References
 
 
 
  
  
  
  
 
 Next: Index
Up: Templates for the Solution 
 Previous:  Notation
 
 
References
- 1
- 
J. AARDEN AND K.-E. KARLSSON, Preconditioned CG-type methods for
  solving the coupled systems of fundamental semiconductor equations, BIT, 29
  (1989), pp. 916-937.
 
- 2
- 
L. ADAMS AND H. JORDAN, Is SOR color-blind?, SIAM J. Sci.
  Statist. Comput., 7 (1986), pp. 490-506.
 
- 3
- 
E. ANDERSON, ET. AL., LAPACK Users Guide, SIAM, Philadelphia,
  1992.
 
- 4
- 
J. APPLEYARD AND I. CHESHIRE, Nested factorization, in Reservoir
  Simulation Symposium of the SPE, 1983.
Paper 12264.
 
- 5
- 
M. ARIOLI, J. DEMMEL, AND I. DUFF, Solving sparse linear systems
  with sparse backward error, SIAM J. Matrix Anal. Appl., 10 (1989),
  pp. 165-190.
 
- 6
- 
W. ARNOLDI, The principle of minimized iterations in the solution of
  the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17-29.
 
- 7
- 
S. ASHBY, CHEBYCODE: A Fortran implementation of
  Manteuffel's adaptive Chebyshev algorithm, Tech. Rep. UIUCDCS-R-85-1203,
  University of Illinois, 1985.
 
- 8
- 
S. ASHBY, T. MANTEUFFEL, AND J. OTTO, A comparison of adaptive
  Chebyshev and least squares polynomial preconditioning for Hermitian
  positive definite linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
  pp. 1-29.
 
- 9
- 
S. ASHBY, T. MANTEUFFEL, AND P. SAYLOR, Adaptive polynomial
  preconditioning for Hermitian indefinite linear systems, BIT, 29 (1989),
  pp. 583-609.
 
- 10
- 
S. F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR, A taxonomy for
  conjugate gradient methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542-1568.
 
- 11
- 
C. ASHCRAFT AND R. GRIMES, On vectorizing incomplete factorizations
  and SSOR preconditioners, SIAM J. Sci. Statist. Comput., 9 (1988),
  pp. 122-151.
 
- 12
- 
O. AXELSSON, Incomplete block matrix factorization preconditioning
  methods. The ultimate answer?, J. Comput. Appl. Math., 12& (1985),
  pp. 3-18.
 
- 13
- 
height 2pt depth -1.6pt width 23pt, A general incomplete
  block-matrix factorization method, Linear Algebra Appl., 74 (1986),
  pp. 179-190.
 
- 14
- 
O. AXELSSON AND A. BARKER, Finite element solution of boundary value
  problems. Theory and computation, Academic Press, Orlando, Fl., 1984.
 
- 15
- 
O. AXELSSON AND V. EIJKHOUT, Vectorizable preconditioners for
  elliptic difference equations in three space dimensions, J. Comput. Appl.
  Math., 27 (1989), pp. 299-321.
 
- 16
- 
height 2pt depth -1.6pt width 23pt, The nested recursive
  two-level factorization method for nine-point difference matrices, SIAM J.
  Sci. Statist. Comput., 12 (1991), pp. 1373-1400.
 
- 17
- 
O. AXELSSON AND I. GUSTAFSSON, Iterative solution for the solution
  of the Navier equations of elasticity, Comput. Methods Appl. Mech. Engrg.,
  15 (1978), pp. 241-258.
 
- 18
- 
O. AXELSSON AND G. LINDSKOG, On the eigenvalue distribution of a
  class of preconditioning matrices, Numer. Math., 48 (1986), pp. 479-498.
 
- 19
- 
height 2pt depth -1.6pt width 23pt, On the rate of
  convergence of the preconditioned conjugate gradient method, Numer. Math.,
  48 (1986), pp. 499-523.
 
- 20
- 
O. AXELSSON AND N. MUNKSGAARD, Analysis of incomplete factorizations
  with fixed storage allocation, in Preconditioning Methods - Theory and
  Applications, D. Evans, ed., Gordon and Breach, New York, 1983, pp. 265-293.
 
- 21
- 
O. AXELSSON AND B. POLMAN, On approximate factorization methods for
  block-matrices suitable for vector and parallel processors, Linear Algebra
  Appl., 77 (1986), pp. 3-26.
 
- 22
- 
O. AXELSSON AND P. VASSILEVSKI, Algebraic multilevel preconditioning
  methods, I, Numer. Math., 56 (1989), pp. 157-177.
 
- 23
- 
height 2pt depth -1.6pt width 23pt, Algebraic multilevel
  preconditioning methods, II, SIAM J. Numer. Anal., 57 (1990),
  pp. 1569-1590.
 
- 24
- 
O. AXELSSON AND P. S. VASSILEVSKI, A black box generalized conjugate
  gradient solver with inner iterations and variable-step preconditioning,
  SIAM J. Matrix Anal. Appl., 12 (1991), pp. 625-644.
 
- 25
- 
R. BANK, Marching algorithms for elliptic boundary value problems;
  II: The variable coefficient case, SIAM J. Numer. Anal., 14 (1977),
  pp. 950-970.
 
- 26
- 
R. BANK, T. CHAN, W. COUGHRAN JR., AND R. SMITH, The
  Alternate-Block-Factorization procedure for systems of partial
  differential equations, BIT, 29 (1989), pp. 938-954.
 
- 27
- 
R. BANK AND D. ROSE, Marching algorithms for elliptic boundary value
  problems. I: The constant coefficient case, SIAM J. Numer. Anal., 14
  (1977), pp. 792-829.
 
- 28
- 
R. E. BANK AND T. F. CHAN, An analysis of the composite step
  Biconjugate gradient method, Numerische Mathematik, 66 (1993),
  pp. 295-319.
 
