SUBROUTINE PDSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, ORFAC, Z, IZ,
$ JZ, DESCZ, WORK, LWORK, IWORK, LIWORK, IFAIL,
$ ICLUSTR, GAP, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
* .. Scalar Arguments ..
INTEGER INFO, IZ, JZ, LIWORK, LWORK, M, N
DOUBLE PRECISION ORFAC
* ..
* .. Array Arguments ..
INTEGER DESCZ( * ), IBLOCK( * ), ICLUSTR( * ),
$ IFAIL( * ), ISPLIT( * ), IWORK( * )
DOUBLE PRECISION D( * ), E( * ), GAP( * ), W( * ), WORK( * ),
$ Z( * )
* ..
*
* Purpose
* =======
*
* PDSTEIN computes the eigenvectors of a symmetric tridiagonal matrix
* in parallel, using inverse iteration. The eigenvectors found
* correspond to user specified eigenvalues. PDSTEIN does not
* orthogonalize vectors that are on different processes. The extent
* of orthogonalization is controlled by the input parameter LWORK.
* Eigenvectors that are to be orthogonalized are computed by the same
* process. PDSTEIN decides on the allocation of work among the
* processes and then calls DSTEIN2 (modified LAPACK routine) on each
* individual process. If insufficient workspace is allocated, the
* expected orthogonalization may not be done.
*
* Note : If the eigenvectors obtained are not orthogonal, increase
* LWORK and run the code again.
*
* Notes
* =====
*
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension r x c.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the r processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the c processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
* Arguments
* =========
*
* P = NPROW * NPCOL is the total number of processes
*
* N (global input) INTEGER
* The order of the tridiagonal matrix T. N >= 0.
*
* D (global input) DOUBLE PRECISION array, dimension (N)
* The n diagonal elements of the tridiagonal matrix T.
*
* E (global input) DOUBLE PRECISION array, dimension (N-1)
* The (n-1) off-diagonal elements of the tridiagonal matrix T.
*
* M (global input) INTEGER
* The total number of eigenvectors to be found. 0 <= M <= N.
*
* W (global input/global output) DOUBLE PRECISION array, dim (M)
* On input, the first M elements of W contain all the
* eigenvalues for which eigenvectors are to be computed. The
* eigenvalues should be grouped by split-off block and ordered
* from smallest to largest within the block (The output array
* W from PDSTEBZ with ORDER='b' is expected here). This
* array should be replicated on all processes.
* On output, the first M elements contain the input
* eigenvalues in ascending order.
*
* Note : To obtain orthogonal vectors, it is best if
* eigenvalues are computed to highest accuracy ( this can be
* done by setting ABSTOL to the underflow threshold =
* DLAMCH('U') --- ABSTOL is an input parameter
* to PDSTEBZ )
*
* IBLOCK (global input) INTEGER array, dimension (N)
* The submatrix indices associated with the corresponding
* eigenvalues in W -- 1 for eigenvalues belonging to the
* first submatrix from the top, 2 for those belonging to
* the second submatrix, etc. (The output array IBLOCK
* from PDSTEBZ is expected here).
*
* ISPLIT (global input) INTEGER array, dimension (N)
* The splitting points, at which T breaks up into submatrices.
* The first submatrix consists of rows/columns 1 to ISPLIT(1),
* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
* etc., and the NSPLIT-th consists of rows/columns
* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N (The output array
* ISPLIT from PDSTEBZ is expected here.)
*
* ORFAC (global input) DOUBLE PRECISION
* ORFAC specifies which eigenvectors should be orthogonalized.
* Eigenvectors that correspond to eigenvalues which are within
* ORFAC*||T|| of each other are to be orthogonalized.
* However, if the workspace is insufficient (see LWORK), this
* tolerance may be decreased until all eigenvectors to be
* orthogonalized can be stored in one process.
* No orthogonalization will be done if ORFAC equals zero.
* A default value of 10^-3 is used if ORFAC is negative.
* ORFAC should be identical on all processes.
*
* Z (local output) DOUBLE PRECISION array,
* dimension (DESCZ(DLEN_), N/npcol + NB)
* Z contains the computed eigenvectors associated with the
* specified eigenvalues. Any vector which fails to converge is
* set to its current iterate after MAXITS iterations ( See
* DSTEIN2 ).
* On output, Z is distributed across the P processes in block
* cyclic format.
