
Acta Numerica (2012), pp. 1–96 c© Cambridge University Press, 2012

doi:10.1017/S09624929XXXXXXXX Printed in the United Kingdom

High-performance computing systems:
Status and outlook∗

J. J. Dongarra
University of Tennessee

and

Oak Ridge National Laboratory

and

University of Manchester

E-mail: dongarra@eecs.utk.edu

A. J. van der Steen
NCF/HPC Research, L. J. Costerstraat 5,

6827 AR Arnhem, The Netherlands

E-mail: steen@hpcresearch.nl

This article describes the current state of the art of high-performance com-
puting systems, and attempts to shed light on near-future developments that
might prolong the steady growth in speed of such systems, which has been
one of their most remarkable characteristics. We review the different ways
devised to speed them up, both with regard to components and their archi-
tecture. In addition, we discuss the requirements for software that can take
advantage of existing and future architectures.

∗ Colour online for monochrome figures available at journals.cambridge.org/anu.



2 J. J. Dongarra and A. J. van der Steen

CONTENTS

1 Introduction 2
2 The main architectural classes 3
3 Shared-memory SIMD machines 6
4 Distributed-memory SIMD machines 8
5 Shared-memory MIMD machines 11
6 Distributed-memory MIMD machines 13
7 ccNUMA machines 17
8 Clusters 19
9 Processors 21
10 Computational accelerators 40
11 Networks 56
12 Recent trends in high-performance computing 61
13 HPC challenges 74
References 93

1. Introduction

High-performance computer systems can be regarded as the most power-
ful and flexible research instruments today. They are employed to model
phenomena in fields as varied as climatology, quantum chemistry, compu-
tational medicine, high-energy physics and many others. In this article we
present some of the architectural properties and computer components that
make up high-performance computers at present, and also give an outlook
on systems to come. Even though the speed of computers has increased
tremendously over the years (often a doubling in speed every two or three
years), the need for ever faster computers is still there and will not disappear
in the foreseeable future.
Before going on to descriptions of the machines themselves, it is useful

to consider some mechanisms that are or have been used to increase perfor-
mance. The hardware structure or architecture determines to a large extent
the possibilities and impossibilities of speeding up a computer system be-
yond the performance of a single CPU core. Another important factor that
is considered in combination with the hardware is the capability of compilers
to generate efficient code to be executed on the given hardware platform.
In many cases it is hard to distinguish between hardware and software in-
fluences, and one has to be careful in the interpretation of results when
ascribing certain effects to hardware or software peculiarities or both. In
this article we will place most emphasis on hardware architecture. For a
description of machines that can be classified as ‘high-performance’ we refer
readers to Culler, Singh and Gupta (1998) or van der Steen (1995).



High-performance computers: status and outlook 3

The rest of the paper is organized as follows. Section 2 discusses the
main architectural classification of high-performance computers. Section 3
presents shared-memory vector SIMD machines. Section 4 discusses distri-
buted-memory SIMD machines. Section 5 looks at shared-memory MIMD
machines. Section 6 considers distributed-memory MIMD machines. Sec-
tion 7 discusses ccNUMA machines, which are closely related to shared-
memory systems. Section 8 presents clusters. Section 9 overviews proces-
sors, and looks at what is currently available. Section 10 presents computa-
tional accelerators, GPUs, and FPGAs. Section 11 discusses networks and
what is commercially available. Section 12 overviews recent trends in high-
performance computing. Section 13 concludes with an examination of some
of the challenges we face in the effective use of high-performance computers.

2. The main architectural classes

For many years, the taxonomy of Flynn (1972) has proved to be useful in
the classification of high-performance computers. This classification is based
on the ways of manipulating instruction and data streams and comprises
four main architectural classes. We will first briefly sketch these classes;
afterwards we will fill in some details and describe each class separately.

SISD (single instruction, single data) machines. These are the con-
ventional systems that contain one CPU and hence can accommodate one
instruction stream that is executed serially. Today almost all large servers
have more than one CPU, but each of these executes instruction streams
that are unrelated. Therefore, such systems should still be regarded as
(several) SISD machines acting on different data spaces. Examples of SISD
machines are workstations, offered by many vendors. The definition of SISD
machines is given here for the sake of completeness, but we will not discuss
this type of machine in our report.

SIMD (single instruction, multiple data) machines. Such systems
often have a large number of processing units, so that all may execute the
same instruction on different data in lockstep. Thus, a single instruction
manipulates many data items in parallel. Examples of SIMD machines in
this class are the CPP Gamma II and the Quadrics Apemille, which are
no longer marketed. Nevertheless, the concept is still interesting and is
returning in the form of a co-processor in HPC systems, albeit in a some-
what restricted form in some computational accelerators such as graphical
processing units (GPUs).
Another subclass of SIMD systems comprises vector processors, which act

on arrays of similar data, rather than on single data items, using specially
structured CPUs. When data can be manipulated by these vector units,
results can be delivered with a rate of one, two and – in special cases –



4 J. J. Dongarra and A. J. van der Steen

three per clock cycle (a clock cycle being defined as the basic internal unit
of time for the system). So, vector processors execute in an almost parallel
way, but only when executing in vector mode on their data. In this case they
are several times faster than when executing in conventional scalar mode.
For practical purposes, therefore, vector processors are usually regarded as
SIMD machines. Examples of such systems are the NEC SX-9B and the
Cray X2.

MISD (multiple instruction, single data) machines. Theoretically,
in this type of machine multiple instructions should act on a single stream
of data. As yet no practical machine in this class has been constructed, nor
are such systems easy to conceive. We will disregard them in the following
discussions.

MIMD (multiple instruction, multiple data) machines. These ma-
chines execute several instruction streams in parallel on different data. The
difference from the multiprocessor SIMD machines mentioned above lies in
the fact that the instructions and data are related, because they represent
different parts of the same task to be executed. Thus, MIMD systems may
run many sub-tasks in parallel in order to shorten the time-to-solution for
the main task to be executed. There is a large variety of MIMD systems,
and, particularly for this class, the Flynn taxonomy does not quite suffice for
the classification of systems. Systems that behave very differently, such as
a 4-processor NEC SX-9 vector system and a 100 000-processor IBM Blue-
Gene/P, fall into this class. In the following we will make another important
distinction between classes of systems and treat them accordingly.

Shared-memory systems. Shared-memory systems have multiple CPUs,
all of which share the same address space. This means that the knowledge
of where data are stored is of no concern to the user as there is only one
memory accessed by all CPUs on an equal basis. Shared-memory systems
can be either SIMD or MIMD. Single-CPU vector processors can be regarded
as an example of the former, while the multi-CPU models of these machines
are examples of the latter. We will sometimes use the abbreviations SM-
SIMD and SM-MIMD for the two subclasses.

Distributed-memory systems. In this case each CPU has its own as-
sociated memory. The CPUs are connected by some network and may ex-
change data between their respective memories when required. In contrast
to shared-memory machines the user must be aware of the location of the
data in the local memories and will have to move or distribute these data
explicitly when needed. Again, distributed-memory systems may be either
SIMD or MIMD. The first class of SIMD systems mentioned, which operate
in lockstep, all have distributed memories associated with the processors.
As we will see, distributed-memory MIMD systems exhibit a large variety



High-performance computers: status and outlook 5

of topologies in their interconnection network. The details of this topol-
ogy are largely hidden from the user, which is quite helpful with respect to
portability of applications but may have an impact on performance. For
distributed-memory systems we will sometimes use the terms DM-SIMD
and DM-MIMD to indicate the two subclasses.

As already mentioned, although the difference between shared and distri-
buted-memory machines seems clear-cut, this is not always the case from the
user’s point of view. For instance, the late Kendall Square Research systems
employed the idea of ‘virtual shared memory’ on a hardware level. Virtual
shared memory can also be simulated at the programming level: a speci-
fication of High Performance Fortran (HPF) was published in 1993 (High
Performance Fortran Forum 1993) which, by means of compiler directives,
distributes the data over the available processors. Therefore, the system
on which HPF is implemented in this case will look like a shared-memory
machine to the user. Other vendors of massively parallel processing (MPP)
systems, such as SGI, also support proprietary virtual shared-memory pro-
gramming models, due to the fact that these physically distributed memory
systems are able to address the whole collective address space. So, for the
user, such systems have one global address space spanning all of the memory
in the system. We will say a little more about the structure of such systems
in Section 7. In addition, packages such as TreadMarks (Amza et al. 1995)
provide a ‘distributed-shared-memory’ environment for networks of work-
stations.1 Since 2006, Intel has marketed its ‘Cluster OpenMP’ (based on please check

TreadMarks) as a commercial product. It allows the use of the shared-
memory OpenMP parallel model to be used on distributed-memory clus-
ters. For the last few years companies such as ScaleMP and 3Leaf have
provided products to aggregate physical distributed memory into virtual
shared memory.
Lastly, so-called partitioned global address space (PGAS) languages such

as Co-Array Fortran (CAF) and Unified Parallel C (UPC) are gaining pop-
ularity due to the recent emergence of multi-core processors. With proper
implementation this allows a global view of the data, and language facilities
make it possible to specify the processing of data associated with a (set of)
processor(s) without the need to explicitly move data around.
Distributed processing takes the DM-MIMD concept one step further: in-

stead of many integrated processors in one or several boxes, workstations,
mainframes, etc., are connected by (Gigabit) Ethernet, or other, faster net-
works, and set to work concurrently on tasks in the same program. Concep-
tually, this is no different from DM-MIMD computing, but the communi-
cation between processors can be much slower. Packages that initially were

1 A comprehensive bibliography of distributed shared memory systems can found at
www.cs.umd.edu/˜keheler/dsmbiblio/dsmbiblio.html.



6 J. J. Dongarra and A. J. van der Steen

made to realize distributed computing, such as PVM (standing for parallel
virtual machine: Geist et al. 1994), and MPI (message-passing interface:
Snir et al. 1998, Gropp et al. 1998) have become de facto standards for
the ‘message passing’ programming model. MPI and PVM have become so
widely accepted that they have been adopted by all vendors of distributed-
memory MIMD systems and even on shared-memory MIMD systems, for
compatibility reasons. In addition, there is a tendency to cluster shared-
memory systems by a fast communication network to obtain systems with a
very high computational power. For example, the NEC SX-9 and the Cray
X2 both have this structure. Thus, within the clustered nodes a shared-
memory programming style can be used, while between clusters message
passing should be used. It must be said that PVM is no longer used very
much and the development has stopped. MPI has now more or less become
the de facto standard.
For SM-MIMD systems we mention OpenMP (Chandra et al. 2001, Chap-

man, Jost and van der Pas 2007),2 which can be used to parallelize Fortran
and C/C++ programs by inserting comment directives (Fortran 77/90/95)
or pragmas (C/C++) into the code. OpenMP has quickly been adopted by
all major vendors and has become a well-established standard for shared-
memory systems.
Note, however, that for both MPI-2 and OpenMP 2.5 many systems/com-

pilers only implement part of the latest standards. Therefore one has to
enquire carefully whether a particular system enjoys the full functionality
of these standards. The standard vendor documentation will almost never
be clear on this point.

3. Shared-memory SIMD machines

This subclass of machines is practically equivalent to single-processor vector
processors, although other interesting machines in this subclass have existed
(i.e., VLIW machines: van der Steen 1990), and may emerge again in the
near future. In the block diagram in Figure 3.1 we depict a generic model
of a vector architecture. The single-processor vector machine will have only
one of the vector processors shown here and the system may even have
its scalar floating-point capability shared with the vector processor (as was
the case in some Cray systems). It may be noted that the VPU does not
show a cache. Vector processors may have a cache but in many cases the
vector unit cannot take advantage of it, and execution speed may in some
cases be unfavourably affected because of frequent cache overflow. Of late,
however, this tendency has been reversed because of the increasing gap in

2 OpenMP Application Interface, version 2.5: www.openmp.org/.



High-performance computers: status and outlook 7

FPU      scalar floating-point unit

FPU VPU

IOP

Memory

IP/ALU integer processor

VPU     vector processing unit

IOP       I/O processor

IP/ALU

Instr./data
cache

Data
cache

Vector
registers

Peripherals

Figure 3.1. Block diagram of a vector processor.

speed between the memory and the processors: the Cray X2 has a cache,
and NEC’s SX-9 vector system has a facility that is somewhat like a cache.
Although vector processors have existed that loaded their operands di-

rectly from memory, and stored the results again immediately in memory
(CDC Cyber 205, ETA-10), present-day vector processors use vector reg-
isters. This impairs the speed of operations while providing much more
flexibility in gathering operands and manipulation with intermediate re-
sults.
Because of the generic nature of Figure 3.1 no details of the intercon-

nection between the VPU and the memory are shown. Still, these details
are very important for the effective speed of a vector operation: when the
bandwidth between memory and the VPU is too small it is not possible to
take full advantage of the VPU because it has to wait for operands or has to
wait before it can store results. When the ratio of arithmetic to load/store
operations is not high enough to compensate for such situations, severe per-
formance losses may be incurred. The influence of the number of load/store
paths for the dyadic vector operation c = a + b (a, b, and c vectors) is de-
picted in Figure 3.2. Because of the high costs of implementing these data
paths between memory and the VPU, compromises are often sought and the
full required bandwidth (i.e., two load operations and one store operation
at the same time) is seldom realized. Only Cray Inc., in its former Y-MP,
C-series and T-series, has employed this very high bandwidth. Vendors now
rely on additional caches and other tricks to hide the lack of bandwidth.
The VPUs are shown as a single block in Figure 3.1. However, there

is considerable diversity in the structure of VPUs. Every VPU consists
of a number of vector functional units, or ‘pipes’, that fulfil one or sev-
eral functions in the VPU. Every VPU will have pipes that are designated



8 J. J. Dongarra and A. J. van der Steen

Load a

Load a

Load b

Load b

Store c

Store c

Time

c = a+ b

c = a+ b(a)

(b)

Figure 3.2. Schematic diagram of a vector addition. Case (a)
when two load pipes and one store pipe are available; case (b)
when two load/store pipes are available.

to perform memory access functions, thus ensuring the timely delivery of
operands to the arithmetic pipes and storage of results in memory. Usually
there will be several arithmetic functional units for integer/logical arith-
metic, for floating-point addition, for multiplication and sometimes a com-
bination of both, a so-called compound operation. Division is performed by
an iterative procedure, table look-up, or a combination of both using the
add-and-multiply pipe. In addition, there will almost always be a mask pipe
to enable operation on a selected subset of elements in a vector of operands.
Lastly, such sets of vector pipes can be replicated within one VPU (2 to
16-fold replication occurs). Ideally, this will increase performance per VPU
by the same factor, provided the bandwidth to memory is adequate.
Lastly, it must be remarked that vector processors as described here are

no longer considered a viable economic option, and both the Cray X2 and
the NEC SX-9 will disappear in the near future: vector units within stan-
dard processor cores and computational accelerators have invaded the vector
processing area. Although they are less efficient and have bandwidth lim-
itations, they are so much cheaper that they out-compete classical vector
processors.

4. Distributed-memory SIMD machines

Machines of the DM-SIMD type are sometimes also known as processor
array machines (Hockney and Jesshope 1988). Because the processors of
these machines operate in lockstep, i.e., all processors execute the same in-
struction at the same time (but on different data items), no synchronization
between processors is required. This greatly simplifies the design of such
systems. A control processor issues the instructions that are to be executed
by the processors in the processor array. At present, no commercially avail-



High-performance computers: status and outlook 9

Register plane
Interconnection network

Data movement plane

Memory

and I/O processor
Data lines to front-end

front-end
To/from

Processor array

processor

Control

Figure 4.1. A generic block diagram of a distributed-memory SIMD machine.

able machines of the processor array type are marketed. However, because
of the shrinking size of devices on a chip, it may be worthwhile locating a
simple processor with its network components on a single chip, thus making
processor array systems economically viable again. In fact, common graphi-
cal processing units (GPUs) share many characteristics with processor array
systems. This is why we still discuss this type of system.
DM-SIMD machines use a front-end processor to which they are con-

nected by a data path to the control processor. Operations that cannot be
executed by the processor array or by the control processor are offloaded
to the front-end system. For instance, I/O may be through the front-end
system, by the processor array machine itself, or by both. Figure 4.1 shows
a generic model of a DM-SIMD machine, from which actual models will
deviate to some degree. Figure 4.1 might suggest that all processors in such
systems are connected in a 2D grid, and indeed the interconnection topol-
ogy of this type of machine always includes the 2D grid. As opposing ends
of each grid line are also always connected, the topology is rather that of
a torus. This is not the only interconnection scheme: they might also be
connected in 3D, diagonally, or in more complex structures.
It is possible to exclude processors in the array from executing an instruc-

tion on certain logical conditions, but this means that during the time of this
instruction these processors are idle (a direct consequence of the SIMD-type
operation), which immediately lowers the performance. Another factor that
may adversely affect the speed occurs when data required by processor i re-
sides in the memory of processor j; in fact, as this occurs for all processors
at the same time, this effectively means that data will have to be permuted
across the processors. To access the data in processor j, the data will have



10 J. J. Dongarra and A. J. van der Steen

to be fetched by this processor and then sent through the routing network
to processor i. This may be fairly time-consuming. For both reasons men-
tioned, DM-SIMD machines are rather specialized in their use when one
wants to employ their full parallelism. Generally, they perform excellently
in digital signal and image processing, and on certain types of Monte Carlo
simulation where virtually no data exchange between processors is required,
and exactly the same types of operation are done on massive data sets with
a size that can be made to fit comfortably into these machines. They will
also perform well in gene-matching applications.

The control processor as depicted in Figure 4.1 may be more or less in-
telligent. It issues the instruction sequence that will be executed by the
processor array. In the worst case (i.e., a less autonomous control proces-
sor), when an instruction is not fit for execution on the processor array
(e.g., a simple print instruction), it might be offloaded to the front-end pro-
cessor, which may be much slower than execution on the control processor.
In the case of a more autonomous control processor this can be avoided,
thus saving processing interrupts both on the front-end and on the control
processor. Most DM-SIMD systems have the ability to handle I/O inde-
pendently from the front-end processors. This is favourable because the
communication between the front-end and back-end systems is avoided. A
(specialized) I/O device for the processor array system is generally much
more efficient in providing the necessary data directly to the memory of
the processor array. These I/O systems are especially important for very
data-intensive applications such as radar and image processing.

A feature that is peculiar to this type of machine is that the processors
are sometimes of a very simple bit-serial type, i.e., the processors operate
on the data items bit-wise, irrespective of their type. Therefore, operations
on integers, for example, are produced by software routines on these simple
bit-serial processors, which takes at least as many cycles as the operands
are long. So, a 32-bit integer result will be produced twice as fast as a
64-bit result. For floating-point operations a similar situation holds, al-
though the number of cycles required is a multiple of that needed for an
integer operation. As the number of processors in this type of system is
mostly large (1024 or larger, though the Quadrics Apemille was a notable
exception), the slower operation on floating-point numbers can be often
compensated for by their number, while the cost per processor is quite low
compared to full floating-point processors. In some cases, however, floating-
point co-processors were added to the processor array. Their number was
8–16 times lower than that of the bit-serial processors because of the cost
argument. An advantage of bit-serial processors is that they may operate
on operands of any length. This is particularly advantageous for random
number generation (which often boils down to logical manipulation of bits)
and for signal processing, since in both cases operands of only 1–8 bits are



High-performance computers: status and outlook 11

abundant. Because, as mentioned, the execution time for bit-serial machines
is proportional to the length of the operands, this may result in significant
speed-ups.
At present there are no DM-SIMD systems on the market, but some types

of computational accelerator (see Section 10) share many characteristics
with DM-SIMD systems that existed until recently. We will briefly discuss
properties of these accelerators later.

5. Shared-memory MIMD machines

One subclass of this type of machine was shown in Figure 3.1. In fact, the
single-processor vector machine discussed there was a special case of a more
general type. The figure shows that more than one FPU and/or VPU may
be possible in one system.
The main problem one faces in shared-memory systems is that of the con-

nection of the CPUs to each other and to the memory. As more CPUs are
added, the collective bandwidth to the memory should ideally increase lin-
early with the number of processors, while each processor should preferably
communicate directly with all others without the much slower alternative
of having to use the memory in an intermediate stage. Unfortunately, full
interconnection is quite costly, growing with O(n2) while increasing the

(

(

(
Shared memory system

CPU CPU CPU

Network

Memory

(a)

(b)

(c)

Out

7

7
6

5
4

3

7

1
2
3

4

4
5
6

2

1
0

)

)

)
In

2

1
0

7
6

5
4

3

0

0

4
5
6

2

7

1

0 1 2 3 4 5 6

7

3

0
1
2
3

5
6

Figure 5.1. Some examples of interconnection structures
used in shared-memory MIMD systems. (a) Crossbar,
(b) Ω-network, (c) central data bus.



12 J. J. Dongarra and A. J. van der Steen

number of processors with O(n). So, various alternatives have been tried.
Figure 5.1 shows some of the interconnection structures that are (and have
been) used.
As can be seen from the figure, a crossbar uses n2 connections, an Ω-

network uses n log2 n connections, while with the central bus there is only
one connection. This is reflected in the use of each connection path for the
different types of interconnections. For a crossbar each data path is direct
and does not have to be shared with other elements. In the case of the
Ω-network there are log2 n switching stages, and as many data items may
have to compete for any path. For the central data bus all data have to
share the same bus, so n data items may compete at any time.
The bus connection is the least expensive solution, but it has the obvious

drawback that bus contention may occur, thus slowing down computations.
Various intricate strategies have been devised using caches associated with
the CPUs to minimize the bus traffic. This leads, however, to a more com-
plicated bus structure, which raises the costs. In practice it has proved very
hard to design buses that are fast enough, especially where processor speed
has been increasing very quickly, imposing an upper bound on the number
of processors thus connected, which in practice appears not to exceed 10–20
processors. In 1992, a new standard (IEEE P896) for a fast bus was de-
fined, to connect either internal system components or to connect external
systems. This bus, called the Scalable Coherent Interface (SCI), provides a
point-to-point bandwidth of 200–1000 MB/s. It has been used in the HP
Exemplar systems, but also within a cluster of workstations as offered by
SCALI. The SCI is much more than a simple bus and it can act as the hard-
ware network framework for distributed computing: see James, Laundrie,
Gjessing and Sohi (1990). However, it has now been effectively superseded
by InfiniBand (see Section 11).
A multi-stage crossbar is a network with a logarithmic complexity, and

has a structure which is situated somewhere between a bus and a crossbar
with respect to potential capacity and costs. The Ω-network, as depicted
in Figure 5.1, is an example. Commercially available machines such as the
IBM eServer p575, the SGI Altix UV, and many others use(d) a network
structure, but a number of experimental machines have also used this or a
similar kind of interconnection. The BBN TC2000, which acted as a vir-
tual shared-memory MIMD system, used an analogous type of network (a
butterfly network), and it is likely that new machines will also use it, espe-
cially as the number of processors grows. For a large number of processors
the n log2 n connections quickly become more attractive than the n2 used
in crossbars. Of course, the switches at the intermediate levels should be
sufficiently fast to cope with the bandwidth required. Obviously, not only
the structure but also the width of the links between the processors is im-
portant: a network using 16-bit parallel links will have a bandwidth which



High-performance computers: status and outlook 13

is 16 times higher than a network with the same topology implemented with
serial links.
Until recently multiprocessor vector processors used crossbars. This was

feasible because the maximum number of processors within a system node
was small (16 at most). In the late Cray X2 the number of processors
had increased so much, however, that it had to change to a logarithmic
network topology (see Section 11). Not only does it become harder to
build a crossbar of sufficient speed for the larger numbers of processors,
but the processors themselves generally also increase in speed individually,
doubling the problems of making the speed of the crossbar match that of
the bandwidth required by the processors.
Whichever network is used, the type of processors could in principle be

arbitrary for any topology. In practice, however, bus-structured machines
cannot support vector processors as their speeds would grossly mismatch
with any bus that could be constructed at reasonable cost. All available bus-
oriented systems use RISC processors, as far as they still exist. The local
caches of the processors can sometimes alleviate the bandwidth problem if
data access can be satisfied by the caches, thus avoiding references to the
memory.
The systems discussed in this subsection are of the MIMD type and there-

fore different tasks may run on different processors simultaneously. In many
cases synchronization between tasks is required, and again the interconnec-
tion structure is very important here. Some Cray vector processors in the
past employed special communication registers within the CPUs (the X-
MP and Y-MP/C series) by which they could communicate directly with
the other CPUs they have to synchronize with. This is, however, no longer
practised as it is viewed as too costly a feature. The systems may also syn-
chronize via the shared memory. Generally, this is much slower but it can
still be acceptable when the synchronization occurs relatively seldom. Of
course, in bus-based systems communication also has to be done via a bus.
This bus is mostly separated from the data bus to ensure a maximum speed
for the synchronization.

