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Abstract—LU factorization with partial pivoting is a canonical numerical procedure and the main component of the High Performance Linpack
benchmark. This article presents an implementation of the algorithm for a hybrid, shared memory, system with standard CPU cores and
GPU accelerators. The diXculty of implementing the algorithm for such a systems lies in the disproportion between the computatinal power
of the CPUs, compared to the GPUs, and in the meager bandwidth of the communication link between their memory systems. Additional
challenge comes from the complexity of the memory-bound and synchronization-rich nature of the panel factorization component of the block
LU algorithm, imposed by the use of partial pivoting. The challenges are tackled with the use of a data layout geared towards complex memory
hierarchies, autotuning of GPU kernels, Vne grain parallelization of memory-bound CPU operations and dynamic scheduling of tasks to diUerent
devices. Performance in excess of one TeraFLOPS is achieved using four AMD Magny Cours CPUs and four NVIDIA Fermi GPUs.
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1 Introduction
This paper presents an implementation of the canonical
formulation of the LU factorization, which relies on par-
tial pivoting for numerical stability. It is equivalent to the
DGETRF function from the LAPACK numerical library. Since
the algorithm is coded in double precision, it can serve as the
basis for an implementation of the High Performance Lin-
pack benchmark (HPL) [14]. The target platform is a system
combining one CPU board with four 12-core CPUs and one
GPU board with four 14-core GPUs, for the total number
of 104 hybrid cores. Here GPU core means a device that
can independently schedule instructions, which in NVIDIA
nomenclature is called a Streaming Multiprocessor (SM). It
is not to be confused with a CUDA core. The memory
system of the CPUs, referred to as the host memory is a
cache-coherent Non-Uniform Memory Access (ccNUMA) shared
memory system. The GPUs have their private memories,
referred to at device memories. Communication between the
host memory and the device memories is handled by Direct
Memory Access (DMA) engines of the GPUs and crosses the
PCI Express (PCIe) bus.
Numerous challenges are posed both by the target hard-

ware and the target algorithm. Although presenting a similar
number of cores, the GPUs have an order of magnitude
higher Woating-point peak performance. The disproportion
is exacerbated by the fact that GPUs are tasked with regular,
data-parallel and compute intensive work, while CPU are
tasked with irregular, synchronization-rich and memory-
bound work. The algorithm itself is challenging, speciVcally
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the technique of partial pivoting, which introduces irregular
processing patterns and hard synchronization points. These
challenges are tackled with a combination of both well
established and novel techniques in parallel dense linear
algebra, such as:

• tile matrix layout,
• GPU kernel autotuning,
• parallel recursive panel factorization,
• the technique of lookahead,
• dynamic (superscalar) task schedulig,
• communication and computation overlapping.

Notably, the level of performance reported in this work could
be accomplished thanks to recently developed capatilities,
such as a GPU kernel autotuning methodology and super-
scalar scheduling techniques.

1.1 Motivation
Two trends can be clearly observed in microprocessor tech-
nology: steadily increasing number of cores, and integration
of hybrid cores in a signle chip. Current commodity pro-
cessors go as high as 16 cores (e.g. AMD Interlagos) and
all major microprocessor companies develop hybrid chips
(NVIDIA Tegra, AMD Fusion, Intel MIC). It is to be expected,
then, that in a few years hybrid chips with O(100) cores
will be the norm, which is why the platform of choice for
this paper is a system with 104 cores, 48 classic superscalar
cores and 56 accelerator (GPU) cores. At the same time
accelerators are steadily gaining traction in many areas of
scientiVc computing [4], [19], [22], [34].

1.2 Original Contribution
The main original contribution of this paper is in developing
highly optimized CPU and GPU components of the LU algo-
rithm and then uniquely combining them throught the use
of a dynamic scheduler and the technique of lookahead. This
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work leverages recent developments in parallel panel factor-
izations [13], GPU kernel autotuning [28] and dynamic (su-
perscalar) scheduling of dense linear algebra operations [18],
[26]. The authors are not aware of any other multi-CPU,
multi-GPU implementation of the LU factorization capable
of reaching similar level of performance for similar range of
problem sizes.

2 Background
The following three sections provide a brief introduction to
the vital concepts in this work: the block LU factorization
algorithm, the superscalar scheduling methodology and the
NVIDIA CUDA programming system, followed by the sum-
mary of closely related previous developments in this ares.

2.1 Block LU Factorization
The LU factorization of a matrix A has the form

A = PLU,

where L is a unit lower triangular matrix, U is an upper
triangular matrix and P is a permutation matrix. The block
LU factorization algorithm [12] proceeds in the following
steps: Initially, a set of NB columns (the panel) is factored
and a pivoting pattern is produced. Then the elementary
transformations, resulting from the panel factorization, are
applied in block fashion to the remaining part of the ma-
trix (the trailing submatrix). First, NB rows of the trailing
submatrix are swapped, according to the pivoting pattern.
Then a triangular solve is applied to the top NB rows of the
trailing submatrix. Finally, matrix multiplication of the form
Aij ← Aij−Aik×Akj is performed, where Aik is the panel
without the top NB rows, Akj is the top NB rows of the
trailing submatrix and Aij is the trailing submatrix without
the top NB rows. Then the procedure is applied repeatedly,
descending down the diagonal of the matrix (Figure 1). The
block algorithm is described in detail in section 2.6.3. of the
book by Demmel [12]
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Fig. 1. Block LU factorization (Level 3 BLAS algorithm of
LAPACK) [12].

