
Chapter 2

Implementing Matrix Factorizations
on the Cell B. E.

Jakub Kurzak
Department of Electrical Engineering and Computer Science, University of
Tennessee

Jack Dongarra
Department of Electrical Engineering and Computer Science, University of
Tennessee
Computer Science and Mathematics Division, Oak Ridge National Laboratory
School of Mathematics & School of Computer Science, Manchester University

2.1 Introduction . 21
2.2 Cholesky Factorization . 22
2.3 Tile QR Factorization . 23
2.4 SIMD Vectorization . 26
2.5 Parallelization—Single Cell B. E. 28
2.6 Parallelization—Dual Cell B. E. 30
2.7 Results . 31
2.8 Summary . 32
2.9 Code . 33

Bibliography . 33

2.1 Introduction

It is clear that the impact of the multicore processors and accelerators
will be ubiquitous. There are obvious advantages, however, to look at linear
algebra in general and dense linear algebra in particular. This type of software
is critically important to computational science across an enormous spectrum
of disciplines and applications. Yet more importantly, dense linear algebra has
strategic advantages as a research vehicle, because the methods and algorithms
that underlie it have been so thoroughly studied and are so well understood [5,
6, 10, 17]. This chapter dissects highly optimized Cell B. E. implementations
of two classic dense linear algebra computations, the Cholesky factorization
and the QR factorization.

21

22 Scientific Computing with Multicore and Accelerators

SSYRK

SGEMM

SSYRK

SGEMM

SPOTRF

SGEMM

STRSM

SGEMM STRSM

A
T T

A

B C C

T

FIGURE 2.1: Tile operations in the Cholesky factorization. The sequence
is left-to-right and top-down. Hatching indicates input data, shade of gray
indicates in/out data.

2.2 Cholesky Factorization

The Cholesky factorization (or Cholesky decomposition) is mainly used for
the numerical solution of linear equations Ax = b, where A is symmetric and
positive definite. Such systems arise often in physics applications, where A is
positive definite due to the nature of the modeled physical phenomenon. This
happens frequently in numerical solutions of partial differential equations. The
Cholesky factorization of an n × n real symmetric positive definite matrix A
has the form

A = LLT ,

where L is an n × n real lower triangular matrix with positive diagonal ele-
ments.

The algorithm can be expressed using either the top-looking version,
the left-looking version or the right-looking version. The first one follows
depth-first exploration of the task graph and the last one follows the
breadth-first exploration of the task graph. The left-looking variant is used
here. The algorithm relies on four basic operations implemented by four com-
putational kernels (Figure 2.1). Figure 2.2 shows the generic pseudocode of
the left-looking Cholesky factorization.

Implementing Matrix Factorizations on the Cell B. E. 23

FOR k = 0..TILES-1

 FOR n = 0..k-1

 A[k][k] ← SSYRK(A[k][n], A[k][k])

 A[k][k] ← SPOTRF(A[k][k])

 FOR m = k+1..TILES-1

 FOR n = 0..k-1

 A[m][k] ← SGEMM(A[k][n], A[m][n], A[m][k])

 A[m][k] ← STRSM(A[k][k], A[m][k])

FIGURE 2.2: Pseudocode of the (left-looking) Cholesky factorization.

SSYRK: The kernel applies updates to a diagonal (lower triangular) tile T
of the input matrix, resulting from factorization of the tiles A to the left
of it. The operation is a symmetric rank-k update.

SPOTRF: The kernel performs the Cholesky factorization of a diagonal
(lower triangular) tile T of the input matrix and overrides it with the
final elements of the output matrix.

SGEMM: The operation applies updates to an off-diagonal tile C of the
input matrix, resulting from factorization of the tiles to the left of it.
The operation is a matrix multiplication.

STRSM: The operation applies an update to an off-diagonal tile C of the in-
put matrix, resulting from factorization of the diagonal tile above it and
overrides it with the final elements of the output matrix. The operation
is a triangular solve.

2.3 Tile QR Factorization

The QR factorization (or QR decomposition) offers a numerically stable
way of solving underdetermined and overdetermined systems of linear equa-
tions (least squares problems) and is also the basis for the QR algorithm for
solving the eigenvalue problem.

