Universitat Stuttgart

Institute of Applied Analysis and Numerical Simulation

SPINTERP V2.1
Piecewise multilinear hierachical sparse grid
interpolation in Matlab
DOCUMENTATION

Andreas Klimke

Version from April 6, 2005

Contents

1 Introduction

2 Function reference
Init.m . o e e e e e e e e e e e e e e e
SPVals.m L e e e e e e

SPETrid.m . . . L e e e e e e
plotgrid.m e e e e

3 Examples
A simple two-dimensional function L
An ODE under uncertaininputdata. e e

1 Introduction

To recover or approximate smooth multivariate functions, sparse grids are superior to full grids due to a significant
reduction of the required support nodes. The order of the convergence rate in the maximum norm is preserved up
to a logarithmic factor. Three piecewise multilinear hierarchical interpolation schemes are included in the software
package spinterp for MATLAB. In the following, we describe the basic usage and advanced features. Theoretical
and algorithmic aspects are discussed in the homonymous article [[3].

To make the tool as easy as possible to use, we decided to follow the approach of [5]. All sparse grid interpolation
routines can be called in the same way, and providing additional options is optional.

This documentation is organized as follows. Section 2 contains a brief function reference. In section 3, we
provide two additional examples illustrating advanced features.

2 Function reference

The following functions comprise the implementation. For further details on the syntax of each function, please use
help <function name> within MATLAB.

init.m

Calling this file will add the relevant directories containing the sparse grid algorithms to your MATLAB path. Fur-
thermore, it displays a list of available demonstration m-files.

spvals.m

Determines the hierarchical surpluses of the sparse grid interpolant for a d-variate function fun over a specified
interval box. By default, the Clenshaw-Curtis grid is used. The function fun may be an inline function, a function
handle, or a function file, and must accept d parameters (unless other parameters p1, p2, ... (see below) are passed
to the function). The following syntax options are available:

z = spvals(fun, d): Computes the hierarchical surpluses of a function fun. The grid is computed over the
d-dimensional unit cube [0,1]9.

z = spvals(fun, d, range): If the objective interpolation box is not the unit cube, you may specify the
interval range of each input parameter as a d x2 matrix. E.g. if the range of parameter 1 is [0,2], and the range of
parameter 2 is [1,4], you would set range to [0 2; 1 4].

z = spvals(fun, d, range, options, pl, p2, ...):Inaddition to the simple syntax, you may pass an
options structure to spvals, which can be used to change the default sparse grid interpolation parameters. Create
the options argument with the spset function. For an explanation of the available options, please refer to Table 211
Any input parameters after the options structure are passed as additional parameters to the objective function fun.

As result, spvals returns a structure containing the cell array of hierarchical surpluses as well as some statistical
information (see Table Z2 for more information). You may access each property with z. <propertyName>.

spinterp.m

Once the sparse representation of a function has been determined with spvals, one can compute interpolated values
with spinterp for any point y = (y1,...,Yq) within the specified range of the input parameters. The syntax is

ip = spinterp(z, y1, ..., yd)

Here is a simple example for computing the sparse grid data for a function f with d = 3. Then, the interpolated
value at the point (0.5,0.2,0.2) and the absolute interpolation error is determined.

Example 2.1.

f = inline(’x."2_+.y."2 —.2.x2");

z = spvals(f,3);

f_interp = spinterp(z, 0.5, 0.2, 0.2)
f_interp =

Table 2.1: Available options configurable with spset.

Property Value Description

GridType String The grid type. The default typeis ’Clenshaw-Curtis’, other possibly values
are ’Maximum’ and ’NoBoundary’.

RelTol Scalar A relative error tolerance that applies to al hierarchical surpluses wX of the
current deepest level k of the sparse grid interpolation formula. The default
valueis 102 (1 % accuracy). Theinterpolation depth level k isincreased until
the absol ute values of all wX are less than

max (RelTol - (max(fvals) — min(fvals)) , AbsTol),
with fvals containing all results evaluating fun up to that point.

