
Contents

3 Empirical Performance Tuning of Dense Linear Algebra Soft-
ware 3
Jack Dongarra and Shirley Moore
3.1 Background and Motivation 4

3.1.1 Importance of Dense Linear Algebra Software 4
3.1.2 Dense Linear Algebra Performance Issues 4
3.1.3 Idea of Empirical Tuning 5

3.2 ATLAS . 5
3.2.1 Level 3 BLAS Support 6
3.2.2 Level 2 BLAS Support 7
3.2.3 Level 1 BLAS Support 7
3.2.4 LAPACK Support . 7
3.2.5 Blocking for Higher Levels of Cache 8
3.2.6 Use of Assembly Code 8
3.2.7 Use of Architectural Defaults 8
3.2.8 Search Algorithm . 8

3.3 Auto-tuning for Multicore 9
3.3.1 Tuning outer and inner block sizes 9
3.3.2 Validation of pruned search 11

3.4 Auto-tuning for GPUs . 12
3.4.1 GEMM auto-tuner . 13
3.4.2 Performance Results 14

3.5 Conclusions . 16

Bibliography 17

1

2

Chapter 3

Empirical Performance Tuning of
Dense Linear Algebra Software

Jack Dongarra

University of Tennessee/Oak Ridge National Laboratory

Shirley Moore

University of Tennessee

3.1 Background and Motivation . 4
3.1.1 Importance of Dense Linear Algebra Software . 4
3.1.2 Dense Linear Algebra Performance Issues . 4
3.1.3 Idea of Empirical Tuning . 5

3.2 ATLAS . 5
3.2.1 Level 3 BLAS Support . 6
3.2.2 Level 2 BLAS Support . 7
3.2.3 Level 1 BLAS Support . 7
3.2.4 LAPACK Support . 7
3.2.5 Blocking for Higher Levels of Cache . 7
3.2.6 Use of Assembly Code . 8
3.2.7 Use of Architectural Defaults . 8
3.2.8 Search Algorithm . 8

3.3 Auto-tuning for Multicore . 8
3.3.1 Tuning outer and inner block sizes . 9
3.3.2 Validation of pruned search . 11

3.4 Auto-tuning for GPUs . 12
3.4.1 GEMM auto-tuner . 13
3.4.2 Performance Results . 14

3.5 Conclusions . 16

Dense linear algebra (DLA) forms the core of many scientific computing ap-
plications. Consequently, there is continuous interest and demand for the de-
velopment of efficient algorithms and implementations on new architectures.
One response to this demand has been the development of the ATLAS (Au-
tomatic Tuning of Linear Algebra Software) system to automatically produce
implementations of the BLAS (Basic Linear Algebra Subroutines) routines
that underlie all of dense linear algebra. ATLAS generates efficient code by
running a series of timing experiments using standard techniques for improv-
ing performance (loop unrolling, blocking, etc.) to determine optimal param-
eters and code structures. While ATLAS has been highly successful in tuning
DLA for cache-based architectures, we are developing new auto-tuning tech-

3

4 Performance Tuning for Scientific Applications

niques for multicore and heterogeneous architectures that exploit higher levels
of parallelism and asynchronous scheduling. This chapter describes the AT-
LAS techniques as well as recent research on empirical tuning of dense linear
algebra routines for multicore and GPU architectures.

3.1 Background and Motivation

This section begins with a a discussion of how scientific computing re-
lies on the efficient solution of numerical linear algebra problems. It discusses
the critical performance issues involved, emphasizing performance on multi-
core and heterogeneous architectures. It then motivates the remainder of the
chapter by introducing the empirical approach to DLA performance tuning.

3.1.1 Importance of Dense Linear Algebra Software

The standard problems of numerical linear algebra include linear systems
of equations, least squares problems, eigenvalue problems, and singular value
problems [9]. Linear algebra software routines for solving these problems are
widely used in the computational sciences in general, and in scientific model-
ing in particular. In many of these applications, the performance of the lin-
ear algebra operations are the main constraint preventing the scientist from
modeling more complex problems, which would then more closely match re-
ality. This then dictates an ongoing need for highly efficient routines; as more
compute power becomes available the scientist typically increases the com-
plexity/accuracy of the model until the limits of the computational power
are reached. Therefore, since many applications have no practical limit of
“enough” accuracy, it is important that each generation of increasingly pow-
erful computers have optimized linear algebra routines available.

