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Abstract

This article describes the context, design, and recent development of the LAPACK for clus-

ters (LFC) project. It has been developed in the framework of Self-Adapting Numerical Soft-

ware (SANS) since we believe such an approach can deliver the convenience and ease of use of

existing sequential environments bundled with the power and versatility of highly tuned par-

allel codes that execute on clusters. Accomplishing this task is far from trivial as we argue in

the paper by presenting pertinent case studies and possible usage scenarios.
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1. Introduction

Judging by the evolution and current state of the high performance computing in-

dustry, it is rather apparent that a steady growth of performance level is easier to
achieve in hardware than in software. The computer hardware industry (and its high

performance branch in particular) continues to follow Moore’s law [1,2] which on

one hand makes the integrated circuits faster but, on the other hand, more complex

and harder to use. At the same time, the software creation process remains un-

changed [3,4]. As the chip fabrication technologies change, the same gate logic will
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invariably yield the same performance, regardless of the underlying electronic cir-

cuitry, as long as the clock speed is adequate. In contrast, performance of highly

tuned software can differ drastically downward upon even slight changes in the hard-

ware. Consequently, a different approach to software design needs to be taken as op-

posed to the practices from the hardware manufacturing community. Self-Adapting
Numerical Software (SANS) systems are intended to meet this significant challenge

[5]. In particular, the LAPACK for clusters (LFC) project [6] focuses on issues re-

lated to solving linear systems for dense matrices on highly parallel systems.

Driven by the desire of scientists for ever higher levels of detail and accuracy in

their simulations, the size and complexity of required computations is growing at

least as fast as the improvements in processor technology. Scientific applications

need to be tuned to extract near peak performance even as hardware platforms

change underneath them. Unfortunately, tuning even the simplest real-world opera-
tions for high performance usually requires an intense and sustained effort, stretch-

ing over a period of weeks or months, from the most technically advanced

programmers, who are inevitably in very scarce supply. While access to necessary

computing and information technology has improved dramatically over the past de-

cade, the efficient application of scientific computing techniques still requires levels

of specialized knowledge in numerical analysis, mathematical software, computer ar-

chitectures, and programming languages that many working researchers do not have

the time, the energy, or the inclination to acquire. With good reason scientists expect
their computing tools to serve them and not the other way around. And unfortu-

nately, the growing desire to tackle highly interdisciplinary problems using more

and more realistic simulations on increasingly complex computing platforms will

only exacerbate the problem. The challenge for the development of next generation

software is the successful management of the complex computing environment while

delivering to the scientist the full power of flexible compositions of the available

algorithmic alternatives and candidate hardware resources.

With this paper we develop the concept of Self-Adapting Numerical Software for
numerical libraries that execute in the cluster computing setting. The central focus is

the LFC software which supports a serial, single processor user interface, but deliv-

ers the computing power achievable by an expert user working on the same problem

who optimally utilizes the resources of a cluster. The basic premise is to design nu-

merical library software that addresses both computational time and space complex-

ity issues on the user’s behalf and in a manner as transparent to the user as possible.

The software intends to allow users to either link against an archived library of exe-

cutable routines or benefit from the convenience of pre-built executable programs
without the hassle of resolving linker dependencies. The user is assumed to call

one of the LFC routines from a serial environment while working on a single proces-

sor of the cluster. The software executes the application. If it is possible to finish exe-

cuting the problem faster by mapping the problem into a parallel environment, then

this is the thread of execution taken. Otherwise, the application is executed locally

with the best choice of a serial algorithm. The details for parallelizing the user’s

problem such as resource discovery, selection, and allocation, mapping the data onto

(and off of) the working cluster of processors, executing the user’s application in par-



Z. Chen et al. / Parallel Computing 29 (2003) 1723–1743 1725
allel, freeing the allocated resources, and returning control to the user’s process in

the serial environment from which the procedure began are all handled by the soft-

ware. Whether the application was executed in a parallel or serial environment is pre-

sumed not to be of interest to the user but may be explicitly queried. All the user

knows is that the application executed successfully and, hopefully, in a timely man-
ner.

Alternatively, the expert user chooses a subset of processors from the cluster well

suited to address memory and computational demands, initializes the parallel envi-

ronment directly, generates the data set locally, in parallel on the working group in a

manner effecting any necessary parallel data structures, and then executes the same

parallel application.

