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1.1 Introduction

Dense matrix multiplication is one of the most common numerical oper-
ations, especially in the area of dense linear algebra, where it forms the core
of many important algorithms, including solvers of linear systems of equa-
tions, least square problems, and singular and eigenvalue problems. The Cell
B. E. excells in its capabilities to process compute-intensive workloads, like
matrix multiplication, in single precision, through its powerful SIMD capa-
bilities. This chapter disects implementations of two single precision matrix
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multiplication kernels for the SIMD cores of the Cell B. E. (the SPEs), one
implementing the C = C — A x BT operation and the other implementing
the C = C — A x B operation, for fixed size matrices of 64 x 64 elements.
The unique dual-issue architecture of the SPEs provides for a great balance
of the floating-point operations and the memory and permutation operations,
leading to the utilization of the floating-point pipeline in excess of 99 % in
both cases.

1.1.1 Performance Considerations

State of the art numerical linear algebra software utilizes block algorithms
in order to exploit the memory hierarchy of traditional cache-based systems [8,
9]. Public domain libraries such as LAPACK [3] and ScaLAPACK [5] are good
examples. These implementations work on square or rectangular submatrices
in their inner loops, where operations are encapsulated in calls to Basic Linear
Algebra Subroutines (BLAS) [4], with emphasis on expressing the computation
as Level 3 BLAS, matriz-matrixz type, operations. Frequently, the call is made
directly to the matrix multiplication routine _GEMM. At the same time, all
the other Level 3 BLAS can be defined in terms of . GEMM as well as a
small amount of Level 1 and Level 2 BLAS [17]. Any improvement to the
_GEMM routine immediately benefits the entire algorithm, which makes the
optimization of the _.GEMM routine yet more important. As a result, a lot of
effort has been invested in optimized BLAS by hardware vendors as well as
academic institutions through projects such as ATLAS [1] and GotoBLAS [2].

1.1.2 Code Size Considerations

In the current implementation of the Cell B. E. architecture, the SPEs
are equipped with local memories (Local Stores) of 256 KB. It is a com-
mon practice to use tiles of 64 x 64 elements for dense matrix operations
in single precision [6,11,12,18,19]. Such tiles occupy a 16 KB buffer in the
Local Store. Between six and eight buffers are necessary to efficiently imple-
ment even such a simple operation as matrix multiplication [6,11,12]. Also,
more complex operations, such as matrix factorizations, commonly allocate
eight buffers [18,19], which consume 128 KB of Local Store. In general, it is
reasonable to assume that half of the Local Store is devoted to application
data buffers. At the same time, the program may rely on library frameworks
like ALF [14] or MCF [23], and utilize numerical libraries such as SAL [20],
SIMD Math [15], or MASS [7], which consume extra space for the code. In
the development stage, it may also be desirable to generate execution traces
for analysis with tools like TATL™ [21] or Paraver [10], which require addi-
tional storage for event buffers. Finally, the Local Store also houses the SPE
stack, starting at the highest LS address and growing towards lower addresses
with no overflow protection. As a result, the Local Store is a scarce resource
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and any real-world application is facing the problem of fitting tightly coupled
components together in the limited space.

1.2 Implementation

1.2.1 Loop Construction

The main tool in loop construction is the technique of loop unrolling [13]. In
general, the purpose of loop unrolling is to avoid pipeline stalls by separating
dependent instructions by a distance in clock cycles equal to the corresponding
pipeline latencies. It also decreases the overhead associated with advancing
the loop index and branching. On the SPE it serves the additional purpose
of balancing the ratio of instructions in the odd and even pipeline, owing to
register reuse between iterations.

In the canonical form, matrix multiplication Cy,xn = Amxk X Brxn con-
sists of three nested loops iterating over the three dimensions m, n, and k.
Loop tiling [22] is applied to improve the locality of reference and to take
advantage of the O(n?)/O(n?) ratio of arithmetic operations to memory ac-
cesses. This way register reuse is maximized and the number of loads and
stores is minimized.