3.1.2 Dense Linear Algebra Performance Issues

Linear algebra is rich in operations that are highly optimizable, in the
sense that a highly tuned code may run multiple orders of magnitude faster
than a naively coded routine. However, these optimizations are platform spe-
cific, such that an optimization for a given computer architecture will actually
cause a slow-down on another architecture. The traditional method of han-
dling this problem has been to produce hand-optimized routines for a given
machine. This is a painstaking process, typically requiring many man-months
from personnel who are highly trained in both linear algebra and compu-
tational optimization. The incredible pace of hardware evolution makes this
approach untenable in the long run, particularly so when considering that

Empirical Performance Tuning of Dense Linear Algebra Software 5

there are many software layers (eg., operating systems, compilers, etc) that
also effect these kinds of architectures.

3.1.3 Idea of Empirical Tuning

Automatic performance tuning, or auto-tuning, has been used extensively
to automatically generate near-optimal numerical libraries for modern CPUs.
For example, ATLAS [14, 10] and PHiPAC [8] are used to generate opti-
mized libraries for FFT, which is one of the most important algorithms for
digital signal processing. There are two general approaches to auto-tuning,
namely model-driven optimization and empirical optimization. The idea of
model-driven optimization comes from the compiler community. The com-
piler research community has developed various optimization techniques that
can effectively tranform code written in high-level languages such as C and
Fortran to run efficiently on modern architectures. These optimization tech-
niques include loop blocking, loop unrolling, loop permutation, fusion, and
distribution, prefetching, and software pipelining. The parameters for these
transformations, such as the block size and the amount of unrolling, are de-
termined at compile time by analytical methods. While model-driven opti-
mization is generally effective in making programs runs faster, it may not give
optimal performance for linear algebra and signal processing libraries. The
reason is that analytical models used by ocmpilers are simplified abstractions
of the underlying processor architecture, and they must be general enough to
be applicable to all kinds of programs. Thus, the limited accuracy of analyti-
cal models makes the model-driven approach less effective for the optimization
of linear algebra and signal processing kernels if the approach is solely used.
In contrast to model-driven optimization, empirical optimization techniques
generate a large number of parameterized code variants for a given algorithm
and run these variants on a given platform to find the one that gives the best
performance. The effectiveness of empirical optimization depends on the pa-
rameters chosen to optimize and on the search heuristic used. A disadvantage
of empirical optimization is the time cost of searching for the best code vari-
ant, which is usually proportional to the number of variants generated and
evaluated. However, this cost may be justified for frequently used code, where
the cost is amortized over the total useful lifetime of the generated code.

3.2 ATLAS

This section describes the goals and approach of ATLAS. ATLAS provides
highly optimized linear algebra kernels for arbitrary cache-based architectures.
The initial goal of ATLAS was to provide a portably efficient implemenata-
tion of the BLAS (Basic Linear Algebra Subroutines). ATLAS was originally

6 Performance Tuning for Scientific Applications

released in 1997. The most recent stable release is version 3.8.3, released in
February 2009. ATLAS now provides at least some level of support for all of
the BLAS and has been extended to some higher level routines from LAPACK.

As explained in [14], ATLAS uses three different methods of software adap-
tation, described as follows:

• parameterized adaptation This method involves parameterizing char-
actertistics that vary from machine to machine. The most important
such parameter in linear algebra is probably the blocking factor used
in blocked algorithms which affects data cache utilization. Not all im-
portant architectural variables can be handled by this method, however,
since some of them, such as choice of combined or separate multipley
and add instructions, length of floating point and fetch pipelines, etc.)
can be varied only by changing the underlying source code. For these
variables, the two source code adaptations described below may be used.

• multiple implemementation This source code adaptation method in-
volves searching a collection of various hand-tuned implementations un-
til the best is found. ATLAS adds a search and timing layer to ac-
complish what would otherwise be done by hand. An advantage of thrs
method is that multiple authors can contribute implementations without
having to understand the entire package.

