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1 The DISODE45 function

DISODE45 is a Matlab function that solves non-smooth, non-stiff differential
systems

y′(t) = f(t, y(t)), y(0) = y0 ∈ Rm, t ∈ [t0, tf ]

The non-smoothness of the solution y = y(t) happens at points, switching
points, (td, yd) where one of several switching surfaces defined by a function
g(t, y) = (g1(t, y), . . . , gk(t, y)) vanish, that is, at least for a index i, gi(td, yd) =
0.

The call to this function has the following syntax

[T,Y] = disode45(odefun,switchfun,tspan,y0)

[T,Y,TDIS,YDIS,IDIS,STATS]=disode45(odefun,switchfun,tspan,y0)

[T,Y] = disode45(odefun,switchfun,tspan,y0,options)

[T,Y,TDIS,YDIS,IDIS,STATS]=disode45(odefun,switchfun,tspan,y0,options)

It is very similar to the syntax used by the ODE suite Matlab package so
that users that are familiar with this software can find the use of disode45 very
easy.

1.1 Input arguments

odefun A function handle that evaluates the right side of the differential equa-
tions f(t, y).
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switchfun A function handle that evaluates the function g(t, y) defining the
switching surfaces.

tspan A vector specifying the interval of integration, [t0, tf ]. The solver im-
poses the initial conditions at tspan(1), and integrates from tspan(1)

to tspan(end). For the moment, the code does not allow vectors tspan

with more than two components, and tf must be greater than t0

y0 A m dimensional vector of initial conditions.

options Structure of optional parameters that change the default integration
properties. You can create options using the disodeset function.

1.2 Output arguments

T Column vector of time points.

Y Solution array. Each row in Y corresponds to the solution at a time returned
in the corresponding row of T.

TDIS Vector of times at which discontinuities or switching points of the nu-
merical solution have been detected.

YDIS The solution at the times of switching points. Each row in YDIS cor-
responds to the solution at a time returned in the corresponding row of
TDIS.

IDIS Vector containing the indexes i of the switching function that vanishes
at each switching point.

• The absolute value of IDIS(i) indicates the switching function cor-
responding to the i–eme switching point.

• The sign of IDIS(i) indicates the type of discontinuity. It it is pos-
itive, the discontinuity is transversal. If it is negative, the switching
point is Filippov (entering or either exiting a sliding region). For ex-
ample, a value IDIS(4) = −2 means that the fourth switching point
is a Filippov point located at the second switching surface g2(t, y).

STATS Vector containing some statistics about the integration

STATS(1) Number of accepted normal steps
STATS(2) Number of rejected normal steps
STATS(3) Number of accepted sliding steps
STATS(4) Number of rejected sliding steps
STATS(5) Number of steps at with a possible switching point
STATS(6) Number of transversal discontinuities
STATS(7) Number of sliding discontinuities
STATS(8) Number of exits of a sliding region
STATS(9) Number of calls to odefun
STATS(10) Number of calls to switchfun
STATS(11) Number of calls to gradswitchfun
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1.3 Required user’s functions

odefun The function,

f=odefun(t,y)

for a scalar t and a column vector y, must return a column vector f corre-
sponding to f(t, y).

switchfun The function

[value,isterminal,direction] = switchfun(t,y)

for a scalar t and a column vector y, must return three column vectors

• value(i) is the value of the i-th component gi(t, y)

• isterminal(i) specifies the action to be taken when a zero of the
function gi(t, y) is found. It can take the values −1, 0 or 1.

– isterminal(i)=1 means that the integration must terminate at
a zero of the i–th switching function.

– isterminal(i)=0 means that the integration must continue with-
out any action.

– isterminal(i)=−1 means that the program must call an ex-
ternal function actionatswitch(t,y), that should have been
provided by the user in the options by means of disodeset func-
tion (see sections 3 and 4).

• direction(i) specifies which zeros of gi(t, y) have to be computed.

– direction(i) = 0 means that all zeros are to be computed (the
default).

– direction(i) = +1 means that only the zeros where the switch-
ing function increases, that is, it passes from negative to positive,
must be computed.

– direction(i) = -1 means that only the zeros where the switch-
ing function decreases must be computed.

1.4 Getting the code

The code can be downloaded at http://iuma.unizar.es/en/research/software

2 A simple first example

Let us consider a simple mechanical system consisting on a mass m = 1 atached
to a fixed wall by a spring with stiffness coefficient 1, moving on a surface
with a Coulomb friction with friction coefficient µ so that the friction force is
FC = µg = 0.4.
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This system is modelled by the non-smooth second order differential equation

x′′ = −x− FC sign(x′).