24 Scientific Computing with Multicore and Accelerators

SGEQRT

STSQRT

SLARFB

SSSRFB

SLARFB

STSQRT

SSSRFB

SSSRFB SSSRFB

R
V1

V2

R

C1

C1

C2

T

T

V1
T

T V2

SGEQRT

STSQRT

SLARFB

SSSRFB

IB

NB

FIGURE 2.3: Left: Tile operations in the tile QR factorization. The sequence
is left-to-right and top-down. Hatching indicates input data, shade of gray
indicates in/out data. Right: Inner blocking in the tile QR factorization.

The QR factorization of an m× n real matrix A has the form

A = QR,

where Q is an m ×m real orthogonal matrix and R is an m × n real upper
triangular matrix. The traditional algorithm for QR factorization applies a
series of elementary Householder matrices of the general form

H = I − τvvT ,

where v is a column reflector and τ is a scaling factor. In the block form of the
algorithm a product of nb elementary Householder matrices is represented in
the form

H1H2 . . . Hnb = I − V TV T ,

where V is an N × nb real matrix whose columns are the individual vectors
v, and T is an nb× nb real upper triangular matrix [2, 16].

Here a derivative of the block algorithm is used called the tile QR factor-
ization. The ideas behind the tile QR factorization are very well known. The
tile QR factorization was initially developed to produce a high-performance
“out-of-memory” implementation (typically referred to as “out-of-core”) [11]
and, more recently, to produce a high-performance implementation on “stan-
dard” (x86 and alike) multicore processors [3,4]. The tile QR algorithm relies
on four basic operations implemented by four computational kernels (Fig-
ure 2.3). Figure 2.4 shows the pseudocode of the tile QR factorization.

Implementing Matrix Factorizations on the Cell B. E. 25

FOR k = 0..TILES-1

 A[k][k], T[k][k] ← SGEQRT(A[k][k])

 FOR m = k+1..TILES-1

 A[k][k], A[m][k], T[m][k] ← STSQRT(A[k][k], A[m][k], T[m][k])

 FOR n = k+1..TILES-1

 A[k][n] ← SLARFB(A[k][k], T[k][k], A[k][n])

 FOR m = k+1..TILES-1

 A[k][n], A[m][n] ← SSSRFB(A[m][k], T[m][k], A[k][n], A[m][n])

FIGURE 2.4: Pseudocode of the tile QR factorization.

SGEQRT: The kernel performs the QR factorization of a diagonal tile of
the input matrix and produces an upper triangular matrix R and a unit
lower triangular matrix V containing the Householder reflectors. The
kernel also produces the upper triangular matrix T as defined by the
compact WY technique for accumulating Householder reflectors [2, 16].
The R factor overrides the upper triangular portion of the input and
the reflectors override the lower triangular portion of the input. The T
matrix is stored separately.

STSQRT: The kernel performs the QR factorization of a matrix built by cou-
pling the R factor, produced by SGEQRT or a previous call to STSQRT,
with a tile below the diagonal tile. The kernel produces an updated R
factor, a square matrix V containing the Householder reflectors and the
matrix T resulting from accumulating the reflectors V . The new R factor
overrides the old R factor. The block of reflectors overrides the square
tile of the input matrix. The T matrix is stored separately.

SLARFB: The kernel applies the reflectors calculated by SGEQRT to a tile
to the right of the diagonal tile, using the reflectors V along with the
matrix T .

SSSRFB: The kernel applies the reflectors calculated by STSQRT to two
tiles to the right of the tiles factorized by STSQRT, using the reflectors
V and the matrix T produced by STSQRT.

A naive implementation, where the full T matrix is built, results in 25 %
more floating point operations than the standard algorithm. In order to mini-
mize this overhead, the idea of inner-blocking is used, where the T matrix has
sparse (block-diagonal) structure (Figure 2.3) [7–9].

