Extending the Translation from SDL to Promela

Armelle Prigent!, Franck Cassez?, Philippe Dhaussy' and Olivier Roux?

! ENSIETA, Brest, France <firstname. name>@ensieta.fr
2 JRCCyN, ECN, Nantes, France <firstname.name>@irccyn.ec-nantes.fr

Abstract. In this paper, we tackle the problem of model-checking SDL
programs that use the save operator. Previous work on model-checking
SDL programs with SPIN consists in translating SDL into IF (using
sd12if) and finally IF to Promela (if2pml). Nevertheless the save oper-
ator of SDL is not handled by the (final) translator if2pml. We propose
an extension of the tool if2pml that translates IF programs with save
operators into Promela. We also add an abstraction method on buffers
messages to if2pml allowing the user to gather some buffer messages
into one abstract value.

We use our extended version of if2pml to validate an Unmanned Under-

water Vehicle (UUV) subsystem specified with SDL.

Keywords: SDL formalism, save operator, model-checking, data ab-
straction

1 Introduction

SDL for industrial applications. The developments of embedded reactive systems
are subject to a tight integration of the formal methodologies into the existing
software development cycle in order to increase the quality of the design. Our
research group 1s involved in the design of advanced robotics control systems
and we have recently developed pieces of software for an Unmanned Underwater
Vehicle (UUV). In this project, and due to various industrial requirements, we
had to specify the system with the SDL formalism, normalized by ITU!, recom-
mendation Z.100 [ITTU94b]. The software has many critical parts involving (ad
hoc) communication protocols we have developed hence the need for a formal
verification of safety requirements.

SDL and formal verification with SPIN. The SDL tools VERILOG [VER99]
and TELELOGIC [TEL98] allow the user to check for a restricted subset of
properties like deadlocks, infinite loops or exceeded queue lengths. In many
cases those safety requirements are not sufficient to ensure a good software
quality and the need for expressing more subtle properties (e.g. using tempo-
ral logics) arises. In order to check temporal properties on SDL specifications,
Bosnaki & al. [BDHS00] have proposed to translate SDL specifications into
Promela programs that can be model-checked with SPIN [Hol97]. The technic

! Tnternational Telecommunication Union

2 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

consists in (1) translating a SDL program into the intermediate format IF (via
sd12if [BFGT99]) ; (2) the IF program is then translated into Promela (using
if2pml presented in [BDHS00]).

Our contribution. In the development of the UUV system, we make an extensive
use of the SDL save operator. Although this operator exists in the IF language
the translation of the IF save operator into Promela with the tool if2pml has
not been implemented yet. We then had to extend the tool if2pml to handle
this operator. One of the impediment we encountered in the development and
model-checking of our UUV software was of course the state-explosion problem.
This problem was even amplified because of the translation of the save operator
that duplicates buffers and so brings about an exponential growth in the number
of states of the system. To tackle this problem we have again extended the tool
if2pml with a message abstraction capability so that some messages can be
gathered and abstracted away following the method proposed by Clarke & al.
in [CGL92].

QOutline of the paper. The paper is organized as follows: section 2, deals with the
implementation of the translation of the save operator into i£2pml to produce
Promela programs. The next section 3 is devoted to the presentation of message
abstraction via Clarke’s abstraction algorithm [CGL92] and its implementation
in an extended version of if2pml. Finally, the application of the above technics
are presented on the UUV system in section 4 and we conclude in section 5.

2 Translating SDL Events’ Savings into Promela

2.1 SDL programs

An SDL program consists of a set of processes described in a graphical language.
Each process has an nput FIFO queue in which events to be processed are stored.
A process can output events to other input queues. The informal semantics of a
single step of an SDL process? is roughly:

1. process an event from the input queue;
2. output events,
3. go to step 1.

The communication between processes is asynchronous. One of the features
of SDL processes is the capability of storing events in order to process them
later. This capability is very similar to the one used in the Electre reactive lan-
guage [CR95] where the semantic model is a FIFFO (First In First Fireable Out)
automaton [SFRC99]. In SDL programs, some of the events of the input queue
cannot be processed in particular states and are then stored for later processing.
This feature is explicitly implemented with the SDL save operator. An event in

2 see [ITU94a] for a formal definition.