In order to be integrated by DISODE45, this second order equation must
be expressed as a first order system with two components y1(t) = x(t) and
y2(t) = x′(t), as

y′ =

(
y′1
y′2

)
=

(
y2

−y1 − FC sign(y2)

)
= f(t, y)

Clearly the vector field is non smooth at points where x′ = y2 = 0. Then,
we have a unique switching surface g(y1, y2) = y2.

The solution, with initial conditions x(0) = 3, x′(0) = 0, passes first through
3 transversal discontinuities and after that, at t = 12.5664 . . . it enters a sliding
region with x = 0.2, x′ = 0 and stays at this point forever (the friction force is
greater than the force of the spring and the mass stops).

The evolution of the solution x(t) and its derivative x′(t) are depicted in
Figure 1. The discontinuity points are indicated by means of small circles. Note
that for this problem, since it is a second order differential equation, the solution
x(t) and its derivative x′(t) are continuous, as it can be seen in the plots, but
the second derivative x′′(t) is not continuous.
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Figure 1: Left: Solution and derivative against time, Right: Phase diagram

A Matlab code to integrate this problem with disode45 can be
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%

% Call to disode45

%

y0=[3;0];

[tout,yout,tdis,ydis,idis,stats]=disode45(@fun, @gfun,[0,20], y0);

%

% Definition of the vector field

%

function f=fun(t,y)

Fc=0.4;

f=[y(2);-y(1)-Fc*sign(y(2))] ;

end

%

% Definition of the switching surface

%

function [g,isterminal,direction]=gfun(t,y)

g=y(2);

isterminal=0;

direction=0;

end

Once the integration of this problem has concluded, the vectors tdis, ydis
and idis contain the following data

tdis =

0 3.1416 6.2831 9.4247 12.5661

ydis =

3.0000 0

-2.2000 -0.0000

1.3999 -0.0000

-0.5999 0.0000

-0.2001 -0.0000

idis =

1 1 1 1 -1

The elements of the vector idis indicate that all the switching points corre-
spond to the first switching surface, an expected fact because there is a unique
switching surface. The first four components are positive, which means that
these discontinuities are transversal. The last one is negative, and therefore
this discontinuity starts a sliding region. Note that the integration starts at an
initial condition (3, 0) which belongs to the switching surface. This is why the
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vector tdis has 0 as its first element, which means that there is a switching
point at t = 0.

The plots shown in Figure 1 (without legends) can be obtained with the
matlab orders

plot(tout,yout(:,1),’k’,tout,yout(:,2),’k--’,tdis,ydis(:,2),’ro’)

plot(yout(:,1),yout(:,2),’k-’,ydis(:,1),ydis(:,2),’ro’)

3 The DISODESET function

DISODESET is a Matlab function that creates a options structure that lets the
user set some parameters (options) to be used by DISODE45 in the numerical
integration.

The call to this function has the following syntax

options=disodeset(’name1’,value1,’name2’,value2,...)

3.1 Allowed options

’RelTol’ Sets the Relative error tolerance (default to 1e-3). Each integration
step satisfies ||est||2 ≤ RelTol ∗ ||y||2 +AbsTol.

’AbsTol’ Sets the absolute error tolerance (default to 1e-6). See RelTol.

’InitialStep’ Sets a suggested initial step size and must be a positive scalar.
The solver will try this first. By default the solver determine an initial
step size automatically.

’EventControl’ Sets the type of control for the detection of discontinuities

0 Existence of discontinuity is checked at every step and every stage of
failed steps.

1 Existence of discontinuity is checked at every stage of every step.

k Existence of discontinuity is checked at every stage of every step and
at 6*k uniformly distributed points inside every step.

’Refine’ Sets the output refinement factor and must be a positive integer. This
property increases the number of output points by the specified factor
producing smoother output. Refine defaults to 4.

’Gradient’ Specifies, by means of a function handle, the function to compute
the gradient of the switching functions.

’ActionSwitch’ Specifies, by means of a function handle, the function to be
called by the integrator when a switching point is found. This output
function is called if the corresponding value of the vector isterminal is
−1. ActionSwitch defaults to [ ].

6



4 Optional functions that can be provided by
the user

gradswitchfun The function

grad = gradswitchfun(t,y,inddis)

for a scalar t, column vector y, and a switching function index inddis,
must return a column vector grad which is the gradient vector of the
function ginddis

This function must be provided by the user if the option ’Gradient’ is set.
By default, disode45 computes the gradient vector by means of divided
differences.

actionatswitch The function

yout = actionatswitch(t,y)

for a scalar t and a column vector y, must return a column vector yout

which is the new state vector. The integration will proceed from the point
t with the initial condition yout.

This function must be provided if the option ’ActionSwitch’ is set, and
it is executed if the function switchfun(t,y) returns a value -1 in the
vector isterminal at the switching point.