In the LAPACK software library, panel factorization is
performed by the DGETF2 routine, swapping of rows by the

DLASWP routine, triangular solve by the DTRSM routine and
matrix multiplication by the DGEMM routine. The DGETF2
and DLASWP routines are implemented in LAPACK, while
the DTRSM and DGEMM routines are part of the Basic Linear
Algebra Subroutines (BLAS) standard. LAPACK is an academic
project and therefore the source code is freely distributed
online. BLAS is a set of standardized routines, and is available
in commercial packages (e.g. MKL from Intel, ACML from
AMD, ESSL from IBM), in academic packages (e.g. ATLAS)
and also as a reference implementation in FORTRAN 77
from the Netlib software repository. Notably, the last source
provides an unoptimized code, which is only meant to serve
as the deVnition of BLAS.

2.2 Superscalar Scheduling
Superscalar schedulers exploit multithreaded parallelism in
a similar way as sperscalar processors exploit Instruction
Level Parallelism (ILP). Scheduling proceeds under the con-
straints of data hazards: Read after Write (RaW), Write after
Read (RaW) and Write after Write (RaW). In addition, the
WaR and WaW dependencies can be removed by using
the tachnique of renaming. The Vrst processor archtecture
to use superscalar scheduling was the CDC 6600, and the
Vrst architecture to use register renaming was the IBM
System/360 (Tomasulo algorithm).

In the context of multithreading, superscalar scheduling
is a way of automatically parallelizing serial code. The
programmer is responsible for encapsulating the work in
side-eUect-free functions (parallel tasks) and providing di-
rectionality of their parameters (input, output, inout), and
the scheduling is left to the runtime. Scheduling is done by
conceptually exploring the Directed Acyclic Graph (DAG), or
task graph, of the problem. In practice the DAG is explored in
a sliding window fashion and actually not explicitly built. It is
represented inplicitly through data structures such as linked
lists and hash tables, keeping track of data dependencies.

The oldest system, that the authors are aware of, is the
Jade project from Stanford Univesity [37], [38]. Two well es-
tablished projects are StarSs from Barcelona Supercomputer
Center [35], [36] and StarPU from INRIA Bordeaux [3]. The
scheduler used in this work is QUeuing And Runtime for
Kernels (QUARK) [46], currently the system of choice for
the PLASMA project [20]. It is suitable for this work due
to a number of vital extensions, discussed in more detail in
section 3.6.

2.3 NVIDIA CUDA
In November 2006, NVIDIA introduced the Compute UniVed
Device Architecture (CUDATM), a general purpose parallel
computing architecture, with a new parallel programming
model and instruction set architecture, that leverages the
parallel compute engine in NVIDIA GPUs to solve complex
computational problems [33].

At its core are three key abstractions: a hierarchy of thread
groups, shared memories, and barrier synchronization, that
are exposed to the programmer as a set of language exten-
sions. They guide the programmer to partition the problem



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

into coarse sub-problems that can be solved independently
in parallel by blocks of threads, and each sub-problem into
Vner pieces that can be solved cooperatively in parallel by
all threads within the block. CUDA C extends C by allowing
the programmer to deVne C functions, called kernels, that,
when called, are executed N times in parallel by N diUerent
CUDA threads.

The CUDA architecture is built around a scalable array
of multithreaded Streaming Multiprocessors (SMs). When a
CUDA program on the host CPU invokes a kernel grid, the
blocks of the grid are enumerated and distributed to multi-
processors with available execution capacity. The threads of
a thread block execute concurrently on one multiprocessor,
and multiple thread blocks can execute concurrently on one
multiprocessor. As thread blocks terminate, new blocks are
launched on the vacated multiprocessors.

A multiprocessor is designed to execute hundreds of
threads concurrently. To manage such a large amount of
threads, it employs a unique architecture called Single-
Instruction, Multiple-Thread (SIMT). The instructions are
pipelined to leverage instruction-level parallelism within a
single thread, as well as thread-level parallelism extensively
with simultaneous hardware multithreading. However, unlike
CPU cores, they are issued in order and there is no branch
prediction and no speculative execution.

The multiprocessor creates, manages, schedules, and exe-
cutes threads in groups of 32 parallel threads called warps.
Individual threads composing a warp start together at the
same program address, but they have their own instruction
address counter and register state and are therefore free to
branch and execute independently. The term warp originates
from weaving, the Vrst parallel thread technology. When a
multiprocessor is given one or more thread blocks to execute,
it partitions them into warps that get scheduled by a warp
scheduler for execution.

2.4 Related Work

Work on GPU accelerated dense linear algebra routines
started before general purpose programming environments,
such as CUDA or OpenCL, were available. This time is
oftern referred to, somewhat ironically, as the General Purpose
GPU (GPGPU) era. The earliest implementation of a matrix
factorization was reported by Galoppo [15], who imple-
mented the non-blocked LU decomposition without pivoting,
with partial pivoting and with full pivoting.

More papers followed when CUDA became available,
largly thanks to the CUBLAS library (CUDA BLAS) provided
by NVIDIA. Implementations of dense matrix factorizations
were reported by Barrachina et al. [6], Baboulin et al. [5],
and Castillo et al. [9]. Seminal work was done by Volkov and
Demmel [45], where notably a two-GPU implementation of
the LU factorization was reported, and 1D block cyclic data
distribution was used. It was followed by the work of Tomov
et al. [42], [43] in the context of the Matrix Algebra for GPUs
and Multicore Architectures (MAGMA) library.
Important part of these developments is the work solely

focusing on optimizing matrix multiplication. Early work on

tuning GEMMs in CUDA for NVIDIA GPUs targeted the pre-
vious generation of GPUs, of the GT200 architecture, such as
the popular GTX 280. Pioneering work was done by Volkov
and Demmel [45]. Similar eUorts followed in the MAGMA
project [29]. The introduction of the NVIDIA Fermi architec-
ture triggered the development of MAGMA GEMM kernels
for that architecture [31], [32], which recently evolved into
a systematic autotuning approach named Automatic Stencil
TunerR for Accelerators (ASTRA) [28]. Other related eUorts
include the compiler-based work by Rudy et al. [39] and Cui
et al. [11], and low-level kernel development by Nakasato [30]
and Tan et al. [41].

