/* --------------------------------------------------------------------- * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "../pblas.h" #include "../PBpblas.h" #include "../PBtools.h" #include "../PBblacs.h" #include "../PBblas.h" #ifdef __STDC__ void PB_CpswapND( PBTYP_T * TYPE, int N, char * X, int IX, int JX, int * DESCX, int INCX, char * Y, int IY, int JY, int * DESCY, int INCY ) #else void PB_CpswapND( TYPE, N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY ) /* * .. Scalar Arguments .. */ int INCX, INCY, IX, IY, JX, JY, N; PBTYP_T * TYPE; /* * .. Array Arguments .. */ int * DESCX, * DESCY; char * X, * Y; #endif { /* * Purpose * ======= * * PB_CpswapND swaps two subvectors, * * sub( Y ) := sub( X ) and sub( X ) := sub( Y ) * * where sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X, * X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X, * * sub( Y ) denotes Y(IY,JY:JY+N-1) if INCY = M_Y, * Y(IY:IY+N-1,JY) if INCY = 1 and INCY <> M_Y. * * sub( X ) is assumed to be not distributed, and sub( Y ) is assumed to * be distributed. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TYPE (local input) pointer to a PBTYP_T structure * On entry, TYPE is a pointer to a structure of type PBTYP_T, * that contains type information (See pblas.h). * * N (global input) INTEGER * On entry, N specifies the length of the subvectors to be * swapped. N must be at least zero. * * X (local input/local output) pointer to CHAR * On entry, X is an array of dimension (LLD_X, Kx), where LLD_X * is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and * MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least * Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise. * Before entry, this array contains the local entries of the * matrix X. On exit, sub( X ) is overwritten with sub( Y ). * * IX (global input) INTEGER * On entry, IX specifies X's global row index, which points to * the beginning of the submatrix sub( X ). * * JX (global input) INTEGER * On entry, JX specifies X's global column index, which points * to the beginning of the submatrix sub( X ). * * DESCX (global and local input) INTEGER array * On entry, DESCX is an integer array of dimension DLEN_. This * is the array descriptor for the matrix X. * * INCX (global input) INTEGER * On entry, INCX specifies the global increment for the * elements of X. Only two values of INCX are supported in * this version, namely 1 and M_X. INCX must not be zero. * * Y (local input/local output) pointer to CHAR * On entry, Y is an array of dimension (LLD_Y, Ky), where LLD_Y * is at least MAX( 1, Lr( 1, IY ) ) when INCY = M_Y and * MAX( 1, Lr( 1, IY+N-1 ) ) otherwise, and, Ky is at least * Lc( 1, JY+N-1 ) when INCY = M_Y and Lc( 1, JY ) otherwise. * Before entry, this array contains the local entries of the * matrix Y. On exit, sub( Y ) is overwritten with sub( X ). * * IY (global input) INTEGER * On entry, IY specifies Y's global row index, which points to * the beginning of the submatrix sub( Y ). * * JY (global input) INTEGER * On entry, JY specifies Y's global column index, which points * to the beginning of the submatrix sub( Y ). * * DESCY (global and local input) INTEGER array * On entry, DESCY is an integer array of dimension DLEN_. This * is the array descriptor for the matrix Y. * * INCY (global input) INTEGER * On entry, INCY specifies the global increment for the * elements of Y. Only two values of INCY are supported in * this version, namely 1 and M_Y. INCY must not be zero. * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char