Extending the Translation from SDL to Promela 3

a queue is actually a complex structure which contains the SDL identifier of the
events (its name), (the list of SDL data values carried by the event) and the Pid
of the sender: in the following we will only deal with the event and the Pid value
attached to it (e.g. c(sender) for event ¢ that was sent by process sender).

2.2 The save operator

A save operator specifies a set of events that cannot be processed in a particular
state and are to be kept in the input queue for later processing. Figure 1 gives
an example of the use of the (SDL graphical) save operator. When the process is
in state wait only events ¢, f can be processed, whereas a, b must be left in the
input queue, and d, e are neither saved nor processed and thus are discarded?®.
Based on [ITU94b], the formal semantics for the processing of events for one
process P is the following:

— let Bs be the set of saved events when process P is in state s, 75 be the
set of events that can be processed in state s, 75 the set of events that are
discarded in state s; then B; U T, U7, = & is a partition of the set of all
input events of P;

— let ¢ € £* be the current input queue when process P is in state s,

— then B

o cither ¢ = w.e.w’ with e € T;, w € (B; UT;)*, w' € £*. From state s, P

will reach a new state s’ and the new queue is?

¢ = wp, W
e or p € (B; UT;)". in this case no event can be processed and the queue
is left unchanged: ¢’ = . This agrees with the semantics of discarded

events given in [BDHS00] (which is different from the one in [TTU94b]).

To sum up, P will process the first (the oldest) non saved event of its input
queue if it can be taken into account in state s. All the preceeding discarded
events are removed from the queue.

For instance, if £ = {a, b, ¢, d, e}, in state wait of Figure 1 we have B; = {a, b},
Ts = {c¢, f} and T, = {d, e}. If the input queue is abed, ¢ will be processed and
the new input queue is abd. Now if the input queue is abde, ¢ is processed and d
removed leading to ab. If the queue is abddefd, a single step will lead to abfd.

2.3 Translation of SDL save into IF save

An SDL process P is translated into an IF process proc_P by the sd12if pro-
gram presented in [BFGT99]. In this translation, an input buffer q_proc_P is
associated to proc_P. Figure 2 gives the IF code of the sample part of the process
depicted on Figure 1. The translation of the IF process into Promela does not
yet take into account the saved events.

? actually, d(or e) will be discarded if it is before the first processable event in the
queue.

Y for X' C ¥ and w € X*, we denote by w|z+ the word obtained from w by removing
all the letters not belonging to X’.

4 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

wai t

o [f

statel state2

Fig. 1. Sample part of an SDL process using saved events

process proc_i0 :buffer q_proc_i0;
var
sender : pid;
parent : pid;
offspring : pid;
state
start :init;
wait
discard d,e
in q_proc_i0;
save a,b
in q_proc_i0;
end;
statel;
state?;
transition
from start to wait;
from wait
input c(sender) from q_proc_i0 to statel;
from wait
input f(sender) from q_proc_i0 to state2;
from statel to wait;
from state2 to wait;

Fig. 2. The translated IF code for the SDL state wait

Extending the Translation from SDL to Promela 5

Nevertheless the semantics of the save operator exists in the IF language.
The dynamic semantics of IF programs [BGGT99] that gives the meaning of the
save IF construct is essentially the same as the one we have given in section 2.2.
The translation of an SDL program composed of n processes is an IF program
composed of the n IF translations of the processes.

The crucial points when implementing this semantics in Promela is that it
implies a recursive processing of the input queue until an event that can be
processed is found. This type of search and dequeing anywhere in the queue
cannot be translated directly using Promela primitives.