26 Scientific Computing with Multicore and Accelerators

2.4 SIMD Vectorization

The keys to maximum utilization of the synergistic processing elements
(SPEs) are highly optimized implementations of the computational kernels,
which rely on efficient use of the short-vector single instruction multiple data
(SIMD) architecture. For the most part, the kernels are developed by applying
standard loop optimization techniques, including tiling, unrolling, reordering,
fusion, fission, and sometimes also collapsing of loop nests into one loop span-
ning the same iteration space with appropriate pointer arithmetics. Tiling
and unrolling are mostly dictated by Local Store latency and the size of the
register file, and aim at hiding memory references and reordering of vector
elements, while balancing the load of the two execution pipelines. Due to the
huge size of the SPEs’ register file, unrolling is usually quite aggressive.

Implementation of the tile kernels assumes a fixed size of the tiles. Smaller
tiles (finer granularity) have a positive effect on scheduling for parallel exe-
cution and facilitate better load balance and higher parallel efficiency. Bigger
tiles provide better performance in sequential execution on a single SPE. In
the case of the CELL chip, the crossover point is rather simple to find for
problems in dense linear algebra. From the standpoint of this work, the most
important operation is matrix multiplication in single precision. It turns out
that this operation can achieve the peak performance of the SPE for matrices
of size 64×64 (see the preceeding chapter). The fact that the peak perfor-
mance can be achieved for a tile of such a small size has to be attributed to
the large size of the register file and fast access to the Local Store, undisturbed
with any intermediate levels of memory. Also, such a matrix occupies a 16 KB
block of memory, which is the maximum size of a single DMA transfer. Eight
such matrices fit in half of the Local Store providing enough flexibility for
multibuffering while, at the same time, leaving enough room for the code.

Table 2.1 shows characteristics of the Cholesky kernels and the tile QR
kernels. It can be observed that the Cholesky kernels required moderate ef-
fort. Initially, all the kernels were coded using C language SIMD extensions
(intrinsics) and required roughly 300 lines of code per kernel. However, pre-
processor macros were used and the resulting assembly code is significantly
longer. Nevertheless, the effort associated with development and maintenance
of this code is rather small. At the same time, the delivered performance is
more than satisfactory. Specifically, the SGEMM and SSYRK kernels deliver
90 and 79% of the peak respectively, which has to be considered quite good for
SIMD code developed in a higher level language. The STRSM kernel delivers
poorer performance due to a lower level of SIMD parallelism available and
the SPOTRF kernel performs the poorest for the same reason. The SPOTRF
kernel simply performs the Cholesky factorization within a tile and is the the
most complex operation to SIMD’ize with the lowest level of available SIMD
parallelism.

Implementing Matrix Factorizations on the Cell B. E. 27

TABLE 2.1: Complexity and performance characteristics of SPE
micro-kernels for the Cholesky factorization (top) and the tile QR factorization
(bottom). Bold font highlights the largest codes and the highest performance.
All operations are for matrices of size 64×64 (n=64).

Kernel Lines Lines Object Exec. Flop Exec. Fraction
Name of Code of Code Size Time Count Rate of Peak

in C in ASM [KB] [µs] Formula [Gflop/s] [%]
SGEMMC 330 2000 7.8 23 2n3 23.03 90

SGEMMASM - 3900 6.2 22 2n3 24.04 94
SSYRK 160 1000 3.6 13 n3 20.11 79
STRSM 310 1600 6.2 16 n3 16.26 64

SPOTRF 340 800 3.1 14 1/3n
3 6.57 26

SSSRFB 1600 2200 8.8 47 4n3 22.20 87
STSQRT 1900 3600 14.2 46 2n3 11.40 45
SLARFB 600 600 2.2 41 2n3 12.70 50
SGEQRT 1600 2400 9.0 57 4/3n

3 6.15 24

Table 2.1 also includes the SGEMM kernel developed in the SPE assembly
language, which was described in the previous chapter. In this case the effort
was rather huge and involved development of 3900 lines of hand-tuned assem-
bly code. At the same time, the performance gain is less than 5 %. Such an
effort is justified in reasearch circles, but would be questionable in commer-
cial environments. Nevertheless, the performance for parallel runs, presented
further in the text, relies on the fast assembly kernel.

It should be pointed out that the performance of the kernels developed in
the C language is very sensitive to the version of the compiler used and the
compilation flags. The authors exhaustively tried all the combinations and
the table reports the best results achieved. Many times high performance was
only achievable while using the spu-gcc, version 3.4.1, released in SDK 1.1,
toolchain 2.3. Most of the time either the flag -O3 or the flag -Os delivered
the best performance. Since the follow up versions of the compiler delivered
poorer performance for the kernels, the code posted online by the authors
(2.9) includes the kernels precompiled to assembly using the old compiler.