5 Examples

Example 1 In the first example we consider two masses m1 = m2 = 1 linked
by a spring, moving on a surface with Coulomb friction (see [1, pp. 162]).
Both masses are equal, but made with different material, so their friction
coefficients µ1 and µ2 are different and so are the friction forces F1 and
F2. The surface where the masses move has two physically different parts,
which makes the friction coefficients change.

F1 = 0.6 F1 = 1

F2 = 0.5 F2 = 0.2

x1 x2
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This mechanical system is modelled by the non-smooth differential system

x′′1 = −(x1 − x2)− F1sign(x′1),

x′′2 = −(x2 − x1)− F2sign(x′2),

F1 =

{
1 if x1 ≤ 0

0.6 if x1 > 0
F2 =

{
0.5 if x2 ≤ 0

0.2 if x2 > 0

x1(0) = −2, x2(0) = 3, x′1(0) = 0, x′2(0) = 0

t ∈ [0, 6].

Again, we must express the second order system as a first order system
with four components y1(t) = x1(t), y2(t) = x2(t), y3(t) = x′1(t) and
y4(t) = x′2(t))

y′ =


y′1
y′2
y′3
y′4

 =


y3
y4

−(y1 − y2)− F1 sign(y3)
−(y2 − y1)− F2 sign(y4)

 = f(t, y)

Clearly the vector field f(t, y) is non smooth at points where x′1 = y3 = 0,
x′2 = y4 = 0, x1 = y1 = 0 or x2 = y2 = 0. Then, we have four switching
surfaces g1(y) = y1, g2(y) = y2, g3(y) = y3 and g4(y) = y4.

The solution, with these initial conditions, passes first through 14 transver-
sal discontinuities and after some time it enters a sliding region onto
g1(y) = 0. Inside this sliding region, y1 = 0, the solution crosses three
times transversal discontinuities and finally it attains a co-dimension 2
sliding region y3 = y4 = 0, where both masses do not move, and the
system remains there forever. The integrator stops when it find a co-
dimension 2 Filippov point.

The components of the solution x1(t) and x2(t) of this problem as well as
their derivatives are depicted in Figure 2. The 18 discontinuity points are
indicated by means of small circles.

A Matlab code to integrate this problem with disode45 can be

%

% Call to disode45

%

y0 = [-2;3;0;0];

[tout,yout,tdis,ydis,idis,stats]=disode45(@fun, @gfun,[0,20], y0);

%

% Definition of the vector field

%

function f=fun1(t,y)
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Figure 2: Solution for Example 1

E=1.0;

if y(1) > 0

mu1=1.0;

else

mu1=0.6;

end

if y(2) > 0

mu2=0.2;

else

mu2=0.5;

end

f=[y(3);y(4);-E*(y(1)-y(2))-mu1*sign(y(3)); ...

-E*(y(2)-y(1))-mu2*sign(y(4))] ;

end

%

% Definition of the switching surfaces

%

function [g,isterminal,direction]=gfun1(t,y)

g=[y(3); y(4); y(1); y(2)];

isterminal=[0;0;0;0];

direction=[0;0;0;0];

end

Once the integration of this problem has concluded, the vectors tdis,
ydis contain the switching point and idis contain the following data
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idis =

1 3 4 1 2 3 4 1

2 4 3 1 2 3 -1 4

2 4 -2

The elements of the vector idis indicate that the first switching point
correspond to the first switching surface, the second one to the third sur-
face and so on. The positive elements mean that these discontinuities are
transversal. The negative ones mean that the solution enters into a sliding
region.

The plots in Figure 2 (without legends) can be obtained with the matlab
order

plot(tout,yout(:,1),’k’,tout,yout(:,2),’b’, tout, ...

yout(:,3),’k--’,tout,yout(:,4),’b--’,tdis,ydis(:,2),’ro’);

Example 2 In the second example (see [4]) we consider a mass m = 1 linked
to a wall by a spring of stiffness k and a damper of viscous damping
coefficient r. A external force F = a0 cos(wt) is acting upon the mass
which is placed onto a belt that moves with velocity v(t) = cos(t) + 0.7.
Therefore, a Coulomb friction force FC acts upon the mass.

F = a0 cos(wt)

v(t) = cos(t) + 0.7x

This mechanical system is modelled by the non-smooth second order dif-
ferential system

x′′ = −kx− 2rx′ + a0 cos(wt)− FC sign(x′ − v(t)),

FC = 0.4 a0 = 1, r = 0.2, k = 1, w = 0.7,

v(t) = cos(t) + 0.7,

x(0) = 3, x′(0) = 0,

t ∈ [0, 30].

Expressed as a first order system with two components y1(t) = x(t),
y2(t) = x′(t), we have

y′ =

(
y′1
y′2

)
=

(
y2

−ky1 − 2ry2 + a0 cos(wt)− FC sign(y2 − v(t))

)
= f(t, y)
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Clearly the vector field f(t, y) is non smooth at points where x′(t) =
y2(t) = v(t). Then, we have one switching surface g(y) = y2 − v(t), that
depends on y2 and also on v(t).