The time spent in executing the application in parallel is, by design, expected to be

the same in both the LFC and expert user cases. One significant difference between
the LFC and expert cases, however, is that the self-adaptive method pays the time

penalty of having to interface the user and move the user’s data on and off the par-

allel working group of processors. Thus, for LFC, the time saved executing the ap-

plication in parallel should necessarily be greater than the time lost porting the user’s

data in and out of the parallel environment. Empirical studies [6] of computing the

solutions to linear systems of equations demonstrated the viability of the method

finding that (on the clusters tested) there is a problem size that serves as a threshold.

For problems greater in size than this threshold, the time saved by the self-adaptive
method scales with the parallel application justifying the approach. In other words,

the user saves time employing the self-adapting software.

This paper is organized as follows. Section 2 provides a general discussion of self-

adaptation and its relation to software and algorithms. Section 3 presents motivation

for the general concept of self-adaptation. Section 4 introduces and gives some de-

tails on LFC while Sections 5 concludes the paper.
2. Comment on self-adaptation

The hardness of a problem, in practice, may be classified by the ratio of the num-

ber of constraints to the number of variables. It is noted that achieving optimized

software in the context described here is an NP-hard problem [7–13]. Nonetheless,

self-adapting software attempts to tune and approximately optimize a particular pro-

cedure or set of procedures according to details about the application and the avail-

able means for executing the application. Here an attempt is made to provide a
taxonomy of various approaches and a number of limitations that need to be over-

come in order to apply the self-adaptation methodology to a broader range of ap-

plied numerical analyses.

In reviewing the literature, a number of generalizations emerge. First, possible op-

timizations may be performed through algorithmic, software or hardware changes.

In the context of LFC, this may be illustrated with two important computational

kernels: matrix–matrix multiplication and the solution of linear systems of equa-

tions. Table 1 shows some of the common trends for those kernels.



Table 1

Common trends in strategies for computational kernels

Computational kernel Algorithmic choices Software (implementa-

tion)

Hardware

xGEMM Triple-nested loop,

Strassen [14], Wino-

grad [15]

Based on Level 1 BLAS,

Level 2 BLAS, or Level 3

BLAS [16]

Vector processor,

superscalar RISC,

VLIW processor

Solving a linear system

of equations

Explicit inverse, de-

compositional method

(e.g. LU, QR, or LLT)

Left-looking, right-look-

ing, Crout [17], recursive

[18,19]

Sequential, SMP,

MPP, constellations

[2]
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Another aspect that differentiates the adaptive approaches is the time when opti-

mization takes place––it may be performed at compilation time (off-line) or dynam-

ically during execution (at runtime). The former category includes feedback directed

compilation systems [20–22], while the latter employs two types of techniques: one is
to commit to the selected algorithm and the other is to keep monitoring the perfor-

mance of the selected algorithm and change it when necessary.

Yet another choice to make for an adaptive program is the selection of the search

method for the best solution. It is possible to search exhaustively the entire para-

meter space, to use one of the generic black box optimization techniques, or to keep

reducing the search space through domain-specific knowledge.

Lastly, the inclusion of input data and/or previous execution information in the

optimization process also provides a differentiating factor.
In the context of the aforementioned classification, LFC makes optimization

choices at the software and hardware levels. LFC obtains a best parameter set for

the selected algorithm by applying expertise from the literature and empirical inves-

tigations of the core kernels on the target system. The algorithm selection depends on

the size of the input data (but not the content) and empirical results from previous

runs for the particular operation on the cluster. LFC makes these choices at runtime

and, in the current version, commits to the decisions made––e.g. does not monitor

the progress of the computation for load balancing, rescheduling, or checkpointing.
It is conceivable that such a capability is useful and could be built on top of LFC.

Specific hardware resources are selected at runtime based upon their ability to meet

the requirements for solving the user problem efficiently. The main time constraints

considered are the time spent moving the user’s data set on and off the selected par-

allel working group of processors, and the time spent executing the specific applica-

tion in parallel. The candidate resources have time-evolved information that is

deemed relevant in the process of making this selection.