Dense linear albebra codes, including the Cholesky, LU and
QR factorizations have also been oYoaded to the IBM Cell
B. E. accelerator [10], [23]–[25]. Two eUorts are speciVcally
worth mentioning. Chen et al. developed a single precision
implementation of the Linpack benchmark for the QS20
system, which relied on a tile matrix layout and a cache-
resident panel factorization [10]. Kistler et al. developed a
double precision implementation of the Linpack benchmark
for the QS22 system, which employed a recursive panel
factorization [21].

Panel factorization has been successfully parallelized and
incorporated into a general LU factorization code [7] using
an optimized implementation of mostly Level 1 BLAS. This
was done in a Wat parallelism model with Block Synchronous
Processing (BSP) model [44] also referred to as fork-join
execution. The authors refer to their approach as Parallel
Cache Assignment (PCA). Our work on parallelizing the
panel factorization [13] diUers in a few key aspects. We
employ recursive formulation of the factorization [16] and
therefore are able to use Level 3 BLAS as opposed to just
Level 1 BLAS. Another important diUerence is the nested
parallelism with which we have the Wexibility to allocate
only a small set of cores for the panel work while other
cores carry on with the remaining tasks such as the Schur
complement updates. Finally, we use dynamic scheduling
that executes Vne grained tasks asynchronously, which is
drastically diUerent from a BSP or fork-join parallelism.

3 Solution
The solution follows the design principles of the PLASMA
numerical library by storing and processing the matrix by
tiles and using dynamic, dependency-driven, runtime task
scheduling. The approach was successfully applied to the QR
factorization in the past [27]. Here similar methodology is ap-
plied to the LU factorization for a system with multiple GPUs.
The sections to follow outline the main hybridization idea,
provide the motivation for the use of a tile matrix layout,
describe the development of CPU and GPU kernels, explain
the scheduling methodology and discuss the communication
requirements.

3.1 Hybridization
The main hybridization idea is captured on Figure 2 and relies
on representing the work as a Directed Acyclic Graph (DAG)
and dynamic task scheduling, with CPU cores handling the
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complex Vne-grained tasks on the critical path and GPUs
handling the coarse-grained data-parallel tasks outside of the
critical path.

Fig. 2. The basic hybridization idea, with Vne-grained tasks
on the critical path being dispatched to individual CPU cores
and coarse-grained tasks outside of the critical path being
dispatched to GPU devices.

Some number of columns (lookahead) are assigned to the
CPUs and the rest of the matrix is assigned to the GPUs
in a 1D block-cyclic fashion (Figure 3). In each step of
the factorization, the CPUs factor a panel and update their
portion of the trailing submatrix, while the GPUs update
their portions of the trailing submatrix. After each step, one
column of tiles shifts from the GPUs to the CPUs. (from
device memory to host memory).

CPU cores GPU 0 GPU 1

step 3

step 2
step 1

step 0 step 0 step 0

GPU 1

step 1 step 1

GPU 0

step 2

GPU 0

step 2

GPU 1

Fig. 3. The splitting of work between the CPUs and the
GPUs, with a number of columns on the left side (lookahead)
processed by the CPUs and the remaining columns on the
right side processed by the GPUs.

The main advantage of this solution is the capability of
overlapping the CPU processing and the GPU processing
(and also overlapping of communication and computation).

The GPUs have to be idle while the Vrst panel is factored.
However, the factorization of the second panel can proceed
in prallel with the application of the Vrst panel to the trailing
submatrix. In practice, the level of overlapping is much
bigger, i.e., the panel factorizations are a few steps ahead
of updates.

3.2 Data Layout

The matrix is laid out in square tiles, where each tile
occupies a continuous region of memory. Tiles are stored in
column-major. Elements within tiles are stored in row-major.
Such layout is referred to as Column-Row Rectangular Block
(CRRB) [17] Here, only matrices evenly divisible into tiles are
considered (Figure 4). This layout is preserved on the CPU
side (host memory) and the GPU side (device memory). The
storage of elements by rows is critical to the performance of
the row swap (DLASWP) operation on the GPUs. The storage
of tiles by columns simpliVes the communication of columns
between the CPUs and the GPUs.

A11

A21

A12

A22

Fig. 4. Left: the CCRB layout used in the PLASMA library;
Right: the CRRB layout used here.

The CRRB layout seems to be the cleanest solution for a
stand-alone prototype described in this work. For integration
into the PLASMA library, the CCRB layout can be used
on the CPU side and the CRRB layout on the GPU side,
with a translation stage in between. The translations would
be associated with communication and only apply to one
column of tiles at a time. The fact that both layouts are
tile layouts, greatly simplify the translation, which can be
eXciently applied on the GPU side, without much impact on
the overall performance. Inclusion in the PLASMA library
also requires generalization of the code to matrices that are
not evenly divisible into tiles.

