/* --------------------------------------------------------------------- * * -- PBLAS auxiliary routine (version 2.0) -- * University of Tennessee, Knoxville, Oak Ridge National Laboratory, * and University of California, Berkeley. * April 1, 1998 * * --------------------------------------------------------------------- */ /* * Include files */ #include "../pblas.h" #include "../PBpblas.h" #include "../PBtools.h" #include "../PBblacs.h" #include "../PBblas.h" #ifdef __STDC__ void PB_CpdotND( PBTYP_T * TYPE, int N, char * DOT, char * X, int IX, int JX, int * DESCX, int INCX, char * Y, int IY, int JY, int * DESCY, int INCY, VVDOT_T FDOT ) #else void PB_CpdotND( TYPE, N, DOT, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY, FDOT ) /* * .. Scalar Arguments .. */ int INCX, INCY, IX, IY, JX, JY, N; char * DOT; PBTYP_T * TYPE; VVDOT_T FDOT; /* * .. Array Arguments .. */ int * DESCX, * DESCY; char * X, * Y; #endif { /* * Purpose * ======= * * PB_CpdotND forms the dot product of two subvectors, * * DOT := sub( X )**T * sub( Y ) or DOT := sub( X )**H * sub( Y ), * * where * * sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X, * X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X, and, * * sub( Y ) denotes Y(IY,JY:JY+N-1) if INCY = M_Y, * Y(IY:IY+N-1,JY) if INCY = 1 and INCY <> M_Y. * * sub( X ) is assumed to be not distributed, and sub( Y ) is assumed to * be distributed. * * Notes * ===== * * A description vector is associated with each 2D block-cyclicly dis- * tributed matrix. This vector stores the information required to * establish the mapping between a matrix entry and its corresponding * process and memory location. * * In the following comments, the character _ should be read as * "of the distributed matrix". Let A be a generic term for any 2D * block cyclicly distributed matrix. Its description vector is DESC_A: * * NOTATION STORED IN EXPLANATION * ---------------- --------------- ------------------------------------ * DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type. * CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating * the NPROW x NPCOL BLACS process grid * A is distributed over. The context * itself is global, but the handle * (the integer value) may vary. * M_A (global) DESCA[ M_ ] The number of rows in the distribu- * ted matrix A, M_A >= 0. * N_A (global) DESCA[ N_ ] The number of columns in the distri- * buted matrix A, N_A >= 0. * IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left * block of the matrix A, IMB_A > 0. * INB_A (global) DESCA[ INB_ ] The number of columns of the upper * left block of the matrix A, * INB_A > 0. * MB_A (global) DESCA[ MB_ ] The blocking factor used to distri- * bute the last M_A-IMB_A rows of A, * MB_A > 0. * NB_A (global) DESCA[ NB_ ] The blocking factor used to distri- * bute the last N_A-INB_A columns of * A, NB_A > 0. * RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first * row of the matrix A is distributed, * NPROW > RSRC_A >= 0. * CSRC_A (global) DESCA[ CSRC_ ] The process column over which the * first column of A is distributed. * NPCOL > CSRC_A >= 0. * LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local * array storing the local blocks of * the distributed matrix A, * IF( Lc( 1, N_A ) > 0 ) * LLD_A >= MAX( 1, Lr( 1, M_A ) ) * ELSE * LLD_A >= 1. * * Let K be the number of rows of a matrix A starting at the global in- * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would * receive if these K rows were distributed over NPROW processes. If K * is the number of columns of a matrix A starting at the global index * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co- * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if * these K columns were distributed over NPCOL processes. * * The values of Lr() and Lc() may be determined via a call to the func- * tion PB_Cnumroc: * Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW ) * Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL ) * * Arguments * ========= * * TYPE (local input) pointer to a PBTYP_T structure * On entry, TYPE is a pointer to a structure of type PBTYP_T, * that contains type information (See pblas.h). * * N (global input) INTEGER * On entry, N specifies the length of the subvectors to be * multiplied. N must be at least zero. * * DOT (local output) pointer to CHAR * On exit, DOT specifies the dot product of the two subvectors * sub( X ) and sub( Y ) only in their scope (See below for fur- * ther details). * * X (local input) pointer to CHAR * On entry, X is an array of dimension (LLD_X, Kx), where LLD_X * is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and * MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least * Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise. * Before entry, this array contains the local entries of the * matrix X. * * IX (global input) INTEGER * On entry, IX specifies X's global row index, which points to * the beginning of the submatrix sub( X ). * * JX (global input) INTEGER * On entry, JX specifies X's global column index, which points * to the beginning of the submatrix sub( X ). * * DESCX (global and local input) INTEGER array * On entry, DESCX is an integer array of dimension DLEN_. This * is the array descriptor for the matrix X. * * INCX (global input) INTEGER * On entry, INCX specifies the global increment for the * elements of X. Only two values of INCX are supported in * this version, namely 1 and M_X. INCX must not be zero. * * Y (local input) pointer to CHAR * On entry, Y is an array of dimension (LLD_Y, Ky), where LLD_Y * is at least MAX( 1, Lr( 1, IY ) ) when INCY = M_Y and * MAX( 1, Lr( 1, IY+N-1 ) ) otherwise, and, Ky is at least * Lc( 1, JY+N-1 ) when INCY = M_Y and Lc( 1, JY ) otherwise. * Before entry, this array contains the local entries of the * matrix Y. * * IY (global input) INTEGER * On entry, IY specifies Y's global row index, which points to * the beginning of the submatrix sub( Y ). * * JY (global input) INTEGER * On entry, JY specifies Y's global column index, which points * to the beginning of the submatrix sub( Y ). * * DESCY (global and local input) INTEGER array * On entry, DESCY is an integer array of dimension DLEN_. This * is the array descriptor for the matrix Y. * * INCY (global input) INTEGER * On entry, INCY specifies the global increment for the * elements of Y. Only two values of INCY are supported in * this version, namely 1 and M_Y. INCY must not be zero. * * FDOT (local input) pointer to a function of type VVDOT * On entry, FDOT points to