
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 9, 219-226 (1979)

Unrolling Loops in FORTRAN*
J. J. DONGARRA AND A. R. HINDS

Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

SUhlMARY

The technique of ‘unrolling’ to improve the performance of short program loops without
resorting to assembly language coding is discussed. A comparison of the benefits of loop
‘unrolling‘ on a variety of computers using an assortment of FORTRAN compilers is
presented.

KEY WORDS Unrolled loops FORTRAN Loop efficiency Loop doubling

INTRODUCTION
It is frequently observed that the bulk of the central processor time for a program is
localized in 3 per cent of the source code.6 Often the critical code from the timing perspective
consists of one (or a few) short inner loops typified, for instance, by the scalar product of
two vectors. A simple technique for the optimization of such loops, with consequent
improvement in overall execution time, should then be most welcome. ‘Loop unrolling’ (a
generalization of ‘loop d~ubl ing’) ,~ applied selectively to time-consuming loops, is just
such a technique.

TECHNIQUE
When a loop is unrolled, its contents are replicated one or more times, with appropriate
adjustments to array indices and the loop increment. For instance, the DAXPYg sequence,
which adds a multiple of one vector to a second vector:

DO 10 I = l ,N
Y(1) = Y(I)+A*X(I)

10 CONTINUE

would, unrolled to a depth of four, assume the form

M = N - MOD(N,4)
DO 10 I = 1,M,4

Y(l) = Y(1) +A*X(I)
Y(I+l) = Y (I + l) + A * X (I + l)
Y(I+2) = Y(I+2)+A*X(I+2)
Y(I+3) = Y(I+3)+A*X(I+3)

10 CONTINUE

* Work performed under the auspices of the U.S. Department of Energy.

0038-0644/79/0309-0219 $01.00
@ 1979 by John Wiley & Sons, Ltd.
16 219

Received 24 January 1978
Revised 9 October 1978

220 J. J. DONGARRA AND A. R. HINDS

In this recoding, four terms are computed per loop, with the loop increment modified to
count by fours. Additional code has to be added to process the MOD(N,4) elements
remaining upon completion of the unrolled loop should the vector length not be a multiple
of the loop increment. The choice of four was for illustration, with the generalization to
other orders obvious from the example. Actual choice of unrolling depth in a given instance
would be guided by the contribution of the loop to total program execution time and
consideration of architectural constraints to be discussed below.

It is important to note that the order in which results are calculated is unchanged by
unrolling, introducing no new hazards should a result vector overlap a source vector. Note
also that the technique is not restricted to any particular source language, thankfully
avoiding resort to assembly level coding.

Perhaps not immediately obvious, the success of unrolling in enhancing loop performance
can be attributed to three main factors.

First, there is the direct reduction in loop overhead-the increment, test and branch
functions-which, for short loops, may actually dominate execution time per iterate.
Unrolling simply divides the overhead by a factor equal to the unrolling depth, although
additional code required to handle ‘leftovers’ will reduce this gain somewhat. Clearly,
savings should increase with increasing unrolling depth, but the marginal savings fall off
rapidly after a few terms. The reduction in overhead is the primary source of improvement
on ‘simple’ computers.

Second, for advanced architectures employing segmented functional units, the greater
density of non-overhead operations permits higher levels of concurrency within a particular
segmented unit. Thus, in the DAXPY example, unrolling would allow more than one
multiplication to be concurrently active on a segmented machine such as the CDC 7600.1°
Optimal unrolling depth on such machines might well be related to the degree of functional
unit segmentation.

Third, and related to the above, unrolling often increases concurrency between independent
functional units on computers so equipped. Thus, in our DAXPY example, a CDC 7600,
with independent multiplier and adder units, could obtain concurrency between addition
for one element and multiplication for the following element, in addition to the segmen-
tation concurrency obtainable within each unit.

Another feature of ‘advanced’ machines which contributes to the success of unrolling is
the increasing use of pipelining in the decoding and preparation of instructions for execution.
Testing and branching are inherently disruptive of pipeline flow. The reduction in these
disruptions afforded by unrolling ensures a smoother instruction flow on this class of
computer.

An important constraint on unrolling depth for certain advanced computers is the
presence of an ‘instruction stack’, affording high performance for loops which can be
completely stack contained due to the elimination of instruction fetch time and conflicts
with memory operand fetching. Generally, performance is degraded if unrolling increases
the size of a loop such that it can no longer be contained in the stack. This infrequently
eliminates unrolling as a strategy, more often simply limiting unrolling depth. As an example
of this limitation, DAXPY unrolled to a depth of four on the IBM 370/195 performs
27 per cent faster than rolled code when compiled with IBM’s FORTRAN H compiler at
optimization level 2. But when the code is unrolled to a depth of five, the increase over the
rolled code has decreased in comparison to the ratio when the code is unrolled to a depth
of four.