3.3 Parallel Panel on Multicore CPUs

Panel factorization in LU implementations has most com-
monly been performed with a sequential routined called
xGETF2() that calls BLAS Level 1 and 2. On our tested
machine this routine barely exceeds 2 GWop/s on panels taller
than 5000 rows and 192 columns wide. Calling xGETRF()
increases the performance by 1 GWop/s. With availability
of 1 TWop/s of combined performance coming from the
hardware accelerators it takes twice as long (about 0.35
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function xGETRFR(M, N, column) {
if N == 1 { single column, recursion stops

idx = split_IxAMAX(...) compute local maximum of modulus

gidx = combine_IxAMAX(idx) combine local results

split_xSCAL(...) scale local data
}
else {

xGETRFR(M, N/2, column) recursive call to factor left half

xLASWP(...) pivoting forward

split_xTRSM(...) triangular solve

split_xGEMM(...) Schur’s complement

xGETRFR(M, N-N/2, column+N/2) recursive call to factor right half

xLASWP(...) pivoting backward
}

}

Fig. 5. Pseudo-code for the recursive panel factorization.
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Fig. 6. Performance results for panel of width 192.

seconds) to factor the Vrst panel than it takes to apply Schur
complement update from that panel (about 0.15 seconds).
With such performance imbalance it is no longer possible
to hide the time for the factorization of the panel behind
the time for taken by other tasks. It is clear that we needed
a much faster panel factorization. A similar argument has
been made in codes that do not use hiding of the panel
factorization [8].

We started with the recursive formulation of LU factoriza-
tion [16] for our implementation. Figure 5 shows the pseudo-
code of our implementation. Aside from gaining high level
formulation free of low level tuning parameters, recursive
formulation aUords us to dispense of a higher level tuning
parameter commonly called algorithmic blocking. There is
already panel width – a tunable value used for merging mul-
tiple panel columns together. Non-recursive panel factoriza-
tions could potentially establish another level of tuning called
inner-blocking [1], [2]. This is avoided in our implementation.
From the hardware architecture perspective, our panel fac-

torization relies on the combined size of caches – insuXcient
amount of such combined cache results in poor performance
for very tall panels as shown in Figure 6 for a run on 6 cores.

The challenging part of the parallelization is the fact that
the recursive formulation suUers from inherent sequential
control Wow that is characteristic of the column-oriented
implementation employed by LAPACK and ScaLAPACK. As
a Vrst step then, we apply a 1D partitioning technique that
has proven successful before [8]. We employed this technique
for the recursion-stopping case: single column factorization.
Due to the fact that our storate is CCRB layout we need to
only slightly modify our code to account for iteration over
the matrix tiles.

We consider data partitioning among the threads to be
of paramount importance for our code and its succesful
parallelization. Unlike the PCA method [8], we do not
perform extra data copy to eliminate memory eUects that
are detrimental to performance such as TLB misses, false
sharing, etc. By choosing the recursive formulation, we rely
instead on Level 3 BLAS to perform these optimizations for
us. Not surprisingly, this was also the goal of the original
recursive algorithm and its sequential implementation [16].
What is left to do is the introduction of parallelism that
is commonly missing from Level 3 BLAS when narrow
rectangular matrices are involved. Namely, the use of Level
3 BLAS call for triangular solve – xTRSM() and LAPACK’s
auxiliary routine for swapping named xLASWP(). Both of
these calls do not readily lend themselves to our CCRB 1D
partitioning scheme due to two main reasons: (1) each call
to these functions occurs with a variable matrix size, and (2)
1D partitioning makes the calls dependent upon each other
thus creating synchronization overhead. The latter problem
is fairly easy to see as the pivoting requires data accesses
across the entire column and memory locations may be
considered random. Each pivot element swap would then
require coordination between the threads that the column is
partitioned amongst. The former issue is more subtle in that
the overlapping regions of the matrix create a memory hazard
that may be at times masked by the synchronization eUects
occurring in other portions of the factorization. To deal with
both issues at once, we chose to use 1D partitioning across
the columns and not across the rows as before. This removes
the need for extra synchronization and aUords us parallel
execution, albeit to a limited extent due to the narrow size
of the panel.

The Schur’s complement update is commonly implemented
by a call to Level 3 BLAS kernel xGEMM() and this is
also a new function that is not present within the panel
factorizations from LAPACK and ScaLAPACK. Parallelizing
this call is much easier than all the other new components
of our panel factorization. We chose to reuse the across-
columns 1D partitioning to simplify the management of
overlapping memory references and to again reduce resulting
synchronization points.

Instead of low level memory optimizations, we turned our
focus towards avoiding synchronization points and let the
computation proceed asynchronously and independently as
long as possible until it is absolutely necessary to perform
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communication between threads. One design decision that
stands out in this respect is the Vxed partitioning scheme.
Regardless of the current column height (within the panel
being factored), we always assign the same amount of rows
to each thread except for the Vrst thread. This causes a load
imbalance as the thread number 0 has progressively smaller
amounts of work to perform as the panel factorization
progresses from the Vrst to the last column. This is counter-
balanced by the fact that the panels are relatively tall com-
pared to the number of threads and the Vrst thread usually
has greater responsibility in handling pivot bookkeeping and
synchronization duties.

Figure 6 shows a scalability study on the tested machine
of our parallel recursive panel LU factorization with width
of 192. We limit our parallelism level to 24 cores because
our main factorization needs the remaining cores for trailing
matrix updates. When compared with the panel factorization
routine xGETF2() (that uses only BLAS Level 1 and 2), we
achieve super-linear speedup for a wide range of panel
heights with the maximum achieved eXciency exceeding
550%. In an arguably more relevant comparison against the
xGETRF() routine, which could be implemented with mostly
Level 3 BLAS, we achieve perfect scaling for 2 and 4 threads
and easily exceed 50% eXciency for 8 and 16 threads. This
is consistent with the results presented in the related work
section [8].

We exclusively use lockless data structures [40] through-
out our code. This choice was dictated by Vne granularity
synchronization, which occurs during the pivot selection for
every column of the panel and at the branching points of
the recursion tree. Synchronization using mutex locks was
deemed inappropriate at such frequency as it has a potential
of incurring system call overhead.