6. Distributed-memory MIMD machines

The class of DM-MIMD machines represents undoubtedly the largest frac-
tion in the family of high-performance computers. A generic diagram is
given in Figure 6.1. The figure shows that within a computational node
A, B, etc., a number of processors (four in this case) draw on the same lo-
cal memory, and the nodes are connected by some network. Consequently,
when a processor in node A needs data present in node B, this has to be
accessed through the network – hence the characterization of the system



14 J. J. Dongarra and A. J. van der Steen

Processors

Memory

Processors

Memory

Node A Node B

Network

Figure 6.1. Generic diagram of a DM-MIMD machine.

as being of the distributed memory type. The vast majority of all HPC
systems today are a variation of the model shown in Figure 6.1.
This type of machine is more difficult to deal with than shared-memory

machines and DM-SIMD machines. The latter machines are processor array
systems, in which the data structures that are candidates for paralleliza-
tion are vectors and multi-dimensional arrays laid out automatically on the
processor array by system software. For shared-memory systems the data
distribution is completely transparent to the user. This is generally quite
different for DM-MIMD systems, where the user has to distribute the data
over the processors and the data exchange between processors has to be
performed explicitly when using the so-called message-passing paralleliza-
tion model (which is the case in the vast majority of programs). The initial
reluctance to use DM-MIMD machines seems to have decreased. This is
partly due to the now existing standard for communication software (Geist
et al. 1994, Snir et al. 1998, Gropp et al. 1998) and partly because, at least
theoretically, this class of system can outperform all other types of machines.
Alternatively, instead of message passing, a partitioned global address

space parallelization model may be used with a programming language such
as Unified Parallel C (UPC) or Co-Array Fortran.3 In this case one still
has to know where the relevant data are, but no explicit sending/receiving
between processors is necessary. This greatly simplifies the programming
but the compilers are still either fairly immature or even in an experimental
stage, which does not always guarantee great performance, to say the least.
The advantages of DM-MIMD systems are clear. The bandwidth prob-

lem that haunts shared-memory systems is avoided because the bandwidth
scales up automatically with the number of processors. Furthermore, the
speed of the memory, which is another critical issue with shared-memory
systems (to get a peak performance that is comparable to that of DM-MIMD
systems, the processors of the shared-memory machines should be very fast

3 Unified Parallel C home page: upc.gwu.edu/.
Co-Array Fortran home page: www.co-array.org/.



High-performance computers: status and outlook 15

and the speed of the memory should match it), is less important for DM-
MIMD machines, because more processors can be configured without the
aforementioned bandwidth problems.
Of course, DM-MIMD systems also have their disadvantages. The com-

munication between processors is slower than in SM-MIMD systems, and so
the synchronization overhead, in the case of communicating tasks, is gener-
ally orders of magnitude higher than in shared-memory machines. Moreover,
the access to data that are not in the local memory belonging to a particular
processor have to be obtained from non-local memory (or memories). This
again is very slow compared to local data access. When the structure of
a problem dictates a frequent exchange of data between processors and/or
requires many processor synchronizations, it may well be that only a very
small fraction of the theoretical peak speed can be obtained. As already
mentioned, the data and task decomposition are factors that mostly have
to be dealt with explicitly, which may be far from trivial.
It will be clear from the paragraph above that both the topology and

the speed of the data paths are also crucial for the practical usefulness of
DM-MIMD machines. Again, as in Section 5 on SM-MIMD systems, the
richness of the connection structure has to be balanced against cost. Of
the many conceivable interconnection structures, only a few are popular in
practice. One of these is the so-called hypercube topology, as depicted in
Figure 6.2(a).
A nice feature of the hypercube topology is that for a hypercube with 2d

nodes, the number of steps to be taken between any two nodes is at most
d. Thus, the dimension of the network grows only logarithmically with
the number of nodes. In addition, it is theoretically possible to simulate
any other topology on a hypercube: trees, rings, 2D and 3D meshes, etc.
In practice, the exact topology for hypercubes is of secondary importance,
because all systems in the market today employ what is called ‘wormhole
routing’, or variants thereof. This means that when a message is to be
sent from node i to node j, a header message is sent from i to j, resulting
in a direct connection between these nodes. As soon as this connection is
established, the proper data are sent through this connection without dis-
turbing the operation of the intermediate nodes. Except for a small amount
of time in setting up the connection between nodes, the communication
time has become fairly independent of the distance between the nodes. Of
course, when several messages in a busy network have to compete for the
same paths, waiting times are incurred, as in any network that does not
directly connect any processor to all others, and often rerouting strategies
are employed to circumvent busy links if the connecting network supports
it. Further, the network nodes themselves have become quite powerful and,
depending on the type of network hardware, may send and reroute message
packages in a way that minimizes contention.



16 J. J. Dongarra and A. J. van der Steen

(a) Hypercubes, dimension 1−4.

d = 1

d = 2
d = 3 d = 4

Ω = 1

Ω = 2
Ω = 3 Ω = 4

(a)

(b)

Figure 6.2. Some frequently used networks for DM machine
types. (a) Hypercubes, dimension 1–4. (b) A 128-way fat tree.

Another cost-effective way to connect a large number of processors is by
means of a fat tree. In principle a simple tree structure for a network is
sufficient to connect all nodes in a computer system. However, in practice
it turns out that, near the root of the tree, congestion occurs because of the
concentration of messages that first have to traverse the higher levels in the
tree structure before they can descend again to their target nodes. The fat
tree amends this shortcoming by providing more bandwidth (mostly in the
form of multiple connections) in the higher levels of the tree. One speaks of
an N -ary fat tree when the levels towards the roots are N times the number
of connections in the level below it. Figure 6.2(b) shows an example of a



High-performance computers: status and outlook 17

quaternary fat tree with a bandwidth in the highest level that is four times
that of the lower levels.
A number of massively parallel DM-MIMD systems seem to favour a 2D

or 3D mesh (torus) structure. The rationale for this seems to be that most
large-scale physical simulations can be mapped efficiently on this topology
and that a richer interconnection structure hardly pays off. However, some
systems maintain (an) additional network(s) besides the mesh to handle
certain bottlenecks in data distribution and retrieval (Horie et al. 1991).
This philosophy has also been followed on IBM’s BlueGene systems.
A large fraction of systems in the DM-MIMD class employ crossbars.

For relatively small numbers of processors (in the order of 64) this may
be a direct or 1-stage crossbar, while to connect larger numbers of nodes
multi-stage crossbars are used, i.e., the connections of a crossbar at level 1
connect to a crossbar at level 2, etc., instead of directly to nodes at more
remote distances in the topology. In this way it is possible to connect
many thousands of nodes through only a few switching stages. In addition
to the hypercube structure, other logarithmic complexity networks such as
butterfly, Ω, or shuffle-exchange networks and fat trees are often employed
in such systems.
As with SM-MIMD machines, a node may in principle consist of any

type of processor (scalar or vector) for computation or transaction process-
ing together with local memory (with or without cache) and, in almost all
cases, a separate communication processor with links to connect the node
to its neighbours. Today, the node processors are mostly off-the-shelf RISC
processors, sometimes enhanced by vector processors. A problem that is
peculiar to DM-MIMD systems is the mismatch of communication versus
computation speed that may occur when the node processors are upgraded
without also speeding up the intercommunication. In many cases this may
result in turning computation-limited problems into communication-limited
problems.

7. ccNUMA machines

As already mentioned in the Introduction, there is a trend to build systems
that have a rather small (up to 16) number of processors, tightly integrated
in a cluster: a symmetric multiprocessing (SMP) node. The processors in
such a node are virtually always connected by a 1-stage crossbar, while these
clusters are connected by a less costly network. Such a system may look as
depicted in Figure 7.1. Note that in Figure 7.1 all CPUs in a cluster are
connected to a common part of the memory. (Figure 7.1 looks functionally
identical to Figure 6.1, but there is a difference that cannot be expressed in
the figure: all memory is directly accessible by all processors without the
necessity to transfer the data explicitly.)



18 J. J. Dongarra and A. J. van der Steen

Node

Interconnection network

Proc.

Mem.

Proc. Proc.

Proc. Proc.

Mem.

Proc. Proc.

Proc. Proc.

Mem.

Proc.

Proc.

Peripherals

Proc.

Figure 7.1. Block diagram of a system with a ‘hybrid’ network:
clusters of four CPUs are connected by a crossbar. The clusters are
connected by a less expensive network, e.g., a butterfly network.

The most important ways to let the SMP nodes share their memory are
S-COMA, which stands for simple cache-only memory architecture, and
ccNUMA, or cache coherent non-uniform memory access. Therefore, such
systems can be considered as SM-MIMD machines. On the other hand,
because the memory is physically distributed, it cannot be guaranteed that
a data access operation always will be satisfied within the same time. In
S-COMA systems the cache hierarchy of the local nodes is extended to the
memory of the other nodes. So, when data are required that do not reside
in the local node’s memory, they are retrieved from the memory of the node
where they are stored. In ccNUMA this concept is further extended in
that all memory in the system is regarded (and addressed) globally. So, a
data item may not be physically local but logically it belongs to one shared
address space. Because the data can be physically dispersed over many
nodes, the access time for different data items may well be different, which
explains the term ‘non-uniform data access’. The term ‘cache coherent’
refers to the fact that, for all CPUs, any variable that is to be used must
have a consistent value. Therefore, it must be ensured that the caches that
provide these variables are also consistent in this respect. There are various
ways to ensure that the caches of the CPUs are coherent. One is the snoopy
bus protocol, in which the caches listen in on transport of variables to any
of the CPUs and update their own copies of these variables if they have
them and they are requested by a local CPU. Another way is the directory
memory, a special part of memory which enables the caches to keep track
of all the copies of variables and of their validity.
At present, no commercially available machine uses the S-COMA scheme.

In contrast, there are several popular ccNUMA systems (Bull’s bullx R422
series, HP Superdome, and SGI Ultraviolet) that are commercially available.



High-performance computers: status and outlook 19

An important characteristic of NUMA machines is the NUMA factor. This
factor shows the difference in latency for accessing data from a local mem-
ory location as opposed to a non-local one. Depending on the connection
structure of the system, the NUMA factor for various parts of a system can
differ from part to part: accessing data from a neighbouring node will be
faster than from a distant node, for which a number of stages of a crossbar
might possibly be traversed. So, when a NUMA factor is mentioned, this
is mostly for the largest network cross-section, i.e., the maximal distance
between processors.
Since the appearance of multi-core processors, the ccNUMA phenomenon

has also manifested itself in processors with multiple cores: the first-level
and second-level caches belong to a particular core and therefore, when
another core needs data residing in another core’s cache, retrieval is via the
complete memory hierarchy of the processor chip. This is typically orders
of magnitude slower than when retrieval is from the local cache.
For all practical purposes we can classify these systems as being SM-

MIMD machines, also because special assisting hardware/software (such as
a directory memory) has been incorporated to establish a single system
image although the memory is physically distributed.

8. Clusters

The adoption of clusters, i.e., collections of workstations/PCs connected
by a local network, has metaphorically exploded since the introduction of
the first Beowulf cluster in 1994. The attraction lies in the (potentially)
low cost of both hardware and software and the control that builders/users
have over their system. The interest in clusters is shown by the creation
of the IEEE Task Force on Cluster Computing (TFCC),4 which reviews
the field of cluster computing on a regular basis. Further, books describing
how to build and maintain clusters have greatly added to their popularity
(Sterling, Salmon, Becker and Savaresse 1999, Spector 2000). As the cluster
scene has become a mature and attractive market, large HPC vendors and
many start-up companies have entered the field, and offer more-or-less out-
of-the-box cluster solutions for those groups who do not want to build their
cluster from scratch (hardly anyone builds from scratch these days).
The number of vendors selling cluster configurations has become so large

that it is not possible to include all their products in this report. In addition,
there is generally great variation in the usage of clusters and they are more
often used for capability computing (i.e., the system is employed for one or
a few programs for which no alternative is readily available in terms of com-
putational capability), while the integrated machines are primarily used for

4 TFCC home page: www.clustercomputing.org



20 J. J. Dongarra and A. J. van der Steen

capacity computing (i.e., the system is employed to the full by use of most of
its available cycles by many, often very demanding, applications and users).
Traditionally, vendors of large supercomputer systems have learned to pro-
vide for capacity computing, as the precious resources of their systems were
required to be used as effectively as possible. In contrast, Beowulf clusters
typically use the Linux operating system, although a small minority use Mi-
crosoft Windows. These operating systems either lack the tools to make use
of clusters for capacity computing, or the tools are immature. However, as
clusters become on average both larger and more stable, there is a trend to
use them as computational capacity servers too, particularly because there
is now a plethora of cluster management and monitoring tools. The article
by van der Steen (2000) considers some of the aspects that are necessary
conditions for this kind of use, such as available cluster management tools
and batch systems. The systems assessed then are now quite obsolete, but
many of the conclusions are still valid. An important but not very surpris-
ing conclusion was that the speed of the network is crucial in all but the
most computation-limited applications. Another notable observation was
that using compute nodes with more than one CPU may be attractive from
the point of view of compactness and (possibly) energy and cooling aspects,
but that performance can be severely damaged by the fact that more CPUs
have to draw on a common node memory. The bandwidth of the nodes is
in this case not up to the demands of memory-intensive applications.

As cluster nodes have become available with 4–8 processors, where each
processor may also have up to 12 processor cores, this issue has become
all the more important, and one might have to choose between capacity-
optimized nodes with more processors but less bandwidth per processor
core, or capability-optimized nodes with fewer processors per node but
higher bandwidth available for the processors in the node. This choice
is not particular to clusters (although the phenomenon is relatively new for
them): it also occurs in the integrated ccNUMA systems. Interestingly, as
remarked in the previous section, in clusters the ccNUMA memory access
model is turning up now in the cluster nodes; as for the larger nodes, it is
no longer possible to guarantee symmetric access to all data items for all
processor cores (evidently, for a core, a data item in its own local cache will
be available more quickly than for a core in another processor).

Fortunately, there is now a fair choice of communication networks avail-
able in clusters. Of course Gigabit Ethernet or 10 Gigabit Ethernet are
always possible, which are attractive for economic reasons, but have the
drawback of a high latency (≈ 10–40 μs). Alternatively, there are net-
works that operate from user space at high speed and with a latency that
approaches those of the networks in integrated systems. These will be dis-
cussed in Section 11.



High-performance computers: status and outlook 21

9. Processors

In comparison to 10 years ago, the processor scene has become drastically
different. In the period 1980–1990, proprietary processors and, in particular,
vector processors were the driving force of supercomputers, but today that
role has been taken by common off-the-shelf processors. In fact there are
only two companies left that produce vector systems, while all other systems
on offer are based on RISC CPUs or x86-like ones. Therefore it is useful
to give a brief description of the main processors that populate present
supercomputers, and look ahead to the processors that will follow in the
coming year. Nonetheless, we will be more conservative in this section than
in the description of systems in general, because processors are being turned
out at a tremendous pace whereas planning ahead for new generations takes
years. We will therefore stick to actually existing components or β versions
of a processor.

The RISC processor scene has shrunk significantly in the last few years.
The Alpha and PA-RISC processors have disappeared in favour of the Ita-
nium processor product line and, interestingly, the MIPS processor line,
which appeared and then disappeared, as they were used in the highly in-
teresting SiCortex systems. Unfortunately SiCortex has had to close down
recently, and with it the MIPS processors. In addition, the Itanium proces-
sor is no longer used in HPC.

The disappearance of RISC processor families demonstrates a trend that
is both worrying and interesting: worrying because diversity in the pro-
cessor field is decreasing severely and, with it, the choice of systems in this
sector. On the other hand there is a trend to enhance systems based on run-
of-the-mill processors with special-purpose add-on processors in the form of
FPGAs (field programmable gate arrays), or other computational acceler-
ators, because their performance, price level, power consumption, and ease
of use have improved to such a degree that they offer attractive alternatives
for certain applications.

The very notion of a ‘RISC processor’ has been eroded somewhat in the
sense that processors that execute the Intel x86 (CISC) instruction set now
have most of the characteristics of a RISC processor. Both the AMD and
Intel x86 processors in fact decode the CISC instructions almost entirely into
a set of RISC-like fixed-length instructions. Furthermore, both processor
lines feature out-of-order execution, both are able to address and deliver
results natively in 64-bit length, and the bandwidth from memory to the
processor core(s) has become comparable to those of RISC/EPIC processors.
A distinguishing factor is still the mostly much larger set of registers in RISC
processors.

Another notable development of the last few years is the placement of
multiple processor cores on a processor chip and the introduction of various



22 J. J. Dongarra and A. J. van der Steen

Core 3 Core 3

4 GB/cycle/link
51.2 GB/s aggregate

To/from DDR3 1333 MHz memory
7.2 GB/s/link (full duplex)
14.4 GB/s aggregate

To/from DDR3 1333 MHz memory
7.2 GB/s/link (full duplex)

14.4 GB/s aggregate

HyperTransport
3.1

Core 0 Core 2Core 1 Core 4 Core 5

6 MB L3 cache

Crossbar
System request interface

Core 0 Core 2Core 1 Core 4 Core 5

6 MB L3 cache

Crossbar
System request interface

4 GB/cycle/link

Memory
controllers

51.2 GB/s aggregate

HyperTransport
3.1

Memory
controllers

Figure 9.1. Block diagram of an AMD Opteron Magny-Cours processor.

forms of multi-threading. We will discuss these developments for each of
the processors separately.
There are two processors one would perhaps expect in this section but

are nevertheless not discussed: the Godson 3A and the Itanium Tukwila
processors. The first processor, a Chinese one, based on the MIPS archi-
tecture, is not available in any machine marketed now or to be marketed in
the near future (it is to be succeeded by the Godson 3B early next year).
The newest Itanium processor no longer plays a role in the HPC scene and
is therefore also omitted.

9.1. AMD Magny-Cours

All AMD processors are clones with respect to Intel’s x86 instruction set ar-
chitecture. The 12-core Opteron variant called ‘Magny-Cours’, made avail-
able in March 2010, is no exception. It is built with a feature size of 45 nm,
and in fact the chip is a package containing two modified 6-core Istanbul
chips running at a maximum of 2.3 GHz in the 6176 SE variant. The two
chips are connected through 16-bit HyperTransport 3.1 links to each other’s
L3 caches with a single-channel speed of 12.8 GB/s, as shown in Figure 9.1.
The clock frequencies of the various parts of the chip are independent and

different: while the processor operates at a speed of of 2.3 GHz, the Hyper-
Transport links run at 3.2 GHz and the four memory buses (two per 6-core
chip) run at only 1.8 GHz, thus limiting the maximum bandwidth between
memory and the chip to only 28.8 GB/s. AMD has made this choice to
limit the power consumption, although the new chips accommodate DDR3
memory at a speed of 1333 MHz, which means that the bandwidth could
potentially have been 42.7 GB/s. As in the Istanbul processor, the Magny-
Cours processor exploits the ‘HT Assist’ function. HT Assist sets aside
1 MB in the L3 cache, which contains the position and status of the cache



High-performance computers: status and outlook 23

+
SSE SSE SSE

/,

From/to L3 cache

From/to L2 cache

Load/store queue units
Data cache

64 KB

unitInteger

file

rename
map/

stack
FPU

R
eo

rd
er

 b
uf

fe
r

FPU

120

registers

entries

future

sched.
FPU

(12)

(12)
sched.
FPU
(12)

sched.
FPU

3−
w

ay
 x

86
 in

st
ru

ct
io

n 
de

co
de

rs

Fetch/decode 
control

512 KB
cache

Level 2

L2 TLB
(data)

Integer

Address
unit

L1 TLB(32)

(512)
L2 TLB

Branch table 

cache
Precode

64 KB
cache

Instruction

Figure 9.2. Block diagram of an AMD Magny-Cours processor core.

lines in use on the chip. In this way the change in status of cache variables
does not have to be broadcast to all cores, but can simply be read from this
part of the L3 cache, thus lowering the traffic in the interconnection fabric
significantly. This set-up is in fact an implementation of cache coherence via
directory memory, as explained in Section 7. Comparison experiments with
the earlier Shanghai processor have shown that HT Assist can be highly
beneficial thanks to more bandwidth being available for operand transfer.
Because the number of cores has doubled with regard to the Istanbul pro-
cessor, the HT Assist function has become all the more important.
Although they use the x86 instruction set, the AMD processors can be

regarded as fully fledged RISC processors: they support out-of-order execu-
tion, have multiple floating-point units, and can issue up to nine instructions
simultaneously. A block diagram of a processor core is shown in Figure 9.2.
It is in effect identical to the Istanbul processor core. The six cores on the
chip are connected by an on-chip crossbar. It also connects to the memory
controller and, as stated earlier, to its companion chip and other processors
on the board via HyperTransport.
The figure shows that a core has three pairs of integer execution units and

address generation units that, via an 32-entry integer scheduler, take care of
the integer computations and address calculations. Both the integer future
file and the floating-point scheduler are fed by the 72-entry reorder buffer,
which receives the decoded instructions from the instruction decoders. The
decoding in the Opteron core has become more efficient than in the earlier
processors: SSE instructions now decode into 1 micro-operation (μ-op) as do
most integer and floating-point instructions. In addition, a piece of hardware
called the ‘sideband stack optimizer’ has been added (not shown in the
figure), that takes care of the stack manipulations in the instruction stream,



24 J. J. Dongarra and A. J. van der Steen

thus making instruction reordering more efficient, and thereby increasing the
effective number of instructions per cycle.
The floating-point units allow out-of-order execution of instructions via

the FPU stack map and rename unit. It receives floating-point instructions
from the reorder buffer and reorders them if necessary, before handing them
over to the FPU scheduler. The floating-point register file is 120 elements
deep, on a par with the number of registers available in RISC processors.5

The floating-point part of the processor contains three units: floating
add and multiply units that can work in superscalar mode, resulting in two
floating-point results per clock cycle and a unit handling ‘miscellaneous’
operations, such as division and square-root. Because of the compatibility
with Intel’s processors, the floating-point units are also able to execute Intel
SSE2/3 instructions and AMD’s own 3DNow! instructions. However, there
is the general problem that such instructions are not directly accessible from
higher-level languages such as Fortran 90 or C/C++. Both instruction sets
were originally meant for massive processing of visualization data, but are
increasingly used for standard dense linear algebra operations.
Due to the shrinkage of technology to 45 nm, each core can harbour

a secondary cache of 512 KB. Because of the accommodation of DDR3
memory at a bus speed of 1333 MHz, the total bandwidth (but with the
limitation of the 1.8 GHz memory interface) a channel transports is 7.2 GB/s
or 14.4 GB/s per 6-core chip.
AMD’s HyperTransport is derived from licensed Compaq technology and

similar to that employed in HP/Compaq’s former EV7 processors. It al-
lows for ‘glueless’ connection of several processors to form multiprocessor
systems with very low memory latencies. The Magny-Cours processor uses
fourth-generation HyperTransport 3.1, which transfers 12.8 GB/s at 16-bit
wide per unidirectional link. The HyperTransport interconnection possibil-
ity makes it highly attractive for building SMP-type clusters or to couple
computational accelerators (see Section 10) directly to the same memory as
the standard processor.

9.2. IBM POWER6

In the systems that feature IBM’s supercomputer line, the p575 series, the
nodes contain the POWER6 chip as the computational engine. This will
change shortly and therefore we will also discuss the POWER7 processor in
Section 9.3, but at the time of writing, the POWER6 is still the processor
for IBM’s high-end HPC systems. As compared to its predecessor, the
POWER5+, there are quite some differences, both in the chip lay-out and
in the two cores that reside on a chip. Figure 9.3 shows the layout of the

5 For x86 instructions, 16 registers in a flat register file are present instead of the register
stack typical of Intel architectures.



High-performance computers: status and outlook 25

Processor
core 1

Processor
core 2

L2 cache
 4 MB

L2 cache
 4 MB

Mem. control. Mem. control.

Memory

MCM: multi-chip module
GX bus: I/O system bus

Fabric controller

GX controllerGX bus

L3 cache controller (32 MB)

Buffer chips Buffer chips

L3 cache 32 MB

Chip boundary

From/to other chips

From/to other MCM

20 GB/s

80 GB/s

80 GB/s

75 GB/s

Figure 9.3. Diagram of the IBM POWER6 chip layout.

cores, caches, and controllers on the chip. Already there are significant
changes: instead of a 1.875 MB shared L2 cache, each core now has its
own 4 MB 8-way set-associative L2 cache that operates at half the core
frequency. In addition, there are two memory controllers that connect via
buffer chips to the memory and, depending on the number of buffer chips
and data widths (both are variable), can have a data read speed ≤ 51.7 GB/s please check

and a write speed of ≤ 25.85 GB/s, i.e., with a core clock cycle of 4.7 GHz
up to 11 B/cycle for a memory read and half of that for a memory write.
Furthermore, the separate buses for data and coherence control between
chips are now unified with a choice of both kinds of traffic, occupying 50%
of the bandwidth, or 67% for data and 33% for coherence control. The off-
chip L3 cache has shrunk from 36 to 32 MB. It is a 16-way set-associative
victim cache that operates at 1/4 of the clock speed.
Further, the core has changed considerably: it is depicted in Figure 9.4.

