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SUhlMARY 

The technique of ‘unrolling’ to improve the performance of short program loops without 
resorting to assembly language coding is discussed. A comparison of the benefits of loop 
‘unrolling‘ on a variety of computers using an assortment of FORTRAN compilers is 
presented. 
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INTRODUCTION 
It is frequently observed that the bulk of the central processor time for a program is 
localized in 3 per cent of the source code.6 Often the critical code from the timing perspective 
consists of one (or a few) short inner loops typified, for instance, by the scalar product of 
two vectors. A simple technique for the optimization of such loops, with consequent 
improvement in overall execution time, should then be most welcome. ‘Loop unrolling’ (a 
generalization of ‘loop d~ubl ing’) ,~ applied selectively to time-consuming loops, is just 
such a technique. 

TECHNIQUE 
When a loop is unrolled, its contents are replicated one or more times, with appropriate 
adjustments to array indices and the loop increment. For instance, the DAXPYg sequence, 
which adds a multiple of one vector to a second vector: 

DO 10 I = l ,N 
Y(1) = Y(I)+A*X(I) 

10 CONTINUE 

would, unrolled to a depth of four, assume the form 

M = N - MOD(N,4) 
DO 10 I = 1,M,4 

Y(l) = Y(1) +A*X(I) 
Y(I+l )  = Y ( I + l ) + A * X ( I + l )  
Y(I+2) = Y(I+2)+A*X(I+2) 
Y(I+3) = Y(I+3)+A*X(I+3) 

10 CONTINUE 

* Work performed under the auspices of the U.S. Department of Energy. 
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In this recoding, four terms are computed per loop, with the loop increment modified to 
count by fours. Additional code has to be added to process the MOD(N,4) elements 
remaining upon completion of the unrolled loop should the vector length not be a multiple 
of the loop increment. The choice of four was for illustration, with the generalization to 
other orders obvious from the example. Actual choice of unrolling depth in a given instance 
would be guided by the contribution of the loop to total program execution time and 
consideration of architectural constraints to be discussed below. 

It  is important to note that the order in which results are calculated is unchanged by 
unrolling, introducing no new hazards should a result vector overlap a source vector. Note 
also that the technique is not restricted to any particular source language, thankfully 
avoiding resort to assembly level coding. 

Perhaps not immediately obvious, the success of unrolling in enhancing loop performance 
can be attributed to three main factors. 

First, there is the direct reduction in loop overhead-the increment, test and branch 
functions-which, for short loops, may actually dominate execution time per iterate. 
Unrolling simply divides the overhead by a factor equal to the unrolling depth, although 
additional code required to handle ‘leftovers’ will reduce this gain somewhat. Clearly, 
savings should increase with increasing unrolling depth, but the marginal savings fall off 
rapidly after a few terms. The reduction in overhead is the primary source of improvement 
on ‘simple’ computers. 

Second, for advanced architectures employing segmented functional units, the greater 
density of non-overhead operations permits higher levels of concurrency within a particular 
segmented unit. Thus, in the DAXPY example, unrolling would allow more than one 
multiplication to be concurrently active on a segmented machine such as the CDC 7600.1° 
Optimal unrolling depth on such machines might well be related to the degree of functional 
unit segmentation. 

Third, and related to the above, unrolling often increases concurrency between independent 
functional units on computers so equipped. Thus, in our DAXPY example, a CDC 7600, 
with independent multiplier and adder units, could obtain concurrency between addition 
for one element and multiplication for the following element, in addition to the segmen- 
tation concurrency obtainable within each unit. 

Another feature of ‘advanced’ machines which contributes to the success of unrolling is 
the increasing use of pipelining in the decoding and preparation of instructions for execution. 
Testing and branching are inherently disruptive of pipeline flow. The reduction in these 
disruptions afforded by unrolling ensures a smoother instruction flow on this class of 
computer. 

An important constraint on unrolling depth for certain advanced computers is the 
presence of an ‘instruction stack’, affording high performance for loops which can be 
completely stack contained due to the elimination of instruction fetch time and conflicts 
with memory operand fetching. Generally, performance is degraded if unrolling increases 
the size of a loop such that it can no longer be contained in the stack. This infrequently 
eliminates unrolling as a strategy, more often simply limiting unrolling depth. As an example 
of this limitation, DAXPY unrolled to a depth of four on the IBM 370/195 performs 
27 per cent faster than rolled code when compiled with IBM’s FORTRAN H compiler at 
optimization level 2. But when the code is unrolled to a depth of five, the increase over the 
rolled code has decreased in comparison to the ratio when the code is unrolled to a depth 
of four. 
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EXPERIMENTAL RESULTS 

