
Extending the Translation from SDL to Promela

Armelle Prigent1, Franck Cassez2, Philippe Dhaussy1 and Olivier Roux2

1 ENSIETA, Brest, France <�rstname.name>@ensieta.fr
2 IRCCyN, ECN, Nantes, France <�rstname.name>@irccyn.ec-nantes.fr

Abstract. In this paper, we tackle the problem of model-checking SDL

programs that use the save operator. Previous work on model-checking
SDL programs with SPIN consists in translating SDL into IF (using
sdl2if) and �nally IF to Promela (if2pml). Nevertheless the save oper-
ator of SDL is not handled by the (�nal) translator if2pml. We propose
an extension of the tool if2pml that translates IF programs with save

operators into Promela. We also add an abstraction method on bu�ers
messages to if2pml allowing the user to gather some bu�er messages
into one abstract value.
We use our extended version of if2pml to validate an Unmanned Under-
water Vehicle (UUV) subsystem speci�ed with SDL.

Keywords: SDL formalism, save operator, model-checking, data ab-
straction

1 Introduction

SDL for industrial applications. The developments of embedded reactive systems
are subject to a tight integration of the formal methodologies into the existing
software development cycle in order to increase the quality of the design. Our
research group is involved in the design of advanced robotics control systems
and we have recently developed pieces of software for an Unmanned Underwater
Vehicle (UUV). In this project, and due to various industrial requirements, we
had to specify the system with the SDL formalism, normalized by ITU1, recom-
mendation Z.100 [ITU94b]. The software has many critical parts involving (ad
hoc) communication protocols we have developed hence the need for a formal
veri�cation of safety requirements.

SDL and formal veri�cation with SPIN. The SDL tools VERILOG [VER99]
and TELELOGIC [TEL98] allow the user to check for a restricted subset of
properties like deadlocks, in�nite loops or exceeded queue lengths. In many
cases those safety requirements are not su�cient to ensure a good software
quality and the need for expressing more subtle properties (e.g. using tempo-
ral logics) arises. In order to check temporal properties on SDL speci�cations,
Bosnaki & al. [BDHS00] have proposed to translate SDL speci�cations into
Promela programs that can be model-checked with SPIN [Hol97]. The technic

1 International Telecommunication Union

2 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

consists in (1) translating a SDL program into the intermediate format IF (via
sdl2if [BFG+99]) ; (2) the IF program is then translated into Promela (using
if2pml presented in [BDHS00]).

Our contribution. In the development of the UUV system, we make an extensive
use of the SDL save operator. Although this operator exists in the IF language
the translation of the IF save operator into Promela with the tool if2pml has
not been implemented yet. We then had to extend the tool if2pml to handle
this operator. One of the impediment we encountered in the development and
model-checking of our UUV software was of course the state-explosion problem.
This problem was even ampli�ed because of the translation of the save operator
that duplicates bu�ers and so brings about an exponential growth in the number
of states of the system. To tackle this problem we have again extended the tool
if2pml with a message abstraction capability so that some messages can be
gathered and abstracted away following the method proposed by Clarke & al.
in [CGL92].

Outline of the paper. The paper is organized as follows: section 2, deals with the
implementation of the translation of the save operator into if2pml to produce
Promela programs. The next section 3 is devoted to the presentation of message
abstraction via Clarke's abstraction algorithm [CGL92] and its implementation
in an extended version of if2pml. Finally, the application of the above technics
are presented on the UUV system in section 4 and we conclude in section 5.

2 Translating SDL Events' Savings into Promela

2.1 SDL programs

An SDL program consists of a set of processes described in a graphical language.
Each process has an input FIFO queue in which events to be processed are stored.
A process can output events to other input queues. The informal semantics of a
single step of an SDL process2 is roughly:

1. process an event from the input queue;
2. output events,
3. go to step 1.