The clock frequency has increased from 1.9 GHz in the POWER5+ to
4.7 GHz for the POWER6 (water-cooled version), an increase of almost
a factor of 2.5, while the power consumption has stayed in the same range
as that of the POWER5+. This has partly come about by a technology
shrink from a 90 nm to 65 nm feature size. It also means that some fea-
tures of the POWER5+ have disappeared. For instance, the POWER6
largely employs static instruction scheduling, except for a limited amount



26 J. J. Dongarra and A. J. van der Steen

unit

Checkpoint
recovery

To L2

cache

cache−

non−To

able
unit

unit

register unit
Conditional

Branch exec.

In
st

ru
ct

io
n 

fe
tc

h 
un

it

In
st

ru
ct

io
n 

di
sp

at
ch

 u
ni

t

registers

General−
purpose

(120)

Floating−point
registers (120)

VMX

BFU: binary floating−point unit
DFU: decimal floating−point unit
VMX: vector multimedia extension

DFU
Memory

management
unit

Memory
management

unit

Load/store
unit (2)

(2)
Fixed−point

unit (2)

BFU

cache
Instruction

(64 KB)

(64 KB)
cache
Data

Figure 9.4. Block diagram of the IBM POWER6 core.

of floating-point instruction scheduling, because some of these can be fitted
into empty slots left by division and square-root operations. The circuitry
required for dynamic instruction scheduling that could thus be removed
has, however, been replaced by new units. Besides the two fixed-point units
(FXUs) and the two binary floating-point units (BFUs) that were already
present in the POWER5+, there is now a decimal floating-point unit (DFU)
and a vector multimedia extension (VMX) unit, akin to Intel’s SSE units
for handling multimedia instructions. In fact, the VMX unit is inherited
from the IBM PowerPC’s AltiVec unit. The DFU is IEEE 754R compliant.
It is obviously for financial calculations and is hardly of consequence for
HPC use. Counting only the operations of the BPUs both executing fused
multiply–adds (FMAs), the theoretical peak performance in 64-bit precision
is 4 flop/cycle or 18.8 Gflop/s/core. A checkpoint recovery unit has been
added that is able to catch faulty FXU and FPU (both binary and decimal)
instruction executions and reschedule them for retrial. Because of the large
variety of functional units, a separate instruction dispatch unit ships the
instructions that are ready for execution to the appropriate units, while a
significant part of instruction decoding has been pushed into the instruction
fetch unit, including updating the branch history tables.
The BFUs not only execute the usual floating-point instructions such

as add, multiply and FMA, but also take care of division and square-root
operations. A new phenomenon is that integer divide and multiply opera-
tions are also executed by the BFUs, again saving on circuitry and therefore
power consumption. In addition, these operations can be pipelined in this
way and yield a result every two clock cycles.
The L1 data cache has been doubled in comparison to the POWER5+

and is now 64 KB like the L1 instruction cache. Both caches are 4-way
set-associative.



High-performance computers: status and outlook 27

The simultaneous multi-threading (SMT) that was already present in the
POWER5+ has been retained in the POWER6 processor, and has been
improved by a higher associativity of the L1 I and D caches and a larger
dedicated L2 cache. Also, instruction decoding and dispatch are dedicated
for each thread. By using SMT the cores are able to keep two process
threads at work at the same time. The functional units get instructions for
the functional units from any of the two threads, whichever is able to fill a
slot in an instruction word that will be issued to the functional units. In this
way a larger fraction of the functional units can be kept busy, improving
the overall efficiency. For very regular computations a single thread (ST)
mode may be better, because in SMT mode the two threads compete for
entries in the caches, which may lead to trashing in the case of regular
data access. Note that SMT is somewhat different from the ‘normal’ way of
multi-threading. In this case a thread that stalls for some reason is stopped
and replaced by another process thread that is awoken at that time. Of
course this takes some time, which must be compensated for by the thread
that has taken over. This means that the second thread must be active for a
fair number of cycles (preferably a few hundred cycles at least). SMT does
not have this drawback but scheduling the instructions of both threads is
quite complicated, especially where only very limited dynamic scheduling
is possible.
Because of the much higher clock cycle, and the fact that the memory

DIMMs are attached to each chip, it is no longer possible to maintain perfect
SMP behaviour within a 4-chip node, i.e., it matters whether data are
accessed from a chip’s own memory or from the memory of a neighbouring
chip. Although the data are only one hop away, there is a ccNUMA effect
that one has to be aware of in multi-threaded applications.

9.3. IBM POWER7

As remarked earlier, at this moment IBM is not yet offering HPC sys-
tems with the POWER7 inside. Hitachi is already offering a variant of its
SR16000 system with the POWER7 processor and IBM is expected to fol-
low shortly. So, it is appropriate to discuss this chip. Figure 9.5 shows the
layout of the cores, caches, and memory controllers on the chip. The tech-
nology from which the chips are built is identical to that of the POWER6
45 nm Silicon-On-Insulator, but in all other respects the differences from the
former generation are large. Firstly, the number of cores has quadrupled.
Further, the memory speed has increased from DDR2 to DDR3 via two on-
chip memory controllers. As in earlier POWER versions, the inbound and
outbound bandwidths from memory to chip are different: 2 B/cycle in and
1.5 B/cycle out. With a bus frequency of 6.4 GHz and 4 in/out channels
per controller, this amounts to 51.2 GB/s inward and 38.4 GB/s outward.



28 J. J. Dongarra and A. J. van der Steen

M
em

ory buffer chip
port 1

M
em

ory controller

M
em

ory controller

POWER7
core

8−way set−assoc.
256 kB

L2 cache

POWER7
core

8−way set−assoc.
256 kB

L2 cache

POWER7
core

8−way set−assoc.
256 kB

L2 cache

POWER7
core

8−way set−assoc.
256 kB

L2 cache

8−way set−assoc.
256 kB

L2 cache

POWER7
core

8−way set−assoc.
256 kB

L2 cache

POWER7
core

8−way set−assoc.
256 kB

L2 cache

POWER7
core

8−way set−assoc.
256 kB

L2 cache

POWER7
core

D
D

R
3 m

em
ory, 16 G

B

D
D

R
3 m

em
ory, 16 G

B

M
em

ory buffer chip
port 2

L3 cache, 32 MB, eDRAM

Off−MCM link I/O

Chip boundary

SMP links

and chip interconnect

51.2 GB/s in
38.4 GB/s out

51.2 GB/s in
38.4 GB/s out

MCM: multi−chip module

Figure 9.5. Diagram of the IBM POWER7 chip layout.

IBM asserts that an aggregate sustained bandwidth of ≈ 100 GB/s can be
reached. Although this is very high in absolute terms, with a clock frequency
of 3.5–3.86 GHz for the processors this is no luxury. Therefore it is possible
to run the chip in so-called TurboCore mode. In this case four of the 8
cores are turned off and the clock frequency is raised to 4.14 GHz, thus al-
most doubling the bandwidth for the active cores. As one core is capable of
absorbing/producing 16 B/cycle, when executing a fused floating multiply–
add operation the bandwidth requirement of one core at 4 GHz is already
64 GB/s. So, the cache hierarchy and possible prefetching are extremely
important for a reasonable occupation of the many functional units.
Another new feature of the POWER7 is that the L3 cache has been moved

onto the chip. To be able to do this IBM chose to implement the 32 MB L3
cache in embedded DRAM (eDRAM) instead of SRAM as is usual. eDRAM
is slower than SRAM but much less bulky, and because the cache is now on-
chip, the latency is considerably lower (about a factor of 6). The L3 cache
communicates with the L2 caches, which are private to each core. The L3
cache is partitioned in that it contains 8 regions of 4 MB, one region per
core. Each partition serves as a victim cache for the L2 cache to which it is
dedicated, and in addition to the other 7 L3 cache partitions.
Each chip features 5 10-B SMP links that support SMP operations of up

to 32 sockets.
Further, at the core level there are many differences from its predecessor.

A single core is depicted in Figure 9.6. To begin with, the number of
floating-point units is doubled to four, each capable of a fused multiply–add



High-performance computers: status and outlook 29

Instruction
translation

Data
translation

(2)

execution
register

Condition

(2)

execution
BranchSLB

32 entr.

TLB
512 entr.

L2 cache, 256 kB, 8−way set assoc.

queue
Load miss

unit

Advanced

T
o L

3/m
em

ory

2nd level translation

assoc.

L1 instr.
cache

assoc.
4−way set

32 kB

L1 data
cache
32 kB

Branch
prediction

unit

Branch inf.
queue

Instr. fetch
buffer

decode
Instr.

Instr.
dispatch

8−way set

queue
Store reord.

queue
Load reord.

data prefetch

U
nified issue queue

Predecode

(2)

(2)

8 instructions 6 instructions

Data
Instructions Core boundary

8 instructions

SLB: segment lookaside buffer
TLB: translation lookaside buffer

DFU

(2)
VMX

FPU

(4)

Fixed
point

unit

unit unit

Store data

pointFixed
&

load/store
unit

queue

Figure 9.6. Block diagram of the IBM POWER7 core.

operation per cycle. Assuming a clock frequency of 3.86 GHz, this means
that a peak speed of 30.88 Gflop/s can be attained with these units. A
feature that was omitted from the POWER6 core has been re-implemented
in the POWER7 core: dynamic instruction scheduling assisted by the load
and load reorder queues. As shown in Figure 9.6, there are two 128-bit
VMX units. One of them executes vector instructions akin to the x86 SSE
instructions. However, there is also a VMX permute unit that can order
non-contiguous operands such that the VMX execute unit can handle them.
The instruction set for the VMX unit is an implementation of the AltiVec
instruction set, which is also employed in the PowerPC processors. There
are also similarities to the POWER6 processor: the core contains a DFU
and a checkpoint recovery unit that can re-schedule operations that have
failed for some reason.
Another difference that cannot be shown is that the cores now support

four SMT threads instead of two. This will be very helpful for the large
numbers of functional units to be kept busy. Eight instructions can be taken
from the L1 instruction cache. The instruction decode unit can handle six
instructions simultaneously while eight instructions can be dispatched every
cycle to the various functional units.



30 J. J. Dongarra and A. J. van der Steen

B
us

 in
te

rf
ac

e 
un

it

C
or

e 
in

te
rf

ac
e 

un
it

In
st

r.
 d

is
pa

tc
h 

un
it

GPR (80)

FPR (80)

,/
FMA,

,/
FMA,

In
st

r.
 f

et
ch

 u
ni

t

VRF (80)

L2 cache

   (1 MB)

control
directory/

L2

cachable
Non−

unit

VALU VPERM

bus

To/from

PowerPC

unit
Branch

reg. unit
Cond.

Core boundary
GPR: general purpose registers
FPR: floating−point registers
VRF: vector register file 

VALU: vector ALU
VPERM: vector permutation unit

unit (2)
Fixed point

Load/store
unit (2)

L1 instr.
cache

(64 KB)

(32 KB)

cache
L1 data

Figure 9.7. Block diagram of the IBM PowerPC 970MP core.

The POWER7 core has elaborate power management features that reduce
the power usage for parts that are idle for some time. There are two power-
saving modes: nap mode and sleep mode. In the former the caches and
translation lookaside buffers (TLBs) stay coherent to re-activate quickly.
In sleep mode, however, the caches are purged and the clock turned off.
Only the minimum voltage to maintain the memory contents is applied.
Obviously the wake-up time is longer in this case but the power saving can
be significant.

9.4. IBM PowerPC 970MP processor

A number of IBM systems are built from JS21 blades, the largest being the
Mare Nostrum system at the Barcelona Supercomputing Centre. On these
blades a variant of the large IBM PowerPC processor family is used, the
dual core PowerPC 970MP. It is a series of dual-core processors, the fastest
of which has a clock cycle of 2.2 GHz. A block diagram of a processor core
is given in Figure 9.7.
A peculiar trait of the processor is that the L1 instruction cache is twice

as large as the L1 data cache: 64 KB versus 32 KB. This is explained
partly by the fact that up to 10 instructions can be issued every cycle to the
various execution units in the core. Apart from two floating-point units that
perform the usual dyadic operations, there is an AltiVec vector facility with
a separate 80-entry vector register file, a vector ALU that performs (fused)
multiply–add operations, and a vector permutation unit that attempts to
order operands such that the vector ALU is used optimally. The vector



High-performance computers: status and outlook 31

unit was designed for graphics-like operations, but works quite nicely on
data for other purposes as long as access is regular and the operand type
agrees. Theoretically, the speed of a core can be 13.2 Gflop/s/core when
both FPUs turn out the results of a fused multiply–add and the vector ALU
does the same. One PowerPC 970MP should therefore have a theoretical
peak performance of 26.4 Gflop/s. The floating-point units also perform
square-root and division operations.
Apart from the floating-point and vector functional units, two integer

fixed-point units and two load/store units are present in addition to a con-
ditional register unit and a branch unit. The latter uses two algorithms
for branch prediction that are applied according to the type of branch to
be taken (or not). The success rate of the algorithms is constantly mon-
itored. Correct branch prediction is very important for this processor as
the pipelines of the functional units are quite deep: from 16 for the sim-
plest integer operations to 25 stages in the vector ALU. So, a branch miss
can be very costly. The L2 cache is integrated and has a size of 1 MB. To
keep the load/store latency low, hardware-initiated prefetching from the L2
cache is possible and 8 outstanding L1 cache misses can be tolerated. The
operations are dynamically scheduled and may be out of order. In total 215
operations may be in flight simultaneously in the various functional units,
also due to the deep pipelines.
The two cores on a chip have common arbitration logic to regulate the

data traffic from and to the chip. There is no third-level cache between the
memory and the chip on the board housing them. This is possible because
of the moderate clock cycle and the rather large L2 cache.

9.5. IBM BlueGene processors

In the last few years two BlueGene types of systems have become available:
the BlueGene/L and the BlueGene/P, the successor of the former. Both
feature processors based on the PowerPC 400 processor family.

BlueGene/L processor

This processor is in fact a modified PowerPC 440 processor, which is made
especially for the IBM BlueGene family. It runs at a speed of 700 MHz. The
modification lies in tacking on floating-point units (FPUs) that are not part
of the standard processor but can be connected to the 440’s APU bus. Each
FPU contains two floating-point functional units capable of performing 64-
bit multiply–adds, divisions and square-roots. Consequently, the theoretical
peak performance of a processor core is 2.8 Gflop/s. Figure 9.8 shows the
embedding of two processor cores on a chip. As can be seen from the
figure, the L2 cache is very small: only 2 KB divided in a read and a write
part. In fact it is a prefetch and store buffer for the rather large L3 cache.



32 J. J. Dongarra and A. J. van der Steen

Multiported shared SRAM buffer

Shared directory for embedded DRAM

4 MB

(2  ), +, 

FPU:

/,

L1 instr.
cache
32 KB

cache
32 KB

L1 data

PPC440
  CPU +
I/O proc.

(2  ), +, 

FPU:

/,

L1 instr.
cache
32 KB

cache
32 KB

L1 data

PPC440
  CPU +
I/O proc.

5.5 G
B

/s

5.5 G
B

/s

5.5 G
B

/s

5.5 G
B

/s

11 GB/s 11 GB/s 11 G
B

/s

11 G
B

/s

22 GB/s

Torus
network interrupt

Global
network
Tree

Embedded DRAM/L3 cache

Prefetch buffer
2 KB

L2R L2W

Prefetch buffer
2 KB

L2R L2W

5.5 GB/s

T
o/from

 m
em

ory

Snoop bus

Figure 9.8. Block diagram of an IBM BlueGene/L processor chip.

The bandwidth to and from the prefetch buffer is high, 16 B/cycle to the
CPU and 8 B/cycle to the L2 buffer. The memory resides off-chip with
a maximum size of 512 MB. The data from other nodes are transported
through the L2 buffer, bypassing the L3 cache in the first instance.

BlueGene/P processor

Like the BlueGene/L processor, the BlueGene/P processor is based on the
PowerPC core – the PowerPC 450 in this case – at a clock frequency of
850 MHz and with floating-point enhancements similar to those applied to
the PPC 440 in the BlueGene/L. The BlueGene/P node contains 4 processor
cores, which brings the peak speed to 13.6 Gflop/s/node. The block diagram
in Figure 9.9 shows some details. As can be seen from the figure, the
structure of the core has not changed much with respect to the BlueGene/L.
The relative bandwidth from the L2 cache has been maintained: 16 B/cycle



High-performance computers: status and outlook 33

Embedded DRAM/L3 cache
4 MB

Embedded DRAM/L3 cache
4 MB

DDR2 controller DDR2 controller

L2R L2W

7 G
B

/s

(2  ), +, 
FPU:

/,

L1 instr.
cache
32 KB

cache
32 KB

L1 data

  CPU +
I/O proc.

7 G
B

/s

PPC450

2 KB
Prefetch buffer

7 G
B

/s

(2  ), +, 
FPU:

/,

L1 instr.
cache
32 KB

cache
32 KB

L1 data

  CPU +
I/O proc.

L2R L2W

7 G
B

/s

PPC450

Prefetch buffer
2 KB

7 G
B

/s
(2  ), +, 

FPU:
/,

L1 instr.
cache
32 KB

cache
32 KB

L1 data

  CPU +
I/O proc.

L2R L2W

7 G
B

/s

PPC450

Prefetch buffer
2 KB

interrupt
GlobalTree

Multiplexing switchMultiplexing switch

14 GB/s/link 14 GB/s/link

13.6 GB/s

DMA

7 G
B

/s

(2  ), +, 
FPU:

/,

L1 instr.
cache
32 KB

cache
32 KB

L1 data

  CPU +
I/O proc.

L2R L2W

7 G
B

/s

PPC450

7 G
B

/s

Prefetch buffer
2 KB

network
Torus

network

3 6.8 Gb/s

Memory
To/from

6  3.4 Gb/s 6  3.5 Gb/s

Figure 9.9. Block diagram of an IBM BlueGene/P processor chip.

for reading and 8 B/cycle for writing. In contrast to the BlueGene/L, the
cores operate in SMP mode through multiplexing switches that connect
pairs of cores to the two 4 MB L3 embedded DRAM chips. So, the L3
size has doubled. Also, the memory per node has increased to 2 GB from
512 MB.

9.6. Intel Xeon

Two variants of Intel’s Xeon processors are employed at present in HPC
systems (clusters as well as integrated systems): the Nehalem EX, officially
the X7500 chip series, and the Westmere EP, officially the X5600 series.
Although there is a great deal of common ground, they are sufficiently
different that we can discuss each processor separately.

Nehalem EX

The Nehalem EX became available in March 2010 or, more formally, the
X7500 series of processors can be regarded as a heavy-duty server extension



34 J. J. Dongarra and A. J. van der Steen

queueμ op A
llocator/register renam

er

μ ops

L1 data
cache
(32 KB)

L2 TLB

Unified reservation station (32 μ ops)

Microcode ROM
Trace cache
12 K 

Data TLB

Instruction
TLB

Instruction fetch
& predecode

(32 KB)

L1 instruction
cache

8B/

cycle

L2 cache

(256 KB)

32 B/cycle

8B/

cycle

32 B/

cycle
L3 cache

To/from memory

Core

Retirement
unit

ALU
& shift

shuffle

SSE int
ALU &

FP
FP /

FP +

ALU
& LEA

Compl.

SSE int

integer

unit
Load

unit

Store
address

Store

unit
data

ALU
& shift

SSE int.
ALU &
shuffle

Branch
FP shuff

P0 P1 P2 P3 P4 P5

P x

LEA = load effective address

x, x = 0,...,5 = Port 

E
xecution engine

43.833 GB/s

(24 MB)

Figure 9.10. Block diagram of an Intel Nehalem processor core.

of the earlier Nehalem EP (X5500) processor. As such, it has twice the
number of cores – eight – and the number of QPI links has also doubled
to four, to enable the connection to other processors on a server board. In
addition the bandwidth is raised, because the number of memory interfaces
has increased from three to four. As the bandwidth per memory channel is
10.833 GB/s, the aggregate bandwidth of the chip is 43.3 MB/s. The Ne-
halem EX is employed in SGI’s Altix UV systems and a variety of products
from cluster vendors. Below we show the block diagram of the processor
core, which is in fact identical to that of the Nehalem EP and built in the
same 45 nm technology. A block diagram of the core is given in Figure 9.10,
while the layout of an 8-core chip is shown in Figure 9.11.
To stay backwards-compatible with the x86 (IA-32) instruction set archi-

tecture, which comprises a CISC instruction set, Intel developed a mode in
which these instructions are split into so-called micro-operations (μ-ops) of
fixed length that can be treated in the way RISC processors do. In fact the
μ-ops constitute a RISC operation set. The price to be paid for this much
more efficient instruction set is an extra decoding stage. Branch prediction
has been improved and a second-level TLB cache has been added.



High-performance computers: status and outlook 35

Sys. interface

MemoryMemory

Memory

Memory

Memory

Memory

MemoryMemory

Memory

Memory

Memory

Memory

Core Core Core Core Core Core Core

1 2 3 4 5 6 7

Core

0

3 MB 3 MB 3 MB 3 MB 3 MB 3 MB 3 MB 3 MB

Router
Sys. interface

Mem. contr. Mem. contr.QPI contr.

Q
PI

25.6 G
B

/s

10.83 G
B

/s

10.83 G
B

/s

10.83 G
B

/s

10.83 G
B

/s

Chip boundary

Figure 9.11. Diagram of a Nehalem EX processor.

As in the earlier core architecture, four μ-ops/cycle and some macro-in-
structions as well as some μ-ops can be fused, resulting in less instruction
handling, easier scheduling and better instruction throughput, because these
fused operations can be executed in a single cycle. In the Nehalem, two
additional μ-ops can be fused in comparison to the core architecture.
As can be seen in Figure 9.10, the processor cores have an execution trace

cache which holds partly decoded instructions of former execution traces
that can be drawn upon, thus forgoing the instruction decode phase, which
might produce holes in the instruction pipeline. The allocator dispatches
the decoded instructions, the μ-ops, to the unified reservation station that
can issue up to 6 μ-ops/cycle to the execution units, collectively called the
execution engine. Up to 128 μ-ops can be in flight at any time. Figure 9.10
shows that ports 0 and 5 drive two identical integer ALUs as well as integer
SSE units. Ports 0, 1 and 5 take care of the various floating-point operations.
The two integer arithmetic logic units (ALUs) at ports 0 and 5 are kept

simple in order to be able to run them at twice the clock speed. In addition
there is an ALU at port 1 for complex integer operations that cannot be
executed within one cycle. The floating-point units also contain additional
units that execute the Streaming SIMD Extensions 4 (SSE4) repertoire of
instructions, an instruction set of more than 190 instructions, that was ini-
tially meant for vector-oriented operations such as those in multimedia, and
3D visualization applications, but is also an advantage for regular vector



36 J. J. Dongarra and A. J. van der Steen

operations as occur in dense linear algebra. The length of the operands for
these units is 128 bits. The Intel compilers have the ability to address the
SSE4 units. This enables in principle much higher floating-point perfor-
mance. Ports 2, 3 and 4 serve the load unit, the store address unit, and the
store data unit, respectively.
A notable enhancement that cannot be shown in the figures is that the

Nehalem (again) supports multi-threading, much in the style of IBM’s si-
multaneous multi-threading, and is called ‘hyperthreading’ by Intel. Hy-
perthreading was earlier introduced in the Pentium 4, but disappeared in
later Intel processors because the performance gain was very low. Now with
a much higher bandwidth and larger caches, speed-ups of more than 30%
for some codes have been observed with hyperthreading. Another feature
that cannot be shown is the so-called Turbo mode. This means that the
clock cycle can be raised from its nominal speed (2.91 GHz for the fastest
variant) by steps of 133 MHz to over 3 GHz as long as the thermal envelope
of the chip is not exceeded. So, when some cores are relatively idle other
cores can take advantage by operating at a higher clock speed.
The L1 caches have the same size as in the Nehalem’s predecessor, but

the L2 cache is much smaller: 256 KB instead of 6 MB. It is much faster,
however, and able to deliver requested data in 10 cycles or less. The Ne-
halems feature a common L3 cache that is used by all eight cores in the EX
version. Each core has its own section of 3 MB, but when data are not found
in the section of a core the other sections can be searched for the missing
data item(s). The L3 cache is inclusive, which means that it contains all
data that are in the L2 and L1 cache. The consequence is that when a data
item cannot be found in the L3 cache it is also not in any of the caches of
the other cores, and therefore one need not search them.
In Figure 9.11 it can be noticed that, as well as the first bank of memory

of ≤ 32 GB, a second and third bank are also depicted, represented by
dashed boxes. This means that it is indeed possible to have up to 96 GB of
memory/processor. However, this can only be done at the expense of the
memory bus speed: for one bank it is 1333 MB/s, for two banks 1066 MB/s,
and for three banks only 800 MB/s. So, the latter two options may be
chosen, for instance, for database systems that benefit from a large memory
that need not be at the very highest speed. For HPC purposes, however,
configurations with only one memory bank/processor will usually be offered.