The effects of unrolling a loop to various depths can be seen in Table I. Here we have 
looked at subroutines DAXPY and DDOT, and taken codings involving one term through 

Table I. Unrolling to various depths (vector length 200; IBM 370/195) 

DAXPY Compiler 

Number of terms in loop 
Ratio of execution time for n terms H Opt = 2 1.27 1-15 1.04 1 1-18 1.20 

vs optimum number of terms in H Ext Opt = 2 1.24 1.13 1.04 1 1-20 1-16 
loop (Release 2.2) 

1 2 3 4 5 6  

DDOT Compiler 

Number of terms in loop 
Ratio of execution time for n terms H Opt = 2 2.37 1.34 1.17 1.08 1 1.11 

vs optimum number of terms in H Ext Opt = 2 2.40 1-40 1.19 1.08 1 1.13 
loop (Release 2.2) 

1 2 3 4 5 6  

six terms in the loop. We ran the various coding on the IBM 370/195 using the H compiler 
optimization level 2 and H extended compiler optimization level 2. The numbers in Table I 
represent the time to execute a loop of a given unrolled level normalized by the execution 
time for the optimum unrolled level coding. Optimum performance level for DAXPY is 
obtained with four terms in the loop and for DDOT five terms. As more terms are inserted 
in the loop the performance increases, until the instruction stack is filled. Once past that 
point, the instructions needed to execute the loop can no longer be maintained in the stack 
thus causing instruction fetches to be made from memory, thereby degrading performance. 

Table I1 reports the ratios of ‘rolled’ to ‘unrolled’ execution times for two FORTRAN 
loops over a variety of machine-compiler combinations. The operations chosen for 
comparison are the dot product (DDOT) and multiple of a vector plus a vector (DAXPY) 
(see Appendix for listings) with vector lengths of 200. The use of ratios rather than actual 
times isolates the performance improvements due to unrolling, rather than reflecting 
relative computer speeds or compiler efficiencies. 

In  the multiprogram environment of modern computers, it is often very difficult to 
measure reliably the execution time of a program. Significant variations can occur depending 
on the load of the machine, the amount of 1/0 interference and resolution of the timing 
program. The timing data were gathered by a number of people in quite different environ- 
ments. Therefore, the reported ratios should not be interpreted as absolute but should be 
useful in giving a feeling for the execution improvements for this technique. 

Significantly, unrolling has improved performance in nearly every case, on both simple 
and sophisticated computers, and with both optimizing and non-optimizing compilers. 

Optimum unrolling depth is a function of the machine, the compiler, the release of the 
compiler and the level of optimization the compiler performs. As a result, true optimum 
unrolling performance can only be guaranteed with the use of assembly language coding. 

Tables I11 to VI report the variation in unrolling performance as a function of vector 
length for four machine-compiler combinations. Absolute times and performance ratios 
are tabulated for DDOT and DAXPY for vector lengths ranging from 10 to 200 on the 
IBM 370/195 (H Opt = 2), CDC 7600 (FTN Opt = l), UNIVAC 1110 (FORTV) and 
PDP-10 (F10 OPT). 
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Table 11. Ratios for versions of DDOT and DAXPY (vector length 200) 
~~ 

Machine 

~~ ~~ 

Multiple of a vector 
Dot product plus a vector 

DDOTT DAXPYS 
Compiler a -+ Ll xi * Y I  y e  a-x+y 

IBM 360/65 
IBM 360165 
IBM 360/75 
IBM 360/91 
IBM 360/91 
IBM 370/158 
IBM 370/158 

IBM 370/195 
IBM 370/195 
IBM 370/195 
CDC 6400/6600 
CDC 6400/6600 
CDC 6600 
CDC 6600 
CDC 6600 
CDC 6600 
CDC 6600 
CDC 7600 
CDC 7600 
CDC 7600 
CDC 7600 
CDC 7600 
UNIVAC 1110 
UNIVAC 11 10 
Honeywell 
Burroughs 6700 

IBM 370/168-1 

PDP-10 
PDP-10 

G 
H Opt = 2 
G 
G 
H Opt = 0 
G 
H Opt = 2 
H Ext Opt = 2 
H Ext Opt = 0 
H Ext Opt = Release 2.0 
H Ext Opt = 2 Release 2.2 
FUN 
MNF 
Local 
FTN, Opt = 1 
MNF 
FTN Extended Opt 
FTN Extended No Opt 
Local 
CHAT No Opt 
CHAT Opt 
FTN Opt = 1 
FTN No Opt 
FORTV 
FTN, V 
FORTRAN-Y Optimized 
FORTRAN IV 
FlO/opt 
F40 