The solution x(t) and its derivative x′(t) are depicted in the upper plot
of Figure 3. The discontinuity points (where the second derivative x′′(t)
is not continuous) are indicated by means of small circles. To visualize
the sliding regions, we give in the down plot of Figure 3 the function
x′(t) − v(t). The sliding regions correspond to the intervals at which the
functions vanishes.
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Figure 3: Example 2, Solution (top) and Sliding regions (dowm)

The solution, with the considered initial conditions, passes first through
a transversal discontinuity, then it enters a sliding region for a short time
until it exits it, then it passes through two transversal discontinuities and
then it enters into another sliding region.
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A Matlab code to integrate this problem with disode45 can be

%

% Call to disode45

%

y0 = [3;0];

[tout,yout,tdis,ydis,idis,stats]=disode45(@fun, ...

@gfun,[0,30], y0);

%

% Definition of the vector field

%

function f=fun(t,y)

k=1.0;

r=0.2;

a0=1.0;

w=0.7;

Fc=0.4;

v=cos(t)+0.7;

f=[y(2);-k*y(1)-2*r*y(2)+a0*cos(w*t)-Fc*sign(y(2)-v)];

end

%

% Definition of the switching surfaces

%

function [g,isterminal,direction]=gfun(t,y)

v=cos(t)+0.7;

g=y(2)-v;

isterminal=0;

direction=0;

end

Once the integration of this problem concludes, the vectors tdis, ydis and
idis contain the following data

tdis =

7.6056 9.4835 9.7653 14.8051 17.4589 26.1318 27.2913

ydis =

0.6072 0.9459

1.0923 -0.2983

1.0143 -0.2426

-1.1013 0.0806

0.2269 0.8792

1.3390 1.2411
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2.1418 0.1455

idis =

1 -1 -1 1 1 -1 -1

In this case, the second element of idis equal to −1 means that the
solution enters into a sliding region, and the third one, also −1, means
that the solution exits from the sliding region. The same happens with
the last two elements.

The plots in Figure 3 (without legends) can be obtained with the matlab
orders

plot(tout,yout(:,1),’k’,tout,yout(:,2),’k--’, tdis, ...

ydis(:,1),’ro’);

plot(tout,yout(:,2)-0.7-cos(tout)’,[0,30],[0,0],’r’);

Example 3 In the third example (see A. Luo [4, pp. 115]) we consider two
masses m1 and m2 linked to a wall by springs of stiffness k1, k2 respectively
and dampers of viscous damping coefficients r1, r2. A external force F =
a0 cos(wt) is acting upon the mass m1. Mass m1 is placed into a hole in
mass m2 so that the masses can hit each other as depicted in Figure 4.

F = a0 cos(wt)

m1

m2

x1, x2

d

Figure 4: Example 3

Whenever both masses have no contact, that is, y1−y2 > d/2 or y2−y1 >
d/2, this mechanical system is modelled by the differential system

m1x
′′
1 = −k1x1 − r1x′2 + a0 cos(wt) + b0

m2x
′′
2 = −k2x2 − r2x′2

(1)

When the masses hit each other, |x1 − x2| = d/2, the behaviour of the
system depends on their velocity. If they are different, x′1 6= x′2, we have
a switching point in which the vector field does not change but the ini-
tial conditions of the system change from (x1, x2, x

′
1, x
′
2) to (x̂1, x̂2, x̂

′
1, x̂
′
2)
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according to the following formulas

x̂1 = x1,
x̂2 = x2,

x̂′1 =
m1 −m2e

m1 +m2
x′1 +

(1 + e)m2

m1 +m2
x′2,

x̂′2 =
m2 −m1e

m1 +m2
x′1 +

(1 + e)m1

m1 +m2
x′2.

If the masses hit with the same velocity, the system enters into a sticking
region that is governed by the differential system

(m1 +m2)x′′1 = −(k1 + k2)x1 − (r1 + r2)x′1) +
k2d

2
+ a0 cos(wt) + b0,

(m1 +m2)x′′2 = −(k1 + k2)x2 − (r1 + r2)x′2)− k1d

2
+ a0 cos(wt) + b0,

if x1 = x2 + d/2 or

(m1 +m2)x′′1 = −(k1 + k2)x1 − (r1 + r2)x′1)− k2d

2
+ a0 cos(wt) + b0,

(m1 +m2)x′′2 = −(k1 + k2)x2 − (r1 + r2)x′2) +
k1d

2
+ a0 cos(wt) + b0,

if x2 = x1 + d/2.