The ability to adapt to various circumstances may be perceived as choosing from
a collection of algorithms and parameters to solve a problem. Such a concept has

been appearing in the literature [23] and currently is being used in a wide range of

numerical software components.

Here are some examples of successful applications and projects. The ATLAS [24]

project started as a ‘‘DGEMM() optimizer’’ [25] but continues to successfully evolve

by including tuning for all levels of Basic Linear Algebra Subroutines (BLAS)
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[26–29] and LAPACK [30] as well as by making decisions at compilation and execu-

tion time. Similar to ATLAS, but much more limited, functionality was included in

the PHiPAC [31] project. Iterative methods and sparse linear algebra operations are

the main focus of numerous efforts. Some of them [32,33] target convergence pro-

perties of iterative solvers in a parallel setting while others [34–38] optimize the most
common numerical kernels or provide intelligent algorithmic choices for the entire

problem solving process [39,40]. In the area of parallel computing, researchers are

offering automatic tuning of generic collective communication routines [41] or

specific collectives as in the HPL project [42]. Automatic optimization of the fast

Fourier transform (FFT) kernel has also been under investigation by many scientists

[43–45]. In grid computing environments [46], wholistic approaches to software

libraries and problem solving environments such as defined in the GrADS project

[47] are actively being tested. Proof of concept efforts on the grid employing SANS
components exist [48] and have helped in forming the approach followed in LFC.

Despite success in applying self-adapting techniques to many areas of applied nu-

merical analysis, challenges do remain. Iterative methods for systems of linear equa-

tions are an example. It is known that an iterative method may fail to converge even

if the input matrix is well conditioned. Recently, a number of techniques have been

devised that try to make iterative methods faster and more robust through extra stor-

age and work. Those techniques include running multiple iterative methods at a time

and selecting results from the best performing one [33]; dynamic estimating para-
meters for the Chebyshev iteration [49,50]; estimating the forward error of the solu-

tion [51]; and reformulations of the conjugate gradient method to make it perform

better in parallel settings [52] to name a few.
3. Motivating factors

The LFC project aims at simplifying the use of linear algebra software on contem-
porary computational resources, be it a single workstation or a collection of hetero-

geneous processor clusters. As described, it may leverage the power of parallel

processing on a cluster to execute the user’s problem or may execute in the sequential

environment.

In dense linear algebra the Level 3 BLAS such as matrix–matrix multiplication

form the basis for many applications of importance. Many modern sequential rou-

tines, for instance, exploit this kernel while executing block recursive steps during a

factorization. Even more advances are available in the shared memory, multi-
threaded variants. An important point in these efforts is that for a problem of size

n they perform Oðn3Þ operations on Oðn2Þ elements––an ideal recipe for data reuse

and latency hiding. The spatial locality of the data due to the proper utilization of

the memory hierarchy ensures good performance in general. Indeed, the LAPACK

software library has been very successful in leveraging the BLAS to achieve out-

standing performance in a sequential setting. One point to be made here is that ex-

treme care went into devising factorizations of the linear algebra to effectively utilize

the highly tuned performance of the core kernels. In Fig. 1, the plot on the left shows
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ormance attained by the threaded variant, expert users save time by simply executing the kernel on multi-

le processors in parallel. In each plot, Intel� Pentium III, 933 MHz dual processors are tested.
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a typical plot of the performance of matrix–matrix multiplication that has been

tuned out-of-the-box with ATLAS on each processor of a sample cluster of eight

Intel� Pentium III, 933 MHz dual processors. It performs at over 90% of peak for
n ¼ 3500, for instance. The plot on the right in Fig. 1 presents the same sequential

data against the performance achieved by simply performing the matrix–matrix mul-

tiplication in parallel on a subset of (68) the processors. No attempt was made to

tune the parallel kernel in this particular set of runs. The plots demonstrate the bene-

fits of executing this base kernel in parallel when resources are available. The finding

is not surprising and in fact, once parallel versions of the BLAS were formulated

(PBLAS [53]), the parallel applications routines followed in the formation of the

ScaLAPACK library.
It is noteworthy that matrix–matrix multiplication in the sequential environment

serves as a core kernel for the parallel Level 3 BLAS routines utilized by ScaLA-

PACK. The situation merits a closer look at the kernel in the sequential setting.