*
* IZ (global input) INTEGER
* Z's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JZ (global input) INTEGER
* Z's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
*
* WORK (local workspace/global output) DOUBLE PRECISION array,
* dimension ( LWORK )
* On output, WORK(1) gives a lower bound on the
* workspace ( LWORK ) that guarantees the user desired
* orthogonalization (see ORFAC).
* Note that this may overestimate the minimum workspace needed.
*
* LWORK (local input) integer
* LWORK controls the extent of orthogonalization which can be
* done. The number of eigenvectors for which storage is
* allocated on each process is
* NVEC = floor(( LWORK- max(5*N,NP00*MQ00) )/N).
* Eigenvectors corresponding to eigenvalue clusters of size
* NVEC - ceil(M/P) + 1 are guaranteed to be orthogonal ( the
* orthogonality is similar to that obtained from DSTEIN2).
* Note : LWORK must be no smaller than:
* max(5*N,NP00*MQ00) + ceil(M/P)*N,
* and should have the same input value on all processes.
* It is the minimum value of LWORK input on different processes
* that is significant.
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* IWORK (local workspace/global output) INTEGER array,
* dimension ( 3*N+P+1 )
* On return, IWORK(1) contains the amount of integer workspace
* required.
* On return, the IWORK(2) through IWORK(P+2) indicate
* the eigenvectors computed by each process. Process I computes
* eigenvectors indexed IWORK(I+2)+1 thru' IWORK(I+3).
*
* LIWORK (local input) INTEGER
* Size of array IWORK. Must be >= 3*N + P + 1
*
* If LIWORK = -1, then LIWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* IFAIL (global output) integer array, dimension (M)
* On normal exit, all elements of IFAIL are zero.
* If one or more eigenvectors fail to converge after MAXITS
* iterations (as in DSTEIN), then INFO > 0 is returned.
* If mod(INFO,M+1)>0, then
* for I=1 to mod(INFO,M+1), the eigenvector
* corresponding to the eigenvalue W(IFAIL(I)) failed to
* converge ( W refers to the array of eigenvalues on output ).
*
* ICLUSTR (global output) integer array, dimension (2*P)
* This output array contains indices of eigenvectors
* corresponding to a cluster of eigenvalues that could not be
* orthogonalized due to insufficient workspace (see LWORK,
* ORFAC and INFO). Eigenvectors corresponding to clusters of
* eigenvalues indexed ICLUSTR(2*I-1) to ICLUSTR(2*I), I = 1 to
* INFO/(M+1), could not be orthogonalized due to lack of
* workspace. Hence the eigenvectors corresponding to these
* clusters may not be orthogonal. ICLUSTR is a zero terminated
* array --- ( ICLUSTR(2*K).NE.0 .AND. ICLUSTR(2*K+1).EQ.0 )
* if and only if K is the number of clusters.
*
* GAP (global output) DOUBLE PRECISION array, dimension (P)
* This output array contains the gap between eigenvalues whose
* eigenvectors could not be orthogonalized. The INFO/M output
* values in this array correspond to the INFO/(M+1) clusters
* indicated by the array ICLUSTR. As a result, the dot product
* between eigenvectors corresponding to the I^th cluster may be
* as high as ( O(n)*macheps ) / GAP(I).
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* < 0 : if INFO = -I, the I-th argument had an illegal value
* > 0 : if mod(INFO,M+1) = I, then I eigenvectors failed to
* converge in MAXITS iterations. Their indices are
* stored in the array IFAIL.
* if INFO/(M+1) = I, then eigenvectors corresponding to
* I clusters of eigenvalues could not be orthogonalized
* due to insufficient workspace. The indices of the
* clusters are stored in the array ICLUSTR.
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, MOD
* ..
* .. External Functions ..
INTEGER ICEIL, NUMROC
EXTERNAL ICEIL, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DGEBR2D, DGEBS2D,
$ DLASRT2, DSTEIN2, IGAMN2D, IGEBR2D, IGEBS2D,
$ PCHK1MAT, PDLAEVSWP, PXERBLA
* ..