1-57 
1.50 
1.81 
1 -41 
1-71 
1.41 
1 *29 
1-29 
1.64 
2.40 
2.40 
1-17 
1.08 
1 *47 
1-36 
0.96 
1 -78 
0.84 
1 -08 
1.85 
2.45 
2.07 
1.17 
1 *43 
1-80 
1.20 
1-23 
1.63 
1.58 

1.37 
1.00 
1.58 
1-40 
1 *so 
1-26 
1.19 
1.16 
1-40 
0.97 
1.24 
1.11 
1.04 
1.18 
1 *33 
1-03 
1.54 
1-36 
1.21 
1-45 
1.00 
2.25 
1-90 
1 *06 
1.54 
1.01 
1-06 
1.46 
1.11 

~~ ~ 

t Loop unrolled to depth of five terms. 
3 Loop unrolled to depth of four t ern .  (See Appendix for a listing of the codes.) 

Table 111. Ratios for DDOT and DAXPY 
(IBM 370/195 H, Opt = 2) 

DDOT ratio DAXF’Y ratio 
(rolled/ (rolled/ 

Length unrolled) unrolled) 

10 0.9 1.2 
20 1 -2 1 *2 
40 1 -4 1.1 
60 1.6 1.2 
80 1-7 1 *2 

100 1.9 1 -3 
120 2.0 1 *3 
140 2.0 1 -4 
160 2.1 1.3 
180 2-2 1 *4 
200 2.2 1 -4 
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Table IV. Ratios for DDOT and DAXF'Y 
(CDC 7600 FTN No Opt) 

DDOT ratio DAXPY ratio 
(rolled/ (rolled/ 

Length unrolled) unrolled) 

10 
20 
40 
60 
80 
100 
120 
140 
160 
180 
200 

0.8 
1 -0 
1 -0 
1 -0 
1.1 
1.1 
1.1 
1.1 
1 -3 
1.1 
1.2 

1 -1 
1 -6 
1.3 
1 -8 
1-8 
1 *9 
1 -8 
1 -9 
1 -9 
1 -9 
1 -9 

Table V. Ratios for DDOT and DAXF'Y 
(UNIVAC 1110 FORTV) 

DDOT ratio DAXPY ratio 
(rolled/ (rolled/ 

Length unrolled) unrolled) 

10 
20 
40 
60 
80 
100 
120 
140 
160 
180 
200 

0.9 
1 -0 
1 -2 
1 *3 
1-3 
1 -4 
1 *4 
1 -4 
1 -4 
1 -4 
1 -4 

0.9 
0.9 
1.0 
1 -0 
1 -0 
1 -0 
1 -0 
1 *o 
1.1 
1.1 
1.1 

Table VI. Ratios for DDOT and DAXPY 
(PDP-10 F10 OPT) 

DDOT ratio DAXPY ratio 
(rolled/ (rolled/ 

Length unrolled) unrolled) 

10 
20 
40 
60 
80 
100 
120 
140 
160 
180 
200 

1 *4 
1.2 
1.6 
1 -7 
1-6 
1 *5 
1 -6 
1.6 
1 *6 
1.6 
1.6 

1 -2 
1 *4 
1 *3 
1 -4 
1 -4 
1 *5 
1 5 
1 *4 
1.4 
1 -4 
1.5 
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As expected, the benefits of unrolling increase as vector length increases. At small vector 
lengths, the somewhat longer initialization sequence for the unrolled loop combined with 
the necessity of cleanup code can lead to small advantage for the rolled version. 

All timings and ratios in this paper include the linkage overhead times for the sub- 
routines DDOT and DAXPY. This results in the performance ratios underestimating, 
particularly for short vector lengths, the benefits of unrolling. The long vector performance 
is more indicative of the behavior of unrolling in open code. 

CONCLUSIONS AND DISCUSSION 

An elementary technique, applicable at the source level, has been presented for the per- 
formance improvement of short program loops. The method is simple to apply, requires no 
rethinking of existing algorithms, is applicable in most common programming languages, 
and only marginally degrades program readability. Data presented demonstrate the utility 
of ‘unrolling’ for a wide variety of computer and FORTRAN compiler combinations. 

The performance improvements of unrolling result from a reduction in loop overhead 
operations. As an added benefit, loop unrolling provides greater utilization of special 
architectural features of advanced machines normally accessible only through assembly or 
special languages. 