AbsTol Scalar Absolute error tolerance. The default valueis 106,

Vectorized on | off Indicates if fun is available for vectorized evaluation. The default value is
>off’. Vectorized coding of fun can signifi cantly reduce the computation time
used by spvals.

MinDepth Integer Minimum number of levelsn = q— d to compute (default is 2).

MaxDepth Integer Maximum number of levelsto compute (default is 8).

VariablePositions Vector Sometimesit isuseful to change the order of inputsto fun. Pleaserefer to help
spset for additional information.

Number0fOutputs Integer If fun produces multiple outputs (all must be scalar), indicate this here to per-
form the sparse grid computation for many output variables at once. Also see
the example spdemovarout .m.

PrevResults Structure An existing result structure obtained from spvals may be provided to further
refi ne an existing sparse grid.

Table 2.2: spvals output properties.

Property Value Description

vals Cell array Contains maxLevel-+1 matrices of the hierarchical surpluses of each interpola-

tion depth level.
gridType String The grid type.
d Integer The problem dimension.
range Matrix The Lange of the input parameters. An empty matrix indicates the interval box
[0,1]¢.

maxLevel Integer The actual interpolation depth of the sparse grid representation. It depends on the
requested minimum/maximum interpolation depth MinDepth/MaxDepth and the
requested error tolerances Re1Tol/AbsTol.

estRelError Scalar The estimated relative error e with respect to fevalRange:

o max (|wK|)
max (feval Range) — min(feval Range)
fevalRange Matrix The minimum and maximum of all function values encountered during the eval-
uation of fun at the sparse grid support points. Each row of the matrix contains
the results of one output parameter.

nPoints Integer The number of grid points.

fevalTime Scalar The amount of time spent evaluating fun at the sparse grid points.

surplusCompTime Scalar Time spent computing the hierarchical surpluses.

—0.1063
error = abs(f(0.5, 0.2, 0.2) — f_interp)
error =
0.0037

You may also call spinterp for multiple points at once, with y1, ..., yn containing vectors or matrices of equal
dimension, i.e. size(y1) =... = size(yd).
spset.m

The spset function creates an options structure that you can supply to the spvals function (see Table). spset
accepts property name/property value pairs using the syntax

options = spset(’namel’, valuel, ’name2’, value2, ...)

The function is case-insensitive. Called with no input parameters, spset displays the possible values and the
defaults. You may also modify an existing options structure.

Example 2.2. To compute a sparse grid interpolant of a two-dimensional function f(x,y) = exp(x2 +y?) in [0,1]?
using the maximum-norm-based grid HM, vectorized processing, and a stringent relative error tolerance of 1074,
proceed as follows:

f = inline("exp(x."2.+.y."2)7);

options = spset (’GridType’, Maximum’, ’Vectorized’,
"RelTol’, le—4);

z = spvals(f, 2, [], options);

on ",

spget.m

You may query an existing options structure with spget. The syntax is

value = spget(options, ’name’)

If the property name exists, the current value is returned, otherwise, an empty matrix [].

spdim.m

Computes the number of points of the sparse grid Hq ¢ (by default the Clenshaw-Curtis grid HCC). You may use an
options structure to select other grid types. The syntax options are

spdim (n,d)
spdim(n,d, options)

where n denotes the interpolation depth n = g — d of the corresponding interpolation formula Aq q(f). For example,
to compute the number of points of HES, o, use the syntax

spdim (7,10)
ans =
652065

withn=q—-d=7.

spgrid.m

Explicitly computes the coordinates of the points of a single level of a sparse grid (the Clenshaw-Curtis grid by
default). This function is internally used by spvals to compute the grid points that f needs to be evaluated for, and
is usually not required to be called by the user.

Example 2.3. Let us explicitly compute and plot the grid points of AHr',“Jf‘d,d ford=2,n=2.