The communication between processes is asynchronous. One of the features
of SDL processes is the capability of storing events in order to process them
later. This capability is very similar to the one used in the Electre reactive lan-
guage [CR95] where the semantic model is a FIFFO (First In First Fireable Out)
automaton [SFRC99]. In SDL programs, some of the events of the input queue
cannot be processed in particular states and are then stored for later processing.
This feature is explicitly implemented with the SDL save operator. An event in

2 see [ITU94a] for a formal de�nition.

Extending the Translation from SDL to Promela 3

a queue is actually a complex structure which contains the SDL identi�er of the
events (its name), (the list of SDL data values carried by the event) and the Pid
of the sender: in the following we will only deal with the event and the Pid value
attached to it (e.g. c(sender) for event c that was sent by process sender).

2.2 The save operator

A save operator speci�es a set of events that cannot be processed in a particular
state and are to be kept in the input queue for later processing. Figure 1 gives
an example of the use of the (SDL graphical) save operator. When the process is
in state wait only events c; f can be processed, whereas a; b must be left in the
input queue, and d; e are neither saved nor processed and thus are discarded3.
Based on [ITU94b], the formal semantics for the processing of events for one
process P is the following:

� let Bs be the set of saved events when process P is in state s, Ts be the
set of events that can be processed in state s, eTs the set of events that are
discarded in state s; then Bs [Ts [eTs = E is a partition of the set of all
input events of P ;

� let ' 2 E� be the current input queue when process P is in state s,
� then

� either ' = w:e:w0 with e 2 Ts, w 2 (Bs [eTs)�; w0 2 E�. From state s, P
will reach a new state s0 and the new queue is4 '0 = wjBs

:w0.

� or ' 2 (Bs [eTs)�. in this case no event can be processed and the queue
is left unchanged: '0 = '. This agrees with the semantics of discarded
events given in [BDHS00] (which is di�erent from the one in [ITU94b]).

To sum up, P will process the �rst (the oldest) non saved event of its input
queue if it can be taken into account in state s. All the preceeding discarded
events are removed from the queue.

For instance, if E = fa; b; c; d; eg, in state wait of Figure 1 we have Bs = fa; bg,

Ts = fc; fg and eTs = fd; eg. If the input queue is abcd, c will be processed and
the new input queue is abd. Now if the input queue is abdc, c is processed and d

removed leading to ab. If the queue is abddcfd, a single step will lead to abfd.

2.3 Translation of SDL save into IF save

An SDL process P is translated into an IF process proc_P by the sdl2if pro-
gram presented in [BFG+99]. In this translation, an input bu�er q_proc_P is
associated to proc_P. Figure 2 gives the IF code of the sample part of the process
depicted on Figure 1. The translation of the IF process into Promela does not
yet take into account the saved events.

3 actually, d(or e) will be discarded if it is before the �rst processable event in the
queue.

4 for �0 � � and w 2 ��, we denote by wj�0 the word obtained from w by removing
all the letters not belonging to �0.

4 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

c f

state1 state2

wait

a,b

Fig. 1. Sample part of an SDL process using saved events

process proc_i0 :buffer q_proc_i0;

var

sender : pid;

parent : pid;

offspring : pid;

state

start :init;

wait

discard d,e

in q_proc_i0;

save a,b

in q_proc_i0;

end;

state1;

state2;

transition

from start to wait;

from wait

input c(sender) from q_proc_i0 to state1;

from wait

input f(sender) from q_proc_i0 to state2;

from state1 to wait;

from state2 to wait;

Fig. 2. The translated IF code for the SDL state wait

Extending the Translation from SDL to Promela 5

Nevertheless the semantics of the save operator exists in the IF language.
The dynamic semantics of IF programs [BGG+99] that gives the meaning of the
save IF construct is essentially the same as the one we have given in section 2.2.
The translation of an SDL program composed of n processes is an IF program
composed of the n IF translations of the processes.

The crucial points when implementing this semantics in Promela is that it
implies a recursive processing of the input queue until an event that can be
processed is found. This type of search and dequeing anywhere in the queue
cannot be translated directly using Promela primitives.