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO, NEGONE, ODM1, FIVE, ODM3, ODM18
PARAMETER ( ZERO = 0.0D+0, NEGONE = -1.0D+0,
$ ODM1 = 1.0D-1, FIVE = 5.0D+0, ODM3 = 1.0D-3,
$ ODM18 = 1.0D-18 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, SORTED
INTEGER B1, BN, BNDRY, CLSIZ, COL, I, IFIRST, IINFO,
$ ILAST, IM, INDRW, ITMP, J, K, LGCLSIZ, LLWORK,
$ LOAD, LOCINFO, MAXVEC, MQ00, MYCOL, MYROW,
$ NBLK, NERR, NEXT, NP00, NPCOL, NPROW, NVS,
$ OLNBLK, P, ROW, SELF, TILL, TOTERR
DOUBLE PRECISION DIFF, MINGAP, ONENRM, ORGFAC, ORTOL, TMPFAC
* ..
* .. Local Arrays ..
INTEGER IDUM1( 1 ), IDUM2( 1 )
* ..
* .. Executable Statements ..
* This is just to keep ftnchek happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
CALL BLACS_GRIDINFO( DESCZ( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
SELF = MYROW*NPCOL + MYCOL
*
* Make sure that we belong to this context (before calling PCHK1MAT)
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -( 1200+CTXT_ )
ELSE
*
* Make sure that NPROW>0 and NPCOL>0 before calling NUMROC
*
CALL CHK1MAT( N, 1, N, 1, IZ, JZ, DESCZ, 12, INFO )
IF( INFO.EQ.0 ) THEN
*
* Now we know that our context is good enough to
* perform the rest of the checks
*
NP00 = NUMROC( N, DESCZ( MB_ ), 0, 0, NPROW )
MQ00 = NUMROC( M, DESCZ( NB_ ), 0, 0, NPCOL )
P = NPROW*NPCOL
*
* Compute the maximum number of vectors per process
*
LLWORK = LWORK
CALL IGAMN2D( DESCZ( CTXT_ ), 'A', ' ', 1, 1, LLWORK, 1, 1,
$ 1, -1, -1, -1 )
INDRW = MAX( 5*N, NP00*MQ00 )
IF( N.NE.0 )
$ MAXVEC = ( LLWORK-INDRW ) / N
LOAD = ICEIL( M, P )
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
TMPFAC = ORFAC
CALL DGEBS2D( DESCZ( CTXT_ ), 'ALL', ' ', 1, 1, TMPFAC,
$ 1 )
ELSE
CALL DGEBR2D( DESCZ( CTXT_ ), 'ALL', ' ', 1, 1, TMPFAC,
$ 1, 0, 0 )
END IF
*
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
IF( M.LT.0 .OR. M.GT.N ) THEN
INFO = -4
ELSE IF( MAXVEC.LT.LOAD .AND. .NOT.LQUERY ) THEN
INFO = -14
ELSE IF( LIWORK.LT.3*N+P+1 .AND. .NOT.LQUERY ) THEN
INFO = -16
ELSE
DO 10 I = 2, M
IF( IBLOCK( I ).LT.IBLOCK( I-1 ) ) THEN
INFO = -6
GO TO 20
END IF
IF( IBLOCK( I ).EQ.IBLOCK( I-1 ) .AND. W( I ).LT.
$ W( I-1 ) ) THEN
INFO = -5
GO TO 20
END IF
10 CONTINUE
20 CONTINUE
IF( INFO.EQ.0 ) THEN
IF( ABS( TMPFAC-ORFAC ).GT.FIVE*ABS( TMPFAC ) )
$ INFO = -8
END IF
END IF
*
END IF
IDUM1( 1 ) = M
IDUM2( 1 ) = 4
CALL PCHK1MAT( N, 1, N, 1, IZ, JZ, DESCZ, 12, 1, IDUM1, IDUM2,
$ INFO )
WORK( 1 ) = DBLE( MAX( 5*N, NP00*MQ00 )+ICEIL( M, P )*N )
IWORK( 1 ) = 3*N + P + 1
END IF
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCZ( CTXT_ ), 'PDSTEIN', -INFO )