X = spgrid (2,2,spset (’GridType’, ’NoBoundary *))
X =
0.1250 0.5000
0.3750 0.5000
0.6250 0.5000
0.8750 0.5000
0.2500 0.2500
0.7500 0.2500
0.2500 0.7500
0.7500 0.7500
0.5000 0.1250
0.5000 0.3750
0.5000 0.6250
0.5000 0.8750

plot (x(:,1),x(:,2),k.”); axis equal; axis tight;

plotgrid.m

The plotgrid command serves as to quickly visualize two- and three- dimensional grids of specified depth. The
input arguments are, as with spgrid.m and spdim.m, the interpolation depth n = g — d, the dimension d, and an
optional options structure created with spset.

Example 2.4. The following command plots the Clenshaw-Curtis grid HGszyz, as shown in Fig. 211

plotgrid(6,2);

Note: The included demonstration file cmpgrids.m compares the three available multilinear grid types in two
and three dimensions.

0.5

0 : : Figure 2.1: Clenshaw-Curtis grid Hg's

3 Examples

In this section, two examples are provided. Further demonstrations are included with the software (see init.m).

A simple two-dimensional function

The following script represents a simple example in two dimensions, including multiple evaluations of the inter-
polating function Aqq(f) through a vectorized call of spinterp. This example is also included in the software
package as spdemo .m. The graphical output is shown in Fig. Bl

% Some objective function f
f = inline(’1./((x%x2-0.3)."4_.+(yx3—-0.7)."2+1)");

% Define problem dimension
d = 2;

% Create full grid for plotting
gs = 33;
[X,Y] = meshgrid(linspace(0,2,gs),linspace(—1,1,9s));

% Set options: Switch vectorized processing on.
options = spset(’Vectorized’, ’on’);

% Compute sparse grid weights over domain [0,2]x[—1,1]
z = spvals(f, d, [0 2; -1 1], options);

% Compute interpolated values at full grid
ip = spinterp(z, X, Y);

% Plot original function, interpolation, and error
subplot (1,3,1);

mesh (X,Y, f(X,Y));

title(’original ”);

subplot (1,3,2);

mesh (X,Y,ip);

title(’interpolated’);

subplot (1,3,3);

mesh (X,Y, abs(f(X,Y)—ip));

title(’absolute.error’);

disp (’Sparse.grid_representation._of_the_function:’);
z

original interpolated absolute error

x10°

Figure 3.1: Interpolating a two-dimensional function

An ODE under uncertain input data

The second example shows how to handle multiple output arguments (in this case, multiple time-steps of an ordinary
differential equation), and setting up a more complex model for the call in spvals.
The model considered is a second order differential equation

Q’(t) +aQ/(t) + b= 50cos(t)

from [, pp. 145-162] simulating an electrical circuit. Rewriting this second-order equation as a system of first
order equations [4]], we can define the ODE file in MATLAB format as follows:

function [outl, out2, out3] = ode(t, u, flag, a, b);
% ODE definition of the electrical circuit ODE.

switch flag

LIR]

case
outl = Ju(2); 50xcos(t) — axu(2) — bxu(1)];
case ’init’
outl = [0; 5]; % tspan
out2 = [5; 1]; % initial conditions
out3 = odeset (’RelTol’, 1le—6);
end

We can solve this ODE for a = 2,b = 4, and the default initial conditions and time span as defined in the ODE file
using the MATLAB solver ODE45.

[t.Q] = ode45(’ode’ ,[].[].[].2.4); plot(t.Q)

The result is shown in Fig. B2

We now consider the initial conditions and the parameters a, b to be uncertain, that is we assume intervals for
Q(0), Q(0), a, and b, and compute an error-controlled sparse grid interpolant for the ODE model at each time
step. The interpolant can then be used to do several useful analyses, for instance, perform a Monte Carlo simulation
with random variables, optimize the model for the given range of parameters and initial conditions, e.g. minimize
or maximize the amplitude, or compute an envelope of the result using fuzzy calculus [2] or interval analysis. In

10

t Figure 3.2: Solution of the electrical circuit system

many cases, this can be done considerably faster than by using the original ODE directly, since the construction and
evaluation of the interpolant is very fast.

