#!/bin/sh
# This is a shell archive, meaning:
# 1. Remove everything above the #!/bin/sh line.
# 2. Save the resulting text in a file.
# 3. Execute the file with /bin/sh (not csh) to create the files:
#	README
#	morgan.five.desc
#	morgan.five.ver1.clauses
#	morgan.five.ver1.in
#	morgan.five.ver1.out
#	morgan.five.ver2.clauses
#	morgan.five.ver2.in
#	morgan.five.ver2.out
#	morgan.four.desc
#	morgan.four.ver1.clauses
#	morgan.four.ver1.in
#	morgan.four.ver1.out
#	morgan.one.desc
#	morgan.one.ver1.clauses
#	morgan.one.ver1.in
#	morgan.one.ver1.out
#	morgan.six.desc
#	morgan.six.ver1.clauses
#	morgan.six.ver1.in
#	morgan.six.ver1.out
#	morgan.three.desc
#	morgan.three.ver1.clauses
#	morgan.three.ver1.in
#	morgan.three.ver1.out
#	morgan.three.ver2.clauses
#	morgan.three.ver2.in
#	morgan.three.ver2.out
#	morgan.two.desc
#	morgan.two.ver1.clauses
#	morgan.two.ver1.in
#	morgan.two.ver1.out
# This archive created: Tue Aug 16 11:19:43 1988
export PATH; PATH=/bin:$PATH
if test -f 'README'
then
	echo shar: over-writing existing file "'README'"
fi
cat << \SHAR_EOF > 'README'
problem-set/logic.problems/morgan/README
created : 07/15/86
revised : 07/15/88
 
Contents of 'morgan':
--------------------

Main File Headings
------------------------------------------------------------------------

The following axioms apply to all problems in this directory:
*       1. x => (y => x)
*	2. [x => (y => z)] => [(x => y) => (x => z)]
*	3. (-x => -y) => (y => x)
*	4. -(x => y) | -x | y


README : You are currently in this file.
 
morgan_one : Can transitivity be deduced from the 
	four axioms listed?

morgan_two : Can (not(not(a)) implies a) be deduced
	from the four axioms and transitiviy?

morgan_three : Can (a implies not(not(a))) be deduced 
	from the four axioms and the statement
	proven by morgan_two (not(not(a)) implies
	a)?

morgan_four : Can (a implies not(not(a))) be deduced 
	from the four axioms and transitiviy?

morgan_five.ver1 : Can (not(not(a)) implies a) be deduced
	from the four axioms given.

morgan_five.ver2 : The same problem as morgan_five.ver1 except
	that the third axiom is changed from
	[(-x => -y) => (y => x)] to
	[(y => x) => (-x => -y)].

morgan_six : Can (a => b) => [(b => c) => (a => c)]
	be deduced from just axioms 1,2, and 4.

------------------------------------------------------------------------

For each problem, there are several standard files, which include one
probname.desc file and at least one of each of probname.ver#.in,
probname.ver#.clauses, and probname.ver#.out.  These contain the
following: 

probname.desc : contains the Natural Language Description of the
	problem, where available, credits for problem formulation, 
	and complete details on each formulation and each version.  

probname.ver#.in : contains the problem specification, input clauses, and
	strategy for OTTER; this file is ready to run.

probname.ver#.clauses : contains the description, commentary, and the
	actual clauses (including the denial of the conclusion) used for
	probname.ver#.in, without any strategy; note that comments always are 
	on lines beginning with a %, preceding the clauses to which they
	refer, and that clauses terminate with periods.

probname.ver#.out : contains the output from running probname.ver#.in
	with OTTER, with proof if one is found, and with statistics on 
	the clauses generated and CPU time used.



HOW TO RUN :
----------------------------------------------------------------------

Invoke OTTER by using the following command :

	otter < probname.ver#.in    [ > outfile ]   [ & ]

NOTE : '> outfile' may be used to send all output to a file named outfile;
	'&' may be used to run the program in the background.
SHAR_EOF
if test -f 'morgan.five.desc'
then
	echo shar: over-writing existing file "'morgan.five.desc'"
fi
cat << \SHAR_EOF > 'morgan.five.desc'
problem-set/logic.problems/morgan/morgan.five.ver1.desc
created : 07/15/86
revised : 07/15/88


Natural Language Description:

The files that begin with morgan.five concern problem five
sent by Charles Morgan of Victoria University.  The problem
asks if (not(not(a)) implies a) can be deduced from the four  
axioms given.

	The axioms are as follows:

	1. x => (y => x)
	2. [x => (y => z)] => [(x => y) => (x => z)]
	3a. (-x => -y) => (y => x)  OR	3b. (x => y) => (-y => -x)
	4. -(x => y) | -x | y

=> means "implies", and - means "not".
Thus axiom 4 represents the inference rule of modus ponens.


Versions:

morgan.five.ver1.in- Only axiom 3 and the negation of the hypothesis
	are in the set of support.  Axiom 3a is used as the third axiom.
	Nonequality based axioms are used, UR resolution is the 
	inference rule, and demodulators are not included.

		created by: E. Lusk
		verified for ITP: 07/15/86
		translated for OTTER by: SLM
		verified for OTTER: 07/15/88    

morgan.five.ver1.in- Only axiom 3 and the negation of the hypothesis
	are in the set of support.  Axiom 3b is used as the third axiom.
	Nonequality based axioms are used, UR resolution is the 
	inference rule, and demodulators are not included.

		created by: E. Lusk
		verified for ITP: 07/15/86
		translated for OTTER by: SLM
		verified for OTTER: no proof    
SHAR_EOF
if test -f 'morgan.five.ver1.clauses'
then
	echo shar: over-writing existing file "'morgan.five.ver1.clauses'"
fi
cat << \SHAR_EOF > 'morgan.five.ver1.clauses'
% problem-set/logic.problems/morgan/morgan.five.ver1.clauses
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem five sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms alone that       
% not(not(a)) implies a?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% negation of hypothesis  
-P(i(n(n(a)),a)).
SHAR_EOF
if test -f 'morgan.five.ver1.in'
then
	echo shar: over-writing existing file "'morgan.five.ver1.in'"
fi
cat << \SHAR_EOF > 'morgan.five.ver1.in'
% problem-set/logic.problems/morgan/morgan.five.ver1.in
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem five sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms alone that       
% not(not(a)) implies a?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

set(UR_res).

list(axioms).