UNROLLING LOOPS IN FORTRAN 221

EXPERIMENTAL RESULTS

The effects of unrolling a loop to various depths can be seen in Table I. Here we have
looked at subroutines DAXPY and DDOT, and taken codings involving one term through

Table I. Unrolling to various depths (vector length 200; IBM 370/195)

DAXPY Compiler

Number of terms in loop
Ratio of execution time for n terms H Opt = 2 1.27 1-15 1.04 1 1-18 1.20

vs optimum number of terms in H Ext Opt = 2 1.24 1.13 1.04 1 1-20 1-16
loop (Release 2.2)

1 2 3 4 5 6

DDOT Compiler

Number of terms in loop
Ratio of execution time for n terms H Opt = 2 2.37 1.34 1.17 1.08 1 1.11

vs optimum number of terms in H Ext Opt = 2 2.40 1-40 1.19 1.08 1 1.13
loop (Release 2.2)

1 2 3 4 5 6

six terms in the loop. We ran the various coding on the IBM 370/195 using the H compiler
optimization level 2 and H extended compiler optimization level 2. The numbers in Table I
represent the time to execute a loop of a given unrolled level normalized by the execution
time for the optimum unrolled level coding. Optimum performance level for DAXPY is
obtained with four terms in the loop and for DDOT five terms. As more terms are inserted
in the loop the performance increases, until the instruction stack is filled. Once past that
point, the instructions needed to execute the loop can no longer be maintained in the stack
thus causing instruction fetches to be made from memory, thereby degrading performance.

Table I1 reports the ratios of ‘rolled’ to ‘unrolled’ execution times for two FORTRAN
loops over a variety of machine-compiler combinations. The operations chosen for
comparison are the dot product (DDOT) and multiple of a vector plus a vector (DAXPY)
(see Appendix for listings) with vector lengths of 200. The use of ratios rather than actual
times isolates the performance improvements due to unrolling, rather than reflecting
relative computer speeds or compiler efficiencies.

In the multiprogram environment of modern computers, it is often very difficult to
measure reliably the execution time of a program. Significant variations can occur depending
on the load of the machine, the amount of 1/0 interference and resolution of the timing
program. The timing data were gathered by a number of people in quite different environ-
ments. Therefore, the reported ratios should not be interpreted as absolute but should be
useful in giving a feeling for the execution improvements for this technique.

Significantly, unrolling has improved performance in nearly every case, on both simple
and sophisticated computers, and with both optimizing and non-optimizing compilers.

Optimum unrolling depth is a function of the machine, the compiler, the release of the
compiler and the level of optimization the compiler performs. As a result, true optimum
unrolling performance can only be guaranteed with the use of assembly language coding.

Tables I11 to VI report the variation in unrolling performance as a function of vector
length for four machine-compiler combinations. Absolute times and performance ratios
are tabulated for DDOT and DAXPY for vector lengths ranging from 10 to 200 on the
IBM 370/195 (H Opt = 2), CDC 7600 (FTN Opt = l), UNIVAC 1110 (FORTV) and
PDP-10 (F10 OPT).

222 J. J. DONGARRA AND A. R. HINDS

Table 11. Ratios for versions of DDOT and DAXPY (vector length 200)
~~

Machine

~~ ~~

Multiple of a vector
Dot product plus a vector

DDOTT DAXPYS
Compiler a -+ Ll xi * Y I y e a-x+y

IBM 360/65
IBM 360165
IBM 360/75
IBM 360/91
IBM 360/91
IBM 370/158
IBM 370/158

IBM 370/195
IBM 370/195
IBM 370/195
CDC 6400/6600
CDC 6400/6600
CDC 6600
CDC 6600
CDC 6600
CDC 6600
CDC 6600
CDC 7600
CDC 7600
CDC 7600
CDC 7600
CDC 7600
UNIVAC 1110
UNIVAC 11 10
Honeywell
Burroughs 6700

IBM 370/168-1

PDP-10
PDP-10

G
H Opt = 2
G
G
H Opt = 0
G
H Opt = 2
H Ext Opt = 2
H Ext Opt = 0
H Ext Opt = Release 2.0
H Ext Opt = 2 Release 2.2
FUN
MNF
Local
FTN, Opt = 1
MNF
FTN Extended Opt
FTN Extended No Opt
Local
CHAT No Opt
CHAT Opt
FTN Opt = 1
FTN No Opt
FORTV
FTN, V
FORTRAN-Y Optimized
FORTRAN IV
FlO/opt
F40

1-57
1.50
1.81
1 -41
1-71
1.41
1 *29
1-29
1.64
2.40
2.40
1-17
1.08
1 *47
1-36
0.96
1 -78
0.84
1 -08
1.85
2.45
2.07
1.17
1 *43
1-80
1.20
1-23
1.63
1.58

1.37
1.00
1.58
1-40
1 *so
1-26
1.19
1.16
1-40
0.97
1.24
1.11
1.04
1.18
1 *33
1-03
1.54
1-36
1.21
1-45
1.00
2.25
1-90
1 *06
1.54
1.01
1-06
1.46
1.11

~~ ~

t Loop unrolled to depth of five terms.
3 Loop unrolled to depth of four t ern . (See Appendix for a listing of the codes.)