2.4 Translation of IF save into Promela

A naive way of translating the processing of a queue ' in state s into Promela

that preserves the semantics of the save operator would be:

� let Bs be the set of saved events in s, eTs the set of discarded events and Ts
the set of processable events,

� process ' as follows:
1. if 9e 2 ' ^ e 2 Ts then

(a) add a fresh end token ? at the end of the queue ',
(b) do :

dequeue e0 from ' and if e0 2 Bs enqueue e0 in '

until ' = e:w with e 2 Ts;
(c) remove e from ' and change the state of the process P according to

the e-transition;
(d) dequeue e0 from ' and enqueue e0 while e0 6= ?;
(e) dequeue ?.

2. otherwise do nothing.

It is quite obvious that for a bu�er of length n every processing needs at most
2(n+ 1) steps of dequeuing + inqueuing. In practice, this algorithm requires a
free slot to enqueue ?. This would mean that if we want to store at most n
events, we take an actual bu�er of length n+ 1. Moreover before any enqueuing
we have to add a test in the Promela program on the length of the bu�er.

We present a solution that uses a temporary queue but avoids testing bu�er
length at each enqueuing. Suppose the queue is of the form � = w:e:w0 with
e 2 Ts, w 2 (Bs [eTs)�; w0 2 E� (with Bs; Ts; eTs de�ned in section 2.2).

The algorithm using an intermediate queue '0 consists in:

1. do :
dequeue e0 from ' and if e0 2 Bs enqueue e

0 in '0

until ' = e:w with e 2 Ts;
2. process e: remove e from ' and change the state of the process P according

to the e-transition;
3. do :

dequeue e0 from ' and enqueue e0 in '0

until ' = � (� is the empty word);

6 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

'0 contains the new updated queue.
For a bu�er of length n every processing needs at most 2(n + 1) steps of

dequeuing + inqueuing. About space complexity, we use another intermediate
bu�er '0. As j'0j = j'j = n, we need more space that the naive algorithm
presented below.

We illustrate our algorithm on Figure 3.

(step 1)

(step 2)

c

da

c

cf

(step 3)

(step 1)

(step 2)

(step 3)

c f

fca

a b

a b

configuration (I)

q_proc_i0 q_proc_i0_temp

a b f

a b f

f

(step 4)

configuration (II)

q_proc_i0 q_proc_i0_temp

f a

a c

a

(step 4)

a c

b

Fig. 3. Reception principle with two con�gurations

Let wait be the SDL state mentionned in Figure 1. The processing of events
c or f is considered with two con�gurations (I) and (II). The left-hand bu�er is
the input bu�er of the process (') and the right-hand one the temporary bu�er
'0. From step 1, we enqueue saved events leading to step 2. In step 2, the �rst
event of ' is a non saved event and is processed. Step 3 consists in enqueuing
each event in '0 until ' is empty. In the last step, each event temporaly stored
in '0 is appended to ' ([' := '0]). This step respect the initial event order
in the bu�er '. The translation of the IF program of Figure 2 into a Promela

program is given on Figure 4. The process proc manages two bu�ers: the initial
one q_proc_i0 corresponds to ' and the temporary bu�er q_proc_i0_tmp is
'0. They are declared with the same size as the initial SDL bu�er. The �rst
test (step 1) is to verify that one of the waited events (c or f) is in the bu�er
(q_proc_i0??[c]|| q_proc_i0??[f]). The saved events preceeding c or f in
the bu�er are then stored in the temporary bu�er (step 2) (q_proc_i0_tmp!a
and q_proc_i0_tmp!b). Discarded events are consumed and removed from the
queue. When c or f is encountered (q_proc_i0?c or q_proc_i0?f), a �rst loop
is executed. This one consists in appending all events still in the initial bu�er
to the temporary bu�er. When q_proc_i0 is empty, the last step is to move
q_proc_i0_tmp into this bu�er. Each event is appended to the bu�er until the

Extending the Translation from SDL to Promela 7

emptyness of the temporary bu�er q_proc_i0_tmp.When the new queue is ready
in bu�er q_proc_i0, the actions associated with the processed event are taken
and the new state is reached.