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

end_of_list.


list(sos).
 
% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% negation of hypothesis  
-P(i(n(n(a)),a)).

end_of_list.
SHAR_EOF
if test -f 'morgan.five.ver1.out'
then
	echo shar: over-writing existing file "'morgan.five.ver1.out'"
fi
cat << \SHAR_EOF > 'morgan.five.ver1.out'
problem-set/logic.problems/morgan/morgan.five.ver1.out
created : 07/15/88
revised : 07/15/88 

OTTER version 0.91, 14 June 1988.

set(UR_res).

list(axioms).
1 P(i(x1,i(x2,x1))).
2 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
3 -P(i(x1,x2)) | -P(x1) | P(x2).
end_of_list.

list(sos).
4 P(i(i(n(x1),n(x2)),i(x2,x1))).
5 -P(i(n(n(a)),a)).
end_of_list.

----> UNIT CONFLICT at  16.35 sec ----> 249 (246,248) .

------------ END OF SEARCH ------------

---------------- PROOF ----------------

1 P(i(x1,i(x2,x1))).
2 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
3 -P(i(x1,x2)) | -P(x1) | P(x2).
4 P(i(i(n(x1),n(x2)),i(x2,x1))).
5 -P(i(n(n(a)),a)).
7 (5,3,1) -P(i(i(x,i(y,x)),i(n(n(a)),a))).
17 (4,3,1) P(i(x,i(i(n(y),n(z)),i(z,y)))).
56 (7,3,2) -P(i(n(n(a)),i(i(x,n(n(a))),a))).
74 (17,3,2) P(i(i(x,i(n(y),n(z))),i(x,i(z,y)))).
246 (74,3,56) -P(i(n(n(a)),i(n(a),n(i(x,n(n(a))))))).
248 (74,3,1) P(i(n(x),i(x,y))).
249 (246,248) .

--------------- options ---------------
set(UR_res).
set(demod_hist).
set(for_sub).
set(print_kept).
set(back_sub).
set(print_back_sub).
set(print_given).
set(check_arity).

clear(binary_res).
clear(hyper_res).
clear(para_from).
clear(para_into).
clear(demod_inf).
clear(para_from_left).
clear(para_from_right).
clear(para_into_vars).
clear(para_from_vars).
clear(para_all).
clear(para_ones_rule).
clear(no_para_into_left).
clear(no_para_into_right).
clear(demod_linear).
clear(print_gen).
clear(sort_literals).
clear(Unit_deletion).
clear(factor).
clear(print_weight).
clear(sos_fifo).
clear(bird_print).
clear(atom_wt_max_args).
clear(print_lists_at_end).
clear(free_all_mem).
clear(for_sub_fpa).
clear(no_fapl).
clear(no_fanl).
clear(order_eq).

assign(report, 0).
assign(max_seconds, 0).
assign(max_given, 0).
assign(max_kept, 0).
assign(max_gen, 0).
assign(max_mem, 0).
assign(max_weight, 0).
assign(max_literals, 0).
assign(fpa_literals, 3).
assign(fpa_terms, 3).
assign(demod_limit, 100).
assign(max_proofs, 1).
assign(neg_weight, 0).

-------------- statistics -------------
clauses input                  5
clauses given                 41
clauses generated            273
demodulation rewrites          0
clauses wt or lit delete       0
tautologies deleted            0
clauses forward subsumed      29
(clauses subsumed by sos)      2
unit deletions                 0
clauses kept                 244
empty clauses                  1
factors generated              0
clauses back subsumed          0
clauses not processed         45

----------- times (seconds) -----------
run time            16.57
input time           0.17
binary_res time      0.00
hyper_res time       0.00
UR_res time          1.83
para_into time       0.00
para_from time       0.00
pre_process time     7.89
  demod time         0.00
  weigh time         0.37
  for_sub time       1.61
  unit_del time      0.00
post_process time    5.91
  back_sub time      3.94
  conflict time      1.83
  factor time        0.00
FPA build time       0.64
IS build time        0.38
print_cl time        3.43
cl integrate time    1.30
window time          0.00
SHAR_EOF
if test -f 'morgan.five.ver2.clauses'
then
	echo shar: over-writing existing file "'morgan.five.ver2.clauses'"
fi
cat << \SHAR_EOF > 'morgan.five.ver2.clauses'
% problem-set/logic.problems/morgan/morgan.five.ver2.clauses
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem five sent by Charles Morgan of Victoria University:
% Using the same four axioms, with the exception that the third
% is reversed, can we deduce that not(not(a)) implies a?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(y,x),i(n(x),n(y)))).     (the reverse of the usual axiom 3)
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% axiom 3
P(i(i(x2,x1),i(n(x1),n(x2)))).

% negation of hypothesis  
-P(i(n(n(a)),a)).
SHAR_EOF
if test -f 'morgan.five.ver2.in'
then
	echo shar: over-writing existing file "'morgan.five.ver2.in'"
fi
cat << \SHAR_EOF > 'morgan.five.ver2.in'
% problem-set/logic.problems/morgan/morgan.five.ver2.in
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem five sent by Charles Morgan of Victoria University:
% Using the same four axioms, with the exception that the third
% is reversed, can we deduce that not(not(a)) implies a?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(y,x),i(n(x),n(y)))).     (the reverse of the usual axiom 3)
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

set(UR_res).

list(axioms).