RETURN
ELSE IF( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) THEN
RETURN
END IF
*
DO 30 I = 1, M
IFAIL( I ) = 0
30 CONTINUE
DO 40 I = 1, P + 1
IWORK( I ) = 0
40 CONTINUE
DO 50 I = 1, P
GAP( I ) = NEGONE
ICLUSTR( 2*I-1 ) = 0
ICLUSTR( 2*I ) = 0
50 CONTINUE
*
*
* Quick return if possible
*
IF( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
*
IF( ORFAC.GE.ZERO ) THEN
TMPFAC = ORFAC
ELSE
TMPFAC = ODM3
END IF
ORGFAC = TMPFAC
*
* Allocate the work among the processes
*
ILAST = M / LOAD
IF( MOD( M, LOAD ).EQ.0 )
$ ILAST = ILAST - 1
OLNBLK = -1
NVS = 0
NEXT = 1
IM = 0
ONENRM = ZERO
DO 100 I = 0, ILAST - 1
NEXT = NEXT + LOAD
J = NEXT - 1
IF( J.GT.NVS ) THEN
NBLK = IBLOCK( NEXT )
IF( NBLK.EQ.IBLOCK( NEXT-1 ) .AND. NBLK.NE.OLNBLK ) THEN
*
* Compute orthogonalization criterion
*
IF( NBLK.EQ.1 ) THEN
B1 = 1
ELSE
B1 = ISPLIT( NBLK-1 ) + 1
END IF
BN = ISPLIT( NBLK )
*
ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
DO 60 J = B1 + 1, BN - 1
ONENRM = MAX( ONENRM, ABS( D( J ) )+ABS( E( J-1 ) )+
$ ABS( E( J ) ) )
60 CONTINUE
OLNBLK = NBLK
END IF
TILL = NVS + MAXVEC
70 CONTINUE
J = NEXT - 1
IF( TMPFAC.GT.ODM18 ) THEN
ORTOL = TMPFAC*ONENRM
DO 80 J = NEXT - 1, MIN( TILL, M-1 )
IF( IBLOCK( J+1 ).NE.IBLOCK( J ) .OR. W( J+1 )-
$ W( J ).GE.ORTOL ) THEN
GO TO 90
END IF
80 CONTINUE
IF( J.EQ.M .AND. TILL.GE.M )
$ GO TO 90
TMPFAC = TMPFAC*ODM1
GO TO 70
END IF
90 CONTINUE
J = MIN( J, TILL )
END IF
IF( SELF.EQ.I )
$ IM = MAX( 0, J-NVS )
*
IWORK( I+1 ) = NVS
NVS = MAX( J, NVS )
100 CONTINUE
IF( SELF.EQ.ILAST )
$ IM = M - NVS
IWORK( ILAST+1 ) = NVS
DO 110 I = ILAST + 2, P + 1
IWORK( I ) = M
110 CONTINUE
*
CLSIZ = 1
LGCLSIZ = 1
ILAST = 0
NBLK = 0
BNDRY = 2
K = 1
DO 140 I = 1, M
IF( IBLOCK( I ).NE.NBLK ) THEN
NBLK = IBLOCK( I )
IF( NBLK.EQ.1 ) THEN
B1 = 1
ELSE
B1 = ISPLIT( NBLK-1 ) + 1
END IF
BN = ISPLIT( NBLK )
*
ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
DO 120 J = B1 + 1, BN - 1
ONENRM = MAX( ONENRM, ABS( D( J ) )+ABS( E( J-1 ) )+
$ ABS( E( J ) ) )
120 CONTINUE
*
END IF
IF( I.GT.1 ) THEN
DIFF = W( I ) - W( I-1 )
IF( IBLOCK( I ).NE.IBLOCK( I-1 ) .OR. I.EQ.M .OR. DIFF.GT.
$ ORGFAC*ONENRM ) THEN
IFIRST = ILAST
IF( I.EQ.M ) THEN
IF( IBLOCK( M ).NE.IBLOCK( M-1 ) .OR. DIFF.GT.ORGFAC*
$ ONENRM ) THEN
ILAST = M - 1
ELSE
ILAST = M
END IF
ELSE
ILAST = I - 1
END IF
CLSIZ = ILAST - IFIRST
IF( CLSIZ.GT.1 ) THEN
IF( LGCLSIZ.LT.CLSIZ )
$ LGCLSIZ = CLSIZ
MINGAP = ONENRM
130 CONTINUE
IF( BNDRY.GT.P+1 )
$ GO TO 150
IF( IWORK( BNDRY ).GT.IFIRST .AND. IWORK( BNDRY ).LT.