Conceptually, tiling of the three loops creates three more inner loops, which
calculate a product of a submatrix of A and a submatrix of B and updates
a submatrix of C' with the partial result. Practically, the body of these three
inner loops is subject to complete unrolling to a single block of a straight-line
code. The tile size is picked such that the cross-over point between arithmetic
and memory operations is reached, which means that there is more FMA or
FNMS operations to fill the even pipeline than there is load, store, and shuffle
operations to fill the odd pipeline.

The resulting structure consists of three outer loops iterating over tiles of
A, B, and C. Inevitably, nested loops induce mispredicted branches, which
can be alleviated by further unrolling. Aggressive unrolling, however, leads
quickly to undesired code bloat. Instead, the three-dimensional problem can
be linearized by replacing the loops with a single loop performing the same
traversal of the iteration space. This is accomplished by traversing tiles of A,
B, and C in a predefined order derived as a function of the loop index. A
straightforward row/column ordering can be used and tile pointers for each
iteration can be constructed by simple transformations of the bits of the loop
index.

At this point, the loop body still contains auziliary operations that cannot
be overlapped with arithmetic operations. These include initial loads, stores
of final results, necessary data rearrangement with splats (copy of one element
across a vector) and shuffles (permutations of elements within a vector), and
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FIGURE 1.1: Basic steps of . GEMM loop optimization.

pointer advancing operations. This problem is addressed by double-buffering,
on the register level, between two loop iterations. The existing loop body
is duplicated and two separate blocks take care of the even and odd itera-
tion, respectively. Auxiliary operations of the even iteration are hidden be-
hind arithmetic instructions of the odd iteration and vice versa, and disjoint
sets of registers are used where necessary. The resulting loop is preceded by
a small body of prologue code loading data for the first iteration, and then
followed by a small body of epilogue code, which stores results of the last iter-
ation. Figure 1.1 shows the optimization steps leading to a high-performance
implementation of the . GEMM inner kernel.

1.2.2 C =C - A x B trans

Before going into details, it should be noted that matrix storage follows
C-style row-major format. It is not as much a careful design decision, as com-
pliance with the common practice on the Cell B. E. It can be attributed to
C compilers being the only ones allowed to exploit short-vector capabilities of
the SPEs through C language SIMD extensions. If compliance with libraries
relying on legacy FORTRAN API is required, a translation operation is nec-
essary.

An easy way to picture the C' = C' — A x BT operation is to represent it as
the standard matrix vector product C' = C — A x B, where A is stored using
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FIGURE 1.2: Basic operation of the C = C' — A x BT matrix multiplication
micro-kernel.

row-major order and B is stored using column-major order. It can be observed
that in this case a row of A can readily be multiplied with a column of B to
yield a vector containing four partial results, which need to be summed up to
produce one element of C'. The vector reduction step introduces superfluous
multiply-add operations. In order to minimize their number, four row-column
products are computed, resulting in four vectors, which need to be internally
reduced. The reduction is performed by first transposing the 4 x 4 element
matrix represented by the four vectors and then applying four vector multiply-
add operations to produce a result vector containing four elements of C'. The
basic scheme is depicted in Figure 1.2.

The crucial design choice to be made is the right amount of unrolling, which
is equivalent to deciding the right tile size in terms of the triplet {m,n,k}
(here sizes express numbers of individual floating-point values, not vectors).
Unrolling is mainly used to minimize the overhead of jumping and advancing
the index variable and associated pointer arithmetic. However, both the jump
and the jump hint instructions belong to the odd pipeline and, for compute
intensive loops, can be completely hidden behind even pipeline instructions
and thus introduce no overhead. In terms of the overhead of advancing the
index variable and related pointer arithmetic, it will be shown in §1.2.4 that all
of these operations can be placed in the odd pipeline as well. In this situation,
the only concern is balancing even pipeline, arithmetic instructions with odd
pipeline, data manipulation instructions.