There are, for instance, cases where the performance is degraded. Figs. 2 and 3 show

the performance of this Level 3 BLAS routine on the Intel� Itanium�, Intel�

Itanium� SMP and IBM Power 4 processors, respectively. Matrices of dimensions

close to 2050 consistently have worse performance than all others due to complex

cache effects. Ideally, in the sense of self-adaptation, the BLAS should switch to a
different algorithm to circumvent this problem. In the current implementation, how-

ever, it does not happen. For users working in a sequential environment, the problem

must be handled or otherwise the consequences paid. This makes the assumption

that the user knows of the problem and has a remedy.

Another problematic area as far as users’ responsibilities are concerned is the lin-

ear solver. LAPACK requires a tuning parameter––a block size––which is crucial to

attaining high performance. If LAPACK’s functionality was embedded in an ar-

chived library which was supplied by the vendor then the burden of selecting the
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block size would have been removed from the user. However, if the vendor supplies

only a BLAS library then the block size selection is to be made by the user and there

is a possibility of degrading the performance by inappropriate choice. Thus, all the

effort that went into tuning the BLAS may be wasted.

It is possible to solve the problem in a sequential environment because of theoret-
ical advances [18,19,54] in the decompositional approach in matrix computations.

But in a parallel setting, the procedure is still not mature enough [55] and conse-

quently there is a need for extra effort when selecting parameters that will define

the parallel runtime environment for the specific application.

A potential user must, for instance, select the number of processors to accomo-

date the problem such that a logically rectangular processor grid can be formed,

and decompose the data according to another set of parameters onto said proces-

sors. Suppose that the data has been handled accurately and with parameters known
to preserve a good computation to communication ratio for a set number of proces-

sors (a non-trivial task in practice). Now, consider Fig. 4. The figure (linear in
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problem size, logarithmic in time) compares problem size to time for the ScaLA-

PACK application routine that solves systems of linear equations. Both the wall

and CPU times are measured while executing the application on a fixed number

(32) of nodes (each being a Intel� XEON(TM) CPU 2.40 GHz dual processor con-

nected over Gigabit Ethernet). The possible different grid topologies tested are 1 · 64,
2 · 32, 4 · 16, and 8 · 8. For each topology tested both wall (points) and CPU
(lines + points) times are reported. The wall time is the time the user cares about.

The difference in the two times is accounted for by the time spent coordinating

the parallel application and moving the data set with message passing––e.g. commu-

nication time. The CPU times reported are consistent for each grid topology as ex-

pected since there is an effectively fixed number of computations to be performed

for each problem size. The wall clock times, however, are dramatically different

across the different topologies. It is known that different processor topologies impose

different communication patterns during execution. Thus, the turnaround time is di-
rectly related to the user’s selection of grid topology even in the instance that the

right number of processors and a judicious block size are given.

Fig. 5 illustrates the fact that the situation is more complicated than just selecting

the right grid aspect ratio (e.g. the number of process rows divided by the number of

process columns). Sometimes it might be beneficial to use a smaller number of pro-
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cessors. This is especially true if the number of processors is a prime number which

leads to a flat process grid and thus very poor performance on many systems. It is

unrealistic to expect that non-expert users will correctly make the right decisions

here. It is either a matter of having expertise or experimental data to guide the choice
and our experiences suggest that perhaps a combination of both is required to make

good decisions consistently. As a side note, with respect to experimental data, it is

worth mentioning that the collection of data for Fig. 5 required a number of floating

point operations that would compute the LU factorization of a square dense matrix

of order almost 300,000. Matrices of that size are usually suitable for supercompu-

ters (the slowest supercomputer on the Top500 [2] list that factored such a matrix

was on position 16 in November 2002).

Lastly, the plots in Fig. 6 represent exhaustive search data. Such information co-
mes from a sweeping parameter study in a dedicated environment and is provided

here to drive home the point that even experienced users have to carefully initialize

the parameters required for a parallel computation using the ScaLAPACK library.