We proceed as follows. First of all, we write a short wrapper function of the ODE model to enable its evaluation
by the spvals function.

function varargout = model(Q0, QOprime, a, b, tspan, nsteps)
% Definition of the complete model as a function of the uncertain
% input parameters.

% The time steps must be at fixed steps such that the number of
% outputs and time steps stay the same for each parameter

% variation.

t = linspace(tspan (1), tspan(2), nsteps);

% Call the ODE solver
[t, Q] = oded45(’ode’, t, [Q0 QOprime], [], a, b);

% Convert result vector to parameter list. This conversion is

% necessary, since the output arguments of the objective function
% to SPVALS must all be scalar. In this case, we assume that only
% the first column (i.e. Q, not Q') is of interest and thus

% returned.

varargout = num2cell (Q(:,1)7);

Next, we construct the interpolant, simultaneously for all time steps. Here, we use the intervals [Q(0)] = [4,6],
[Q(0)] = [0,2], [a] = [1,3], and [b] = [3,5].

% MAIN script file

% Problem dimension
d = 4;

% Define the time span considered
tspan = [0 5];

11

We can now compute interpolated values at each time step, for any combination of parameters within the range that
the interpolant was computed for. The structure z contains all the required information. We only need to select the
desired output parameter (i.e. the time step in this example). To compute 10 randomly distributed values at time
t =5 (which is step #101 with the chosen discretization) within the box [Q(0)] x [Q’(0)] x [a] x [b], we would simply

% Define the number of steps to consider
nsteps = 101;

% Define the objective range of the initial conditions and the
% parameters
range = [4 6; % [Q(0)]

0 2; % [Q (0)]

1 3; % [a]

3 5] % [b]

% Maximum number of sparse grid levels to compute
nmax = 3;

% Initialize z

z = [I;

% Turn insufficient depth warning off , since it is anticipated.
warning(’off’, MATLAB:spinterp:insufficientDepth”);

% Compute increasingly accurate interpolants; use previous results;
% display estimated maximum relative error over all time steps at
% each iteration.
for n = 1:nmax
options = spset(’Vectorized’, ’off’, *MinDepth’, n, *MaxDepth’,
n, *NumberOfOutputs’, nsteps, ’PrevResults’, z);
z = spvals(’model’, d, range, options, tspan, nsteps);
disp (["Current_(estimated)._maximum_relative._error._over.all_time’
“steps:.’, num2str (z.estRelError)]);
end

% Turn insufficient depth warning back on
warning(’on’, 'MATLAB: spinterp:insufficientDepth”);

use the following commands:

12

% Compute 10 randomly distributed points in [0,1] and re—scale them to

% the objective range
x = cell (1,4);
for k = 1:d
x{k} = range(k,1) + rand(1,10) .x (range(k,2) — range(k,1));
end

% Select output parameter #101
z.selectOutput = 101;
% Compute and display interpolated values

y = spinterp(z, x{:})

Bibliography

[1] J. J. Buckley, E. Eslami, and T. Feuring. Fuzzy Mathematics in Economics and Engineering. Physica-Verlag,
Heidelberg, Germany, 2002.

[2] A. Klimke and B. WohIimuth. Computing expensive multivariate functions of fuzzy numbers using sparse grids.
Fuzzy Sets and Systems, page (in press), 2005.

[3] A. Klimke and B. Wohlmuth. Piecewise multilinear hierarchical sparse grid interpolation in matlab. ACM
Transactions on Mathematical Software, 2005. @

[4] C. B. Moler. Numerical computing with MATLAB. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 2004.

[5] L.F. Shampine and M. W. Reichelt. The MATLAB ODE suite. SAM J. Sci. Comput., 18(1):1-22,1997. @

13

	Introduction
	Function reference
	init.m
	spvals.m
	spinterp.m
	spset.m
	spget.m
	spdim.m
	spgrid.m
	plotgrid.m

	Examples
	A simple two-dimensional function
	An ODE under uncertain input data