Note that in this region, since |x1 − x2| = d/2, it holds x′′1(t) = x′′2(t) and
x′1(t) = x2(t). The system stays in this region while the forces per unit
mass, that act upon each mass

u1 =
F1

m1
= − r1

m1
x′1 −

k1

m1
x1 +

b0 + a0 cos(wt)

m1

u2 =
F2

m2
= − r2

m2
x′2 −

k2

m2
x2

satisfy x1 − x2 = d/2 and u1 ≥ u2 or well x2 − x1 = d/2 and u2 ≥ u1.
In other case, the systems goes back to the non sticking evolution and
equations (1) govern the evolution of the system.

With the above considerations, and defining the state vector by y(t) =
(y1(t), y2(t), y3(t), y4(t))T = (x1(t), x2(t), x′1(t), x′2(t))T the system can be
modelled by the non smooth system

y′(t) = A(t)y(t) + b(t),
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with

A(t) =





0 0 1 0

0 0 0 1

− k1 + k2
m1 +m2

− r1 + r2
m1 +m2

0 0

− k1 + k2
m1 +m2

− r1 + r2
m1 +m2

0 0


,

if y1 − y2 ≥ d/2 and u1 ≥ u2
or y2 − y1 ≥ d/2 and u2 ≥ u1


0 0 1 0

0 0 0 1

− k1
m1

− r1
m1

0 0

− k2
m2

− r2
m2

0 0

 , otherwhise.

b(t) =





0

0
k2d/2

m1 +m2
+
a0 cos(wt)

m1 +m2

−k1d/2
m1 +m2

+
a0 cos(wt)

m1 +m2


, if y1 − y2 ≥ d/2 and u1 ≥ u2



0

0
−k2d/2
m1 +m2

+
a0 cos(wt)

m1 +m2

k1d/2

m1 +m2
+
a0 cos(wt)

m1 +m2


, if y2 − y1 ≥ d/2 and u2 ≥ u1


0

0
b0
m1

+
a0
m1

cos(wt)

0

 , otherwhise

In this example we have taken

r1 = 0.6, r2 = 0.6, k1 = 30, k2 = 20, a0 = 1, w = 0.7, b0 = 35

and as initial conditions

y1(0) = 0.2, y2(0) = 0.3, y′1(0) = 0, y′20) = 0, t ∈ [0, 10].
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The vector field f(t, y) is non smooth at points where y1 − y2 = d/2,
when y2 − y1 = d/2. Starting with the selected initial conditions, the
system evolves smoothly until the masses hit. Then, a series of hits happen
repeatedly, each time after less time. After a finite time, but infinite hits,
the masses hit with the same velocity and the system enters into a sticking
region. After some time, the system leaves this region and the behaviour
repeats the same process. In the bottom plot of Figure 5 we depict the
function x1(t) − x2(t). The points where x1(t) − x2(t) = 0.5 correspond
to points where the masses hit, and the intervals where x1(t) − x2(t)
correspond to sticking regions. In the top plot of Figure 5 we show the
solution x1(t), x2(t) against time t. again, the discontinuity points are
indicated by means of small circles.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

t

x
1
(t)

x
2
(t)

0 1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

x 1(t
)−

x 2(t
)

Figure 5: Example 3, Solution (top) and Sliding regions (bottom)

This problem has two specially complicated characteristics. On one side,
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the initial point of a sticking region is in fact a accumulation point of
discontinuities, and in theory to attain it we should detect an infinity
number of switching points. To solve this, the start of the sticking region
can be assumed when |x1−x2| = d/2 and |x′1(t)−x′2(t)| < c for some small
value of c. In our numerical computations we ha taken c = 10−6. The
second special characteristic is that at the moment the sticking region is
attained the trajectory of the system is tangent to the switching surface.
Thus, for the surface g1(y) = y1 − y2 − d/2 = 0, the gradient vector is
∇g1 = (1,−1, 0, 0)T and the sticking region is attained at a point y∗ =
(y2 +d/2, y2, y4, y4)T . At this point, the vector field has a value f(t, y∗) =
(y4, y4,−(k1/m1)y1,−(k2/m2)/y2)T and clearly, ∇g1(y∗) · f(t, y∗) = 0.
This means that the numerical approximation can not be reliable, in the
sense that a small error in the approximation of the solution can lead to
a great error in the time t at which the solution starts the sticking region.

A Matlab code to integrate this problem with disode45 can be

%

% Call to disode45

%

options=disodeset(’RelTol’,1.e-5,’AbsTol’,1.e-5, ...

’ActionSwitch’,@actionatswitch);

y0 = [0.2;0.3;0;0];

[tout,yout,tdis,ydis,idis,stats]=disode45(@fun, @gfun, ...