Here, the case of the performance of 20 processors on the cluster is compared as a

function of the block size, problem size, and grid aspect ratio. We see crossing points

in this multi-parameter space which suggests the very real complexity inherent in se-

lecting parameters judiciously. Ideally, given a user’s problem, an oracle would be

consulted and the appropriate parameters would be assigned. In reality, extreme
time and energy go into making such exhaustive studies of applications and the pa-

rameter spaces that dictate their execution. In general, such data do not exist a priori

on a target system. Furthermore, in open systems such exhaustive searches fail to

yield reliably intelligent decisions due to the potentially dynamic state of the avail-

able resources.
4. LAPACK for clusters overview

The LFC software addresses the motivating factors from the previous section in

a self-adapting fashion. LFC assumes that only a C compiler, an MPI [56–58]
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cluster this multi-parameter space is also changing in time.
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implementation such as MPICH [59] or LAM MPI [60], and some variant of the

BLAS routines, be it ATLAS or a vendor supplied implementation, is installed on
the target system. Target systems are intended to be ‘‘Beowulf like’’ and may be de-

picted as in the diagram of Fig. 7.

There are essentially three components to the software: data collection routines,

data movement routines, and application routines.



Fig. 7. Here a typical cluster setting is depicted. The cluster is regarded as fully connected locally and sees

a network disk that serves users. Users are assumed to be logged into a compute node of the target cluster

on invoking the LFC software.
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4.1. Data collection

LFC uses discovery and adaptivity to assist the user in problem solving. The LFC

routine starts with assessing information that is continually being assembled about

the state of the cluster and the states of the components of the cluster. (The service

is similar to that provided by the Network Weather Service [61], NWS, sensors in

grid computing environments.) The following steps are repeated by the information
gathering daemon process: a processor discovery routine is invoked that accounts for

the existence of candidate resources, the available physical memory per processor is

assessed, the time-averaged CPU load of each processor in a node is assessed, read/

write times per processor to/from the local and network disks is assessed, point-to-

point and global communications latencies and bandwidths on the cluster are assem-

bled, and the core kernel of matrix–matrix multiplication is studied per processor. In

addition to this data gathering cycle, there is an interest in the one-time discovery of

the underlying memory hierarchy. Random access loads and stores with uniform and
non-uniform stride help with this discovery. Fig. 8 shows an example of cache to

memory bandwidth discovery.

One of the difficulties that arises is clock consistency and synchronization. On homo-

geneous clusters, the problem is difficult. In a grid computing setting, the difficulties

are amplified. This is a serious issue which software developers need to address. The

main reason is that scheduling tasks based upon empirical analysis conducted on a

target system assumes consistency in the resources. LFC uses matrix–matrix multi-

plication to assess the consistency of internal clocks accorded by several timers on
each of the processors available.
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4.2. Data movement

In LFC, regardless of the application, the same data structures are assumed in the

case of dense data. The user data is assumed to be in core or on a disk accessible
from the cluster in either row or column major storage. If the problem is to be ported

to the parallel environment, the two-dimensional block cyclical decomposition is ap-

plied in each case. That is, whether the user wants to solve a system of linear equa-

tions or an eigenvalue problem, her/his data set is mapped onto the processors

allocated as the working group with the same data routines and according to the

same rules. The decomposition is known to yield good performance and scalability

in (local) distributed computing settings employing message passing [63–66].

Once a decision has been made to solve the user’s problem in parallel on the clus-
ter, the user data has to be mapped onto a specific subset of the processors and in a

specific (logical) rectangular grid topology. It is noted that the number of processors,

which processors, and what topology are not known in advance. As such, the map-

ping has to be general. After the execution of the parallel application, the data has to

be reverse mapped from the parallel environment back to the user’s original data

structure and location.

The dimensions m, n of the matrix A, the (logical) rectangular processor grid di-

mensions p, q (process rows and columns, respectively; p � q ¼ NP where NP is the
total number of processors involved in the decomposition), and the block dimensions

mb, nb where ð16mb6mÞ; ð16 nb6 nÞ are the parameters which define the 2D block

cyclic mapping. The values m and n are set by the user, however the remaining
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parameters are initialized based upon an analysis of the cluster and a knowledge of

the signatures relevant to the particular application. Once the number of processors,

logical process grid dimensions, and the block sizes for the decomposition are de-

cided, the local memory per allocated processor is determined. The number of rows

from the global m� n matrix A that processors in logical process row ip (06 ip < p)
own is defined by mip. The number of columns from A that processors in logical pro-