2.4 Translation of IF save into Promela

A naive way of translating the processing of a queue ¢ in state s into Promela
that preserves the semantics of the save operator would be:

— let B; be the set of saved events in s, 7~; the set of discarded events and 7,
the set of processable events,
— process ¢ as follows:
1. ifde € p Ae €T, then
(a) add a fresh end token L at the end of the queue ¢,
(b) do:
dequeue ¢’ from ¢ and if ¢’ € By enqueue ¢’ in ¢
until ¢ = e.w with e € T;
(c) remove e from ¢ and change the state of the process P according to
the e-transition;
(d) dequeue €’ from ¢ and enqueue €’ while ¢’ # L;
(e) dequeue L.
2. otherwise do nothing.

It is quite obvious that for a buffer of length n every processing needs at most
2(n + 1) steps of dequeuing + inqueuing. In practice, this algorithm requires a
free slot to enqueue L. This would mean that if we want to store at most n
events, we take an actual buffer of length n 4+ 1. Moreover before any enqueuing
we have to add a test in the Promela program on the length of the buffer.

We present a solution that uses a temporary queue but avoids testing buffer
length at each enqueuning. Suppose the queue is of the form ¢ = w.e.w’ with
e€ T, we (BsUT)",w €& (with By, 75, 7s defined in section 2.2).

The algorithm using an intermediate queue ¢’ consists in:

1. do:
dequeue ¢’ from ¢ and if ¢’ € By enqueue €’ in ¢’
until ¢ = e.w with e € Ty;
2. process e: remove e from ¢ and change the state of the process P according
to the e-transition;
3. do:
dequeue €’ from ¢ and enqueue €’ in ¢’
until ¢ = € (€ is the empty word);

6 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

¢’ contains the new updated queue.

For a buffer of length n every processing needs at most 2(n + 1) steps of
dequeuing + inqueuing. About space complexity, we use another intermediate
buffer ¢'. As |¢’'| = |¢| = n, we need more space that the naive algorithm
presented below.

We illustrate our algorithm on Figure 3.

(step 1) ‘a‘b‘c‘f‘ [(step 1) ‘a‘d‘f‘c‘ [
won Lol D] lale] L] wwy [ffe] 1] fal it]
oy [11 ab. | ey e [1] [ar 0]
| |
— | . ‘
oy [[0] lafe[t[| ews [0 0] [afe] !]
bl] [1] EeT] T
q_proc_i0 q_proc_i0_temp q_proc_i0 q_proc_i0_temp
configuration (1) configuration (I1)

Fig. 3. Reception principle with two configurations

Let wait be the SDL state mentionned in Figure 1. The processing of events
c or fis considered with two configurations (I) and (II). The left-hand buffer is
the input buffer of the process () and the right-hand one the temporary buffer
¢'. From step 1, we enqueue saved events leading to step 2. In step 2, the first
event of ¢ is a non saved event and is processed. Step 3 consists in enqueuing
each event in ¢’ until ¢ is empty. In the last step, each event temporaly stored
in ¢’ is appended to ¢ ([¢ = ¢']). This step respect the initial event order
in the buffer . The translation of the IF program of Figure 2 into a Promela
program is given on Figure 4. The process proc manages two buffers: the initial
one q_proc_i0 corresponds to ¢ and the temporary buffer q_proc_i0_tmp is
¢'. They are declared with the same size as the initial SDL buffer. The first
test (step 1) is to verify that one of the waited events (¢ or f) is in the buffer
(a_proc_i1077[c] || q_proc_i0?77[£f]). The saved events preceeding ¢ or f in
the buffer are then stored in the temporary buffer (step 2) (q_proc_iO_tmp'a
and g_proc_i0_tmp!b). Discarded events are consumed and removed from the
queue. When ¢ or f is encountered (q_proc_i07c or q_proc_i07f), a first loop
is executed. This one consists in appending all events still in the initial buffer
to the temporary buffer. When q_proc_i0 is empty, the last step is to move
q_proc_i0_tmp into this buffer. Each event is appended to the buffer until the

Extending the Translation from SDL to Promela 7

emptyness of the temporary buffer q_proc_i0_tmp. When the new queue is ready
in buffer q_proc_i0, the actions associated with the processed event are taken
and the new state is reached.

