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Integrals with logarithmic singularities are often difficult to evaluate by numerical methods. In

this work, a quadrature method is developed that allows the exact evaluation (up to machine

accuracy) of integrals of polynomials with two general types of logarithmic weights.
The total work for the determination of N nodes and points of the quadrature method is O(N2).

Subsequently, integrals can be evaluated with O(N) operations and function evaluations, so the

quadrature is efficient.
This quadrature method can then be used to generate the nonclassical orthogonal polynomials

for weight functions containing logarithms and obtain true Gaussian quadratures for these weights.

Two algorithms for the two types of logarithmic weights that incorporate these methods are given
in the following paper.

Categories and Subject Descriptors: G.1.4 [Numerical Analysis]: Quadrature and Numerical
Differentiation (F.2.1)—Gaussian quadrature

General Terms: Algorithms

Additional Key Words and Phrases: Gauss-Chebyshev quadrature, Gauss-Jacobi quadrature,
Gauss-Laguerre quadrature, Gauss-Legendre quadrature, Gauss-type quadrature, logarithmic in-

tegrals, Maple V5.1 symbolic algebra system, Mehler quadrature, orthogonal polynomials

1. INTRODUCTION

The high-accuracy evaluation of integrals with logarithmic singularities at end
points can be a difficult numerical problem. The recommended procedure [Zwill-
inger 1992, Chapter 28] of changing variables to remove the singularity is a useful
analytic method. The numerical methods resulting from this procedure generally
depend on detailed information about the integrand and have neither the accuracy
nor flexibility of the methods that are derived here.

In this paper, we develop first a procedure to determine exactly (throughout
this paper, this means up to machine accuracy) quadrature methods for evaluating
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2 · J. S. Ball and N. H. F. Beebe

integrals of polynomials of the following forms:1∫ ∞

0

dxxαe−x lnx f(x) (α > −1) (1)

and ∫ 1

−1

dx (1− x)α(1 + x)β ln(1 + x)f(x) (α > −1, β > −1). (2)

For polynomials of order 2N − 1 the quadrature method must have 2N param-
eters. For Gaussian quadrature, one makes use of the properties of orthogonal
polynomials by choosing the N zeros of the N th order polynomial as N parameters
and the weights at each node as the other N parameters. If the recurrence rela-
tion of the polynomials is known these parameters can be easily calculated. The
method proposed here is to use the fixed nodes of the related Gaussian quadrature
and to express the integrals in terms of 2N parameters which can be calculated in
a straightforward manner.

The final integrals are given in terms of the function and its derivative at the
nodes. This is the result that one would obtain from a quadrature method us-
ing Hermitian interpolation for the function f(x) (see, for example, Engels [1980,
Chapter 7]). In this procedure, the weights are given in terms of integrals of poly-
nomials of order 2N − 1 with the desired weight function. This leads to the “Catch
22”-like result that if one can accurately integrate polynomials of order 2N − 1,
one can obtain a method for performing integrals of polynomials of order 2N − 1.
Our calculation makes no use of Hermitian interpolation, but rather calculates the
coefficients directly from the related Gaussian quadrature.

In the next section, the basic idea underlying these methods are developed with
the necessary mathematical formulation. In Section 3, the quadrature method for
the integral in Eq. (1) based on generalized Laguerre polynomials is presented.
The mathematical details and the stability and accuracy of the resulting numerical
treatment are discussed. This quadrature produces a set of orthogonal polynomials
with a positive-definite weight function containing a linear logarithmic term. The
recurrence relations for these polynomials is then used to produce a conventional
Gaussian quadrature with this weight function. A Gaussian-like quadrature for
Eq. (1) can then be obtained by combining the new Gaussian quadrature with the
conventional generalized Gauss-Laguerre quadrature.

Finally, in Section 4, the quadrature method for Eq. (2) based on Jacobi polyno-
mials is presented, following the same general procedure used in Section 3. In this
case, a Gaussian quadrature is obtained for the following integral:∫ 1

−1

dx (1−x)α(1+x)β ln(
1 + x

2
)f(x) = 21+α+β

∫ 1

0

dy(1−y)αyβ ln(y)f(2y−1). (3)

Rescaling the coefficient in the log term from y to σy adds a constant term
to the log, producing an extra nonlogarithmic integral that can be evaluated by
conventional Gauss-Jacobi quadrature.

1In this paper, equations are numbered only if they are subsequently referred to in the text, or

are cross-referenced from the companion paper or its computer programs.
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The implementation, testing, and documentation of the associated software for
the quadrature methods are provided in a companion article [Beebe and Ball 20xx].