[0,10], y0,options);

%

% Definition of the vector field

%

function f=fun(t,y)

m1=2;

m2=1;

r1=0.6;

r2=0.6;

k1=30;

k2=20;

a0=30;

b0=35;

d=1.0;

ee=0.7;

w=1.38;

u1=-(r1/m1)*y(3)-(k1/m1)*y(1)+b0/m1+(a0/m1)*cos(w*t);

u2=-(r2/m2)*y(4)-(k2/m2)*y(2);

if y(1)-y(2)>= d/2 && u1>=u2,

f=[y(3);y(3); ...

-((r1+r2)/(m1+m2))*y(3)-((k1+k2)/(m1+m2))*y(1)+ ...
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b0/(m1+m2)+(k2*d/(2*m1+2*m2))+(a0/(m1+m2))*cos(w*t);...

-((r1+r2)/(m1+m2))*y(3)-((k1+k2)/(m1+m2))*y(1)+ ...

b0/(m1+m2)+(k2*d/(2*m1+2*m2))+(a0/(m1+m2))*cos(w*t)];

elseif y(2)-y(1)>= d/2 && u2>=u1,

f=[y(3);y(3); ...

-((r1+r2)/(m1+m2))*y(3)-((k1+k2)/(m1+m2))*y(1)+ ...

b0/(m1+m2)-(k2*d/(2*m1+2*m2))+(a0/(m1+m2))*cos(w*t);...

-((r1+r2)/(m1+m2))*y(3)-((k1+k2)/(m1+m2))*y(1)+ ...

b0/(m1+m2)-(k2*d/(2*m1+2*m2))+(a0/(m1+m2))*cos(w*t)];

else

f=[y(3);y(4);-(r1/m1)*y(3)-(k1/m1)*y(1)+ ...

b0/m1+(a0/m1)*cos(w*t);-(r2/m2)*y(4)-(k2/m2)*y(2)];

end

end

%

% Definition of the switching surfaces

%

function [g,isterminal,direction]=gfun(t,y)

m1=2;

m2=1;

r1=0.6;

r2=0.6;

k1=30;

k2=20;

a0=30;

b0=35;

d=1.0;

ee=0.7;

w=1.38;

u1=-(r1/m1)*y(3)-(k1/m1)*y(1)+b0/m1+(a0/m1)*cos(w*t);

u2=-(r2/m2)*y(4)-(k2/m2)*y(2);

g=[y(1)-y(2)-d/2;y(2)-y(1)-d/2;u1-u2];

isterminal=[-1;-1;0];

direction=[1;1;0];

end

%

% Definition of the action at switch function

%

function ysw=actionatswitch(t,y)

m1=2;

m2=1;

r1=0.6;

r2=0.6;

k1=30;

k2=20;

a0=30;
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b0=35;

d=1.0;

ee=0.7;

w=1.38;

ysw=y;

if abs(y(3)-y(4))>1.e-6,

ysw(3)=((m1-m2*ee)/(m1+m2))*y(3)+((1+ee)*m2/(m1+m2))*y(4);

ysw(4)=((m2-m1*ee)/(m1+m2))*y(4)+((1+ee)*m1/(m1+m2))*y(3);

if y(1)-y(2)-d/2>=0

ysw(1)=y(2)+d/2;

elseif y(2)-y(1)>=d/2,

ysw(2)=y(1)+d/2;

end

else

ysw(3)=ysw(4);

if y(1)-y(2)>=d/2

ysw(1)=y(2)+d/2;

elseif y(2)-y(1)>=d/2,

ysw(2)=y(1)+d/2;

end

end

Once the integration of this problem concludes, the vectors tdis, ydis
and idis contain the data corresponding to 135 transversal discontinuity
points, 3 points starting a sticking region and two exits of a sticking region.
The next matlab code give the data corresponding to the sticking points,
for which idis is negative.

>>tdis(idis<0)

ans =

1.1658 1.4446 3.6106 6.1162 8.3541

>> ydis(idis<0)

ans =

0.9245 -0.1332 1.3458 0.2212 1.4245

The plots in Figure 5 (without legends) can be obtained with the matlab
orders

plot(tout,yout(:,1),’k’,tout,yout(:,2),’b’,tdis(idis<0), ...
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ydis(idis<0,1),’ro’,tdis(idis<0),ydis(idis<0,2),’ro’)

plot(tout,yout(:,1)-yout(:,2))

Example 4 In this example, we consider a simplified model of structural pound-
ing, used in the study of the effects of earthquakes [3]. It is defined by the
second order equation

2x′′ = −4.1 x′ − 210.125 x− u(x, x′)− r(t), t ∈ [0, 3]

with r(t) = 2 sin(14 t) and u given by

u(y, y′) =



0 if x < ν,

c · (x− ν)
3
2 + 1.98

√
2c(x− ν)

1
4 x′ if x > ν, x′ > 0,

c · (x− ν)
3
2 if x > ν, x′ < 0,

c = 2.47× 106, ν = 0.005.