Simple analysis can be done by looking at the number of floating-point
operations versus the number of loads, stores, and shuffles, under the assump-
tion that the size of the register file is not a constraint. The search space for
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the {m,n, k} triplet is further truncated by the following criteria: only powers
of two are considered in order to simplify the loop construction; the maxi-
mum possible number of 64 is chosen for k in order to minimize the number
of extraneous floating-point instructions performing the reduction of partial
results; only multiplies of four are selected for n to allow for efficient reduction
of partial results with eight shuffles per one output vector of C'. Under these
constraints, the entire search space can be easily analyzed.

Table 1.1 shows how the number of each type of operation is calculated.
Table 1.2 shows the number of even pipeline, floating-point instructions in-
cluding the reductions of partial results. Table 1.3 shows the number of even
pipeline instructions minus the number of odd pipeline instructions including
loads, stores, and shuffles (not including jumps and pointer arithmetic). In
other words, Table 1.3 shows the number of spare odd pipeline slots before

TABLE 1.1: Numbers of different types of operations in the computation of
one tile of the C' = C' — A x BT micro-kernel, as a function of tile size ({m, n,
64} triplet).

Type of Pipeline Number of
Operation Even  Odd Operations
Floating point| (mMxnx64)/4+mxn
Load A '4 mx 64 /4
Load B X 64 xn /4
Load C ' mxn /4
Store C X mxn /4
Shuffle '4 mxn/4x8

TABLE 1.2: Number of even pipeline, floating-point operations in the com-
putation of one tile of the micro-kernel C' = C' — A x BT, as a function of tile
size ({m, n, 64} triplet).

M/N 4 8 16 32 64
T 68 13 272 544 1088
2 136272 544 1088 2176
AR 544 1088 2176 4352
8 544 1088 2176 4352 8704
16| 1088 2176 4352 8704 17408
32 2176 4352 8704 17408 34816
64| 4352 8704 17408 34816 69632
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TABLE 1.3: Number of spare odd pipeline slots in the computation of one
tile of the C' = C' — A x BT micro-kernel, as a function of tile size ({m, n, 64}

triplet).

M/N 4 8 16 32 64
1 =22 28 40 64 112
2 2072 176 384 800
AQEELE 272 608 1280 2624
8 272 672 1472 3072 6272
16 608 1472 3200 6656 13568
32 1280 3072 6656 13824 28160
64 2624 6272 13568 28160 57344

TABLE 1.4: The size of code for the computation of one tile of the C' =
C — A x BT micro-kernel, as a function of tile size ({m, n, 64} triplet).

M/N 4 8 16 32 64
1 1.2 1.2 2.3 4.5 8.9

2 1.0 1.8 3.6 7.0 13.9

4 1.7 3.2 6.1 12.0 23.8

8 3.2 59 113 220 435
16 6.1 11.3 215 420 830
32 120 220 420 820 162.0
64 238 435 830 1620 320.0

jumps and pointer arithmetic are implemented. Finally, Table 1.4 shows the
size of code involved in calculations for a single tile. It is important to note
here that the double-buffered loop is twice the size.

It can be seen that the smallest unrolling with a positive number of spare
odd pipeline slots is represented by the triplet {2,4,64} and produces a loop
with 136 floating-point operations. However, this unrolling results in only 20
spare slots, which would barely fit pointer arithmetic and jump operations.
Another aspect is that the odd pipeline is also used for instruction fetch,
and near complete filling of the odd pipeline may cause instruction depletion,
which in rare situations can even result in an indefinite stall [16].

The next larger candidates are triplets {4, 4,64} and {2,8, 64}, which pro-
duce loops with 272 floating-point operations, and 104 or 72 spare odd pipeline
slots, respectively. The first one is an obvious choice, giving more room in the
odd pipeline and smaller code. It turns out that the {4,4,64} unrolling is ac-
tually the most optimal of all, in terms of the overall routine footprint, when
the implementation of pointer arithmetic is taken into account, as further
explained in §1.2.4.

It can be observed that the maximum performance of the routine is ul-
timately limited by the extra floating-point operations, which introduce an
overhead not accounted for in the formula for operation count in matrix mul-
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FIGURE 1.3: Basic operation of the C = C — A x B matrix multiplication
micro-kernel.

tiplication: 2 X m X n x k. For matrices of size 64 x 64, every 64 multiply-add
operations require four more operations to perform the intra-vector reduc-
tion. This sets a hard limit on the maximum achievable performance to
64/(64 + 4) x 25.6 = 24.09 [G flop/s|, which is roughly 94 % of the peak.