scope, * top, * zero; int RRorCC, Xcol, Xii, XisR, XisRow, Xjj, Xld, Xlinc, Xm, XmyprocD, XmyprocR, Xn, XnprocsD, XnprocsR, XprocR, Xroc, Xrow, Ycol, Yii, Yinb1D, YisR, YisRow, Yjj, Yld, Ylinc, YmyprocD, YmyprocR, YnbD, YnpD, YnprocsD, YnprocsR, YprocD, YprocR, Yroc, Yrow, ctxt, ione=1, k, kbb, kk, kn, ktmp, mycol, mydist, myproc, myrow, npcol, nprow, p, size; /* * .. Local Arrays .. */ char * buf = NULL; /* .. * .. Executable Statements .. * */ /* * Retrieve process grid information */ Cblacs_gridinfo( ( ctxt = DESCX[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); /* * Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Xcol ... */ PB_Cinfog2l( IX, JX, DESCX, nprow, npcol, myrow, mycol, &Xii, &Xjj, &Xrow, &Xcol ); if( ( XisRow = ( INCX == DESCX[M_] ) ) != 0 ) { Xld = DESCX[LLD_]; Xlinc = Xld; XmyprocD = mycol; XnprocsD = npcol; XprocR = Xrow; XmyprocR = myrow; XnprocsR = nprow; XisR = ( ( Xrow == -1 ) || ( XnprocsR == 1 ) ); } else { Xld = DESCX[LLD_]; Xlinc = 1; XmyprocD = myrow; XnprocsD = nprow; XprocR = Xcol; XmyprocR = mycol; XnprocsR = npcol; XisR = ( ( Xcol == -1 ) || ( XnprocsR == 1 ) ); } /* * Retrieve sub( Y )'s local information: Yii, Yjj, Yrow, Ycol ... */ PB_Cinfog2l( IY, JY, DESCY, nprow, npcol, myrow, mycol, &Yii, &Yjj, &Yrow, &Ycol ); if( ( YisRow = ( INCY == DESCY[M_] ) ) != 0 ) { YnbD = DESCY[NB_]; Yld = DESCY[LLD_]; Ylinc = Yld; YprocR = Yrow; YmyprocR = myrow; YnprocsR = nprow; YprocD = Ycol; YmyprocD = mycol; YnprocsD = npcol; Yinb1D = PB_Cfirstnb( N, JY, DESCY[INB_], YnbD ); } else { YnbD = DESCY[MB_]; Yld = DESCY[LLD_]; Ylinc = 1; YprocR = Ycol; YmyprocR = mycol; YnprocsR = npcol; YprocD = Yrow; YmyprocD = myrow; YnprocsD = nprow; Yinb1D = PB_Cfirstnb( N, IY, DESCY[IMB_], YnbD ); } YisR = ( ( YprocR == -1 ) || ( YnprocsR == 1 ) ); /* * Are sub( X ) and sub( Y ) both row or column vectors ? */ RRorCC = ( ( XisRow && YisRow ) || ( !( XisRow ) && !( YisRow ) ) ); /* * sub( X ) is not distributed and sub( Y ) is distributed */ size = TYPE->size; zero = TYPE->zero; if( !( XisR ) ) { /* * sub( X ) is not replicated. Since this operation is local if sub( X ) and * sub( Y ) are both row or column vectors, choose YprocR = XprocR when RRorCC, * and YprocR = 0 otherwise. */ if( YisR ) { YprocR = ( ( RRorCC ) ? XprocR : 0 ); } /* * Now, it is just like sub( Y ) is not replicated, this information however is * kept in YisR for later use. */ if( ( XmyprocR == XprocR ) || ( YmyprocR == YprocR ) ) { /* * sub( X ) and sub( Y ) are both row or column vectors */ if( RRorCC ) { YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); /* * sub( X ) and sub( Y ) are in the same process row or column */ if( XprocR == YprocR ) { /* * In a given process, sub( Y ) is swapped with the corresponding non distribu- * ted part of sub( X ). In the other processes, this part of sub( X ) is set * to zero for later reduction. */ if( YnpD > 0 ) { Yroc = YprocD; if( XisRow ) { kk = Yjj; ktmp = JX + N; kn = JX + Yinb1D; } else { kk = Yii; ktmp = IX + N; kn = IX + Yinb1D; } if( YmyprocD == Yroc ) { TYPE->Fswap( &Yinb1D, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, Mptr( Y, Yii, Yjj, Yld, size ), &Ylinc ); kk += Yinb1D; } else { TYPE->Fset( &Yinb1D, zero, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc ); } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( YmyprocD == Yroc ) { if( XisRow ) TYPE->Fswap( &kbb, Mptr( X, Xii, k, Xld, size ), &Xlinc, Mptr( Y, Yii, kk, Yld, size ), &Ylinc ); else TYPE->Fswap( &kbb, Mptr( X, k, Xjj, Xld, size ), &Xlinc, Mptr( Y, kk, Yjj, Yld, size ), &Ylinc ); kk += kbb; } else { if( XisRow ) TYPE->Fset( &kbb, zero, Mptr( X, Xii, k, Xld, size ), &Xlinc ); else TYPE->Fset( &kbb, zero, Mptr( X, k, Xjj, Xld, size ), &Xlinc ); } Yroc = MModAdd1( Yroc, YnprocsD ); } } else { /* * If I don't own any entries of sub( Y ), then zero the entire sub( X ) * residing in this process. */ TYPE->Fset( &N, zero, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc ); } /* * Replicate locally scattered sub( X ) by reducing it */ if( XisRow ) { top = PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); TYPE->Cgsum2d( ctxt, ROW, top, 1, N, Mptr( X, Xii, Xjj, Xld, size ), Xld, -1, 0 ); } else { top = PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); TYPE->Cgsum2d( ctxt, COLUMN, top, N, 1, Mptr( X, Xii, Xjj, Xld, size ), Xld, -1, 0 ); } } else { /* * sub( X ) and sub( Y ) are in a different process row or column */ if( YmyprocR == YprocR ) { /* * If I own a piece of sub( Y ), then send it to the process row or column where * sub( X ) resides and receive back the sub( X ) data from the same process. */ if( YnpD > 0 ) { if( YisRow ) { TYPE->Cgesd2d( ctxt, 1, YnpD, Mptr( Y, Yii, Yjj, Yld, size ), Yld, XprocR, YmyprocD ); TYPE->Cgerv2d( ctxt, 1, YnpD, Mptr( Y, Yii, Yjj, Yld, size ), Yld, XprocR, YmyprocD ); } else { TYPE->Cgesd2d( ctxt, YnpD, 1, Mptr( Y, Yii, Yjj, Yld, size ), Yld, YmyprocD, XprocR ); TYPE->Cgerv2d( ctxt, YnpD, 1, Mptr( Y, Yii, Yjj, Yld, size ), Yld, YmyprocD, XprocR ); } } } if( XmyprocR == XprocR ) { /* * If I own a sub( X ), then receive the distributed part of sub( Y ) owned by * the process where sub( Y ) resides in my row or column. Perform a local swap * as if sub( Y ) would reside in the same process row or column as sub( X ). * Send the result back and finally perform the reduction to replicate sub( X ). */ if( YnpD > 0 ) { buf = PB_Cmalloc( YnpD * size ); if( YisRow ) TYPE->Cgerv2d( ctxt, 1, YnpD, buf, 1, YprocR, XmyprocD ); else TYPE->Cgerv2d( ctxt, YnpD, 1, buf, YnpD, XmyprocD, YprocR ); Yroc = YprocD; kk = 0; if( XisRow ) { ktmp = JX + N; kn = JX + Yinb1D; } else { ktmp = IX + N; kn = IX + Yinb1D; } if( YmyprocD == Yroc ) { TYPE->Fswap( &Yinb1D, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, buf, &ione ); kk += Yinb1D; } else { TYPE->Fset( &Yinb1D, zero, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc ); } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( YmyprocD == Yroc ) { if( XisRow ) TYPE->Fswap( &kbb, Mptr( X, Xii, k, Xld, size ), &Xlinc, buf+kk*size, &ione ); else TYPE->Fswap( &kbb, Mptr( X, k, Xjj, Xld, size ), &Xlinc, buf+kk*size, &ione ); kk += kbb; } else { if( XisRow ) TYPE->Fset( &kbb, zero, Mptr( X, Xii, k, Xld, size ), &Xlinc ); else TYPE->Fset( &kbb, zero, Mptr( X, k, Xjj, Xld, size ), &Xlinc ); } Yroc = MModAdd1( Yroc, YnprocsD ); } if( YisRow ) TYPE->Cgesd2d( ctxt, 1, YnpD, buf, 1, YprocR, XmyprocD ); else TYPE->Cgesd2d( ctxt, YnpD, 1, buf, YnpD, XmyprocD, YprocR ); if( buf ) free( buf ); } else { TYPE->Fset( &N, zero, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc ); } /* * Replicate locally scattered sub( X ) by reducing it */ if( XisRow ) { top = PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); TYPE->Cgsum2d( ctxt, ROW, top, 1, N, Mptr( X, Xii, Xjj, Xld, size ), Xld, -1, 0 ); } else { top = PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); TYPE->Cgsum2d( ctxt, COLUMN, top, N, 1, Mptr( X, Xii, Xjj, Xld, size ), Xld, -1, 0 ); } } } } else { /* * sub( X ) and sub( Y ) are not both row or column vectors */ Xroc = 0; if( XisRow ) { ktmp = JX + N; kn = JX + Yinb1D; } else { ktmp = IX + N; kn = IX + Yinb1D; } /* * Loop over the processes in which sub( Y ) resides, for each process find the * next process Xroc and swap the data. After this, it will be needed to reduce * sub( X ) as above. */ for( p = 0; p < YnprocsD; p++ ) { mydist = MModSub( p, YprocD, YnprocsD ); myproc = MModAdd( YprocD, mydist, YnprocsD ); if( ( XprocR == p ) && ( YprocR == Xroc ) ) { /* * Swap locally at the intersection of the process cross */ if( XmyprocR == p ) { YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, p, YprocD, YnprocsD ); if( YnpD > 0 ) { Yroc = YprocD; kk = ( XisRow ? Yii : Yjj ); if( myproc == Yroc ) { if( XmyprocD == Xroc ) { TYPE->Fswap( &Yinb1D, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, Mptr( Y, Yii, Yjj, Yld, size ), &Ylinc ); kk += Yinb1D; } else { TYPE->Fset( &Yinb1D, zero, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc ); } } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( myproc == Yroc ) { if( XmyprocD == Xroc ) { if( XisRow ) TYPE->Fswap( &kbb, Mptr( X, Xii, k, Xld, size ), &Xlinc, Mptr( Y, kk, Yjj, Yld, size ), &Ylinc ); else TYPE->Fswap( &kbb, Mptr( X, k, Xjj, Xld, size ), &Xlinc, Mptr( Y, Yii, kk, Yld, size ), &Ylinc ); kk += kbb; } else { if( XisRow ) TYPE->Fset( &kbb, zero, Mptr( X, Xii, k, Xld, size ), &Xlinc ); else TYPE->Fset( &kbb, zero, Mptr( X, k, Xjj, Xld, size ), &Xlinc ); } } Yroc = MModAdd1( Yroc, YnprocsD ); } } } } else { /* * Message exchange */ if( ( YmyprocR == YprocR ) && ( YmyprocD == p ) ) { YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, p, YprocD, YnprocsD ); if( YnpD > 0 ) { if( XisRow ) { TYPE->Cgesd2d( ctxt, YnpD, 1, Mptr( Y, Yii, Yjj, Yld, size ), Yld, XprocR, Xroc ); TYPE->Cgerv2d( ctxt, YnpD, 1, Mptr( Y, Yii, Yjj, Yld, size ), Yld, XprocR, Xroc ); } else { TYPE->Cgesd2d( ctxt, 1, YnpD, Mptr( Y, Yii, Yjj, Yld, size ), Yld, Xroc, XprocR ); TYPE->Cgerv2d( ctxt, 1, YnpD, Mptr( Y, Yii, Yjj, Yld, size ), Yld, Xroc, XprocR ); } } } if( XmyprocR == XprocR ) { YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, p, YprocD, YnprocsD ); if( YnpD > 0 ) { Yroc = YprocD; kk = 0; /* * Receive the piece of sub( Y ) that I should handle */ if( XmyprocD == Xroc ) { buf = PB_Cmalloc( YnpD * size ); if( XisRow ) TYPE->Cgerv2d( ctxt, YnpD, 1, buf, YnpD, p, YprocR ); else TYPE->Cgerv2d( ctxt, 1, YnpD, buf, 1, YprocR, p ); } if( myproc == Yroc ) { if( XmyprocD == Xroc ) { TYPE->Fswap( &Yinb1D, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, buf, &ione ); kk += Yinb1D; } else { TYPE->Fset( &Yinb1D, zero, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc ); } } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( myproc == Yroc ) { if( XmyprocD == Xroc ) { if( XisRow ) TYPE->Fswap( &kbb, Mptr( X, Xii, k, Xld, size ), &Xlinc, buf+kk*size, &ione ); else TYPE->Fswap( &kbb, Mptr( X, k, Xjj, Xld, size ), &Xlinc, buf+kk*size, &ione ); kk += kbb; } else { if( XisRow ) TYPE->Fset( &kbb, zero, Mptr( X, Xii, k, Xld, size ), &Xlinc ); else TYPE->Fset( &kbb, zero, Mptr( X, k, Xjj, Xld, size ), &Xlinc ); } } Yroc = MModAdd1( Yroc, YnprocsD ); } if( XmyprocD == Xroc ) { if( XisRow ) TYPE->Cgesd2d( ctxt, YnpD, 1, buf, YnpD, p, YprocR ); else TYPE->Cgesd2d( ctxt, 1, YnpD, buf, 1, YprocR, p ); if( buf ) free( buf ); } } } } Xroc = MModAdd1( Xroc, XnprocsD ); } /* * Replicate locally scattered sub( X ) by reducing it */ if( XmyprocR == XprocR ) { if( XisRow ) { top = PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); TYPE->Cgsum2d( ctxt, ROW, top, 1, N, Mptr( X, Xii, Xjj, Xld, size ), Xld, -1, 0 ); } else { top = PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); TYPE->Cgsum2d( ctxt, COLUMN, top, N, 1, Mptr( X, Xii, Xjj, Xld, size ), Xld, -1, 0 ); } } } } if( YisR ) { /* * Replicate sub( Y ) */ YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); if( YnpD > 0 ) { if( YisRow ) { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); if( YmyprocR == YprocR ) TYPE->Cgebs2d( ctxt, COLUMN, top, 1, YnpD, Mptr( Y, Yii, Yjj, Yld, size ), Yld ); else TYPE->Cgebr2d( ctxt, COLUMN, top, 1, YnpD, Mptr( Y, Yii, Yjj, Yld, size ), Yld, YprocR, YmyprocD ); } else { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); if( YmyprocR == YprocR ) TYPE->Cgebs2d( ctxt, ROW, top, YnpD, 1, Mptr( Y, Yii, Yjj, Yld, size ), Yld ); else TYPE->Cgebr2d( ctxt, ROW, top, YnpD, 1, Mptr( Y, Yii, Yjj, Yld, size ), Yld, YmyprocD, YprocR ); } } } } else { /* * sub( X ) is replicated in every process. Swap the data in process row or * column YprocR when sub( Y ) is not replicated and in every process otherwise. */ if( YisR || ( YmyprocR == YprocR ) ) { YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); if( YnpD > 0 ) { Yroc = YprocD; kk = ( YisRow ? Yjj : Yii ); if( XisRow ) { ktmp = JX + N; kn = JX + Yinb1D; } else { ktmp = IX + N; kn = IX + Yinb1D; } if( YmyprocD == Yroc ) { TYPE->Fswap( &Yinb1D, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, Mptr( Y, Yii, Yjj, Yld, size ), &Ylinc ); kk += Yinb1D; } else { TYPE->Fset( &Yinb1D, zero, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc ); } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( YmyprocD == Yroc ) { if( YisRow ) { if( XisRow ) TYPE->Fswap( &kbb, Mptr( X, Xii, k, Xld, size ), &Xlinc, Mptr( Y, Yii, kk, Yld, size ), &Ylinc ); else TYPE->Fswap( &kbb, Mptr( X, k, Xjj, Xld, size ), &Xlinc, Mptr( Y, Yii, kk, Yld, size ), &Ylinc ); } else { if( XisRow ) TYPE->Fswap( &kbb, Mptr( X, Xii, k, Xld, size ), &Xlinc, Mptr( Y, kk, Yjj, Yld, size ), &Ylinc ); else TYPE->Fswap( &kbb, Mptr( X, k, Xjj, Xld, size ), &Xlinc, Mptr( Y, kk, Yjj, Yld, size ), &Ylinc ); } kk += kbb; } else { if( XisRow ) TYPE->Fset( &kbb, zero, Mptr( X, Xii, k, Xld, size ), &Xlinc ); else TYPE->Fset( &kbb, zero, Mptr( X, k, Xjj, Xld, size ), &Xlinc ); } Yroc = MModAdd1( Yroc, YnprocsD ); } } else { /* * If I don't own any of sub( Y ), then just zero sub( X ) */ TYPE->Fset( &N, zero, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc ); } /* * Replicate locally scattered sub( X ) by reducing it in the process scope of * sub( Y ) */ scope = ( YisRow ? CROW : CCOLUMN ); top = PB_Ctop( &ctxt, COMBINE, &scope, TOP_GET ); if( XisRow ) TYPE->Cgsum2d( ctxt, &scope, top, 1, N, Mptr( X, Xii, Xjj, Xld, size ), Xld, -1, 0 ); else TYPE->Cgsum2d( ctxt, &scope, top, N, 1, Mptr( X, Xii, Xjj, Xld, size ), Xld, -1, 0 ); } if( !YisR ) { /* * If sub( Y ) is not replicated, then broadcast the result to the other pro- * cesses that own a piece of sub( X ), but were not involved in the above swap * operation. */ if( XisRow ) { Xm = 1; Xn = N; } else { Xm = N; Xn = 1; } if( YisRow ) { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); if( YmyprocR == YprocR ) TYPE->Cgebs2d( ctxt, COLUMN, top, Xm, Xn, Mptr( X, Xii, Xjj, Xld, size ), Xld ); else TYPE->Cgebr2d( ctxt, COLUMN, top, Xm, Xn, Mptr( X, Xii, Xjj, Xld, size ), Xld, YprocR, YmyprocD ); } else { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); if( YmyprocR == YprocR ) TYPE->Cgebs2d( ctxt, ROW, top, Xm, Xn, Mptr( X, Xii, Xjj, Xld, size ), Xld ); else TYPE->Cgebr2d( ctxt, ROW, top, Xm, Xn, Mptr( X, Xii, Xjj, Xld, size ), Xld, YmyprocD, YprocR ); } } } /* * End of PB_CpswapND */ }