Modeling and Verification of Interactive Flexible

Multimedia Presentations Using
PROMELA /SPIN *

Ramazan Savag Aygiin and Aidong Zhang

Department of Computer Science and Engineering,
State University of New York at Buffalo,
Buffalo NY 14260-2000, USA,
{aygun,azhang}@cse.buffalo.edu

Abstract. The modeling and verification of flexible and interactive mul-
timedia presentations are important for consistent presentations over net-
works. There has been querying languages proposed whether the speci-
fication of a multimedia presentation satisfy inter-stream relationships.
Since these tools are based on the interval-based relationships, they can-
not guarantee the verification in real-life presentations. Moreover, the
user interactions which change the course of the presentation like back-
ward and skip are not considered in the presentation. Although there
have been conceptual models proposed using Petri-Nets, it is very diffi-
cult for an ordinary author design Petri-Nets and verify the requirements.
Using PROMELA /SPIN, it is possible to verify the temporal relation-
ships between streams using our model including user interactions that
change the course of the presentation. Since the model considers the delay
of data, the author is assured that the requirements are really satisfied.

1 Introduction

A multimedia presentation is a presentation of multimedia streams in a synchro-
nized fashion. There have been models proposed for the management of multi-
media presentations. The synchronization specification languages like SMIL [11]
have been introduced to properly specify the synchronization requirements. Mul-
timedia query languages are developed to check the relationships defined in the
specification [5]. These tools check the correctness of the specification. However,
the synchronization tools may have some limitations and may not satisfy all the
requirements. Moreover, the specification does not include user interactions. The
previous query-based verification techniques cannot verify whether the system
is really in a consistent state after an user interaction.

There are also verification tools to check the integrity of multimedia presen-
tations [7]. The user interactions are limited and interactions like backward and
skip are ignored. This kind of interactions are hard to model. The Petri-Nets are

* This research is supported by NSF grant I1IS-9733730.

also used to verify the specification of multimedia presentations [9]. But Petri-
Net modeling requires immense Petri-Net modeling for each interaction possible.
Authors usually do not have much information about Petri-Nets.

PROMELA/SPIN is a powerful tool for modeling and verification of soft-
ware systems [6]. Since PROMELA /SPIN traces all possible executions among
parallel running processes, it provides a way of managing delay in the presenta-
tion of streams. In this paper, we discuss the properties that should be satisfied
for a multimedia presentation. We analyze the complexity introduced by user
interactions. The interactions which change the course of the presentation like
backward and skip are also investigated. The experiments are conducted for
parallel, sequential, and synchronized presentations.

This paper is organized as follows. The synchronization model is explained in
Section 2. The conversion to PROMELA and abstractions are discussed in Sec-
tion 3. Section 4 explains the properties that should be satisfied for a multimedia
presentation. Section 5 discusses the experiments. The last section concludes our

paper.

2 Multimedia Presentations

The synchronization model is based on synchronization rules [2]. Synchroniza-
tion rules form the basis of the management of relationships among the multime-
dia streams. Each synchronization rule is based on the Event-Condition-Action
(ECA) rule.

Definition A synchronization rule is composed of an event expression, con-
dition expression, and action expression which can be formulated as:

on event expression if condition expression do action expression.

Event expression and condition expression are obtained by composing events
and conditions using boolean operators (&& and ||), respectively. Action expres-
sion is a list of actions. A synchronization rule can be read as: When the event
expression is satisfied if the condition expression is valid, then the actions in the
action expression are executed.

Definition. An event is represented with source(event_typel, event_datal)
where source points the source of the event, event_type represents the type of
the event and event_data contains information about the event. Event source
can be the user or a stream. Optional event data contains information like a
realization point. The goal in inter-stream synchronization is to determine when
to start and to end streams. The start and end of streams depend on multimedia
events. The user has to specify information related with the stream events. Allen
[1] specifies 13 temporal relationships. Relationships meets, starts, and equals re-
quire the Init_Point event for a stream. Relationships finishes and equals require
the End_Point event for a stream. Relationships overlaps and during require
realization event to start (end) another stream in the mid of a stream. The re-
lationships before and after require temporal events since the gap between two
streams can only be determined by time. Temporal events may be absolute with
respect to a specific point in a presentation (e.g. the beginning of a presentation).

Temporal events may also be relative with respect to another event. Users can
also cause events such as start, pause, resume, forward, backward, and skip.

Definition. A condition in a synchronization rule is a 3 tuple C' = condition
(t1,0,t2) where 6 is a relation from the set {=,#,<,<,>,>} and t; is either
a state variable that determines the state of a stream, or presentation, or a
constant. A condition indicates the status of the presentation and its media ob-
jects. The most important condition is whether the direction of the presentation
is forward. The receipt of the events matter when the direction is forward or
backward. Other types of conditions include the states of media objects.

Definition. An action is represented with action_type(stream], action_datal,
sleeping_time) where action_type needs to be executed for stream using action_data
as parameters after waiting for sleeping time. Action_data can be the parameter
for speeding, skipping, etc. An action indicates what to execute when conditions
are satisfied. Starting and ending a stream, and displaying or hiding images,
slides, and text are sample actions. For backward presentation, backwarding is
used to backward and backend is used to end in the backward direction. There
are two kinds of actions: Immediate Action and Deferred Action. Immediate ac-
tion is an action that should be applied as soon as the conditions are satisfied.
Deferred action is associated with some specific time. The deferred action can
only start after this sleeping_time has been elapsed. If an action has started and
had not finished yet, that action is considered as an alive action.