• source generation This source code adaptation method uses a program
called a source generator which takes the various source code adapata-
tions to be made as input and produces a source code routine with the
specified characteristics. This method is flexible but complicated.

The BLAS are building block routines for performing basic vector and
matrix operations. The BLAS are divided into three levels: Level 1 BLAS do
vector-vector operations, Level 2 BLAS do matrix-vector operations, and Level
3 BLAS do matrix-matrix operations. The performance gains from optimized
implementations depends on the level of the BLAS. commonly occurring prob-
lems in numerical linear algebra. ATLAS natively provides only a handful of
LAPACK routines, but the ATLAS-provided routines can be automatically
added to the standard LAPACK library from netlib [3] to produce a complete
LAPACK library. In the following subsections, we describe ATLAS’s BLAS
and LAPACK support.

3.2.1 Level 3 BLAS Support

The Level 3 BLAS perform matrix matrix operations. They have O(N3)
operations but need only O(N2) data. These routines can be effectively re-
ordered and blocked for cache reuse and thus made to run fairly close to
theoretical peak on most architectures. All the Level 3 BLAS routines can be
efficiently implemented given an efficient matrix-matrix multiply (hereafter
shortened to the BLAS matrix multiplication routine name, GEMM). Hence,

Empirical Performance Tuning of Dense Linear Algebra Software 7

the main performance kernel is GEMM. GEMM itself is further reduced to
an even smaller kernel, called gemmK, before code generation takes place.
gemmK is blocked to constant dimensions, usually for Level 1 Cache, and
then heavily optimized for both the floating point unit and memory hierar-
chy using parameterization combined with multiple implementation and code
generation. ATLAS first empirically searches the optimization space of the
gemmK code and then optimizes the same code using multiple implementa-
tion. The gemmK that is finally used is the best performing kernel from these
two searches.

3.2.2 Level 2 BLAS Support

The Level 2 BLAS perform matrix-vector operations such as matrix-vector
multiply, rank 1 update and triangular forward/backward solve. ATLAS re-
quires only one kernel to support all Level 3 BLAS, but this is not true of the
Level 2 BLAS. The Level 2 BLAS have O(N2) operations and O(N2) data.
Two classes of kernels are needed, a tuned general matrix-vector multiply
(GEMV) and a tuned rank-1 update (GER) to support a GEMV- and GER-
based Level 2 BLAS. However, since the matrix cannot be copied without
incurring as much cost as an operation, a different GEMV kernel is required
for each transpose setting. ATLAS tunes these kernels using only parameter-
ization for cache blocking and multiple implementation. The Level 3 BLAS
performance is determined by the peak of the machine. The Level 2 and Level
1 BLAS performance, however, is usually determined by the speed of the data
bus, and thus the amount gained by optimization is less.

3.2.3 Level 1 BLAS Support

The Level 1 BLAS do vector-vector operations such as dot product. These
routines have O(N) operations on O(N) data. ATLAS tunes the Level 1 BLAS
using only multiple implementation along with some simple parameterization.
Essentially, the only optimizations to be done at this level involve floating
point unit usage and some loop optimizations. Since these routines are very
simple, a compiler can usually do an excellent job with these optimizations;
hence, performance gains from auto-tuning are typically found only when a
compiler is poorly adapted to a given platform.

3.2.4 LAPACK Support

ATLAS currently provides ten basic routines from LAPACK, each of which
is available in all four data types. These routines all use or provide for the LU
and Cholesky factorizations and are implemented using recursion rather than
static blocking.

8 Performance Tuning for Scientific Applications

3.2.5 Blocking for Higher Levels of Cache

Note that this chapter defines the Level 1 (L1) cache as the “lowest” level
of cache: the one closest to the processor. Subsequent levels are “higher”:
further from the processor and thus usually larger and slower. Typically, L1
caches are relatively small, employ least recently used replacement policies,
have separate data and instruction caches, and are often non-associative and
write-through. Higher levels of cache are more often non-write-through, with
varying degrees of associativity, differing replacement polices, and combined
instruction and data cache.