We do not suggest that this method be applied to programs blindly, for there are many 
non-critical parts of a program where the effects will be negligible. But in sections of a code 
known by the programmer to dominate execution time, loop unrolling can yield dramatic 
savings. Indeed, the simplicity and success of unrolling suggest that it be made available 
automatically in future compilers. With the compiler having knowledge of the architecture 
of a machine, the program speedup can be optimized. 
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APPENDIX 

DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY) 
C 
C F O R M  THE DOT PRODUCT OF TWO VECTORS. 
C USES UNROLLED LOOPS FOR INCFXMENTS EQUAL TO ONE. 
C JACK DONGARRA, LINPACK, 6 / 1 7 / 7 7 .  
C 

DOUBLE PRECISION DX(1) ,DY(l) ,DTEMP 
INTEGER I, INCX, INCY , IX, IY ,M ,MP1 ,N 

DDOT = O.ODO 
DTEMP = O.ODO 
IF (N. LE. 0) RETURN 
IF (INCX. EQ. 1. AND. INCY . EQ. 1) GOT0 20 

C 

C 
C 
C NOT EQUAL TO 1 
C 

CODE-FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS 
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IX = 1 
IY = 1 

225 

10 

C 
C 
C 
C 
C 
C 

20 

30 

40 

IF(INCX.LT.O)IX = (-N+l)*INCX + 1 
IF(INCY.LT.O)IY = (-N+l)*INCY + 1 
Do.10 I 5 1,N 
DTEMP = DTEPP + DX(IX)*DY(IY) 
IX = IX + INCX 
IY = IY + INCY 

CONTINUE 
DDOT = DTENP 
RETURN 

CODE FOR BOTH INCREMENTS EQUAL TO 1 

CLEAN-UP LOOP 

M = NOD (N ,5) 
IF( M .EQ. 0 ) GO 
DO 30 I = l,M 
DTEW = DTEMP + 

CONTINUE 
IF( N .LT. 5 ) GO 
b P 1  = M + 1 
DO 50 I = MF'l,N,5 
DTEMP = DTEMP + * DX(1 + 2)*DY(I * DX(1 + 4)*DY(I 

50 CONTINUE 
60 DDOT = DTEMP 

TO 40 

DX(1) *DY (I) 

TO 60 

DX(I)*DY(I) + DX(1 + l)*DY(I + 1) + + 2)  + DX(1 + 3)"cDY(I + 3) + 
+ 4) 

RETURN 
END 

(Double precision was used on IBM; for a l l  other machines, s ingle  precision 
nas used.) 

C 
C 
C 
C 
C 

C 

C 
C 
C 
C 

10 

C 
C 

SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY) 

CONSTANT TIMES A VECTOR PLUS A VECTOR. 
USES UNROLLED LOOPS FOR INCRELENTS EQUAL TO ONE. 
JACK DONGAW, LINPACK, 6/17/77. 

DOUBLE PRECISION DX(1) ,DY(l) ,DA 
INTEGER I,INCX,INCY,IXIY,M,MF'l,N 

IF (N. LE . 0) RETURN 
IF (DA .EQ. O.OD0) RETURN 
IF(INCX.EQ.1.AND.INCY.EQ.l)GOTO 20 

CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS 
NOT EQUAL TO 1 

IX = 1 
IY = 1 
IF (INCX. LT . 0) IX = 
IF (INCY. LT. 0) IY = 

(-N+1) *INCX + 1 
(-N+1) *INCY + 1 

DO 10 I = l,N 
DY(1Y) = DY(1Y) + DA*DX(IX) 
IX = IX + INCX 
IY = IY + INCY 

CONTINUE 
RETUILU 

CODE FOR BOTH INCREMENTS EQUAL TO 1 
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C CLEAN-UP LOOP 
C 

20 M = MOD(N,4) 
IF( M .EO. 0 ) GO TO 40 
DO’30 I 1,M. 
DY(1) = DY(1) + DA*DX(I) 

. I  . _  
30 CONTINUE 

IF( N .LT. 4 ) RETURN 

DO 50 I = MPl,N,4 
40 W 1  = M + 1 

DY(1) = DY(1) + DA*DX(I) 
DY(1 4- 1) = DY(I + 1) + DA*DX(I + 1) 
DY(1 + 2) = DY(I+ 2) + DA*DX(I + 2) 
DY(1 + 3)  = DY(1 + 3) + DA*DX(I + 3) 

50 CONTINUE 
RETURN 
END 

(Double precision was used on IBM; for all other machines, single precision 
was used.) 
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