The development of the Cholesky kernels was moderately difficult. Three
of them implement simple Level 3 BLAS operations, while the fourth one
implements the Cholesky factorization on a tile, which is not overly compli-
cated. The same cannot be claimed about the tile QR factorization kernels.
None of the kernel operations is a simple BLAS operation, and the technique
of inner-blocking further complicates matters.

Inner-blocking in the tile QR algorithm is required to minimize the num-
ber of extraneous floating-point operations (beond the 4/3n

3 formula) com-
ing from the accumulation of Householder reflectors. As necessary as the

28 Scientific Computing with Multicore and Accelerators

SPOTRF STRSM SSYRK SGEMM

0

1

2

3

4

5

6

7

0

1

2

3

4

5 6

SGEQRT STSQRT SLARFB SSSRFB

0 1 2 3 4

5 6 7 0

1 2 3

4 5

6

FIGURE 2.5: Assignment of work to SPEs for the Cholesky factorization
(left) and the tile QR factorization (right).

inner-blocking is, it also restricts the level of available SIMD parallelism. Ide-
ally, the size of the inner block would be chosen in the process of autotuning.
However, such an approach would require some means of automatic code gen-
eration. Since such capabilities were not available here, the size was picked
arbitrarily. For productivity reasons, the size of four elements was picked to
match the size of the SIMD vector length in single precision.

As Table 2.1 shows, it was also possible to achieve good performance for
the tile QR kernels coded in the C language using intrinsics. Most impor-
tantly, good performance was achieved for the SSSRFB kernel, which is as
performance-critical to the tile QR factorization as the SGEMM kernel per-
formance is critical to the Cholesky factorization. At the same time, much
heavier coding effort was involved, resulting in three kernels larger that 1500
lines of source code (SGEQRT, SSSRFB, STSQRT) and the STSQRT kernel
ultimately translating to 3600 lines of assembly code.

2.5 Parallelization—Single Cell B. E.

Matrix factorizations represent computations with a very clear structure
and regular data access pattern. This motivates the use of static partitioning
of work to the SPEs, shown in Figure 2.5. For the Cholesky factorization, in
each step of the factorization, each SPE goes through one row of tiles. The
assignment of rows is cyclic, from step to step, and the SPE which “runs out of
work” in a given step immediately follows to the consecutive step, a behavior
resembling the popular technique of lookahead. The scheme is followed for the
tile QR factorization, except here each SPE goes through one column of tiles.

Due to the regular nature of these workloads, static scheduling is extemely
straighforward to implement. Using a simple formula on tiles’ idexes, each SPE
can traverse its own path through the iteration space. Additionally, at each
step, a check for data dependencies is required. The SPE does that by looking

Implementing Matrix Factorizations on the Cell B. E. 29

SPOTRF

SPOTRF

SPOTRF

SPOTRF

SPOTRF

STRSM

STRSM STRSM STRSM

STRSM STRSM STRSM

STRSM STRSM

STRSM

SSYRK

SSYRK SSYRK SSYRK

SSYRK SSYRK SSYRK

SSYRK SSYRK

SSYRK

SGEMMSGEMM SGEMM SGEMM SGEMM SGEMM

SGEMM SGEMM SGEMM

SGEMM

SGEQRT

SGEQRT

SGEQRT

SGEQRT

SGEQRT

SLARFBSLARFB SLARFB SLARFB

SLARFB SLARFB SLARFB

SLARFB SLARFB

SLARFB

STSQRT

STSQRT

STSQRT

STSQRTSTSQRT

STSQRT

STSQRT

STSQRT

STSQRT

STSQRT

SSSRFBSSSRFB SSSRFB SSSRFB

SSSRFB SSSRFB SSSRFB SSSRFB

SSSRFB SSSRFB SSSRFB SSSRFB

SSSRFB SSSRFB SSSRFB SSSRFB SSSRFB SSSRFB SSSRFB

SSSRFB SSSRFB SSSRFB

SSSRFB SSSRFB SSSRFB

SSSRFB SSSRFB

SSSRFB SSSRFB

SSSRFB

FIGURE 2.6: Direct Acyclic Graphs of the Cholesky factorization (left) and
the tile QR factorization (right) for a matrix of size 5×5 tiles.

up a progress table in its Local Store. The progress table contains the global
progress information and is replicated on all SPEs. The progress table holds
one entry (a byte) for each tile of the input matrix, indicating progress of the
computation associated with that tile. At the completion of each operation,
the SPE broadcasts the progress information to progress tables of all SPEs
with an SPE-to-SPE DMA.