ATLAS detects the actual size of the L1 data cache. However, due to
the wide variance in high level cache behaviors, in particular the difficulty
of determining how much of such caches are usable after line conflicts and
data/instruction partitioning is done, ATLAS does not detect and use an
explicit Level 2 cache size as such. Rather, ATLAS employs a empirically
determined value called CacheEdge, which represents the amount of the cache
that is usable by ATLAS for its particular kind of blocking.

3.2.6 Use of Assembly Code

Hand-tuned implementations used by ATLAS that allow for extreme ar-
chitectural specialization are sometimes written in assembly code. Sometimes
the compiler is not able to generate efficient backend code. ATLAS also uses
assembly code to achieve persistent performance in spite of compiler changes.

3.2.7 Use of Architectural Defaults

The architectural defaults provided with ATLAS are the result of several
guided installations – that is, the search has been run multiple times with
intervention by hand if necessary. ATLAS’s empirical search is meant to be
used only when architectural defaults are unavailable or have become non-
optimal due to compiler changes. As pointed out in the UMD Autotuning
chapter, empirical search run on real machines with unrelated load can result
in high variance in the timing results. Thus, use of architectural defaults,
which serve as a type of performance database of past results, can yield the
best results.

3.2.8 Search Algorithm

ATLAS uses a ”relaxed 1-D line search”, where the ”relaxed” means that
interacting transforms are usually handled by 2- or 3-D searches [1]. This basic
search technique is adequate, given that the ATLAS developers understand
good start values and the interactions between optimizations.

Empirical Performance Tuning of Dense Linear Algebra Software 9

3.3 Auto-tuning for Multicore

To deliver on the promise of multicore petascale systems, library design-
ers must find methods and algorithms that can effectively exploit levels of
parallelism that are orders of magnitude greater than most of today’s sys-
tems offer. To meet this challenge, the Parallel Linear Algebra Software for
Multicore Architectures (PLASMA) project is developing dense linear algebra
routines for multicore architectures [4]. In PLASMA, parallelism is no longer
hidden inside Basic Linear Algebra Subprograms (BLAS) [2] but is brought to
the fore to yield much better performance. PLASMA relies on tile algorithms,
which provide fine granularity parallelism. The standard linear algebra algo-
rithms can be represented as a Directed Acyclic Graph (DAG) where nodes
represent tasks and edges represent dependencies among them. Asynchronous,
out of order scheduling of operations is used as the basis for a scalable and
highly efficient software framework for computational linear algebra applica-
tions. PLASMA is currently statically scheduled with a tradeoff between load
balancing and data reuse. PLASMA performance depends strongly on tun-
able execution parameters, the outer and inner blocking sizes, that trade off
utilization of different system resources, as illustrated in Figure 3.1.

3.3.1 Tuning outer and inner block sizes

The outer block size (NB) trades off parallelization granularity and
scheduling flexibility with single core utilization, while the inner block size
(IB) trades off memory load with extra-flops due to redundant calculations.
Only the QR and LU factorizations use inner blocking. If no inner blocking
occurs, the resulting extra-flops overhead may represent 25% and 50% for
the QR and LU factorization, respectively [5]. Tuning PLASMA consists of
finding the (NB,IB) pairs that maximize the performance depending on the
matrix size and on the number of cores. An exhaustive search is cumbersome
since the search space is huge. For instance, in the QR and LU cases, there
are 1352 possible combinations for (NB,IB) even if we constrain NB to be
an even integer between 40 and 500 and if we constrain IB to divide NB.
All these combinations cannot be explored for large matrices (N >> 1000)
on effective factorizations in a reasonable time. Knowing that this process
should be repeated for each number of cores and each matrix size motivates
us to consider a pruned search. The idea is that tuning the serial level-3 ker-
nel (dgemm-seq, dssrfb-seq and dssssm-seq) is not time-consuming since peak
performance is reached on relatively small input matrices (NB < 500) that
can be processed fast. Therefore, we first tune those serial kernels. As illus-
trated in Figure 3.2, not all the (NB,IB) pairs result in a high performance.
For instance, the (480,6) pair leads to a performance of 6.0 Gflop/s whereas
the (480,96) pair achieves 12.2 Gflop/s, for the dssrfb-seq kernel on Power6