Table 111. Ratios for DDOT and DAXPY
(IBM 370/195 H, Opt = 2)

DDOT ratio DAXF’Y ratio
(rolled/ (rolled/

Length unrolled) unrolled)

10 0.9 1.2
20 1 -2 1 *2
40 1 -4 1.1
60 1.6 1.2
80 1-7 1 *2

100 1.9 1 -3
120 2.0 1 *3
140 2.0 1 -4
160 2.1 1.3
180 2-2 1 *4
200 2.2 1 -4

UNROLLING LOOPS IN FORTRAN 223

Table IV. Ratios for DDOT and DAXF'Y
(CDC 7600 FTN No Opt)

DDOT ratio DAXPY ratio
(rolled/ (rolled/

Length unrolled) unrolled)

10
20
40
60
80
100
120
140
160
180
200

0.8
1 -0
1 -0
1 -0
1.1
1.1
1.1
1.1
1 -3
1.1
1.2

1 -1
1 -6
1.3
1 -8
1-8
1 *9
1 -8
1 -9
1 -9
1 -9
1 -9

Table V. Ratios for DDOT and DAXF'Y
(UNIVAC 1110 FORTV)

DDOT ratio DAXPY ratio
(rolled/ (rolled/

Length unrolled) unrolled)

10
20
40
60
80
100
120
140
160
180
200

0.9
1 -0
1 -2
1 *3
1-3
1 -4
1 *4
1 -4
1 -4
1 -4
1 -4

0.9
0.9
1.0
1 -0
1 -0
1 -0
1 -0
1 *o
1.1
1.1
1.1

Table VI. Ratios for DDOT and DAXPY
(PDP-10 F10 OPT)

DDOT ratio DAXPY ratio
(rolled/ (rolled/

Length unrolled) unrolled)

10
20
40
60
80
100
120
140
160
180
200

1 *4
1.2
1.6
1 -7
1-6
1 *5
1 -6
1.6
1 *6
1.6
1.6

1 -2
1 *4
1 *3
1 -4
1 -4
1 *5
1 5
1 *4
1.4
1 -4
1.5

224 J. J. DONGARRA AND A. R. HINDS

As expected, the benefits of unrolling increase as vector length increases. At small vector
lengths, the somewhat longer initialization sequence for the unrolled loop combined with
the necessity of cleanup code can lead to small advantage for the rolled version.

All timings and ratios in this paper include the linkage overhead times for the sub-
routines DDOT and DAXPY. This results in the performance ratios underestimating,
particularly for short vector lengths, the benefits of unrolling. The long vector performance
is more indicative of the behavior of unrolling in open code.

CONCLUSIONS AND DISCUSSION

An elementary technique, applicable at the source level, has been presented for the per-
formance improvement of short program loops. The method is simple to apply, requires no
rethinking of existing algorithms, is applicable in most common programming languages,
and only marginally degrades program readability. Data presented demonstrate the utility
of ‘unrolling’ for a wide variety of computer and FORTRAN compiler combinations.

The performance improvements of unrolling result from a reduction in loop overhead
operations. As an added benefit, loop unrolling provides greater utilization of special
architectural features of advanced machines normally accessible only through assembly or
special languages.

We do not suggest that this method be applied to programs blindly, for there are many
non-critical parts of a program where the effects will be negligible. But in sections of a code
known by the programmer to dominate execution time, loop unrolling can yield dramatic
savings. Indeed, the simplicity and success of unrolling suggest that it be made available
automatically in future compilers. With the compiler having knowledge of the architecture
of a machine, the program speedup can be optimized.

ACKNOWLEDGEMENTS

The routines and timings for this study were obtained during a LINPACK6 investigation
into an efficient FORTRAN coding of the BLAS. We would like to thank the LINPACK
test sites for their cooperation in gathering the timings and V. Barr for her help in preparing
some of the FORTRAN codings used.