Our extended version of the if2pml translator implements this algorithm
and the Promela code of Figure 4 is an example of its output.
The implementation of the save primitive requires a new temporary queue for
each input queue. Then the number of states of the resulting Promela program
is multiplied in the worst case by the number of states of the FIFO queues.

Of course this does not rule out situations where the queue is full and one
has to make sure that the length of the queue is large enough to handle all the
pending events.

The systems we are developing make use of a lot of bu�ers and the state blow
up is particularly high when considering the number of events in a bu�er. Let
B be a bu�er with p places in which k event values can be stored. This bu�er
has

Pn=p

n=0 k
n possible values. So, a 3-place bu�er with 4 di�erent events has 85

possible values.
To overcome this problem we give in the next section an implementation of

an abstraction method on bu�er messages.

3 Message bu�er abstraction

3.1 Abstract interpretation

Abstract interpretation [CC77] consists in building an abstract model cM of a
system from a concrete oneM preserving some relations between the two models.
The aim is to reduce the state space of the system such that some properties of
the system are preserved from the abstract to the concrete model.

Usually the abstract system constructed has more behaviors than the initial
program, and the preservation result [CGL92] states that properties quantify-
ing over all paths of the abstract system are preserved whereas existentially
quanti�ed properties are not.

For instance the preserving result applies to a subset of the branching time
logic CTL� in which only the path quanti�er 8 is allowed: this subset is usually
referred to as 8CTL�. As a consequence it can also be applied to LTL properties
quantifying over all paths5. Of course the formula on the abstract model has to
be expressed in term of the abstract data: let b� denote the abstract property
obtained from the concrete property �6. Then, for a formula � 2 8CTL�, ifcM j= b� then M j= �.

3.2 Data abstraction

The abstraction algorithm of [CGL92] consists in interpreting the concrete pro-
gram to obtain directly the abstract version of the system. The initial model

5 as LTL is a subset of 8CTL�.
6 b� depends on the abstraction mapping chosen to build bM .

8 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

wait:

q_proc_i0??[c]|| q_proc_i0??[f] allows
the processing only if one of the waited
events is in the input queue

atomic{

if

::(q_proc_i0??[c]|| q_proc_i0??[f])->

do

:: q_proc_i0?b(sender)->q_proc_i0_temp!b(sender);

:: q_proc_i0?a(sender)-> q_proc_i0_temp!a(sender);

:: q_proc_i0?e,_->

:: q_proc_i0?d,_->

:: q_proc_i0?c->

When event c is at the head, the �rst loop
consist in dequeue each event until the
emptiness of the input bu�er

do

:: q_proc_i0?b(sender)-> q_proc_i0_temp!b(sender);

:: q_proc_i0?a(sender)-> q_proc_i0_temp!a(sender);

:: q_proc_i0?e(sender)-> q_proc_i0_temp!e(sender);

:: q_proc_i0?d(sender)-> q_proc_i0_temp!d(sender);

:: q_proc_i0?c(sender)-> q_proc_i0_temp!c(sender);

:: q_proc_i0?f(sender)-> q_proc_i0_temp!f(sender)

:: empty(q_proc_i0)-> break;

od;
When q_proc_i0 is empty, the second
loop replaces all events in the initial order

do

in this bu�er while dequeuing the tempo-
rary bu�er

:: q_proc_i0_temp?b(sender)-> q_proc_i0!b(sender);

:: q_proc_i0_temp?a(sender)-> q_proc_i0!a(sender);

:: q_proc_i0_temp?c(sender)-> q_proc_i0!c(sender);

:: q_proc_i0_temp?e(sender)-> q_proc_i0!e(sender);

:: q_proc_i0_temp?d(sender)-> q_proc_i0!d(sender);

:: q_proc_i0_temp?f(sender)-> q_proc_i0!f(sender)

:: empty(q_proc_i0_temp)-> break;

od;

goto state1;

:: q_proc_i0?f->

do

:: q_proc_i0?b(sender)-> q_proc_i0_temp!b(sender);