cess column iq own is defined by niq. For processor ðip; iqÞ from the logical process

grid, the local work array Aip;iq has dimensions mip rows by niq columns and

m ¼
Pp�1

ip¼0 mip, n ¼
Pq�1

iq¼0 niq where mip; niq are calulated as follows:
mip ¼

b m
mbc
p

j k
þ 1

� �
mb if ððp þ ipÞmodpÞ < m

mb

� �
modp

� �
;

b m
mbc
p

j k
mbþ mmodmb if ððp þ ipÞmodpÞ ¼ m

mb

� �
modp

� �
;

b m
mbc
p

j k
mb if ððp þ ipÞmodpÞ > m

mb

� �
modp

� �
;

8>>>>><
>>>>>:

niq ¼

b n
nbc
q

j k
þ 1

� �
nb if ððqþ iqÞmodqÞ < n

nb

� �
modq

� �
;

b n
nbc
q

j k
nbþ nmodnb if ððqþ iqÞmodqÞ ¼ n

nb

� �
modq

� �
;

b n
nbc
q

j k
nb if ððqþ iqÞmodqÞ > n

nb

� �
modq

� �
:

8>>>>><
>>>>>:
(It is noted that processor ðip; iqÞ ¼ ð0; 0Þ owns the element a0;0 in the presentation
here.)

In global to local 2D block cyclic index mappings in which natural data is trans-

formed into 2D block cyclically mapped data, the values ði; jÞ from Aði; jÞ are given.
Next, the grid dimensions ðip; iqÞ of the processor that owns the specific element are

identified and initialized as ip ¼ b i
mbcmodp and iq ¼ b j

nbcmodq. The local indices of

the work array on processor ðip; iqÞ can be labelled ðiip; jiqÞ where 06 iip < mip,

06 jiq < niq. The assignment is iip ¼ b i
mbc
p

j k
� mbþ ðimodmbÞ and jiq ¼ b j

nbc
q

j k
� nbþ

ðjmodnbÞ.
On a particular processor ðip; iqÞ, given the indices ðiip; jiqÞ of the local work array

Aip;iq (where 06 iip < mip, 06 jiq < niq), the block dimensions ðmb; nbÞ, and the pro-

cess grid dimensions ðp; qÞ then the indices ði; jÞ of the global matrix element

Aði; jÞ are assigned as follows: i ¼ ip � mbþ b iipmbc � p � mbþ ðiipmodmbÞ and j ¼
iq � nbþ bjiqnbc � q � nbþ ðjiqmodnbÞ. This is the reverse 2D block cyclic map in which

the mapped data is transformed into natural data.
In the process of mapping the user’s data from the serial environment to the par-

allel process group selected by the LFC scheduler, direct global to local index map-

pings are not used. The reason is that, clearly, moving a single matrix element at a

time is extremely inefficient. The game is to get the user’s data accurately mapped

onto the parallel process grid as quickly as possible. Serial reads and writes to local

and network based disks, parallel reads from a single file stored on a common, single

network disk, parallel reads and writes from/to multiple files on a (common) single

network disk, and parallel reads and writes from multiple files on multiple unique



1736 Z. Chen et al. / Parallel Computing 29 (2003) 1723–1743
network disks are all different possible operations that may be invoked in the process

of handling the user’s data set. Usually, however, it is found that some combination

of these operations is preferred to get the data in place on the cluster in the correct

block cyclical mapping. Furthermore, it is noted that the mapping itself may occur at

the time of the write which may result in multiple files in pre-mapped form or a single
file reflecting the mapped structure, at the time of a read (e.g. random access reads

into a file, or possibly multiple files, containing the unmapped data), when the data is

communicated during message passing on the cluster, or parsed locally in memory

on each processor after blocks of unmapped data are read into memory either in par-

allel or by a subset of lead processors and distributed through message passing in a

manner reflective of the 2D block cyclic mapping.

It is noted that space complexity issues may also be addressed on the users behalf

by interfacing special utility routines. The idea here is that the user wishes to state
and solve a problem that is too large to be addressed on any single node of the clus-

ter. The utility assists in the generation of the large data set on a subset of the cluster

presuming there is ample total memory to accommodate the problem on the allo-

cated systems.