10 Performance Tuning for Scientific Applications

(a) DPOTRF - Intel64 - 16 cores(b) DGEQRF - Intel64 - 16 cores(c) DGETRF - Intel64 - 16 cores

(d) DPOTRF - Power6 - 16 cores(e) DGEQRF - Power6 - 16 cores(f) DGETRF - Power6 - 16 cores

(g) DPOTRF - Power6 - 32 cores(h) DGEQRF - Power6 - 32 cores(i) DGETRF - Power6 - 32 cores

FIGURE 3.1: Effect of (NB,IB) on PLASMA performance (Gflop/s).

Empirical Performance Tuning of Dense Linear Algebra Software 11

(a) dgemm-seq - Intel64 (b) dssrfb-seq - Intel64 (c) dssssm-seq - Intel64

(d) dgemm-seq - Power6 (e) dssrfb-seq - Power6 (f) dssssm-seq - Power6

FIGURE 3.2: Effect of (NB,IB) on the performance of the serial PLASMA
computational intensive level-3 BLAS kernels (Gflop/s).

(Figure 3.2(e)). We select a limited number of (NB,IB) pairs (pruning step)
that achieve a local maximum performance on the range of NB. We have se-
lected five or six pairs on the Intel64 machine for each factorization and eight
on the Power6 machine (Figure 3.2). We then benchmark the performance of
PLASMA factorizations only with this limited number of combinations (as
seen in Figure 3.1). Finally, the best performance obtained is selected.

The dssssm-seq efficiency depends on the amount of pivoting performed.
The average amount of pivoting effectively performed during a factorization
is matrix-dependent. Because the test matrices used for our LU benchmark
are randomly generated with a uniform distribution, the amount of pivot-
ing is likely to be important. Therefore, we have selected the (NB,IB) pairs
from dssssm-seq executions with full pivoting (figures 3.2(c) and 3.2(f)). The
dssssm-seq performance drop due to pivoting can reach more than 2 Gflop/s
on Power6 (Figure 3.2(f)).

3.3.2 Validation of pruned search

We have validated our pruned search methodology for the three one-sided
factorizations on Intel64 16 cores. To do so, we have measured the relative
performance overhead (percentage) of the pruned search (PS) over the ex-
haustive search (ES), that is: 100× (ES

PS −1). Table 3.1 shows that the pruned

12 Performance Tuning for Scientific Applications

TABLE 3.1: Overhead (in %) of Pruned search (Gflop/s) over Exhaustive
search (Gflop/s) on Intel64 16 cores

DPOTRF DGEQRF DGETRF
Matrix Pruned Exhaustive Over- Pruned Exhaustive Over- Pruned Exhaustive Over-

Size Search Search head Search Search head Search Search head

1000 53.44 52.93 -0.95 46.35 46.91 1.20 36.85 36.54 -0.84
2000 79.71 81.08 1.72 74.45 74.95 0.67 61.57 62.17 0.97
4000 101.34 101.09 -0.25 93.72 93.82 0.11 81.17 80.91 -0.32
6000 108.78 109.21 0.39 100.42 100.79 0.37 86.95 88.23 1.47
8000 112.62 112.58 -0.03 102.81 102.95 0.14 89.43 89.47 0.04

search performance overhead is bounded by 2%. Because the performance
may slightly vary from one run to another on cache-based architectures [6],
we could furthermore observe in some cases higher performance (up to 0.95%)
with pruned search (negative overheads in Table 3.1). However, the (NB,IB)
pair that leads to the highest performance obtained with one method consis-
tently matches the pair leading to the highest performance obtained with the
other method.

We expect that the results will generalize to other linear algebra prob-
lems and even to any algorithm that can be expressed by a DAG of fine-grain
tasks. Compiler techniques allow for the DAG of tasks to be generated from
the polyhedral model applied to code that is free of runtime dependeces such
as Cholesky or LU factorization without pivoting [7]. In comparison, by work-
ing at a much higher abstraction layer (a whole matrix tile as opposed to
individual matrix elements) and with semantic knowledge of functions called
from within the loop nests, PLASMA is able to produce highly-tuned kernels.