- 29
- 
R. E. BANK AND T. F. CHAN, A composite step bi-conjugate gradient
  algorithm for nonsymmetric linear systems, Numer. Alg.,  (1994), pp. 1-16.
 
- 30
- 
G. BAUDET, Asynchronous iterative methods for multiprocessors, J.
  Assoc. Comput. Mach., 25 (1978), pp. 226-244.
 
- 31
- 
R. BEAUWENS, On Axelsson's perturbations, Linear Algebra Appl.,
  68 (1985), pp. 221-242.
 
- 32
- 
height 2pt depth -1.6pt width 23pt, Approximate
  factorizations with S/P consistently ordered  -factors, BIT, 29
  (1989), pp. 658-681. -factors, BIT, 29
  (1989), pp. 658-681.
 
- 33
- 
R. BEAUWENS AND L. QUENON, Existence criteria for partial matrix
  factorizations in iterative methods, SIAM J. Numer. Anal., 13 (1976),
  pp. 615-643.
 
- 34
- 
A. BJÖRCK AND T. ELFVING, Accelerated projection methods for
  computing pseudo-inverse solutions of systems of linear equations, BIT, 19
  (1979), pp. 145-163.
 
- 35
- 
D. BRAESS, The contraction number of a multigrid method for solving
  the Poisson equation, Numer. Math., 37 (1981), pp. 387-404.
 
- 36
- 
J. H. BRAMBLE, J. E. PASCIAK, AND A. H. SCHATZ, The construction of
  preconditioners for elliptic problems by substructuring, I, Mathematics of
  Computation, 47 (1986), pp. 103- 134.
 
- 37
- 
J. H. BRAMBLE, J. E. PASCIAK, J. WANG, AND J. XU, Convergence
  estimates for product iterative methods with applications to domain
  decompositions and multigrid, Math. Comp., 57(195) (1991), pp. 1-21.
 
- 38
- 
R. BRAMLEY AND A. SAMEH, Row projection methods for large
  nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
  pp. 168-193.
 
- 39
- 
C. BREZINSKI AND H. SADOK, Avoiding breakdown in the CGS
  algorithm, Numer. Alg., 1 (1991), pp. 199-206.
 
- 40
- 
C. BREZINSKI, M. ZAGLIA, AND H. SADOK, Avoiding breakdown and near
  breakdown in Lanczos type algorithms, Numer. Alg., 1 (1991), pp. 261-284.
 
- 41
- 
height 2pt depth -1.6pt width 23pt, A breakdown free
  Lanczos type algorithm for solving linear systems, Numer. Math., 63
  (1992), pp. 29-38.
 
- 42
- 
W. BRIGGS, A Multigrid Tutorial, SIAM, Philadelphia, 1977.
 
- 43
- 
X.-C. CAI AND O. WIDLUND, Multiplicative Schwarz algorithms for
  some nonsymmetric and indefinite problems, SIAM J. Numer. Anal., 30 (1993),
  pp. 936-952.
 
- 44
- 
T. CHAN, Fourier analysis of relaxed incomplete factorization
  preconditioners, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 668-680.
 
- 45
- 
T. CHAN, L. DE PILLIS, AND H. VAN DER VORST, A transpose-free
  squared Lanczos algorithm and application to solving nonsymmetric linear
  systems, Tech. Rep. CAM 91-17, UCLA, Dept. of Math., Los Angeles, CA
  90024-1555, 1991.
 
- 46
- 
T. CHAN, E. GALLOPOULOS, V. SIMONCINI, T. SZETO, AND C. TONG, A
  quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric
  systems, SIAM J. Sci. Comp., 15(2) (1994), pp. 338-347.
 
- 47
- 
T. CHAN, R. GLOWINSKI, , J. PéRIAUX, AND O. WIDLUND, eds., Domain Decomposition Methods, Philadelphia, 1989, SIAM.
Proceedings of the Second International Symposium on Domain
  Decomposition Methods, Los Angeles, CA, January 14 - 16, 1988.
 
- 48
- 
height 2pt depth -1.6pt width 23pt, eds., Domain
  Decomposition Methods, Philadelphia, 1990, SIAM.
Proceedings of the Third International Symposium on Domain
  Decomposition Methods, Houston, TX, 1989.
 
- 49
- 
height 2pt depth -1.6pt width 23pt, eds., Domain
  Decomposition Methods, SIAM, Philadelphia, 1991.
Proceedings of the Fourth International Symposium on Domain
  Decomposition Methods, Moscow, USSR, 1990.
 
- 50
- 
T. CHAN AND C.-C. J. KUO, Two-color Fourier analysis of iterative
  algorithms for elliptic problems with red/black ordering, SIAM J. Sci.
  Statist. Comput., 11 (1990), pp. 767-793.
 
- 51
- 
T. F. CHAN AND T. MATHEW, Domain decomposition algorithms, Acta
  Numerica,  (1994), pp. 61-144.
 
- 52
- 
T. F. CHAN, T. P. MATHEW, AND J. P. SHAO, Efficient variants of the
  vertex space domain decomposition algorithm, SIAM J. Sci. Comput., 15(6)
  (1994), pp. 1349-1374.
 
- 53
- 
T. F. CHAN AND J. SHAO, Optimal coarse grid size in domain
  decomposition, J. Comput. Math., 12(4) (1994), pp. 291-297.
 
- 54
- 
D. CHAZAN AND W. MIRANKER, Chaotic relaxation, Linear Algebra
  Appl., 2 (1969), pp. 199-222.
 
- 55
- 
A. CHRONOPOULOS AND C. GEAR,  -step iterative methods for
  symmetric linear systems, J. Comput. Appl. Math., 25 (1989), pp. 153-168. -step iterative methods for
  symmetric linear systems, J. Comput. Appl. Math., 25 (1989), pp. 153-168.
 