Alternatively to the static scheduling, a dynamic scheduling could be used,
based on representing the computation as a task graph or Direct Acyclic
Graph (DAG). The task is rather non-trivial due to the complexity of the
DAGs of dense matrix factorizations (Figure 2.6). One framework capable
of such scheduling on the Cell B. E. is the Cell Superscalar (CellSs) project
from the Barcelona Supercomputer Center [1, 15]. Unfortunately, due to the
overheads of dynamically scheduling complex DAGs, the software is still not
competitive, in terms of performance, with the approach presented here.

An important aspect of the algorithm is overlapping of communication
and computation by double-buffering of data. At each step, the tiles of the
input matrix are exchanged between the main memory and Local Store. Since
scheduling is static, upcoming operations can be anticipated and the necessary
data prefetched. In fact, all data buffers are duplicated and, at each operation,
a prefetch of data is initiated for the upcoming operation (again, subject to
a dependency check). If the prefetch fails for dependency reasons, data are
fetched in a blocking mode right before the operation. Algorithm 1 shows the
mechanism of double-buffering in matrix factorizations.

The pipelined scheduling scheme along with double-buffering of data trans-

30 Scientific Computing with Multicore and Accelerators

Algorithm 1 General scheme of double-buffering in the Cholesky and tile
QR factorizations.

1: while more work to do do
2: if data not prefetched then
3: wait for dependencies
4: fetch data
5: end if
6: if more work to follow then
7: if dependencies met then
8: prefetch data
9: end if

10: end if
11: compute
12: swap buffers
13: end while

SGEQRT STSQRT SLARFB SSSRFB barrier

SPE 0
SPE 1
SPE 2
SPE 3
SPE 4
SPE 5
SPE 6
SPE 7

Time

FIGURE 2.7: Execution trace of the tile QR factorization of a 512×512
matrix. (total time: 1645 µs, execution rate: 109 Gflop/s).

fers provide for smooth execution with minimal idle time caused by depen-
dency stalls and almost no time lost to data transfers. This is clearly visible
on a trace of the tile QR factorization presented in Figure 2.7.

2.6 Parallelization—Dual Cell B. E.

Given the single-Cell B. E. implementation, extension to dual-Cell B. E.
implementation (e.g., IBM QS20, IBM QS22) is relatively straightforward. A
single PPE process can launch 16 SPE threads, eight on each Cell B. E. The
single-Cell B. E. code is going to run correctly on a dual-Cell B. E. system by
simply increasing the number of SPEs to 16.

The problem is a one of performance of the memory system. The dual-Cell
blades are Non-Uniform Memory Access (NUMA) architectures. Each Cell

Implementing Matrix Factorizations on the Cell B. E. 31

B. E. is associated with a separate memory node. Peak bandwidth to the
local node is 25.6 GB/s. Cross-traffic, however, is handled at a much lower
bandwidth (roughly half of that number). It is important, then, that each
SPE satisfies its data needs mostly from the local memory node.

This situation is addressed by duplicating the input matrix in both mem-
ory nodes (libnuma is used for correct memory placement). Each SPE reads
data only from the local node, but writes data to both nodes. From the per-
spective of the shared memory model, it can be viewed as a manual implemen-
tation of the write-back memory consistency protocol. From the perspective
of a distributed memory model, it can be viewed as non-blocking collective
communication (broadcast) or as one-sided communication. The obvious lim-
itation is that the approach would not be scalable to larger NUMA systems.
As of today, however, larger Cell-based NUMA systems do not exist.