Together with lockless synchronization, we use busy wait-
ing on shared-memory locations to exchange information
between threads using a coherency protocol of the memory
subsystem. While fast in practice [8], this causes extraneous
traXc on the shared-memory interconnect, which we aim to
avoid. We do so by changing busy waiting for computations
on independent data items. Invariably, this leads to riching
the parallel granularity levels that are most likely hampered
by spurious memory coherency traXc due to false sharing.
Regardless of the drawback, we feel this is a satisfactory
solution as we are motivated by avoiding busy waiting,
which creates even greater demand for inter-core bandwidth
because it has no useful work to interleave with the shared-
memory polling. We refer to this optimization technique
to delayed waiting.

Another technique we used to optimize the inter-core
communication is what we call synchronization coalescing.
The essence of this method is to conceptually group unrelated
pieces of code that require a synchronization into a single
aggregate that synchronizes once. The prime candidate for
this optimization is the search and recording of the pivot
index. Both of these operations require a synchronization
point. The former needs a parallel reduction operation while
the latter requires a global barrier. Neither of these are
ever considered to be related to each other in the context

of sequential parallelization. But with our synchronization
coalescing technique, they are deemed related in the com-
munication realm and, consequently, we implemented them
in our code as a single operation.

Finally, we introduced a synchronization avoidance
paradigm whereby we opt for multiple writes to shared
memory locations instead of introducing a memory fence
(and potentially a global thread barrier) to ensure global data
consistency. Multiple writes are usually considered a hazard
and are not guaranteed to occur in a speciVc order in most
of the consistency models for shared memory systems. We
completely side step this issue, however, as we guarantee al-
gorithmically that each thread writes exactly the same value
to memory. Clearly, this seems as an unnecessary overhead
in general, but in our tightly coupled parallel implementation
this is a worthy alternative to either explicit (via inter-
core messaging) or implicit (via memory coherency protocol)
synchronization to establish a single thread for performing
the write. In short, this technique is another addition to our
contention-free design.

Portability, and more precisely, performance portability,
was also an important goal in our overall design. In our
lock-free synchronization, we heavily rely on shared-memory
consistency – a problematic feature from the portability
standpoint. To address this issue reliably, we make two basic
assumptions about the shared-memory hardware and the
software tools. Both of which, to our best knowledge, are
satisVed on majority of modern computing platforms. From
the hardware perspective, we assume that memory coherency
occurs at the cache line granularity. This allows us to rely
on global visibility of loads and stores to nearby memory
locations. What we need from the compiler tool-chain is an
appropriate handling of C’s volatile keyword. This, combined
with the use of primitive data types that are guaranteed
to be contained within a single cache line, is suXcient in
preventing unintended shared-memory side eUects.

3.4 CPU Update Kernels
The update is relatively straightforward and requires three
operations: row swap (DLASWP), triangular solve (DTRSM)
and matrix multiplication (DGEMM). In the case of DLASWP,
one core is responsible for swaps in one column of tiles.
The LAPACK DLASWP function cannot be used, because of
the use of tile layout, so DLASWP with augmented address
arithmetic is hand-coded. In the case of DTRSM and DGEMM
one core is responsible for one tile. Calls to Intel Math Kernel
Library (MKL) are used, with layout set to row-major.

3.5 GPU Kernels
The set of required GPU kernels includes the kernels to apply
the update to the trailing submatrix (DLASWP, DTRSM and
DGEMM), and the kernel to translate the panel between the
CCRB layout, used on the CPU side, and the CRRB layout,
used on the GPU side. The DLASWP kernel, the DTRSM
kernel and the transposition kernel are simple to write and
do not have much impact on the runtime. These kernels are
described Vrst. They are followed by a lengthy description of
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the DGEMM kernel, which dominates the execution time and
is complex to optimize to the fullest.

3.5.1 DLASWP

The DLASWP routine swaps rows of the trailing submatrix
according to the pivoting pattern, established in the panel
factorization. This operation only performs data motion and
the GPUs are very sensitive to the matrix layout in memory.
In raw-major layout, threads in a warp can simultaneously
access consecutive memory locations. This is not the case in
column-major layout, where threads access memory with a
stride. In this case, each thread generates a separate memory
request, which is devastating to performance. As a result,
performance is two orders of magnitude lower than in the
former case, and the swap operation dominates the update.

This forces the use of the CRRB format, i.e., row-major
storage of elements within tiles. As soon as the CRRB format
is used a straightforward implementation of the DLASWP
operation completely suXces. Each thread block is tasked
with swaps in one column of tiles and creates NB threads
to perform them, one thread per one column of elements.
Although this may not be the fastest possible way of im-
plementing the swap, when implemented like that, the swap
operation becomes negligible.

3.5.2 DTRSM

The DTRSM routine uses the lower triangle of the NB ×NB
diagonal block to apply triangular solve to the block of
right-hand-sides formed by the top NB rows of the trailing
submatrix. An eXcient implementation of this routine on a
GPU is diXcult due to the data-parallel nature of GPUs and
small size of the solve (32 ≤ NB ≤ 288).

In such case, the standard procedure for GPUs is to replace
the in-place triangular solve operation with an out-of-place
multiplication of the block of right-hand-sides by the inverse
of the triangle. After the panel factorization, one CPU core
applies the triangular solve to an NB×NB identity matrix.
In the update phase, the GPUs call the DGEMM routine to
apply the inverted matrix to the block of right-hand-sides in
an out-of-place fashion, followed by a copy of the result to
the location of the original block of right-hand-sides.