1.23 C=C-AXxB

Here, same as before, row-major storage is assumed. The key observation
is that multiplication of one element of A with one row of B contributes to
one row of C. As a result, the elementary operation splats an element of A
over a vector, multiplies this vector with a vector of B, and accumulates the
result in a vector of C' (Figure 1.3). Unlike for the other kernel, in this case
no extra floating-point operations are involved.

Same as before, the size of unrolling has to be decided in terms of the
triplet {m,n, k}. This time, however, there is no reason to fix any dimension.
Nevertheless, similar constraints to the search space apply: all dimensions have
to be powers of two, and additionally only multiples of four are allowed for n
and k to facilitate efficient vectorization and simple loop construction. Table
1.5 shows how the number of each type of operation is calculated. Table 1.6
shows the number of even pipeline, floating-point instructions. Table 1.7 shows
the number of even pipeline instructions minus the number of odd pipeline in-
structions including loads, stores, and splats (not including jumps and pointer
arithmetic). In other words, Table 1.7 shows the number of spare odd pipeline
slots before jumps and pointer arithmetic are implemented. Finally, Table 1.8
shows the size of code involved in calculations for a single tile. It should be
noted again that the double-buffered loop is twice the size.

It can be seen that the smallest unrolling with a positive number of spare
odd pipeline slots produces a loop with 128 floating-point operations. Five
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TABLE 1.5: Numbers of different types of operations in the computation of
one tile of the C' = C' — A x B micro-kernel, as a function of tile size ({m, n,

k}).
Type of Pipeline Number of
Operation Even Odd Operations

Floating point|  y¢ (mxnxKk)/4
Load A X mxk /4
Load B '4 kxn /4
Load C ' mxn /4
Store C ' mxn /4
Splat ' m x k

TABLE 1.6: Number of even pipeline operations in the computation of one
tile of the micro-kernel C' = C' — A x B, as a function of tile size ({m, n, k}).

K M/N 4 8 16 32 64

4 1 4 8 16 32 64

4 2 8 16 32 64 128

4 4 16 32 64 128

4 8 32 64 128 512

4 16 64 128 512 1024

4 32 128 256 512 1024 2048

4 64 256 512 1024 2048 4096

8 1 8 16 32 64 128

8 2 16 32

8 4 32 64

8 8 64 128

8 16 128 512 1024

8 32 256 512 1024 2048 4096

8 64 512 1024 2048 4096 8192
16 1 16 32 64 128 256
16 2 32 64 128 512
16 4 64 128 512 1024
16 8 128 512 1024 2048
16 16 256 512 1024 2048 4096
16 32 512 1024 2048 4096 8192
16 64| 1024 2048 4096 8192 16384
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TABLE 1.7: Number of spare odd pipeline slots in the computation of one
tile of the C' = C — A x B micro-kernel, as a function of tile size ({m, n, k}).

K MN 4 8 16 32 64
4 17 9 -3 21 37
4 2l 0 10 -0 -0 10
4 4 6 12 4 12pndA
4 8 28 -6 88 152
4 16 52 2482 144 368
4 32 100 40 80 320 800
4 B4 196 72 176 672 1664
8 1 -2 14 -8 26 42
8 2l 6 12 -4 12mnda
8 4 24 8 AT 216
8 8  -40 Of80 240 560
8 16 726 192 544 1248
4 32 -13 48 416 1152 2624
4 B4 264 112 864 2368 5376
16 1 22 24 28 -3 52
16 2 28 16 88 152
16 4 40 Of80 240 560
16 8 6482 224 608 1376
16 16 112 9 512 1344 3008
16 32 -208 224 1088 2816 6272
16 64] -400 480 2240 5760 12800

possibilities exist, with the triplet {4, 16,8} providing the highest number of
24 spare odd pipeline slots. Again, such unrolling would both barely fit pointer
arithmetic and jump operations and be a likely cause of instruction depletion.