One technical detail to be mentioned here is the acknowledgment DMAs
implementing the synchronization protocol between SPEs. When 16 SPEs are
used, each SPE needs to send 16 acknowledgment messages following a write
of data to the system memory. The acknowledgment DMA is fenced with
the data DMA and the SPE also sends such a message to its own progress
table (hence 16 messages are sent and not 15). The DMA request queue is,
however, only 16 entries deep, and issuing 16 acknowledgment requests at the
same time stalls data transfers until some requests clear the queue. A simple
remedy is the use of a DMA list with 16 elements, where the elements point
to appropriate Local Store locations of the other SPEs. The code alternates
between two such lists in the double-buffered communication cycle.

2.7 Results

Results presented here are produced by the two 3.2 GHz Cell B. E. chips
of the QS20 dual-socket blade running Fedora Core 7 Linux. The code is
cross-compiled using x86 SDK 3.1, although the kernels are cross-compiled
with an old x86 SPU GCC 3.4.1 cross-compiler, since this compiler yields the
highest performance. It also needs to be mentioned that the implementation
utilizes Block Data Layout (BDL) [13, 14], where each tile is stored in a con-
tinuous 16 KB portion of the main memory, which can be transferred in a
single DMA, which puts an equal load on all 16 memory banks. Tiles are
stored in the row-major order, and also data within tiles are arranged in the
row-major order, a common practice on the Cell B.E. Translation from stan-
dard (FORTRAN) layout to BDL can be implemented very efficiently on the
Cell B.E. [12]. Here the translation is not included in timing results. Also, in
order to avoid the problem of TLB misses, all the memory is allocated in huge
TLB pages and“faulted in” at initialization. As a result, an SPE never incurs

32 Scientific Computing with Multicore and Accelerators

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

350

400

Cholesky Factorization -- 3.2 GHz QS20 Systems

Matrix Size

G
flo

p/
s

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

350

400

Tile QR Factorization -- 3.2 GHz QS20 Systems

Matrix Size

G
flo

p/
s

FIGURE 2.8: Performance of the Cholesky factorization (left) and the tile
QR factorization (right) in single precision on an IBM QS20 blade using two
Cell B. E. chips (16 SPEs). Square matrices were used. The solid horizontal line
marks the performance of the SGEMM kernel for the Cholesky factorization,
and the SSSRFB kernel for the tile QR factorization, multiplied by the number
of SPEs (16).

a TLB miss during the run. Correct NUMA memory placement is enforced
using the libnuma library.

Figure 2.8 and Tables 2.2 and 2.3 show the performance. Not only do the
factorizations get close to the peak performance of the hardware, but also the
performance curves raise very quickly with the sizes of the matrices, i.e., the
code delivers very good performance even for relatively small problem sizes.
Ultimately the algorithm’s performance is limited by the performance of the
critical SPE kernels, SGEMM for Cholesky and SSSRFB for tile QR.

2.8 Summary

It has been shown here that a silicon chip can provide an outstanding per-
formance for compute-intensive scientific workloads by combining short-vector
SIMD capabilities with multicore architecture and also providing for explicit
control over caches (Local Stores). It is also an important factor that the SPEs
allow for implementation of complex synchronization mechanisms and thus for
efficiently exploiting task-level parallelism in workloads with complex data de-
pendencies, such as dense matrix factorizations. One point to be made here is
that successful implementation relies on addressing all aspects of performance
optimization: exploiting data-level parallelism through short-vector SIMD vec-
torization, exploiting task-level parallelism through SPE-parallelization and

Implementing Matrix Factorizations on the Cell B. E. 33

TABLE 2.2: Performance of the Cholesky factorization in single precision on
two 3.2 GHz Cell B. E. chips of the IBM QS20 dual-socket blade (16 SPEs).

Matrix Execution Fraction Fraction
Size Rate [Gflop/s] of Peak [%] of SGEMM Peak [%]
256 24 6 6
512 91 22 24
768 186 46 49
1024 251 61 65
1280 290 71 75
1536 316 77 82
1792 330 81 86
2048 340 83 88
3072 357 87 93
4096 365 89 95

TABLE 2.3: Performance of the tile QR factorization in single precision on
two 3.2 GHz Cell B. E. chips of the IBM QS20 dual-socket blade (16 SPEs).