2.1 Elements of a Multimedia Presentation

The basic component of a multimedia presentation is a stream. In our model, a
multimedia presentation may have a container consisting of containers or other
streams. This allows grouping of streams and creation of subpresentations. The
containers have init and end points. This means that the container initiates its
presentation and the container ends either when one or more of its components
end or is terminated by other containers or streams.

[viaen ' '-

Fig. 1. Sample Presentation.

A sample presentation is depicted in Figure 1. There are 6 stream elements:
Al, A2, V1, V2, V3, and T1. Al and A2 are audio elements. V1, V2, and
V3 are video elements and T1 is a text element. There are 4 containers in the
presentation: sequential presentation of V1 and V2 (SEQ1), parallel presentation

of A1, T1, and SEQ1 (PAR1), parallel presentation of A2 and V3 (PAR2) and
sequential presentation of PAR1 and PAR2 (MAIN).

2.2 Receivers, Controllers and Actors

[CONTROLLER |
((event expression] | conpiTion Exression |
AND
drecion=ForwARD |]
R and
aremisinPLAY ste .
7 [Noficaion|
Recaive) activation (o]
Quesiioning=
(b) (c)

Fig. 2. (a) A receiver object (b) A controller object (¢) An actor object.

The synchronization model is composed of three layers, the receiver layer,
the controller layer, and the actor layer. Receivers are objects to receive events.
Controllers check composite events and conditions about the presentation such
as the direction. Actors execute the actions once their conditions are satisfied.

Definition 1. A receiver is a pair R = (e, C) where e is the event that will
be received and C' is a set of controller objects.

Receiver R can question the event source through its event e. When e is
signaled, receiver R will receive e. When receiver R receives event e, it sends
information of the receipt of e to all its controllers in C. A receiver object is
depicted in Figure 2(a). There is a receiver for each single event. The receivers
can be set and reset by the system anytime.

Definition 2. A controller is a 4-tuple C' = (R, ee, ce, A) where R is a set of
receivers; ee is an event expression; ce is a condition expression; and A is a set
of actors.

Controller C' has two components to verify, composite events ee and condi-
tions ce about the presentation. When the controller C is notified, it first checks
whether the event composition condition ee is satisfied by questioning the re-
ceiver of the event. Once the event composition condition ee is satisfied, it verifies
the conditions ce about the states of media objects or the presentation. After
the conditions ce are satisfied, the controller notifies its actors in A. A controller
object is depicted in Figure 2(c). Controllers can be set or reset by the system
anytime.

Definition 3. An actor is a pair A = (a,t) where a is an action that will be
executed after time ¢ passes.

Once actor A is informed, it checks whether it has some sleeping time ¢ to
wait for. If ¢ is greater than 0, actor A sleeps for ¢ and then starts action a. If ¢
is 0, action a is an immediate action. If ¢ > 0, action a is a deferred action. An
actor object is depicted in Figure 2(b).

13 receivers, 12 controllers, and 15 actors will be generated for the presenta-
tion given in Figure 1. These are listed in Figure 3.

2.3 Timeline

If multimedia presentations are declared in terms of constraints, synchronization
expressions or rules, the relationships among streams will not be explicit because
they only keep the relationships that are temporally adjacent or overlapping.
The status of the presentation must be known at any instant. In our work, the
timeline object keeps track of all temporal relationships among streams in the
presentation.

Definition 4. A timeline object is a 4-tuple T' = (receiverT, controllerT,
actorT, actionT'), where receiverT', controllerT, actorT, and actionT are time-
trackers for receivers, controllers, actors, and actions, respectively.

The time-trackers receiverT, controllerT, actorT, and actionT keep the
expected times of the receipt of events by receivers, the expected times of the
satisfaction of the controllers, the expected times of the activation of the actors
and the expected times of the start of the actions, respectively. Since skip and
backward operations are allowed, alive actions, received or not-received events,
sleeping actors and satisfied controllers must be known for any point in the
presentation. The generation of the timeline is explained in [10].

The timeline for receivers, controllers, and actors for the presentation shown
in Figure 1 is depicted in Figure 3. On top of the figure the receivers, the con-
trollers, and the actors for the presentation are listed. The four time-trackers are
shown at the bottom side. The receivers and controllers are ordered according to
their expected satisfaction time. Only actors which have a sleeping time greater
than 0 are displayed. The name of the actor shows its activation (sleeping time)
and the underlined actor shows the ending of sleeping time. The actions are also
displayed in the same way. The name of the container or the stream shows its
starting time and if it is underlined it shows the ending time. At a time instant,
if a stream or a container has the same starting time as its container, the main
container is shown in the timeline.