APPENDIX

DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
C
C F O R M THE DOT PRODUCT OF TWO VECTORS.
C USES UNROLLED LOOPS FOR INCFXMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 6 / 1 7 / 7 7 .
C

DOUBLE PRECISION DX(1) ,DY(l) ,DTEMP
INTEGER I, INCX, INCY , IX, IY ,M ,MP1 ,N

DDOT = O.ODO
DTEMP = O.ODO
IF (N. LE. 0) RETURN
IF (INCX. EQ. 1. AND. INCY . EQ. 1) GOT0 20

C

C
C
C NOT EQUAL TO 1
C

CODE-FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS

UNROLLING LOOPS I N FORTRAN

IX = 1
IY = 1

225

10

C
C
C
C
C
C

20

30

40

IF(INCX.LT.O)IX = (-N+l)*INCX + 1
IF(INCY.LT.O)IY = (-N+l)*INCY + 1
Do.10 I 5 1,N
DTEMP = DTEPP + DX(IX)*DY(IY)
IX = IX + INCX
IY = IY + INCY

CONTINUE
DDOT = DTENP
RETURN

CODE FOR BOTH INCREMENTS EQUAL TO 1

CLEAN-UP LOOP

M = NOD (N ,5)
IF(M .EQ. 0) GO
DO 30 I = l,M
DTEW = DTEMP +

CONTINUE
IF(N .LT. 5) GO
b P 1 = M + 1
DO 50 I = MF'l,N,5
DTEMP = DTEMP + * DX(1 + 2)*DY(I * DX(1 + 4)*DY(I

50 CONTINUE
60 DDOT = DTEMP

TO 40

DX(1) *DY (I)

TO 60

DX(I)*DY(I) + DX(1 + l)*DY(I + 1) + + 2) + DX(1 + 3)"cDY(I + 3) +
+ 4)

RETURN
END

(Double precision was used on IBM; for a l l other machines, s ingle precision
nas used.)

C
C
C
C
C

C

C
C
C
C

10

C
C

SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)

CONSTANT TIMES A VECTOR PLUS A VECTOR.
USES UNROLLED LOOPS FOR INCRELENTS EQUAL TO ONE.
JACK DONGAW, LINPACK, 6/17/77.

DOUBLE PRECISION DX(1) ,DY(l) ,DA
INTEGER I,INCX,INCY,IXIY,M,MF'l,N

IF (N. LE . 0) RETURN
IF (DA .EQ. O.OD0) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.l)GOTO 20

CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
NOT EQUAL TO 1

IX = 1
IY = 1
IF (INCX. LT . 0) IX =
IF (INCY. LT. 0) IY =

(-N+1) *INCX + 1
(-N+1) *INCY + 1

DO 10 I = l,N
DY(1Y) = DY(1Y) + DA*DX(IX)
IX = IX + INCX
IY = IY + INCY

CONTINUE
RETUILU

CODE FOR BOTH INCREMENTS EQUAL TO 1

226 J. J. DONGARRA AND A. R. HINDS

C CLEAN-UP LOOP
C

20 M = MOD(N,4)
IF(M .EO. 0) GO TO 40
DO’30 I 1,M.
DY(1) = DY(1) + DA*DX(I)

. I . _
30 CONTINUE

IF(N .LT. 4) RETURN

DO 50 I = MPl,N,4
40 W 1 = M + 1

DY(1) = DY(1) + DA*DX(I)
DY(1 4- 1) = DY(I + 1) + DA*DX(I + 1)
DY(1 + 2) = DY(I+ 2) + DA*DX(I + 2)
DY(1 + 3) = DY(1 + 3) + DA*DX(I + 3)

50 CONTINUE
RETURN
END

(Double precision was used on IBM; for all other machines, single precision
was used.)

REFERENCES

1. C. B. Kreitzberg and B. Shmeiderman, The Elements of FORTRAN Style, Techniques for Effective
Programming, Harcourt Brace Jovanovich, New York, 1972.

2. D. Van Tassel, Program Style, Design, Eficiency, Debugging, and Testing, Prentice-Hall, Englewood
Cliffs. N.J.. 1974. , - ,

3. D. Pager, ‘Some notes on speeding up certain loops by software, firmware, and hardware means’,

4. D. E. Knuth, ‘Structured programming with Go To statements’, Comp. Surveys, 6, No. 4 261-302

5. F. H. McMahon, L, J. Sloan and G. A. Long, STACKLIB, LASL, LTSS-510 (January 1977).
6. D. E. Knuth, ‘An empirical study of FORTRAN programs’, Software-Practice and Experience,

7. J. J. Dongarra, J. R. Bunch, C. M. Moler and G. W. Stewart, LINPACK Working Note #9,

8 . J. J. Dongarra, LINPACK Working Note # 3 , FORTRAN BLAS Timing, Argonne National

9. C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, ‘Basic linear algebra subprograms for

IEEE Trans. on Comp., C21-1 97-100 (January 1972).

(December 1974).

1, 105-133 (1971).

Preliminary LINPACK User’s Guide, ANL TM-3 13 (August 1977).

Laboratory (November 1976).

use with FORTRAN’, submitted to Trans. Math. Software (July 1977).
10. CDC Compass Version 3 Reference Manual, 60360900, Control Data Corporation, 1976.