Expressed as a first order system with two components y1(t) = x(t),
y2(t) = x′(t), we have

y′ =

(
y′1
y′2

)
=

(
y2

−4.1 y2 − 210.125 y1 − u(y1, y
′
2)− r(t)

)
= f(t, y)

Clearly the vector field f(t, y) is non smooth at points where x(t) = y1(t) =
ν or where x(t) = y1(t) > ν and x′(t) = y2(t) = 0. Then, we have two
switching surfaces g1(y) = y1−ν and g2(y) = y2. For the switching surface
g2, the vector field is discontinuous only when x′ changes from positive to
negative, which happens when x > ν. Moreover, due to the powers 1/4
and 3/2, the function defining the vector field at the region g1(y) > 0 is
not defined when g1(y) < 0.

Note that the vector field f is a continuous function (but not C1). There-
fore f+(td, yd) = f−(td, yd) at the switching points and the transversality
condition is satisfied unless the vector field is tangent to the switch-
ing surface. It is easy to see that ∇g1(y) · f(t, y) = 1 for all y and
∇g2 · f(t, y) = −210.125y1 − c · (y1 − ν)3/2 − r(t) for switching points
such that y2 = 0. Consequently, the transversality condition is satisfied
except for the points for which y2 = x′ = 0, y1 = x > ν and

−210.125 x(t)− c (x(t)− ν)3/2 − r(t) = 0.

Since |r(t)| ≤ 2, whenever x(t) 6∈ [ν, 0.0051157248] the discontinuity points
are transversal.

The phase diagram for this problem (x1 versus x′) is depicted in Figure 6
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Figure 6: Phase diagram for structural pounding model

The discontinuity points (where the third derivative x′′′(t) is not continu-
ous) lie onto the red dashed lines.

A Matlab code to integrate this problem with disode45 can be

%

% Call to disode45

%

options=disodeset(’Refine’,10);

y0 = [0;0];

[tout,yout,tdis,ydis,idis,stats]=disode45(@fun4, ...

@gfun4,[0,3], y0,options);

%

% Definition of the vector field

%

function f=fun(t,y)

k=210.125;

c=2.47e+6;

nu=0.005;

r=2*sin(14*t);

if y(1)>nu

if y(2)>0

u=c*(y(1)-nu)^(3/2) + 1.98*sqrt(2*c*sqrt(y(1)-nu))*y(2);
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else

u=c*(y(1)-nu)^(3/2);

end

else

u=0;

end

f=[y(2); (-4.1*y(2)-k*y(1)-u-r)/2];

end

%

% Definition of the switching surfaces

%

function [g,isterminal,direction]=gfun(t,y)

if y(1)<0.005

g=[y(1)-0.005;1];

else

g=[y(1)-0.005;y(2)];

end

isterminal=[0;0];

direction=[0;-1];

end

Once the integration of this problem concludes, the vectors tdis, ydis and
idis contain the following data

tdis =

0.4006 0.4071 0.4172 0.8384 0.8446 0.8543

1.2818 1.2880 1.2977 1.7307 1.7368 1.7467

2.1798 2.1860 2.1958 2.6286 2.6348 2.6446

Columns 13 through 18

2.1798 2.1860 2.1958 2.6286 2.6348 2.6446

ydis =

0.0050 0.1664

0.0055 0.0000

0.0050 -0.0658

0.0050 0.2095

0.0055 0.0000

0.0050 -0.0820

0.0050 0.2079

0.0055 -0.0000

0.0050 -0.0811
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0.0050 0.2048

0.0055 0.0000

0.0050 -0.0799

0.0050 0.2047

0.0055 0.0000

0.0050 -0.0799

0.0050 0.2049

0.0055 0.0000

0.0050 -0.0799

idis =

1 2 1 1 2 1 1 2 1

1 2 1 1 2 1 1 2 1

The plot in Figure 6 (without legends) can be obtained with the matlab
order

plot(yout(:,1),yout(:,2),[0.005,0.005],[-0.15,0.25],’r--’, ...

[0.005, 0.008],[0,0],’r--’);

Example 5 A bouncing ball model (ODE with impulses) is governed by the
equation

x′′ = −9.8.

Starting from a height x(0) = x0 with velocity x′(0) = x′0, the ball falls
and when it attains the floor x(td) = 0, with velocity x′(td) = x′d, the
integration must be restarted with initial conditions x(td) = 0, x′(td) =
−0.9 x′d where the factor 0.9 represents the lost of energy.

Expressed as a first order system with two components y1(t) = x(t),
y2(t) = x′(t), we have

y′ =

(
y′1
y′2

)
=

(
y2
−9.8

)
= f(t, y)

Here the switching surface is clearly g(y) = y1.