This operation executes at the speed of the DGEMM op-
eration, with twice as many FLOPs as the standard DTRSM
routine. This is the fastest way of implementing it, known
to the authors. Because it only aUects small portion of the
trailing submatrix, its execution time is negligible, compared
to the large DGEMM, which follows.

3.5.3 CCRB - CRRB Conversion

As already mentioned in section 3.2, tile layout has numerous
advantages and is the layout of choice for the PLASMA
library. However, PLASMA lays out data in tiles by columns,
and the GPUs require data to be laid out out by rows.
Otherwise the DLASWP operation cannot perform adequately.
Therefore, an operation is needed which internally transposes
each tile, i.e., makes a conversion between the CCRB and the
CRRB formats.

A very simple implementation is used here. Each thread
block launches 1024 threads arranged in a 32 × 32 grid,
and each thread swaps two elements of the matrix to their
transposed locations. The submatrix (column) being trans-
posed is overlaid with a rectangular grid of blocks. Threads
with the Vrst element below the tile’s diagonal perform the
swap. Threads with the Vrst element above the diagonal quit.
As naive as this implementation is, its execution time is
negligible.

3.5.4 DGEMM
The most important operation oYoaded to the GPUs is the
Schur complement part of the LU factorization, which is a
matrix multiplication of the form C = C −A×B, where A
is N ×K , B is K ×N and C is M ×N and in most cases
M = N � K . The value of K corresponds to the width of
the panel in each step of the factorization and is commonly
referred to as NB in LAPACK and PLASMA nomenclature.

The development of DGEMM presented here follows to
some extent the autotuning methodology used for producing
GEMM kernels for the MAGMA project [28]. There are,
however, major diUerences: First, the code has been rewritten
to operate on data in row-major layout. Second, address
arithmetic has been changed to work on matrices stored
in tiles. Generation and pruning of the search space has
also been modiVed to account for tiling of input matrices,
and Vnally, benchmarking has been done for the case of
(M = N � K = NB), instead of the usual case of
(M ' N ' K).

GPU parallelization of matrix multiplication is based on
spanning the C matrix with a two-dimensional grid of thread
blocks, where each thread block is responsible for calculating
a small rectangle of the result (Figure 7). In doing so, it passes
through a horizontal stripe of A and a vertical stripe of B
(light gray regions on Figure7).

The dark gray rectangles of Figure 7 are magniVed on Fig-
ure 8, which shows what happens inside each thread block.
Here, processing follows the cycle of reading a Mblk ×Kblk

rectangle of A and a Kblk × Nblk rectangle of B through
shared memory to registers and accumulating a Mblk×Nblk

result of the multiplication in registers. At the end, when
the calculation of A×B is complete, C is read, updated and
written back. The light gray color on Figure 8 shows how
a rectangle of C is overlaid with a two-dimensional grid of
threads. The dark gray color shows the elements accessed by
the Vrst thread as it iterates through the loops.

Figure 9 shows the general structure of the kernel’s
pipelined loop. The loop’s prologue and epilogue are marked
with faded boxes, and the loop’s steady state is marked with
darker boxes. In this kernel, the data always passes through
shared memory, what relieves the stress on the device mem-
ory and allows for eXcient handling of transpositions.

First, the prologue loads the Vrst tile of A and B to shared
memory. The data is loaded to registers and deposited in
shared memory. Then the code enters the steady-state loop.
The loop has two stages, separated by __syncthreads()
calls (barriers). In the Vrst one, the data in shared memory
is loaded to registers and used for calculations. At the same
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Fig. 7. Thread block’s operation for the CRRB GEMM.
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Fig. 8. CRRB GEMM at the block level.

time, new tiles of A and B are being fetched. In the second
step, the newly fetched tiles are dropped to shared memory,
which is than consumed as processing transitions back to
step one. The code follows the classic scheme of double-
buUering, where computation can be overlaid with data
fetches.

The kernel is expressed as a single, heavily parametrized,
source Vle in CUDA. SpeciVcally, all blocking sizes are
parametrized. This includes tiling for shared memory and
shape of the thread block. Autotuning is used to Vnd the
best kernel parameters. It is a heuristic process based on
generating a parameter search space, pruning the space
using a set of constraints, and Vnding the fastest kernels by

SHM

REG

CMP

MEM

REG SHM

REG SHM

REG

CMP

MEM

REG

SHM

even

odd

Fig. 9. The structure of the DGEMM kernel pipelined loop.

benchmarking those that pass through the selection.
The pruning engine applies straightforward heuristics to

eliminate kernels, which are very unlikely to produce high
performance. First of all, the kernel cannot exceed hardware
capabilities, such as the number of available threads, the
number of available registers, and the size of the shared
memory. Kernels which do, are immediately discarded. Sec-
ond, it is checked if tiling matches the shaped of the thread
block, i.e., if the thread block can be shaped such that tile
dimensions are divisible by thread block dimensions. It is also
checked if the number of threads in a block is divisible by
the warp size. Finally, three heuristic constraints are applied
to further narrow the focus of the search:

• minimum occupancy: minimum number of threads
per multiprocessor,

• minimum register reuse: number of FMAs per load
in the innermost loop,

• minimum number of thread blocks per multipro-
cessor.

Here, minimum occupancy is set to 512 (one third of the
maximum of 1,536), minimum register reuse is set to 2.0, and
minimum number of thread blocks is set to 2. These choices
are arbitrary and solely based on the authors’ intuition.
Figure 10 shows the numbers of kernels that pass through
the selection for each tiling size.