3 Modeling of a Multimedia Presentation

3.1 Presentation

The presentation can be in idle, initial, play, forward, backward, paused, and
end states (Figure 4). The presentation is initially in the idle state. When the
user clicks START button, the presentation enters play state. The presentation
enters end state when the presentation ends in the forward presentation. The
presentation enters the initial state when it reaches its beginning in the backward
presentation. The user may quit the presentation at any state. Skip can be
performed in play, forward, backward, initial, and end states. If the skip is clicked
in play, forward, and backward states, it will return to the same state unless
skip to initial or end state is not performed. If the presentation state is in end
or initial states, skip interaction will put into the previous state before reaching
these states (Figure 4 (b)). The presentation changes states as the user clicks
on the button. The most important state variable of the presentation is the
direction.

Hremwrs

B s W TANT B3 MATETT PCINT) ER FAEIIHIT FIHT W EREVIT P T WE: FEINIT FOAHT,
Bl FAREE FOLHT B SR ED PO T BB Al HO_POEHT KN FARIT s T
(4] Bk LR

|
o el b e o= S OF AR
£ K1 EE F [T 0 B il B Tl Bl Bl F B K Bl F
O Pl el R B O Bl F R B F CHafia&F
CHLEL ik B e F CIZEI] el T
AmErx
1 el A AL " A Al marnd i) Al et B A2 may P01 ¢
A TR T R e o AR gl AT A A FANT AN gt FART
A Al ALY B LTS AEN gk SRR

wnilenT MADH VI TI vy Al u T , A WA

r Al
it i T a i
omArallar T " 5
C |
rerwiverT F E B E !
F !
— (- | - L Il 1 L 1 i i =
1 : 1 4 3 g J | 11 |
FHTERITRS 98 T

Fig. 3. The timeline.

3.2 Containers and Streams

A container may enter 4 states. It is in IdlePoint state initially. Once started,
a container is at InitPoint state in which it starts the containers and streams
that it contains. After the InitPoint state, a container enters its RunPoint state.
In RunPoint state, a container knows that it has some streams that are being
played. When all the streams it contains reach their end or when the container
is notified to end, it stops execution of the streams and signals its end and then
enter idle state again. In the backward presentation, the reverse path is followed
(Figure 5 (a)).

A stream is similar to the container. Since the number of states grow expo-
nentially, some abstractions has to be made on modeling a stream. Since we are
interested in interstream relationships, the points which affect the interstream
relationships will be considered. From the modeling point of view, if the display-
ing or playing specific segment of a stream does not affect the playout of the
presentation, there is no need to handle each segment of the stream.

If a stream does not signal any event except its start and end, the stream
enters the same 4 states as a container. If a stream has to signal an event, a
new state is added to RunPoint state per event. So after the stream signals
its event, it will be still in the RunPoint state (playing mode) (Figure 5 (b)).
Since the realization for the backward presentations will also be considered, there
will be another event (also state) for the backward presentation. In this sense,
each realization event will add two states. One will be used for the forward

Fig. 4. The presentation states, (a) general state transitions (b) state transition for
skip

Fig. 5. (a) container states (b) stream states

presentation and the other will be used for the backward presentation. The
following is a PROMELA code for playing a stream.

1 proctype playStream (byte stream) {

2 #if (FC==3 || FC==4 || FC==5 || FC==6)

3 progressldleStreams:

4 #endif

5 do

6 #if FC!'=4

7 : atomic{ (eventHandled && getState() == RUN) &%
8 (getStream(stream) == INIT_POINT) ->

9 printf ("Starting stream %d",stream);

10 setStream(stream, RUN_POINT);

11 if

12 (stream==A1)->timeIndex=1;

13 : else —> skip;

14 fi; }

15 :: atomic{ (eventHandled && getState() == RUN) &&
16 (getStream(stream) == RUN_POINT) ->

17 printf ("Playing stream %d",stream);

18 setStream(stream, END_POINT);}

19 :: atomic{ (eventHandled && getState() == RUN) &&

20 (getStream(stream) == END_POINT) ->

21 to_end: printf("Ending stream %d",stream);

22 setStream (IDLE_POINT) ;

23 signalEvent (stream,END_POINT) }

24 #endif

26 #if (FC!=3 && FC!=5 && FC!=6)

26 :: atomic{ (eventHandled && getState() == BACKWARD) &&
27 (getStream(stream) == INIT_POINT) ->

28 to_init: printf("Ending backwarding stream %d",stream) ;
29 setStream(IDLE POINT) ;

30 signalEvent (stream, INIT_POINT);}

31 :: atomic{ (eventHandled && getState() == BACKWARD) &&
32 (getStream(stream) == RUN_POINT) ->

33 printf ("Playing stream %d backward",stream) ;

34 setStream(stream, INIT_POINT);}

35 :: atomic{(eventHandled && getState() == BACKWARD) &&
36 (getStream(stream) == END_POINT) ->

37 to_backward: printf("Backwarding stream }d",stream);
38 if

39 :: (stream==A1)->timeIndex=1;

40 11 else —> skip;

41 fi;

42 signalEvent (stream,END_POINT) ;

43 setStream(stream,RUN_POINT); }

44 #endif

45 :: atomic{ (eventHandled && getState() == QUIT) ->

46 to_playStream quit: goto playStream quit;}

a7 :: else —> skip;

48 od;

49 playStream_quit: skip;

50 }

The #if directives are used for hard-coded fairness constraints. There are 3
states for forward and backward presentations. The cases at lines 7, 14 and 15
correspond to forward presentation. The cases at lines 26, 31 and 35 correspond
to the backward presentation. The case at line 45 is required to quit the process.
The else statement at line 49 corresponds to IdlePoint state. Streams signal
events as they reach the beginning and end (lines 23 and 30). The variable
eventHandled is used to check whether the system enters a consistent state after
an user interaction. The atomic command enables execution of statements in a
single step thus reduces the complexity and increases safety. The checking and
updating the stream state has to be performed in a single step since the stream
state may also be updated by the system after an user interaction. Labels like
to_init, to_end, and playStream_quit are added to create LTL formulas related
with these points of the presentation.