Westmere EP

The Westmere EP (X5600 series) is a 32 nm technology shrink of the Ne-
halem EP chip. The smaller feature size is used to place 6 cores on a die.
The fastest variant, the X5690, has a clock cycle of 3.46 GHz at 130 W.
The structure of the core is the same as in the Nehalem processors (see
Figure 9.10) but there are slight differences in the instruction set for the



High-performance computers: status and outlook 37

Core

0

Core

5

Core

4

Core

3

Core

2

Core

1

Router

QPI contr.

Q
PI

Sys. interface

Memory

10.83 G
B

/s

Memory

Memory

Memory

10.83 G
B

/s

Memory

Memory

Memory

10.83 G
B

/s

Memory

Memory

Chip boundary

L3 cache 12 MB

Mem. controller

25.6 G
B

/s

Figure 9.12. Diagram of a Westmere EP processor.

Advanced Encryption Standard (AES). The new instructions, among which
is a carry-less multiplication, are said to speed up the en-/decryption rate
by a factor of three. Also, the Westmere EP supports the use of 1 GB pages.
The packaging on the chip is, apart from the number of cores, identical to
that of the Nehalem EP chip with exception of the shared L3 cache. The
size of this is halved from 24 MB to 12 MB. The chip layout is depicted in
Figure 9.12.

9.7. The SPARC processors

Since Sun was taken over by Oracle all processor development has been
shelved. The development of the SPARC processor architecture is now in the
hands of Fujitsu, now proceeding with its own SPARC64 implementation.
Fujitsu/Siemens markets its HPC servers based on the latter processor.
Below we discuss the current SPARC chip, which is commercially available
in the Fujitsu machines. Although a follow-on processor, the SPARC64
VIII, seems ready for incorporation in Japan’s 10 petaflop/s system, which
is currently being built, we only discuss the SPARC64 VII here as this is
the one that is commercially available. At present it is not known when its
successor will appear on the open market.
The SPARC64 VII is, obviously, Fujitsu’s seventh generation of the pro-

cessor. Of course, the processor must be able to execute the SPARC in-
struction set but the processor internals are rather different from Sun’s late



38 J. J. Dongarra and A. J. van der Steen

RSA/RSE: reservation stations for integer registers

RSBS: reservation station for branch branch target unit
GPR: registers for integer and address generation units (EAG and EX A & B)
FPR: registers for floating−point units (FL A & B)

RSF (A & B): reservation stations for floating−point registers

    GUB: general register update buffer
FUB: floating−point register update buffer

64 KB

16 KB

target addr.
Branch

buffer

Instruction

register
word

RSE

RSF

RSBR

GUB

L1 I cache GPR (2)

FPR (2)

FUB

EAG−A

EAG−B

EX−A

EX−B

L1 D cache

Fetch port

Store port

Store
buffer

Commit.
stack 
entry

RSA

Core boundary

T
o L

2 cache (6 M
B

)

Prog.
counter(2)

Control 
registers(2)

Instruction

FL−A FL−B

64 KB

Figure 9.13. Block diagram of a Fujitsu SPARC64 VII processor core.

implementations. Figure 9.13 shows a block diagram of one core of the
quad-core SPARC64 VII.
In fact, the core architecture has not changed from the SPARC64 VI, but

thanks to the decrease in the feature size from 90 nm to 65 nm, four cores
can now be placed on a chip while the highest available clock frequency is
raised from 2.4 GHz to 2.52 GHz.
The L1 instruction and data caches are 64 KB, twice as small as in the

SPARC64 VI core, and both 2-way set-associative. This decrease in size is
somewhat surprising and probably due to the technology shrink to 65 nm
feature size. There is also an instruction buffer (IBF), that contains up to
48 4-byte instructions and continues to feed the registers through the in-
struction word register when an L1 I-cache miss has occurred. A maximum
of four instructions can be scheduled each cycle and find their way via the
reservation stations for address generation (RSA), integer execution units
(RSE), and floating-point units (RSF) to the registers. The two general reg-
ister files serve both the two address generation units EAG-A, and EAG-B,
and the integer execution units EX-A and EX-B. The latter two are not
equivalent: only EX-A can execute multiply-and-divide instructions. There
are also two floating-point register files (FPR), that feed the two floating-
point units FL-A and FL-B. These units are different from those of Sun in
that they are able to execute fused multiply–add instructions, as is also the
case in the POWER and Itanium processors. Consequently, a maximum of
four floating-point results/cycle can be generated. In addition, FL-A and
FL-B also perform divide and square-root operations, in contrast to the
SPARC4+, which has a separate unit for these operations. Because of their



High-performance computers: status and outlook 39

L2
tags

L2
tagscontrol

L2System
interface control

L2 System
interface

Core 0 Core 2

Core 3Core 1

11.5 GB/s

Chip boundary

L
2 

ca
ch

e 
da

ta
 b

uf
fe

r L
2 cache data bufferL

2 
ca

ch
e 

(6
 M

B
)

Figure 9.14. Block diagram of a Fujitsu SPARC64
VII processor chip. Four cores share the L2 cache.

iterative nature, the divide and square-root operations are not pipelined.
The feedback from the execution units to the registers is decoupled by up-
date buffers: GUB for the general registers and FUB for the floating-point
registers.
The dispatch of instructions via reservation stations, each of which can

hold 10 instructions, gives the opportunity for speculative dispatch: i.e.,
dispatching instructions for which the operands are not yet ready at the
moment of dispatch but will be by the time the instruction is actually exe-
cuted. The assumption is that it results in a more even flow of instructions
to the execution units.
The SPARC64 VII does not have a third-level cache, but on chip there is

a large (6 MB) unified L2 12-way set-associative write-through cache that is
shared by the 4 cores in a processor, as can be seen in Figure 9.14. Note that
the system bandwidth is the highest available. For the lower-end systems
this bandwidth is about 8 GB/s.
The memory management unit (not shown in Figure 9.13) contains sep-

arate sets of translation lookaside buffers (TLBs) for instructions and for
data. Each set is composed of a 32-entry μTLB and a 1024-entry main
TLB. The μTLBs are accessed by high-speed pipelines by their respective
caches.
What cannot be shown in the diagrams is that, like the IBM and Intel

processors, the SPARC VII is dual-threaded per core. The type of multi-
threading is similar to that found in the Intel processors, and is called ‘simul-
taneous multi-threading’, differing from the type of multi-threading present



40 J. J. Dongarra and A. J. van der Steen

in the IBM processors but with the same name. At this moment the highest
clock frequency SPARC64 available is 2.52 GHz. As already remarked, the
floating-point units are capable of a fused multiply–add operation, like the
POWER and Itanium processors, and so the theoretical peak performance
is at present 10.08 Gflop/s/core and consequently 40.3 Gflop/s/processor.

10. Computational accelerators

In the last few years computational accelerators have emerged, and now
have a firm foothold. They come in various forms, of which we will discuss
some general characteristics. Accelerators are not a new phenomenon: in
the 1980s, for instance, Floating Point Systems sold attached processors
such as the AP120-B with a peak performance of 12 Mflop/s, easily ten
times faster than the general-purpose systems they were connected to. Fur-
ther, the processor array machines described in Section 4 could be regarded
as accelerators for matrix-oriented computations in their time. A similar
phenomenon is recurring now. HPC users are never content with the per-
formance of the machines they have at their disposal and are continuously
looking for ways to speed up their calculations, or parts of them. Accel-
erator vendors are complying with this wish, and at present there is a fair
number of products that, when properly deployed, can deliver significant
performance gains.
The scene is roughly divided into three unequal parts:

(1) graphical cards or graphical processing units (GPUs as opposed to the
general CPUs),

(2) general floating-point accelerators,

(3) field programmable gate arrays.

The appearance of accelerators is believed to have set a trend in high-
performance computing, namely that the processing units should be diver-
sified according to their abilities – not unlike the occurrence of different
functional units within a CPU core.6 In a few years this will lead to hy-
brid systems incorporating different processors for different computational
tasks. Of course, processor vendors can choose to (attempt to) integrate
such special-purpose processing units within their main processor line, but
for now it is uncertain if or how this will happen.
When speaking of special-purpose processors, i.e., computational accel-

erators, one should realize that they are indeed good at some specialized
computations but totally unable to perform others. So, not all applications
can benefit from them, and of those that can, not all can benefit to the

6 In principle it is entirely possible to perform floating-point computations with integer
functional units, but the costs are so high that no one will attempt it.



High-performance computers: status and outlook 41

same degree. Furthermore, using accelerators effectively is not at all trivial.
Although the software development kits (SDKs) for accelerators have re-
cently improved enormously, for many applications it is still a challenge to
obtain significant speed-up. An important factor in this is that data must
be shipped in and out of the accelerator and the bandwidth of the connect-
ing bus is in most cases a severe bottleneck. One generally tries to overcome
this by overlapping data transport to/from the accelerator with processing.
Tuning the computation and data transport task can be cumbersome. This
hurdle has been recognized by several software companies, such as Accele-
ware, CAPS, and RapidMind (now absorbed by Intel). They offer products
that automatically transform standard C/C++ programs into a form that
integrates the functionality of GPUs, multi-core CPUs (which are often not
used optimally), and, in the case of RapidMind, of Cell processors.
There is one other important consideration that makes accelerators popu-

lar: in comparison to general-purpose CPUs they are all very power-efficient,
sometimes by orders of magnitude when expressed in flop/Watt. Of course,
they will do only part of the work in a complete system, but the power
savings can still be considerable, which is very attractive today.
We will now proceed to discuss the three classes of accelerators mentioned

above. It must be realized, though, that developments in this field are ex-
tremely rapid, and therefore the information given here will become obsolete
very fast and hence could be of an approximate nature.

10.1. Graphical processing units

Graphics processing is characterized by doing the same (floating-point) op-
eration on massive amounts of data. To accommodate this way of process-
ing, graphical processing units (GPUs) consist of a large number of rela-
tively simple processors, fast but limited local memory, and fast internal
buses to transport the operands and results. Until recently all calculations,
and hence results, were in 32-bit precision. This is hardly of consequence
for graphics processing as the colour of a pixel in a scene may be a shade
off without anyone noticing. HPC users often have computational demands
similar to those in the graphical world: the same operation on very many
data items. So, it was natural to look into GPUs with their many integrated
parallel processors and fast memory. The first adopters of GPUs from the
HPC community therefore disguised their numerical program fragments as
graphical code (e.g., by using the graphical language OpenGL) to get fast
results, often with remarkable speed-ups. Another advantage is that GPUs
are relatively cheap because of the enormous numbers sold for graphical
use in virtually every PC. One drawback is the 32-bit precision of the typi-
cal GPU and, in some cases more importantly, there is no error correction
available. By carefully considering which computation really needs 64-bit



42 J. J. Dongarra and A. J. van der Steen

precision and which does not, and adjusting algorithms accordingly the use
of a GPU can be entirely satisfactory, however. GPU vendors have been
quick to focus on the HPC community. They have tended to rename their
graphics cards GPGPUs, i.e., general-purpose GPUs, although the product
is largely identical to the graphics cards sold in every shop. But there have
also been real improvements to attract HPC users: 64-bit GPUs have come
onto the market. In addition, it is no longer necessary to reformulate a
computational problem into a piece of graphics code. Both ATI/AMD and
NVIDIA claim IEEE 754 compatibility (being the floating-point computa-
tion standard) but neither of them support it to the full. Error correction,
as usual for general-purpose CPUs, is becoming available (see p. 43). There
are C-like languages and runtime environments available that make the life
of a developer of GPUs much easier: for NVIDIA this is CUDA, which has
become quite popular with users of these systems. AMD/ATI is concentrat-
ing on the newly defined standard OpenCL (see below), which is somewhat
more cumbersome but still provides a much better alternative to emulating
graphics code.
When one develops a code for a particular GPU platform it cannot be

transferred to another without considerable effort in rewriting the code.
This drawback is taken up by the GPU vendors (and not only them).
Recently OpenCL has become available, which in principle is platform-
independent, thus protecting the development effort put into the acceler-
ation of a program. At present, Apple, ATI/AMD, Intel, NVIDIA, and
PetaPath are members of the consortium that are willing to provide an
OpenCL language interface. First experiences with OpenCL version 1.0,
as provided by the Khronos Group, showed generally low performance, but
with the new enhanced release of OpenCL 1.1 as of June 2010 this situation
is improving.
Another way to be (relatively) independent of the platform is to employ a

language transformer. For instance, CAPS provides such transforming tools
that can target different types of accelerators or multi-core CPUs. With
CAPS’ product HMPP, the transformation is brought about by inserting
pragmas in the C code or comment directives in Fortran code. HMPP is
the only code that has the ability to accelerate Fortran code on general GPU
accelerators. The Portland Group sells a CUDA/Fortran compiler that only
targets NVIDIA GPUs.
In the following we describe some high-end GPUs that are more or less

targeting the HPC community.

ATI/AMD

In June 2010 the latest product from ATI (now wholly owned by AMD)
was announced: the ATI FireStream 9370 card. The actual delivery was
scheduled by AMD in the third quarter of 2010. Information about the



High-performance computers: status and outlook 43

Table 10.1. Some specifications for the ATI/AMD
FireStream 9370 GPU.

Number of processors 1600
Memory (GDDR5) 4 GB
Clock cycle 825 MHz
Internal memory bandwidth ≤ 147.2 GB/s
Peak performance (32-bit) 2.64 Tflop/s
Peak performance (64-bit) 528 Gflop/s
Power requirement, typical 170 W
Power requirement, peak 225 W
Interconnect (PCIe Gen2) ×16, 8 GB/s
ECC, error correction No
Floating-point support Partial (32/64-bit)

card, however, is still scant. There is not enough information available
for a block diagram but we list in Table 10.1 some of the most important
features of the processor. The specifications given indicate that, per core,
two floating-point results per cycle can be generated, presumably the result
of an add and a multiply operation. Whether these results can be produced
independently or result from linked operations is not known, because of
the lack of information. Unlike NVIDIA’s Fermi card, discussed below, the
FireStream 9370 does not support error correction yet. So, one has to be
careful in assessing the outcomes of numerically unstable calculations.
Like its direct competitor, NVIDIA, ATI offers a free software develop-

ment kit, SDK v.2.01, which supports OpenCL 1.1, Direct X11 and Com-
puteX. The earlier languages, such as BROOK+ and the very low-level
Close-To-Metal software development vehicles, are no longer supported.

NVIDIA

NVIDIA is the other big player in the GPU field with regard to HPC.
Its latest product is the Tesla C2050/C2070, also known as the ‘Fermi’
card. A simplified block diagram is shown in Figure 10.1. The GigaThread
Engine is able to schedule different tasks in the streaming multiprocessors
(SMs) in parallel. This greatly improves the occupation rate of the SMs
and thus the throughput. As shown in Figure 10.1, three (or four) SMs
per graphics processor cluster (GPC) are present. At the moment no more
than a total of 14 SMs are available, although 16 were planned. When the
40 nm production process has sufficiently improved, the number of SMs may
increase from 14 to the originally planned 16. A newly introduced feature
is the L2 cache, shared by all SMs. Also, there is DMA support to get data
from the host’s memory without having to interfere with the host CPU. The



44 J. J. Dongarra and A. J. van der Steen

SM 3 (4) SM

Polymorph
engine

Polymorph
engine

Raster engine

Graphics processor cluster

SM 3 (4) SM

Polymorph
engine

Polymorph
engine

Raster engine

Graphics processor cluster

SM 3 (4) SM

Polymorph
engine

Polymorph
engine

Raster engine

Graphics processor cluster

SM 3 (4) SM

Polymorph
engine

Polymorph
engine

Raster engine

Graphics processor cluster

L2 cache

M
em

ory 
controller

M
em

ory 
controller

M
em

ory 
controller

M
em

ory 
controller

M
em

ory 
controller

M
em

ory 
controller

H
ost

interface
G

igaT
hread

engine

PCI express

8 GB/s

T
o G

D
D

R
5 m

em
ory

T
o G

D
D

R
5 m

em
ory

T
o G

D
D

R
5 m

em
ory

T
o G

D
D

R
5 m

em
ory

Chip boundary

SM: streaming multiprocessor

Figure 10.1. Simplified block diagram of the NVIDIA
Tesla C2050/C2070 GPU.

GPU memory is GDDR5 and is connected to the card via six 64-bit wide
memory interfaces for a bandwidth of about 150 GB/s.
Each SM in turn harbours 32 cores, which used to be named streaming

processors (SPs) but now are called CUDA cores by NVIDIA. A diagram
of an SM with some internals is given in Figure 10.2. Via the instruction
cache’s two warp schedulers (a warp is a bundle of 32 threads), the program
threads are pushed onto the SPs. In addition each SM has four special
function units, which take care of the evaluation of functions that are more
complicated than can be profitably computed by the simple floating-point
units in the SPs. Lastly, we list some properties of the Tesla C2050/70 in
Table 10.2.
From these specifications, it can be inferred that two 32-bit floating-point

results per core per cycle can be delivered. The peak power requirement
given will probably be an appropriate measure for HPC workloads. A large
proportion of the work being done will be from the BLAS library, provided
by NVIDIA, or more specifically, its dense matrix–matrix multiplication.
This operation occupies any computational core to the fullest and will there-
fore consume close to the maximum of the power. As can be seen from the
table, the only difference between the C2050 and the C2070 is the amount



High-performance computers: status and outlook 45

SP

SP

SP SP

SP

SP

SP

SP SP

SP

SP

SP SP SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP SP

SP

SP

SP SP SP

SP

SP

L/S

L/S

L/S

L/S

L/S

L/S

L/S

L/S

L/S

L/S

L/S

L/S

L/S

L/S

L/S

L/S

SFU
SFU

SFU
SFU

Register file (4096 32−bit)

Dispatch unit Dispatch unit

SM: streaming multiprocessor
SP: streaming processor
SFU: special function unit

L/S: load/store unit

SM

Warp sched. Warp sched.

Network

Shared memory/L1 cache

Uniform  cache

Instruction cache

Figure 10.2. Diagram of a streaming processor of
the NVIDIA Tesla C2050/C2070.

of memory: the C2050 features 3 GB of GDDR5 memory while the C2070
has double that amount.
Like ATI, NVIDIA provides an SDK comprising a compiler named CUDA,

libraries that include BLAS and FFT routines, and a runtime system that
accommodates both Linux (Red Hat and SUSE) and Windows. CUDA is a
C/C++-like language with extensions and primitives that cause operations
to be executed on the card instead of on the CPU core that initiates the
operations. Transport to and from the card is done via library routines, and
many threads can be initiated and placed in appropriate positions in the
card memory so as not to cause memory congestion on the card. This means
that for good performance one needs knowledge of the memory structure on
the card to exploit it accordingly. This is not unique to the C2050 GPU: it
pertains to the ATI FireStream GPU and other accelerators as well.
NVIDIA also supports OpenCL, though CUDA is at present much more

popular among developers. For Windows users the NVIDIA Parallel Nsight
for Visual Studio is available, which should ease the optimization of the
program parts run on the cards.



46 J. J. Dongarra and A. J. van der Steen

Table 10.2. Some specifications for the NVIDIA Tesla
C2050/70 GPU.

Number of processors 448
Memory (GDDR5), C2050 3 GB
Memory (GDDR5), C2070 6 GB
Internal bandwidth ≤ 153 GB/s
Clock cycle 1.15 GHz
Peak performance (32-bit) 1.03 Tflop/s
Peak performance (64-bit) 515 Gflop/s
Power requirement, peak 238 W
Interconnect (PCIe Gen2) ×8, 4 GB/s; ×16, 8 GB/s
ECC, error correction Yes
Floating-point support Full (32/64-bit)

10.2. General computational accelerators

Although we have so far looked at the GPUs primarily from the perspec-
tive of computational accelerators, they are of course originally full-blown
high-end graphical processors. Several vendors have developed accelerators
that did not have graphical processing in mind as the foremost application
to be served (although they might not be bad in this respect when com-
pared to general CPUs). The future of general computational accelerators
is problematic: in principle it is entirely possible to make accelerators that
can compete with GPUs, or with the FPGA-based accelerators discussed
in Section 10.3, but the volume will always be much lower than that of the
other two accelerator variants, which is reflected in the production cost.
Below we discuss two of these general accelerators for the sake of com-

pleteness, but it is doubtful that they will survive as marketable products.

PetaPath

PetaPath is a spin-off of ClearSpeed, to position ClearSpeed products in
the HPC market. ClearSpeed works in the embedded processor sector but
a main product, namely the CSX700 processor, is well equipped for HPC
work. We discuss this processor in some detail below.
The ClearSpeed products are in their third generation. Unlike GPUs,

ClearSpeed processors were made to operate on 64-bit floating-point data
from the start and have full error correction incorporated. The latest pro-
cessor is the CSX700 chip, which is packaged in a number of products. The
most common is the e710 card, which fits into a PCIe slot on any PC or
server unit. A variant with a different form factor but with the same func-
tionality is the e720 card, which can be put into blade servers. PetaPath
also markets, apart from the separate cards, its Feynman e740 and e780



High-performance computers: status and outlook 47

PE PE PE PE PE
0 1 2 3 95

cache controller
MonoData Instruction

cache

Control

debug
&

Poly controller

Programmable I/O to DRAM

2 GB/s

2 GB/s

MTAP

Figure 10.3. Block diagram of a ClearSpeed MTAP
unit. Two of these units reside on a CSX700 chip.

units, which house 4 and 8 e720 cards and which connect to a host server
by PCIe Gen. 2, 16×, i.e., at 8 GB/s. The bandwidth for the individual
cards is 2 GB/s, however. As the peak performance of a single e720 card is
96 Gflop/s, the peak performances of the Feynman e740 and e780 are 384
and 768 Gflop/s, respectively.
The power consumption of the e710/e720 card is extremely low: 25 W

maximal, 15 W typical. This is partly due to the low clock frequency of
250 MHz. The e710 card contains, aside from the CSX700 processor, 2 GB
DDR2 SDRAM, and an FPGA that manages the data traffic to and from
the card. As stated earlier, the interconnect to the host system is compli-
ant with PCIe 8×, amounting to a bandwidth of 2 GB/s. ClearSpeed is
quite complete in giving technical details. So, we are able to show a block
diagram of the CSX processor in Figure 10.3. Two so-called multi-threaded
array processor (MTAP) units are located on one CSX700 chip. As can be
seen, an MTAP contains 96 processors (with 4 redundant ones per MTAP).
They are controlled via the poly controller, ‘poly’ being the indication for
the data types that can be processed in parallel. The processing elements
themselves are able to communicate fast between themselves via a dedicated
ring network. Every cycle, a 64-bit data item can be shifted to the right
or to the left through the ring. In Figure 10.4 we show the details of a
processing element. A maximum of two 64-bit floating-point results can be
generated per cycle. As one MTAP contains 96 PEs and there are 2 MTAPs



48 J. J. Dongarra and A. J. van der Steen

PE SRAM
(6 kB)

add
point 

Floating− Floating−
point 

multiply

Multiply
accumulate

ALU

Register file (128 B)

(PIO)

generator

Memory address

32 32

32

64 64 64 64

64 64

128

PE x

PE PEx−1 x+1

Figure 10.4. Block diagram of a PE in an MTAP of a
CSX700 chip. The numbers near the arrows indicate
the number of bits that can be transferred per cycle.

on a chip, the peak performance of a CSX700 chip is 96 Gflop/s at a clock
frequency of 250 MHz.
Note the control and debug unit present in an MTAP. It enables debug-

ging within the accelerator on the PE level. This is a facility that is missing
in the GPUs and the FPGA accelerators we will discuss later.
Further, ClearSpeed employs an extended form of C, called Cn, for pro-

gram development on the card. The extension is very slight, however. The
keywords mono and poly are added to indicate data that should be processed
serially or in parallel, respectively. Because ClearSpeed has been in the ac-
celerator trade for quite some time, the SDK is very mature. Apart from
the Cn compiler already mentioned, it contains a library with a large set
of BLAS/LAPACK routines, FFTs, and random number generators. For
dense linear algebra there is an interface that enables calling the routines
from a host program in Fortran. Furthermore, a graphical debugging and
optimization tool is present that may or may not be embedded in IBM’s
Eclipse integrated development environment (IDE) as a plug-in.