a subroutine that computes the local * dot product of two vectors. * * Further Details * =============== * * When the result of a vector-oriented PBLAS call is a scalar, this * scalar is set only within the process scope which owns the vector(s) * being operated on. Let sub( X ) be a generic term for the input vec- * tor(s). Then, the processes owning the correct the answer is determi- * ned as follows: if an operation involves more than one vector, the * processes receiving the result will be the union of the following set * of processes for each vector: * * If N = 1, M_X = 1 and INCX = 1, then one cannot determine if a pro- * cess row or process column owns the vector operand, therefore only * the process owning sub( X ) receives the correct result; * * If INCX = M_X, then sub( X ) is a vector distributed over a process * row. Each process in this row receives the result; * * If INCX = 1, then sub( X ) is a vector distributed over a process * column. Each process in this column receives the result; * * -- Written on April 1, 1998 by * Antoine Petitet, University of Tennessee, Knoxville 37996, USA. * * --------------------------------------------------------------------- */ /* * .. Local Scalars .. */ char * top; int RRorCC, Xcol, Xii, XisR, XisRow, Xjj, Xld, Xlinc, XmyprocD, XmyprocR, XnprocsD, XnprocsR, XprocR, Xroc, Xrow, Ycol, Yii, Yinb1D, YisR, YisRow, Yjj, Yld, Ylinc, YmyprocD, YmyprocR, YnbD, YnpD, YnprocsD, YnprocsR, YprocD, YprocR, Yroc, Yrow, ctxt, ione=1, k, kbb, kk, kn, ktmp, mycol, mydist, myproc, myrow, npcol, nprow, p, size; /* * .. Local Arrays .. */ char * Xptr = NULL, * Yptr = NULL, * buf = NULL; /* .. * .. Executable Statements .. * */ /* * Retrieve process grid information */ Cblacs_gridinfo( ( ctxt = DESCX[CTXT_] ), &nprow, &npcol, &myrow, &mycol ); /* * Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Xcol ... */ PB_Cinfog2l( IX, JX, DESCX, nprow, npcol, myrow, mycol, &Xii, &Xjj, &Xrow, &Xcol ); if( ( XisRow = ( INCX == DESCX[M_] ) ) != 0 ) { Xld = DESCX[LLD_]; Xlinc = Xld; XmyprocD = mycol; XnprocsD = npcol; XprocR = Xrow; XmyprocR = myrow; XnprocsR = nprow; XisR = ( ( Xrow == -1 ) || ( XnprocsR == 1 ) ); } else { Xld = DESCX[LLD_]; Xlinc = 1; XmyprocD = myrow; XnprocsD = nprow; XprocR = Xcol; XmyprocR = mycol; XnprocsR = npcol; XisR = ( ( Xcol == -1 ) || ( XnprocsR == 1 ) ); } /* * Retrieve sub( Y )'s local information: Yii, Yjj, Yrow, Ycol ... */ PB_Cinfog2l( IY, JY, DESCY, nprow, npcol, myrow, mycol, &Yii, &Yjj, &Yrow, &Ycol ); if( ( YisRow = ( INCY == DESCY[M_] ) ) != 0 ) { YnbD = DESCY[NB_]; Yld = DESCY[LLD_]; Ylinc = Yld; YprocR = Yrow; YmyprocR = myrow; YnprocsR = nprow; YprocD = Ycol; YmyprocD = mycol; YnprocsD = npcol; Yinb1D = PB_Cfirstnb( N, JY, DESCY[INB_], YnbD ); } else { YnbD = DESCY[MB_]; Yld = DESCY[LLD_]; Ylinc = 1; YprocR = Ycol; YmyprocR = mycol; YnprocsR = npcol; YprocD = Yrow; YmyprocD = myrow; YnprocsD = nprow; Yinb1D = PB_Cfirstnb( N, IY, DESCY[IMB_], YnbD ); } YisR = ( ( YprocR == -1 ) || ( YnprocsR == 1 ) ); /* * Are sub( X ) and sub( Y ) both row or column vectors ? */ RRorCC = ( ( XisRow && YisRow ) || ( !( XisRow ) && !( YisRow ) ) ); /* * sub( X ) is not distributed and sub( Y ) is distributed */ if( !