- 56
- 
P. CONCUS AND G. GOLUB, A generalized conjugate gradient method for
  nonsymmetric systems of linear equations, in Computer methods in Applied
  Sciences and Engineering, Second International Symposium, Dec 15-19, 1975;
  Lecture Notes in Economics and Mathematical Systems, Vol. 134, Berlin, New
  York, 1976, Springer-Verlag.
 
- 57
- 
P. CONCUS, G. GOLUB, AND G. MEURANT, Block preconditioning for the
  conjugate gradient method, SIAM J. Sci. Statist. Comput., 6 (1985),
  pp. 220-252.
 
- 58
- 
P. CONCUS, G. GOLUB, AND D. O'LEARY, A generalized conjugate
  gradient method for the numerical solution of elliptic partial differential
  equations, in Sparse Matrix Computations, J. Bunch and D. Rose, eds.,
  Academic Press, New York, 1976, pp. 309-332.
 
- 59
- 
P. CONCUS AND G. H. GOLUB, Use of fast direct methods for the
  efficient numerical solution of nonseparable elliptic equations, SIAM J.
  Numer. Anal., 10 (1973), pp. 1103-1120.
 
- 60
- 
E. CUTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric
  matrices, in ACM Proceedings of the 24th National Conference, 1969.
 
- 61
- 
E. D'AZEVEDO, V. EIJKHOUT, AND C. ROMINE, LAPACK working note 56:
  Reducing communication costs in the conjugate gradient algorithm on
  distributed memory multiprocessor, tech. report, Computer Science
  Department, University of Tennessee, Knoxville, TN, 1993.
 
- 62
- 
E. D'AZEVEDO AND C. ROMINE, Reducing communication costs in the
  conjugate gradient algorithm on distributed memory multiprocessors, Tech.
  Rep. ORNL/TM-12192, Oak Ridge National Lab, Oak Ridge, TN, 1992.
 
- 63
- 
E. DE STURLER, A parallel restructured version of GMRES(m),
  Tech. Rep. 91-85, Delft University of Technology, Delft, The Netherlands,
  1991.
 
- 64
- 
E. DE STURLER AND D. R. FOKKEMA, Nested Krylov methods and
  preserving the orthogonality, Tech. Rep. Preprint 796, Utrecht University,
  Utrecht, The Netherlands, 1993.
 
- 65
- 
S. DEMKO, W. MOSS, AND P. SMITH, Decay rates for inverses of band
  matrices, Mathematics of Computation, 43 (1984), pp. 491-499.
 
- 66
- 
J. DEMMEL, The condition number of equivalence transformations that
  block diagonalize matrix pencils, SIAM J. Numer. Anal., 20 (1983),
  pp. 599-610.
 
- 67
- 
J. DEMMEL, M. HEATH, AND H. VAN DER VORST, Parallel numerical linear
  algebra, in Acta Numerica, Vol. 2, Cambridge Press, New York, 1993.
 
- 68
- 
S. DOI, On parallelism and convergence of incomplete LU
  factorizations, Appl. Numer. Math., 7 (1991), pp. 417-436.
 
- 69
- 
J. DONGARRA, J. DUCROZ, I. DUFF, AND S. HAMMARLING, A set of level
  3 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16
  (1990), pp. 1-17.
 
- 70
- 
J. DONGARRA, J. DUCROZ, S. HAMMARLING, AND R. HANSON, An extended
  set of FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math.
  Soft., 14 (1988), pp. 1-32.
 
- 71
- 
J. DONGARRA, I. DUFF, D. SORENSEN, AND H. VAN DER VORST, Solving
  Linear Systems on Vector and Shared Memory Computers, SIAM, Philadelphia,
  PA, 1991.
 
- 72
- 
J. DONGARRA AND E. GROSSE, Distribution of mathematical software via
  electronic mail, Comm. ACM, 30 (1987), pp. 403-407.
 
- 73
- 
J. DONGARRA, C. MOLER, J. BUNCH, AND G. STEWART, LINPACK Users'
  Guide, SIAM, Philadelphia, 1979.
 
- 74
- 
J. DONGARRA AND H. VAN DER VORST, Performance of various computers
  using standard sparse linear equations solving techniques, in Computer
  Benchmarks, J. Dongarra and W. Gentzsch, eds., Elsevier Science Publishers
  B.V., New York, 1993, pp. 177-188.
 
- 75
- 
F. DORR, The direct solution of the discrete Poisson equation on a
  rectangle, SIAM Rev., 12 (1970), pp. 248-263.
 
- 76
- 
M. DRYJA AND O. B. WIDLUND, Towards a unified theory of domain
  decomposition algorithms for elliptic problems, Tech. Rep. 486, also
  Ultracomputer Note 167, Department of Computer Science, Courant Institute,
  1989.
 
- 77
- 
D. DUBOIS, A. GREENBAUM, AND G. RODRIGUE, Approximating the inverse
  of a matrix for use in iterative algorithms on vector processors, Computing,
  22 (1979), pp. 257-268.
 
- 78
- 
I. DUFF, R. GRIMES, AND J. LEWIS, Sparse matrix test problems, ACM
  Trans. Math. Soft., 15 (1989), pp. 1-14.
 
- 79
- 
I. DUFF AND G. MEURANT, The effect of ordering on preconditioned
  conjugate gradients, BIT, 29 (1989), pp. 635-657.
 
- 80
- 
I. S. DUFF, A. M. ERISMAN, AND J.K.REID, Direct methods for sparse
  matrices, Oxford University Press, London, 1986.
 
- 81
- 
T. DUPONT, R. KENDALL, AND H. RACHFORD, An approximate factorization
  procedure for solving self-adjoint elliptic difference equations, SIAM J.
  Numer. Anal., 5 (1968), pp. 559-573.
 
- 82
- 
E. D'YAKONOV, The method of variable directions in solving systems
  of finite difference equations, Soviet Math. Dokl., 2 (1961), pp. 577-580.
TOM 138, 271-274.
 
- 83
- 
L. EHRLICH, An Ad-Hoc SOR method, J. Comput. Phys., 43 (1981),
  pp. 31-45.
 