The IBM/Sony/Toshiba Cell processor
The Cell processor, officially called the Cell Broadband Engine (Cell BE),
was designed at least partly with the gaming industry in mind. Sony uses
it for its PS3 gaming platform, and to be successful it has to deliver high
performance for the graphical part, as well as do a large amount of floating-
point computation to sustain the rapidly changing scenes that occur during



High-performance computers: status and outlook 49

PPE

MIC

IOIF1

IOIF0

SPE1 SPE3 SPE5 SPE7

SPE2SPE0 SPE4 SPE6

EIB, 96 B/cycle

X2D

DDR2
memory

4

9

01235

6
7 8

11

FlexIO

FlexIO

BEI
BEI: Broadband Engine Interface
EIB: Element Interconnect Bus

IOIF:
FlexIO: Rambus FlexIO bus

I/O interface
MIC: memory interface controller
PPE: PowerPC Processor Element
SPE: synergistic processor element
X2D: XIO to DDR2 logic

XIO

XIO

10

Figure 10.5. Block diagram of an IBM PowerXCell processor.
The numbers near the arrows indicate the device numbering
used for delivering data via the Element Interconnect Bus.

a game. The Cell processor is therefore not a pure graphics processor but
considerably more versatile than a GPU. The testament to this is that Mer-
cury computers, specializing in systems for radar detection, etc., markets a
product with two Cell processors, instead of dedicated DSPs (i.e., digital
signal processors), while Toshiba has incorporated the Cell in HDTV sets
and is considering bringing out notebooks with a Cell processor. The Cell
processor is able to operate in 32-bit as well as in 64-bit floating-point mode,
though there is a large performance difference: in single precision the peak
speed is 204.8 Gflop/s while in double precision it is about 14 Gflop/s. From
the start there was keen interest in the HPC community. It also restarted
discussion of whether it is necessary to use 64-bit precision calculation all
the way through an application or, by reformulating some key algorithms,
whether it would be possible to get results with acceptable accuracy when
parts are carried out in single precision (Langou et al. 2006). At least for the
Cell processor this discussion has become of less importance, as at present
the variant is available under the name of PowerXCell 8i, which is developed
by IBM, probably expressly targeted at the HPC area. In the PowerXCell
the speed for 64-bit precision has increased considerably to 102.4 Gflop/s,
half the speed of the single precision computations. Also, it is produced in
65 nm instead of 90 nm technology, and it employs DDR2 memory instead of
the Rambus memory used in the original Cell processor. Figure 10.5 shows a
diagram of this rather complicated processor. As can be seen, the processor
is hybrid in the sense that it contains two different kinds of processors: the
PPE, which is essentially a PowerPC core as discussed in Section 9.4, and
eight synergistic processor elements (SPEs), all running at a clock frequency
of 3.2 GHz. The SPEs are meant to do the bulk of the computation, while



50 J. J. Dongarra and A. J. van der Steen

SPU

SPU SPU

Odd pipeline

Even pipeline

        unit

oddSPU
fixed−point

     unitcontrol unit
SPU channel

& DMA unit

      unit        unit

SPU even
fixed−point floating−point

SXU

Local store

256 kB

management (SMM)
    memory
Synergistic

DMA
controller

MFC

EIB

register file unit
SPU

load/store

128−entries

EIB: Element Interconnect Bus
MFC: memory flow controller 
SXU: synergistic execution unit

Figure 10.6. Block diagram of an IBM PowerXCell
synergistic processing element (SPE).

the PPE takes care of operating system tasks and coordinates the work to
be done by the SPEs. All devices in the processor are connected by the El-
ement Interconnect Bus (EIB). The EIB in fact consists of four 16-B-wide
rings that transport data in opposite directions to minimize the distance
between the devices in the processor. The devices connected to the EIB are
numbered, to allow data to be transferred from one device to another. Up
to 96 B/cycle can be transferred, amounting to 307.2 GB/s. Although the
PowerXCell uses DDR2 memory, the processor proper is designed for use
with Rambus memory. This has been taken care of by including the X2D
device, which translates the DDR memory requests into Rambus requests
and vice versa. The two I/O interfaces are controlled through the Broad-
band Engine Interface (BEI). They have different functions: IOIF1 takes
care of the usual external I/O devices via the IOIF protocol, while IOIF0
is able to use the internal I/O protocol, BIF, which is also used on the EIB
rings. In this way it is possible to connect to other Cell processors.
The SPEs are the computational workhorses of the Cell processor. We

show the internals of an SPE in Figure 10.6. Roughly, there are three
important parts in an SPE: the synergistic execution unit (SXU), which
contains the functional units for computation, load/store, and DMA con-
trol; the local store, which contains the local data to be operated on; and
the memory flow controller (MFC), which in turn contains the DMA con-
troller and the memory management unit. As shown in Figure 10.6, in the
SXU, the functional units are organized into an odd and an even pipeline.
Two instructions can be issued every cycle, one for each of these pipelines.
This also implies that one floating-point instruction can be issued per cycle.
Depending on the type of operands, this can yield four 32-bit results or two
64-bit results per cycle (in the PowerXCell, in the original Cell processor a
64-bit result can be delivered every 13 cycles, hence the much lower double-
precision performance). Note that an SPE does not have any form of cache.



High-performance computers: status and outlook 51

Rather, data are brought in from external memory by DMA instructions
via the EIB. This leads to much lower memory latency when a data item is
not in the local store. Up to 16 DMA requests can be outstanding for any
of the SPEs. As all SPEs are independent, up to 128 DMA requests can be
in flight. Of course, this explicit memory management does not make for
easy programming. So, one must be careful in managing the data to get
(close to) optimal performance.
IBM has put much effort into a software development kit for the Cell pro-

cessor. It is freely available and, apart from the necessary compilers, there
is an extensive library for managing the data transport both from the PPE
to the SPEs, between SPEs, initiating the processes on the SPEs, retrieving
the results, and managing program overlays. As the local stores in the SPEs
are small, the old concept of overlays has been revived. The program is di-
vided into units that depend on each other but do not constitute the whole
program. By loading and unloading the units in the correct sequence one
can still execute the total program. In addition, there are debugging and
performance analysis tools. The total program development can be done
using IBM’s IDE, Eclipse.
The PowerXCell 8i won its share of fame for its use in the Roadrunner

system at Los Alamos National Laboratory. In this system 3240 so-called
triblades are connected by InfiniBand. A triblade consists of two QS22
blades, each containing two PowerXCell processors, and an LS21 blade with
two Opteron processors. This configuration was the first to break the LIN-
PACK petaflop barrier. This fact certainly helped to increase interest in the
Cell processor as an accelerator platform. At present, there are many re-
search projects under way to assess the applicability of Cell BE accelerators
and to make their learning curve less steep.

10.3. FPGA-based accelerators

An FPGA (field programmable gate array) is an array of logic gates that can
be hardware-programmed to fulfil user-specified tasks. In this way one can
devise special-purpose functional units that may be very efficient for this
limited task. Moreover, it is possible to configure a multiple of these units
on an FPGA that work in parallel. So, potentially, FPGAs may be good
candidates for the acceleration of certain applications. Because of their ver-
satility it is difficult to specify where they will be most useful. In general,
though, they are not used for heavy 64-bit precision floating-point arith-
metic. Excellent results have been reported in searching, pattern matching,
signal- and image-processing, encryption, etc. The clock cycle of FPGAs is
low compared to that of present CPUs: 100–550 MHz, which means that
they are very power-efficient. Vendors provide runtime environments and
drivers that work with Linux as well as Windows.



52 J. J. Dongarra and A. J. van der Steen

Traditionally, FPGAs are configured by means of a hardware description
language (HDL), such as VHDL or Verilog. This is very cumbersome for the
average programmer as one has to explicitly define not only details such as
the placement of the configured devices but also the width of the operands to
be be operated on, etc. This problem has been recognized by FPGA-based
vendors and a large variety of programming tools and SDKs have come
into existence. Unfortunately, they differ enormously in approach, and the
resulting programs are far from compatible. Further, for FPGA-based ac-
celerators, as for GPUs, there is an initiative to develop a unified API that
will ensure compatibility between platforms. The non-profit OpenFPGA
consortium is heading this effort. Various working groups are concentrating
on, for instance, a core library, an application library, and an API defini-
tion. There is no unified way to program FPGAs platform independently,
however, and it may take a long time to get there.
The two big players on the FPGA market are Altera and Xilinx. However,

in the accelerator business one will seldom find these names mentioned,
because the FPGAs they produce are packaged in a form that makes them
unusable for accelerator purposes.
It is not possible to fully discuss all vendors that offer FPGA-based prod-

ucts. One reason is that there is a very large variety of products, ranging
from complete systems to small appliances housing one FPGA and the ap-
propriate I/O logic to communicate with the outside world. To complicate
matters further, the FPGAs themselves come in many variants, e.g., with
I/O channels, memory blocks, multipliers, or DSPs already configured (or
even fixed) and one can choose FPGAs that have, for instance, a Power-
PC405 embedded. Therefore we present FPGA accelerators only in the
most global way, and our treatment is necessarily incomplete.
In the following we will discuss products of vendors that have gone to

great lengths to not expose their users to the use of HDLs, although for the
highest benefits this cannot always be avoided. Necessarily, our choice of
topics is again somewhat arbitrary, because this area is changing extremely
rapidly.

Convey

The Convey HC-1 was announced in November 2008. It is an example of the
hybrid solutions that have arisen to avoid the unwieldy HDL programming
of FPGAs, while still benefiting from their potential acceleration capabili-
ties. The HC-1 comprises a familiar x86 front-end with a modified Centos
Linux distribution under the name of Convey Linux. Furthermore, there is
a co-processor part that contains four Xilinx V5 FPGAs that can be con-
figured into a variety of ‘personalities’ that would accommodate users from
different application areas. The personalities offered include the oil and gas
industry, the financial analytics market, and the life sciences.



High-performance computers: status and outlook 53

DRAM
DDR2

DRAM
DDR2

controller
Memory

DRAM
DDR2

DRAM
DDR2

controller
Memory

DRAM
DDR2

DRAM
DDR2

controller
Memory

DRAM
DDR2

DRAM
DDR2

controller
Memory

DDR2
DRAM

DDR2
DRAM

controller
Memory

DDR2
DRAM

DDR2
DRAM DRAM

DDR2 DDR2
DRAM

DDR2
DRAM DRAM

DDR2

controller
Memory

controller
Memory

controller
Memory

FPGA FPGA FPGA FPGA

Application engine hub Application engines

H
os

t i
nt

er
fa

ce

In
st

ru
ct

io
n

fe
tc

h 
&

 d
ec

od
e

pr
oc

es
si

ng

Sc
al

ar

To/from host

8 GB/s
I/O

Direct 

Figure 10.7. Block diagram of the Convey HC-1.

In Figure 10.7 we give a diagram of the HC-1 co-processor’s structure.
A personality that will be used often for scientific and technical work is
the vector personality. Thanks to the compilers provided by Convey stan-
dard, code in Fortran and C/C++ can be automatically vectorized and
execute the vector units configured in the four FPGAs, for a total of 32
function pipes. Each of these contains a vector register file: four pipes that
can execute floating multiply–add instructions, a pipe for integer, logical,
divide, and miscellaneous instructions and a load/store pipe. For other se-
lected personalities, the compilers will generate code that is optimal for the
instruction mix generated for the appropriately configured FPGAs in the
application engine.

The application engine hub shown in Figure 10.7 contains the interface
to the x86 host, but also the part that maps the instructions onto the
application engine. In addition, it will perform some scalar processing that
is not readily passed on to the application engine.

Because the system has many different faces, it is hard to speak about
the peak performance of the system. As yet there is too little experience
with the HC-1 to compare it one-to-one with other systems in terms of
performance. However, it is clear that the potential speed-up for many
applications can be large.



54 J. J. Dongarra and A. J. van der Steen

Kuberre

Since May 2009 Kuberre has marketed its FPGA-based HANSA system.
The information provided is extremely scant. The company has tradition-
ally been involved in financial computing, and with the rising need for HPC
in this sector Kuberre has built a system that houses 1–16 boards, each
with 4 Altera Stratix II FPGAs and 16 GB of memory, in addition to one
dual core x86-based board that acts as a front-end. The host board runs
the Linux or Windows OS and the compilers.
For programming, a C/C++ or Java API is available. Although Kuberre

is naturally oriented to the financial analytics market, the little material
that is accessible shows that libraries such as ScaLAPACK, Monte Carlo
algorithms, FFTs and wavelet transforms are available. For the life sciences,
standard applications such as BLAST and Smith–Waterman are present.
The standard GNU C libraries can also be linked seamlessly.
The processors are organized in a grid fashion and use a 256 GB dis-

tributed shared cache to combat data access latency. The system comes
configured with 768 RISC CPUs for what are called ‘generic C/C++ pro-
grams’, or as 1536 double-precision cores for heavy numerical work. It is
possible to split the system to run up to 16 different ‘contexts’ (reminiscent
of Convey’s personalities: see p. 52). Part of the machine may be dedi-
cated to a life sciences application, while other parts work on encryption
and numerical applications.
As for the Convey HC-1, it is hardly possible to give performance figures,

but a fully configured machine with 16 boards should be able to obtain
250 Gflop/s on the LINPACK benchmark.
The material publicly available does not allow us to show a reliable block

diagram, but this may come about later when the system is installed at sites
that want to evaluate it.

SRC

Until two years ago SRC was the only company that sold a full stand-alone
FPGA accelerated system, named the SRC-7. Now it has to share this space
with Convey and Kuberre. In addition the so-called SRC-7 MAP station
is now marketed, MAP being the processing unit that contains 2 Altera
Stratix II FPGAs. Furthermore, SRC has the IMAP card as a product that
can be plugged into a PCIe slot on any PC.
SRC has gone to great lengths to ban the term ‘FPGA’ from its docu-

mentation. Instead, it talks about implicit versus explicit computing. In
SRC terms implicit computing is performed on standard CPUs, while ex-
plicit computing is done on its (reconfigurable) MAP processor. The SRC-7
systems have been designed with the integration of both types of processors
in mind, and in this sense it is a hybrid architecture as well, because shared
extended memory can be put into the system that is equally accessible by



High-performance computers: status and outlook 55

MAP MAP MAP MAP

memory

Hi−Bar
switch

115.2 GB/s

7.2 GB/s

7.2 GB/s

3.6 GB/s

SNAP SNAP SNAP SNAP

CPU CPU CPU CPU

Extended
    shared common

Figure 10.8. Approximate machine structure of the SRC-7.

both the CPUs and the MAP processors. We show a sketch of the machine
structure in Figure 10.8. It shows that CPUs and MAP processors are con-
nected by a 16 × 16 so-called Hi-Bar crossbar switch with a link speed of
7.2 GB/s. The maximum aggregate bandwidth in the switch is 115.2 GB/s,
enough to route all 16 independent data streams. The CPUs must be of the
x86 or x86 64 type. So, both Intel and AMD processors are possible. As can
be seen in the figure, the connection to the CPUs is made through SRC’s
proprietary SNAP interface. This accommodates the 7.2 GB/s bandwidth
but isolates it from the vendor-specific connection to memory. Instead of
configuring a MAP processor, common extended memory can also be con-
figured. This allows for shared-memory parallelism in the system across
CPUs and MAP processors.
The MAP station is a shrunken version of the SRC-7: it contains an

x86( 64) CPU, a MAP processor, and a 4 × 4 Hi-Bar crossbar that allows
common extended memory to be configured.
SRC and Convey are the only accelerator vendors that support Fortran.

SRC does this through its development environment Carte. As with Convey
and Kuberre, C/C++ is also available. The parallelization and acceleration
are largely done by putting comment directives in Fortran code and prag-
mas in C/C++ code. Also, explicit memory management and prefetching
can be done in this way. The directives/pragmas cause a bitstream to be
loaded onto the FPGAs in one or more MAP processors that configure them
and execute the target code. Furthermore, there is an extensive library of
functions, a debugger and a performance analyser. When one wants to em-
ploy specific non-standard functionality, e.g., computing with arithmetic of
non-standard length, one can create a so-called ‘application-specific func-
tional unit’. In fact, one then configures one or more of the FPGAs directly
and one has to fall back on VHDL or Verilog for this configuration.



56 J. J. Dongarra and A. J. van der Steen

11. Networks

Fast interprocessor networks are, together with fast processors, decisive fac-
tors for good integrated parallel systems and clusters. In the early days
of clusters the interprocessor communication, and hence the scalability of
applications, was hampered by the high latency and the lack of bandwidth
of the network that was used (mostly Ethernet). This situation has changed
greatly, and to give a balanced view of the possibilities opened by the im-
proved networks, a discussion of some of these networks is in order. Net-
works have been employed as an important component of ‘integrated’ par-
allel systems.
Of course, Gigabit Ethernet (GbE) is now widely available, and with a

maximum theoretical bandwidth of 125 MB/s would be able to fulfil a use-
ful role for some applications that are not latency-bound. Furthermore,
10 Gigabit Ethernet (10 GbE) is increasingly available. The adoption of
Ethernet is hampered by the latencies that are incurred when the TCP/IP
protocol is used for the message transmission. In fact, the transmission la-
tencies without this protocol are much lower: about 5 μs for GbE and 0.5 μs
for 10 GbE. Using the TCP/IP protocol, however, gives rise to latencies of
somewhat less than 40 μs and in-switch latencies of 30–40 μs for GbE and
a 4–10 μs latency for 10 GbE. As such it is not quite on a par with the
ubiquitous InfiniBand interconnects with regard to latency and bandwidth.
However, the costs are lower and may compensate for a somewhat lower
performance in many cases. Various vendors, such as Myrinet and SCS,
have circumvented the problem with TCP/IP by implementing their own
protocol, thus using standard 10 GbE equipment but with their own net-
work interface cards (NICs) to handle the proprietary protocol. In this way

Table 11.1. Some bandwidths and latencies for various
networks as measured with an MPI ping-pong test.

Bandwidth Latency
Network GB/s μs

Arista 10 GbE (stated) 1.2 4.0
BLADE 10 GbE (measured) 1.0 4.0
Cray SeaStar2+ (measured) 6.0 4.5
Cray Gemini (measured) 6.1 1.0
IBM (InfiniBand) (measured) 1.2 4.5
SGI NumaLink 5 (measured) 5.9 0.4
InfiniBand (measured) 1.3 4.0
InfiniPath (measured) 0.9 1.5
Myrinet 10-G (measured) 1.2 2.1



High-performance computers: status and outlook 57

latencies of 2–4 μs can be achieved: well within the range of other network
solutions. Very recently Mellanox came out with 40 GbE on an InfiniBand
fabric. It is too early, however, to give characteristics of this new medium.
We restrict ourselves here to networks that are independently marketed

as the proprietary networks for systems such as those of Cray and SGI, and
are discussed together with the systems in which they are incorporated. We
do not pretend to be complete, because in this new field, players enter and
leave the scene at a high rate. Rather, we present the main developments
which one is likely to meet when one scans the high-performance computing
arena. Unfortunately, the spectrum of network types is narrowed by the
demise of Quadrics. Quadrics’ QsNetII was rather expensive but it had
excellent characteristics. The next generation, QsNetIII, was on the brink of
deployment when the Italian mother company Alinea terminated Quadrics
– much to the regret of HPC users and vendors.
A complication with the fast networks offered for clusters is the connec-

tion with the nodes. Where in integrated parallel machines the access to
the nodes is customized and can be made such that the bandwidth of the
network matches the internal bandwidth in a node, in clusters one has to
make do with the PCI bus connection that comes with the PC-based node.
The type of PCI bus which ranges from 32-bit wide at 33 MHz to 64-bit
wide at 66 MHz determines how fast the data from the network can be
shipped in and out of the node, and therefore the maximum bandwidth
that can be attained in internode communication. In practice, the available
bandwidths are in the range 110–480 MB/s. Since 1999 PCI-X has been
available, initially at 1 GB/s, in PCI-X 2.0 also at 2 and 4 GB/s. Coupling
with PCI-X is at present mostly superseded by its successor PCI-Express
1.1 (PCIe). This provides a 200 MB/s bandwidth per data lane where 1×,
2×, 4×, 8×, 12×, 16×, and 32× multiple data lanes are supported: this
makes it fast enough for the host bus adapters of any communication net-
work vendor so far. So, for the networks discussed below, often different
bandwidths are quoted, depending on the PCI bus type and the supporting
chipset. Therefore, when speeds are quoted, it is always with the proviso
that the PCI bus of the host node is sufficiently wide/fast.
Lately, PCIe 2, commonly known as PCIe Gen2, has emerged, with twice

the bandwidth. Currently PCIe Gen2 is mostly used within servers to con-
nect to high-end graphics cards (including GPUs used as computational
accelerators) at speeds of 4–8 GB/s, but evidently it could also be used
to connect to either other computational accelerators or network interface
cards that are designed to work at these speeds.
An idea of network bandwidths and latencies for some networks, both

proprietary and vendor-independent, is given in Table 11.1. Warning: The
entries are only approximate because they also depend on the exact switch
and host bus adapter characteristics as well as on the internal bus speeds



58 J. J. Dongarra and A. J. van der Steen

of the systems. The circumstances under which these values were obtained
was very diverse. So, there is no guarantee that these are the optimum
attainable results.

11.1. InfiniBand

InfiniBand has rapidly become a widely accepted medium for internode net-
works. The specification was finished in June 2001. Since 2002, a number
of vendors have started to offer their products based on the InfiniBand
standard. A very complete description (1200 pages) can be found in Shan-
ley (2002). InfiniBand is employed to connect various system components
within a system. Via host channel adapters (HCAs), the InfiniBand fab-
ric can be used for interprocessor networks, attaching I/O subsystems, or
to multi-protocol switches like Gigabit Ethernet switches, etc. Because of
this versatility, the market is not limited just to the interprocessor network
segment, and so InfiniBand has become relatively inexpensive due to the
high volume of sales at present. The characteristics of InfiniBand are rather
nice. There are product definitions both for copper and glass fibre connec-
tions, switch and router properties are defined, and multiple connections
can be employed for high bandwidth. Also, the way messages are broken up
into packets and reassembled, as well as routing, prioritizing, and error han-
dling, are all described in the standard. This makes InfiniBand independent
of one particular technology and, because of its completeness, it is a good
basis upon which to implement a communication library (such as MPI).
Conceptually, InfiniBand knows of two types of connectors to the system

components: host channel adapters (HCAs), already mentioned, and target
channel adapters (TCAs). The latter are typically used to connect to I/O
subsystems, while HCAs concern us more as they are the connectors used
in interprocessor communication. InfiniBand defines a basic link speed of
2.5 Gb/s (312.5 MB/s) but also a 4× and 12× speed of 1.25 GB/s and
3.75 GB/s, respectively. Moreover, HCAs and TCAs can have multiple
ports that are independent and allow for higher reliability and speed.
Messages can be sent on the basis of remote direct memory access (RDMA)

from one HCA/TCA to another: an HCA/TCA is permitted to read/write
the memory of another HCA/TCA. This enables very fast transfer once
permission and a write/read location are given. A port, together with its
HCA/TCA, provides a message with a 128-bit header which is IPv6 compli-
ant and which is used to direct it to its destination via cut-through wormhole
routing. In each switching stage the routing to the next stage is decoded
and sent on. Short messages of 32 B can be embedded in control messages,
which cuts down on the negotiation time for control messages.
InfiniBand switches for HPC are normally offered with 8–864 ports and

now mostly at a speed of 1.25 GB/s. However, Sun is now providing a



High-performance computers: status and outlook 59

3456-port switch for its Constellation cluster systems. Switches and HCAs
accommodating twice this speed (double data rate, DDR) are now common,
but are being replaced more and more by quad data rate (QDR), which be-
came available in late 2008. Obviously, to take advantage of this speed at
least PCI Express must be present at the nodes to which the HCAs are
connected. The switches can be configured in any desired topology, but in
practice a fat tree topology is almost always preferred (see Figure 6.2(b)).
How much of the raw speed can be realized depends, of course, on the qual-
ity of the MPI implementation imposed on the InfiniBand specifications.
A ping-pong experiment on InfiniBand-based clusters with different MPI
implementations has shown bandwidths of 1.3 GB/s, and an MPI latency
of 4 μs for small messages is quoted by Mellanox, one of the large Infini-
Band vendors. The in-switch latency is typically about 200 ns. For the
QDR 2.5 GB/s products, the MPI bandwidth indeed nearly doubles while
the latency stays approximately the same. At the time of writing, QDR
InfiniBand products are available from Mellanox and QLogic. A nice fea-
ture of QDR InfiniBand is that it provides dynamic routing, which is not
possible with earlier generations. In complicated communication schemes
this feature should alleviate contention on some data paths by letting the
message take an alternative route.
Because of the recent profusion of InfiniBand vendors, the price is now

on a par with, or lower than, those of other fast network vendors such as
Myrinet (Section 11.3) and 10 GbE.