2. DERIVATION OF THE QUADRATURE METHOD

We begin by considering the following integral:∫ b

a

dx (x+ x0)αg(x)f(x) (4)

where

w(α, x) = (x+ x0)αg(x)

is the weight function for a set of orthogonal polynomials with a known recurrence
formula and the function g(x) is independent of α. We require that (a+x0) > 0 so
that w(α, x) is single valued. For the case that f(x) is a polynomial of order 2N−1
or less, the N th order quadrature is exact. Jacobi polynomials and generalized
Laguerre polynomials provide examples for the application of this method and are
used to produce Gaussian quadratures for several differing weight functions and
integration ranges. The method derived here is based on the following observation:

∂

∂α

∫ b

a

dx (x+ x0)αg(x)f(x) ≡ ∂

∂α

∫ b

a

dx eα ln(x+x0)g(x)f(x)

=
∫ b

a

dx (x+ x0)α ln(x+ x0)g(x)f(x).

Here we have assumed that the integral is uniformly convergent so that the deriva-
tive can be moved inside the integral.

The Gaussian quadrature based on these polynomials is as follows:∫ b

a

dx (x+ x0)αg(x)f(x) ≈
N∑

i=1

Wi(α)f(xi(α)). (5)

The integral is evaluated exactly, provided that f(x) is a polynomial of order 2N−1
or less. The fact that the nodes xi and the weights Wi depend on α has been made
explicit in Eq. (5). The Gaussian quadrature for the logarithmic integral is then
obtained by taking the derivative of the right-hand side of Eq. (5) as follows:∫ b

a

dx (x+ x0)α ln(x+ x0)g(x)f(x) ≈

N∑
i=1

[
dWi(α)
dα

f(xi(α)) +Wi(α)
dxi(α)
dα

f ′(xi(α))]. (6)

The quantities required for this quadrature are the weights and nodes and their
derivatives with respect to α.

Let us begin by reviewing the procedure for obtaining the weights and nodes of
the Gaussian quadrature. We choose the normalization of the orthogonal polyno-
mials so that they are orthonormal. The orthogonality relation satisfied by these
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4 · J. S. Ball and N. H. F. Beebe

polynomials, denoted Pα
n (x), is∫ b

a

dx (x+ x0)αg(x)Pα
n (x)Pα

m(x) = δnm.

with the usual Kronecker δ notation. The three-term recurrence formula satisfied
by these polynomials is

xPα
n (x) = Aα

n+1P
α
n+1(x) +Bα

nP
α
n (x) +Aα

nP
α
n−1(x). (7)

The Jacobi matrix for these polynomials is obtained by arranging the first N of
these coefficients in an N ×N matrix, TN , as follows:

TN (α) =



Bα
0 Aα

1 0 0 · · · 0
Aα

1 Bα
1 Aα

2 0 · · · 0
0 Aα

2 Bα
2 Aα

3 · · · 0
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · Aα

N−1

0 0 0 · · · Aα
N−1 Bα

N−1


. (8)

The eigenvalues of TN (α) are the nodes, xi(α), for the Gaussian quadrature and
the transpose of the ith column eigenvector is

VT
i (α) = [Pα

0 (xi(α)), Pα
1 (xi(α)), . . . , Pα

N−1(xi(α))].

The key observation here is that the eigenvalues can be computed in O(N2)
operations using any standard tridiagonal-matrix eigenvalue solver, and that the
eigenvector solution, which is normally an O(N3) process, can be accomplished in
O(N2) operations using the three-term recurrence relations.

The weights can be calculated from the eigenvectors as follows [Wilf 1962]:

(Wi(α))−1 = Sα
i =

N−1∑
n=0

[Pα
n (xi(α))]2 = Aα

NP
α
N−1(xi(α))Pα

N
′(xi(α)) (9)

where

Pα
N
′(xi(α)) =

dPα
n (x)
dx

∣∣∣∣
x=xi(α)

.

The evaluation of the sum given on the right of Eq. (9) is obtained by taking the
appropriate limit of the Christoffel-Darboux identity [Luke 1977, p. 272, Eq. (23)]
satisfied by these polynomials. In our numerical treatment, the expression in terms
of the sum proved more robust and is therefore used in the following treatment.

To obtain the derivatives of the nodes with respect to α, introduce η � α, and
consider the Taylor expansion near α

TN (α+ η) = TN (α) + ηT′
N (α) +O(η2)

where

T′
N (α) =

dTN (α)
dα

.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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First-order perturbation theory (see, for example, Mathews and Walker [1970,
Chapter 10]) can now be used to determine the eigenvalues of TN (α+ η):

xi(α+ η) = xi(α) + ηVT
i (α)T′

N (α)Vi(α)/Sα
i +O(η2)

with the result that

dxi(α)
dα

= VT
i (α)T′

N (α)Vi(α)/Sα
i

= Wi(α)
N−1∑
n=0

Pα
n (xi(α))[Aα′

n P
α
n−1(xi(α)) +Bα′

n P
α
n (xi(α)) +Aα′

n+1P
α
n+1(xi(α))].

Here the primes indicate the derivative with respect to α, and as required by the
recurrence formula, Pα

−1(x) = 0.
To evaluate dWi(α)/dα, the sum defined in Eq. (9) is used:

dWi(α)
dα

= −dS
α
i

dα
/(Sα

i )2 = −2(Wi(α))2
N−1∑
n=0

Pα
n (xi(α))

dPα
n (xi(α))
dα

.