Our extended version of the if2pml translator implements this algorithm
and the Promela code of Figure 4 is an example of its output.

The implementation of the save primitive requires a new temporary queue for
each input queue. Then the number of states of the resulting Promela program
1s multiplied in the worst case by the number of states of the FIFO queues.

Of course this does not rule out situations where the queue is full and one
has to make sure that the length of the queue is large enough to handle all the
pending events.

The systems we are developing make use of a lot of buffers and the state blow
up is particularly high when considering the number of events in a buffer. Let
B be a buffer with p places in which &k event values can be stored. This buffer
has > —F k™ possible values. So, a 3-place buffer with 4 different events has 85
possible values.

To overcome this problem we give in the next section an implementation of
an abstraction method on buffer messages.

3 Message buffer abstraction

3.1 Abstract interpretation

Abstract interpretation [CC77] consists in building an abstract model M of a
system from a concrete one M preserving some relations between the two models.
The aim is to reduce the state space of the system such that some properties of
the system are preserved from the abstract to the concrete model.

Usually the abstract system constructed has more behaviors than the initial
program, and the preservation resull [CGL92| states that properties quantify-
ing over all paths of the abstract system are preserved whereas existentially
quantified properties are not.

For instance the preserving result applies to a subset of the branching time
logic C'T'L* in which only the path quantifier V is allowed: this subset is usually
referred to as VOT'L™. As a consequence it can also be applied to LT L properties
quantifying over all paths®. Of course the formula on the abstract model has to
be expressed in term of the abstract data: let ¢ denote the abstract property
obtained from the concrete property ¢%. Then, for a formula ¢ € YCTL*, if
M = ¢ then M | ¢.

3.2 Data abstraction

The abstraction algorithm of [CGL92] consists in interpreting the concrete pro-
gram to obtain directly the abstract version of the system. The initial model

5 as LTL is a subset of YOTL*.
5 ¢ depends on the abstraction mapping chosen to build M.

8 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

q_proc_i077?[c]|| q_proc_i07?[f] allows
the processing only if one of the waited
wait: events is in the input queue
atomic{
if
::(q_proc_i077[c] || q_proc_i077[£f])->
do
:: gq_proc_i07b(sender)->q_proc_i0_temp!b(sender) ;
:: g_proc_i0O7a(sender)-> q_proc_i0_temp'a(sender);
11 gq_proc_i0%e,_->
11 gq_proc_i07d,_->
11 q_proc_i0%c->
When event c is at the head, the first loop
consist in dequeue each event until the
emptiness of the input buffer
do
:: g_proc_i07b(sender)-> q_proc_i0_temp'b(sender);
:: g_proc_iO7a(sender)-> q_proc_i0_temp'a(sender);
: q_proc_i07e(sender)-> q_proc_i0_temp'!e(sender);
: q_proc_i07?d(sender)-> q_proc_i0_temp'!d(sender) ;
:: g_proc_i07c(sender)-> q_proc_i0_temp'c(sender);
:: gq_proc_i07f (sender)-> q_proc_i0_tenp!f (sender)
:: empty(q_proc_i0)-> break;

od;
When ¢q_proc_i10 is empty, the second
loop replaces all events in the initial order
in this buffer while dequeuing the tempo-
do rary buffer

11 gq_proc_i0_temp?b(sender)-> q_proc_i0!b(sender);
11 gq_proc_i0_temp?a(sender)-> q_proc_iO'a(sender);
: g_proc_i0_temp?c(sender)-> q_proc_i0!c(sender);
: g_proc_i0_temp7e(sender)-> q_proc_i0'e(sender);
11 gq_proc_i0_temp?d(sender)-> q_proc_i0!'d(sender);
11 gq_proc_i0_temp?f (sender)-> q_proc_i0!f(sender)
:: empty(q_proc_iO_temp)-> break;

od;

goto statel;