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

end_of_list.


list(sos).
 
% axiom 3
P(i(i(x2,x1),i(n(x1),n(x2)))).

% negation of hypothesis  
-P(i(n(n(a)),a)).

end_of_list.
SHAR_EOF
if test -f 'morgan.five.ver2.out'
then
	echo shar: over-writing existing file "'morgan.five.ver2.out'"
fi
cat << \SHAR_EOF > 'morgan.five.ver2.out'
problem-set/logic.problems/morgan/morgan.five.ver2.out
created : 07/15/88
revised : 07/15/88 

This version has no output file, because no proof was found. 
SHAR_EOF
if test -f 'morgan.four.desc'
then
	echo shar: over-writing existing file "'morgan.four.desc'"
fi
cat << \SHAR_EOF > 'morgan.four.desc'
problem-set/logic.problems/morgan/morgan.four.ver1.desc
created : 07/15/86
revised : 07/15/88

Natural Language Description:

The files that begin with morgan.four concern problem four
sent by Charles Morgan of Victoria University.  The problem
asks if (a implies not(not(a))) can be deduced from the four  
axioms given and transitivity.

	The axioms are as follows:

	1. x => (y => x)
	2. [x => (y => z)] => [(x => y) => (x => z)]
	3. (-x => -y) => (y => x)
	4. -(x => y) | -x | y

=> means "implies", and - means "not".
Thus axiom 4 represents the inference rule of modus ponens.


Versions:

morgan.four.ver1.in - Only axiom 1 and the negation of the hypothesis
	are in the set of support.  Nonequality based axioms are used,
	UR resolution is the inference rule, and demodulators are not
	included.
		
		created by: E. Lusk
		verified for ITP: 07/15/86
		translated for OTTER by: SLM
		verified for OTTER: 07/15/88    
SHAR_EOF
if test -f 'morgan.four.ver1.clauses'
then
	echo shar: over-writing existing file "'morgan.four.ver1.clauses'"
fi
cat << \SHAR_EOF > 'morgan.four.ver1.clauses'
% problem-set/logic.problems/morgan/morgan.four.ver1.clauses
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem two sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms and transitivity that
% a implies not(not(a))?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% transitivity
-P(i(x1,x2)) | -P(i(x2,x3)) | P(i(x1,x3)).

% axiom 1
P(i(x1,i(x2,x1))).

% negation of hypothesis  
-P(i(n(n(a)),a)).
SHAR_EOF
if test -f 'morgan.four.ver1.in'
then
	echo shar: over-writing existing file "'morgan.four.ver1.in'"
fi
cat << \SHAR_EOF > 'morgan.four.ver1.in'
% problem-set/logic.problems/morgan/morgan.four.ver1.in
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem two sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms and transitivity that
% a implies not(not(a))?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

set(UR_res).

list(axioms).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% transitivity
-P(i(x1,x2)) | -P(i(x2,x3)) | P(i(x1,x3)).

end_of_list.


list(sos).
 
% axiom 1
P(i(x1,i(x2,x1))).

% negation of hypothesis  
-P(i(n(n(a)),a)).

end_of_list.
SHAR_EOF
if test -f 'morgan.four.ver1.out'
then
	echo shar: over-writing existing file "'morgan.four.ver1.out'"
fi
cat << \SHAR_EOF > 'morgan.four.ver1.out'
problem-set/logic.problems/morgan/morgan.four.ver1.out
created : 07/15/88
revised : 07/15/88 

OTTER version 0.91, 14 June 1988.

set(UR_res).

list(axioms).
1 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
2 P(i(i(n(x1),n(x2)),i(x2,x1))).
3 -P(i(x1,x2)) | -P(x1) | P(x2).
4 -P(i(x1,x2)) | -P(i(x2,x3)) | P(i(x1,x3)).
end_of_list.

list(sos).
5 P(i(x1,i(x2,x1))).
6 -P(i(n(n(a)),a)).
end_of_list.

----> UNIT CONFLICT at   5.93 sec ----> 114 (113,85) .

------------ END OF SEARCH ------------

---------------- PROOF ----------------

1 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
2 P(i(i(n(x1),n(x2)),i(x2,x1))).
3 -P(i(x1,x2)) | -P(x1) | P(x2).
4 -P(i(x1,x2)) | -P(i(x2,x3)) | P(i(x1,x3)).
5 P(i(x1,i(x2,x1))).
6 -P(i(n(n(a)),a)).
10 (5,4,2) P(i(n(x),i(x,y))).
12 (5,3,5) P(i(x,i(y,i(z,y)))).
13 (5,3,1) P(i(i(x,y),i(x,x))).
25 (10,4,6) -P(i(i(n(a),x),a)).
38 (25,4,2) -P(i(i(x,a),a)).
85 (12,3,38) -P(i(i(x,i(y,i(z,y))),i(i(u,a),a))).
105 (13,3,12) P(i(x,x)).
113 (105,3,1) P(i(i(i(x,y),x),i(i(x,y),y))).
114 (113,85) .

--------------- options ---------------
set(UR_res).
set(demod_hist).
set(for_sub).
set(print_kept).
set(back_sub).
set(print_back_sub).
set(print_given).
set(check_arity).

clear(binary_res).
clear(hyper_res).
clear(para_from).
clear(para_into).
clear(demod_inf).
clear(para_from_left).
clear(para_from_right).
clear(para_into_vars).
clear(para_from_vars).
clear(para_all).
clear(para_ones_rule).
clear(no_para_into_left).
clear(no_para_into_right).
clear(demod_linear).
clear(print_gen).
clear(sort_literals).
clear(Unit_deletion).
clear(factor).
clear(print_weight).
clear(sos_fifo).
clear(bird_print).
clear(atom_wt_max_args).
clear(print_lists_at_end).
clear(free_all_mem).
clear(for_sub_fpa).
clear(no_fapl).
clear(no_fanl).
clear(order_eq).

assign(report, 0).
assign(max_seconds, 0).
assign(max_given, 0).
assign(max_kept, 0).
assign(max_gen, 0).
assign(max_mem, 0).
assign(max_weight, 0).
assign(max_literals, 0).
assign(fpa_literals, 3).
assign(fpa_terms, 3).
assign(demod_limit, 100).
assign(max_proofs, 1).
assign(neg_weight, 0).