While a recurrence formula for the total derivative of Pα
n (xi(α)) can easily be

derived from Eq. (7), this involves dxi(α)/dα, the quantity that we seek to compute.
A more efficient procedure is to express this quantity in terms of partial derivatives.
This allows the simultaneous use of the recurrence formulas to evaluate the four
sums necessary to obtain the weights for the logarithmic quadrature formula. If we
define

φα
n(x) =

∂Pα
n (x)
∂α

and

Pα′
n (x) =

dPα
n (x)
dx

,

then
dPα

n (xi(α))
dα

= φα
n(xi(α)) + Pα

n
′(xi(α))

dxi(α)
dα

.

The recurrence formulas for these functions that are derived from Eq. (7) are

xPα′
n (x) = Aα

n+1P
α′
n+1(x) +Bα

nP
α′
n (x) +Aα

nP
α′
n−1(x)− Pα

n (x) (10)

and

xφα
n(x) = Aα′

n+1P
α
n+1(x) +Bα′

n P
α
n (x) +Aα′

n P
α
n−1(x) +

Aα
n+1φ

α
n+1(x) +Bα

nφ
α
n(x) +Aα

nφ
α
n−1(x).

For many polynomials, a simple expression for Pα′
n (x) exists, and is in fact used

for the two types of quadrature algorithms discussed in the next sections. The
recurrence relations can be used simultaneously to calculate the four sums

Sα
i =

N−1∑
n=0

[Pα
n (xi(α))]2, (11)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



6 · J. S. Ball and N. H. F. Beebe

dxi(α)
dα

Sα
i =

N−1∑
n=0

Pα
n (xi(α))[Aα′

n P
α
n−1(xi(α)) +Bα′

n P
α
n (xi(α)) +Aα′

n+1P
α
n+1(xi(α))], (12)

Qα
i =

N−1∑
n=0

Pα
n (xi(α))φα

n(xi(α)), (13)

and

Rα
i =

N−1∑
n=0

Pα
n (xi(α))Pα′

n (xi(α)) (14)

necessary for the quadrature.
If we now define

δWi(α) =
dWi(α)
dα

= −2(Wi(α))2(Qα
i +Rα

i

dxi(α)
dα

) (15)

and

δxi(α) = Wi(α)
dxi(α)
dα

, (16)

then the final expression for the quadrature of Eq. (6) is∫ b

a

dx (x+x0)α ln(x+x0)g(x)f(x) ≈
N∑

i=1

[δWi(α)f(xi(α))+δxi(α)f ′(xi(α))]. (17)

All of the calculations in the procedure above have O(N2) operations.

3. LOG QUADRATURE BASED ON GENERALIZED GAUSS-LAGUERRE QUADRA-
TURE

This section deals with obtaining a quadrature formula for integrals of the following
form: ∫ ∞

0

dxxαe−x lnx f(x) (α > −1).

Clearly, in Eq. (4) and Eq. (6) we have x0 = 0, g(x) = e−x and w(α, x) = xαe−x.
The related polynomials are the orthonormal versions of generalized Laguerre

polynomials

Lα
n(x) =

√
n!

Γ(n+ α+ 1)
Lα

n(x), (18)

where Lα
n(x) are the conventional Laguerre polynomials [Luke 1977, p. 273]. The

recurrence coefficients and their derivatives with respect to α are as follows:

Aα
n = −

√
n(n+ α), (19)

Aα′
n = −1

2

√
n

(n+ α)
=

1
2
Aα

n/(n+ α), (20)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Bα
n = (2n+ 1 + α), (21)

and

Bα′
n = 1.

From Eq. (18) and the standard formula for the derivative of a generalized Laguerre
polynomial [Abramowitz and Stegun 1964, p. 783, §22.8.6],

x
d

dx
L(α)

n = nL(α)
n − (α+ n)L(α)

n−1,

the formula for evaluating dLα
n(x)/dx is

dLα
n(x)
dx

=
1
x

[nLα
n(x) +Aα

nLα
n−1(x)].

Finally, the starting values for using the various recurrence formulas are provided
by the following formula

Lα
0 (x) =

1√
Γ(1 + α)

(α > −1), (22)

which is readily derived from Eq. (18) and the fact that Lα
0 (x) = 1 [Abramowitz

and Stegun 1964, p. 785, §22.11.16].
Carrying out the calculations of the previous section then produces the 2N coeffi-

cients needed to evaluate integrals of the form given in Eq. (1). After the coefficients
have been determined (an O(N2) procedure), the actual computation of the inte-
gral requires N evaluations of the function, and N evaluations of its derivative, at
the nodes, together with 2N − 1 additions and 2N multiplications.

If the evaluation of the derivative is difficult or not possible, the procedure de-
scribed below allows the evaluation of the integral in terms of 2N + 1 evaluations
of the function f(x) with a quadrature that is exact if the function is a polynomial
of order 2N − 2 or less.

