
Jack Dongarra
University of Tennessee, Knoxville

he ultimate development of fully mature, parallel scalable libraries
will necessarily depend on breakthroughs in many supporting

techologes. Scalable library development cannot wait, however, un-
til all the enabling technologes are in place for two reasons: The need
for such libraries for existing and near-term parallel architectures is
immediate, and progress in all the supporting technologies depends
on feedback from concurrent efforts in library development.

Traditional libraries
We in the linear-algebra community have long recognized that we

needed something to help us develop our algorithms into software li-
braries. Several years ago, as a community effort we put together a de
facto standard for identifjmg the basic operations required in our al-
gorithms and software. Our hope was that many manufacturers would
implement the standard on their machines, and that we could then
draw on the power of that implementation in a rather portable way.
We began with BLAS operations (basic linear-algebra subprograms)
designed for basic matrix computation. Since message passing is crit-
ical in a parallel system, we worked on developing message-passing
standards. Both the PVM (parallel virtual machine) and the MPI (mes-
sage-passing interface) have helped establish standards and promote
portable software, critical for software library work.

User interfaces
As computer architectures and programming paradigms become in-

creasingly complex, we want to hide this complexity from users as

38 1070-9924/96/$5.00 0 1996 IEEE IEEE COMPUTATIONAL SCIENCE & ENGINEERING

much as possible. The traditional user interface
for large, general-purpose mathematical and sci-
entific libraries is a user-written program (usu-
ally in Fortran or C) that calls on library rou-
tines to solve specific subproblems that arise
during the computation. When extended to run
on parallel architectures, this approach has only
a limited ability to hide the underlying architec-
tural and programming complexity from users.
As we extend the conventional notion of math-
ematical and scientific libraries to scalable ar-
chitectures, we must rethink the conventional
user-interface concept and devise alternate ap-
proaches that hide architectural, algorithmic,
and data complexity from users.

One promising approach is a problem-solv-
ing environment, typified by current packages
such as Matlab, that provides an interactive,
graphical interface for specifying and solving
scientific problems. Algorithms and data struc-
tures are hdden from the user because the pack-
age itself efficiently and distributively stores and
retrieves the problem data. T h s approach seems
especially appropriate in view of the trend to-
ward graphics workstations as the primary user
access to computing facilities. Ultimately, such
an interface can provide seamless access to net-
works including various parallel computers and
conventional supercomputers. These computa-
tional engines would be invoked selectively for
different parts of the user’s computation, de-
pending on which machine is most appropriate
for a particular subproblem. I envision at least
two interfaces for a linear-algebra library: one
would follow conventional lines (Lapack-style)
for immediate use in conventional programs
ported to novel machines, and the other would
take the form of a problem-solving environment
(Matlab-style). These proposed interfaces are
not incompatible; in fact, the problem-solving
environment can be built on top of software
based on a more conventional interface.

Heterogeneous networking
Current trends in parallel architectures, high-

speed networks, and personal workstations sug-
gest that the future computational environment
of working scientists will require the seamless
integration of heterogeneous systems into a co-
herent problem-solving environment. Graphi-
cal workstations will provide the standard user
interface, with a variety of computational en-
gines and data storage devices distributed across
a network. Because of the diversity of parallel

architectures, different computational tasks will
be more efficient on some than on others, with
no single architecture uniformly superior. Thus,
I expect the problem-solving environment even-
tually to migrate to a heterogeneous network of
workstations, file servers, and parallel computa-
tion servers. The various computational tasks
required to solve a problem will automatically
and transparently be targeted to the most ap-
propriate computational engme on the network.
Many users will share system resources, but in
a manner somewhat different from conventional
time-sharing.

We have already made important first steps
toward achieving these goals with systems such
as PVM and MPI, which supply the low-level
services necessary to coordinate the use of mul-
tiple workstations and other computers for in-
dividual jobs. Either system could serve as the
foundation for a complete problem-solving en-
vironment. Network computing services such as
NetSolve look for computational resources on
a network for a submitted problem (which can
be a single Lapack, Scalapack, or Matlab func-
tion call), choose the best resource available,
solve the problem (with retry for fault toler-
ance), and return the answer to the user. Net-
Solve is available for Fortran, C, and Matlab
users.