11.2. InfiniPath

InfiniPath only provides HCAs with a 4-wide (1.25 GB/s) InfiniBand link on
the network side and connecting to a HyperTransport bus or PCI-Express
on the computer side. For systems with AMD processors on board, the
HyperTransport option is particularly attractive because of the direct con-
nection to the host’s processors. This results in very low latencies for small
messages. PathScale, the vendor of the InfiniPath HCAs, quotes latencies
as low as 1.29 μs. Obviously, this type of HCA cannot be used with systems
based on non-AMD processors. For these systems the HCAs with PCI-
Express can be used. They have a slightly higher, but still low, latency of
1.6 μs. The effective bandwidth is also high: a uni-directional bandwidth
of ≈ 950 MB/s can be obtained using MPI for both types of HCA.
The InfiniPath HBAs do not contain processing power themselves. Any

processing associated with the communication is done by the host processor.
According to PathScale this is an advantage because the host processor is
usually much faster than the processors employed in switches. An evaluation
report from Sandia National Lab (Doerfler 2005) seems to corroborate this
assertion.



60 J. J. Dongarra and A. J. van der Steen

PathScale only offers HCAs (and the software stack coming with it) and
these can be used by any InfiniBand switch vendor that adheres to the
OpenIB protocol standard, which includes pretty much all of them.

11.3. Myrinet

Until recently Myrinet was the market leader in fast cluster networks and
it is still one of the largest. The Myricom company which sells Myrinet
started in 1994 with its first Myrinet implementation (Boden et al. 1995),
as an alternative to Ethernet for connecting the nodes in a cluster. Apart
from the higher bandwidth, around 100 MB/s at that time, the main ad-
vantage was that it entirely operated in user space, thus avoiding operating
system interference and the delays that come with it. This meant that the
latency for small messages was around 10–15 μs. Latency and bandwidth
compared nicely with the proprietary networks of integrated parallel sys-
tems of Convex, IBM, and SGI at the time. Although such a network came
at a non-negligible cost, in many cases it proved a valuable alternative to
either an Ethernet-connected system or an even costlier integrated parallel
system.
Since then hardware upgrades and software improvements have made

Myrinet the network of choice for many cluster builders, and until a few
years ago there was hardly an alternative when a fast, low-latency network
was required.
Like InfiniBand, Myrinet uses cut-through routing for an efficient utiliza-

tion of the network. Also, RDMA is used to write to/read from the remote
memory of other host adapter cards, called Lanai cards. These cards inter-
face with the PCI-X of PCI Express bus of the host they are attached to.
Myrinet allows copper cables or fibres as signal carriers. The latter form
gives a high flexibility in the connection and much headroom in the speed
of signals, but the fibre cables and connectors are rather delicate, which can
lead to damage when cluster nodes have to be serviced.
Myrinet offers ready-made 8–256 port switches (8–128 for its newest prod-

uct: see below). The 8 and 16 port switches are full crossbars. In principle
all larger networks are built from these using a Clos network topology. An
example for a 64-port systems is shown in Figure 11.1. A Clos network is
another example of a logarithmic network with the maximum bi-sectional
bandwidth of the endpoints. Note that 4 ports of the 16 × 16 crossbar
switches are unused, but other configurations need either more switches or
connections or both.
Since the start of 2006 Myricom, like many InfiniBand switch vendors,

has provided a multi-protocol switch (and adapters), the Myri-10G. Apart
from Myricom’s own MX protocol it also supports 10 Gigabit Ethernet,
which makes it easy to connect to external nodes/clusters – an ideal start-



High-performance computers: status and outlook 61

16 16
Xbar

16 16
Xbar

16 16
Xbar

16 16
Xbar

16 16
Xbar

16 16
Xbar

16 16
Xbar

16 16
Xbar

8 8
Xbar

8 8
Xbar

8 8
Xbar

8 8
Xbar

To hosts (64)

Spine switches

Figure 11.1. An 8× 16 Clos network using 8 and 16
port crossbar switches to connect 64 processors.

ing point for building grids from a variety of systems. The specifications as
given by Myricom are quite good: ≈ 1.2 GB/s for the uni-directional theo-
retical bandwidth for both its MX protocol and about the same for the MX
emulation of TCP/IP on Gigabit Ethernet. According to Myricom, there
is no difference in bandwidth between MX and MPI, and the latencies are
claimed to be the same: just over 2 μs.

12. Recent trends in high-performance computing

In this section we analyse major recent trends and changes in high-perfor-
mance computing. Massively parallel processors (MPPs) became successful
in the early 1990s due to their better price/performance ratios, which was
enabled by advances in microprocessors. The success of microprocessor-
based symmetric multiprocessor (SMP) concepts, even for very high-end
systems, was the basis for the emergence of cluster concepts in the early
2000s. During the first half of the decade clusters of PCs and workstations
became the prevalent architecture for many HPC application areas on all
ranges of performance. However, the Japanese Earth Simulator vector sys-
tem demonstrated that many scientific applications could benefit greatly
from other computer architectures. At the same time there has been re-
newed broad interest within the scientific HPC community concerning new
hardware architectures and new programming paradigms. The IBM Blue-
Gene system is one early example of a shifting design focus for large-scale
systems.

12.1. Introduction

Looking back on the last four decades, the HPC market has always been
characterized by rapid change in vendors, architectures, technologies and
system usage. Despite all these changes, the evolution of performance on a



62 J. J. Dongarra and A. J. van der Steen

Figure 12.1. Performance of the fastest
computer systems for the last six decades.

large scale seems to be a very steady and continuous process. Moore’s Law
is often cited in this context. Figure 12.1 plots the peak performance of
various computers of the last six decades, all ‘supercomputers’ of their time
(Hockney and Jesshope 1988, Meuer 1994), and demonstrates how well this
law holds for nearly the entire lifespan of modern computing. On average
we see an increase in performance of two orders of magnitude every decade.
In this section we analyse recent major trends and changes in the HPC
market. For this, we focus on systems which had at least some commercial
relevance. This paper extends a previous analysis of the HPC market in
Meuer, Strohmaier, Dongarra and Simon (2011). Historical overviews with
different focuses can be found in Wilson (1994) and Woodward (1996). Sec-
tion 12.3 analyses the trend in the first half of the 2000s, and Section 12.4
looks to the future.
The initial success of vector computers in the 1970s was driven by raw per-

formance. The introduction of this type of computer system started the era
of ‘supercomputing’. In the 1980s the availability of standard development
environments and application software packages became more important.
Next to performance, these criteria determined the success of MP vector
systems, especially with industrial customers. MPPs became successful in
the early 1990s due to their better price/performance ratios, enabled by the
attack of the ‘killer micros’. In the lower and medium market segments,
the MPPs were replaced by microprocessor-based SMP systems in the mid-
dle of the 1990s. Towards the end of the 1990s, only the companies which



High-performance computers: status and outlook 63

had entered the emerging markets for massively parallel database servers
and financial applications attracted enough business volume to be able to
support the hardware development for the numerical high-end computing
market as well. Success in the traditional floating-point intensive engineer-
ing applications was no longer sufficient for survival in the market. The
success of microprocessor-based SMP concepts, even for the very high-end
systems, was the basis for the emergence of cluster concepts in the early
2000s. During the first half of the decade clusters of PCs and worksta-
tions became the prevalent architecture for many application areas in the
Top500 on all ranges of performance. However, the Earth Simulator vector
system demonstrated that many scientific applications can benefit greatly
from other computer architectures. At the same time there has been re-
newed broad interest within the scientific HPC community concerning new
hardware architectures and new programming paradigms. The IBM Blue-
Gene/L system is one early example of a shifting design focus for large-scale
systems. The IBM Roadrunner system at Los Alamos National Laboratory
broke the petaflops threshold in June 2008. And in November 2011 the please check

Japanese K computer reached the 10 petaflop mark using over a half a
million cores of conventional design.

12.2. A short history of supercomputers

In the second half of the 1970s the introduction of vector computer systems
marked the beginning of modern supercomputing. These systems offered a
performance advantage of at least one order of magnitude over conventional
systems of that time. Raw performance was the main if not the only selling
argument. In the first half of the 1980s the integration of vector systems
in conventional computing environments became more important. Only
those manufacturers which provided standard programming environments,
operating systems and key applications were successful in getting industrial
customers, and survived. Performance was mainly increased by improved
chip technologies and by producing shared-memory multiprocessor systems.
Fostered by several US government programmes, massively parallel com-

puting with scalable systems using distributed memory became the centre
of interest at the end of the 1980s. The main goal for their development was
overcoming the hardware scalability limitations of shared-memory systems.
The increase in performance of standard microprocessors after the RISC rev-
olution, together with the cost advantage of large-scale productions, formed
the basis for the ‘attack of the killer micros’. The consequence was a tran-
sition from ECL to CMOS chip technology and the use of ‘off-the-shelf’
microprocessors instead of custom-designed processors for MPPs.
The traditional design focus for MPP systems was the very high end of

performance. In the early 1990s the SMP systems of various workstation



64 J. J. Dongarra and A. J. van der Steen

manufacturers, as well as the IBM SP series, which targeted the lower and
medium market segments, gained great popularity. Their price/performance
ratios were better due to not including support for very large configurations
and due to economies of scale. Due to the vertical integration of production,please check

it was no longer economically feasible to produce and focus on the highest
end of computing power alone. The design focus for new systems shifted to
the market of medium-performance systems.
The acceptance of MPP systems not only for engineering applications but

also for new commercial applications, especially for database applications,
emphasized different criteria for market success, such as stability of systems,
continuity of manufacturer and price/performance. Success in commercial
environments became a new important requirement for a successful super-
computer business towards the end of the 1990s. Due to these factors and
the consolidation in the number of vendors in the market, hierarchical sys-
tems built with components designed for the broader commercial market
replaced homogeneous systems at the very high end of scientific computing.
The marketplace readily adopted clusters of SMPs, while academic research
focused on clusters of workstations and PCs.

12.3. 2000–2005: clusters, Intel processors, and the Earth Simulator

In the early 2000s, clusters built with off-the-shelf components gained more
and more attention, not only as academic research objects, but also as com-
puting platforms with end-users of HPC systems. By 2004, this group of
clusters represented the majority of new systems on the Top500 in a broad
range of application areas. One major consequence of this trend was the
rapid rise in the use of Intel processors in HPC systems. Though virtu-
ally absent at the high end at the beginning of the decade, Intel processors
are now used in the majority of HPC systems. Clusters in the 1990s were
mostly self-made systems designed and built by small groups of dedicated
scientist or application experts. This changed rapidly as soon as the mar-
ket for clusters based on PC technology matured. Now the large majority
of Top500-class clusters are manufactured and integrated by either a few
traditional large HPC manufacturers such as IBM or Hewlett-Packard, or
numerous small, specialized integrators of such systems.
In 2002 a system with a different architecture, the Earth Simulator, en-

tered the spotlight as the new number one system on the Top500, and it
managed to take the US HPC community by surprise, even though it had
been announced four years earlier. The Earth Simulator, built by NEC, is
based on NEC vector technology and showed unusually high efficiency on
many scientific applications. This fact invigorated discussions about future
architectures for high-end scientific computing systems. The first system
built with a different design focus, but still with mostly conventional off-



High-performance computers: status and outlook 65

Figure 12.2. Main architectural categories seen in the Top500.
(The term ‘constellations’ refers to clusters of SMPs.)

the-shelf components, is the IBM BlueGene/L system. Its design focuses on
a system with an unprecedented number of processors using a power-efficient
design while sacrificing main memory size.

Explosion of cluster-based systems

By the end of the 1990s clusters were common in academia, but mostly
as research objects, and not so much as computing platforms for applica-
tions. Most of these clusters were of comparable small scale and as a result
the November 1999 edition of the Top500 listed only seven cluster sys-
tems. This changed dramatically, as industrial and commercial customers
started to deploy clusters as soon as their applications permitted them to
take advantage of the better price/performance ratio of commodity-based
clusters. At the same time, all major vendors in the HPC market started
selling this type of cluster, fully integrated into their customer base. In
November 2004 clusters became the dominant architecture in the Top500,
with 294 systems at all levels of performance (see Figure 12.2). Companies
such as IBM and Hewlett-Packard sold the majority of these clusters, and
a large number of them were installed at commercial and industrial sites.
To some extent, the reasons for the dominance of commodity-processor sys-
tems are economic. Contemporary distributed-memory supercomputer sys-
tems based on commodity processors (such as Linux clusters) appear to be



66 J. J. Dongarra and A. J. van der Steen

substantially more cost-effective – by roughly an order of magnitude – in
delivering computing power to applications that do not have stringent com-
munication requirements. On the other hand, there has been little progress,
and perhaps regress, in making scalable systems easy to program. Software
directions that were started in the early 1980s (such as CM-Fortran and
High-Performance Fortran) were largely abandoned. The pay-off to find-
ing better ways to program such systems, and thus expand the domains in
which these systems can be applied, would appear to be large.
The move to distributed memory has forced changes in the program-

ming paradigm of supercomputing. The high cost of processor-to-processor
synchronization and communication requires new algorithms that minimize
those operations. The structuring of an application for vectorization is
seldom the best structure for parallelization on these systems. Moreover,
despite some research successes in this area, without some guidance from
the programmer, compilers are generally able neither to detect enough of
the necessary parallelism, nor to reduce sufficiently the inter-processor over-
heads. The use of distributed-memory systems has led to the introduction
of new programming models, particularly the message-passing paradigm, as
realized in MPI, and the use of parallel loops in shared-memory subsystems,
as supported by OpenMP. It has also forced significant reprogramming of
libraries and applications to port onto the new architectures. Debuggers
and performance tools for scalable systems have developed slowly, however,
and even today most users consider the programming tools on parallel su-
percomputers to be inadequate.
Fortunately, there are a number of choices of communication networks

available. There is generally great variation in the use of clusters and their
more integrated counterparts: clusters are mostly used for capacity comput-
ing while the integrated machines are primarily used for capability comput-
ing. Traditionally, vendors of large supercomputer systems have learned to
provide for capacity computing, as the precious resources of their systems
were required to be used as effectively as possible. In contrast, Beowulf
clusters are mostly operated through the Linux operating system, although
a small minority use Microsoft Windows. These operating systems either
lack the tools to make use of clusters for capacity computing, or the tools are
immature. However, as clusters become on average both larger and more
stable, they are being used as computational capacity servers.

Intel-ization of the processor landscape

The HPC community had already started to use commodity parts in large
numbers in the 1990s. MPPs and constellations (the term ‘constellations’
refers to a cluster of SMPs), typically using standard workstation micropro-
cessors, still might use custom interconnect systems. There was, however,
one big exception: virtually nobody used Intel microprocessors. Lack of



High-performance computers: status and outlook 67

Figure 12.3. Main processor families seen in the Top500.

performance and the limitations of a 32-bit processor design were the main
reasons for this. This changed with the introduction of the Pentium 3 and
especially in 2001 with the Pentium 4, which featured greatly improved
memory performance due to its front-side bus and full 64-bit floating-point
support. The number of systems in the Top500 with Intel processors ex-
ploded from only six in November 2000 to 375 in June 2008 (Figure 12.3)

The Earth Simulator shock

The Earth Simulator (ES) was conceived, developed, and implemented by
Dr Hajime Miyoshi, who is regarded as the Seymour Cray of Japan. Unlike
his peers, he seldom attended conferences or gave public speeches. However,
he was well known within the HPC community in Japan for his involvement
in the development of the first Fujitsu supercomputer, and later on the
Numerical Wind Tunnel (NWT) at the National Aerospace Laboratory of
Japan. In 1997 he took up his post as director of the Earth Simulator
Research and Development Center and led the development of the 40 Tflop/s
Earth Simulator, which would serve as a powerful computational engine for
global environmental simulation.
Prior to the ES, global circulation simulations were made using a 100 km

grid width, although ocean-atmospheric interactive analyses were not per-
formed. Obtaining quantitatively good predictions for the evaluation of
environmental effects may require a grid width of at most 10 km or 10
times finer meshes in the x, y and z directions, and interactive simulations.
Thus a supercomputer 1000 times faster and larger than a 1995 conventional



68 J. J. Dongarra and A. J. van der Steen

supercomputer might be required. Miyoshi investigated whether such a ma-
chine could be built in the early 2000s. His conclusion was that it could
be realized if several thousand of the most advanced vector supercomputers
of approximately 10 Gflop/s speed were clustered using a very high-speed
network. He forecasted that extremely high-density LSI integration technol-
ogy, high-speed memory, all packaged into small-size, high-speed network
(crossbar) technology, as well as an efficient operating system and Fortran
compiler, could all be developed within the next few years. He thought that
only a strong initiative project with government financial support could
realize this kind of machine.
The machine was completed in February 2002, and the entire system is

still being used as an end-user service. Miyoshi, as leader of the NWT
project, supervised the development of NWT Fortran and organized the
HPF (High Performance Fortran) Japan Extension Forum, which is used
on the ES. He knew that a high-level vector/parallel language is critical for
such a supercomputer.
The launch of the Earth Simulator created a substantial amount of con-

cern in the USA that it had lost the leadership in high-performance com-
puting. While there was certainly a loss of national pride for the USA in not
being first on a list of the world’s fastest supercomputers, it is important
to understand the set of issues surrounding that loss of leadership. The de-
velopment of the ES represents a large investment (approximately $500m,
including a special facility to house the system) and a large commitment
over a long period of time. The USA has made an even larger investment in
HPC in the Department of Energy Advanced Strategic Computing (ASC)
programme, but the funding has not been spent on a single platform. Other
important differences are as follows.

• The ES was developed for basic research and is shared internationally,
whereas the ASC programme is driven by national defence and the
systems have restricted domestic use.

• A large part of the ES investment supported NEC’s development of
their SX-6 technology. The ASC program has made only modest in-
vestments in industrial R&D.

• The ES uses custom vector processors. The ASC systems use commod-
ity processors.

• The ES software technology largely originates from abroad, although
it is often modified and enhanced in Japan. For example, significant
ES codes were developed using a Japanese enhanced version of HPF.
Virtually all software used in the ASC program has been developed by
the USA.

Surprisingly, the Earth Simulator’s number one ranking on the Top500 list
was not a matter of national pride in Japan. In fact, there is considerable



High-performance computers: status and outlook 69

resentment of the Earth Simulator in some sectors of the research commu-
nity in Japan. Some Japanese researchers feel that the ES is too expensive
and drains critical resources from other science and technology projects.
Due to the continued economic crisis in Japan and large budget deficits, it
is getting more difficult to justify government projects of this kind.

New architectures on the horizon

Interest in novel computer architectures has always been large in the HPC
community, which comes as no surprise, as this field was engendered by and
continues to thrive on technological innovations. Some of the concerns of
recent years have been the ever-increasing space and power requirements
of modern commodity-based supercomputers. In the BlueGene/L develop-
ment, IBM addressed these issues by designing a very power- and space-
efficient system. BlueGene/L does not use the latest commodity processors
available but computationally less powerful and much more power-efficient
processor versions developed, not for the PC and workstation market, but
mainly for embedded applications. Together with a drastic reduction of
available main memory, this provided a very dense system. To achieve the
targeted extreme performance level, an unprecedented number of these pro-
cessors (up to 212 992) are combined using several specialized interconnects.
There was and is considerable doubt whether such a system would be

able to deliver the promised performance and would be usable as a general-
purpose system. The first results of the beta-System were very encouraging,
and the one-quarter size beta-System commissioned by Lawrence Livermore
National Laboratory was able to claim the number one spot on the Novem-
ber 2004 Top500 list.

12.4. 2005 and beyond

Three decades after the introduction of the Cray 1, the HPC market had
changed considerably. It used to be a market for systems clearly different
from any other computer systems. Today the HPC market is no longer an
isolated niche market for specialized systems. Vertically integrated compa-
nies produced systems of any size. Components used for these systems are
the same as those from an individual desktop PC up to the most power-
ful supercomputers. Similar software environments are available on all of
these systems. This was the basis of a broad acceptance by industrial and
commercial customers.
The increasing market share of industrial and commercial installations

had several very critical implications for the HPC market. The manufac-
turers of supercomputers for numerical applications, in the market for small-
to medium-size HPC systems, face strong competition from manufacturers
selling their systems in the very lucrative commercial market. These systems



70 J. J. Dongarra and A. J. van der Steen

Figure 12.4. The replacement rate in the Top500 defined as the number
of systems omitted because of their performance being too small.

tend to have better price/performance ratios due to the larger production
numbers of systems sold to commercial customers and the reduced design
costs of medium-size systems. The market for very high-end systems itself is
relatively small, and hardly grows, if at all. It cannot easily support special-
ized niche market manufacturers. This forces the remaining manufacturers
to change the design for the very high end away from homogeneous large-
scale systems towards cluster concepts based on ‘off-the-shelf’ components.
‘Clusters’ are the dominating architecture in the Top500. In November

1999 we had only seven clusters in the Top500, whereas in June 2011 the
list included 411 cluster systems. At the same time the debate as to whether
we need new architectures for very high-end supercomputers has once again
increased in intensity.
Novel hybrid architectures have appeared in the Top500 list. The num-

ber one machine in June 2008, the IBM Roadrunner, was just such a system.
The Roadrunner is a hybrid design built from commodity parts. The sys-
tem is composed of two processor chip architectures, the IBM PowerXCell
and the AMD Opteron, which use InfiniBand interconnect. The system can
be characterized as an Opteron-based cluster with Cell accelerators. Each
Opteron core has a Cell chip (composed of nine cores). The Cell chip has
eight vector cores and a conventional PowerPC core. The vector cores pro-
vide the bulk of the computational performance. The other hybrid design
that has found some favour is one based on a linking between a commodity
CPU and a graphical processing unit (GPU) accelerator. The model for
GPU computing is to use a CPU and GPU together in a heterogeneous co-
processing computing model. The sequential part of the application runs on
the CPU and the computationally intensive part is accelerated by the GPU.



High-performance computers: status and outlook 71

Figure 12.5. The consumers of HPC systems in
different geographical regions, as seen in the Top500.

Dynamic of the market
The HPC market is by its very nature dynamic. This is not only reflected
by the coming and going of new manufacturers but especially by the need
to update and replace systems quite often to keep pace with the general
performance increase. This general dynamic of the HPC market is well
reflected in the Top500. In Figure 12.4 we show the number of systems
that fall off the end of the list within six months due to the increase in
entry-level performance. We see an average replacement rate of about 180
systems every six months, or more than half the list every year. This means
that a system which is at position 100 at a given time will fall off the
Top500 within two to three years. The June 2011 list shows almost one-
half replacement, with 238 systems being displaced from the previous list.

Consumer and producer
The dynamic of the HPC market is well reflected in the rapidly changing
market shares of the chip or system technologies, of manufacturers, customer
types or application areas. However, if we are interested in where these HPC
systems are installed or produced, we see a different picture.



72 J. J. Dongarra and A. J. van der Steen

Figure 12.6. The consumers of HPC systems in Asia,
as seen in the Top500.

Plotting the number of systems installed in different geographical areas
in Figure 12.5, we see a more-or-less steady distribution. The number of
systems installed in the USA is about half of the list, while the number
of systems in Asia is slowly increasing. Europe has steadily acquired HPC
systems, as shown in Figure 12.5. While this can be interpreted as a reflec-
tion of increasing economical strength in these countries, it also highlights
the fact that it is becoming easier for such countries to buy or even build
cluster-based systems themselves. Figure 12.6 shows the number of HPC
systems in Japan, the initial use of such systems in India, and the rapid
growth of systems in China.

Performance growth

While many aspects of the HPC market change quite dynamically over
time, the evolution of performance seems to follow Moore’s Law quite well,
as mentioned earlier. The Top500 provides ideal data to verify an observa-
tion like this. Looking at the computing power of the individual machines
presented in the Top500 and the evolution of the total installed perfor-
mance, we plot the performance of the systems at positions 1 and 500 in
the list as well as the total accumulated performance. In Figure 12.7 the
curve of position 500 shows on average an increase of a factor of 1.9 within
one year. All other curves show a growth rate of 1.8 ± 0.05 per year.



High-performance computers: status and outlook 73

Figure 12.7. Overall growth of accumulated and
individual performance, as seen in the Top500.