The procedure is the following: we first choose a weight function that is simply
related to the logarithmic weight used above and that is positive definite so that
it can be used to define a set of orthogonal polynomials. The log quadrature of
the previous section can then be used to calculate the recurrence coefficients for
this new set of polynomials. From this, the Gaussian quadrature defined by a new
weight function and a new set of polynomials can be obtained.

While there are many possible choices for weight functions that contain lnx, we
use the inequality

x− 1− lnx ≥ 0 (x > 0)

and choose what appears to be the simplest weight function that is positive definite:

w(α, x) = (x− 1− lnx)xαe−x. (23)

From Eq. (5) and Eq. (6), the quadrature for this weight is∫ ∞

0

dxxαe−x(x− 1− lnx)f(x) ≈

N∑
i=1

{[Wi(α)(xi(α)− 1)− δWi(α)]f(xi(α))− δxi(α)f ′(xi(α))} . (24)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



8 · J. S. Ball and N. H. F. Beebe

It proves numerically useful to work with monic (highest-order coefficient of
unity) orthogonal polynomials, Mα

n (x), for which the corresponding three-term
recurrence relation is

Mα
n+1(x) = (x− bαn)Mα

n (x)− aα
nM

α
n−1(x) (25)

with initial conditions Mα
−1(x) = 0 and Mα

0 (x) = 1. This iterative method for
obtaining a set of orthogonal polynomials was apparently first suggested by Stieltjes
[1884].

Multiplication of the recurrence by Mα
n−1(x) and by Mα

n (x), followed by inte-
gration with respect to the weight function, produces the recurrence coefficients
as

aα
n = tαn/t

α
n−1 (26)

bαn = sα
n/t

α
n (27)

where the right-hand sides require the zeroth and first moments:

tαn =
∫ ∞

0

dxw(α, x)(Mα
n (x))2 (28)

sα
n =

∫ ∞

0

dxw(α, x)(Mα
n (x))2x (29)

The integrands are positive, so both the moments and the recurrence coefficients are
positive. The moments themselves can be computed accurately with our quadrature
method involving functions and their derivatives.

The diagonal of the Jacobi matrix Eq. (8) is bα0 , b
α
1 , . . . , and the off-diagonal is√

aα
1 ,

√
aα
2 , . . . . As before, aα

0 is not needed in the Jacobi matrix, but we define it
anyway from Eq. (26) by arbitrarily choosing the initial condition tα−1 = 1. Our
software makes the (aα

n, b
α
n, s

α
n, t

α
n) values available to the user.

The orthonormal polynomials that satisfy the three-term recurrence relation,
Eq. (7), can be recovered from the monic polynomials by

Λα
n(x) = Mα

n (x)/
√
tαn

but we do not need them further here.
In the numeric quadrature used for evaluating the moments in Eq. (29), care

must be taken to ensure that the quadrature order is large enough to provide
‘exact’ results. For the Laguerre case here, this is two more than the order of the
base quadrature, and for the Jacobi case in the next section, one more.

The idea of evaluating the necessary integrals using a known set of moments
for polynomials xn fails because cancellation between individual terms destroys all
accuracy at surprisingly small values of n. Indeed, Gautschi [1968, pp. 256–257]
reported:

[The condition number] κn grows at least at a rate essentially equal
to . . . exp(3.5255 · · ·n). . . . Computing Christoffel numbers on the
interval (0, 1) from given moments is therefore about as ill-conditioned
as the inversion of Hilbert matrices!

Better results have been obtained by Gautschi [1990] using a variety of meth-
ods including orthogonal reduction and the Stieltjes procedures. In these cases,
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



High-Accuracy Quadrature for Two Classes of Logarithmic Weight Functions · 9

the accuracy of the new quadrature obtained from the Jacobi matrix cannot be
better than the accuracy of the quadrature method used to obtain the recurrence
coefficients.

In our case, the application of the Stieltjes procedure to obtain the new Jacobi
matrix introduces very little error for the following reason: the quadrature given in
Eq. (24) allows us to evaluate the necessary integrals exactly, because the functions
to be integrated are polynomials, and because both integrands are either positive
definite or x times a positive definite function, there is little or no loss of accuracy.
This method has the further advantage that all of the polynomials are evaluated
at the same nodes. Therefore a step requires only using the recurrence formula to
calculate the new polynomial and its derivative at each node.

Once the Jacobi matrix of the desired dimension is obtained, the weights and
nodes for this Gaussian quadrature can be calculated by the methods given in
Section 2. If we denote the new nodes yi(α) and the new weights Zi(α), we have
obtained the following Gaussian quadrature:∫ ∞

0

dxxαe−x(x− 1− lnx)f(x) ≈
N∑

i=1

Zi(α)f(yi(α)). (30)

Utilizing this new Gaussian quadrature now means that integrals of the form of
Eq. (1) can be obtained from Eq. (30) by subtracting the following integral:∫ ∞

0

dxxαe−x(x− 1)f(x) (31)

This integral can easily be evaluated by generalized Gauss-Laguerre quadrature.
This evaluation requires 2N + 1 function evaluations: N + 1 at the nodes of the
original generalized Gauss-Laguerre quadrature, and N at the nodes of the new
Gaussian quadrature defined by Eq. (30).