The next larger candidates are unrollings that produce loops with 256
floating-point operations. There are 10 such cases, with the triplet {4,32,8}
being the obvious choice for the highest number of 88 spare odd pipeline slots
and the smallest code size. It also turns out that this unrolling is actually
the most optimal in terms of the overall routine footprint, when the imple-
mentation of pointer arithmetic is taken into account, as further explained
in §1.2.4.

Unlike for the other routine, the maximum performance is not limited
by any extra floating-point operations, and performance close to the peak of
25.6 G flop/s should be expected.

1.2.4 Advancing Tile Pointers

The remaining issue is the one of implementing the arithmetic calculating
the tile pointers for each loop iteration. Due to the size of the input matrices
and the tile sizes being powers of two, this is a straightforward task. The tile
offsets can be calculated from the tile index and the base addresses of the input
matrices using integer arithmetic and bit manipulation instructions (bitwise
logical instructions and shifts). Figure 1.4 shows a sample implementation of
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int tile;

vector
vector
vector

vector
vector
vector

Aoffs
Boffs
Coffs

float
float
float

float
float
float

Abase
Bbase
Cbase

*Abase;
*Bbase;
*Cbase;

*Aoffs;
*Boffs;
*Coffs;

+

+
+
+

((tile & ~0xOF
((tile & OxOF
(tile & OxOF
((tile & ~0OxOF

—_————

<< 2);
<< 6);

<< 2);

13

FIGURE 1.4: Sample C language implementation of pointer arithmetic for
the kernel ¢ = C — A x BT with unrolling corresponding to the triplet

{4,4,64}.

TABLE 1.8: The size of code for the computation of one tile of the C' =

C — A x B micro-kernel, as a function of tile size ({m, n, k}).

K MN 4 8 16 32 64
4 i of of 02 03 06
4 2 01 02 03 05 10
4 4 02 03 05 10§08
4 8 04 06 1OMMNE 34
4 16 07 1LIQEE® 34 66
4 32 14 22 37 68 129
4 64 28 43 73 134 255
8 i1 01 02 03 06 12
8 2 02 03 05 1.OJNN8
8 4 03 05 OONNNEE 32
8 8§ 07 10N 31 58
8 16 138 33 59 111
4 32 25 38 64 115 218
4 64 50 76 126 228 430

16 i 02 03 06 11 22

1 2 04 06 1OpMNE 34

6 4 07 1OMMZ 31 58

16 8§ 138 31 56 106

6 16 24 36 60 108 203

16 32 48 71 118 21.0 395

16 64 96 141 233 415 780
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lga $2,tile
lga $3,Abase
andi $4,$2,-16
andi $2,$2,15
shli $6,%4,2
shli $4,%4,6
shli $5,%$2,10
a $2,%$2,$6
a $4,$4,43
shli $2,9$2,4
lga $3,Bbase
stqa $4,Aoffs
a $5,$5,93
lga $3,Cbase
stga $5,Boffs
a $2,$2,%3
stqa $2,Coffs

FIGURE 1.5: The result of compiling the code from Figure 1.4 to assembly
language, with even pipeline instructions in bold.

pointer arithmetic for the kernel C' = C' — A x BT with unrolling corresponding
to the triplet {4,4, 64}. Abase, Bbase, and Cbase are base addresses of the input
matrices, and the variable tile is the tile index running from 0 to 255; Aoffs,
Boffs, and Coffs are the calculated tile offsets.

Figure 1.5 shows the result of compiling the sample C code from Figure
1.4 to assembly code. Although a few variations are possible, the resulting
assembly code will always involve a similar combined number of integer and
bit manipulation operations. Unfortunately, all these instructions belong to
the even pipeline and will introduce an overhead, which cannot be hidden
behind floating point operations, like it is done with loads, stores, splats, and
shuffles.