Matrix Execution Fraction Fraction
Size Rate [Gflop/s] of Peak [%] of SSSRFB Peak [%]
256 38 9 11
512 137 34 39
768 212 52 60
1024 266 65 75
1280 293 72 83
1536 307 75 87
1792 317 78 90
2048 322 79 91
3072 335 82 95
4096 340 83 96

exploiting the memory hierarchy through explicit control of the local memo-
ries.

2.9 Code

The code is freely available under the BSD license and can be downloaded
from the author’s web site http://icl.cs.utk.edu/~kurzak/. Although the
authors put a lot of effort into making the code both robust and readable, it
is a proof-of-concept prototype and not a production-quality code.

34 Scientific Computing with Multicore and Accelerators

Bibliography

[1] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: A pro-
gramming model for the Cell BE architecture. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, Tampa, FL, November 11-17
2006. ACM. DOI: 10.1145/1188455.1188546.

[2] C. Bischof and C. van Loan. The WY representation for products of
Householder matrices. J. Sci. Stat. Comput., 8:2–13, 1987.

[3] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. Parallel tiled QR
factorization for multicore architectures. Concurrency Computat.: Pract.
Exper., 20(13):1573–1590, 2008. DOI: 10.1002/cpe.1301.

[4] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. A class of par-
allel tiled linear algebra algorithms for multicore architectures. Parallel
Comput. Syst. Appl., 35:38–53, 2009. DOI: 10.1016/j.parco.2008.10.002.

[5] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
ISBN: 0898713897.

[6] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Nu-
merical Linear Algebra for High-Performance Computers. SIAM, 1998.
ISBN: 0898714281.

[7] E. Elmroth and F. G. Gustavson. New serial and parallel recursive QR
factorization algorithms for SMP systems. In Applied Parallel Computing,
Large Scale Scientific and Industrial Problems, 4th International Work-
shop, PARA’98, Ume̊a, Sweden, June 14-17 1998. Lecture Notes in Com-
puter Science 1541:120-128. DOI: 10.1007/BFb0095328.

[8] E. Elmroth and F. G. Gustavson. Applying recursion to serial and par-
allel QR factorization leads to better performance. IBM J. Res. & Dev.,
44(4):605–624, 2000.

[9] E. Elmroth and F. G. Gustavson. High-performance library software
for QR factorization. In Applied Parallel Computing, New Paradigms
for HPC in Industry and Academia, 5th International Workshop, PARA
2000, Bergen, Norway, June 18-20 2000. Lecture Notes in Computer Sci-
ence 1947:53–63. DOI: 10.1007/3-540-70734-4 9.

[10] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns
Hopkins University Press, 1996. ISBN: 0801854148.

[11] B. C. Gunter and R. A. van de Geijn. Parallel out-of-core computation
and updating the QR factorization. ACM Transactions on Mathematical
Software, 31(1):60–78, 2005. DOI: 10.1145/1055531.1055534.

Implementing Matrix Factorizations on the Cell B. E. 35

[12] J. Kurzak and J. J. Dongarra. Implementation of mixed preci-
sion in solving systems of linear equations on the CELL proces-
sor. Concurrency Computat.: Pract. Exper., 19(10):1371–1385, 2007.
DOI: 10.1002/cpe.1164.

[13] N. Park, B. Hong, and V. K. Prasanna. Analysis of memory hier-
archy performance of block data layout. In Proceedings of the 2002
International Conference on Parallel Processing, ICPP’02, pages 35–
44, Vancouver, Canada, August 18-21 2002. IEEE Computer Society.
DOI: 10.1109/ICPP.2002.1040857.

[14] N. Park, B. Hong, and V. K. Prasanna. Tiling, block data layout, and
memory hierarchy performance. IEEE Trans. Parallel Distrib. Syst.,
14(7):640–654, 2003. DOI: 10.1109/TPDS.2003.1214317.

[15] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta. CellSs: Making it
easier to program the Cell Broadband Engine processor. IBM J. Res. &
Dev., 51(5):593–604, 2007. DOI: 10.1147/rd.515.0593.

[16] R. Schreiber and C. van Loan. A storage-efficient WY representation for
products of Householder transformations. J. Sci. Stat. Comput., 10:53–
57, 1991.

[17] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.
ISBN: 0898713617.