3.3 Receivers, Controllers and Actors

A receiver is set when it receives its event. As long as there is no user inter-
action, a receiver will stay at this state for the rest of the presentation. Thus
a controller which requires a receipt of this event can be satisfied later. When
a controller is satisfied, it activates its actors. And to disable the reactivation
of the actors, the controller is reset. An actor is either in idle or running state
to start its action after sleeping. Once it wakes up, it starts its action and en-
ters the idle state. The following is a code for receiver definition (lines 51-52),
controller satisfaction (lines 54-59) and actor activation (lines 61-64). The ex-
pression “receivedReceiver(receiver Main_INIT)” (line 52) corresponds to the
receipt of the event when the main container starts. The expression “setAc-
torState(...,RUN_POINT)” activates the actors (line 58-59). The expression “ac-
tivateActor(actor_-Main_.START)” (line 63) elapses the time and the action fol-
lows (line 64).

51 #define Controller_Main START Condition

52 (receivedReceiver (receiver_Main_INIT) && (direction==FORWARD))
53

54 :: atomic{(eventHandled

55 &% ! (satisfiedController (controller_Main_START))

56 && Controller_Main_START Condition) ->

57 setController (controller_Main_START);

58 setActorState (actor_A1_START,RUN_POINT) ;

59 setActorState (actor_A2_START,RUN_POINT) }

60

61 :: atomic{(eventHandled

62 && getActorState(actor_Main START) == RUN_POINT) ->
63 activateActor(actor_Main_START) ;

64 setContainerState (Main,INIT_POINT);}

3.4 User and User Interface

The user interface provides 7 buttons: START, PLAY, PAUSE, FORWARD,
BACKWARD, SKIP, and QUIT. Each button may enter two states in the model.
A button is either in enabled or disabled state. As the presentation changes
states, the states of the buttons may change. Figure 4 shows the possible state
transitions with enabled user interactions. The user interface is based on the
model presented at [3].

For example, if a skip is requested to the mid (6 seconds) of the presentation
that is shown in Figure 1, the timeline will be followed in Figure 3. Receivers
R2, R3, R4, R5, R6, R7, R8, R9, and R10 are assumed to receive their events.
Receivers R11, R12, and R13 are assumed that they did not receive their events.
Controllers C2, C3, C4, C5, C6, C7, C8, C9, and C10 are assumed to be satisfied.
C11 and C12 are assumed not to be satisfied. A satisfied controller cannot notify
its controllers. It is assumed that it already notified its actors. At the middle
point, there is no sleeping actor. The actors A11 and A12 are activated. So, all

10

the actors should be set to their original time. MAIN container should be set
to running point. V1, T1, V2, and A1 should be idle. PAR1 should be idle too.
PAR2 should be set to its INIT_POINT so that it can start the streams that it
contains. V3 and A2 should also be set to IDLE_POINT.

There are infinite number of skips that can be performed by the user. The
timeline shown in Figure 3 is divided into pieces where the streams perform
similar behavior in each piece. There are 21 pieces which are determined by
starting, ending actors, and actions. So, it is only possible to perform 21 skips.

On the other hand, the backward modifies the direction of the presentation.
The synchronization model needs to synchronize after changing direction since
streams may proceed at different speeds. To synchronize, the time at that in-
stant should be known. We define a time index which is initially 0 and can be
the number of pieces at most. Some specific streams are allowed to increase or
decrease after the time index and the current time index can be determined
(lines 12 and 19). The necessary actors, actions, receivers, and controllers are
set and reset after changing the direction.

4 Specification

Two basic properties that should be checked are safety properties and liveness
properties. Safety properties assert that the system may not enter undesired
state or “something bad will not happen”. Liveness properties on the other hand
assure that system executes as expected me or “something good will eventually
happen”. In LTL, it is possible to set fairness constraints. Fairness constraint
is satisfied infinitely often in fair paths of executions. Fairness constraints are
necessary to prove some properties of the system. For example, to prove that
“stream A is played before stream B”, no skip operation should be allowed.
Skip operation may skip to any segment of the presentation and thus violating
the above expression. To prove the properties of the system, we have 2 fairness
constraints:

Fairness Constraint 1 The user is only allowed to click START button and
clicks START button and no user Interaction is allowed after that. This con-
straint is expressed as: O (userStart — Onolnteraction)

Fairness Constraint 2 The user always clicks enabled button. This is expressed
as O (userClick Button — button Enabled)

If a property is stated as undesirable, the system should not allow it. We first
start with the properties about transitions that are allowed by buttons.