In summary, the quadrature of Eq. (1) can be obtained in either of two ways:∫ ∞

0

dxxαe−x lnx f(x) ≈
N∑

i=1

[δWi(α)f(xi(α)) + δxi(α)f ′(xi(α))] (32)

≈
N∑

i=1

[Wi(α)(xi(α)− 1)f(xi(α))− Zi(α)f(yi(α))].(33)

The nonlogarithmic case can be obtained from the weights and nodes of either
method by: ∫ ∞

0

dxxαe−xf(x) ≈
N∑

i=1

Wi(α)f(xi(α)). (34)

4. LOG QUADRATURE BASED ON GAUSS-JACOBI QUADRATURE

This section deals with obtaining a Gaussian quadrature for integrals of the follow-
ing form: ∫ 1

−1

dx (1− x)α(1 + x)β ln(1 + x)f(x) (α > −1, β > −1).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



10 · J. S. Ball and N. H. F. Beebe

In this section, it is convenient to treat β as the parameter to be differentiated to
produce the logarithmic factor, rather than the α of the previous sections. This in-
terchange is necessary to produce the standard notation for the Jacobi polynomials.
Clearly, in Eq. (4) we have x0 = 1, g(x) = (1−x)α and w(β, x) = (1−x)α(1+x)β .
The related polynomials are the orthonormal versions of Jacobi polynomials

P(α,β)
n (x) =

√
n!(2n+ α+ β + 1)Γ(n+ α+ β + 1)
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

P (α,β)
n (x), (35)

where P (α,β)
n (x) are the conventional Jacobi polynomials [Luke 1977, pp. 273–283].

The recurrence coefficients and their derivatives are as follows:

A(α,β)
n =

2
2n+ α+ β

√
(n)(n+ α)(n+ β)(n+ α+ β)

(2n+ 1 + α+ β)(2n− 1 + α+ β)
, (36)

A(α,β)′
n =

−A(α,β)
n

2

(
(α+ β)

(n+ α+ β)(2n+ α+ β)
+

2n(β − α) + β2 − α2 + 1
[(2n+ α+ β)2 − 1](n+ β)

)
(37)

B(α,β)
n = − α2 − β2

(2n+ 2 + α+ β)(2n+ α+ β)
, (38)

and

B(α,β)′
n = −B(α,β)

n

(
2β

α2 − β2
+

1
2n+ α+ β + 2

+
1

2n+ α+ β

)
. (39)

Here, A(α,β)′
n and B(α,β)′

n are derivatives with respect to β.
The formula for evaluating dP(α,β)

n (x)/dx is

dP(α,β)
n (x)
dx

=

1
1− x2

[(n
(α− β)

2n+ α+ β
− x)P(α,β)

n (x) +A(α,β)
n (2n+ α+ β + 1)P(α,β)

n−1 (x)]. (40)

Finally, the starting values for using the various recurrence formulas are provided
by the following formula:

P(α,β)
0 (x) =

√
Γ(α+ β + 2)

Γ(1 + α)Γ(1 + β)2α+β+1
. (41)

This follows from Eq. (35) and the fact that P (α,β)
0 (x) = 1 [Abramowitz and Stegun

1964, p. 785, §22.11.1].
Carrying out the calculations of Section 2 then produces the 2N coefficients

needed to evaluate integrals of the form given in Eq. (2). As in the previous section,
performing the integral requires the evaluation of the function and its derivative at
the nodes of the underlying Gauss-Jacobi quadrature.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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If the evaluation of the derivative is difficult or not possible, we can follow the
procedure of the previous section to produce a quadrature that allows the evaluation
of the integral employing 2N evaluations of the function f(x).

In this case, the simplest weight function that is positive definite is

w(α, β, x) = (1− x)α(1 + x)β(ln(2)− ln(1 + x))

= −(1− x)α(1 + x)β ln(
1 + x

2
) (|x| < 1). (42)

From the results obtained above, the quadrature for this weight is∫ 1

−1

dx (1− x)α(1 + x)β ln(
1 + x

2
)f(x) ≈

N∑
i=1

[(δWi(α, β)− ln(2)Wi(α, β))f(xi(α, β)) + δxi(α, β)f ′(xi(α, β))].(43)

Here we have replaced ln((1+x)/2) by ln(1+x)− ln(2). The Gaussian-like quadra-
ture derived above,∫ 1

−1

dx (1− x)α(1 + x)β ln(1 + x)f(x) ≈

N∑
i=1

[δWi(α, β)f(xi(α, β)) + δxi(α, β)f ′(xi(α, β))], (44)

is used to evaluate the integral containing ln(1 + x) and the integral proportional
to ln(2) is evaluated by generalized Gauss-Jacobi quadrature,∫ 1

−1

dx (1− x)α(1 + x)βf(x) ≈
N∑

i=1

Wi(α, β)f(xi(α, β)). (45)

Integration of the latter form is sometimes known as Mehler quadrature. The
special case α = β = 0 is Gauss-Legendre quadrature, and the case α = β = −1/2
is Gauss-Chebyshev quadrature.