- 84
- 
M. EIERMANN AND R. VARGA, Is the optimal  best for the SOR
  iteration method?, Linear Algebra Appl., 182 (1993), pp. 257-277. best for the SOR
  iteration method?, Linear Algebra Appl., 182 (1993), pp. 257-277.
 
- 85
- 
V. EIJKHOUT, Analysis of parallel incomplete point factorizations,
  Linear Algebra Appl., 154-156 (1991), pp. 723-740.
 
- 86
- 
height 2pt depth -1.6pt width 23pt, Beware of
  unperturbed modified incomplete point factorizations, in Proceedings of the
  IMACS International Symposium on Iterative Methods in Linear Algebra,
  Brussels, Belgium, R. Beauwens and P. de Groen, eds., 1992.
 
- 87
- 
height 2pt depth -1.6pt width 23pt, LAPACK working
  note 50: Distributed sparse data structures for linear algebra operations,
  Tech. Rep. CS 92-169, Computer Science Department, University of Tennessee,
  Knoxville, TN, 1992.
 
- 88
- 
height 2pt depth -1.6pt width 23pt, LAPACK working
  note 51: Qualitative properties of the conjugate gradient and Lanczos
  methods in a matrix framework, Tech. Rep. CS 92-170, Computer Science
  Department, University of Tennessee, Knoxville, TN, 1992.
 
- 89
- 
V. EIJKHOUT AND B. POLMAN, Decay rates of inverses of banded
   -matrices that are near to Toeplitz matrices, Linear Algebra Appl.,
  109 (1988), pp. 247-277. -matrices that are near to Toeplitz matrices, Linear Algebra Appl.,
  109 (1988), pp. 247-277.
 
- 90
- 
V. EIJKHOUT AND P. VASSILEVSKI, Positive definiteness aspects of
  vectorizable preconditioners, Parallel Computing, 10 (1989), pp. 93-100.
 
- 91
- 
S. EISENSTAT, Efficient implementation of a class of preconditioned
  conjugate gradient methods, SIAM J. Sci. Statist. Comput., 2 (1981),
  pp. 1-4.
 
- 92
- 
R. ELKIN, Convergence theorems for Gauss-Seidel and other
  minimization algorithms, Tech. Rep. 68-59, Computer Science Center,
  University of Maryland, College Park, MD, Jan. 1968.
 
- 93
- 
H. ELMAN, Approximate Schur complement preconditioners on serial
  and parallel computers, SIAM J. Sci. Statist. Comput., 10 (1989),
  pp. 581-605.
 
- 94
- 
H. ELMAN AND M. SCHULTZ, Preconditioning by fast direct methods for
  non self-adjoint nonseparable elliptic equations, SIAM J. Numer. Anal., 23
  (1986), pp. 44-57.
 
- 95
- 
L. ELSNER, A note on optimal block-scaling of matrices, Numer.
  Math., 44 (1984), pp. 127-128.
 
- 96
- 
V. FABER AND T. MANTEUFFEL, Necessary and sufficient conditions for
  the existence of a conjugate gradient method, SIAM J. Numer. Anal., 21
  (1984), pp. 315-339.
 
- 97
- 
G. FAIRWEATHER, A. GOURLAY, AND A. MITCHELL, Some high accuracy
  difference schemes with a splitting operator for equations of parabolic and
  elliptic type, Numer. Math., 10 (1967), pp. 56-66.
 
- 98
- 
R. FLETCHER, Conjugate gradient methods for indefinite systems, in
  Numerical Analysis Dundee 1975, G. Watson, ed., Berlin, New York, 1976,
  Springer Verlag, pp. 73-89.
 
- 99
- 
G. FORSYTHE AND E. STRAUSS, On best conditioned matrices, Proc.
  Amer. Math. Soc., 6 (1955), pp. 340-345.
 
- 100
- 
R. FREUND, Conjugate gradient-type methods for linear systems with
  complex symmetric coefficient matrices, SIAM J. Sci. Statist. Comput., 13
  (1992), pp. 425-448.
 
- 101
- 
R. FREUND, M. GUTKNECHT, AND N. NACHTIGAL, An implementation of the
  look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci.
  Comput., 14 (1993), pp. 137-158.
 
- 102
- 
R. FREUND AND N. NACHTIGAL, QMR: A quasi-minimal residual method
  for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315-339.
 
- 103
- 
height 2pt depth -1.6pt width 23pt, An implementation of
  the QMR method based on coupled two-term recurrences, SIAM J. Sci.
  Statist. Comput., 15 (1994), pp. 313-337.
 
- 104
- 
R. FREUND AND T. SZETO, A quasi-minimal residual squared algorithm
  for non-Hermitian linear systems, Tech. Rep. CAM Report 92-19, UCLA Dept.
  of Math., 1992.
 
- 105
- 
R. W. FREUND, A transpose-free quasi-minimum residual algorithm for
  non-Hermitian linear systems, SIAM J. Sci. Comput., 14 (1993),
  pp. 470-482.
 
- 106
- 
R. W. FREUND, G. H. GOLUB, AND N. M. NACHTIGAL, Iterative solution
  of linear systems, Acta Numerica,  (1992), pp. 57-100.
 
- 107
- 
R. GLOWINSKI, G. H. GOLUB, G. A. MEURANT, AND J. PéRIAUX, eds., Domain Decomposition Methods for Partial Differential Equations, SIAM,
  Philadelphia, 1988.
Proceedings of the First International Symposium on Domain
  Decomposition Methods for Partial Differential Equations, Paris,
  France, January 1987.
 
- 108
- 
G. GOLUB AND D. O'LEARY, Some history of the conjugate gradient and
  Lanczos methods, SIAM Rev., 31 (1989), pp. 50-102.
 
- 109
- 
G. GOLUB AND C. VAN LOAN, Matrix Computations, second
  edition, The Johns Hopkins University Press, Baltimore, 1989.
 