One way of minimizing this overhead is extensive unrolling, which creates a
loop big enough to make the pointer arithmetic negligible. An alternative is to
eliminate the pointer arithmetic operations from the even pipeline and replace
them with odd pipeline operations. With the unrolling chosen in §1.2.2 and
§1.2.3, the odd pipeline offers empty slots in abundance. It can be observed
that, since the loop boundaries are fixed, all tile offsets can be calculated
in advance. At the same time, the operations available in the odd pipeline
include loads, which makes it a logical solution to precalculate and tabulate
tile offsets for all iterations. It still remains necessary to combine the offsets
with the base addresses, which are not known beforehand. However, under
additional alignment constraints, offsets can be combined with bases using
shuffle instructions, which are also available in the odd pipeline. As will be
further shown, all instructions that are not floating point arithmetic can be
removed from the even pipeline.

The precalculated offsets have to be compactly packed in order to preserve
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FIGURE 1.6: Organization of the tile offset lookup table. NV is the number
of tiles.

space consumed by the lookup table. Since tiles are 16 KB in size, offsets
consume 14 bits and can be stored in a 16-bit halfword. Three offsets are
required for each loop iteration. With eight halfwords in a quadword, each
quadword can store offsets for two loop iterations or a single interation of the
pipelined, double-buffered loop. Figure 1.6 shows the organization of the offset
lookup table.

The last arithmetic operation remaining is the advancement of the it-
eration variable. It is typical to decrement the iteration variable instead of
incrementing it, and branch on non-zero, in order to eliminate the comparison
operation, which is also the case here. This still leaves the decrement oper-
ation, which would have to occupy the even pipeline. In order to annihilate
the decrement, each quadword containing six offsets for one iteration of the
double-buffered loop also contains a seventh entry, which stores the index of
the quadword to be processed next (preceding in memory). In other words,
the iteration variable, which also serves as the index to the lookup table, is
tabulated along with the offsets and loaded instead of being decremented.

Normally, the tile pointers would have to be calculated as a sum of an
18-bit base address and a 14-bit offset, which would require the use of integer
addition residing in the even pipeline. With the additional constraint of 16 KB
alignment of the base addresses, 14 less significant bits of the base are zero
and can be simply replaced with the bits of the offset. The replacement could
be implemented with the logical AND operation. This would however, again,
involve an even pipeline instruction. Instead, both the base addresses and the
offsets are initially shifted left by two bits, which puts the borderline between
offsets and bases on a byte boundary. At this point the odd pipeline shuffle
instruction operating at byte granularity can be used to combine the base
with the offset. Finally, the result has to be shifted right by two bits, which
can be accomplished by a combination of bit and byte quadword rotations,
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TABLE 1.9: The overall footprint of the micro-kernel ¢ = C — A x BT,
including the code and the offset lookup table, as a function of tile size ({m,
n, 64} triplet).

M/N 4 8 16 32 64
1 92 63 66 100 184
2 6OWNE7 81 145 280
AN 74 128 243 476
8 7.4 123 228 441 871
16| 128 228 431 841 166.0
32 243 441 841 1640 324.0
64 47.6 871 166.0 324.0 640.0

which also belong to the odd pipeline. Overall, all the operations involved
in advancing the double-buffered loop consume 29 extra odd pipeline slots,
which is small, given that 208 are available in the case of the first kernel and
176 in the case of the second.

This way, all operations involved in advancing from tile to tile are imple-
mented in the odd pipeline. At the same time, both the branch instruction and
the branch hint belong to the odd pipeline. Also, a correctly hinted branch
does not cause any stall. As a result, such an implementation produces a con-
tinuous stream of floating-point operations in the even pipeline, without a
single cycle devoted to any other activity.

The last issue to be discussed is the storage overhead of the lookup ta-
ble. This size is proportional to the number of iterations of the unrolled loop
and reciprocal to the size of the loop body. Using the presented scheme (Fig-
ure 1.6), the size of the lookup table in bytes equals N3/(m x n x k) x 8.
Table 1.9 presents the overall footprint of the C' = C' — A x BT micro-kernel
as a function of the tile size. Table 1.10 presents the overall footprint of the
C = C — A x B micro-kernel as a function of the tile size. As can be clearly
seen, the chosen tile sizes result in the lowest possible storage requirements
for the routines.