: q_proc_i07f->

do

:: g_proc_i07b(sender)-> q_proc_i0_temp'b(sender);
:: g_proc_iO7a(sender)-> q_proc_i0_temp'a(sender);
:: g_proc_i07e(sender)-> q_proc_i0_temp'a(sender);
:: g_proc_i07d(sender)-> q_proc_i0_temp'a(sender);
: q_proc_i07c(sender)-> q_proc_i0_temp!c(sender);
: q_proc_i07f (sender)-> q_proc_i0_temp!f (sender)
:: empty(q_proc_i0)-> break;

od;

do

11 gq_proc_i0_temp?b(sender)-> q_proc_i0!b(sender);
: g_proc_i0_temp7a(sender)-> q_proc_i0'a(sender);
: g_proc_i0_temp7e(sender)-> q_proc_i0'e(sender);
11 gq_proc_i0_temp?d(sender)-> q_proc_i0!'d(sender);
11 gq_proc_i0_temp?c(sender)-> q_proc_i0!c(sender);
11 gq_proc_i0_temp?f (sender)->q_proc_i0!f (sender)

empty (q_proc_i0_temp) -> break;
od;
goto state2;
od;
fi;

Fig. 4. Promela code obtained from the SDL program of Figure 1

Extending the Translation from SDL to Promela 9

is a labelled transition system. This abstraction can be applied to IF programs
during the translation into Promela. Indeed, each IF process is associated with a
labelled transition system. The benefit of this method is that the abstract model
is constructed directly from the initial program. This is particularly interesting
for infinite or large systems.

In the sequel, we use Clarke’s algorithm [CGL92] to build an abstract model
of the system where some buffer messages are abstracted away. We apply this
technic to the IF program obtained from a SDL program which is the concrete
model, to build an abstract Promela version of the program.

3.3 Buffer abstraction on IF program

The abstraction algorithm we use is the algorithm of [CGL92], where the ab-
straction mapping deals with the buffer contents.

Let &, represent the possible events that can be stored in a buffer B of the
system. £* is then the set of possible values of the buffer. We denote £4 the set
of abstract events ((SA)* is then the set of abstract contents of the buffer.) The
abstraction mapping h : & — £4 associates to each event ej,es,...,¢, € € an
abstract value in £4. We denote h(e) = e?.

Together with the abstraction mapping, we have to define abstract primitives
on buffers. The abstract operators on buffers are defined straightforwardly from
the concrete by:

h(input(sig)) = input(sig?)
h(output(sig)) = output(sig?)
h(save(sig)) = save(sig?)

The translation from IF to Promela is computed compositionaly. Indeed for a
composition (Py|---|P,) of n IF processes with have (Py|---|P,)* = (P#|---|P2)
where P# denotes the abstract process obtained from P. The abstract interpre-
tation then consists in constructing an abstraction for each IF process in the
system and compose the abstracted processes.

Practically the abstract interpretation of the system is done during the trans-
lation of the IF system into the corresponding Promela program (if2pml).

3.4 Application

To illustrate this method, we apply the buffer abstraction on the state wait
described in Figure 1. The buffer abstraction mapping gathers events a and b
under the label SIG_ABST. Formally, using the relation h, we write : h(b) =
h(a) = SIG_ABST and h(x) = x for the other events. The abstracted version
in Promela of the IF program of Figure 4 is shown Figure 5.

In state wazt, the events a,b have been abstracted into SIG_ABST. This
abstraction reduces the number of save in the transition relation and then the
number of possible transitions in the system.

10 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

wait:

atomic{

if

::(q_proc_i077[c] || q_proc_i077[£f])->
do
:: gq_proc_1i07SIG_ABST(sender)-> q_proc_iO_temp!SIG_ABST (sender) ;

11 gq_proc_i0%e,_->

: q_proc_i07d,_->

11 q_proc_i0%c->
do
:: gq_proc_1i07SIG_ABST(sender)-> q_proc_i0O_temp!SIG_ABST (sender) ;
:: g_proc_i07e(sender)-> q_proc_i0_tenp'e(sender)
:: gq_proc_i07d(sender)-> q_proc_i0_tenp'd(sender)
: q_proc_i07c(sender)-> q_proc_i0_temp!c(sender)
: q_proc_i07f (sender)-> q_proc_i0_temp!f (sender)
:: empty(q_proc_i0)-> break;
od;

do

:: q_proc_i0_temp?SIG_ABST(sender)-> q_proc_i0!'SIG_ABST (sender);
: g_proc_i0_temp7e(sender)-> q_proc_i0!e(sender)
: g_proc_i0_temp7?d(sender)-> q_proc_i0!d(sender)

