20.0

0 19.5958881 0.999999043 0.999999379

1 19.595917942277176 1.000000000003258 1.000000000003183

2 19.595917942265425 1.000000000000000 1.000000000000000
true 19.595917942265424785

0 0.00000718535284 0.999998454 0.999999228

1 —0.000000000004162 1.000000000000745 1.000000000000306

2 0.000000000000000 1.000000000533098 1.000000000281307
true 0.0

0 0.00000120505399 0.999998900 0.999999509

1 —0.000000000000479 1.000000000000304 1.000000000000061

2 0.000000000000000 1.000000018476308 1.000000001164373
true 0.0

The results in Table 1 show the iteration converging very rapidly. The singular values
are initially correct to working precision, and two iterations have gained full extended

precision.

For the next example we use a standard symmetric eigenvalue problem. The
matrix, W3, [4], is symmetric tridiagonal, and has some pathologically close eigen-

values and singular values. It is defined by the relations

a;=k+1-i i=1,---,k+1,
a;=i—k-1, i=k+2,-+-,2k+1,
Bi=1, i=2,-+,2k+1,
where k =5, «; is the ith diagonal element, and B; is the ith subdiagonal element.
See Table 2.
TABLE 2
Iteration o uTu 0™
0 5.7462210 0.999998079 0.999997771
1 5.746231847961203 1.001536038280316 1.001536023270078
2 5.746231833605774 1.000033093486984 1.000033093488725
3 5.746231833805267 1.000000000729813 1.000000000729813
4 5.746231833809865 1.000000000000009 1.000000000000002
5 5.746231833809865 1.000000000000000 1.000000000000000
0 5.7461471 0.999998012 0.999997719
1 5.746157555822260 1.000863731344646 1.000863745222875
2 5.746157545424549 1.000016916083231 1.000016916084818
3 5.746157545577390 1.000000000495525 1.000000000495525
4 5.746157545580572 1.000000000000011 1.000000000000011
5 5.746157545580572 1.000000000000000

1.000000000000000
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The singular values displayed in Table 2 are the largest ones of W1; and happen to
be the closest. The matrix has a condition number of 10°, as a result, each iteration
makes an improvement of approximately three digits. Note the contrast to the previous
case where the matrix was well conditioned and each iteration gained a full seven digits.

6. Multiple singular values. We are interested in improving more than one
singular value at a time. We are motivated to do so since the approach for improving
one singular value breaks down when there are multiple singular values with close
numerical values. For simplicity we will restrict the discussion initially to two singular
values o1 and o, and the corresponding vectors uq, v1 and u,, v,.

We know that the two-space in which u; and u, and v, and v, lie is numerical
well determined. Hence we have

6.1) Aity1)=(o1+pmi)(Ur+2z1)+p2(uz+22),

Az +y2)=p12(urt2z1) + (o2t pa2)(uz+22)
and

AT(uy+z1)=(o1+p11)0i1+y) +p21(va+y2),
AT (uz+22) = w101+ y1) + (02 + w22)(v2+y2),

where the corrections y;, z;, and w; are expected to be small.
From above we form

o1t “12
A(Ul+Y1lU2+Y2)=(u1+21]u2+22)( ),
2

M21 o2t w2
6.2)

+
AT(ul"’Z'1|l42+22)=(v1+y1|112+yz)(a-1 Ri1 o K12 )
21 0'2+lL22
We will require in addition that the orthogonality conditions
0 ifi=j
. i+ iT 7 _—_[ o "
(6.3) i +y) (v +y)) L ifie
and
0 ifi=j
i+ iT + 2 ={ X s
(ui+z:)" (u;+z;) L i

be satisfied. For simplicity we will assume that the 2 X 2 matrix of (6.2) which contains
the correction to the singular values is symmetric, therefore, wi» = w21. In order to
produce the improved singular values this 2 X 2 matrix must be diagonalized.

Equation (6.2) together with (6.3) give rise to 2n +2m + 6 equationsin2n +2m +6
unknowns. This matrix equation has the form

ol A —Uz —Uy Z1 o1~ Avy+ 1121+ 1222
AT -gy ) —v; Y1 02— Ava+ 1221+ 12222
-0l A —uy —Uuz z2 01”1“!“”1"’#%1)’1*‘#«%2)’2
AT —ayl —v —val[ Y2 o203~ ATuy +ulayi +uays
uz ui uiz |= —niur—2zizs
3 of ui ~0iv2-y1y2
2uq Mil 1—'4{“2—2;&2
207 ni 1-vivi—yiy:
2u; M2 1-ufui-ziz,
203 ni2 1-v302-y3y2
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As in the case of a single singular value, if one has access to the matrix factorization
then the matrix problem can easily be solved.
In general, if we extend the procedure to handle k close singular values we have

Alvi+yy, o tyel=[ur+zy, - -+, u +zi J[diag (o) + M ]
and

ATus+ze,uetzi]=[o1+ys, -, 0k +yi |[diag (o) + M],

where m;; =u; and M =M T and it is expected that y;, z;, and wi; will be small. These
equations together with (6.3) lead to a system of equations of order k(m +n)+k(k +1)
and an eigenvalue problem of order k.
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