3.4 Auto-tuning for GPUs

As mentioned above, the development of high performance dense linear al-
gebra (DLA) depends critically on highly optimized BLAS, and especially on
the matrix multiplication routine (GEMM). This statement is especially true
for Graphics Processing Units (GPUs), as evidenced by recently published
results on DLA for GPUs that rely on highly optimized GEMM [12, 13]. How-
ever, the current best GEMM performance on GPUs, e.g., up to 375 GFlop/s
in single precision and up to 75 GFlops/s in double precision arithmetic on
NVIDIA’s GTX 280, is difficult to achieve. The software development requires
extensive GPU knowledge and even backward engineering to understand un-
documented aspects of the architecture. This section describes preliminary

Empirical Performance Tuning of Dense Linear Algebra Software 13

FIGURE 3.3: The algorithmic view of the code template for GEMM.

work on some GPU GEMM auto-tuning tecnhiques that allow keeping up
with changing hardware by rapidly reusing existing ideas. Preliminary results
show auto-tuning to be a practical solution that, in addition to enabling easy
portability, can achieve substantial speedups on current GPUs (e.g., up to
27% in certain cases for both single and double precision GEMM on the GTX
280).

3.4.1 GEMM auto-tuner

This section presents preliminary work on the design of a GEMM ”auto-
tuner” for NVIDIA CUDA-enabled GPUs. Here auto-tuner means a system
that automatically generates and searches a space of algorithms. More details
may be found in [11].

In [13], Volkov and Demmel presents kernels for single-precision matrix
multiplication (SGEMM) that significantly outperforms CUBLAS on CUDA-
enabled GPUs, using an approach that challenges those optimization strate-
gies and programming guidelines that are commonly accepted. In this paper,
we will focus on the GEMM kernel that computes C = αA× B + βC. Addi-
tionally, we will investigate auto-tuning on both single precision and double
precision GEMM kernels (i.e., SGEMM and DGEMM). The SGEMM kernel
proposed in [13] takes advantage of the vector capability of NVIDIA CUDA-
enabled GPUs. The authors argue that modern GPUs should be viewed as
multi-threaded vector units, and their algorithms for matrix multiplication
resemble those earlier ones developed for vector processors. We take their
SGEMM kernel for computing C = αA×B + βC as our code template, with
modifications to make the template accept row-major input matrices, instead
of column major used in their original kernel.

Figure 3.3 depicts the algorithmic view of the code templates respectively
for both SGEMM and DGEMM. Suppose A, B, and C are M×K, K×N, and
M×N matrices, and that M, N, and K are correspondingly divisible by BM,
BN, and BK (otherwise “padding” by zero has to be applied or using the
host for part of the computation). Then the matrices A, B, and C are parti-
tioned into blocks of sizes BM×BK, BK×BN, and BM×BN, respectively (as
illustrated on the figure). The elements of each BM×BN block of the matrix
C (denoted by BC on the figure, standing for ’block of C’) are computed by
a tx × ty thread block. Depending on the number of threads in each thread
block, each thread will compute either an entire column or part of a column of
BC. For example, suppose BM = 16 and BN = 64, and the thread block has
16×4 threads, then each thread will compute exactly one column of BC. If the
thread block has 16× 8 threads, then each thread will compute half of a col-
umn of BC. After each thread finishes its assigned portion of the computation,
it writes the results (i.e., an entire column or part of a column of BC back to

14 Performance Tuning for Scientific Applications

the global memory where the matrix C resides. In each iteration, a BM×BK
block BA of the matrix A is brought into the on-chip shared memory and
kept there until the computation of BC is finished. Similarly to the matrix C,
matrix B always resides in the global memory, and the elements of each block
BB are brought from the global memory to the on-chip registers as necessary
in each iteration. Because modern GPUs have a large register file within each
multiprocessor, a significant amount of the computation can be done in reg-
isters. This is critical to achieving near-optimal performance. As in [13], the
computation of each block BC = BC + BA×BB is fully unrolled. It is also
worth pointing out that in our SGEMM, 4 saxpy calls and 4 memory accesses
to BB are grouped together, as in [13], while in our DGEMM, each group
contains 2 saxpy and 2 memory accesses to BB. This is critical to achieving
maximum utilization of memory bandwidth in both cases, considering that
the different widths between float and double.