- 110
- 
A. GREENBAUM AND Z. STRAKOS, Predicting the behavior of finite
  precision Lanczos and conjugate gradient computations, SIAM J. Mat.
  Anal. Appl., 13 (1992), pp. 121-137.
 
- 111
- 
W. D. GROPP AND D. E. KEYES, Domain decomposition with local mesh
  refinement, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 967-993.
 
- 112
- 
I. GUSTAFSSON, A class of first-order factorization methods, BIT,
  18 (1978), pp. 142-156.
 
- 113
- 
M. H. GUTKNECHT, The unsymmetric Lanczos algorithms and their
  relations to Páde approximation, continued fractions and the QD
  algorithm, in Proceedings of the Copper Mountain Conference on Iterative
  Methods, 1990.
 
- 114
- 
height 2pt depth -1.6pt width 23pt, A completed theory
  of the unsymmetric Lanczos process and related algorithms, part I, SIAM
  J. Matrix Anal. Appl., 13 (1992), pp. 594-639.
 
- 115
- 
height 2pt depth -1.6pt width 23pt, Variants of
  Bi-CGSTAB for matrices with complex spectrum, SIAM J. Sci. Comp., 14
  (1993), pp. 1020-1033.
 
- 116
- 
height 2pt depth -1.6pt width 23pt, A completed theory
  of the unsymmetric Lanczos process and related algorithms, part II, SIAM
  J. Matrix Anal. Appl., 15 (1994), pp. 15-58.
 
- 117
- 
W. HACKBUSCH, Multi-Grid Methods and Applications, Springer-Verlag,
  Berlin, New York, 1985.
 
- 118
- 
height 2pt depth -1.6pt width 23pt, Iterative Lösung
  großer schwachbesetzter Gleichungssysteme, Teubner, Stuttgart, 1991.
 
- 119
- 
A. HADJIDIMOS, On some high accuracy difference schemes for solving
  elliptic equations, Numer. Math., 13 (1969), pp. 396-403.
 
- 120
- 
L. HAGEMAN AND D. YOUNG, Applied Iterative Methods, Academic Press,
  New York, 1981.
 
- 121
- 
W. HAGER, Condition estimators, SIAM J. Sci. Statist. Comput., 5
  (1984), pp. 311-316.
 
- 122
- 
M. HESTENES AND E. STIEFEL, Methods of conjugate gradients for
  solving linear systems, J. Res. Nat. Bur. Stand., 49 (1952), pp. 409-436.
 
- 123
- 
M. R. HESTENES, Conjugacy and gradients, in A History of Scientific
  Computing, Addison-Wesley, Reading, MA, 1990, pp. 167-179.
 
- 124
- 
N. HIGHAM, Experience with a matrix norm estimator, SIAM J. Sci.
  Statist. Comput., 11 (1990), pp. 804-809.
 
- 125
- 
K. JEA AND D. YOUNG, Generalized conjugate-gradient acceleration of
  nonsym- metrizable iterative methods, Linear Algebra Appl., 34 (1980),
  pp. 159-194.
 
- 126
- 
O. JOHNSON, C. MICCHELLI, AND G. PAUL, Polynomial preconditioning
  for conjugate gradient calculation, SIAM J. Numer. Anal., 20 (1983),
  pp. 362-376.
 
- 127
- 
M. JONES AND P. PLASSMANN, Parallel solution of unstructed, sparse
  systems of linear equations, in Proceedings of the Sixth SIAM conference on
  Parallel Processing for Scientific Computing, R. Sincovec, D. Keyes,
  M. Leuze, L. Petzold, and D. Reed, eds., SIAM, Philadelphia, pp. 471-475.
 
- 128
- 
height 2pt depth -1.6pt width 23pt, A parallel graph
  coloring heuristic, SIAM J. Sci. Statist. Comput., 14 (1993), pp. 654-669.
 
- 129
- 
W. JOUBERT, Lanczos methods for the solution of nonsymmetric systems
  of linear equations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 926-943.
 
- 130
- 
W. KAHAN, Gauss-Seidel methods of solving large systems of linear
  equations, PhD thesis, University of Toronto, 1958.
 
- 131
- 
S. KANIEL, Estimates for some computational techniques in linear
  algebra, Mathematics of Computation, 20 (1966), pp. 369-378.
 
- 132
- 
D. KERSHAW, The incomplete Cholesky-conjugate gradient method for
  the iterative solution of systems of linear equations, J. Comput. Phys., 26
  (1978), pp. 43-65.
 
- 133
- 
R. KETTLER, Analysis and comparison of relaxation schemes in robust
  multigrid and preconditioned conjugate gradient methods, in Multigrid
  Methods, Lecture Notes in Mathematics 960, W. Hackbusch and U. Trottenberg,
  eds., Springer-Verlag, Berlin, New York, 1982, pp. 502-534.
 
- 134
- 
height 2pt depth -1.6pt width 23pt, Linear multigrid
  methods in numerical reservoir simulation, PhD thesis, Delft University of
  Technology, Delft, The Netherlands, 1987.
 
- 135
- 
D. E. KEYES, T. F. CHAN, G. MEURANT, J. S. SCROGGS, AND R. G. VOIGT,
  eds., Domain Decomposition Methods For Partial Differential Equations,
  SIAM, Philadelphia, 1992.
Proceedings of the Fifth International Symposium on Domain
  Decomposition Methods, Norfolk, VA, 1991.
 
- 136
- 
D. E. KEYES AND W. D. GROPP, A comparison of domain decomposition
  techniques for elliptic partial differential equations and their parallel
  implementation, SIAM J. Sci. Statist. Comput., 8 (1987), pp. s166 - s202.
 