Benchmarking is a crucial part of the autotuning process.
The objective of pruning is to eliminate kernels which are
certain to perform poorly. However, the pruning process
alone has no capability to pinpointing the high perform-
ing kernels. Therefore, the performance of each kernel is
measured and the fastest kernels are selected. Here, the
workload of interest is the Schur complement operation in
LU factorization, i.e., matrix multiplication of sizeM×N×K ,
where M = N � K = NB. All autotuning runs were done
for M = N = 12, 000 to capture the asymptotic (steady
state) performance. Figure 11 shows the performance of the
fastest kernels. Table 1 also shows the corresponding values
of the tuning parameters. The performance is slighlty above
200 GWop/s at K = NB = 32, reaches 250 GWop/s at
K = NB = 64 and roughly 280 GWop/s for K = NB = 128,
192 and 256.
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Fig. 11. Best asymptotic performance of the Schur comple-
ment operation for each tiling.

3.6 Scheduling

Manually multithreading the hybrid LU factorization would
be non-trivial. It would be a challenge to track dependencies
without automation, given the three diUerent levels of granu-
larity involved: single tile, one column, a large block (subma-
trix). Here the QUARK superscalar scheduler [46] is used for
automatic dependency tracking and work scheduling. The LU
factorization code is expressed with the canonical serial loop
nest (Figure 12), where calls to CPU and GPU kernels are
augmented with information about sizes of aUected memory
regions and directionality of arguments (IN, OUT, INOUT).
QUARK schedules the work by resolving data hazards (RaW,
WaR, WaW) at runtime. Three important extensions are
critical to the implementation of the hybrid LU factorization:
task prioritization, variable-length list of dependencies and
support for nested parallelism.

The Vrst feature is task priritization. It is essential that

TABLE 1
Parameters of the fastest kernels.

NB Mblk/Nblk/Kblk calc. C read A read B GWop/s
32 32×32×8 8×8 8×8 8×8 208
64 64×64×16 16×16 16×16 16×16 250
96 32×32×6 8×8 2×32 32×2 255
128 64×64×16 16×16 16×16 16×16 272
160 32×32×8 8×8 8×8 8×8 265
192 64×64×16 16×16 16×16 16×16 278
224 32×32×8 8×8 8×8 32×2 269
256 64×64×16 16×16 16×16 16×16 277
288 32×32×6 8×8 2×32 32×2 274

for (k = 0; k < SIZE; k++) {
QUARK_Insert_Task( panel_factorization, ... CPUs - column

QUARK_Insert_Task( diagonal_block_inversion, ... CPU - tile

if (k< SIZE-1) {
for (n = k+1; n < k+1+lookahead && n < SIZE; n++) {
QUARK_Insert_Task( DLASWP, ... CPU - column

QUARK_Insert_Task( DTRSM, ... CPU - tile

for (m = k+1; m < SIZE; m++)
QUARK_Insert_Task(DGEMM, ... CPU - tile

}
}
if (SIZE-k-1-look > 0) {

QUARK_Insert_Task( panel_broadcast, ... DMA - column

QUARK_Insert_Task( trailing_matrix_update, ... GPUs - block

QUARK_Insert_Task( leading_column_return, ... DMA - column
}

}

Fig. 12. SimpliVed QUARK code for the LU factorization.

CPUs aggressively execute the critical path, i.e. traverse
the DAG in a depth-Vrst fashion. This guarantees that the
panels are executed quickly and sent to the GPUs. The DAG,
however, is never built in its entirety and the scheduler has
no way of knowing the critical path. Instead, the critical path
is indicated by the programmer, by using a priority Wag when
queueing the tasks in the critical path: panel factorizations
and updates of the columns immediately to the right of
each panel. Prioritized tasks are placed in the front of the
execution queue.

The second feature is variable-length lists of parameters.
CPU tasks, such as panel factorizations and row swaps, aUect
columns of the matrix of variable height. For such tasks the
list of dependencies is created incrementally, by looping over
the tiles involved in the operation. It is a similar situation for
the GPU tasks, which involve large blocks of the matrix (large
arrays of tiles). The only diUerence is that here transitive
(redundant) dependencies are manually removed to decrease
scheduling overheads, while preserving correctness.

The third crucial extension of QUARK is support for
nested parallelism, i.e., superscalar scheduling of tasks, which
are internally multithreaded. The hybrid LU factorization
requires parallel panel factorization for the CPUs to be able
to keep pace with the GPUs. At the same time, the ultra-
Vne granularity of the panel operations prevents the use
of QUARK inside the panel. Instead, the panel is manually
multithreaded using cache coherency for synchronization and
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scheduled by QUARK as a single task, entered at the same
time by multiple threads.

3.7 Communication

Communication is shown on Figure 13. Each panel fac-
torization is followed by a broadcast of the panel to all
the GPUs. After each update, the GPU in possession of
the leading leftmost column sends that column back to the
CPUs (host memory). These communications are expressed
as QUARK tasks with proper dependencies linking them to
the computational tasks. Because of the use of lookahead,
the panel factorizations can proceed ahead of the trailing
submatrix updates and so can transfers, which allows for
perfect overlapping of communication and computation, as
further discussed in the following section.

GPU 0

GPU 1

GPU 2

GPU 3

CPUs
(host)

broadcast unicast

following panel factorization following update of the trailing submatrix

Fig. 13. CPU-GPU (host to device) communication.

4 Results

This section includes a precise description of the hardware-
software environment and follows with a detailed discussion
of the performance results.

4.1 Hardware & Software

The system used for this work couples one CPU board with
four sockets and one GPU board with four sockets. The CPU
board is an NVIDIA Tesla S2050 system with 4 Fermi chips,
14 multiprocessors each, clocked at 1.147 GHz. The CPU
board is a H8QG6 Supermicro system with 4 AMD Magny
Cours chips, 12 cores each, clocked at 2.1 GHz.