-------------- statistics -------------
clauses input                  6
clauses given                 13
clauses generated            197
demodulation rewrites          0
clauses wt or lit delete       0
tautologies deleted            0
clauses forward subsumed      89
(clauses subsumed by sos)     32
unit deletions                 0
clauses kept                 108
empty clauses                  1
factors generated              0
clauses back subsumed          4
clauses not processed          9

----------- times (seconds) -----------
run time             6.17
input time           0.27
binary_res time      0.00
hyper_res time       0.00
UR_res time          0.95
para_into time       0.00
para_from time       0.00
pre_process time     2.74
  demod time         0.00
  weigh time         0.06
  for_sub time       0.89
  unit_del time      0.00
post_process time    1.79
  back_sub time      0.82
  conflict time      0.82
  factor time        0.00
FPA build time       0.20
IS build time        0.12
print_cl time        1.13
cl integrate time    0.32
window time          0.00
SHAR_EOF
if test -f 'morgan.one.desc'
then
	echo shar: over-writing existing file "'morgan.one.desc'"
fi
cat << \SHAR_EOF > 'morgan.one.desc'
problem-set/logic.problems/morgan/morgan.one.ver1.desc
created : 07/15/86
revised : 07/15/88

Natural Language Description:

The files that begin with morgan.one concern problem one
sent by Charles Morgan of Victoria University.  The problem
asks if transitivity can be deduced from the following axioms.

	The axioms are as follows:

	1. x => (y => x)
	2. [x => (y => z)] => [(x => y) => (x => z)]
	3. (-x => -y) => (y => x)
	4. -(x => y) | -x | y

=> means "implies", and - means "not".
Thus axiom 4 represents the inference rule of modus ponens.


Versions:

morgan.one.ver1.in- Only the negation of transitivity is in the set
	of support.  Nonequality based axioms are used, UR resolution
	is the inference rule, and demodulators are not included.

		created by: E. Lusk
		verified for ITP: 07/15/86
		translated for OTTER by: SLM
		verified for OTTER: 07/15/88    
SHAR_EOF
if test -f 'morgan.one.ver1.clauses'
then
	echo shar: over-writing existing file "'morgan.one.ver1.clauses'"
fi
cat << \SHAR_EOF > 'morgan.one.ver1.clauses'
% problem-set/logic.problems/morgan/morgan.one.ver1.clauses
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem one sent by Charles Morgan of Victoria University:
% Can transitivity be deduced from the four axioms given.

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% negation of transitivity
P(i(a,b)).
P(i(b,c)).
-P(i(a,c)).
SHAR_EOF
if test -f 'morgan.one.ver1.in'
then
	echo shar: over-writing existing file "'morgan.one.ver1.in'"
fi
cat << \SHAR_EOF > 'morgan.one.ver1.in'
% problem-set/logic.problems/morgan/morgan.one.ver1.in
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem one sent by Charles Morgan of Victoria University:
% Can transitivity be deduced from the four axioms given.

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

set(UR_res).

list(axioms).

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

end_of_list.


list(sos).
 
% negation of transitivity
P(i(a,b)).
P(i(b,c)).
-P(i(a,c)).

end_of_list.
SHAR_EOF
if test -f 'morgan.one.ver1.out'
then
	echo shar: over-writing existing file "'morgan.one.ver1.out'"
fi
cat << \SHAR_EOF > 'morgan.one.ver1.out'
problem-set/logic.problems/morgan/morgan.one.ver1.out
created : 07/15/86
revised : 07/15/88

OTTER version 0.9, 19 May 1988.

set(UR_res).

list(axioms).
1 P(i(x1,i(x2,x1))).
2 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
3 P(i(i(n(x1),n(x2)),i(x2,x1))).
4 -P(i(x1,x2)) | -P(x1) | P(x2).
end_of_list.

list(sos).
5 P(i(a,b)).
6 P(i(b,c)).
7 -P(i(a,c)).
end_of_list.

----> UNIT CONFLICT at   1.65 sec ----> 46 (44,11) .

------------ END OF SEARCH ------------

---------------- PROOF ----------------

1 P(i(x1,i(x2,x1))).
2 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
4 -P(i(x1,x2)) | -P(x1) | P(x2).
5 P(i(a,b)).
6 P(i(b,c)).
7 -P(i(a,c)).
9 (6,4,1) P(i(x,i(b,c))).
11 (7,4,5) -P(i(i(a,b),i(a,c))).
44 (9,4,2) P(i(i(x,b),i(x,c))).
46 (44,11) .

--------------- options ---------------
set(UR_res).
set(demod_hist).
set(for_sub).
set(print_kept).
set(back_sub).
set(print_back_sub).
set(print_given).
set(check_arity).

clear(binary_res).
clear(hyper_res).
clear(para_from).
clear(para_into).
clear(demod_inf).
clear(para_from_left).
clear(para_from_right).
clear(para_into_vars).
clear(para_from_vars).
clear(para_all).
clear(para_ones_rule).
clear(no_para_into_left).
clear(no_para_into_right).
clear(demod_linear).
clear(print_gen).
clear(sort_literals).
clear(Unit_deletion).
clear(factor).
clear(print_weight).
clear(sos_fifo).
clear(bird_print).
clear(atom_wt_max_args).
clear(print_lists_at_end).
clear(free_all_mem).
clear(for_sub_fpa).
clear(no_fapl).
clear(no_fanl).

assign(report, 0).
assign(max_seconds, 0).
assign(max_given, 0).
assign(max_kept, 0).
assign(max_gen, 0).
assign(max_mem, 0).
assign(max_weight, 0).
assign(max_literals, 0).
assign(fpa_literals, 4).
assign(fpa_terms, 4).
assign(demod_limit, 100).
assign(max_proofs, 1).
assign(neg_weight, 0).

