/* --------------------------------------------------------------------- * * -- PBLAS routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "pblas.h" #include "PBpblas.h" #include "PBtools.h" #include "PBblacs.h" #include "PBblas.h" #ifdef __STDC__ void psdot_( int * N, float * DOT, float * X, int * IX, int * JX, int * DESCX, int * INCX, float * Y, int * IY, int * JY, int * DESCY, int * INCY ) #else void psdot_( N, DOT, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY ) /* * .. Scalar Arguments .. */ int * INCX, * INCY, * IX, * IY, * JX, * JY, * N; float * DOT; /* * .. Array Arguments .. */ int * DESCX, * DESCY; float * X, * Y; #endif { /* * Purpose * ======= * * PSDOT forms the dot product of two subvectors, * * DOT := sub( X )**T * sub( Y ), * * where * * sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X, * X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X, and, * * sub( Y ) denotes Y(IY,JY:JY+N-1) if INCY = M_Y, * Y(IY:IY+N-1,JY) if INCY = 1 and INCY <> M_Y. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * N (global input) INTEGER * On entry, N specifies the length of the subvectors to be * multiplied. N must be at least zero. * * DOT (local output) REAL array * On exit, DOT specifies the dot product of the two subvectors * sub( X ) and sub( Y ) only in their scope (See below for fur- * ther details). * * X (local input) REAL array * On entry, X is an array of dimension (LLD_X, Kx), where LLD_X * is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and * MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least * Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise. * Before entry, this array contains the local entries of the * matrix X. * * IX (global input) INTEGER * On entry, IX specifies X's global row index, which points to * the beginning of the submatrix sub( X ). * * JX (global input) INTEGER * On entry, JX specifies X's global column index, which points * to the beginning of the submatrix sub( X ). * * DESCX (global and local input) INTEGER array * On entry, DESCX is an integer array of dimension DLEN_. This * is the array descriptor for the matrix X. * * INCX (global input) INTEGER * On entry, INCX specifies the global increment for the * elements of X. Only two values of INCX are supported in * this version, namely 1 and M_X. INCX must not be zero. * * Y (local input) REAL array * On entry, Y is an array of dimension (LLD_Y, Ky), where LLD_Y * is at least MAX( 1, Lr( 1, IY ) ) when INCY = M_Y and * MAX( 1, Lr( 1, IY+N-1 ) ) otherwise, and, Ky is at least * Lc( 1, JY+N-1 ) when INCY = M_Y and Lc( 1, JY ) otherwise. * Before entry, this array contains the local entries of the * matrix Y. * * IY (global input) INTEGER * On entry, IY specifies Y's global row index, which points to * the beginning of the submatrix sub( Y ). * * JY (global input) INTEGER * On entry, JY specifies Y's global column index, which points * to the beginning of the submatrix sub( Y ). * * DESCY (global and local input) INTEGER array * On entry, DESCY is an integer array of dimension DLEN_. This * is the array descriptor for the matrix Y. * * INCY (global input) INTEGER * On entry, INCY specifies the global increment for the * elements of Y. Only two values of INCY are supported in * this version, namely 1 and M_Y. INCY must not be zero. * * Further Details * =============== * * When the result of a vector-oriented PBLAS call is a scalar, this * scalar is set only within the process scope which owns the vector(s) * being operated on. Let sub( X ) be a generic term for the input vec- * tor(s). Then, the processes owning the correct the answer is determi- * ned as follows: if an operation involves more than one vector, the * processes