The theoretical peak of a single CPU socket amounts to
2.1 GHz×12 cores×4 ops per cycle ' 101 Gflop/s, mak-
ing it ∼403 GWop/s for all four CPU sockets. The theoretical
peak of a single GPU amounts to 1.147 GHz × 14 cores×
32 ops per cycle ' 514 Gflop/s, making it ∼2055 GWop/s
for all four GPUs. The combined CPU-GPU peak is ∼2459
GWop/s.

The system runs Linux kernel version 2.6.35.7 (Red Hat
distribution 4.1.2-48). The CPU part of the code is built using
GCC 4.4.4. Intel MKL version 2011.2.137 is used for BLAS
calls on the CPUs. The GPU part of the code is built using
CUDA 4.0.

4.2 Performance

Figure 14 shows the overall performance of the hybrid LU
factorization and Table 2 lists the exact performance number
for each point along with values of tuning parameters.
Tuning is done by manual orthogonal search, i.e., tuning
tile size with all other parameters Vxed, then tuning the
lookahead depth, then tuning the number of cores used
for the panel factorization and reiterating. The discontinuity
between 23K and 25K is caused by abandoning the use of
texture caches. At this point the matrix exceeds the maximum
size of a 1D texture of 227 (1 GB). The chart continues until
35K. Beyond that point the size of the GPU memory, with
ECC protection, is exceeded (2.6 GB).
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Fig. 14. Overal performance of the LU factorization.

TABLE 2
LU performance and values of tuning parameters.

size NB lookahead panel cores GWop/s
640 64 1 12 6

1,920 " " " 39
3,200 " " " 95
4,480 " " " 163
5,760 " " " 249
6,720 96 " " 315
8,640 " 2 " 465
10,560 " " " 598
12,480 " " " 690
14,400 " 3 " 768
16,640 128 5 " 838
19,200 192 12 " 912
21,120 " " " 976
23,040 " " " 1022
24,960 " " " 1068
26,880 " " " 1098
28,800 " 13 " 1121
30,720 " 14 " 1142
32,640 " " " 1150
34,560 " " " 1160

Figure 15 shows a small fragment in the middle of the
execution trace of the 1 TWop/s run. In the CPU part, only
the panel factorizations are shown. The entire run factors a
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matrix of size 23K. The steps shown on the Vgure correspond
to factoring submatrices of size ∼12K. Due to the deep
lookahead, panel factorizations on the CPUs run a few steps
ahead of trailing submatrix updates on the GPUs. This allows
for perfect overlapping of CPU work and GPU work. It also
allows for perfect overlapping of communication between
the CPUs and the GPUs, i.e., between the host memory and
the device memories. Each panel factorization is followed
by a broadcast of the panel to the GPUs (light gray DMA).
Each trailing submatrix update is followed by returning one
column to the CPUs (dark gray DMA).

panel 66  panel 67    panel 68

GEMM 63               GEMM 64            GEMM 65

CPUs

GPUs

DMA
engines

time

d
e

vi
ce … …

Fig. 15. A small portion in the middle of the 1 TWop/s run.

Figure 16 shows the performance of the panel factorization
throughout the entire run, using diUerent numbers of cores,
for panels of width 192. The jagged shape of the lines reWects
the unpredictable nature of a cache-based CPU memory
system. The black line corresponds to the 1 TWop/s run,
for which 12 cores are used (one socket). Six cores deliver
inferior performance due to smaller size of their combined
caches, which cannot hold tall panels at the beginning of
the factorization. 24 cores deliver superior performance for
tall panels, and slightly lower performance for short panels,
due to increased cost of inter-socket communication. It turns
out that the use of 12 cores is more eXcient, even for
large matrices. 12-core panel factorizations are capable of
keeping up with GPU DGEMMs, while the remaining cores are
committed to CPU DGEMMs. As long as panel factorizations
can execute in less time than GPU DGEMMs, it is better to
free up more cores to do CPU DGEMMs. At the same time,
decreasing the number of panel cores to six, would quadruple
the time of the initial panel factorizations (Figure 16), causing
disruptions in the Wow of the GPUs work (Figure 15).
Figure 17 shows the performance of the GPU DGEMM ker-

nel throughout the entire factorization. The gray line shows
the DGEMM kernel performance on a single GPU. The black
line shows the performance of the 4-GPU DGEMM task. The
jagged shape of the line is due to the load imbalance among
the GPUs. The high peaks correspond to the calls where
the load is perfectly balanced, i.e., the number of columns
updated by the GPUs is divisible by 4. When this is not
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Fig. 16. Performance of panel factorization in each step of
matrix factorization.

the case, the number of columns assigned to diUerent GPUs
can diUer by one. The load imbalance can be completely
eliminated by scheduling the GPUs independently. Although,
potential performance beneVts are on the order of a few
percent. The two small dips on the left side of the line are
due to random phenomena (jitter of unknown source).
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Fig. 17. Performance of DGEMM in each step of matrix factor-
ization.

5 Conclusions
The results reveal the challenges of programming a hybrid
multicore system with accelerators. There is a disparity in
the performance of the CPUs and the GPUs to start with. It
turns into a massive disproportion when the CPUs are given
the diXcult (synchronization-rich and memory-bound) task
of panel factorization, and the GPUs are given the easy (data-
parallel and compute-bound) task of matrix multiplication.
While the performance of panel factorization on the CPUs
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is roughly at the level of 12 GWop/s, the performance of
matrix multiplication on the GPUs is almost at the level of
1,200 GWop/s (two orders of magnitude). The same dispropor-
tion applies to the computational power of the GPUs versus
the communication bandwidth between the CPU memory
and the GPU memory (host to device). The key to achieving
good performance under such adverse conditions is overlap-
ping of CPU processing and GPU processing and overlapping
of communication.
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