-------------- statistics -------------
clauses input                  7
clauses given                  8
clauses generated             55
demodulation rewrites          0
clauses wt or lit delete       0
tautologies deleted            0
clauses forward subsumed      16
(clauses subsumed by sos)      0
unit deletions                 0
clauses kept                  39
empty clauses                  1
factors generated              0
clauses back subsumed          0
clauses not processed          7

----------- times (seconds) -----------
run time             1.82
input time           0.21
binary_res time      0.00
hyper_res time       0.00
UR_res time          0.21
para_into time       0.00
para_from time       0.00
pre_process time     0.74
  demod time         0.00
  weigh time         0.05
  for_sub time       0.17
  unit_del time      0.00
post_process time    0.39
  back_sub time      0.12
  conflict time      0.25
  factor time        0.00
FPA build time       0.07
IS build time        0.08
print_cl time        0.42
cl integrate time    0.08
window time          0.00
SHAR_EOF
if test -f 'morgan.six.desc'
then
	echo shar: over-writing existing file "'morgan.six.desc'"
fi
cat << \SHAR_EOF > 'morgan.six.desc'
problem-set/logic.problems/morgan/morgan.six.ver1.desc
created : 07/15/86
revised : 07/15/88

Natural Language Description:

The files that begin with morgan.six concern problem six
sent by Charles Morgan of Victoria University.  The problem
asks if ((a => b) => [(b => c) => (a => c)]) can be deduced  
from the three axioms given.

	The axioms are as follows:

	1. x => (y => x)
	2. [x => (y => z)] => [(x => y) => (x => z)]
	4. -(x => y) | -x | y

=> means "implies", and - means "not".
Thus axiom 4 represents the inference rule of modus ponens.


Versions:

morgan.six.ver1.in- Only axiom 1 and the negation of the
	hypothesis are in the set of support.  Nonequality based axioms
	are used, UR resolution is the inference rule, and demodulators
	are not included.

		created by: E. Lusk
		verified for ITP: 07/15/86
		translated for OTTER: SLM
		verified for OTTER: no proof    
SHAR_EOF
if test -f 'morgan.six.ver1.clauses'
then
	echo shar: over-writing existing file "'morgan.six.ver1.clauses'"
fi
cat << \SHAR_EOF > 'morgan.six.ver1.clauses'
% problem-set/logic.problems/morgan/morgan.six.ver1.clauses
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem six sent by Charles Morgan of Victoria University:
% Can we deduce from these three axioms alone that       
% (a => b) => [(b => c) => (a => c)], where => means "implies"?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% axiom 1
P(i(x1,i(x2,x1))).

% negation of hypothesis  
-P(i(i(a,b),i(i(b,c),i(a,c)))).
SHAR_EOF
if test -f 'morgan.six.ver1.in'
then
	echo shar: over-writing existing file "'morgan.six.ver1.in'"
fi
cat << \SHAR_EOF > 'morgan.six.ver1.in'
% problem-set/logic.problems/morgan/morgan
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem six sent by Charles Morgan of Victoria University:
% Can we deduce from these three axioms alone that       
% (a => b) => [(b => c) => (a => c)], where => means "implies"?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

set(UR_res).

list(axioms).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

end_of_list.


list(sos).
 
% axiom 1
P(i(x1,i(x2,x1))).

% negation of hypothesis  
-P(i(i(a,b),i(i(b,c),i(a,c)))).

end_of_list.
SHAR_EOF
if test -f 'morgan.six.ver1.out'
then
	echo shar: over-writing existing file "'morgan.six.ver1.out'"
fi
cat << \SHAR_EOF > 'morgan.six.ver1.out'
problem-set/logic.problems/morgan/morgan.six.ver1.out
created : 07/15/88
revised : 07/15/88 

This version has no output file, because no proof was found. 
SHAR_EOF
if test -f 'morgan.three.desc'
then
	echo shar: over-writing existing file "'morgan.three.desc'"
fi
cat << \SHAR_EOF > 'morgan.three.desc'
problem-set/logic.problems/morgan/morgan.three.ver1.desc
created : 07/15/86
revised : 07/15/88

Natural Language Description:

The files that begin with morgan.three concern problem three
sent by Charles Morgan of Victoria University.  The problem
asks if (a implies not(not(a))) can be deduced from the four  
axioms given and the statement proven by morgan_two.ver1.

	The axioms are as follows:

	1. x => (y => x)
	2. [x => (y => z)] => [(x => y) => (x => z)]
	3. (-x => -y) => (y => x)
	4. -(x => y) | -x | y

=> means "implies", and - means "not".
Thus axiom 4 represents the inference rule of modus ponens.