In this case the discontinuity affects the solution, and the jump of the
state must be provided in some way by the user. In the code this is done
by means of an external function actionatswitch(t,y) that from the
current state yd provides the new state y∗d.

A Matlab code to integrate this problem with disode45 can be
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%

options=disodeset(’AbsTol’,1.e-4,’RelTol’,1.e-4, ...

’Refine’,10, ’ActionSwitch’,@actionatswitch);

y0=[10; 0];

[tout,yout,tdis,ydis,idis,stats]=disode45(@fun, ...

@gfun,[0,20], y0, options);

%

% Definition of the vector field

%

function ydot=fun(t,y)

ydot=[y(2); -9.8];

end

%

function [g,isterminal,direction]=gfun(t,y)

g=y(1);

isterminal=-1; % Call to gwhenswitch when a switching point is found

direction=-1;

end

%

% Output switch function

%

function ysw=actionatswitch(t,y)

ysw=[0; -0.9*y(2)];

end

Once the integration of this problem concludes, the vectors tdis, ydis
and idis contain the data corresponding to 13 switching points.

tdis =

1.4286 4.0000 6.3143 8.3971 10.2717 11.9588 13.4772

14.8438 16.0737 17.1806 18.1768 19.0734 19.8804

ydis =

0.0000 -14.0000

-0.0000 -12.6000

-0.0000 -11.3400

-0.0000 -10.2060

-0.0000 -9.1854

0.0000 -8.2669

0.0000 -7.4402

0.0000 -6.6962

-0.0000 -6.0265

0.0000 -5.4239
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-0.0000 -4.8815

-0.0000 -4.3933

-0.0000 -3.9540

Example 6 A heating model (problems with a switching vector field). The
variation of the temperature in a room is supposed to be linear on the
difference x(t) − Text between the current temperature x(t) and the ex-
ternal temperature Text. Initially, if the temperature x(0) is lower than a
maximum temperature Tmax, the heating is on, a constant external heat
source u is acting and the temperature satisfies the equation

x′ = −K · (y − Text) + u,

until the temperature attains Tmax. At that moment the heat source u is
set off and the differential equation changes to

x′ = −K · (y − Text).

The heat source is set on again when x(t) = Tmin.

Note that in this example the vector field itself is modified from f(t, x) to

a different one f̂(t, x) when the solution attains certain point td satisfying
a condition g(td, x(td)) = 0. For the same point (t, x), the vector field

f(t, x) can not be equal to f̂(t, x).

In order to solve this problem with DISODE45, it must be transformed,
by adding an additional equation, into an equivalent problem that can
be treated as an ODE with impulses. Defining y(t) = (y1(t), y2(t))T ≡
(x(t), y2(t))T , where y2(t) is going to be a constant, the heating can be
modelled by

y′1 =

{
−K · (y1 − Text) + u if y2(t) = 1,

−K · (y1 − Text) if y2(t) = −1,

y′2 = 0,

y1(0) = x(0) = x0, y2(0) =

{
1 if x0 < Tmax,

−1 if x0 ≥ Tmax.

There are two switching surfaces g1(y) = y1−Tmax and g1(y) = y1−Tmin.
When the solution attains the first one from temperature x(t) < Tmax,
or the second one from temperature x(t) > Tmin, the sign of the variable
y2(td) is changed.

A Matlab code to integrate this problem with disode45 can be

%

options=disodeset(’AbsTol’,1.e-4,’RelTol’,1.e-4,’ActionSwitch’,@actionatswitch);

y0=[15;1];
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[tout,yout,tdis,ydis,idis,stats]=disode45(@fun, @gfun,[0,20], y0, options);

%

function ydot=fun(t,y)

if y(2)==-1

ydot=[-0.1*(y(1)-18); 0] ;

else

ydot=[-0.1*(y(1)-18)+2; 0] ;

end

end

%

function [g,isterminal,direction]=gfun(t,y)

g=[y(1)-23.5; y(1)-22];

isterminal=[-1;-1]; % Call to actionatswitch when found

direction=[1;-1]; % From negative to positive the first one

end

%

% Output switch function

%

function yswitch=actionatswitch(t,y)

if y(2)==1,

yswitch=[y(1); -1];

else

yswitch=[y(1); 1];

end

end

Once the integration of this problem concludes, the vectors tdis, ydis
and idis contain the data corresponding to 13 switching points.

tdis =

4.6135 7.7980 8.7824 11.9669 12.9513 16.1359 17.1203

ydis =

23.5000 1.0000

22.0000 -1.0000

23.5000 1.0000

22.0000 -1.0000

23.5000 1.0000

22.0000 -1.0000

23.5000 1.0000

idis =
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1 2 1 2 1 2 1
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