:: q_proc_i0?a(sender)-> q_proc_i0_temp!a(sender);

:: q_proc_i0?e(sender)-> q_proc_i0_temp!a(sender);

:: q_proc_i0?d(sender)-> q_proc_i0_temp!a(sender);

:: q_proc_i0?c(sender)-> q_proc_i0_temp!c(sender);

:: q_proc_i0?f(sender)-> q_proc_i0_temp!f(sender)

:: empty(q_proc_i0)-> break;

od;

do

:: q_proc_i0_temp?b(sender)-> q_proc_i0!b(sender);

:: q_proc_i0_temp?a(sender)-> q_proc_i0!a(sender);

:: q_proc_i0_temp?e(sender)-> q_proc_i0!e(sender);

:: q_proc_i0_temp?d(sender)-> q_proc_i0!d(sender);

:: q_proc_i0_temp?c(sender)-> q_proc_i0!c(sender);

:: q_proc_i0_temp?f(sender)->q_proc_i0!f(sender)

:: empty(q_proc_i0_temp)-> break;

od;

goto state2;

od;

fi;

Fig. 4. Promela code obtained from the SDL program of Figure 1

Extending the Translation from SDL to Promela 9

is a labelled transition system. This abstraction can be applied to IF programs
during the translation into Promela. Indeed, each IF process is associated with a
labelled transition system. The bene�t of this method is that the abstract model
is constructed directly from the initial program. This is particularly interesting
for in�nite or large systems.

In the sequel, we use Clarke's algorithm [CGL92] to build an abstract model
of the system where some bu�er messages are abstracted away. We apply this
technic to the IF program obtained from a SDL program which is the concrete
model, to build an abstract Promela version of the program.

3.3 Bu�er abstraction on IF program

The abstraction algorithm we use is the algorithm of [CGL92], where the ab-
straction mapping deals with the bu�er contents.

Let E , represent the possible events that can be stored in a bu�er B of the
system. E� is then the set of possible values of the bu�er. We denote EA the set
of abstract events (

�
EA
��

is then the set of abstract contents of the bu�er.) The
abstraction mapping h : E ! EA associates to each event e1; e2; : : : ; en 2 E an
abstract value in EA. We denote h(e) = eA.

Together with the abstraction mapping, we have to de�ne abstract primitives

on bu�ers. The abstract operators on bu�ers are de�ned straightforwardly from
the concrete by:

h(input(sig)) = input(sigA)
h(output(sig)) = output(sigA)
h(save(sig)) = save(sigA)

The translation from IF to Promela is computed compositionaly. Indeed for a
composition (P1j � � � jPn) of n IF processes with have (P1j � � � jPn)A = (PA

1 j � � � jP
A
n)

where PA denotes the abstract process obtained from P . The abstract interpre-
tation then consists in constructing an abstraction for each IF process in the
system and compose the abstracted processes.

Practically the abstract interpretation of the system is done during the trans-
lation of the IF system into the corresponding Promela program (if2pml).

3.4 Application

To illustrate this method, we apply the bu�er abstraction on the state wait

described in Figure 1. The bu�er abstraction mapping gathers events a and b

under the label SIG_ABST. Formally, using the relation h, we write : h(b) =
h(a) = SIG ABST and h(x) = x for the other events. The abstracted version
in Promela of the IF program of Figure 4 is shown Figure 5.

In state wait, the events a; b have been abstracted into SIG ABST . This
abstraction reduces the number of save in the transition relation and then the
number of possible transitions in the system.