1.3 Results

Both presented SGEMM kernel implementations produce a continuous
stream of floating-point instructions for the duration of the pipelined loop. In
both cases, the loop iterates 128 times, processing two tiles in each iteration.
The C = C — A x BT kernel contains 544 floating-point operations in the loop
body and, on a 3.2 GHz processor, delivers 25.54 Gflop/s (99.77 % of peak)
if actual operations are counted, and 24.04 Gflop/s (93.90 % of peak) if the



Implementing Matriz Multiplication on the Cell B. E. 17

TABLE 1.10: The overall footprint of the micro-kernel C = C — A x B,
including the code and the offset lookup table, as a function of tile size ({m,
n, 64} triplet).

K MN 4 8 16 32 64
4 i 1281 642 324 167 93
4 2 642 323 166 91 6.1
4 4 324 166 90  SONS7
4 8 167 91 5opINs8 7.8
4 16 94 62NE8 79 136
4 32 68 63 84 140 260
4 B4 75 96 151 270 511
8 1 642 324 166 92 63
8 2 324 166 90  59NNST
8 4 167 91 Sl 7.3
8 8 93 eopNs4 71 121
8 16 6CONS® 7.5 123 225
4 32 91 96 138 235 438
4 B4 121 161 258 458 861
16 1 324 167 92 63 64
16 2 167 91 S5oN5® 7.8
16 4 93  eopmS4 71 121
16 8 6558 73 118 215
16 16 69 83 125 218 406
16 32 106 148 238 421 791

standard formula, 2/N3, is used for operation count. The C' = C — A x B ker-
nel contains 512 floating-point operations in the loop body and delivers 25.55
Gflop/s (99.80 % of peak). Here, the actual operation count equals 2N3. At
the same time, neither implementation overfills the odd pipeline, which is 31 %
empty for the first case and 17 % empty for the second case. This guarantees
no contention between loads and stores and DMA operations, and no danger
of instruction fetch starvation. Table 1.11 shows the summary of the kernels’
properties.

1.4 Summary

Computational micro-kernels are architecture specific codes, where no
portability is sought. It has been shown that systematic analysis of the prob-
lem combined with exploitation of low-level features of the Synergistic Pro-
cessing Unit of the Cell B. E. leads to dense matrix multiplication kernels
achieving peak performance without code bloat.

This proves that great performance can be achieved on SIMD architecture
by optimizing code manually. The question remains, whether similar results
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TABLE 1.11: Summary of the properties of the SPE SIMD SGEMM
micro-kernels.

Characteristic C=C-AxBT C=C-AxB

Performance 24.04 25.55
Gflop/s Gflop/s

Execution time 21.80 us | 20.52 us
Fraction of peak 93.90 % 99.80 %
USING THE 2xMxNxK FORMULA
Fraction of peak 99.77 % 99.80%
USING ACTUAL NUMBER
OF FLOATING-POINT INSTRUCTIONS
Dual issue rate 68.75 % 82.81 %
ODD PIPELINE WORKLOAD
Register usage 69 69
Code segment size 4008 3992
Data segment size 2192 2048
Total memory footprint 6200 6040

can be accomplished by automatic vectorization techniques or a combination
of auto-vectorization with heuristic techniques based on searching the param-
eter space. It is likely that good results could be achieved by a combination
of the Superworld Level Parallelism technique for auto-vectorization [24] with
heuristic search similar to the ATLAS [1] methodology.

1.5 Code

The code is freely available, under the BSD license and can be down-
loaded from the author’s web site http://icl.cs.utk.edu/~alvaro/. A few
comments can be useful here. In absence of better tools, the code has been
developed with the help of a spreadsheet, mainly for easy manipulation of
two columns of instructions for the two pipelines of the SPE. Other useful
features were taken advantage of as well. Specifically, color coding of blocks of
instructions greatly improves the readability of the code. It is the hope of the
authors that such visual representation of code considerably helps the reader’s
understanding of the techniques involved in construction of optimized SIMD
assembly code. Also, the authors put forth considerable effort in making the
software self-contained, in the sense that all tools involved in construction of
the code are distributed alongside. This includes the lookup table generation
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code and the scripts facilitating translation from spreadsheet format to SPE
assembly language.

