*DECK PPGQ8 SUBROUTINE PPGQ8 (FUN, LDC, C, XI, LXI, KK, ID, A, B, INPPV, ERR, + ANS, IERR) C***BEGIN PROLOGUE PPGQ8 C***SUBSIDIARY C***PURPOSE Subsidiary to PFQAD C***LIBRARY SLATEC C***TYPE SINGLE PRECISION (PPGQ8-S, DPPGQ8-D) C***AUTHOR Jones, R. E., (SNLA) C***DESCRIPTION C C Abstract C PPGQ8, a modification of GAUS8, integrates the C product of FUN(X) by the ID-th derivative of a spline C PPVAL(LDC,C,XI,LXI,KK,ID,X,INPPV) between limits A and B. C C Description of arguments C C INPUT-- C FUN - Name of external function of one argument which C multiplies PPVAL. C LDC - Leading dimension of matrix C, LDC.GE.KK C C - Matrix of Taylor derivatives of dimension at least C (K,LXI) C XI - Breakpoint vector of length LXI+1 C LXI - Number of polynomial pieces C KK - Order of the spline, KK.GE.1 C ID - Order of the spline derivative, 0.LE.ID.LE.KK-1 C A - Lower limit of integral C B - Upper limit of integral (may be less than A) C INPPV- Initialization parameter for PPVAL C ERR - Is a requested pseudorelative error tolerance. Normally C pick a value of ABS(ERR).LT.1E-3. ANS will normally C have no more error than ABS(ERR) times the integral of C the absolute value of FUN(X)*PPVAL(LDC,C,XI,LXI,KK,ID,X, C INPPV). C C OUTPUT-- C ERR - Will be an estimate of the absolute error in ANS if the C input value of ERR was negative. (ERR is unchanged if C the input value of ERR was nonnegative.) The estimated C error is solely for information to the user and should C not be used as a correction to the computed integral. C ANS - Computed value of integral C IERR- A status code C --Normal codes C 1 ANS most likely meets requested error tolerance, C or A=B. C -1 A and B ARE too nearly equal to allow normal C integration. ANS is set to zero. C --Abnormal code C 2 ANS probably does not meet requested error tolerance. C C***SEE ALSO PFQAD C***ROUTINES CALLED I1MACH, PPVAL, R1MACH, XERMSG C***REVISION HISTORY (YYMMDD) C 800901 DATE WRITTEN C 890531 Changed all specific intrinsics to generic. (WRB) C 891214 Prologue converted to Version 4.0 format. (BAB) C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) C 900326 Removed duplicate information from DESCRIPTION section. C (WRB) C 900328 Added TYPE section. (WRB) C 910408 Updated the AUTHOR section. (WRB) C***END PROLOGUE PPGQ8 C INTEGER ID,IERR,INPPV,K,KK,KML,KMX,L,LDC,LMN,LMX,LR,LXI,MXL, 1 NBITS, NIB, NLMN, NLMX INTEGER I1MACH REAL A,AA,AE,ANIB, ANS,AREA,B, BE,C,CC,EE, EF, EPS, ERR, 1 EST,GL,GLR,GR,HH,SQ2,TOL,VL,VR,W1, W2, W3, W4, XI, X1, 2 X2, X3, X4, X, H REAL R1MACH, PPVAL, G8, FUN DIMENSION XI(*), C(LDC,*) DIMENSION AA(30), HH(30), LR(30), VL(30), GR(30) SAVE X1, X2, X3, X4, W1, W2, W3, W4, SQ2, NLMN, KMX, KML DATA X1, X2, X3, X4/ 1 1.83434642495649805E-01, 5.25532409916328986E-01, 2 7.96666477413626740E-01, 