Predicting the time to move large data sets in an open network is an active area of

research. In some sense, the limitations are well defined by the IP family of protocols

and the disk access times. There is no best means for handling the user’s data. The

main constraint is that the integrity of the user’s data set is preserved. The hope is
that this stage can be performed in a timely manner so as to reap the benefits of

the parallel application. LFC researchers are interested in multiple network disk re-

sources that can be used specifically for assisting in the management of data sets

from linear algebra. Such studies are relevant to grid settings as well as local clusters.

The work is not discussed further here.

4.3. Applications

In the sequential environment, a stand-alone variant of the relevant LAPACK rou-

tines form the backbone of the serial applications in LFC. Achieving high perfor-

mance in a sequential environment might seem trivial for expert users. Thus, we

provide linker hooks to enable such users to use their favorite BLAS library. How-

ever, less experienced users could possibly have problems while dealing with linker de-

pendencies. For such users, we provide an executable binary that is correctly built and

capable of solving a linear system in a child process with data submitted through a

system pipe. Two overheads result from such an approach: the time spent in
fork(2) and exec(3) system calls and copying the data between separate process’

address spaces. Intuitively, both overheads will have a lesser impact with increasing

dimension of the matrix (the system calls, data copying and linear solver have com-

putational complexities Oð1Þ, Oðn2Þ, and Oðn3Þ respectively). To determine how this

theoretical result translates into real world performance, we ran some tests and Fig. 9

shows the results. Matrices of dimension as small as 500 see only 10% of performance

drop and the difference decreases to about 1% for dimension 2000. We believe that for

many users this is a price worth paying for convenience and certainty.
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Fig. 9. Performance comparison between the standard LAPACK’s linear solve routine and the same rou-

tine executed in a separate process created with fork(2) and exec(3) system calls (matrix data are sent

through a system pipe). The tested machine had a Intel� Pentium III 933 MHz processor.
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The parallel applications have a stand-alone variant of the relevant ScaLAPACK

and BLACS routines. This allows leveraging a large body of expertise as well as soft-

ware design and engineering. It also allows developers to focus on new issues and

address common problems encountered by users.

ScaLAPACK Users’ Guide [67] provides the following equation for predicting the

total time T spent in one of its linear solvers (LLT, LU, or QR) [68]:
T ðn;NPÞ ¼
Cfn3

NP

tf þ
Cvn2ffiffiffiffiffiffi
NP

p tv þ
Cmn
NB

tm ð1Þ
where

• tf time per floating-point operation (matrix–matrix multiplication flop rate is a

good starting approximation)

• tm corresponds to latency

• 1=tv corresponds to bandwidth
• Cf corresponds to number of floating-point operations (see Table 2)

• Cv and Cm correspond to communication costs (see Table 2).

In contrast, for a single processor the equation is:
TseqðnÞ ¼ Cfn3tf ð2Þ
Eq. (1) yields surprisingly good predictions. The surprise factor comes from the

number of simplifications that were made in the model which was used to derive the
equation. The hard part in using the equation is measuring system parameters which

are related to some of the variables in the equation. The hardship comes from the

fact that these variables do not correspond directly to typical hardware specifications

and cannot be obtained through simple tests. In a sense, this situation may be re-

garded as if the equation had some hidden constants which are to be discovered in

order to obtain reasonable predictive power. At the moment we are not aware of any



Table 2

Performance parameters of ScaLAPACK. All costs entries correspond to a single right-hand side; LU,

LLT and QR correspond to PxGESV, PxPOSV, and PxGELS routines, respectively

Driver Cf Cv Cm

LU 2/3 3þ 1=4 log2 NP NBð6þ log2 NPÞ
LLT 1/3 2þ 1=2 log2 NP 4þ log2 NP

QR 4/3 3þ log2 NP 2ðNB log2 NP þ 1Þ
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reliable way of acquiring those parameters and thus we rely on parameter fitting
approach that uses timing information from previous runs.

4.4. Typical usage scenario

Here the steps involved in a typical LFC run are described.

The user has a problem that can be stated in terms of linear algebra. The problem

statement is addressable with one of the LAPACK routines supported in LFC. For

instance, suppose that the user has a system of n linear equations with n unknowns,
Ax ¼ b.

