*DECK DQK21 SUBROUTINE DQK21 (F, A, B, RESULT, ABSERR, RESABS, RESASC) C***BEGIN PROLOGUE DQK21 C***PURPOSE To compute I = Integral of F over (A,B), with error C estimate C J = Integral of ABS(F) over (A,B) C***LIBRARY SLATEC (QUADPACK) C***CATEGORY H2A1A2 C***TYPE DOUBLE PRECISION (QK21-S, DQK21-D) C***KEYWORDS 21-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE C***AUTHOR Piessens, Robert C Applied Mathematics and Programming Division C K. U. Leuven C de Doncker, Elise C Applied Mathematics and Programming Division C K. U. Leuven C***DESCRIPTION C C Integration rules C Standard fortran subroutine C Double precision version C C PARAMETERS C ON ENTRY C F - Double precision C Function subprogram defining the integrand C FUNCTION F(X). The actual name for F needs to be C Declared E X T E R N A L in the driver program. C C A - Double precision C Lower limit of integration C C B - Double precision C Upper limit of integration C C ON RETURN C RESULT - Double precision C Approximation to the integral I C RESULT is computed by applying the 21-POINT C KRONROD RULE (RESK) obtained by optimal addition C of abscissae to the 10-POINT GAUSS RULE (RESG). C C ABSERR - Double precision C Estimate of the modulus of the absolute error, C which should not exceed ABS(I-RESULT) C C RESABS - Double precision C Approximation to the integral J C C RESASC - Double precision C Approximation to the integral of ABS(F-I/(B-A)) C over (A,B) C C***REFERENCES (NONE) C***ROUTINES CALLED D1MACH C***REVISION HISTORY (YYMMDD) C 800101 DATE WRITTEN C 890531 Changed all specific intrinsics to generic. (WRB) C 890531 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C***END PROLOGUE DQK21 C DOUBLE PRECISION A,ABSC,ABSERR,B,CENTR,DHLGTH, 1 D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,RESABS,RESASC, 2 RESG,RESK,RESKH,RESULT,UFLOW,WG,WGK,XGK INTEGER J,JTW,JTWM1 EXTERNAL F C DIMENSION FV1(10),FV2(10),WG(5),WGK(11),XGK(11) C C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1). C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR C CORRESPONDING WEIGHTS ARE GIVEN. C C XGK - ABSCISSAE OF THE 21-POINT KRONROD RULE C XGK(2), XGK(4), ... ABSCISSAE OF THE 10-POINT C GAUSS RULE C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY C ADDED TO THE 10-POINT GAUSS RULE C C WGK - WEIGHTS OF THE 21-POINT KRONROD RULE C C WG - WEIGHTS OF THE 10-POINT GAUSS RULE C C C GAUSS QUADRATURE WEIGHTS AND KRONROD QUADRATURE ABSCISSAE AND WEIGHTS C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON, C BELL LABS, NOV. 1981. C SAVE WG, XGK, WGK DATA WG ( 1) / 0.0666713443 0868813759 3568809893 332 D0 / DATA WG ( 2) / 0.1494513491 5058059314 5776339657 697 D0 / DATA WG ( 3) / 0.2190863625 1598204399 5534934228 163 D0 / DATA WG ( 4) / 0.2692667193 0999635509 1226921569 469 D0 / DATA WG ( 5) / 0.2955242247 1475287017 3892994651 338 D0 / C DATA XGK ( 1) / 0.9956571630 2580808073 5527280689 003 D0 / DATA XGK ( 2) / 0.9739065285 1717172007 7964012084 452 D0 / DATA XGK ( 3) / 0.9301574913 