- 137
- 
height 2pt depth -1.6pt width 23pt, Domain decomposition
  for nonsymmetric systems of equations: Examples from computational fluid
  dynamics, in Domain Decomposition Methods, proceedings of the Second
  Internation Symposium, Los Angeles, California, January 14-16, 1988, T. F.
  Chan, R. Glowinski, J. Periaux, and O. B. Widlund, eds., Philadelphia, 1989,
  SIAM, pp. 373-384.
 
- 138
- 
height 2pt depth -1.6pt width 23pt, Domain decomposition
  techniques for the parallel solution of nonsymmetric systems of elliptic
  boundary value problems, Applied Num. Math., 6 (1989/1990), pp. 281-301.
 
- 139
- 
S. K. KIM AND A. T. CHRONOPOULOS, A class of Lanczos-like
  algorithms implemented on parallel computers, Parallel Comput., 17 (1991),
  pp. 763-778.
 
- 140
- 
D. R. KINCAID, J. R. RESPESS, D. M. YOUNG, AND R. G. GRIMES, ITPACK 2C: A Fortran package for solving large sparse linear systems
  by adaptive accelerated iterative methods, ACM Trans. Math. Soft., 8 (1982),
  pp. 302-322.
Algorithm 586.
 
- 141
- 
L. Y. KOLOTILINA AND A. Y. YEREMIN, On a family of two-level
  preconditionings of the incomlete block factorization type, Sov. J. Numer.
  Anal. Math. Modelling,  (1986), pp. 293-320.
 
- 142
- 
C. LANCZOS, An iteration method for the solution of the eigenvalue
  problem of linear differential and integral operators, J. Res. Nat. Bur.
  Stand., 45 (1950), pp. 255-282.
 
- 143
- 
height 2pt depth -1.6pt width 23pt, Solution of systems
  of linear equations by minimized iterations, J. Res. Nat. Bur. Stand., 49
  (1952), pp. 33-53.
 
- 144
- 
C. LAWSON, R. HANSON, D. KINCAID, AND F. KROGH, Basic Linear
  Algebra Subprograms for FORTRAN usage, ACM Trans. Math. Soft., 5
  (1979), pp. 308-325.
 
- 145
- 
J. MAITRE AND F. MUSY, The contraction number of a class of
  two-level methods; an exact evaluation for some finite element subspaces and
  model problems, in Multigrid methods, Proceedings, Köln-Porz, 1981,
  W. Hackbusch and U. Trottenberg, eds., vol. 960 of Lecture Notes in
  Mathematics, 1982, pp. 535-544.
 
- 146
- 
T. MANTEUFFEL, The Tchebychev iteration for nonsymmetric linear
  systems, Numer. Math., 28 (1977), pp. 307-327.
 
- 147
- 
height 2pt depth -1.6pt width 23pt, An incomplete
  factorization technique for positive definite linear systems, Mathematics of
  Computation, 34 (1980), pp. 473-497.
 
- 148
- 
S. MCCORMICK, Multilevel Adaptive Methods for Partial Differential
  Equations, SIAM, Philadelphia, 1989.
 
- 149
- 
S. MCCORMICK AND J. THOMAS, The Fast Adaptive Composite grid
  (FAC) method for elliptic equations, Mathematics of Computation, 46
  (1986), pp. 439-456.
 
- 150
- 
U. MEIER AND A. SAMEH, The behavior of conjugate gradient algorithms
  on a multivector processor with a hierarchical memory, J. Comput. Appl.
  Math., 24 (1988), pp. 13-32.
 
- 151
- 
U. MEIER-YANG, Preconditioned conjugate gradient-like methods for
  nonsymmetric linear systems, tech. rep., CSRD, University of Illinois,
  Urbana, IL, April 1992.
 
- 152
- 
J. MEIJERINK AND H. VAN DER VORST, An iterative solution method for
  linear systems of which the coefficient matrix is a symmetric  -matrix,
  Mathematics of Computation, 31 (1977), pp. 148-162. -matrix,
  Mathematics of Computation, 31 (1977), pp. 148-162.
 
- 153
- 
height 2pt depth -1.6pt width 23pt, Guidelines for the
  usage of incomplete decompositions in solving sets of linear equations as
  they occur in practical problems, J. Comput. Phys., 44 (1981), pp. 134-155.
 
- 154
- 
R. MELHEM, Toward efficient implementation of preconditioned
  conjugate gradient methods on vector supercomputers, Internat. J.
  Supercomput. Appls., 1 (1987), pp. 77-98.
 
- 155
- 
G. MEURANT, The block preconditioned conjugate gradient method on
  vector computers, BIT, 24 (1984), pp. 623-633.
 
- 156
- 
height 2pt depth -1.6pt width 23pt, Multitasking the
  conjugate gradient method on the CRAY X-MP/48, Parallel Comput., 5
  (1987), pp. 267-280.
 
- 157
- 
N. MUNKSGAARD, Solving sparse symmetric sets of linear equations by
  preconditioned conjugate gradients, ACM Trans. Math. Software, 6 (1980),
  pp. 206-219.
 
- 158
- 
N. NACHTIGAL, S. REDDY, AND L. TREFETHEN, How fast are nonsymmetric
  matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778-795.
 
- 159
- 
N. NACHTIGAL, L. REICHEL, AND L. TREFETHEN, A hybrid GMRES
  algorithm for nonsymmetric matrix iterations, SIAM J. Sci. Statist. Comput.,
  13 (1992), pp. 796-825.
 
- 160
- 
N. M. NACHTIGAL, A Look-Ahead Variant of the Lanczos Algorithm and
  its Application to the Quasi-Minimal Residual Methods for Non-Hermitian
  Linear Systems, PhD thesis, MIT, Cambridge, MA, 1991.
 
- 161
- 
Y. NOTAY, Solving positive (semi)definite linear systems by
  preconditioned iterative methods, in Preconditioned Conjugate Gradient
  Methods, O. Axelsson and L. Kolotilina, eds., vol. 1457 of Lecture Notes in
  Mathematics, Nijmegen, 1989, pp. 105-125.
 