9.60289856497536232E-01/ DATA W1, W2, W3, W4/ 1 3.62683783378361983E-01, 3.13706645877887287E-01, 2 2.22381034453374471E-01, 1.01228536290376259E-01/ DATA SQ2/1.41421356E0/ DATA NLMN/1/,KMX/5000/,KML/6/ G8(X,H)=H*((W1*(FUN(X-X1*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X-X1*H,INPPV) 1 +FUN(X+X1*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X+X1*H,INPPV)) 2 +W2*(FUN(X-X2*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X-X2*H,INPPV) 3 +FUN(X+X2*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X+X2*H,INPPV))) 4 +(W3*(FUN(X-X3*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X-X3*H,INPPV) 5 +FUN(X+X3*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X+X3*H,INPPV)) 6 +W4*(FUN(X-X4*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X-X4*H,INPPV) 7 +FUN(X+X4*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X+X4*H,INPPV)))) C C INITIALIZE C C***FIRST EXECUTABLE STATEMENT PPGQ8 K = I1MACH(11) ANIB = R1MACH(5)*K/0.30102000E0 NBITS = INT(ANIB) NLMX = (NBITS*5)/8 ANS = 0.0E0 IERR = 1 BE = 0.0E0 IF (A.EQ.B) GO TO 140 LMX = NLMX LMN = NLMN IF (B.EQ.0.0E0) GO TO 10 IF (SIGN(1.0E0,B)*A.LE.0.0E0) GO TO 10 CC = ABS(1.0E0-A/B) IF (CC.GT.0.1E0) GO TO 10 IF (CC.LE.0.0E0) GO TO 140 ANIB = 0.5E0 - LOG(CC)/0.69314718E0 NIB = INT(ANIB) LMX = MIN(NLMX,NBITS-NIB-7) IF (LMX.LT.1) GO TO 130 LMN = MIN(LMN,LMX) 10 TOL = MAX(ABS(ERR),2.0E0**(5-NBITS))/2.0E0 IF (ERR.EQ.0.0E0) TOL = SQRT(R1MACH(4)) EPS = TOL HH(1) = (B-A)/4.0E0 AA(1) = A LR(1) = 1 L = 1 EST = G8(AA(L)+2.0E0*HH(L),2.0E0*HH(L)) K = 8 AREA = ABS(EST) EF = 0.5E0 MXL = 0 C C COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC. C 20 GL = G8(AA(L)+HH(L),HH(L)) GR(L) = G8(AA(L)+3.0E0*HH(L),HH(L)) K = K + 16 AREA = AREA + (ABS(GL)+ABS(GR(L))-ABS(EST)) GLR = GL + GR(L) EE = ABS(EST-GLR)*EF AE = MAX(EPS*AREA,TOL*ABS(GLR)) IF (EE-AE) 40, 40, 50 30 MXL = 1 40 BE = BE + (EST-GLR) IF (LR(L)) 60, 60, 80 C C CONSIDER THE LEFT HALF OF THIS LEVEL C 50 IF (K.GT.KMX) LMX = KML IF (L.GE.LMX) GO TO 30 L = L + 1 EPS = EPS*0.5E0 EF = EF/SQ2 HH(L) = HH(L-1)*0.5E0 LR(L) = -1 AA(L) = AA(L-1) EST = GL GO TO 20 C C PROCEED TO RIGHT HALF AT THIS LEVEL C 60 VL(L) = GLR 70 EST = GR(L-1) LR(L) = 1 AA(L) = AA(L) + 4.0E0*HH(L) GO TO 20 C C RETURN ONE LEVEL C 80 VR = GLR 90 IF (L.LE.1) GO TO 120 L = L - 1 EPS = EPS*2.0E0 EF = EF*SQ2 IF (LR(L)) 100, 100, 110 100 VL(L) = VL(L+1) + VR GO TO 70 110 VR = VL(L+1) + VR GO TO 90 C C EXIT C 120 ANS = VR IF ((MXL.EQ.0) .OR. (ABS(BE).LE.2.0E0*TOL*AREA)) GO TO 140 IERR = 2 CALL XERMSG ('SLATEC', 'PPGQ8', + 'ANS IS PROBABLY INSUFFICIENTLY ACCURATE.', 3, 1) GO TO 140 130 IERR = -1 CALL XERMSG ('SLATEC', 'PPGQ8', + 'A AND B ARE TOO NEARLY EQUAL TO ALLOW NORMAL INTEGRATION. ' // + 'ANS IS SET TO ZERO AND IERR TO -1.', 1, -1) 140 CONTINUE IF (ERR.LT.0.0E0) ERR = BE RETURN END