$ ILAST ) THEN
MINGAP = MIN( W( IWORK( BNDRY )+1 )-
$ W( IWORK( BNDRY ) ), MINGAP )
ELSE IF( IWORK( BNDRY ).GE.ILAST ) THEN
IF( MINGAP.LT.ONENRM ) THEN
ICLUSTR( 2*K-1 ) = IFIRST + 1
ICLUSTR( 2*K ) = ILAST
GAP( K ) = MINGAP / ONENRM
K = K + 1
END IF
GO TO 140
END IF
BNDRY = BNDRY + 1
GO TO 130
END IF
END IF
END IF
140 CONTINUE
150 CONTINUE
INFO = ( K-1 )*( M+1 )
*
* Call DSTEIN2 to find the eigenvectors
*
CALL DSTEIN2( N, D, E, IM, W( IWORK( SELF+1 )+1 ),
$ IBLOCK( IWORK( SELF+1 )+1 ), ISPLIT, ORGFAC,
$ WORK( INDRW+1 ), N, WORK, IWORK( P+2 ),
$ IFAIL( IWORK( SELF+1 )+1 ), LOCINFO )
*
* Redistribute the eigenvector matrix to conform with the block
* cyclic distribution of the input matrix
*
*
DO 160 I = 1, M
IWORK( P+1+I ) = I
160 CONTINUE
*
CALL DLASRT2( 'I', M, W, IWORK( P+2 ), IINFO )
*
DO 170 I = 1, M
IWORK( M+P+1+IWORK( P+1+I ) ) = I
170 CONTINUE
*
*
DO 180 I = 1, LOCINFO
ITMP = IWORK( SELF+1 ) + I
IFAIL( ITMP ) = IFAIL( ITMP ) + ITMP - I
IFAIL( ITMP ) = IWORK( M+P+1+IFAIL( ITMP ) )
180 CONTINUE
*
DO 190 I = 1, K - 1
ICLUSTR( 2*I-1 ) = IWORK( M+P+1+ICLUSTR( 2*I-1 ) )
ICLUSTR( 2*I ) = IWORK( M+P+1+ICLUSTR( 2*I ) )
190 CONTINUE
*
*
* Still need to apply the above permutation to IFAIL
*
*
TOTERR = 0
DO 210 I = 1, P
IF( SELF.EQ.I-1 ) THEN
CALL IGEBS2D( DESCZ( CTXT_ ), 'ALL', ' ', 1, 1, LOCINFO, 1 )
IF( LOCINFO.NE.0 ) THEN
CALL IGEBS2D( DESCZ( CTXT_ ), 'ALL', ' ', LOCINFO, 1,
$ IFAIL( IWORK( I )+1 ), LOCINFO )
DO 200 J = 1, LOCINFO
IFAIL( TOTERR+J ) = IFAIL( IWORK( I )+J )
200 CONTINUE
TOTERR = TOTERR + LOCINFO
END IF
ELSE
*
ROW = ( I-1 ) / NPCOL
COL = MOD( I-1, NPCOL )
*
CALL IGEBR2D( DESCZ( CTXT_ ), 'ALL', ' ', 1, 1, NERR, 1,
$ ROW, COL )
IF( NERR.NE.0 ) THEN
CALL IGEBR2D( DESCZ( CTXT_ ), 'ALL', ' ', NERR, 1,
$ IFAIL( TOTERR+1 ), NERR, ROW, COL )
TOTERR = TOTERR + NERR
END IF
END IF
210 CONTINUE
INFO = INFO + TOTERR
*
*
CALL PDLAEVSWP( N, WORK( INDRW+1 ), N, Z, IZ, JZ, DESCZ, IWORK,
$ IWORK( M+P+2 ), WORK, INDRW )
*
DO 220 I = 2, P
IWORK( I ) = IWORK( M+P+1+IWORK( I ) )
220 CONTINUE
*
*
* Sort the IWORK array
*
*
230 CONTINUE
SORTED = .TRUE.
DO 240 I = 2, P - 1
IF( IWORK( I ).GT.IWORK( I+1 ) ) THEN
ITMP = IWORK( I+1 )
IWORK( I+1 ) = IWORK( I )
IWORK( I ) = ITMP
SORTED = .FALSE.
END IF
240 CONTINUE
IF( .NOT.SORTED )
$ GO TO 230
*
DO 250 I = P + 1, 1, -1
IWORK( I+1 ) = IWORK( I )
250 CONTINUE
*
WORK( 1 ) = ( LGCLSIZ+LOAD-1 )*N + INDRW
IWORK( 1 ) = 3*N + P + 1
*
* End of PDSTEIN
*
END