Property 1. Clicking button for START enables buttons for PAUSE, FORWARD,
and BACKWARD, and it changes the simulations state to RUN. (requires fair-
ness constraint 2)

Property 2. Clicking button for PAUSE enables buttons for PLAY, FORWARD,
and BACKWARD and it changes the presentation’s state to PAUSED. (requires
fairness constraint 2)

11

Property 3. The buttons for BACKWARD and SKIP are enabled and the but-
tons for START, PLAY, PAUSE, and FORWARD are disabled after the presen-
tation reaches its end. (requires fairness constraint 2)

Property 4. The user interface should ignore if the user clicks a disabled button.
(requires fairness constraint 2)

Property 5. The button for PAUSE is enabled only when the presentation is in
RUN, FORWARD, or BACKWARD states. (requires fairness constraint 2)

Property 6. The button for SKIP is enabled when the presentation is in RUN,
FORWARD, BACKWARD, INITIAL or END states. (requires fairness con-
straint 2)

Property 7. The buttons for PLAY, FORWARD, and BACKWARD are enabled
when the presentation is in PAUSED state. (requires fairness constraint 2)

Property 8. The button for START is enabled only when the presentation is in
IDLE state. (requires fairness constraint 2)

Property 9. The button for PAUSE is enabled outside RUN, FORWARD, and
BACKWARD. (undesirable, requires fairness constraint 2)

Property 10. Buttons for START, PAUSE, PLAY, FORWARD, and BACK-
WARD are in enabled condition at any particular time. (undesirable, requires
fairness constraint 2)

Some refinements are needed to convert the properties to LTL formulas. In
the following formulas, actionButtonClicked corresponds to successful clicking
Button when the button is enabled. actionToState corresponds to state transi-
tion to State after the action. ButtonEnabled corresponds to Button is enabled.
UserButton corresponds to clicking of Button by the user. Some of the specifica-
tion patterns are presented in [4, 8]. These specification patterns can be used in
the verification. For each property, the following LTL formulas are generated.

LTL 1 O (actionStartClicked — < actionToRun)
LTL 2 O (actionPauseClicked — < actionToPaused).

LTL 3 O (backwardEnabled N skipEnabled A !startEnabled A 'playEnabled
A 'pauseEnabled A ! forwardEnabled — state End)

LTL 4

O ((userStart A lstartEnabled) —levent Handled U userInter facelgnore)
user Pause A !pauseEnabled) —'event Handled U userInter facel gnore)
userPlay A !playEnabled) —!eventHandled U userInter facel gnore)

S T e be

O ((
0 ((
.o
0 ((
0 ((

user Forward A | forwardEnabled) —leventHandled U userInter facel gnore)
user Backward A 'backwardEnabled) —'event Handled U userInter facel gnore)
userSkip A lskipEnabled) —!leventHandled U userInter facelgnore)

12

7. O ((userQuit A lquit Enabled) —!eventHandled U userInter facelgnore)
LTL 5 O ((stateInitial V stateEnd V statePaused V stateldle) —!pause Enabled)

LTL 6 O ((stateRun V stateForward V stateBackward V stateEnd) —
skipEnabled)

LTL 7 O (statePaused — (playEnabledA forwardEnabled\backwardEnabled)

LTL 8 O ((stateRun V stateEnd V statePaused V stateForward V
stateBackward V stateInitial) —!startEnabled)

LTL 9 O ((statelnitial V stateEnd) —!pause Enabled)

LTL 10 O (startEnabled A pauseEnabled A playEnabled A forwardEnabled N
backwardEnabled)

A liveness property that should be checked whether the presentation reaches
to its end once it starts.

Property 11. The presentation will eventually end. (requires fairness constraints
1 and 2)

LTL 11 O (stateRun —! < stateEnd)

There are also some properties that should be satisfied for streams. If a
stream is in RunPoint state, the stream cannot be started by other streams.
This is assumed to be a wrong attempt. So, a warning should be signaled to the
author. In the same way, a stream cannot be terminated if it is already idle. The
properties are as follows:

Property 12. A stream can be started if it is already active. (undesirable, requires
fairness constraints 1 and 2)

Property 13. A stream can be terminated if it is already idle. (undesirable, re-
quires fairness constraints 1 and 2)

The LTL formulas will be:
LTL 12 ¢ (streamRunPoint U streamInitPoint)

LTL 13 < (streamlIdlePoint U streamEndPoint)

In [7], some properties between two consecutive user interactions based on
time are verified. In a distributed system, these constraints cannot be satisfied
due to delay of data. For example, pause operation for a stream may be per-
formed within t seconds after the start of the presentation where 0 < ¢t < d and
d is the duration of the stream. In our model, the user cannot change the state
of a stream directly but he/she can change the state of the presentation thus
changing the state of a stream indirectly. Since there are relationships among

13

streams and containers, these can start and end each other. In our case, time
is associated with actors. Since there is no delay in passing of time, the actor
elapses its time right away once it is activated.