Versions:

morgan.three.ver1.in- Both the statement proven by morgan.three.ver1.in
	and the negation of the hypothesis are in the set of support.
	Nonequality based axioms are used, UR resolution is the 
	inference rule, and demodulators are not included.

		created by: E. Lusk
		verified for ITP: 07/15/86
		translated for OTTER by: SLM
		verified for OTTER: 07/15/88    

morgan.three.ver2.in- Only the statement proven by morgan.three.ver2.in
	is in the set of support.  Nonequality based axioms are used,
	UR resolution is the inference rule, and demodulators are not
	included.

		created by: E. Lusk
		verified for ITP: 07/15/86
		translated for OTTER by: SLM
		verified for OTTER: 07/15/88    
SHAR_EOF
if test -f 'morgan.three.ver1.clauses'
then
	echo shar: over-writing existing file "'morgan.three.ver1.clauses'"
fi
cat << \SHAR_EOF > 'morgan.three.ver1.clauses'
% problem-set/logic.problems/morgan/morgan.three.ver1.clauses
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem three sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms and the statement proven
% by morgan_two.ver1, that a implies not(not(a)), this time with
% both the negation of the hypothesis and the proven statement in
% the set of support?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% negation of hypothesis  
-P(i(a,n(n(a)))).

% statement proven by morgan_two.ver1
P(i(n(n(x1)),x1)).
SHAR_EOF
if test -f 'morgan.three.ver1.in'
then
	echo shar: over-writing existing file "'morgan.three.ver1.in'"
fi
cat << \SHAR_EOF > 'morgan.three.ver1.in'
% problem-set/logic.problems/morgan/morgan.three.ver1.in
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem three sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms and the statement proven
% by morgan_two.ver1, that a implies not(not(a)), this time with
% both the negation of the hypothesis and the proven statement in
% the set of support?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

set(hyper_res).

list(axioms).

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

end_of_list.


list(sos).
 
% negation of hypothesis  
-P(i(a,n(n(a)))).

% statement proven by morgan_two.ver1.in
P(i(n(n(x1)),x1)).

end_of_list.
SHAR_EOF
if test -f 'morgan.three.ver1.out'
then
	echo shar: over-writing existing file "'morgan.three.ver1.out'"
fi
cat << \SHAR_EOF > 'morgan.three.ver1.out'
problem-set/logic.problems/morgan/morgan.three.ver1.out 
created : 07/15/88
revised : 07/15/88 

OTTER version 0.91, 14 June 1988.

set(hyper_res).

list(axioms).
1 P(i(x1,i(x2,x1))).
2 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
3 P(i(i(n(x1),n(x2)),i(x2,x1))).
4 -P(i(x1,x2)) | -P(x1) | P(x2).
end_of_list.

list(sos).
5 -P(i(a,n(n(a)))).
6 P(i(n(n(x1)),x1)).
end_of_list.

----> UNIT CONFLICT at   0.31 sec ----> 10 (7,5) .

------------ END OF SEARCH ------------

---------------- PROOF ----------------

3 P(i(i(n(x1),n(x2)),i(x2,x1))).
4 -P(i(x1,x2)) | -P(x1) | P(x2).
5 -P(i(a,n(n(a)))).
6 P(i(n(n(x1)),x1)).
7 (6,4,3) P(i(x,n(n(x)))).
10 (7,5) .

--------------- options ---------------
set(hyper_res).
set(demod_hist).
set(for_sub).
set(print_kept).
set(back_sub).
set(print_back_sub).
set(print_given).
set(check_arity).

clear(binary_res).
clear(UR_res).
clear(para_from).
clear(para_into).
clear(demod_inf).
clear(para_from_left).
clear(para_from_right).
clear(para_into_vars).
clear(para_from_vars).
clear(para_all).
clear(para_ones_rule).
clear(no_para_into_left).
clear(no_para_into_right).
clear(demod_linear).
clear(print_gen).
clear(sort_literals).
clear(Unit_deletion).
clear(factor).
clear(print_weight).
clear(sos_fifo).
clear(bird_print).
clear(atom_wt_max_args).
clear(print_lists_at_end).
clear(free_all_mem).
clear(for_sub_fpa).
clear(no_fapl).
clear(no_fanl).
clear(order_eq).

assign(report, 0).
assign(max_seconds, 0).
assign(max_given, 0).
assign(max_kept, 0).
assign(max_gen, 0).
assign(max_mem, 0).
assign(max_weight, 0).
assign(max_literals, 0).
assign(fpa_literals, 3).
assign(fpa_terms, 3).
assign(demod_limit, 100).
assign(max_proofs, 1).
assign(neg_weight, 0).

-------------- statistics -------------
clauses input                  6
clauses given                  2
clauses generated              4
demodulation rewrites          0
clauses wt or lit delete       0
tautologies deleted            0
clauses forward subsumed       0
(clauses subsumed by sos)      0
unit deletions                 0
clauses kept                   4
empty clauses                  1
factors generated              0
clauses back subsumed          0
clauses not processed          0

----------- times (seconds) -----------
run time             0.48
input time           0.20
binary_res time      0.00
hyper_res time       0.03
UR_res time          0.00
para_into time       0.00
para_from time       0.00
pre_process time     0.05
  demod time         0.00
  weigh time         0.00
  for_sub time       0.01
  unit_del time      0.00
post_process time    0.00
  back_sub time      0.00
  conflict time      0.00
  factor time        0.00
FPA build time       0.05
IS build time        0.01
print_cl time        0.10
cl integrate time    0.01
window time          0.00
SHAR_EOF
if test -f 'morgan.three.ver2.clauses'
then
	echo shar: over-writing existing file "'morgan.three.ver2.clauses'"
fi
cat << \SHAR_EOF > 'morgan.three.ver2.clauses'
% problem-set/logic.problems/morgan/morgan.three.ver2.clauses
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem three sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms and the statement proven
% by morgan_two.ver1, that a implies not(not(a)), this time with
% only the proven statement in the set of support?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% negation of hypothesis  
-P(i(a,n(n(a)))).

% statement proven by morgan_two.ver1
P(i(n(n(x1)),x1)).
SHAR_EOF
if test -f 'morgan.three.ver2.in'
then
	echo shar: over-writing existing file "'morgan.three.ver2.in'"
fi
cat << \SHAR_EOF > 'morgan.three.ver2.in'
% problem-set/logic.problems/morgan/morgan.three.ver2.in
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem three sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms and the statement proven
% by morgan_two.ver1, that a implies not(not(a)), this time with
% only the proven statement in the set of support?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

set(hyper_res).

list(axioms).