- 162
- 
height 2pt depth -1.6pt width 23pt, On the robustness of
  modified incomplete factorization methods, Internat. J. Comput. Math., 40
  (1992), pp. 121-141.
 
- 163
- 
D. O'LEARY, The block conjugate gradient algorithm and related
  methods, Linear Algebra Appl., 29 (1980), pp. 293-322.
 
- 164
- 
height 2pt depth -1.6pt width 23pt, Ordering schemes for
  parallel processing of certain mesh problems, SIAM J. Sci. Statist. Comput.,
  5 (1984), pp. 620-632.
 
- 165
- 
T. C. OPPE, W. D. JOUBERT, AND D. R. KINCAID, NSPCG user's guide,
  version 1.0: A package for solving large sparse linear systems by various
  iterative methods, Tech. Rep. CNA-216, Center for Numerical Analysis,
  University of Texas at Austin, Austin, TX, April 1988.
 
- 166
- 
J. M. ORTEGA, Introduction to Parallel and Vector Solution of Linear
  Systems, Plenum Press, New York and London, 1988.
 
- 167
- 
C. PAIGE, B. PARLETT, AND H. VAN DER VORST, Approximate solutions
  and eigenvalue bounds from Krylov subspaces, Numer. Lin. Alg. Appls., 29
  (1995), pp. 115-134.
 
- 168
- 
C. PAIGE AND M. SAUNDERS, Solution of sparse indefinite systems of
  linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617-629.
 
- 169
- 
C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse
  linear equations and sparse least squares, ACM Trans. Math. Soft., 8 (1982),
  pp. 43-71.
 
- 170
- 
G. PAOLINI AND G. RADICATI DI BROZOLO, Data structures to
  vectorize CG algorithms for general sparsity patterns, BIT, 29 (1989),
  pp. 703-718.
 
- 171
- 
B. PARLETT, The symmetric eigenvalue problem, Prentice-Hall,
  London, 1980.
 
- 172
- 
B. N. PARLETT, D. R. TAYLOR, AND Z. A. LIU, A look-ahead Lanczos
  algorithm for unsymmetric matrices, Mathematics of Computation, 44 (1985),
  pp. 105-124.
 
- 173
- 
D. PEACEMAN AND J. H.H. RACHFORD, The numerical solution of
  parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math.,
  3 (1955), pp. 28-41.
 
- 174
- 
C. POMMERELL, Solution of Large Unsymmetric Systems of Linear
  Equations, vol. 17 of Series in Micro-electronics, volume 17, Hartung-Gorre
  Verlag, Konstanz, 1992.
 
- 175
- 
height 2pt depth -1.6pt width 23pt, Solution of large
  unsymmetric systems of linear equations, PhD thesis, Swiss Federal Institute
  of Technology, Zürich, Switzerland, 1992.
 
- 176
- 
E. POOLE AND J. ORTEGA, Multicolor ICCG methods for vector
  computers, Tech. Rep. RM 86-06, Department of Applied Mathematics,
  University of Virginia, Charlottesville, VA, 1986.
 
- 177
- 
A. QUARTERONI, J. PERIAUX, Y. KUZNETSOV, AND O. WIDLUND, eds., Domain Decomposition Methods in Science and Engineering,, vol. Contemporary
  Mathematics 157, Providence, RI, 1994, AMS.
Proceedings of the Sixth International Symposium on Domain
  Decomposition Methods, June 15-19, 1992, Como, Italy,.
 
- 178
- 
G. RADICATI DI BROZOLO AND Y. ROBERT, Vector and parallel
  CG-like algorithms for sparse non-symmetric systems, Tech. Rep. 681-M,
  IMAG/TIM3, Grenoble, France, 1987.
 
- 179
- 
J. REID, On the method of conjugate gradients for the solution of
  large sparse systems of linear equations, in Large Sparse Sets of Linear
  Equations, J. Reid, ed., Academic Press, London, 1971, pp. 231-254.
 
- 180
- 
G. RODRIGUE AND D. WOLITZER, Preconditioning by incomplete block
  cyclic reduction, Mathematics of Computation, 42 (1984), pp. 549-565.
 
- 181
- 
Y. SAAD, The Lanczos biorthogonalization algorithm and other
  oblique projection methods for solving large unsymmetric systems, SIAM J.
  Numer. Anal., 19 (1982), pp. 485-506.
 
- 182
- 
height 2pt depth -1.6pt width 23pt, Practical use of
  some Krylov subspace methods for solving indefinite and nonsymmetric linear
  systems, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 203-228.
 
- 183
- 
height 2pt depth -1.6pt width 23pt, Practical use of
  polynomial preconditionings for the conjugate gradient method, SIAM J. Sci.
  Statist. Comput., 6 (1985), pp. 865-881.
 
- 184
- 
height 2pt depth -1.6pt width 23pt, Preconditioning
  techniques for indefinite and nonsymmetric linear systems, J. Comput. Appl.
  Math., 24 (1988), pp. 89-105.
 
- 185
- 
height 2pt depth -1.6pt width 23pt, Krylov subspace
  methods on supercomputers, SIAM J. Sci. Statist. Comput., 10 (1989),
  pp. 1200-1232.
 
- 186
- 
height 2pt depth -1.6pt width 23pt, SPARSKIT: A basic
  tool kit for sparse matrix computation, Tech. Rep. CSRD TR 1029, CSRD,
  University of Illinois, Urbana, IL, 1990.
 
- 187
- 
height 2pt depth -1.6pt width 23pt, A flexible
  inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14
  (1993), pp. 461-469.
 
- 188
- 
Y. SAAD AND M. SCHULTZ, Conjugate gradient-like algorithms for
  solving nonsymmetric linear systems, Mathematics of Computation, 44 (1985),
  pp. 417-424.
 
- 189
- 
height 2pt depth -1.6pt width 23pt, GMRES: A
  generalized minimal residual algorithm for solving nonsymmetric linear
  systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.
 