11 gq_proc_i0_temp?c(sender)-> q_proc_i0!c(sender)

11 gq_proc_i0_temp?f (sender)-> q_proc_i0!f(sender)

:: empty(q_proc_iO_temp)-> break;

od;

goto statel;

: q_proc_i07f->
do
:: gq_proc_1i07SIG_ABST(sender)-> q_proc_i0O_temp!SIG_ABST (sender) ;
:: g_proc_i07e(sender)-> q_proc_i0_tenp'e(sender)
:: gq_proc_i07d(sender)-> q_proc_i0_tenp'd(sender)
: q_proc_i07c(sender)-> q_proc_i0_temp!c(sender)
: q_proc_i07f (sender)-> q_proc_i0_temp!f (sender)
:: empty(q_proc_i0)-> break;
od;

do

:: q_proc_i0_temp?SIG_ABST(sender)-> q_proc_i0!'SIG_ABST (sender);
: g_proc_i0_temp7e(sender)-> q_proc_i0!e(sender)
: g_proc_i0_temp7?d(sender)-> q_proc_i0!d(sender)
11 gq_proc_i0_temp?c(sender)-> q_proc_i0!c(sender)
11 gq_proc_i0_temp?f (sender)->q_proc_i0!f (sender)
:: empty(q_proc_iO_temp)-> break;

od;

goto state2;

od;
fi;

Fig. 5. Abstracted Promela code

Extending the Translation from SDL to Promela 11

3.5 An extension of if2pml to automatically abstract buffers

We have implemented the buffer abstraction for SDL programs via the the trans-
lation into IF. We have extended the translator i£f2pml developed by [BDHS00]
with the abstraction feature. Our implementation uses a file describing the ab-
stract mapping. For the example of Figure 5, this file (fic.grp) contains the
following line: SIG_ABST : a,b; meaning that a and b are abstracted into the
same event SIG_ABST. For the other event, abstraction is the identity mapping.
It may be possible to have more than one abstract signal. Then using the com-
mand line if2pml -a fic.grp prog.if produces the given abstracted Promela
code.

4 Case Study: Verification of the Obstacle Avoidance
System of the UUV

4.1 Obstacle Avoidance System

The information system of UUV is based on a distributed architecture that com-
prises several subsystems. One is the Obstacle Avoidance System (OAS). The
principle of this system we develop is to manage in an integrated way a digital
terrain model estimation method, a 3D stabilized and mechanically steered front
looking sonar, and computational methods devoted to safe trajectories compu-
tation. It is composed of four subsystems (inside the dashed box in Figure 6):

1. The digital terrain manager (DTM), which estimates the partially known
terrain by using an occupancy grid representation and updating process,

2. the global planner (GP) to generate way points guiding the UUV towards a
given target whilst avoiding terrain obstacles,

3. the reflex planner (RP) to check that the trajectories planned by the GP
are safe, even in the presence of a disturbance, in the sense that they do not
lead to collision,

4. the OAS Supervisor that manages the communication with environmental
subsystems.

The communication between the OAS system and the other UUV systems is
based on an Ethernet network and a CAN bus coupled to actuators and sensors.
The internal OAS processes communication mechanism is via VxWorks message
queues.