% axiom 1
P(i(x1,i(x2,x1))).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% negation of hypothesis  
-P(i(a,n(n(a)))).

end_of_list.


list(sos).
 
% statement proven by morgan_two.ver1.in
P(i(n(n(x1)),x1)).

end_of_list.
SHAR_EOF
if test -f 'morgan.three.ver2.out'
then
	echo shar: over-writing existing file "'morgan.three.ver2.out'"
fi
cat << \SHAR_EOF > 'morgan.three.ver2.out'
problem-set/logic.problems/morgan/morgan.three.ver2.out
created : 07/15/88
revised : 07/15/88 

OTTER version 0.91, 14 June 1988.

set(hyper_res).

list(axioms).
1 P(i(x1,i(x2,x1))).
2 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
3 P(i(i(n(x1),n(x2)),i(x2,x1))).
4 -P(i(x1,x2)) | -P(x1) | P(x2).
5 -P(i(a,n(n(a)))).
end_of_list.

list(sos).
6 P(i(n(n(x1)),x1)).
end_of_list.

----> UNIT CONFLICT at   0.31 sec ----> 10 (7,5) .

------------ END OF SEARCH ------------

---------------- PROOF ----------------

3 P(i(i(n(x1),n(x2)),i(x2,x1))).
4 -P(i(x1,x2)) | -P(x1) | P(x2).
5 -P(i(a,n(n(a)))).
6 P(i(n(n(x1)),x1)).
7 (6,4,3) P(i(x,n(n(x)))).
10 (7,5) .

--------------- options ---------------
set(hyper_res).
set(demod_hist).
set(for_sub).
set(print_kept).
set(back_sub).
set(print_back_sub).
set(print_given).
set(check_arity).

clear(binary_res).
clear(UR_res).
clear(para_from).
clear(para_into).
clear(demod_inf).
clear(para_from_left).
clear(para_from_right).
clear(para_into_vars).
clear(para_from_vars).
clear(para_all).
clear(para_ones_rule).
clear(no_para_into_left).
clear(no_para_into_right).
clear(demod_linear).
clear(print_gen).
clear(sort_literals).
clear(Unit_deletion).
clear(factor).
clear(print_weight).
clear(sos_fifo).
clear(bird_print).
clear(atom_wt_max_args).
clear(print_lists_at_end).
clear(free_all_mem).
clear(for_sub_fpa).
clear(no_fapl).
clear(no_fanl).
clear(order_eq).

assign(report, 0).
assign(max_seconds, 0).
assign(max_given, 0).
assign(max_kept, 0).
assign(max_gen, 0).
assign(max_mem, 0).
assign(max_weight, 0).
assign(max_literals, 0).
assign(fpa_literals, 3).
assign(fpa_terms, 3).
assign(demod_limit, 100).
assign(max_proofs, 1).
assign(neg_weight, 0).

-------------- statistics -------------
clauses input                  6
clauses given                  1
clauses generated              4
demodulation rewrites          0
clauses wt or lit delete       0
tautologies deleted            0
clauses forward subsumed       0
(clauses subsumed by sos)      0
unit deletions                 0
clauses kept                   4
empty clauses                  1
factors generated              0
clauses back subsumed          0
clauses not processed          0

----------- times (seconds) -----------
run time             0.47
input time           0.24
binary_res time      0.00
hyper_res time       0.01
UR_res time          0.00
para_into time       0.00
para_from time       0.00
pre_process time     0.06
  demod time         0.00
  weigh time         0.00
  for_sub time       0.00
  unit_del time      0.00
post_process time    0.01
  back_sub time      0.00
  conflict time      0.00
  factor time        0.00
FPA build time       0.05
IS build time        0.04
print_cl time        0.07
cl integrate time    0.02
window time          0.00
SHAR_EOF
if test -f 'morgan.two.desc'
then
	echo shar: over-writing existing file "'morgan.two.desc'"
fi
cat << \SHAR_EOF > 'morgan.two.desc'
problem-set/logic.problems/morgan/morgan.two.ver1.desc
created : 07/15/86
revised : 07/15/88

Natural Language Description:

The files that begin with morgan.two concern problem two
sent by Charles Morgan of Victoria University.  The problem
asks if (not(not(a)) implies a) can be deduced from the four  
axioms given and transitivity.

	The axioms are as follows:

	1. x => (y => x)
	2. [x => (y => z)] => [(x => y) => (x => z)]
	3. (-x => -y) => (y => x)
	4. -(x => y) | -x | y

=> means "implies", and - means "not".
Thus axiom 4 represents the inference rule of modus ponens.


Versions:

morgan.two.ver1.in- Only axiom 1 and the negation of the hypothesis
	are in the set of support.  Nonequality based axioms are used,
	UR resolution is the inference rule, and demodulators are not
	included.

		created by: E. Lusk
		verified for ITP: 07/15/86
		translated for OTTER by: SLM
		verified for OTTER: 07/15/88    
SHAR_EOF
if test -f 'morgan.two.ver1.clauses'
then
	echo shar: over-writing existing file "'morgan.two.ver1.clauses'"
fi
cat << \SHAR_EOF > 'morgan.two.ver1.clauses'
% problem-set/logic.problems/morgan/morgan.two.ver1.clauses
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem two sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms and transitivity that
% not(not(a)) implies a?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% transitivity
-P(i(x1,x2)) | -P(i(x2,x3)) | P(i(x1,x3)).

% axiom 1
P(i(x1,i(x2,x1))).