As outlined above, 5 parameters (BM, BK, BN, tx, and ty) determine the
actual implementation of the code template. There is one additional param-
eter that is of interest to the actual implementation. This additional param-
eter determines the layout of each block BA of the matrix A in the shared
memory, i.e., whether the copy of each block BA in the shared memory is
transposed or not. Since the share memory is divided into banks and two or
more simultaneous accesses to the same bank cause the so-called bank con-
flicts, transposing the layout of each block BA in the shared memory may help
reduce the possibility of bank conflicts, thus potentially improving the per-
formance. Therefore, the actual implementation of the above code template
is determined or parametrized by 6 parameters, namely BM, BK, BN, tx, ty,
and a flag trans indicating whether to transpose the copy of each block BA
in the shared memory.

We implemented code generators for both SGEMM and DGEMM on
NVIDIA CUDA-enabled GPUs. The code generator takes the 6 parameters
as inputs, and generates the kernel, the timing utilities, the header file, and
the Makefile to build the kernel. The code generator first checks the validity
of the input parameters before actually generating the files. By validity we
mean 1) the input parameters confirm to hardware constraints, e.g., the max-
imum number of threads per thread block tx × ty ≤ 512, and 2) the input
parameters are mutually compatible, e.g., (tx × ty)%BK = 0, BM%ty = 0,
and BN%tx = 0. By varying the input parameters, we can generate different
variants of the kernel, and evaluate their performance, in order to identify the
best variant. One way to implement auto-tuning is to generate a small number
of variants for some matrices with typical sizes during installation time, and
choose the best variant during run time, depending on the input matrix size.

3.4.2 Performance Results

The performance results in this section are for NVIDIA’s GeForce GTX
280.

Empirical Performance Tuning of Dense Linear Algebra Software 15

First, we evaluate the performance of the GEMM autotuner in both sin-
gle and double precision. Figure 3.4, Left compares the performance of the

FIGURE 3.4: Performance comparison of CUBLAS 2.0 vs auto-tuned
SGEMM (left) and DGEMM (right) on square matrices.

GEMM autotuner in single precision with the CUBLAS 2.0 SGEMM for mul-
tiplying square matrices. We note that both CUBLAS 2.0 SGEMM and our
auto-tuned SGEMM are based on V.Volkov’s SGEMM [13]. The GEMM au-
totuner selects the best performing one among several variants. It can be seen
that the performance of the autotuner is apparently slightly better than the
CUBLAS 2.0 SGEMM. Figure 3.4, Rigth shows that the autotuner also per-
forms better than CUBLAS in double precision. These preliminary results
demonstrate that auto-tuning is promising in automatically producing near-
optimal GEMM kernels on GPUs. The most attractive feature of auto-tuning
is that it allows us to keep up with changing hardware by automatically and
rapidly generating near-optimal BLAS kernels, given any newly developed
GPUs.

The fact that the two performances are so close is not surprising because
our auto-tuned code and CUBLAS 2.0’s code are based on the same kernel,
and this kernel was designed and tuned for current GPUs (and in particular the
GTX 280), targeting high performance for large matrices. In practice though,
and in particular in developing DLA algorithms, it is very important to have
high performance GEMMs on rectangular matrices, where one size is large,
and the other is fixed within a certain block size (BS), e.g. BS = 64, 128, up
to about 256 on current architectures. For example, in an LU factorization
(with look-ahead) we need two types of GEMM, namely one for multiplying
matrices of size N×BS and BS×N−BS, and another for multiplying N×BS and
BS×BS matrices. This situation is illustrated on Figure 3.5, where we compare
the performances of the CUBLAS 2.0 vs auto-tuned DGEMMs occurring in
the block LU factorization of a matrix of size 6144 × 6144. The graphs show
that our auto-tuned code significantly outperforms (up to 27%) the DGEMM
from CUBLAS 2.0.