4.2 SDL model

The Obstacle Avoidance System has the three following operation modes: Rerout-
wng, Terrain following and Security. When necessary, the supervisor is alerted
by Mission Control (event changeMode) that a mode change is required. Peri-
odically the Navigation System sends navigation data, Mission Control sends a
target set to reach and the current target number (nav, consign, wayPoint

12 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

Mission Control Vehicule Guidance

Navigation
System and Control System

System

OAS Supervisor

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

|

I

! Global
! trajectories Path

| Planner
I

| Reflex Path

i Planner

1 and

| Decision Sonar

! Search System

I

|

| Digital

! Terrain
I Model

i manager
I

I

I

I

Digital
OA Sonars Ej Terrain Model (

Fig. 6. Functional description of the Obstacle Avoidance System.

and noWp) to the supervisor process. This one will be in charge to redistribute
it to other processes. The trajectory request comes from Control System with
event simuTimeout. The trajectory is computed by the process concerned with
the current operation mode (Rerouting or Terrain following or Security). The
verification with the model-checker SPIN requires to close the system and we
have defined an environment process model in SDL. This particular process is
in charge of simulating interactions between the OAS SDL model and the Nav-
igation System, Control System, Sonar and Mission Control System. Figure 7
presents the SDL system and events exchanges between these processes.

4.3 Verification of the OAS

Properties of the OAS. Using the tools described in section 2 and 3 we can check
for different safety properties (of VCT'L*) of the OAS system. The properties we
want to check are the following:

— “the system does not get stuck in one of the operation mode”; this means
that the operation mode is alternatively changed during the execution of
the system. The mode could be terrain following (terfollMode), rerouting

Extending the Translation from SDL to Promela 13

(reroutMode), or security (securMode). This property can be expressed in

LTL by:
—O0terfollode A ~OOreroutiode A =OOsecurMode (1)

— “The tragectory s computed by the process concerned by the current operation
mode”. e.g. in rerouting mode, the trajectory has to be computed by process
rerout. The trajectory is computed by a process when it receives event navi.
We then define trajRerout to be equivalent to process rerout receives event
navl: g_rerouting_i07[navi]. The LT L property to be checked is:

O—(terfolMode A trajRerout) (2)

— “In a rerouting or securily operation mode the sonar manager does not send
data to the model process”.

O—((reroutMode V securMode) A sentDataModel) (3)

All these properties involve a number of events in many buffers and the SDL
description of the OAS system makes extensive use of save operators. We have
used our extended version of if2pml to check for properties (1)—(3).

Results. Table 1 presents the different reduction percentages obtained on the
OAS system for different abstraction mappings k1 and hs. hy groups 4 events
into one, hs makes two groups of 4 events for each one. hy = Id is the identity

mapping giving the number of states and transitions of the concrete system.
states of abstract and 1 —
states of concrete

The ratio columns corresponds respectively to 1 —

trans. of abstract
trans. of concrete

|| ||# states|# trans.|% states rati0|% trans. ratio”

ho = Id|| 95 633 | 505 341 - -
hiy 86 225 (403 077 10 % 9 %
ho 67 951 369 035 40 % 36 %

Table 1. Reduction of the number of states and transitions

Properties (1) and (3) are true on our model. Property (2) is violated. In-
deed, the supervisor can receive a trajectory computed by the terfol process
whereas rerouting mode is activated. As the relation between the abstracted and
the initial model is a simulation, the property violation detected in the abstract
system does not allow us to affirm the violation in the concrete model. Neverthe-
less, the MSC7 of the incorrect behavior produced by SPIN has been analyzed

7 Message Sequence Charts

14 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

and input to the SDL system. This incorrect behavior has been reproduced in the
initial SDL system with a simulation. We have then checked that the property
is really violated in the concrete SDL model. This incorrect behavior has been

detected and fixed in our OAS model.

5 Conclusion and future work

In this paper we have extended the tool 1£2pml with the two following features:

— translation of the save operator into Promela;
— implementation of an abstraction mapping on buffers’ messages.

These technics reveal useful when proving SDL programs that use the save
operator. The designer can explicitly group messages into one abstract message.
The reduction obtained in the number of states and transitions of the system
we want to check are rather significant, going up to 40%. We have successfully
applied our extended version of if2pml on the development of an Unmanned
Underwater Vehicle for which safety properties were checked.

As an incorrect behavior was detected on the abstract system with SPIN for
property (2), we had to verify that this incorrect behaviour really exists on the
concrete initial SDL system. Such a verification could be automated using the
SPIN MSC counter example to produce automatically the corresponding SDL
MSC that could be played on the concrete SDL model.