Projections

Based on the current Top500 data, which cover the last fourteen years, and
the assumption that the current performance development will continue for
some time to come, we can now extrapolate the observed performance and
compare these values with the goals of the mentioned government programs.
In Figure 12.8, we extrapolate the observed performance values using lin-
ear regression on the logarithmic scale. This means that we fit exponential
growth to all levels of performance in the Top500. This simple fitting of
the data shows surprisingly consistent results. In 1999, based on a similar
extrapolation (Meuer et al. 2011), we expected to have the first 100 TFlop/s
system by 2005. We also predicted that by 2005 no system smaller than
1 TFlop/s should still be able to make the Top500. Both of these predic-
tions are basically certain to be fulfilled next year. Looking forward another
five years to 2010, we expected to see the first petaflop system at about 2009
(Meuer et al. 2011). We hit the petaflop/s mark in 2008 and 10 petaflop/s please check

in 2011.
Looking even further into the future, we could speculate that, based on

the current doubling of performance every year, the first system exceeding
100 petaflop/s should be available around 2015, and we should expect an
exaflop/s system in 2019, as can be seen in Figure 12.8. Indeed we see an
eleven-year cycle of achieving a three-orders-of-magnitude increase in perfor-



74 J. J. Dongarra and A. J. van der Steen

Figure 12.8. Extrapolation of recent growth
rates of performance seen in the Top500.

mance. This has been true since 1986 with the first gigaflop system, in 1997
with the first teraflop system, and in 2008 with the first petaflop system.
Due to the rapid changes in the technologies used in HPC systems, there
is, however, again no reasonable projection possible for the architecture of
such a system in ten years. Even though the HPC market has changed quite
substantially since the introduction of the Cray 1 four decades ago, there
is no end in sight for these rapid cycles of re-definition: the only constant
is change.

13. HPC challenges

Supercomputing capability benefits a broad range of industries, including
energy, pharmaceuticals, aircraft, automobiles and entertainment. More
powerful computing capability will allow these diverse industries to more
quickly engineer superior new products that could improve a nation’s com-
petitiveness. In addition, there are considerable flow-down benefits that
will result from meeting both the hardware and software high-performance
computing challenges. These would include enhancements to smaller com-
puter systems and many types of consumer electronics, from smartphones
to cameras.
With respect to software, it seems clear that the scope of the effort to

develop software for exascale must be truly international. In terms of its
rationale, scientists in nearly every field now depend upon the software in-
frastructure of high-end computing to open up new areas of enquiry (e.g.,
the very small, very large, very hazardous, very complex), to dramatically
increase their research productivity, and to amplify the social and economic



High-performance computers: status and outlook 75

impact of their work. It serves global scientific communities who need to
work together on problems of global significance and leverage distributed
resources in transnational configurations. In terms of feasibility, the dimen-
sions of the task – totally redesigning and recreating, in the period of just
a few years, the massive software foundation of computational science in
order to meet the new realities of extreme-scale computing – are simply too
large for any one country, or small consortium of countries, to undertake all
on its own.
Standardization is also a minimum requirement for broad international

collaboration on development of software components. In addition, the in-
ternational nature of the science will demand further development of global
data management tools and standards for shared data.
The development of an exascale computing capability, with machines ca-

pable of executing O(1018) operations per second in the 2018 time frame,
will be characterized by significant and dramatic changes in computing
hardware architecture from current (2011) petascale high-performance com-
puters. From the perspective of computational science, this will be at
least as disruptive as the transition from vector supercomputing to par-
allel supercomputing that occurred in the 1990s. Similar to that transition,
the achievement of scientific application performance commensurate with
the expected improvement in computing capability will require identify-
ing and/or developing mathematical models and numerical algorithms that
map efficiently onto exascale architectures, significant re-engineering of sci-
entific application codes supported by the corresponding development of
new programming models and system software appropriate for these new
architectures. Achieving these increases in capability by 2018 will require a
significant acceleration in the development of both hardware and software.
This could be accomplished through an intensive ‘co-design’ effort, where
system architects, application software designers, applied mathematicians,
and computer scientists work interactively to characterize and produce an
environment for computational science discovery that fully leverages these
significant advances in computational capability.

The algorithmic challenges

Advancing science in key areas requires development of next-generation
physical models to satisfy the accuracy and fidelity needs for targeted sim-
ulations. The impact of these simulation fidelity needs on requirements for
computational science is twofold. First, more complex physical models must
be developed to account for more aspects of the physical phenomena being
modelled. Second, for the physical models being used, increases in resolu-
tion for key system variables, such as numbers of spatial zones, time steps
or chemical species, are needed to improve simulation accuracy, which in
turn places higher demands on computational hardware and software.



76 J. J. Dongarra and A. J. van der Steen

Application models represent the functional requirements that drive the
need for certain numerical algorithms and software implementations. The
choice of model is in part motivated by the science objectives, but it is also
constrained by the computer hardware characteristics attainable in the rel-
evant time frame. The choice and specification of system attributes (e.g.,
peak speed or node memory capacity) tend to constrain the functional at-
tributes able to be employed in a given physical model on that system.
Science priorities lead to science models, and models are implemented in

the form of algorithms. Algorithm selection is based on various criteria,
such as appropriateness, accuracy, verification, convergence, performance,
parallelism and scalability.
Models and associated algorithms are not selected in isolation but must

be evaluated in the context of the existing computer hardware environment.
Algorithms that perform well on one type of computer hardware may be-
come obsolete on newer hardware, so selections must be made carefully and
may change over time.
Moving forward to exascale will put heavier demands on algorithms in at

least two areas: the need for increasing amounts of data locality in order
to perform computations efficiently, and the need to obtain much higher
factors of fine-grained parallelism as high-end systems support increasing
numbers of compute threads. As a consequence, parallel algorithms must
adapt to this environment, and new algorithms and implementations must
be developed to extract the computational capabilities of the new hardware.
As with science models, the performance of algorithms can change in two

ways as application codes undergo development and new computer hard-
ware is used. First, algorithms themselves can change, motivated by new
models or performance optimizations. Second, algorithms can be executed
under different specifications, e.g., larger problem sizes or changing accuracy
criteria. Both of these factors must be taken into account.
Significant new model development, algorithm redesign, and science ap-

plication code reimplementation, supported by (an) exascale-appropriate
programming model(s), will be required to effectively support the power of
exascale architectures. The transition from current sub-petascale and peta-
scale computing to exascale computing will be at least as disruptive as the
transition from vector to parallel computing in the 1990s.
Uncertainty quantification will permeate the exascale science workload.

The demand for predictive science results will drive the development of im-
proved approaches for establishing levels of confidence in computational pre-
dictions. Both statistical techniques involving large ensemble calculations
and other statistical analysis tools will have significantly different dynamic
resource allocation requirements than in the past, and the significant code
redesign required for the exascale will present an opportunity to embed
uncertainty quantification techniques in exascale science applications.



High-performance computers: status and outlook 77

New multicore-friendly and multicore-aware algorithms

Scalable multicore systems bring new computation/communication ratios.
Within a node, data transfers between cores are relatively inexpensive, but
temporal affinity is still important for effective cache use. Across nodes,
the relative cost of data transfer is growing very large. The development of
new algorithms that take these issues into account can often perform very
well, as do communication-avoiding algorithms that increase the computa-
tion/communication ratio or algorithms that support simultaneous compu-
tation/communication, or algorithms that vectorize well and have a large
volume of functional parallelism.

Adaptive response to load imbalance

Adaptive multiscale algorithms are an important part of the US Depart-
ment of Energy portfolio since they apply computational power precisely
where it is needed. However, they introduce challenging computational re-
quirements because they introduce dynamically changing computation that
results in load imbalances from a static distribution of tasks. As we move
towards systems with billions of processors, even naturally load-balanced al-
gorithms on homogeneous hardware will present many of the same daunting
problems with adaptive load balancing that are observed in today’s adaptive
codes. For example, software-based recovery mechanisms for fault-tolerance
or energy-management features will create substantial load imbalances as
tasks are delayed, by rollback, to a previous state or correction of detected
errors. Scheduling based on a directed acyclic graph also requires new ap-
proaches to optimizing for resource utilization without compromising spatial
locality. These challenges require development and deployment of sophis-
ticated software approaches to rebalance computation dynamically in re-
sponse to changing workloads and conditions of the operating environment.

Multiple precision algorithms/software

Algorithms and applications are becoming increasingly adaptive and we
have seen that various adaptivity requirements have become an essential,
key component of their roadmap to exascale computing. Another aspect
of this quest for adaptivity is related to the development of libraries that
recognize and exploit the presence of mixed-precision mathematics. A moti-
vation comes from the fact that, on modern architectures, the performance
of 32-bit operations is often at least twice as fast as the performance of
64-bit operations. Moreover, by using a combination of 32-bit and 64-bit
floating-point arithmetic, the performance of many linear algebra algorithms
can be significantly enhanced while maintaining the 64-bit accuracy of the
resulting solution. This can be applied not only to conventional processors
but also to other technologies such as GPUs, and thus can spur the creation



78 J. J. Dongarra and A. J. van der Steen

of mixed-precision algorithms that more effectively utilize heterogeneous
hardware.
Mixed-precision algorithms can easily provide substantial speed-up for

very little code effort by mainly taking into account existing hardware prop-
erties. Earlier work has shown how to derive mixed-precision versions for
various architectures and for a variety of algorithms for solving general
sparse or dense linear systems of equations. Typically, a direct method
is first applied in single precision in order to achieve a significant speed-up
compared to double precision. Then an iterative refinement procedure aims
at retrieving the lost digits. Iterative refinement can also be applied for
eigenvalue and singular-value computations.
Current topics of interest include the extension and incorporation of this

approach in applications that do not necessarily originate from linear al-
gebra, and studying the robustness of mixed-precision algorithms on large-
scale platforms. Indeed, the convergence of the mixed-precision iterative
refinement solvers strongly depends on the condition number of the matrix
at hand. The conditioning can be determined at runtime and proper preci-
sion can be selected. Ideally, the user could specify the required precision
for the result and the algorithm would choose the best combination of pre-
cision on the local hardware in order to achieve it. The actual mechanics
would be hidden from the user.

Fast implicit solvers

Carefully analysing complex problems, and adapting preconditioners to the
underlying problem physics, is how most of the progress in this area is be-
ing made. However, it is typically the case that advanced preconditioners
are composed of standard algebraic components such as advanced multi-
grid/multilevel methods, incomplete factorizations and basic smoothers.
Furthermore, we need to renew our focus on basic iterative methods in
an attempt to address bottlenecks due to collective operations (e.g., dot-
products) and poor kernel performance. Emphasis on block methods, re-
cycling methods, s-step-like methods and mixed-precision formulations will
be necessary to address the next generation of problems.

Communication avoiding and asynchronous algorithms

Algorithmic complexity is usually expressed in terms of the number of op-
erations performed rather than the quantity of data movement to memory.
This is antithetical to the true costs of computation, where memory move-
ment is very expensive and operations are nearly free. To address the critical
issue of communication costs, there is a need to investigate algorithms that
reduce communication to a minimum. One needs to derive bandwidth and
latency lower bounds for various dense and sparse linear algebra algorithms
on parallel and sequential machines, e.g., by extending the well-known lower



High-performance computers: status and outlook 79

bounds for the usualO(n3) matrix multiplication algorithm. Then one needs
to discover new algorithms that attain these lower bounds in many cases.
Second, for Krylov subspace methods such as GMRES, CG and Lanczos,
one should focus on taking k steps of these methods for the same commu-
nication costs as a single step.
In a seminal paper, Chazan and Miranker (1969) studied chaotic relax-

ation, now usually called asynchronous relaxation, for the solution of linear
systems. In chaotic relaxation, the order in which components of the solu-
tion are updated is arbitrary and the past values of components that are
used in the updates are also selected arbitrarily. This is a model for paral-
lel computation in which different processors work independently and have
access to data values in local memory.
When this and subsequent research was undertaken in the late 1960s and

1970s, it was largely theoretical: the existing computers did not have the
capability for massively parallel processing. Today we are at the extreme,
with the next generation of machines having O(109) program threads. We
are being challenged to devise algorithms and software that can effectively
exploit the parallel hardware systems that are being developed. When solv-
ing very large problems on parallel architectures the most significant con-
cern becomes the cost per iteration of the method – typically on account of
communication and synchronization overheads. This is especially the case
for Krylov methods, which are the most popular class of iterative meth-
ods for large sparse systems. This means that, for the first time, totally
asynchronous iterative algorithms will become competitive for a wide range
of application problems. Coping with fault tolerance, load balancing, and
communication overheads in a heterogeneous computation environment is
a challenging undertaking for software development. In traditional syn-
chronous algorithms each iteration can only be performed as quickly as the
slowest processor permits. If a processor fails, or is less capable, or has an
unduly heavy load, then this markedly impacts iteration times. The use of
asynchronous methods allows one to overcome many of the communication,
load-balancing and fault tolerance issues we now face and which limit our
ability to scale to the extreme.

Auto-tuning

Libraries need to have the ability to adapt to the possibly heterogeneous
environment in which they have to operate. The adaptation has to deal
with the complexity of discovering and implementing the best algorithm for
diverse and rapidly evolving architectures. This calls out for automating the
process, both for the sake of productivity and for correctness. Here, produc-
tivity refers both to the development time and the user’s time to solution.
The objective is to provide a consistent library interface that remains the
same for users independent of scale and processor heterogeneity, but which



80 J. J. Dongarra and A. J. van der Steen

achieves good performance and efficiency by binding to different underlying
code, depending on the configuration. The diversity and rapid evolution
of today’s platforms means that auto-tuning of libraries such as BLAS will
be indispensable to achieving good performance, energy efficiency, load bal-
ancing, etc., across this range of systems. In addition, the auto-tuning has
to be extended to frameworks that go beyond library limitations, and are
able to optimize data layout (such as blocking strategies for sparse ma-
trix/SpMV kernels), stencil auto-tuners (since stencil kernels are diverse
and not amenable to library calls), and even tuning of optimization strat-
egy for multigrid solvers (optimizing the transition between the multigrid
coarsening cycle and bottom-solver to minimize runtime). Adding heuristic
search techniques and combining them with traditional compiler techniques
will enhance the ability to address generic problems extending beyond linear
algebra.

Scheduling and memory management for heterogeneity and scale

Extracting the desired performance from environments that offer massive
parallelism, especially where additional constraints (e.g., limits on memory
bandwidth and energy) are in play, requires more sophisticated scheduling
and memory management techniques than have heretofore been applied to
linear algebra libraries. Another form of heterogeneity comes from con-
fronting the limits of domain-decomposition in the face of massive explicit
parallelism. Feed-forward pipeline parallelism can be used to extract ad-
ditional parallelism without forcing additional domain-decomposition, but
exposes the user to dataflow hazards. Ideas relating to a data flow-like
model, expressing parallelism explicitly in directed acyclic graphs, so that
scheduling tasks dynamically, support massive parallelism, and apply com-
mon optimization techniques to increase throughput. Approaches to iso-
lating side-effects include explicit approaches that annotate the input ar-
guments to explicitly identify their scope of reference, or implicit methods
such as using language semantics or strongly typed elements to render code
easier to analyse for side-effects by compiler technology. New primitives for
memory management techniques are needed that enable diverse memory
management systems to be managed efficiently and in coordination with
the execution schedule.

Fault tolerance and robustness for large-scale systems

Modern PCs may run for weeks without rebooting and most data servers are
expected to run for years. However, because of their scale and complexity,
today’s supercomputers run for only a few days before rebooting. Exas-
cale systems will be even more complex and have millions of processors in
them. The major challenge in fault tolerance is that faults in extreme-scale



High-performance computers: status and outlook 81

systems will be continuous rather than an exceptional event. This requires
a major shift from today’s software infrastructure. Every part of the exas-
cale software ecosystem has to be able to cope with frequent faults without
rebooting; otherwise applications will not be able to run to completion. The
system software must be designed to detect and adapt to frequent failure
of hardware and software components. On today’s supercomputers every
failure kills the application running on the affected resources. These applica-
tions have to be restarted from the beginning or from their last checkpoint.
The checkpoint/restart technique will not be an effective way to utilize ex-
ascale systems, because checkpointing will not scale to such highly parallel
systems. With the potential that exascale systems will be having constant
failures somewhere across the system, application software is not going to
be able to rely on checkpointing to cope with faults. A new fault will oc-
cur before the application could be restarted, causing the application to get
stuck in a state of constantly being restarted. For exascale systems, new
fault-tolerant paradigms will need to be developed and integrated into both
existing and new applications.
Research in the reliability and robustness of exascale systems for run-

ning large simulations is critical to the effective use of these systems. New
paradigms must be developed for handling faults within both the system
software and user applications. Equally important are new approaches for
integrating detection algorithms, in both the hardware and software, and
new techniques to help simulations adapt to faults.

Building energy efficiency into algorithms foundations

It is widely recognized that emerging constraints on energy consumption
will have pervasive effects on HPC. Energy reduction depends on software
as well as hardware. Power and energy consumption must now be added
to the traditional goals of algorithm design, namely correctness and per-
formance. The emerging metric of merit becomes performance per watt.
Consequently, we believe it is essential to build power and energy aware-
ness, control and efficiency into the foundations of our numerical libraries.
First and foremost this will require us to develop standardized interfaces
and APIs for collecting energy consumption data, just as PAPI has done for
hardware performance counter data. Accurate and fine-grained measure-
ment of power consumption underpins all tools that seek to improve such
metrics (anything that cannot be measured cannot be improved). Secondly,
we must use these tools to better understand the effects that energy-saving
hardware features have on the performance of linear algebra codes. Finally,
we must identify parameters and alternative execution strategies for each
numerical library that can be tuned for energy-efficient executions, and to
enhance our schedulers for better low-energy execution.



82 J. J. Dongarra and A. J. van der Steen

Sensitivity analysis

Many areas of modelling and simulation are still pushing to reach high-
fidelity solutions to a given set of input conditions. However, as performance
and fidelity improves, it becomes possible and imperative to study the sen-
sitivity of a model to parameter variability and uncertainty, and to seek an
optimal solution over a range of parameter values. The most basic form, the
forward method for either local or global sensitivity analysis, simultaneously
runs many instances of the model or its linearization, leading to an embar-
rassingly parallel execution model. The adjoint sensitivity method, with its
powerful capabilities for efficiently computing the sensitivity of an output
functional with respect to perturbations in a great many parameters, is a
workhorse algorithm in weather prediction and in engineering design such
as shape optimization. It requires the simulation of the forward and the
adjoint problem; hence its parallelization will depend on the capability for
highly efficient simulation.

Multiscale/multiphysics modelling

Engineering is increasingly operating at the micro- and nanoscales to achieve
objectives at the macroscale. Models of these processes are intrinsically mul-
tiscale and multiphysics. For example, electrochemically reactive surfaces
play a central role in the fabrication as well as the functional capabilities
of an enormous variety of technological systems. Precise control of surface
processes during fabrication is required in applications including on-chip in-
terconnections between transistors, decorative and industrial coatings, bat-
teries for electric vehicles, thin-film photovoltaic solar devices, magnetic ma-
terials, and patterned deposits for sensors. Surface processes are occurring
at the nanoscale and must be modelled by kinetic Monte Carlo methods,
whereas reactions and diffusion in the electrolyte can be modelled by deter-
ministic methods (i.e., PDEs). The two computations must be dynamically
linked. Such a computation is very demanding and is currently consuming
huge numbers of cycles on NCSA’s supercomputers, with only modest res-
olution of the problem domain. Simulation is only the tip of the iceberg of
this type of problem, where parameter estimation and optimal design are
the ultimate goals and require orders of magnitude more computation time.
Cell biology is another area where processes operating at the microscale

yield change at the macroscale (phenotypical change). In microscopic sys-
tems formed by living cells, the small numbers of some reactant molecules
can result in dynamical behaviour that is discrete and stochastic rather
than continuous and deterministic. An analysis tool that respects these dy-
namical characteristics is the stochastic simulation algorithm (SSA), which
applies to well-stirred (spatially homogeneous) chemically reacting systems.
Usually, a large ensemble of SSA simulations is used to estimate the proba-
bility density functions of important variables in the system. This leads to



High-performance computers: status and outlook 83

an embarrassingly parallel implementation. At the same time, cells are not
spatially homogeneous. Spatio-temporal gradients and patterns play an im-
portant role in many cellular processes. The modelling of stochastic diffusive
transfers between subvolumes is an important challenge for parallelization.

Summary

The move to extreme-scale computing will require tools for understand-
ing complex behaviour and for performance optimization to be based on a
knowledge-oriented process. Performance models and expectations will be
used to drive knowledge-based investigation and reasoning. It will raise the
level at which tools inter-operate and can be integrated with the application
development and execution environment. The challenges for performance
analysis and tuning will grow, as performance interactions and factor anal-
ysis must involve a whole system perspective.
The co-design methodology is iterative, requiring frequent interactions

among hardware architects, systems software experts, designers of program-
ming models, and implementers of the science applications that provide
the rationale for building extreme-scale systems. As new ideas and ap-
proaches are identified and pursued, some will fail. As with past experi-
ence, there may be breakthroughs in hardware technologies that result in
different micro- and macro-architectures becoming feasible and desirable,
but they will require rethinking of certain algorithmic and system software
implementations.

13.1. Technology trends and their impact on exascale

The design of the extreme-scale platforms that are expected to become
available in 2018 will represent a convergence of technological trends and
the boundary conditions imposed by over half a century of algorithm and
application software development. Although the precise details of these new
designs are not yet known, it is clear that they will embody radical changes
along a number of different dimensions as compared to the architectures
of today’s systems, and that these changes will render obsolete the cur-
rent software infrastructure for large-scale scientific applications. The first
step in developing a plan to ensure that appropriate system software and
applications are ready and available when these systems come on line, so
that leading-edge research projects can actually use them, is to carefully
review the underlying technological trends that are expected to have such a
transformative impact on computer architecture in the next decade. These
factors and trends, which we summarize in this section, provide essential
context for thinking about the looming challenges of tomorrow’s scientific
software infrastructure; by describing them, therefore, we lay the founda-
tions for our narrative structure.



84 J. J. Dongarra and A. J. van der Steen

Technology trends

In developing a roadmap for the X-stack software infrastructure, the IESP
has been able to draw on several thoughtful and extensive studies of impacts
of the current revolution in computer architecture (Kogge et al. 2008, Sarkar
et al. 2009). As these studies make clear, technology trends over the next
decade – broadly speaking, increases of 1000× in capability over today’s
most massive computing systems, in multiple dimensions, as well as in-
creases of similar scale in data volumes – will force a disruptive change
in the form, function, and inter-operability of future software infrastruc-
ture components and the system architectures incorporating them. The
momentous nature of these changes can be illustrated for several critical
system-level parameters.

Concurrency. Moore’s Law scaling in the number of transistors is expected
to continue to the end of the next decade, at which point the minimal VLSI
geometries will be as small as five nanometres. Unfortunately, the end of
Dennard scaling means that clock rates are no longer keeping pace, and may
in fact be reduced in the next few years to reduce power consumption. As a
result, the exascale systems on which the X-stack will run will likely be com-
posed of hundreds of millions of arithmetic logic units (ALUs). Assuming
there are multiple threads per ALU to cover main-memory and networking
latencies, applications may contain ten billion threads.

Reliability. System architecture will be complicated by the increasingly
probabilistic nature of transistor behaviour due to reduced operating volt-
ages, gate oxides, and channel widths/lengths resulting in very small noise
margins. Given that state-of-the-art chips contain billions of transistors
and the multiplicative nature of reliability laws, building resilient comput-
ing systems out of such unreliable components will become an increasing
challenge. This cannot be cost-effectively addressed with pairing or TMR;
rather, it must be addressed by X-stack software and perhaps even scientific
applications.

Power consumption. Twenty years ago, HPC systems consumed less
than a megawatt. The Earth Simulator was the first such system to exceed
10 MW. Exascale systems could consume over 100 MW, and few of today’s
computing centres have either adequate infrastructure to deliver such power
or the budgets to pay for it. The HPC community may find itself measuring
results in terms of power consumed, rather than operations performed. The
X-stack and the applications it hosts must be conscious of this situation and
act to minimize it.

Similarly dramatic examples could be produced for other key variables,
such as storage capacity, efficiency, and programmability.