Bibliography

[1]
2]
[3]

ATLAS. http://math-atlas.sourceforge.net/.
GotoBLAS. http://www.tacc.utexas.edu/resources/software/.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA,
1992. http://www.netlib.org/lapack/lug/.

Basic Linear Algebra Technical Forum. Basic Linear Algebra Tech-
nical Forum Standard, August 2001. http://www.netlib.org/blas/
blast-forum/blas-report.pdf.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM,
Philadelphia, PA, 1997. http://www.netlib.org/scalapack/slug/.

T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell Broadband Engine
architecture and its first implementation — A performance view. IBM
J. Res. & Dev., 51(5):559-572, 2007. DOI: 10.1147/rd.515.0559.

IBM Corporation. Mathematical Acceleration Subsystem — Prod-
uct overview. http://www-306.1ibm.com/software/awdtools/mass/,
March 2007.

J. W. Demmel. Applied Numerical Linear Algebra. STAM, 1997.
ISBN: 0898713897.

J. J. Dongarra, 1. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Nu-
merical Linear Algebra for High-Performance Computers. SIAM, 1998.
ISBN: 0898714281.

European Center for Parallelism of Barcelona, Technical University of
Catalonia. Paraver, Parallel Program Visualization and Analysis Tool
Reference Manual, Version 3.1, October 2001.

D. Hackenberg. Einsatz und Leistungsanalyse der Cell Broadband En-
gine. Institut fiir Technische Informatik, Fakultdt Informatik, Technische
Universitdt Dresden, February 2007. Grofler Beleg.



20

[12]

[17]

[18]

[19]

Scientific Computing with Multicore and Accelerators

D. Hackenberg. Fast matrix multiplication on CELL systems.
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/
zih/forschung/architektur_und_leistungsanalyse_von_
hochleistungsrechnern/cell/matmul/, July 2007.

J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth
Edition: A Quantitative Approach. Morgan Kaufmann, 2006.

IBM Corporation. ALF for Cell BE Programmer’s Guide and API Ref-
erence, November 2007.

IBM Corporation. SIMD Math Library API Reference Manual, November
2007.

IBM Corporation. Preventing Synergistic Processor Element Indefinite
Stalls Resulting from Instruction Depletion in the Cell Broadband En-
gine Processor for CMOS SOI 90 nm, Applications Note, Version 1.0,
November 2007.

B. Kagstrom, P. Ling, and C. van Loan. GEMM-Based Level 3 BLAS:
High-performance model implementations and performance evaluation
benchmark. ACM Trans. Math. Soft., 24(3):268-302, 1998.

J. Kurzak, A. Buttari, and J. J. Dongarra. Solving systems of linear
equation on the CELL processor using Cholesky factorization. Trans.
Parallel Distrib. Syst., 19(9):1175-1186, 2008. DOI: TPDS.2007.70813.

J. Kurzak and J. J. Dongarra. Implementation of mixed preci-
sion in solving systems of linear equations on the CELL proces-
sor. Concurrency Computat.: Pract. Ezper., 19(10):1371-1385, 2007.
DOI: 10.1002/cpe.1164.

Mercury Computer Systems, Inc. Scientific Algorithm Library (SAL)
Data Sheet, 2006. http://www.mc.com/uploadedfiles/SAL-ds.pdf.

Mercury Computer Systems, Inc. Trace Analysis Tool and Library
(TATL™ ) Data Sheet, 2006. http://www.mc.com/uploadedfiles/
tatl-ds.pdf.

S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

M. Pepe. Multi-Core Framework (MCF), Version 0.4.4. Mercury Com-
puter Systems, October 2006.

J. Shin, J. Chame, and M. W. Hall. Exploiting superword-level locality
in multimedia extension architectures. J. Instr. Level Parallel., 5:1-28,
2003.