Further checks can be performed based on the relationships among streams.
Based on Allen’s temporal relationships, the following properties may be checked:

Property 14. Stream A is before stream B. (requires fairness constraints 1 and
2)

Property 15. Stream A starts with stream B. (requires fairness constraints 1 and
2)

Property 16. Stream A ends with stream B. (requires fairness constraints 1 and
2)

Property 17. Stream A is equal to stream B. (requires fairness constraints 1 and
2)

Property 18. Stream B is not during stream A. (undesirable, requires fairness
constraints 1 and 2)

Property 19. Stream B does not overlap stream A. (undesirable, requires fairness
constraints 1 and 2)

Let P = streamA_InitState, () = streamA_EndState, R = streamA_IdleState,
K = streamB_InitState, L = streamB_EndState, M = streamB_IdleState.
The LTL formulas will be as follows:
LTL 14 (QU (R AN M) UK)
LTL 15 ¢(P A K)
LTL 16 &(Q A L)
LTL 17 O(P AN K A 0 (Q N L))
LTL 18 I(O(P A OK) V & (Q A ©L))
LTL 19 [(O(Q A OK) vV O (L A ©Q))

One of the basic queries is whether all streams are played or not. If one of
the streams is not played, this may be considered as an undesired behavior and
the author may correct it.

Property 20. Stream A is played. (requires fairness constraints 1 and 2)

LTL 20 ¢(P A © Q)

14

For a multimedia presentation, the states of streams that are possible to visit
in the backward presentation should also be reachable in the forward presenta-
tion. We call this property as backward consistency of a presentation and term
such a presentation as backward consistent presentation. If we show the existence
of a state which is not reachable in forward presentation while it is reachable in
backward presentation, it is not backward consistent.

There are a couple of ways writing the LTL formula to check the backward
consistency of a presentation. In one way, the state which is reachable in the
forward presentation is given (if exists) as a contradictory example. This com-
plicates the verification since we also need to distinguish the states that are
reachable in the forward presentation. Another problem is that the presentation
may enter in a inconsistent state after backward operation and from that incon-
sistent state, the desired state may be reachable in the forward presentation. So,
the property is stated as two fold.

Property 21.

1. The state is reachable in forward presentation (undesirable, requires fairness
constraints 1 and 2)

2. It is possible to reach the state in the backward presentation. (requires fair-
ness constraint 2)

Notice that first part requires the existence check. The corresponding LTL
formulas will be as follows:

LTL 21

1. Ostate
2. Olstate

If the first part is wrong, then the second part is verified. The number of
states that need to be checked is |[m"™| where m is the number of states that a
stream may enter and n is the number of streams. Eventually, we need to convert
the previous property into the following one:

Property 22.

1. The state is reachable in forward presentation (undesirable, requires fairness
constraints 1 and 2)

2. It is possible to reach the state after user interactions. (requires fairness
constraint 2)

The previous LTL formula, in fact, corresponds to this property.

5 Experiments and Analysis

We firstly developed a complex model to handle the user interactions. Since this
user interface increases the number of initial states significantly, we removed

15

the user interface during verification. Only buttons change their states as part
of the user interface. The forward (fast) interaction is not allowed to reduce
the complexity of the model since we are not interested in the speed of the
presentation. We are rather interested in the direction change. The backward
and play interactions are enough to verify the model.

Different kinds of presentations have been used to check the correctness of the
presentation model. We considered the number of streams and their organization.
The streams are presented in a sequential order or in parallel. If the streams are
presented in parallel, they may also be presented in a synchronized fashion.

The fairness constraints are hard-coded in the presentation. For each interac-
tion, there is a fairness constraint and these are hard-coded in the model (lines
2,6,25). FC==3, FC==4, FC==5, FC==6 and FC==7 correspond to interac-
tions where only start, only backward, pause-resume, skip, and backward-play
are allowed, respectively.

We first investigated the complexity of the number of streams and the orga-
nization when no interaction (except to start the presentation) is allowed. The
results are given in Table 1.

Presentation |[No of Streams|Depth|States| Transitions| Memory| Time
single 1 67 | 177 306 1.5 {0:00.03
sequential 2 99 | 432 865 1.5 {0:00.04
sequential 3 143 | 1021 2321 1.6 {0:00.08
sequential 4 209 | 2347 5868 2.0]0:00.25
parallel 2 101 | 488 1021 1.5 {0:00.05
parallel 3 139 | 1699 4642 1.8 {0:00.13
parallel 4 173 | 6678 26132 2.8]0:00.76
synchronized 2 73 185 334 1.5 |0:00.03
synchronized 3 78 201 398 1.5]0:00.05
synchronized 4 83 | 233 542 1.5 {0:00.04

Table 1. Experiments without interaction.

When a new stream is added into the sequential presentation, there will be
phases where the new stream starts, plays, and ends. The ending of stream does
not add any complexity since they will all be idle at the end of the presentation.
Since each stream adds 3 more phases, the number of states is nearly tripled
after each addition of a stream in a sequential presentation. The complexity of
number of states is O(m™) where n is the number streams in the sequential
presentation and m is one less than the number of states that a stream may
enter (to exclude idle state). In our experiments, m is 3. The running time and
the depth also increases in the same way.

For a parallel presentation, there are more combinations of playing streams.
In the parallel presentations, the streams may be interleaved. The number of
possible interleavings for n streams which have m states is

16

((:Z!L)) 3 (1)

This explains the steep increase in running time, memory, states, transitions,
and depth. Nevertheless, the running time is still within a second for 4 streams.
The verification can be performed for a presentation having a fair number of
parallel presentations. On the other hand, a synchronized parallel presentation’s
complexity is O(n) for depth, transitions and running time but O(2") for the
states.