There is a parallel computing environment that has LFC installed. The user is, for

now, assumed to have access to at least a single node of said parallel computing en-

vironment. This is not a necessary constraint––rather a simplifying one.

The user compiles the application code (that calls LFC routines) linking with the

LFC library and executes the application from a sequential environment. The LFC

routine executes the application returning an error code denoting success or failure.

The user interprets this information and proceeds accordingly.
Again, the details of how LFC handles the user’s data and allocates a team of pro-

cessors to execute the user’s problem remain hidden to the user. (If desired a user can

ask for details of the actual computation.) From the user’s perspective, the entire

problem was addressed locally.

A decision is made upon how to solve the user’s problem by coupling the cluster

state information with a knowledge of the particular application. Specifically, a de-

cision is based upon the scheduler’s ability to successfully predict that a particular

subset of the available processors on the cluster will enable a reduction of the total
time to solution when compared to serial expectations for the specific application

and user parameters. The relevant times are the time that is spent handling the user’s

data before and after the parallel application plus the amount of time required to

execute the parallel application.

If the decision is to solve the user’s problem locally (sequentially) then the relevant

LAPACK routine is executed.

If the decision is to solve the user’s problem in parallel then a process is forked

that will be responsible for spawning the parallel job and the parent process waits
for its return in the sequential environment. The selected processors are allocated

(in MPI), the user’s data is mapped (block cyclically decomposed) onto the proces-

sors (the data may be in memory or on disk), the parallel application is executed
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(e.g. ScaLAPACK), the data is reverse mapped, the parallel process group is freed,

and the solution and control are returned to the user’s process.
5. Conclusions and future work

As computing systems become more powerful and complex it becomes a major

challenge to tune applications for high performance. We have described a concept

and outlined a plan to develop numerical library software for systems of linear equa-

tions which adapts to the user’s problem and the computational environment in an

attempt to extract near optimum performance. This approach has applications

beyond solving systems of equations and can be applied to most other areas where

users turn to a library of numerical software for their solution.
At runtime our software makes choices at the software and hardware levels for

obtaining a best parameter set for the selected algorithm by applying expertise from

the literature and empirical investigations of the core kernels on the target system.

The algorithm selection depends on the size of the input data and empirical results
1

10

100

1000

0 2000 4000 6000 8000 10000 12000 14000

T
im

e
(s

)

Matrix Order

Oracle versus LFC timing results for Ax=b

LFC
ORACLE

Fig. 10. The plot demonstrates the strength of the self-adapting approach of the LFC software. The prob-

lem sizes tested were N ¼ 512, 1024, 2048, 4096, 8192, 12288, 14000. LFC chose 2, 3, 6, 8, 12, 16, 16 pro-

cesses for these problems respectively. The oracle utilized 4, 4, 8, 10, 14, 16, 16 processes respectively. The

runs were conducted on a cluster of eight Intel� Pentium III, 933 MHz dual processors, connected with a

100 Mb/s switch. In each run the data was assumed to start on disk and was written back to disk after the

factorization. In the parallel environment both the oracle and LFC utilized the I/O routines from ROMIO

to load (store) the data in a 2d block cyclical (natural) manner before (after) invoking the ScaLAPACK

routine PDGESV.
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from previous runs for the particular operation on the cluster. The overheads asso-

ciated with this dynamic adaptation of the user’s problem to the hardware and soft-

ware systems available can be minimal.

The results presented here show unambiguously that the concepts of self-adapta-

tion can come very close to matching the performance of the best choice in para-
meters for an application written for a cluster. As Fig. 10 highlights, the overhead

to achieve this is minimal and the performance levels are almost indistinguishable.

As a result the burden on the user is removed and hidden in the software.

This paper has given a high level overview of the concepts and techniques used

in self-adapting numerical software. There are a number of issues that remain to be

investigated in the context of this approach [5]. Issues such as adapting to a chang-

ing environment during execution, reproducibility of results when solving the same

problem on differing numbers of processors, fault tolerance, rescheduling in the
presence of additional load, dynamically migrating the computation, etc. all present

additional challenges which are ripe for further investigation. In addition, with

Grid computing becoming mainstream, these concepts will find added importance

[47].
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