When no function derivatives are available, the Stieltjes’ procedure of the previ-
ous section can be used to produce the nodes and weights of the Gaussian quadra-
ture defined by the weight function in Eq. (42). If we denote the new nodes yi(α, β)
and the new weights Zi(α, β), we have obtained a Gaussian quadrature formula for
the integral in Eq. (3):∫ 1

−1

dx (1− x)α(1 + x)β ln(
1 + x

2
)f(x) ≈ −

N∑
i=1

Zi(α, β)f(yi(α, β)). (46)

A change in the coefficient of (1 + x) within the logarithm adds a constant to
the log term which can be integrated using conventional Gauss-Jacobi quadrature.
Utilizing this new Gaussian quadrature now means that integrals of the form of
Eq. (2) (with an arbitrary coefficient in the log) can be obtained by 2N function
evaluations: N at the nodes of the ordinary Gauss-Jacobi quadrature, Eq. (45),
and N at the nodes of the new Gaussian quadrature defined by Eq. (46).
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In summary, the quadrature of Eq. (2) can be obtained either by Eq. (44), or by∫ 1

−1

dx (1− x)α(1 + x)β ln(1 + x)f(x) ≈

N∑
i=1

[ln(2)Wi(α, β)f(xi(α, β))− Zi(α, β)f(yi(α, β))]. (47)

Similarly, the quadrature for Eq. (3) can be computed either by Eq. (46), or by
Eq. (43). The nonlogarithmic case can be obtained from the weights and nodes of
either method by Eq. (45).

5. SIMPLE TESTS OF LOG QUADRATURES

To test our methods and compare the results obtained by the generalized Gauss-
Laguerre quadrature and Gauss-Jacobi quadrature, we consider the following inte-
grals with known closed-form values:∫ ∞

0

dxxαe−x ln(x)xn = Γ(α+ n+ 1)ψ(α+ n+ 1) (48)

∫ 1

−1

dx (1− x)α(1 + x)β ln(
1 + x

2
) (1− x)n =

2α+β+n+1 Γ(β + 1)Γ(α+ n+ 1)
Γ(α+ β + n+ 2)

(ψ(β + 1)− ψ(α+ β + n+ 2)) (49)

These are integrals of nth order polynomials with the logarithmic weight func-
tions, which should be evaluated exactly by our basic method and by the Gauss-
ian quadrature we have obtained from the basic methods. This process has three
sources of error:

(1) The first and most important are the parameters needed for the quadrature.
The values for the nodes are more accurate than the various weights because
the latter are obtained by summing N terms. Somewhat more accurate values
for the weights of the classical quadrature can be obtained by matrix methods,
such as Gautschi [1994] used in his Gauss-Jacobi quadrature algorithm.

(2) The second source of error is the calculation of function and derivative values,
xn

i and (1− xi)n. This error is smaller, but not negligible, and grows with n.
(3) The final source of error in the evaluation of the special functions Γ(x) and

ψ(x). These quantities enter into the calculation of the recurrence coefficients,
and also into the analytic expressions for the integrals.

All of these errors can be reduced by using higher precision, and it is advisable
to do so when possible. Our software implementation described in [Beebe and
Ball 20xx] includes both double- and quadruple-precision versions, even though not
all systems support the latter. It is then straightforward to provide an interface
with the double-precision routine names that calls the quadruple-precision routines
internally.

In Table I, we give the results for the integral in Eq. (48) for 20 nodes and α =
−15/16 (exactly representable in binary floating-point arithmetic) to emphasize the
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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case of small x for small n. The derivative form, Eq. (32), adds about one decimal
digit of accuracy. As one would expect, the generalized Gauss-Laguerre quadrature
results, Eq. (34), that include the log term in the function are poor when the
contribution from small x is important, but generally improve as n increases.