% negation of hypothesis  
-P(i(n(n(a)),a)).
SHAR_EOF
if test -f 'morgan.two.ver1.in'
then
	echo shar: over-writing existing file "'morgan.two.ver1.in'"
fi
cat << \SHAR_EOF > 'morgan.two.ver1.in'
% problem-set/logic.problems/morgan/morgan.two.ver1.in
% created : 07/15/86
% revised : 07/15/88

% description:
%
% Problem two sent by Charles Morgan of Victoria University:
% Can we deduce from these four axioms and transitivity that
% not(not(a)) implies a?

% representaion:
%
% declare_predicate(1,P).
% declare_function(2,i).
% declare_function(1,n).
% declare_constants([a,b,c]).
% declare_variables([x1,x2,x3]).
%
% The axioms are as follows:
%
% 1. P(i(x,i(y,x)))
% 2. P(i(i(x,i(y.z)),i(i(x,y),i(x,z))))
% 3. P(i(i(n(x),n(y)),i(y,x))) 
% 4. If P(i(x,y)) & P(x) then P(y)
%
% P means "is provable", i means "implies", and n means "not".
% Thus Axiom 4 represents the inference rule of modus ponens.

set(UR_res).

list(axioms).

% axiom 2
P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).

% axiom 3
P(i(i(n(x1),n(x2)),i(x2,x1))).

% axiom 4
-P(i(x1,x2)) | -P(x1) | P(x2).

% transitivity
-P(i(x1,x2)) | -P(i(x2,x3)) | P(i(x1,x3)).

end_of_list.


list(sos).
 
% axiom 1
P(i(x1,i(x2,x1))).

% negation of hypothesis  
-P(i(n(n(a)),a)).

end_of_list.
SHAR_EOF
if test -f 'morgan.two.ver1.out'
then
	echo shar: over-writing existing file "'morgan.two.ver1.out'"
fi
cat << \SHAR_EOF > 'morgan.two.ver1.out'
problem-set/logic.problems/morgan/morgan.two.ver1.out
created : 07/15/86
revised : 07/15/88

OTTER version 0.91, 14 June 1988.

set(UR_res).

list(axioms).
1 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
2 P(i(i(n(x1),n(x2)),i(x2,x1))).
3 -P(i(x1,x2)) | -P(x1) | P(x2).
4 -P(i(x1,x2)) | -P(i(x2,x3)) | P(i(x1,x3)).
end_of_list.

list(sos).
5 P(i(x1,i(x2,x1))).
6 -P(i(n(n(a)),a)).
end_of_list.

----> UNIT CONFLICT at   6.06 sec ----> 114 (113,85) .

------------ END OF SEARCH ------------

---------------- PROOF ----------------

1 P(i(i(x1,i(x2,x3)),i(i(x1,x2),i(x1,x3)))).
2 P(i(i(n(x1),n(x2)),i(x2,x1))).
3 -P(i(x1,x2)) | -P(x1) | P(x2).
4 -P(i(x1,x2)) | -P(i(x2,x3)) | P(i(x1,x3)).
5 P(i(x1,i(x2,x1))).
6 -P(i(n(n(a)),a)).
10 (5,4,2) P(i(n(x),i(x,y))).
12 (5,3,5) P(i(x,i(y,i(z,y)))).
13 (5,3,1) P(i(i(x,y),i(x,x))).
25 (10,4,6) -P(i(i(n(a),x),a)).
38 (25,4,2) -P(i(i(x,a),a)).
85 (12,3,38) -P(i(i(x,i(y,i(z,y))),i(i(u,a),a))).
105 (13,3,12) P(i(x,x)).
113 (105,3,1) P(i(i(i(x,y),x),i(i(x,y),y))).
114 (113,85) .

--------------- options ---------------
set(UR_res).
set(demod_hist).
set(for_sub).
set(print_kept).
set(back_sub).
set(print_back_sub).
set(print_given).
set(check_arity).

clear(binary_res).
clear(hyper_res).
clear(para_from).
clear(para_into).
clear(demod_inf).
clear(para_from_left).
clear(para_from_right).
clear(para_into_vars).
clear(para_from_vars).
clear(para_all).
clear(para_ones_rule).
clear(no_para_into_left).
clear(no_para_into_right).
clear(demod_linear).
clear(print_gen).
clear(sort_literals).
clear(Unit_deletion).
clear(factor).
clear(print_weight).
clear(sos_fifo).
clear(bird_print).
clear(atom_wt_max_args).
clear(print_lists_at_end).
clear(free_all_mem).
clear(for_sub_fpa).
clear(no_fapl).
clear(no_fanl).
clear(order_eq).

assign(report, 0).
assign(max_seconds, 0).
assign(max_given, 0).
assign(max_kept, 0).
assign(max_gen, 0).
assign(max_mem, 0).
assign(max_weight, 0).
assign(max_literals, 0).
assign(fpa_literals, 3).
assign(fpa_terms, 3).
assign(demod_limit, 100).
assign(max_proofs, 1).
assign(neg_weight, 0).

-------------- statistics -------------
clauses input                  6
clauses given                 13
clauses generated            197
demodulation rewrites          0
clauses wt or lit delete       0
tautologies deleted            0
clauses forward subsumed      89
(clauses subsumed by sos)     32
unit deletions                 0
clauses kept                 108
empty clauses                  1
factors generated              0
clauses back subsumed          4
clauses not processed          9

----------- times (seconds) -----------
run time             6.28
input time           0.23
binary_res time      0.00
hyper_res time       0.00
UR_res time          0.97
para_into time       0.00
para_from time       0.00
pre_process time     3.02
  demod time         0.00
  weigh time         0.09
  for_sub time       0.94
  unit_del time      0.00
post_process time    1.67
  back_sub time      0.76
  conflict time      0.83
  factor time        0.00
FPA build time       0.28
IS build time        0.19
print_cl time        1.11
cl integrate time    0.33
window time          0.00
SHAR_EOF
#	End of shell archive
exit 0