receiving the result will be the union of the following set * of processes for each vector: * * If N = 1, M_X = 1 and INCX = 1, then one cannot determine if a pro- * cess row or process column owns the vector operand, therefore only * the process owning sub( X ) receives the correct result; * * If INCX = M_X, then sub( X ) is a vector distributed over a process * row. Each process in this row receives the result; * * If INCX = 1, then sub( X ) is a vector distributed over a process * column. Each process in this column receives the result; * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char scope, * top; int OneBlock, OneDgrid, RRorCC, Square, Xcol, Xi, Xii, XinbD, Xinb1D, XisD, XisR, XisRow, Xj, Xjj, Xld, Xlinc, XmyprocD, XmyprocR, XnbD, XnpD, XnprocsD, XnprocsR, XprocD, XprocR, Xrow, Ycol, Yi, Yii, YinbD, Yinb1D, YisD, YisR, YisRow, Yj, Yjj, Yld, Ylinc, YmyprocD, YmyprocR, YnbD, YnpD, YnprocsD, YnprocsR, YprocD, YprocR, Yrow, cdst, csrc, ctxt, dst, info, ione=1, mycol, myrow, npcol, nprow, rdst, rsrc, size, src; PBTYP_T * type; VVDOT_T dot; /* * .. Local Arrays .. */ char * buf = NULL; int Xd[DLEN_], Yd[DLEN_], dbuf[ DLEN_ ]; /* .. * .. Executable Statements .. * */ PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd ); PB_CargFtoC( *IY, *JY, DESCY, &Yi, &Yj, Yd ); #ifndef NO_ARGCHK /* * Test the input parameters */ Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); if( !( info = ( ( nprow == -1 ) ? -( 601 + CTXT_ ) : 0 ) ) ) { PB_Cchkvec( ctxt, "PSDOT", "X", *N, 1, Xi, Xj, Xd, *INCX, 6, &info ); PB_Cchkvec( ctxt, "PSDOT", "Y", *N, 1, Yi, Yj, Yd, *INCY, 11, &info ); } if( info ) { PB_Cabort( ctxt, "PSDOT", info ); return; } #endif DOT[REAL_PART] = ZERO; /* * Quick return if possible */ if( *N == 0 ) return; /* * Handle degenerate case */ if( ( *N == 1 ) && ( ( Xd[ M_ ] == 1 ) || ( Yd[ M_ ] == 1 ) ) ) { type = PB_Cstypeset(); PB_Cpdot11( type, *N, ((char *) DOT), ((char *) X), Xi, Xj, Xd, *INCX, ((char *) Y), Yi, Yj, Yd, *INCY, type->Fvvdotu ); return; } /* * Start the operations */ #ifdef NO_ARGCHK Cblacs_gridinfo( ( ctxt = Xd[ CTXT_ ] ), &nprow, &npcol, &myrow, &mycol ); #endif /* * Determine if sub( X ) is distributed or not */ if( ( XisRow = ( *INCX == Xd[M_] ) ) != 0 ) XisD = ( ( Xd[CSRC_] >= 0 ) && ( ( XnprocsD = npcol ) > 1 ) ); else XisD = ( ( Xd[RSRC_] >= 0 ) && ( ( XnprocsD = nprow ) > 1 ) ); /* * Determine if sub( Y ) is distributed or not */ if( ( YisRow = ( *INCY == Yd[M_] ) ) != 0 ) YisD = ( ( Yd[CSRC_] >= 0 ) && ( ( YnprocsD = npcol ) > 1 ) ); else YisD = ( ( Yd[RSRC_] >= 0 ) && ( ( YnprocsD = nprow ) > 1 ) ); /* * Are sub( X ) and sub( Y ) both row or column vectors ? */ RRorCC = ( ( XisRow && YisRow ) || ( !( XisRow ) && !( YisRow ) ) ); /* * XisD && YisD <=> both vector operands are indeed distributed */ if( XisD && YisD ) { /* * Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Xcol */ PB_Cinfog2l( Xi, Xj, Xd, nprow, npcol, myrow, mycol, &Xii, &Xjj, &Xrow, &Xcol ); if( XisRow ) { XinbD = Xd[INB_]; XnbD = Xd[NB_]; Xld = Xd[LLD_]; Xlinc = Xld; XprocD = Xcol; XmyprocD = mycol; XprocR = Xrow; XmyprocR = myrow; XnprocsR = nprow; XisR = ( ( Xrow == -1 ) || ( XnprocsR == 1 ) ); Mfirstnb( Xinb1D, *N, Xj, XinbD, XnbD ); } else { XinbD = Xd[IMB_]; XnbD = Xd[MB_]; Xld = Xd[LLD_]; Xlinc = 1; XprocD = Xrow; XmyprocD = myrow; XprocR = Xcol; XmyprocR = mycol; XnprocsR = npcol; XisR = ( ( Xcol == -1 ) || ( XnprocsR == 1 ) ); Mfirstnb( Xinb1D, *N, Xi, XinbD, XnbD ); } /* * Retrieve sub( Y )'s local information: Yii, Yjj, Yrow, Ycol */ PB_Cinfog2l( Yi, Yj, Yd, nprow, npcol, myrow, mycol, &Yii, &Yjj, &Yrow, &Ycol ); if( YisRow ) { YinbD = Yd[INB_]; YnbD = Yd[NB_]; Yld = Yd[LLD_]; Ylinc = Yld; YprocD = Ycol; YmyprocD = mycol; YprocR = Yrow; YmyprocR = myrow; YnprocsR = nprow; YisR = ( ( Yrow == -1 ) || ( YnprocsR == 1 ) ); Mfirstnb( Yinb1D, *N, Yj, YinbD, YnbD ); } else { YinbD = Yd[IMB_]; YnbD = Yd[MB_]; Yld = Yd[LLD_]; Ylinc = 1; YprocD = Yrow; YmyprocD = myrow; YprocR = Ycol; YmyprocR = mycol; YnprocsR = npcol; YisR = ( ( Ycol == -1 ) || ( YnprocsR == 1 ) ); Mfirstnb( Yinb1D, *N, Yi, YinbD, YnbD ); } /* * Do sub( X ) and sub( Y ) span more than one process ? */ OneDgrid = ( ( XnprocsD == 1 ) && ( YnprocsD == 1 ) ); OneBlock = ( ( Xinb1D >= *N ) && ( Yinb1D >= *N ) ); /* * Are sub( X ) and sub( Y ) distributed in the same manner ? */ Square = ( ( Xinb1D == Yinb1D ) && ( XnbD == YnbD ) && ( XnprocsD == YnprocsD ) ); if( !( XisR ) ) { /* * sub( X ) is not replicated */ if( YisR ) { /* * If sub( X ) is not replicated, but sub( Y ) is, a process row or column * YprocR need to be selected. It will contain the non-replicated vector used * to perform the dot product computation. */ if( RRorCC ) { /* * sub( X ) and sub( Y ) are both row or column vectors */ if( ( OneDgrid || OneBlock || Square ) && ( XprocD == YprocD ) ) { /* * sub( X ) and sub( Y ) start in the same process row or column XprocD=YprocD. * Enforce a purely local operation by choosing YprocR to be equal to XprocR. */ YprocR = XprocR; } else { /* * Otherwise, communication has to occur, so choose the next process row or * column for YprocR to maximize the number of links, i.e reduce contention. */ YprocR = MModAdd1( XprocR, XnprocsR ); } } else { /* * sub( X ) and sub( Y ) are distributed in orthogonal directions, what is * chosen for YprocR does not really matter. Select the process origin. */ YprocR = XprocD; } } else { /* * Neither sub( X ) nor sub( Y ) are replicated. If I am not in process row or * column XprocR and not in process row or column YprocR, then quick return. */ if( ( XmyprocR != XprocR ) && ( YmyprocR != YprocR ) ) return; } } else { /* * sub( X ) is distributed and replicated (so no quick return possible) */ if( YisR ) { /* * sub( Y ) is distributed and replicated as well */ if( RRorCC ) { /* * sub( X ) and sub( Y ) are both row or column vectors */ if( ( OneDgrid || OneBlock || Square ) && ( XprocD == YprocD ) ) { /* * sub( X ) and sub( Y ) start in the same process row or column XprocD=YprocD. * Enforce a purely local operation by choosing XprocR and YprocR to be equal * to zero. */ XprocR = YprocR = 0; } else { /* * Otherwise, communication has to occur, so select YprocR to be zero and the * next process row or column for XprocR in order to maximize the number of * used links, i.e reduce contention. */ YprocR = 0; XprocR = MModAdd1( YprocR, YnprocsR ); } } else { /* * sub( X ) and sub( Y ) are distributed in orthogonal directions, select the * origin processes. */ XprocR = YprocD; YprocR = XprocD; } } else { /* * sub( Y ) is distributed, but not replicated */ if( RRorCC ) { /* * sub( X ) and sub( Y ) are both row or column vectors */ if( ( OneDgrid || OneBlock || Square ) && ( XprocD == YprocD ) ) { /* * sub( X ) and sub( Y ) start in the same process row or column XprocD=YprocD. * Enforce a purely local operation by choosing XprocR to be equal to YprocR. */ XprocR = YprocR; } else { /* * Otherwise, communication has to occur, so choose the next process row or * column for XprocR to maximize the number of links, i.e reduce contention. */ XprocR = MModAdd1( YprocR, YnprocsR ); } } else { /* * sub( X ) and sub( Y ) are distributed in orthogonal directions, what is * chosen for XprocR does not really matter. Select the origin process. */ XprocR = YprocD; } } } /* * Even if sub( X ) and/or sub( Y ) are replicated, only two process row or * column are active, namely XprocR and YprocR. If any of those operands is * replicated, broadcast will occur (unless there is an easy way out). */ type = PB_Cstypeset(); size = type->size; dot = type->Fvvdotu; /* * A purely operation occurs iff the operands start in the same process and if * either the grid is mono-dimensional or there is a single local block to be * operated with or if both operands are aligned. */ if( ( ( RRorCC && ( XprocD == YprocD ) && ( XprocR == YprocR ) ) || ( !