Using the new DGEMM for example in the block LU (of block size BS =
64) with partial pivoting [13] improved the performance from 53 to 65 GFlop/s
on a matrix of size 6144× 6144.

FIGURE 3.5: Performance comparison of the auto-tuned (solid line) vs
CUBLAS (dotted line) DGEMMs occurring in the block LU factorization
(for block sizes BS = 64 on the left and 128 on the right) of a matrix of size
6144×6144. The two kernels shown are for multiplying N×BS and BS×N−BS
matrices (denoted by N×N−BS×BS), and N×BS and BS×BS matrices (de-
noted by N×BS×BS).

16 Performance Tuning for Scientific Applications

We highlighted the difficulty in developing highly optimized codes for new
architectures, and in particular GEMM for GPUs. On the other side, we have
shown an auto-tuning approach that is very practical and can lead to optimal
performance. In particular, our auto-tuning approach allowed us

• To easily port existing ideas on quickly evolving architectures (e.g.
demonstrated here by transferring single precision to double precision
GEMM designs for GPUs), and

• To substantially speed up even highly tuned kernels (e.g. up to 27% in
this particular study).

These results also underline the need to incorporate auto-tuning ideas in our
software. This is especially needed now for the new, complex, and rapidly
changing computational environment. Therefore our future directions are, as
we develop new algorithms (e.g. within the MAGMA project), to systemat-
ically define their design/search space, so that we can easily automate the
tuning process.

3.5 Conclusions

Auto-tuning is crucial for the performance and maintenance of modern
numerical libraries, especially for algorithms designed for multicore and hybrid
architectures. It is an elegant and very practical solution for easy maintenance
and performance portability. While an empirically based exhaustive search
can find the best performance kernels for a specific hardware configuration,
applying performance models can often effectively prune the search space.

Bibliography

[1] ATLAS Frequently Asked Questions. http://math-atlas.
sourceforge.net/faq.html.

[2] BLAS: Basic linear algebra subprograms. http://www.netlib.org/
blas/.

[3] Netlib repository. http://www.netlib.org/.

[4] Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA)
project. http://icl.cs.utk.edu/plasma/.

[5] Buttari A., Langou J., Kurzak J., and Dongarra J. A class of parallel tiled
linear algebra algorithms for multicore architectures. Parallel Computing,
35(1):38–53, 2009.

[6] Sloss A., Symes D., and Wright C. ARM System Developer’s Guide: De-
signing and Optimizing System Software. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004.

[7] Muthu Manikandan Baskaran, Nagavijayalakshmi Vydyanathan, Uday
Bonkhugula, J. Ramanujam, Atanas Rountev, and P. Sadayappan.
Compiler-assisted dynamic scheduling for effective parallelization of loop
nests on multicore processors. In 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Raleigh, North Car-
olina, February 2009.

[8] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and James Demmel. Op-
timizing Matrix Multiply Using PHiPAC: A Portable, High-Performance,
ANSI C Coding Methodology. In International Conference on Supercom-
puting, pages 340–347, 1997.

[9] James W. Demmel. Applied numerical linear algebra. Society for Indus-
trial and Applied Mathematics, 1997.

[10] Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine
Petitet, Rich Vuduc, Clint Whaley, and Katherine Yelick. Self adapting
linear algebra algorithms and software. Proceedings of the IEEE, 93(2),
2005. special issue on ”Program Generation, Optimization, and Adapta-
tion”.

17

18 Performance Tuning for Scientific Applications

[11] Y. Li, J. Dongarra, and S. Tomov. A note on auto-tuning GEMM
for GPUs. In 9th International Conference on Computation Science
(ICCS’09), Baton Rouge, LA, May 2009.

[12] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense
linear algebra for hybrid GPU accelerated manycore systems. Technical
Report UT-CS-08-632, University of Tennessee, 2008. LAPACK Working
Note 210.

[13] V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Supercomputing 08. IEEE, 2008. to appear.

[14] R. Clint Whaley. Atlas version 3.8: Status and overview. In Interna-
tional Workshop on Automatic Performance Tuning (iWAPT07), Tokyo,
Japan, September 2007.