To evaluate the effect of user interactions, we tested user interactions sep-
arately. The experiments with pause-resume interactions are given in Table 2.
The pause resume interactions increase the complexity in linear time. Therefore,
the presentations having pause and resume interactions do not add more com-
plexity and this is an expected result. But these interactions increased the initial
number of states, depth and complexity.

I(n,m) =

Presentation |No of Streams|Depth|States|Transitions| Memory| Time
sequential 1 94 279 487 1.5]0:00.04
sequential 2 168 | 718 1435 1.6 |0:00.06
sequential 3 304 | 1814 2246 4060 (0:00.12
sequential 4 559 | 4564 11341 2.5 10:00.36

parallel 2 178 | 829 1810 1.6 |0:00.07
parallel 3 258 | 3519 11174 2.1]0:00.32
parallel 4 423 |22913| 101443 6.1 |0:02.76
synchronized 2 106 | 287 517 1.5 |0:00.03

synchronized 3 111 | 303 591 1.5 {0:00.04

synchronized 4 122 | 335 749 1.5 |0:00.06

Table 2. Experiments with Pause-Resume

The experiments with skip interaction are given in Table 3. The time com-
plexity of synchronized presentations is O(2"). On the other hand, the com-
plexity of states for parallel presentations increased from O(4™) to (10™). The
complexity of states for sequential presentations increased from O(3™) to O(4").

The experiments with backward interaction are given in Table 4. The play
interaction is allowed along with the backward interaction. The time complexity
of synchronized presentations is O(2"). On the other hand, the complexity of
states for parallel presentations increased from O(4™) to (10™). The complexity of
states for sequential presentations increased from O(3") to O(4"). These results
show that the complexity of backward is similar to the skip. Since the direction
of the presentation may change in the backward presentation, the number of
initial states doubled and this caused severe exponential increase in the running
time.

To realize the effects of interactions, experiments where all interactions are
allowed are conducted. The complexity for sequential, parallel, and synchronized

17

Presentation [No of Streams|Depth| States | Transitions| Memory| Time
sequential 1 156 | 4476 7219 2.0]0:00.17
sequential 2 380 | 20622 | 34946 4.8]0:00.81
sequential 3 1085 (102309 179545 21.7 |0:04.80
sequential 4 2436 |438514| 784559 100 {0:24.01

parallel 2 347 | 26914 | 44746 5.6 (0:00.98
parallel 3 677 |233890| 402438 43.8 (0:09.96
parallel 4 1356 |2.34 K| 4.15 K 473 (2:00.59
synchronized 2 166 | 5020 8179 2.2 |0:00.20
synchronized 3 176 | 6108 10171 2.5 (0:00.27
synchronized 4 186 | 8284 14299 3.0 (0:00.38

Table 3. Experiments with Skip

Presentation |No of Streams|Depth|States |Transitions|Memory| Time

sequential 1 216 | 8358 14898 2.6 |0:00.31
sequential 2 561 | 34201 62691 7.1]0:01.45
sequential 3 1437 |140408| 260996 29 |0:07.11
sequential 4 3157 |596432| 1.12 K 136 |0:34.40
parallel 2 359 | 55780 | 101419 10]0:02.24
parallel 3 948 |528264| 978800 97]0:24.63
parallel 4 2031
synchronized 2 228 | 9548 17254 2.9 0:00.39
synchronized 3 239 | 11912 22098 3.5]0:00.55
synchronized 4 250 | 16640 32154 4.7 10:00.81

Table 4. Experiments with Backward

presentations are similar to the backward and the skip (Table 5). The effects of
interactions on types of presentations are depicted in Figure 6.

6 Evaluation

6.1 Contribution of PROMELA /SPIN

The previous work on checking the integrity of multimedia presentations deal
with presentations that are presented in nominal conditions (i.e., no delay). SPIN
verifier takes into account each possible state that the processes and elements
of a presentation may enter. Since the processes may iterate at different states
as long as they are enabled, this introduces processes proceeding at different
speeds. From the perspective of a multimedia presentation, this may correspond
to delay of data in the network. The SPIN verifier checks the properties of
a presentation also at the worst case. The unexpected false presentations are
reported by contradictory examples.

SPIN enables verification of LTL formulas. LTL formulas requires tracing all
the execution paths. For example, it may be possible that two streams may start

18

Presentation [No of Streams|Depth| States | Transitions| Memory| Time
sequential 1 745 | 24586 46364 4.8 (0:00.92
sequential 2 1954 [103197| 200756 18.5 |0:04.71
sequential 3 5717 |424039| 846276 85 (0:23.13
sequential 4 18676 (2.21 K| 4.50 K 500 |2:27.68

parallel 2 1509 [184092| 351747 31 |0:07.87
parallel 3 3571 |1.75 K| 3.42 K 318 |1:30.09
synchronized 2 823 | 30299 57461 6.1 |0:01.30

synchronized 3 869 | 38179 | 74420 8.3]0:01.86

synchronized 4 871 | 53939 | 109319 12]0:02.75

Table 5. Experiments with all interactions allowed

at the same time. What we are really interested is whether these two streams will
eventually start at the same time in all occasions. The never-claims expressions
provide the contradictory examples.