( RRorCC ) && ( XprocD == YprocR ) && ( XprocR == YprocD ) ) ) && ( OneDgrid || OneBlock || ( RRorCC && Square ) ) ) { if( ( !XisR && ( XmyprocR == XprocR ) && !YisR && ( YmyprocR == YprocR ) ) || ( !XisR && YisR && ( YmyprocR == YprocR ) ) || ( !YisR && XisR && ( XmyprocR == XprocR ) ) || ( XisR && YisR ) ) { XnpD = PB_Cnumroc( *N, 0, Xinb1D, XnbD, XmyprocD, XprocD, XnprocsD ); YnpD = PB_Cnumroc( *N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); if( ( XnpD > 0 ) && ( YnpD > 0 ) ) { dot( &XnpD, ((char *) DOT), Mptr( ((char *) X), Xii, Xjj, Xld, size ), &Xlinc, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), &Ylinc ); } } /* * Combine the local results in sub( X )'s scope */ if( ( XisR && YisR ) || ( XmyprocR == XprocR ) ) { scope = ( XisRow ? CROW : CCOLUMN ); top = PB_Ctop( &ctxt, COMBINE, &scope, TOP_GET ); Csgsum2d( ctxt, &scope, top, 1, 1, ((char *) DOT), 1, -1, 0 ); } if( RRorCC && XisR && YisR ) return; } else if( ( RRorCC && OneDgrid ) || OneBlock || Square ) { /* * Otherwise, it may be possible to compute the desired dot-product in a single * message exchange iff the grid is mono-dimensional and the operands are * distributed in the same direction, or there is just one block to be exchanged * or if both operands are similarly distributed in their respective direction. */ if( ( YmyprocR == YprocR ) ) { /* * The processes owning a piece of sub( Y ) send it to the corresponding * process owning s piece of sub ( X ). */ YnpD = PB_Cnumroc( *N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); if( YnpD > 0 ) { dst = XprocD + MModSub( YmyprocD, YprocD, YnprocsD ); dst = MPosMod( dst, XnprocsD ); if( XisRow ) { rdst = XprocR; cdst = dst; } else { rdst = dst; cdst = XprocR; } if( ( myrow == rdst ) && ( mycol == cdst ) ) { dot( &YnpD, ((char *) DOT), Mptr( ((char *) X), Xii, Xjj, Xld, size ), &Xlinc, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), &Ylinc ); } else { if( YisRow ) Csgesd2d( ctxt, 1, YnpD, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld, rdst, cdst ); else Csgesd2d( ctxt, YnpD, 1, Mptr( ((char *) Y), Yii, Yjj, Yld, size ), Yld, rdst, cdst ); } } } if( XmyprocR == XprocR ) { /* * The processes owning a piece of sub( X ) receive the corresponding local * piece of sub( Y ), compute the local dot product and combine the results * within sub( X )'s scope. */ XnpD = PB_Cnumroc( *N, 0, Xinb1D, XnbD, XmyprocD, XprocD, XnprocsD ); if( XnpD > 0 ) { src = YprocD + MModSub( XmyprocD, XprocD, XnprocsD ); src = MPosMod( src, YnprocsD ); if( YisRow ) { rsrc = YprocR; csrc = src; } else { rsrc = src; csrc = YprocR; } if( ( myrow != rsrc ) || ( mycol != csrc ) ) { buf = PB_Cmalloc( XnpD * size ); if( YisRow ) Csgerv2d( ctxt, 1, XnpD, buf, 1, rsrc, csrc ); else Csgerv2d( ctxt, XnpD, 1, buf, XnpD, rsrc, csrc ); dot( &XnpD, ((char *) DOT), Mptr( ((char *) X), Xii, Xjj, Xld, size ), &Xlinc, buf, &ione ); if( buf ) free( buf ); } } if( XisRow ) { top = PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); Csgsum2d( ctxt, ROW, top, 1, 1, ((char*)DOT), 1, -1, 0 ); } else { top = PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); Csgsum2d( ctxt, COLUMN, top, 1, 1, ((char*)DOT), 1, -1, 0 ); } } } else { /* * General case, copy sub( Y ) within sub( X )'s scope, compute the local * results and