- 190
- 
G. L. G. SLEIJPEN AND D. R. FOKKEMA, Bi-CGSTAB( ) for linear
  equations involving unsymmetric matrices with complex spectrum, Elec. Trans.
  Numer. Anal., 1 (1993), pp. 11-32. ) for linear
  equations involving unsymmetric matrices with complex spectrum, Elec. Trans.
  Numer. Anal., 1 (1993), pp. 11-32.
 
- 191
- 
B. F. SMITH, Domain decomposition algorithms for partial
  differential equations of linear elasticity, Tech. Rep. 517, Department of
  Computer Science, Courant Institute, 1990.
 
- 192
- 
P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric
  linear systems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36-52.
 
- 193
- 
R. SOUTHWELL, Relaxation Methods in Theoretical Physics, Clarendon
  Press, Oxford, 1946.
 
- 194
- 
H. STONE, Iterative solution of implicit approximations of
  multidimensional partial differential equations, SIAM J. Numer. Anal., 5
  (1968), pp. 530-558.
 
- 195
- 
P. SWARZTRAUBER, The methods of cyclic reduction, Fourier analysis
  and the FACR algorithm for the discrete solution of Poisson's equation on
  a rectangle, SIAM Rev., 19 (1977), pp. 490-501.
 
- 196
- 
P. L. TALLEC, Domain decomposition methods in computational
  mechanics, Computational Mechanics Advances, 1994.
 
- 197
- 
C. TONG, A comparative study of preconditioned Lanczos methods for
  nonsymmetric linear systems, Tech. Rep. SAND91-8240, Sandia Nat. Lab.,
  Livermore, CA, 1992.
 
- 198
- 
A. VAN DER SLUIS, Condition numbers and equilibration of matrices,
  Numer. Math., 14 (1969), pp. 14-23.
 
- 199
- 
A. VAN DER SLUIS AND H. VAN DER VORST, The rate of convergence of
  conjugate gradients, Numer. Math., 48 (1986), pp. 543-560.
 
- 200
- 
H. VAN DER VORST, Iterative solution methods for certain sparse
  linear systems with a non-symmetric matrix arising from PDE-problems, J.
  Comput. Phys., 44 (1981), pp. 1-19.
 
- 201
- 
height 2pt depth -1.6pt width 23pt, A vectorizable
  variant of some ICCG methods, SIAM J. Sci. Statist. Comput., 3 (1982),
  pp. 350-356.
 
- 202
- 
height 2pt depth -1.6pt width 23pt, Large tridiagonal
  and block tridiagonal linear systems on vector and parallel computers,
  Parallel Comput., 5 (1987), pp. 45-54.
 
- 203
- 
height 2pt depth -1.6pt width 23pt, (M)ICCG for 2D
  problems on vector computers, in Supercomputing, A.Lichnewsky and C.Saguez,
  eds., North-Holland, 1988.
 
- 204
- 
height 2pt depth -1.6pt width 23pt, High performance
  preconditioning, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1174-1185.
 
- 205
- 
height 2pt depth -1.6pt width 23pt, ICCG and related
  methods for 3D problems on vector computers, Computer Physics
  Communications, 53 (1989), pp. 223-235.
 
- 206
- 
height 2pt depth -1.6pt width 23pt, The convergence
  behavior of preconditioned CG and CG-S in the presence of rounding
  errors, in Preconditioned Conjugate Gradient Methods, O. Axelsson and L. Y.
  Kolotilina, eds., vol. 1457 of Lecture Notes in Mathematics, Berlin, New
  York, 1990, Springer-Verlag.
 
- 207
- 
height 2pt depth -1.6pt width 23pt, Bi-CGSTAB: A
  fast and smoothly converging variant of Bi-CG for the solution of
  nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
  pp. 631-644.
 
- 208
- 
H. VAN DER VORST AND J. MELISSEN, A Petrov-Galerkin type method
  for solving  where where is symmetric complex, IEEE Trans.
  Magnetics, 26 (1990), pp. 706-708. is symmetric complex, IEEE Trans.
  Magnetics, 26 (1990), pp. 706-708.
 
- 209
- 
H. VAN DER VORST AND C. VUIK, GMRESR: A family of nested GMRES
  methods, Numer. Lin. Alg. Applic., 1 (1994), pp. 369-386.
 
- 210
- 
J. VAN ROSENDALE, Minimizing inner product data dependencies in
  conjugate gradient iteration, Tech. Rep. 172178, ICASE, NASA Langley
  Research Center, 1983.
 
- 211
- 
R. VARGA, Matrix Iterative Analysis, Prentice-Hall Inc., Englewood
  Cliffs, NJ, 1962.
 
- 212
- 
P. VASSILEVSKI, Preconditioning nonsymmetric and indefinite finite
  element matrices, J. Numer. Alg. Appl., 1 (1992), pp. 59-76.
 
- 213
- 
V. VOEVODIN, The problem of non-self-adjoint generalization of the
  conjugate gradient method is closed, U.S.S.R. Comput. Maths. and Math.
  Phys., 23 (1983), pp. 143-144.
 
- 214
- 
H. F. WALKER, Implementation of the GMRES method using
  Householder transformations, SIAM J. Sci. Statist. Comput., 9 (1988),
  pp. 152-163.
 
- 215
- 
P. WESSELING, An Introduction to Multigrid Methods, Wiley,
  Chichester, 1991.
 
- 216
- 
O. WIDLUND, A Lanczos method for a class of non-symmetric systems
  of linear equations, SIAM J. Numer. Anal., 15 (1978), pp. 801-812.
 
- 217
- 
D. YOUNG, Iterative solution of large linear systems, Academic
  Press, New York, 1971.
 
- 218
- 
H. YSERENTANT, On the multilevel splitting of finite element
  spaces, Numer. Math., 49 (1986), pp. 379-412.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
=0pt plus 40pt
 
 Jack Dongarra 
Mon Nov 20 08:52:54 EST 1995