Table I. Magnitudes of relative error in double-precision quadrature of log-Laguerre test Eq. (48)

for α = −15/16 with 20 nodes. The worst-case errors (in boldface) correspond to about 11 and

45 units in the last place in columns 2 and 3 of each table, respectively. A similar test with a
128-bit quadruple-precision version of our programs had worst-case errors of 21 and 90 units in

the last place. For comparison, the NAG Library double-precision adaptive-quadrature routine,
d01amf(), required about 1900 function evaluations for n = 0 to reach a relative error of about

2.50e−07; for n ≥ 1, it produced relative errors below 5 units in the last place with 700 to 1000

function evaluations. The larger error at n = 39 for Eq. (33) is expected, since that method is
exact only to polynomial order 2N − 2.

n Eq. (32) Eq. (33) Eq. (34)

0 8.91e−16 0.00e+00 6.86e−01

1 2.16e−15 1.80e−15 1.38e−01

2 0.00e+00 1.87e−15 2.09e−03
3 2.21e−16 4.42e−16 2.95e−05

4 2.15e−16 8.59e−16 9.92e−07

5 3.54e−16 2.13e−15 5.15e−08
6 8.67e−16 2.73e−15 3.60e−09

7 1.49e−15 3.13e−15 3.18e−10

8 1.41e−15 3.62e−15 3.43e−11
9 1.62e−15 2.94e−15 4.39e−12

10 1.48e−15 2.47e−15 6.57e−13

11 1.13e−15 1.88e−15 1.12e−13
12 6.54e−16 1.83e−15 2.28e−14

13 3.36e−16 2.35e−15 4.53e−15
14 2.00e−16 3.39e−15 1.40e−15

15 2.21e−16 3.98e−15 0.00e+00

16 0.00e+00 4.58e−15 0.00e+00
17 2.23e−16 5.13e−15 2.23e−16

18 0.00e+00 5.54e−15 0.00e+00

19 0.00e+00 5.88e−15 0.00e+00

n Eq. (32) Eq. (33) Eq. (34)

20 2.94e−16 6.02e−15 2.94e−16

21 5.76e−16 5.76e−15 6.91e−16

22 8.62e−16 6.90e−15 1.03e−15
23 1.23e−15 7.27e−15 1.23e−15

24 1.35e−15 8.09e−15 1.69e−15

25 1.77e−15 8.85e−15 1.99e−15
26 1.95e−15 9.91e−15 1.95e−15

27 2.37e−15 8.47e−15 2.37e−15

28 2.38e−15 7.13e−15 2.57e−15
29 2.46e−15 4.58e−15 2.46e−15

30 2.31e−15 2.80e−15 2.19e−15

31 2.31e−15 3.85e−16 2.31e−15
32 2.10e−15 2.75e−15 2.10e−15

33 1.68e−15 6.48e−15 1.68e−15
34 1.12e−15 7.71e−15 1.12e−15

35 8.11e−16 9.15e−15 8.11e−16

36 6.29e−16 9.64e−15 8.39e−16
37 0.00e+00 9.60e−15 1.11e−15

38 1.58e−16 7.91e−15 1.01e−14

39 6.60e−16 1.48e−10 1.95e−13

We test our log-Jacobi methods by evaluating the integral in Eq. (49), which has
polynomials of order n times the basic weight function. In this case, we have chosen
powers of (1 − x) so that the strength of the log singularity is not suppressed by
large values of n. The results are given in Table II. Here, as in Table I, we have
chosen α and β values to emphasize the logarithmic singularity.

As expected, the results for both of our methods were very good, with the deriva-
tive form, Eq. (44), affording about one more decimal digit of accuracy, whereas
the results for the conventional Gauss-Jacobi quadrature, Eq. (45), are completely
unacceptable.
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Table II. Magnitudes of relative error in double-precision quadrature of log-Jacobi test Eq. (49)

for α = β = −15/16 with 20 nodes. The worst-case errors (in boldface) correspond to about 32

and 91 units in the last place in columns 2 and 3 of each table respectively. A similar test with
a 128-bit quadruple-precision version of our programs had worst-case errors of 83 and 21 units in

the last place. For comparison, the NAG Library double-precision adaptive-quadrature routine,
d01amf(), produced relative errors below 7 units in the last place, at the expense of 180 to 560

function evaluations.

n Eq. (44) Eq. (47) Eq. (45)

0 7.09e−15 1.74e−14 5.66e−01

1 6.72e−15 1.83e−14 5.69e−01

2 6.74e−15 1.86e−14 5.71e−01
3 6.56e−15 1.86e−14 5.72e−01

4 6.36e−15 1.85e−14 5.73e−01

5 6.37e−15 1.87e−14 5.74e−01
6 6.18e−15 1.85e−14 5.75e−01

7 6.19e−15 1.88e−14 5.76e−01

8 5.99e−15 1.86e−14 5.77e−01
9 5.79e−15 1.86e−14 5.77e−01

10 5.59e−15 1.86e−14 5.78e−01
11 5.59e−15 1.88e−14 5.78e−01

12 5.18e−15 1.87e−14 5.79e−01

13 5.19e−15 1.87e−14 5.79e−01
14 4.98e−15 1.87e−14 5.80e−01

15 4.99e−15 1.89e−14 5.80e−01

16 4.78e−15 1.85e−14 5.81e−01
17 4.58e−15 1.87e−14 5.81e−01

18 4.37e−15 1.85e−14 5.82e−01

19 4.58e−15 1.90e−14 5.82e−01

n Eq. (44) Eq. (47) Eq. (45)