( XisR ) ) { /* * sub( X ) is not replicated. Since this operation is local if sub( X ) and * sub( Y ) are both row or column vectors, choose YprocR = XprocR when RRorCC, * and YprocR = 0 otherwise. */ if( YisR ) { YprocR = ( ( RRorCC ) ? XprocR : 0 ); } /* * Now, it is just like sub( Y ) is not replicated, this information however is * kept in YisR for later use. */ if( RRorCC ) { /* * sub( X ) and sub( Y ) are both row or column vectors */ if( XprocR == YprocR ) { /* * sub( X ) and sub( Y ) are in the same process row or column */ if( ( XmyprocR == XprocR ) || ( YmyprocR == YprocR ) ) { size = TYPE->size; YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); /* * In a given process, the dot product is computed with sub( Y ) and the cor- * responding non distributed part of sub( X ). In the other processes, this * part of sub( X ) is simply ignored. */ if( YnpD > 0 ) { Yroc = YprocD; if( XisRow ) { kk = Yjj; ktmp = JX + N; kn = JX + Yinb1D; } else { kk = Yii; ktmp = IX + N; kn = IX + Yinb1D; } if( YmyprocD == Yroc ) { FDOT( &Yinb1D, DOT, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, Mptr( Y, Yii, Yjj, Yld, size ), &Ylinc ); kk += Yinb1D; } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( YmyprocD == Yroc ) { if( XisRow ) FDOT( &kbb, DOT, Mptr( X, Xii, k, Xld, size ), &Xlinc, Mptr( Y, Yii, kk, Yld, size ), &Ylinc ); else FDOT( &kbb, DOT, Mptr( X, k, Xjj, Xld, size ), &Xlinc, Mptr( Y, kk, Yjj, Yld, size ), &Ylinc ); kk += kbb; } Yroc = MModAdd1( Yroc, YnprocsD ); } } /* * Replicate locally scattered dot product by reducing it */ if( XisRow ) { top = PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); TYPE->Cgsum2d( ctxt, ROW, top, 1, 1, DOT, 1, -1, 0 ); } else { top = PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); TYPE->Cgsum2d( ctxt, COLUMN, top, 1, 1, DOT, 1, -1, 0 ); } } } else { /* * sub( X ) and sub( Y ) are in a different process row or column */ if( YmyprocR == YprocR ) { size = TYPE->size; YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); /* * If I own a piece of sub( Y ), then send it to the process row or column where * sub( X ) resides and receive the dot product when sub( Y ) is not replicated. */ if( YisRow ) { if( YnpD > 0 ) TYPE->Cgesd2d( ctxt, 1, YnpD, Mptr( Y, Yii, Yjj, Yld, size ), Yld, XprocR, YmyprocD ); TYPE->Cgerv2d( ctxt, 1, 1, DOT, 1, XprocR, XmyprocD ); } else { if( YnpD > 0 ) TYPE->Cgesd2d( ctxt, YnpD, 1, Mptr( Y, Yii, Yjj, Yld, size ), Yld, YmyprocD, XprocR ); TYPE->Cgerv2d( ctxt, 1, 1, DOT, 1, XmyprocD, XprocR ); } } if( XmyprocR == XprocR ) { size = TYPE->size; YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, YmyprocD, YprocD, YnprocsD ); /* * If I own sub( X ), then receive the distributed part of sub( Y ) owned by * the process where sub( Y ) resides in my row or column. Compute the partial * dot product as if sub( Y ) would reside in the same process row or column as * sub( X ). Combine the local results. */ if( YnpD > 0 ) { buf = PB_Cmalloc( YnpD * size ); if( YisRow ) TYPE->Cgerv2d( ctxt, 1, YnpD, buf, 1, YprocR, XmyprocD ); else TYPE->Cgerv2d( ctxt, YnpD, 1, buf, YnpD, XmyprocD, YprocR ); Yroc = YprocD; kk = 0; if( XisRow ) { ktmp = JX + N; kn = JX + Yinb1D; } else { ktmp = IX + N; kn = IX + Yinb1D; } if( YmyprocD == Yroc ) { FDOT( &Yinb1D, DOT, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, buf, &ione ); kk += Yinb1D; } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( YmyprocD == Yroc ) { if( XisRow ) FDOT( &kbb, DOT, Mptr( X, Xii, k, Xld, size ), &Xlinc, buf+kk*size, &ione ); else FDOT( &kbb, DOT, Mptr( X, k, Xjj, Xld, size ), &Xlinc, buf+kk*size, &ione ); kk += kbb; } Yroc = MModAdd1( Yroc, YnprocsD ); } if( buf ) free( buf ); } /* * Combine the local results within the process row or column XprocR and * send the result to the process row or column YprocR when sub( Y ) is not * replicated. */ if( XisRow ) { top = PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); TYPE->Cgsum2d( ctxt, ROW, top, 1, 1, DOT, 1, -1, 0 ); if( !YisR ) TYPE->Cgesd2d( ctxt, 1, 1, DOT, 1, YprocR, YmyprocD ); } else { top = PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); TYPE->Cgsum2d( ctxt, COLUMN, top, 1, 1, DOT, 1, -1, 0 ); if( !YisR ) TYPE->Cgesd2d( ctxt, 1, 1, DOT, 1, YmyprocD, YprocR ); } } } if( YisR ) { /* * If sub( Y ) is replicated, then bcast the result */ if( XisRow ) { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); if( XmyprocR == XprocR ) TYPE->Cgebs2d( ctxt, COLUMN, top, 1, 1, DOT, 1 ); else TYPE->Cgebr2d( ctxt, COLUMN, top, 1, 1, DOT, 1, XprocR, XmyprocD ); } else { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); if( XmyprocR == XprocR ) TYPE->Cgebs2d( ctxt, ROW, top, 1, 1, DOT, 1 ); else TYPE->Cgebr2d( ctxt, ROW, top, 1, 1, DOT, 1, XmyprocD, XprocR ); } } } else { /* * sub( X ) and sub( Y ) are not both row or column vectors */ if( ( XmyprocR == XprocR ) || ( YmyprocR == YprocR ) ) { size = TYPE->size; Xroc = 0; if( XisRow ) { ktmp = JX + N; kn = JX + Yinb1D; } else { ktmp = IX + N; kn = IX + Yinb1D; } /* * Loop over the processes in which sub( Y ) resides, for each process find the * next process Xroc and compute the dot product. After this, it will be needed * to reduce the local dot produsts as above. */ for( p = 0; p < YnprocsD; p++ ) { mydist = MModSub( p, YprocD, YnprocsD ); myproc = MModAdd( YprocD, mydist, YnprocsD ); if( ( XprocR == p ) && ( YprocR == Xroc ) ) { /* * Compute locally the partial dot product at the intersection of the process * cross. */ if( ( XmyprocR == p ) && ( XmyprocD == Xroc ) ) { YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, p, YprocD, YnprocsD ); if( YnpD > 0 ) { Yroc = YprocD; kk = ( XisRow ? Yii : Yjj ); if( myproc == Yroc ) { FDOT( &Yinb1D, DOT, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, Mptr( Y, Yii, Yjj, Yld, size ), &Ylinc ); kk += Yinb1D; } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( myproc == Yroc ) { if( XisRow ) FDOT( &kbb, DOT, Mptr( X, Xii, k, Xld, size ), &Xlinc, Mptr( Y, kk, Yjj, Yld, size ), &Ylinc ); else FDOT( &kbb, DOT, Mptr( X, k, Xjj, Xld, size ), &Xlinc, Mptr( Y, Yii, kk, Yld, size ), &Ylinc ); kk += kbb; } Yroc = MModAdd1( Yroc, YnprocsD ); } } } } else { /* * Message exchange */ if( ( YmyprocR == YprocR ) && ( YmyprocD == p ) ) { YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, p, YprocD, YnprocsD ); if( YnpD > 0 ) { if( XisRow ) TYPE->Cgesd2d( ctxt, YnpD, 1, Mptr( Y, Yii, Yjj, Yld, size ), Yld, XprocR, Xroc ); else TYPE->Cgesd2d( ctxt, 1, YnpD, Mptr( Y, Yii, Yjj, Yld, size ), Yld, Xroc, XprocR ); } } if( ( XmyprocR == XprocR ) && ( XmyprocD == Xroc ) ) { YnpD = PB_Cnumroc( N, 0, Yinb1D, YnbD, p, YprocD, YnprocsD ); if( YnpD > 0 ) { buf = PB_Cmalloc( YnpD * size ); Yroc = YprocD; kk = 0; /* * Receive the piece of sub( Y ) that I should handle */ if( XisRow ) TYPE->Cgerv2d( ctxt, YnpD, 1, buf, YnpD, p, YprocR ); else TYPE->Cgerv2d( ctxt, 1, YnpD, buf, 1, YprocR, p ); if( myproc == Yroc ) { FDOT( &Yinb1D, DOT, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, buf, &ione ); kk += Yinb1D; } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( myproc == Yroc ) { if( XisRow ) FDOT( &kbb, DOT, Mptr( X, Xii, k, Xld, size ), &Xlinc, buf+kk*size, &ione ); else FDOT( &kbb, DOT, Mptr( X, k, Xjj, Xld, size ), &Xlinc, buf+kk*size, &ione ); kk += kbb; } Yroc = MModAdd1( Yroc, YnprocsD ); } if( buf ) free( buf ); } } } Xroc = MModAdd1( Xroc, XnprocsD ); } /* * Combine the local results in sub( X )'s scope */ if( XmyprocR == XprocR ) { if( XisRow ) { top = PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); TYPE->Cgsum2d( ctxt, ROW, top, 1, 1, DOT, 1, -1, 0 ); } else { top = PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); TYPE->Cgsum2d( ctxt, COLUMN, top, 1, 1, DOT, 1, -1, 0 ); } } } /* * Broadcast the result in sub( Y )'s scope */ if( YisR || ( YmyprocR == YprocR ) ) { if( YisRow ) { top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET ); if( XmyprocR == XprocR ) TYPE->Cgebs2d( ctxt, ROW, top, 1, 1, DOT, 1 ); else TYPE->Cgebr2d( ctxt, ROW, top, 1, 1, DOT, 1, YmyprocR, XprocR ); } else { top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET ); if( XmyprocR == XprocR ) TYPE->Cgebs2d( ctxt, COLUMN, top, 1, 1, DOT, 1 ); else TYPE->Cgebr2d( ctxt, COLUMN, top, 1, 1, DOT, 1, XprocR, YmyprocR ); } } } } else { /* * sub( X ) is replicated in every process. Compute the local dot product in * process row or column YprocR when sub( Y ) is not replicated and in every * process otherwise. */ if( YisR || ( YmyprocR == YprocR ) ) { size = TYPE->size; Yroc = YprocD; kk = ( YisRow ? Yjj : Yii ); if( XisRow ) { ktmp = JX + N; kn = JX + Yinb1D; } else { ktmp = IX + N; kn = IX + Yinb1D; } if( YmyprocD == Yroc ) { FDOT( &Yinb1D, DOT, Mptr( X, Xii, Xjj, Xld, size ), &Xlinc, Mptr( Y, Yii, Yjj, Yld, size ), &Ylinc ); kk += Yinb1D; } Yroc = MModAdd1( Yroc, YnprocsD ); for( k = kn; k < ktmp; k += YnbD ) { kbb = ktmp - k; kbb = MIN( kbb, YnbD ); if( YmyprocD == Yroc ) { if( XisRow ) { Xptr = Mptr( X, Xii, k, Xld, size ); } else { Xptr = Mptr( X, k, Xjj, Xld, size ); } if( YisRow ) { Yptr = Mptr( Y, Yii, kk, Yld, size ); } else { Yptr = Mptr( Y, kk, Yjj, Yld, size ); } FDOT( &kbb, DOT, Xptr, &Xlinc, Yptr, &Ylinc ); kk += kbb; } Yroc = MModAdd1( Yroc, YnprocsD ); } } if( YisR ) { /* * sub( Y ) is replicated, combine the results in each process row or column. */ if( YisRow ) { top = PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET ); TYPE->Cgsum2d( ctxt, ROW, top, 1, 1, DOT, 1, -1, 0 ); } else { top = PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET ); TYPE->Cgsum2d( ctxt, COLUMN, top, 1, 1, DOT, 1, -1, 0 ); } } else { /* * sub( Y ) is not replicated, combine the results in the entire grid at once. */ top = PB_Ctop( &ctxt, COMBINE, ALL, TOP_GET ); TYPE->Cgsum2d( ctxt, ALL, top, 1, 1, DOT, 1, -1, 0 ); } } /* * End of PB_CpdotND */ }