10 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

wait:

atomic{

if

::(q_proc_i0??[c]|| q_proc_i0??[f])->

do

:: q_proc_i0?SIG_ABST(sender)-> q_proc_i0_temp!SIG_ABST(sender);

:: q_proc_i0?e,_->

:: q_proc_i0?d,_->

:: q_proc_i0?c->

do

:: q_proc_i0?SIG_ABST(sender)-> q_proc_i0_temp!SIG_ABST(sender);

:: q_proc_i0?e(sender)-> q_proc_i0_temp!e(sender)

:: q_proc_i0?d(sender)-> q_proc_i0_temp!d(sender)

:: q_proc_i0?c(sender)-> q_proc_i0_temp!c(sender)

:: q_proc_i0?f(sender)-> q_proc_i0_temp!f(sender)

:: empty(q_proc_i0)-> break;

od;

do

:: q_proc_i0_temp?SIG_ABST(sender)-> q_proc_i0!SIG_ABST(sender);

:: q_proc_i0_temp?e(sender)-> q_proc_i0!e(sender)

:: q_proc_i0_temp?d(sender)-> q_proc_i0!d(sender)

:: q_proc_i0_temp?c(sender)-> q_proc_i0!c(sender)

:: q_proc_i0_temp?f(sender)-> q_proc_i0!f(sender)

:: empty(q_proc_i0_temp)-> break;

od;

goto state1;

:: q_proc_i0?f->

do

:: q_proc_i0?SIG_ABST(sender)-> q_proc_i0_temp!SIG_ABST(sender);

:: q_proc_i0?e(sender)-> q_proc_i0_temp!e(sender)

:: q_proc_i0?d(sender)-> q_proc_i0_temp!d(sender)

:: q_proc_i0?c(sender)-> q_proc_i0_temp!c(sender)

:: q_proc_i0?f(sender)-> q_proc_i0_temp!f(sender)

:: empty(q_proc_i0)-> break;

od;

do

:: q_proc_i0_temp?SIG_ABST(sender)-> q_proc_i0!SIG_ABST(sender);

:: q_proc_i0_temp?e(sender)-> q_proc_i0!e(sender)

:: q_proc_i0_temp?d(sender)-> q_proc_i0!d(sender)

:: q_proc_i0_temp?c(sender)-> q_proc_i0!c(sender)

:: q_proc_i0_temp?f(sender)->q_proc_i0!f(sender)

:: empty(q_proc_i0_temp)-> break;

od;

goto state2;

od;

fi;

Fig. 5. Abstracted Promela code

Extending the Translation from SDL to Promela 11

3.5 An extension of if2pml to automatically abstract bu�ers

We have implemented the bu�er abstraction for SDL programs via the the trans-
lation into IF. We have extended the translator if2pml developed by [BDHS00]
with the abstraction feature. Our implementation uses a �le describing the ab-
stract mapping. For the example of Figure 5, this �le (fic.grp) contains the
following line: SIG_ABST : a,b; meaning that a and b are abstracted into the
same event SIG_ABST. For the other event, abstraction is the identity mapping.
It may be possible to have more than one abstract signal. Then using the com-
mand line if2pml -a fic.grp prog.if produces the given abstracted Promela

code.

4 Case Study: Veri�cation of the Obstacle Avoidance
System of the UUV

4.1 Obstacle Avoidance System

The information system of UUV is based on a distributed architecture that com-
prises several subsystems. One is the Obstacle Avoidance System (OAS). The
principle of this system we develop is to manage in an integrated way a digital
terrain model estimation method, a 3D stabilized and mechanically steered front
looking sonar, and computational methods devoted to safe trajectories compu-
tation. It is composed of four subsystems (inside the dashed box in Figure 6):

1. The digital terrain manager (DTM), which estimates the partially known
terrain by using an occupancy grid representation and updating process,

2. the global planner (GP) to generate way points guiding the UUV towards a
given target whilst avoiding terrain obstacles,

3. the re�ex planner (RP) to check that the trajectories planned by the GP
are safe, even in the presence of a disturbance, in the sense that they do not
lead to collision,

4. the OAS Supervisor that manages the communication with environmental
subsystems.

The communication between the OAS system and the other UUV systems is
based on an Ethernet network and a CAN bus coupled to actuators and sensors.
The internal OAS processes communication mechanism is via VxWorks message
queues.