References

[BDHS00] Dragan Bosnacki, Dennis Dams, Lesek Holenderski, and Natalia Sidorova.
Model checking sdl with spin. In Susanne Graf and Michael Schwartzbach,
editors, Tools and Algorithms for the Construction and Analysis of Systems,,
number 1785, pages 363-377, Berlin, 2000. LNCS, Springer.

[BFGT99] M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and
J. Sifakis. If: An Intermediate Representation for SDL and its Applications.
In Proceedings of SDL-FORUM’99, Montreal, Canada, June 1999.

[BGGT99] M. Bozga, L. Ghirvu, S. Graf, L. Mounier, and J. Sifakis. The Intermedi-
ate Representation IF: Syntax and semantics. Technical report, Vérimag,
Grenoble, 1999.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by cons truction or approximation of fixpoints. In
ACM Press, editor, Proceedings of the 4th Annual Symposium on Principles
of Programming Languages,, 1977.

[CGL92] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
In Proceedings of the 19th ACM symposium on principles of programming
languages, ACM press, New-York, 1992.

[CR95] Franck Cassez and Olivier Roux. Compilation of the ELECTRE reac-
tive language into finite transition systems. Theoretical Computer Science,
146(1-2):109-143, July 1995.

[Hol97]

[ITU94a]

[ITU94b]

[SFRC99]

[TEL9S]
[VER99)

Extending the Translation from SDL to Promela 15

G.J. Holzmann. The model checker spin. In IEFE Trans. on Software
Engineering, volume 23, May 1997.

ITU-T International Telecommunication Union. Annex F.3 to Recommen-
dation Z.100, Specification and Description Language (SDL) — SDL Formal
Definition: Dynamic Semantics. 1994.

ITU-T International Telecommunication Union. Recommendation Z.100,
Specification and Description Language (SDL). 1994.

G. Sutre, A. Finkel, O. Roux, and F. Cassez. Effective recognizability and
model checking of reactive fiffo automata. In Proc. 7th Int. Conf. Algebraic
Methodology and Software Technology (AMAST’98), Amazonia, Brazil, Jan.
1999, volume 1548 of Lecture Notes in Computer Science, pages 106-123.
Springer, 1999.

TELELOGIC. TAU/SDT 8.3. TELELOGIC, June 1998.

VERILOG. ObjectGEODE 4.0. CS VERILOG, March 1999.

16 Armelle Prigent, Franck Cassez, Philippe Dhaussy and Olivier Roux

A SDL Model of OAS

A.1 SDL System

System OAS
\F 777777 :\\ sonarReturn
l Y Sonar M anager -
! |
A
navl
wayPointl .
sonarFilterReturn
noWpl
restart sonarConsign
modeChoice
Terfol Rerouting M odel Environment
consignl A A
navl wayPointl errorToEnv
restart v ; i trajectory
wayPointl consignl interpolation
nowpl navl correl urgenceSonar
nowpl navl StatTf
restart n’j\z’vpi'ml Statinter
" ':1 StatDerout
restal
StatCorrel
i ; oasAlive
tfAlive reroutAlive)
trajectoryl trajectoryl modelAlive
statusCorrel
errorToSup errorToSup sonManagerAlive
statusinter
statusTerfol statusRerout erreurToSup imuTimeout
statusSon errorToSup sSmu eou
Y 1 ¥ ChangeMode
nav
. <« wayPoint
Supervisor consign
noWp

Fig. 7. SDL structure of OAS system

Extending the Translation from SDL to Promela 17

A.2 SDL environment process

IO S8 B e O s e 3|
M
s e

|

':_-: _h‘_:l }“'-""_ -::' I‘""’""‘l"_:’ }"'-"P! :—‘- [”H_pl"_::l bi'rf}"
(rmcamen) fogmiey pome < fmsone I"Miﬁ{ poasr < e seond

- < &
|

\
|
i

Fig. 8. SDL environment process (partially)