20 4.38e−15 1.90e−14 5.82e−01

21 4.17e−15 1.90e−14 5.83e−01

22 4.17e−15 1.92e−14 5.83e−01
23 4.18e−15 1.90e−14 5.83e−01

24 3.97e−15 1.90e−14 5.84e−01

25 3.76e−15 1.90e−14 5.84e−01
26 3.76e−15 1.92e−14 5.84e−01

27 3.97e−15 1.95e−14 5.84e−01

28 3.98e−15 1.97e−14 5.85e−01
29 3.35e−15 1.91e−14 5.85e−01

30 3.35e−15 1.93e−14 5.85e−01
31 3.35e−15 1.95e−14 5.85e−01

32 3.14e−15 1.95e−14 5.86e−01

33 3.15e−15 1.95e−14 5.86e−01
34 3.15e−15 1.99e−14 5.86e−01

35 3.36e−15 1.99e−14 5.86e−01

36 3.15e−15 2.02e−14 5.87e−01
37 2.94e−15 1.99e−14 5.87e−01

38 2.52e−15 1.97e−14 5.87e−01

39 2.73e−15 2.00e−14 5.87e−01

6. RELATED WORK

Krylov and Pal’tsev [1971] developed quadrature formulas, and produced extensive
tables of quadrature nodes and weights, for these four integrals:∫ 1

0

dy yα ln(e/y)f(y)

∫ 1

0

dy yβ ln(e/y) ln(e/(1− y))f(y)

∫ 1

0

dy ln(1/y)f(y)

∫ ∞

0

dxxβe−x ln(1 + 1/x)f(x)

The first and third of these are special cases of our Eq. (3). The remaining ones do
not have a simple relation to ours.

Danloy [1973] derived quadrature formulas for an integral similar to Eq. (3). He
gave an O(N) formula, and a somewhat better-conditioned O(N2) formula, for the
determination of each of the coefficients in a three-term recurrence relation, from
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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which the total work to determine the integration weights and nodes is O(N2) and
O(N3), respectively. Although his paper finishes with a note that applications to
other quadratures are under investigation, we have not been able to find any further
published work by him in this area.

Since the algorithms proposed here require O(N2) total work for the determina-
tion of the weights and nodes, we have not pursued Danloy’s approach for our case
with limits 0 to ∞.

In a landmark article, Gautschi [1994] combined work published in dozens of
papers into a comprehensive package, ORTHPOL, for the generation of orthogonal
polynomials and Gauss-type quadrature rules. An example of numerical problems
with logarithmic weights is provided by absorbing the logarithms in our Eq. (1) and
Eq. (2) into the function f(x). His Fortran code could be applied to the quadratures
discussed in this paper. However, the integrand would then contain a logarithmic
singularity at one end point, and numerical accuracy would suffer.

Gautschi [1994, p. 32] in his Example 3.2 gives a single example of a logarithmic
weight function of the form tσ ln(1/t) for the interval (0, 1] with the constraint
σ > −1. This is a special case of our Eq. (3), with α = 0 and β = σ. He tabulates
25-digit values of the recurrence coefficients for σ = −0.5, 0, 0.5. Using a special
quadruple-precision version (about 34 decimal digits) of our program, we were able
to obtain agreement for all but the last digit in the recurrence coefficients given
in his Table III, except for β99, where two final digits differ. This appears to be
consistent with Gautschi’s estimates of the error in these coefficients given in his
Table IX.

7. CONCLUSION

A general quadrature method for integration of functions with weights that are
logarithms multiplied by Jacobi or Laguerre polynomial weights has been devel-
oped. These methods are then used to generate new orthogonal polynomials with
weights closely related to these weight-functions. Two new Gaussian quadratures
are derived from these polynomials. Finally, the general integrals considered can
be evaluated as a sum of two Gaussian quadratures: the new one derived here, and
the related classical Gaussian quadrature.

Our Jacobi quadrature procedure can be generalized by interchanging α and β.
When these are added together, one obtains a quadrature for the Jacobi weight
multiplied by ln[(1− x)σ(1 + x)ρ] for arbitrary values of σ and ρ, both > −1.

In principle, the method described here could be extended to higher powers of
logarithms, using higher-order perturbation theory. Danloy [1973, p. 865] also
considered such powers, but his method led to a factor of O(N) more work for each
additional power.

Also, our method could be generalized by using second-order perturbation theory
to produce a method for log-squared weights that would require knowledge of the
function and its first and second derivatives at the nodes. Each new power of the
logarithm requires one higher order of perturbation theory and one more derivative
of the function. The fact that higher-order perturbation theory quickly becomes
very complicated makes this process of doubtful utility. Perhaps a better method
could be developed by applying the basic idea to the polynomials with logarithmic
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weights resulting in a quadrature for log-squared, which could then be used to
calculate a new set of polynomials with log-squared weight. While repeating this
process is straightforward, the fact that the Jacobi matrix is only known numerically
means that the matrix T ′(α) cannot be calculated analytically. The necessary
numerical differentiation may be possible, at least for a few higher orders, but is
certainly a source of error.
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