4.2 SDL model

The Obstacle Avoidance System has the three following operation modes:Rerout-
ing, Terrain following and Security. When necessary, the supervisor is alerted
by Mission Control (event changeMode) that a mode change is required. Peri-
odically the Navigation System sends navigation data, Mission Control sends a
target set to reach and the current target number (nav, consign, wayPoint

12 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

System
Navigation Mission Control

System
Vehicule Guidance
and Control System

OAS Supervisor

Reflex Path
Planner
and
Decision Sonar
Search System

Global
Path
Planner

Digital
Terrain
Model
manager

Digital
Terrain Model (

Nav. param. trajectories

trajectories

trajectories
Modes,

OA Sonars

Fig. 6. Functional description of the Obstacle Avoidance System.

and noWp) to the supervisor process. This one will be in charge to redistribute
it to other processes. The trajectory request comes from Control System with
event simuTimeout. The trajectory is computed by the process concerned with
the current operation mode (Rerouting or Terrain following or Security). The
veri�cation with the model-checker SPIN requires to close the system and we
have de�ned an environment process model in SDL. This particular process is
in charge of simulating interactions between the OAS SDL model and the Nav-
igation System, Control System, Sonar and Mission Control System. Figure 7
presents the SDL system and events exchanges between these processes.

4.3 Veri�cation of the OAS

Properties of the OAS. Using the tools described in section 2 and 3 we can check
for di�erent safety properties (of 8CTL�) of the OAS system. The properties we
want to check are the following:

� �the system does not get stuck in one of the operation mode�; this means
that the operation mode is alternatively changed during the execution of
the system. The mode could be terrain following (terfolMode), rerouting

Extending the Translation from SDL to Promela 13

(reroutMode), or security (securMode). This property can be expressed in
LTL by:

:32terfolMode^ :32reroutMode^ :32securMode (1)

� �The trajectory is computed by the process concerned by the current operation

mode�. e.g. in rerouting mode, the trajectory has to be computed by process
rerout. The trajectory is computed by a process when it receives event nav1.
We then de�ne trajRerout to be equivalent to process rerout receives event
nav1: q_rerouting_i0?[nav1]. The LTL property to be checked is:

2:(terfolMode^ trajRerout) (2)

� �In a rerouting or security operation mode the sonar manager does not send

data to the model process�.

2:((reroutMode_ securMode) ^ sentDataModel) (3)

All these properties involve a number of events in many bu�ers and the SDL
description of the OAS system makes extensive use of save operators. We have
used our extended version of if2pml to check for properties (1)�(3).

Results. Table 1 presents the di�erent reduction percentages obtained on the
OAS system for di�erent abstraction mappings h1 and h2. h1 groups 4 events
into one, h2 makes two groups of 4 events for each one. h0 = Id is the identity
mapping giving the number of states and transitions of the concrete system.

The ratio columns corresponds respectively to 1� # states of abstract
states of concrete

and 1�

trans. of abstract
trans. of concrete

states # trans. % states ratio % trans. ratio

h0 = Id 95 633 505 341 - -
h1 86 225 403 077 10 % 9 %
h2 67 951 369 035 40 % 36 %

Table 1. Reduction of the number of states and transitions

Properties (1) and (3) are true on our model. Property (2) is violated. In-
deed, the supervisor can receive a trajectory computed by the terfol process
whereas rerouting mode is activated. As the relation between the abstracted and
the initial model is a simulation, the property violation detected in the abstract
system does not allow us to a�rm the violation in the concrete model. Neverthe-
less, the MSC7 of the incorrect behavior produced by SPIN has been analyzed

7 Message Sequence Charts

14 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

and input to the SDL system. This incorrect behavior has been reproduced in the
initial SDL system with a simulation. We have then checked that the property
is really violated in the concrete SDL model. This incorrect behavior has been
detected and �xed in our OAS model.

5 Conclusion and future work

In this paper we have extended the tool if2pml with the two following features:

� translation of the save operator into Promela;
� implementation of an abstraction mapping on bu�ers' messages.