combine them within sub( X )'s scope. */ XnpD = PB_Cnumroc( *N, 0, Xinb1D, XnbD, XmyprocD, XprocD, XnprocsD ); if( XisRow ) { PB_Cdescset( dbuf, 1, *N, 1, Xinb1D, 1, XnbD, XprocR, XprocD, ctxt, 1 ); } else { PB_Cdescset( dbuf, *N, 1, Xinb1D, 1, XnbD, 1, XprocD, XprocR, ctxt, MAX( 1, XnpD ) ); } if( ( XmyprocR == XprocR ) && ( XnpD > 0 ) ) buf = PB_Cmalloc( XnpD * size ); if( YisRow ) { PB_Cpaxpby( type, NOCONJG, 1, *N, type->one, ((char *) Y), Yi, Yj, Yd, ROW, type->zero, buf, 0, 0, dbuf, ( XisRow ? ROW : COLUMN ) ); } else { PB_Cpaxpby( type, NOCONJG, *N, 1, type->one, ((char *) Y), Yi, Yj, Yd, COLUMN, type->zero, buf, 0, 0, dbuf, ( XisRow ? ROW : COLUMN ) ); } if( XmyprocR == XprocR ) { if( XnpD > 0 ) { dot( &XnpD, ((char *) DOT), Mptr( ((char *) X), Xii, Xjj, Xld, size ), &Xlinc, buf, &ione ); if( buf ) free( buf ); } if( XisRow ) { top = PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); Csgsum2d( ctxt, ROW, top, 1, 1, ((char*)DOT), 1, -1, 0 ); } else { top = PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); Csgsum2d( ctxt, COLUMN, top, 1, 1, ((char*)DOT), 1, -1, 0 ); } } } /* * Send the DOT product result within sub( Y )'s scope */ if( XisR || YisR ) { /* * Either sub( X ) or sub( Y ) are replicated, so that every process should have * the result -> broadcast it orthogonally from sub( X )'s direction. */ if( XisRow ) { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); if( XmyprocR == XprocR ) Csgebs2d( ctxt, COLUMN, top, 1, 1, ((char*)DOT), 1 ); else Csgebr2d( ctxt, COLUMN, top, 1, 1, ((char*)DOT), 1, XprocR, XmyprocD ); } else { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); if( XmyprocR == XprocR ) Csgebs2d( ctxt, ROW, top, 1, 1, ((char*)DOT), 1 ); else Csgebr2d( ctxt, ROW, top, 1, 1, ((char*)DOT), 1, XmyprocD, XprocR ); } } else { /* * Neither sub( X ) nor sub( Y ) are replicated */ if( RRorCC ) { /* * Both sub( X ) are distributed in the same direction -> the process row or * column XprocR sends the result to the process row or column YprocR. */ if( XprocR != YprocR ) { if( XmyprocR == XprocR ) { if( XisRow ) Csgesd2d( ctxt, 1, 1, ((char *) DOT), 1, YprocR, YmyprocD ); else Csgesd2d( ctxt, 1, 1, ((char *) DOT), 1, YmyprocD, YprocR ); } else if( YmyprocR == YprocR ) { if( XisRow ) Csgerv2d( ctxt, 1, 1, ((char *) DOT), 1, XprocR, XmyprocD ); else Csgerv2d( ctxt, 1, 1, ((char *) DOT), 1, XmyprocD, XprocR ); } } } else { /* * Otherwise, the process at the intersection of sub( X )'s and sub( Y )'s * scope, broadcast the result within sub( Y )'s scope. */ if( YmyprocR == YprocR ) { if( YisRow ) { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); if( YmyprocD == XprocR ) Csgebs2d( ctxt, ROW, top, 1, 1, ((char*)DOT), 1 ); else Csgebr2d( ctxt, ROW, top, 1, 1, ((char*)DOT), 1, YprocR, XprocR ); } else { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); if( YmyprocD == XprocR ) Csgebs2d( ctxt, COLUMN, top, 1, 1, ((char*)DOT), 1 ); else Csgebr2d( ctxt, COLUMN, top, 1, 1, ((char*)DOT), 1, XprocR, YprocR ); } } } } } else if( !( XisD ) && YisD ) { /* * sub( X ) is not distributed and sub( Y ) is distributed. */ type = PB_Cstypeset(); PB_CpdotND( type, *N, ((char *) DOT), ((char *) X), Xi, Xj, Xd, *INCX, ((char *) Y), Yi, Yj, Yd, *INCY, type->Fvvdotu ); } else if( XisD && !( YisD ) ) { /* * sub( X ) is distributed and sub( Y ) is not distributed. */ type = PB_Cstypeset(); PB_CpdotND( type, *N, ((char *) DOT), ((char *) Y), Yi, Yj, Yd, *INCY, ((char *) X), Xi, Xj, Xd, *INCX, type->Fvvdotu ); } else { /* * Neither sub( X ) nor sub( Y ) are distributed */ type = PB_Cstypeset(); PB_CpdotNN( type, *N, ((char *) DOT), ((char *) X), Xi, Xj, Xd, *INCX, ((char *) Y), Yi, Yj, Yd, *INCY, type->Fvvdotu ); } /* * End of PSDOT */ }