The detection of non-progress cycles when all the user interactions are allowed
yields a general status of the presentation model. In reality, it is not possible to
perform all the interactions at all possible occasions. During the initial model-
ing phases of our model, SPIN verifier detected a case which naturally is less
likely to occur. In this case, the user starts the presentation and then clicks the
BACKWARD button just before the presentation proceeds. This leads to an
unexpected state where the presentation enters an infinite loop.

After the user starts a presentation and just before the presentation proceeds
if the user attempts to backward the presentation, the presentation then enters
an unexpected state and stays in this state forever.

6.2 Limitations

Multimedia presentations which provide interactions that change the course
of the presentation like skip and backward restricts using PROMELA struc-
tures like message channels. The communication among processes like actors
and streams are first modeled using channels. If processes are blocked and an
interaction (interrupt) requires these process to abort, significant coding is re-
quired to cope with the blocked processes.

The PROMELA language does not provide time in the modeling. Thus it
is not possible to incorporate time directly in the model. RT-SPIN enables the
declaration of time constraints and checks acceptance cycles, non-progress cycles
and some liveness properties. The first problem is some guards may be skipped
due to lazy behavior of RT-SPIN. In our case, most of the time constraints are
equality constraints. Also the interactions like pause, resume, skip, and backward
requires the guard condition to be updated after these interactions even when
waiting for the guard condition to be satisfied.

19

Faralial Presenimien Sampan sl Presenratan
1am 9 T = 9
12804 P— | A l'l_.l'
E v § e !
T L]
i o |
e 7 - S |
| S F | E A |
F oamd Il = 3w _.!"I |
a _._-_._J-" e — a _-—-1-—""_'-._._ o F—
-|- =l e -||- rrmaer
(a) (b)
Symzhronif &d Pres sntsbon
i)
=0 2
f-r"' —i— o Eleschom
A

a- Fumsfarns

Gkip
i el A

B i
b

Fave w0 s
=
]

g

= B s

Fig. 6. Performance of user interactions on (a) parallel (b) sequential (c)synchronized
presentations.

6.3 Experiences

We had problems in the evaluation and generation of never claims. If the ver-
ification reports unreached states before initial execution, a skip statement is
included to the beginning of the never claim expression.

When there are still processes enabled, the spin verifier may yield acceptance
cycles. If those processes were allowed to proceed, those cycles would be removed.
Progress labels are inserted to break these cycles. The never claims are added
with np_ to check non progress cycles. We included the weak fairness constraint
wherever necessary. We also had a case where never claim is in a cycle after all
processes end.

By using LTL to never claim converter, it is not possible to check the ordering
of states. Because the same never-claim expression is generated for all !(y U z),
(zUyUz),and (w Uz UyUz).

7 Conclusion

The synchronization model will be incorporated into the NetMedia [12] sys-
tem, a middleware design strategy for streaming multimedia presentations in
distributed environments. NetMedia supports user interactions that change the

20

course of the presentation like backward and skip. It is necessary whether the
system will present a consistent presentation after the user interactions. In this
paper, we showed a way of verifying multimedia presentations that also include
backward and skip. Firstly, the synchronization model is developed to respond
these functionalities . Then the user interactions are allowed and the specifica-
tion is verified. SPIN’s tracing of all possible states provides a way of modeling
of delay for multimedia presentations.

References

1.

2.

10.

11.
12.

J. Allen. Maintaining Knowledge about Temporal Intervals. Communications of
ACM, 26(11):823-843, November 1983.

R. S. Aygun and A. Zhang. Middle-tier for multimedia synchronization. In 2001
ACM Multimedia Conference, pages 471,474, Ottawa, Canada, October 2001.
CMIS. http://www.cis.ksu.edu/ robby/classes/spring1999/842/index.html.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of 21st International Conference on
Software Engineering, May 1999.

S. Hibino and E. A. Rundensteiner. User interface evaluation of a direct ma-
nipulation temporal visual query language. In ACM Multimedia’97 Conference
Proceedings, pages 99-107, Seattle, USA, November 1997.

G. J. Holzmann. The model checker spin. IEEE Transactions on Software Engi-
neering, 23(5):279-295, May 1997.

I. Mirbel, B. Pernici, T. Sellis, S. Tserkezoglou, and M. Vazirgiannis. Checking
temporal integrity of interactive multimedia documents. VLDB Journal, 9(2):111-
130, 2000.

D. O. Paun and M. Chechik. Events in linear-time properties. In Proceedings of
4th International symposium on Requirements Engineering, June 1999.

B. Prabhakaran and S. Raghavan. Synchronization Models for Multimedia Pre-
sentation with User Participation. Multimedia Systems, 2(2), 1994.

R. S. Aygun and A. Zhang. Interactive multimedia presentation management in
distributed multimedia systems. In Proc. of Int.Conf. on Information Technology:
Coding and Computing, pages 275-279, Las Vegas, Nevada, April 2001.

SMIL. http://www.w3.org/AudioVideo.

A. Zhang, Y. Song, and M. Mielke. NetMedia: A Middleware Design Strategy for
Streaming Multimedia Presentations in Distributed Environments. IEEE Multi-
media. to appear.