Software tools and standards
An ambitious development effort in scalable

libraries will require a great deal of supporting
infrastructure. Moreover, any library’s portabil-
ity depends critically on adherence to standards.
In the case of software for parallel architectures,
precious few standards exist, so new standards
must evolve along with research and develop-
ment. A particularly important area for scalable
distributed-memory architectures is internode
communication. The BLAS standards have
proven very effective in assisting the develop-
ment of portable, efficient software for sequen-
tial computers and some of the current class of
high-performance computers. We are investi-
gating the possibility of expanding this set of
standards, and we also need a lightweight inter-
face to many traditional BLAS functions. In ad-
dition, iterative and sparse direct methods re-
quire additional functions not provided in
traditional BLAS. Numerical methods for dense
matrices on parallel computers require high-
efficiency kernels that provide functionality sim-
ilar to that of traditional BLAS on sequential

SUMMER 1996 39

machines. Software tools are also important,
both to help developers design and tune library
software and to help users monitor the efficiency
of their applications.

espite the lack of enabling technologies, li-
brary development cannot wait for re-

search in programming languages, compilers,
software tools, and other areas to mature; it
must proceed in conjunction with this research.
The time to begin is now.

I see four major research issues in developing
parallel scalable linear-algebra libraries. First,
the user-library interface needs rethinking; the
conventional library interface is inadequate for
hiding underlyng complexity from users. Sec-
ond, object-oriented programming will be nec-
essary to develop portable libraries that allow
users to work at an appropriate conceptual level.
Next, work on algorithms, particularly in linear

algebra, is important and cannot be isolated
from general library development. Finally, the
lack of language standards is the most signifi-
cant obstacle to the development of communi-
cation libraries. A language standard must
emerge before a software tool “development
sweep” can begin.

Jack Dongarra is a distinguishedprofessor at the Uni-
versity of Tennessee and an adjunct professor at Rice
University, both in computer science, and a distin-
pished scientist in the Mathematical Sciences Section at
Oak Ridge National Lab. He participated in the design
and implementation of Eispack, Linpack, BLAS, La-
pack, Scalapack, Netlib/XNetlib, PVM/Hence, MPI,
and the National High-Pe6ormance Sofiware Ex-
change. He can be reached ut Univ. of Tennessee, 104
Ayres Hall, Knoxville, TN 37996; e-mail, don-
garua@cs.utk.edu, http://www.netlib.org/utk/
peop le/JackDongawa. h tml.

Eric Grosse
Bell Laboratories

remarkable feature of scientific computing
as been its relatively strong reuse of soft-

ware, and therefore its concern with portability.
Early examples of this are the Eispack, Linpack,
and Funpack projects, the PFORT verifier, and
the BLAS. Thanks to such efforts and to stan-
dardization of languages and floating-point
hardware, we can now write core computational
modules in C or Fortran with confidence that
our algorithms will compile and run properly on
all the dominant computers today and for the
foreseeable future. Some things could still be
improved, such as language support for the
IEEE floating-point standard, but by and large
the situation is satisfactory. This common envi-
ronment has made possible the extensive cata-
logs of reusable components in Netlib, Numer-
ical Recipes, NAG, IMSL, and so on.

Achieving a similar portability in the rest of
scientific computing remains a challenge.
Graphcs, interprocess communication, network
naming rules, and database interfaces are all in
flux. For a while in the late 1980s it appeared
that the scientific community was converging
on Unix, X, and a few portable communication
libraries, but now even this consensus is break-
ing down. The computing world is changing
rapidly and unpredictably. At the moment the
most promising development is the birth of sys-
tems like Java and Inferno that extend the scope
of portable programming to include graphical
user interfaces, simple visualization, and net-
work services. (Another welcome benefit of
these systems is bounds chechng of array refer-
ences, a common amenity in scientific pro-
gramming in the early ’70s but less well sup-

40 IEEE COMPUTATIONAL SCIENCE & ENGINEERING

mailto:garua@cs.utk.edu
http://www.netlib.org/utk