5570822600 1207180059 508 D0 / DATA XGK ( 4) / 0.8650633666 8898451073 2096688423 493 D0 / DATA XGK ( 5) / 0.7808177265 8641689706 3717578345 042 D0 / DATA XGK ( 6) / 0.6794095682 9902440623 4327365114 874 D0 / DATA XGK ( 7) / 0.5627571346 6860468333 9000099272 694 D0 / DATA XGK ( 8) / 0.4333953941 2924719079 9265943165 784 D0 / DATA XGK ( 9) / 0.2943928627 0146019813 1126603103 866 D0 / DATA XGK ( 10) / 0.1488743389 8163121088 4826001129 720 D0 / DATA XGK ( 11) / 0.0000000000 0000000000 0000000000 000 D0 / C DATA WGK ( 1) / 0.0116946388 6737187427 8064396062 192 D0 / DATA WGK ( 2) / 0.0325581623 0796472747 8818972459 390 D0 / DATA WGK ( 3) / 0.0547558965 7435199603 1381300244 580 D0 / DATA WGK ( 4) / 0.0750396748 1091995276 7043140916 190 D0 / DATA WGK ( 5) / 0.0931254545 8369760553 5065465083 366 D0 / DATA WGK ( 6) / 0.1093871588 0229764189 9210590325 805 D0 / DATA WGK ( 7) / 0.1234919762 6206585107 7958109831 074 D0 / DATA WGK ( 8) / 0.1347092173 1147332592 8054001771 707 D0 / DATA WGK ( 9) / 0.1427759385 7706008079 7094273138 717 D0 / DATA WGK ( 10) / 0.1477391049 0133849137 4841515972 068 D0 / DATA WGK ( 11) / 0.1494455540 0291690566 4936468389 821 D0 / C C C LIST OF MAJOR VARIABLES C ----------------------- C C CENTR - MID POINT OF THE INTERVAL C HLGTH - HALF-LENGTH OF THE INTERVAL C ABSC - ABSCISSA C FVAL* - FUNCTION VALUE C RESG - RESULT OF THE 10-POINT GAUSS FORMULA C RESK - RESULT OF THE 21-POINT KRONROD FORMULA C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B), C I.E. TO I/(B-A) C C C MACHINE DEPENDENT CONSTANTS C --------------------------- C C EPMACH IS THE LARGEST RELATIVE SPACING. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE. C C***FIRST EXECUTABLE STATEMENT DQK21 EPMACH = D1MACH(4) UFLOW = D1MACH(1) C CENTR = 0.5D+00*(A+B) HLGTH = 0.5D+00*(B-A) DHLGTH = ABS(HLGTH) C C COMPUTE THE 21-POINT KRONROD APPROXIMATION TO C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR. C RESG = 0.0D+00 FC = F(CENTR) RESK = WGK(11)*FC RESABS = ABS(RESK) DO 10 J=1,5 JTW = 2*J ABSC = HLGTH*XGK(JTW) FVAL1 = F(CENTR-ABSC) FVAL2 = F(CENTR+ABSC) FV1(JTW) = FVAL1 FV2(JTW) = FVAL2 FSUM = FVAL1+FVAL2 RESG = RESG+WG(J)*FSUM RESK = RESK+WGK(JTW)*FSUM RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2)) 10 CONTINUE DO 15 J = 1,5 JTWM1 = 2*J-1 ABSC = HLGTH*XGK(JTWM1) FVAL1 = F(CENTR-ABSC) FVAL2 = F(CENTR+ABSC) FV1(JTWM1) = FVAL1 FV2(JTWM1) = FVAL2 FSUM = FVAL1+FVAL2 RESK = RESK+WGK(JTWM1)*FSUM RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2)) 15 CONTINUE RESKH = RESK*0.5D+00 RESASC = WGK(11)*ABS(FC-RESKH) DO 20 J=1,10 RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH)) 20 CONTINUE RESULT = RESK*HLGTH RESABS = RESABS*DHLGTH RESASC = RESASC*DHLGTH ABSERR = ABS((RESK-RESG)*HLGTH) IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.0D+00) 1 ABSERR = RESASC*MIN(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00) IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = MAX 1 ((EPMACH*0.5D+02)*RESABS,ABSERR) RETURN END