These technics reveal useful when proving SDL programs that use the save
operator. The designer can explicitly group messages into one abstract message.
The reduction obtained in the number of states and transitions of the system
we want to check are rather signi�cant, going up to 40%. We have successfully
applied our extended version of if2pml on the development of an Unmanned
Underwater Vehicle for which safety properties were checked.

As an incorrect behavior was detected on the abstract system with SPIN for
property (2), we had to verify that this incorrect behaviour really exists on the
concrete initial SDL system. Such a veri�cation could be automated using the
SPIN MSC counter example to produce automatically the corresponding SDL

MSC that could be played on the concrete SDL model.

References

[BDHS00] Dragan Bosnacki, Dennis Dams, Lesek Holenderski, and Natalia Sidorova.
Model checking sdl with spin. In Susanne Graf and Michael Schwartzbach,
editors, Tools and Algorithms for the Construction and Analysis of Systems,,
number 1785, pages 363�377, Berlin, 2000. LNCS, Springer.

[BFG+99] M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and
J. Sifakis. If: An Intermediate Representation for SDL and its Applications.
In Proceedings of SDL-FORUM'99, Montreal, Canada, June 1999.

[BGG+99] M. Bozga, L. Ghirvu, S. Graf, L. Mounier, and J. Sifakis. The Intermedi-
ate Representation IF: Syntax and semantics. Technical report, Vérimag,
Grenoble, 1999.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for
static analysis of programs by cons truction or approximation of �xpoints. In
ACM Press, editor, Proceedings of the 4th Annual Symposium on Principles
of Programming Languages,, 1977.

[CGL92] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
In Proceedings of the 19th ACM symposium on principles of programming
languages, ACM press, New-York, 1992.

[CR95] Franck Cassez and Olivier Roux. Compilation of the ELECTRE reac-
tive language into �nite transition systems. Theoretical Computer Science,
146(1�2):109�143, July 1995.

Extending the Translation from SDL to Promela 15

[Hol97] G.J. Holzmann. The model checker spin. In IEEE Trans. on Software
Engineering, volume 23, May 1997.

[ITU94a] ITU-T International Telecommunication Union. Annex F.3 to Recommen-
dation Z.100, Speci�cation and Description Language (SDL) � SDL Formal
De�nition: Dynamic Semantics. 1994.

[ITU94b] ITU-T International Telecommunication Union. Recommendation Z.100,
Speci�cation and Description Language (SDL). 1994.

[SFRC99] G. Sutre, A. Finkel, O. Roux, and F. Cassez. E�ective recognizability and
model checking of reactive ��o automata. In Proc. 7th Int. Conf. Algebraic
Methodology and Software Technology (AMAST'98), Amazonia, Brazil, Jan.
1999, volume 1548 of Lecture Notes in Computer Science, pages 106�123.
Springer, 1999.

[TEL98] TELELOGIC. TAU/SDT 3.3. TELELOGIC, June 1998.
[VER99] VERILOG. ObjectGEODE 4.0. CS VERILOG, March 1999.

16 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

A SDL Model of OAS

A.1 SDL System

noWp1
wayPoint1
restart
nav1
consign1

trajectory1

errorToSup

statusRerout

wayPoint1
consign1

nav1

noWp1
restart

reroutAlive

errorToSup

statusInter

statusCorrel

modelAlive

restart
noWp1
wayPoint1
nav1

correl

interpolation

Supervisor

EnvironmentModel

trajectory1

tfAlive

statusTerfol

errorToSup

Terfol Rerouting

nav1
wayPoint1

statusSon
erreurToSup
sonManagerAlive

noWp1
restart

Sonar Manager

sonarConsign

sonarReturn

modeChoice

sonarFilterReturn

System OAS

trajectory
errorToEnv

urgenceSonar

StatTf

StatInter

StatDerout

StatCorrel

oasAlive

ChangeMode

nav

wayPoint

consign

noWp

simuTimeout

Fig. 7. SDL structure of OAS system

Extending the Translation from SDL to Promela 17

A.2 SDL environment process

Fig. 8. SDL environment process (partially)