High-performance computers: status and outlook 85

More importantly, a close examination shows that changes in these pa-
rameters are interrelated and not orthogonal. For example, scalability will
be limited by efficiency, as are power and programmability. Other cross-
correlations can be perceived through analysis. The US Defense Advanced
Research Projects Agency (DARPA) Exascale Technology Study (Kogge
et al. 2008) exposes power as the pace-setting parameter. Although an ex-
act power consumption constraint value is not yet well defined, with upper
limits of today’s systems of the order of 5 megawatts, increases of an order
of magnitude in less than 10 years will extend beyond the practical energy
demands of all but a few strategic computing environments. A politico-
economic pain threshold of 25 megawatts has been suggested (by DARPA)
as a working boundary. With dramatic changes to core architecture de-
sign, system integration, and programming control over data movement,
best estimates for CMOS-based systems at the 11-nanometre feature size
is a factor of three to five times this amount. One consequence is that
clock rates are unlikely to increase substantially. Among the controversial
questions is how much instruction-level parallelism (ILP) and speculative
operation is likely to be incorporated on a per processor core basis and the
role of multi-threading in subsuming more of the fine-grained control space.
Data movement across the system, through the memory hierarchy, and even
for register-to-register operations will likely be the single principal contrib-
utor to power consumption, with control adding to this appreciably. Since
future systems can ill afford the energy wasted by data movement that does
not advance the target computation, alternative ways of hiding latency will
be required in order to guarantee, as much as possible, the utility of every
data transfer. Even taking into account the wastefulness of today’s conven-
tional server-level systems and the energy gains that careful engineering has
delivered for systems such as BlueGene/P, an improvement of two orders of
magnitude, will still be required.
As a result of these and other observations, exascale system architecture

characteristics are beginning to emerge, though the details will become clear
only as the systems themselves actually develop. Among the critical aspects
of future systems, available by the end of the next decade, which we can
predict with some confidence are the following:

• feature size of 22 to 11 nanometres, CMOS in 2018,

• total average of 25 picojoules per floating-point operation,

• approximately 10 billion-way concurrency for simultaneous operation
and latency hiding,

• 100 million to 1 billion cores,

• clock rates of 1 to 2 GHz,

• multi-threaded, fine-grained concurrency of 10- to 100-way concurrency
per core,



86 J. J. Dongarra and A. J. van der Steen

• hundreds of cores per die (varies dramatically depending on core type
and other factors),

• global address space without cache coherence, and extensions to PGAS
(e.g., AGAS),

• 128-petabyte capacity mix of DRAM and non-volatile memory (most
expensive subsystem),

• explicitly managed high-speed buffer caches; part of deep memory hi-
erarchy,

• optical communications for distances >10 centimetres, possibly inter-
socket,

• optical bandwidth of 1 terabit per second,

• systemwide latencies of the order of tens of thousands of cycles,

• active power management to eliminate wasted energy by currently un-
used cores,

• fault tolerance by means of graceful degradation and dynamically re-
configurable structures,

• hardware-supported rapid thread context switching,

• hardware-supported efficient message-to-thread conversion for message-
driven computation,

• hardware-supported, lightweight synchronization mechanisms,

• 3D packaging of dies for stacks of four to ten dies, each including
DRAM, cores, and networking.

Because of the nature of the development of the underlying technology,
most of the predictions above have an error margin of +/–50% or a factor
of two, independent of specific roadblocks that may prevent us reaching the
predicted value.
The list quoted above demonstrates the large variety of items that have

to change significantly in order to reach the goal of a 1000× acceleration
of HPC systems in the 2018–2020 timeframe. It is clear from this list that
we cannot expect the current hardware technology to satisfy all these re-
quirements. Two components that were traditionally considered less crucial
than the processors are the memory system and the interconnect network.
The perspective has changed drastically in this respect: data movement
at low energy level has become a prime target and both the memory and
the network are involved in this. We look in more detail at two of the
most important directions that may help exaflop/s systems to come about:
non-volatile memory and optical network components.

Non-volatile memory

The use of non-volatile memory, i.e., memory that retains its contents when
no current is applied, is important for two reasons. The first, obvious one



High-performance computers: status and outlook 87

Contact

Free layer

Interlayer spacing

Fixed layer

Substrate

(a) (b)

Figure 13.1. An MRAM memory cell:
(a) represents 0, (b) represents 1.

is that it is much more energy-efficient than the currently used DRAM
technology, where the contents must be refreshed continuously. A second
reason is connected with the present way DRAM is implemented: the feature
size is currently in the range of 40 nm and it can still be shrunk somewhat
by using 3D techniques instead of the planar technology that is used today
(Intel and Samsung will ship 3D memory chips shortly). However, already
the leak current occurring within the chips is quite significant, and it will
only increase when the memory cells are more densely packed. This increases
both energy costs and unreliability. Therefore new memory technologies are
urgently needed.
Various interesting alternatives are actively being researched. Among

them are magnetic RAM (MRAM), ferro-magnetic RAM (FRAM) and
memristors (a special form of FRAM). From these three technologies spin
torque transfer MRAM and FRAM are already in production, though still
with a density that is not suitable for use in (HPC) memory. Both are,
however, used in embedded processors and sensors where low energy con-
sumption is of prime importance. FRAM and, consequently, memristors are
based on the magnetic hysteresis effect, while MRAM is based on the giant
magneto-resistive effect, as is also employed in present-day spinning disks.
The MRAM implementation is, however, static. A memory cell is depicted
in Figure 13.1.
When the magnetic field orientations in the fixed and free layers are oppo-

site (Figure 13.1(a)), the total magnetic moment is much lower than when
they are aligned (Figure 13.1(b)). This difference can be sensed and inter-
preted as a 0, resp. 1 value. The magnetic field of the free layer can be
changed by a spin-polarized current, thus writing a 0 or a 1 value.
Hewlett-Packard, the first company that was able to demonstrate mem-

ristor memory, has teamed up with Hynix, a memory production company, please check
projected
dates

to make commercial memristor products which are scheduled for late 2012
or early 2013.



88 J. J. Dongarra and A. J. van der Steen

(a) (b) (c) (d)

Figure 13.2. Three functions of a ring resonator. (a) It resonates in phase
with the light waves and diverts the light signal. (b) It does not resonate,
and lets the light signal pass. (c) Through resonation it transfers the
signal to another wave guide, thus acting as a switch. (d) A doped
resonator picks up a signal of a pre-defined wavelength and so acts as a
signal detector.

Optical networks

Just as for memory, interconnect networks already consume a significant
amount of energy, irrespective of whether they are used, because the network
switches must be ready to pass on incoming messages at any time. In
addition, the signalling speed of the wires that are employed start to pose
problems with respect to signal integrity when the clock frequency of the
communication engines increase. The increase of this frequency therefore
has a negative impact both on the energy consumption (as in any electronic
device) and on the reliability of the message transfer. This is why there
is active research to implement the networks with optical components with
as few electronic-optical transitions as possible. A big step forward in this
respect is the development of the so-called ring resonator. A ring resonator
is a minute glass ring with a size of ≈ 5 μm, and it is possible to make it
resonate in phase with the light waves that pass along it in an optical wave
guide. Figure 13.2 shows the three functions that the resonator can fulfil.
According to its position and properties it can act as a modulator blocking
or passing signals as desired (Figure 13.2(a, b)). When it is coupled with
another wave guide and made to resonate with the right frequency, it will
pass the signal on to this wave guide (Figure 13.2(c)), thus implementing
a switching function. Lastly, it can act as a signal detector when the ring
is doped to tune it to a signal of a desired wavelength (Figure 13.2(d)).
The advantages of this optical switching are many. The bandwidth of the
interconnection can be quite high because multiple wavelengths can be sent
through the same wave guide. Furthermore, optical signals do not interfere
with each other as electrical signals do when they are near each other. In
addition, the power consumption is much lower than that of its electronic
equivalent. Unfortunately there are also drawbacks. The rings are very
sensitive to temperature changes, so for proper operation they must either be



High-performance computers: status and outlook 89

in an extremely well-controlled environment with respect to temperature, or
provisions must be made on the rings themselves to keep their temperature
constant. This is technologically possible but greatly complicates the design.
At present, optical switches are still in the laboratory phase or moving to

a preproduction stage, so it will take another few years for them to emerge
in commercial HPC systems. Yet there is little doubt that this path will be
taken, as there are virtually no alternatives.

Science trends

A basic driver of the IESP is the fact that the complexity of advanced
challenges in science and engineering continues to outpace our ability to ad-
equately address them through available computational power. Many phe-
nomena can be studied only through computational approaches: well-known
examples include simulating complex processes in climate and astrophysics.
Increasingly, experiments and observational systems are finding that not
only are the data they generate exceeding petabytes and rapidly heading
toward exabytes, but the computational power needed to process the data
is also expected to be in exaflop/s range.
A number of reports and workshops have identified key science challenges

and applications of societal interest that require computing at exaflops levels
and beyond (Stevens, Zacharia and Simon 2008, US Department of Energy
2008, 2009a–i, 2010, US National Research Council Committee 2008). Here
we summarize some of the significant findings on the scientific necessity of
exascale computing; we focus primarily on the need for the software en-
vironments needed to support the science activities. The US Department
of Energy held eight workshops in the past year that identified science ad-
vances and important applications that will be enabled through the use of
exascale computing resources. The workshops covered the following topics:
climate, high-energy physics, nuclear physics, fusion energy sciences, nu-
clear energy, biology, materials science and chemistry, and national nuclear
security. The US National Academy of Sciences published the results of a
study in the report ‘The potential impact of high-end capability computing
on four illustrative fields of science and engineering’ (US National Research
Council Committee 2008). The four fields were astrophysics, atmospheric
sciences, evolutionary biology, and chemical separations.
Likewise, the US National Science Foundation has embarked on a peta-

scale computing programme that has funded dozens of application teams
via its Peta-Apps and PRAC programmes, across all areas of science and
engineering, to develop petascale applications, and is deploying petaflops
systems. It has commissioned a series of task forces to help plan for the
transition from petaflops to exaflops computing facilities, to support the
software development necessary, and to understand the specific science and
engineering needs beyond petascale.



90 J. J. Dongarra and A. J. van der Steen

Similar activities are seen in Europe and Asia, all reaching similar conclu-
sions: significant scientific and engineering challenges in both simulation and
data analysis already exceed petaflops and are rapidly approaching exaflop-
class computing needs. In Europe, the Partnership for Advanced Comput-
ing in Europe (PRACE) involves twenty partner countries, supports access
to world-class computers, and has activities aimed at supporting multi-
petaflops and eventually exaflop-scale systems for science. The European
Union is also planning to launch projects aimed at petascale and exascale
computing and simulation. Japan has a project to build a 10-petaflop/s
system and has historically supported the development of software for key
applications such as climate. As a result, scientific and computing commu-
nities, and the agencies that support them in many countries, have been
meeting to plan joint activities that will be needed to support these emerg-
ing science trends.
To give a specific and timely example, a recent report, ‘Science prospects

and benefits with exascale computing’ (Kothe 2007, p. 9) states that the
characterization of abrupt climate change will require sustained exascale
computing in addition to new paradigms for climate change modelling. The
types of questions that could be tackled with exascale computing (and can-
not be tackled adequately without it) include the following:

• How do the carbon, methane, and nitrogen cycles interact with climate
change?

• How will local and regional water, ice, and clouds change with global
warming?

• How will the distribution of weather events, particularly extreme events,
determine regional climate change with global warming?

• What are the future sea-level and ocean circulation changes?

Among the findings of the astrophysics workshop and other studies are
that exascale computing will enable cosmology and astrophysics simulations
aimed at the following:

• measuring the masses and interactions of dark matter,

• understanding and calibrating supernovae as probes of dark energy,

• determining the equation of state of dark energy,

• understanding the nature of gamma-ray bursts.

Energy security

The search for a path forward in ensuring sufficient energy supplies in the
face of a climate-constrained world faces a number of technical challenges,
ranging from issues related to novel energy technologies, to issues related to
making existing energy technologies more (economically) effective and safer,
to issues related to the verification of international agreements regarding the



High-performance computers: status and outlook 91

emission (and possible sequestration) of CO2 and other greenhouse gases.
Among the science challenges are the following:

• verification of ‘carbon treaty’ compliance,

• improvement in the safety, security, and economics of nuclear fission,

• improvement in the efficiency of carbon-based electricity production
and transportation,

• improvement in the reliability and security in the (electric) grid,

• nuclear fusion as a practical energy source.

Computational research will also play an essential role in the development
of new approaches to meeting future energy requirements (e.g., wind, so-
lar, biomass, hydrogen, and geothermal), which in many cases will require
exascale power.
Industrial applications, such as simulation-enhanced design and produc-

tion of complex manufactured systems and rapid virtual prototyping, will
also be enabled by exascale computing. To characterize materials deforma-
tion and failure in extreme conditions will require atomistic simulations on
engineering time scales that are out of reach with petascale systems.
A common theme in all of these studies of the important science and en-

gineering applications that are enabled by exaflops computing power is that
they have complex structures and present programming challenges beyond
just scaling to many millions of processors. For example, many of these
applications involve multiple physical phenomena spanning many decades
of spatial and temporal scale. As the ratio of computing power to mem-
ory grows, the ‘weak scaling’ that has been exploited for most of the last
decade will increasingly give way to ‘strong scaling’, which will make sci-
entific applications increasingly sensitive to overhead and noise generated
by the X-stack. These applications are increasingly constructed from com-
ponents developed by computational scientists worldwide, and the X-stack
must support the integration and performance portability of such software.

Key requirements imposed by trends on the X-stack

The cited trends in technology and applications will impose severe con-
straints on the design of the X-stack. Below are cross-cutting issues that
will affect all aspects of system software and applications at exascale.

Concurrency. A 1000× increase in concurrency for a single job will be
necessary to achieve exascale throughput. New programming models will
be needed to enable application groups to address concurrency in a more
natural way. This capability will likely have to include ‘strong scaling’
because growth in the volume of main memory will not match that of the
processors. This in turn will require minimizing any X-stack overheads that
might otherwise become a critical Amdahl fraction.



92 J. J. Dongarra and A. J. van der Steen

Energy. Since much of the power in an exascale system will be expended
moving data, both locally between processors and memory as well as glob-
ally, the X-stack must provide mechanisms and APIs for expressing and
managing data locality. These will also help minimize the latency of data
accesses. APIs also should be developed to allow applications to suggest
other energy saving techniques, such as turning cores on and off dynami-
cally, even though these techniques could result in other problems, such as
more faults/errors.

Resiliency. The VLSI devices from which exascale systems will be con-
structed will not be as reliable as those used today. All software, and there-
fore all applications, will have to address resiliency in a thorough way if
they are to be expected to run at scale. Hence, the X-stack will have to
recognize and adapt to errors continuously, as well as provide the support
necessary for applications to do the same.

Heterogeneity. Heterogeneous systems offer the opportunity to exploit
the extremely high performance of niche market devices such as GPUs and
game chips (e.g., STI Cell) while still providing a general-purpose platform.
An example of such a system today is Tokyo Tech’s Tsubame, which incor-
porates AMD Opteron CPUs along with ClearSpeed and NVIDIA acceler-
ators. Simultaneously, large-scale scientific applications are also becoming
more heterogeneous, addressing multiscale problems spanning multiple dis-
ciplines.

I/O and memory. Insufficient I/O capability is a bottleneck today. On-
going developments in instrument construction and simulation design make
it clear that data rates can be expected to increase by several orders of
magnitude over the next decade. The memory hierarchy will change based
on both new packaging capabilities and new technology. Local RAM and
NVRAM will be available either on or very close to the nodes. The change
in memory hierarchy will affect programming models and optimization.

Relevant politico-economic trends

The HPC market is growing at approximately 11% per year. The largest-
scale systems, those that will support the first exascale computations at
the end of the next decade, will be deployed by government computing
laboratories to support the quest for scientific discovery. These capabil-
ity computations often consume an entire HPC system and pose difficult
challenges for concurrent programming, debugging and performance opti-
mization. Thus, publicly funded computational scientists will be the first
users of the X-stack and have a tremendous stake in seeing that suitable
software exists, which is the raison d’être for IESP.



High-performance computers: status and outlook 93

In the late 1980s, the commercial engineering market place, spanning
diverse fields such as computer-aided engineering and oil reservoir mod-
elling, used the same computing platforms and often the same software as
the scientific community. This is far less the case today. The commercial
workload tends to be more capacity-oriented, involving large ensembles of
smaller computations. The extreme levels of concurrency necessary for ex-
ascale computing suggests that this trend may not change, so the demand
for those features of the X-stack is not unique to exascale computing for
scientific computing. On the other hand, the HPC vendor community is
eager to work with, and leverage the research and development effort of,
the IESP software community. To that end, plans for cooperation and co-
ordination between the IESP software and the HPC vendor community are
being developed.

REFERENCES7

C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu and W.
Zwaenepoel (1995), ‘TreadMarks: Shared memory computing on networks of
workstations’, IEEE Computer 29, 18–28.
www.cs.rice.edu/˜willy/TreadMarks/papers.htm

G. Bell (1999), The next ten years of supercomputing. In Proc. 14th Supercomputer
Conference (H. W. Meuer, ed.), MaxionMedia (CD-ROM).

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic
and Wen-King Su (1995), ‘Myrinet: A gigabit-per-second local area network’,
IEEE Micro 15, 29–36.

R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald and R. Menon (2001),
Parallel Programming in OpenMP, Morgan Kaufmann.

B. Chapman, G. Jost and R. van der Pas (2007), Using OpenMP, MIT Press.

D. Chazan and W. Miranker (1969), ‘Chaotic relaxation’, Linear Algebra Appl. 2,
199–222.

D. E. Culler, J. P. Singh and A. Gupta (1998), Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufmann.

D. W. Doerfler (2005), An analysis of the PathScale Inc. InfiniBand host channel
adapter, InfiniPath. Sandia report SAND2005-5199, Sandia National Labo-
ratories.

J. Dongarra (2011), Performance of various computers using linear equations soft-
ware. www.netlib.org/benchmark/performance.ps

J. Dongarra, P. Beckman, et al. (2011), ‘The International Exascale Software
roadmap’, Internat. J. High Performance Computer Applications, 25, 3–60.

M. J. Flynn (1972), ‘Some computer organizations and their effectiveness’, IEEE
Trans. Comput. C-21, 948–960.

7 The URLs cited in this work were correct at the time of going to press, but the publisher
and the authors make no undertaking that the citations remain live or are accurate or
appropriate.



94 J. J. Dongarra and A. J. van der Steen

A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jaing and V. Sunderam (1994),
PVM: A Users’ Guide and Tutorial for Networked Parallel Computing, MIT
Press.

W. Gropp, S. Huss-Ledermann, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir and
M. Snir (1998), MPI: The Complete Reference, Vol. 2, The MPI Extensions,
MIT Press.

D. B. Gustavson and Q. Li (1995), Local-area multiprocessor: The Scalable Coher-
ent Interface. SCIzzL Report, Department of Computer Engineering, Santa
Clara University, available via www.scizzl.com.

High Performance Fortran Forum (1993), ‘High Performance Fortran language
specification’, Scientific Programming, 2, 1–170.

R. W. Hockney and C. R. Jesshope (1988), Parallel Computers II, Adam Hilger.
T. Horie, H. Ishihata, T. Shimizu, S. Kato, S. Inano and M. Ikesaka (1991), AP1000

architecture and performance of LU decomposition. In Proc. Internat. Sym-
posium on Supercomputing, pp. 46–55.

D. V. James, A. T. Laundrie, S. Gjessing and G. S. Sohi (1990), ‘Scalable coherent
interface’, IEEE Computer 23, 74–77. See also ‘Scalable coherent interface’:
sunrise.scu.edu/

P. M. Kogge et al. (2008), ExaScale computing study: Technology challenges in
achieving exascale systems. US Defense Advanced Research Projects Agency
report, DARPA Information Processing Techniques Office.
users.ece.gatech.edu/˜mrichard/ExascaleComputingStudyReports/←↩
exascale final report 100208.pdf

D. B. Kothe (2007), Science prospects and benefits with exascale computing. Re-
port ORNL/TM-2007/232, National Center for Computational Sciences, Oak
Ridge National Laboratory.
www.nccs.gov/wp-content/media/nccs reports/Science%20Case%20 ←↩
012808%20v final.pdf

J. Langou, J. Langou, P. Luszczek, J. Kurzuk, A. Buttari and J. J. Dongarra (2006),
Exploiting the performance of 32-bit floating point arithmetic in obtaining
64-bit accuracy. In Proc. 2006 ACM/IEEE Conference on Supercomputing.

H. W. Meuer (1994), The Mannheim supercomputer statistics 1986–1992. Top500

report 1993, University of Mannheim.
H. W. Meuer, E. Strohmaier, J. J. Dongarra and H. D. Simon (2011), Top500.

Available at www.top500.org.
V. Sarkar et al. (2009), ExaScale software study: Software challenges in ex-

treme scale systems. US Defense Advanced Research Projects Agency report,
DARPA Information Processing Techniques Office.
users.ece.gatech.edu/˜mrichard/ExascaleComputingStudyReports/ECSS%20←↩
report%20101909.pdf

C. Schow, F. Doany and J. Kash (2010), ‘Get on the optical bus’. IEEE Spectrum,
September 2010, 31–35.

T. Shanley (2002), InfiniBand Network Architecture, Addison-Wesley.
H. D. Simon (1994), High performance computing in the US. Top500 report 1993,

University of Mannheim, 116–147.
M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra (1998), MPI: The

Complete Reference, Vol. 1, The MPI Core, MIT Press.



High-performance computers: status and outlook 95

D. H. M. Spector (2000), Building Unix Clusters, O’Reilly.

A. J. van der Steen (1990), Exploring VLIW: Benchmark tests on a multi-
flow TRACE 14/300. Technical Report TR-31, Academic Computing Centre
Utrecht.

A. J. van der Steen, ed. (1995), Aspects of Computational Science, NCF.

A. J. van der Steen (2000), An evaluation of some Beowulf clusters. Technical Re-
port WFI-00-07, Department of Computational Physics, Utrecht University.
Also available through www.euroben.nl, directory reports/.

A. J. van der Steen (2010), Overview of recent supercomputers. www.euroben.nl,
directory reports/.)

T. L. Sterling, J. Salmon, D. J. Becker and D. F. Savaresse (1999), How to Build
a Beowulf, MIT Press.

R. Stevens, T. Zacharia and H. Simon (2008), Modeling and simulation at the
exascale for energy and the environment. Town Hall Meetings Report, US
Department of Energy Office of Advance Scientific Computing Research.
www.sc.doe.gov/ascr/ProgramDocuments/Docs/TownHall.pdf

E. Strohmaier, J. J. Dongarra, H. W. Meuer and H. D. Simon (1999), ‘The mar-
ketplace of high-performance computing’, Parallel Computing 25, 1517.

US Department of Energy (2008), Challenges in climate change science and the role
of computing at the extreme scale. Department of Energy report, Scientific
Grand Challenges Workshop Series.
www.er.doe.gov/ascr/ProgramDocuments/Docs/ClimateReport.pdf.

US Department of Energy (2009a), Forefront questions in nuclear science and the
role of high performance computing: Summary report. Department of Energy
Workshop Report, Washington DC.
extremecomputing.labworks.org/nuclearphysics/PNNL 18739 ←↩
onlineversion opt.pdf

US Department of Energy (2009b), Cross-cutting technologies for computing at the
exascale. Department of Energy report, Scientific Grand Challenges Work-
shop Series.
extremecomputing.labworks.org/crosscut/CrosscutWSFinalReptDraft02.pdf

US Department of Energy (2009c), Fusion energy science and the role of computing
at the extreme scale. Department of Energy report, Scientific Grand Chal-
lenges Workshop Series.
extremecomputing.labworks.org/fusion/PNNL Fusion final19404.pdf

US Department of Energy (2009d), Science based nuclear energy systems enabled
by advanced modeling and simulation at the extreme scale. Department of
Energy Workshop Report, Washington, DC.
www.er.doe.gov/ascr/ProgramDocuments/Docs/SC-NEWorkshopReport.pdf

US Department of Energy (2009e), Discovery in basic energy sciences: The role
of computing at the extreme scale. Department of Energy report, Scientific
Grand Challenges Workshop Series.

US Department of Energy (2009f), Opportunities in biology at the extreme scale of
computing. Department of Energy report, Scientific Grand Challenges Work-
shop Series.
www.er.doe.gov/ascr/ProgramDocuments/Docs/BiologyReport.pdf



96 J. J. Dongarra and A. J. van der Steen

US Department of Energy (2009g), Scientific grand challenges in national security:
The role of computing at the extreme scale. Department of Energy report,
Scientific Grand Challenges Workshop Series.
www.er.doe.gov/ascr/ProgramDocuments/Docs/NNSAGrandChallenges←↩
Report.pdf

US Department of Energy (2009h), Architectures and technology for extreme scale
computing. Department of Energy report, Scientific Grand Challenges Work-
shop Series.

US Department of Energy (2009i), Scientific challenges for understanding the quan-
tum universe and the role of computing at extreme scale: Summary report.
Department of Energy report, Scientific Grand Challenges Workshop Series.
extremecomputing.labworks.org/highenergyphysics/reports/←↩
HEPreport101609 final.pdf

US Department of Energy (2010), Exascale workshop panel meeting report. De-
partment of Energy report, Scientific Grand Challenges Workshop Series.
www.er.doe.gov/ascr/ProgramDocuments/Docs/Trivelpiece←↩
ExascaleWorkshop.pdf

US National Research Council Committee (2008), The potential impact of high-
end capability computing on four illustrative fields of science and engineering.
US National Academy of Sciences.

G. V. Wilson (1994), Chronology of major developments in parallel computing and
supercomputing.
ftp://ftp.cs.toronto.edu/csri-technical-reports/312/csri312.ps.gz

P. R. Woodward (1996), ‘Perspectives on Supercomputing’, Computer 10, 99–111.

Online resources

Co-Array Fortran: www.co-array.org/
DSM systems: www.cs.umd.edu/˜keheler/dsmbiblio/dsmbiblio.html
OpenMP Application Interface, version 2.5: www.openmp.org/
Task Force on Cluster Computing: www.clustercomputing.org
Unified Parallel C: upc.gwu.edu/


