C$TEST DTTGR6 c main program common /cstak/ ds double precision ds(350000) external handle, bc, af integer iue, ndx, ndy, iur, ixr, iyr integer nxr, nyr, istkgt, i, is(1000), iu integer ix, iy, nu, kx, nx, ky integer ny, i1mach real errpar(2), rs(1000), float logical ls(1000) complex cs(500) double precision tstart, dble, dabs, eerr, erre, errr double precision dmax1, dt, lx, ly, rx, ry double precision ws(500), tstop integer temp, temp1, temp2 equivalence (ds(1), cs(1), ws(1), rs(1), is(1), ls(1)) c to get error estimates for laplaces equation with real ( z*log(z) ) as c solution. c the port library stack and its aliases. c initialize the port library stack length. call istkin(350000, 4) call enter(1) nu = 1 lx = 0 rx = 1 ly = 0 ry = 1 kx = 4 ky = 4 ndx = 2 ndy = 2 tstart = 0 tstop = 1 dt = 1 errpar(1) = 1e-2 errpar(2) = 1e-4 nx = ndx+2*(kx-1) c space for x mesh. ix = istkgt(nx, 4) do 1 i = 1, kx temp = ix+i ws(temp-1) = 0 temp = ix+nx-i ws(temp) = rx 1 continue c 0 and rx mult = kx. temp = ndx-1 do 2 i = 1, temp temp2 = ix+kx-2+i ws(temp2) = rx*(dble(float(i-1))/(dble(float(ndx))-1d0))**kx 2 continue ny = ndy+2*(ky-1) c space for y mesh. iy = istkgt(ny, 4) do 3 i = 1, ky temp = iy+i ws(temp-1) = 0 temp = iy+ny-i ws(temp) = ry 3 continue c 0 and ry mult = ky. temp = ndy-1 do 4 i = 1, temp temp2 = iy+ky-2+i ws(temp2) = ry*(dble(float(i-1))/(dble(float(ndy))-1d0))**ky 4 continue c space for the solution. iu = istkgt(nu*(nx-kx)*(ny-ky), 4) call setd(nu*(nx-kx)*(ny-ky), 0d0, ws(iu)) temp = i1mach(2) write (temp, 5) 5 format (23h solving on crude mesh.) call dttgr(ws(iu), nu, kx, ws(ix), nx, ky, ws(iy), ny, tstart, 1 tstop, dt, af, bc, errpar, handle) dt = 1 ndx = 2*ndx-1 c refine mesh. ndy = 2*ndy-1 nxr = ndx+2*(kx-1) c space for x mesh. ixr = istkgt(nxr, 4) do 6 i = 1, kx temp = ixr+i ws(temp-1) = 0 temp = ixr+nxr-i ws(temp) = rx 6 continue c 0 and rx mult = kx. temp = ndx-1 do 7 i = 1, temp temp2 = ixr+kx-2+i ws(temp2) = rx*(dble(float(i-1))/(dble(float(ndx))-1d0))**kx 7 continue nyr = ndy+2*(ky-1) c space for y mesh. iyr = istkgt(nyr, 4) do 8 i = 1, ky temp = iyr+i ws(temp-1) = 0 temp = iyr+nyr-i ws(temp) = ry 8 continue c 0 and ry mult = ky. temp = ndy-1 do 9 i = 1, temp temp2 = iyr+ky-2+i ws(temp2) = ry*(dble(float(i-1))/(dble(float(ndy))-1d0))**ky 9 continue c space for the solution. iur = istkgt(nu*(nxr-kx)*(nyr-ky), 4) call setd(nu*(nxr-kx)*(nyr-ky), 0d0, ws(iur)) temp = i1mach(2) write (temp, 10) 10 format (25h solving on refined mesh.) call dttgr(ws(iur), nu, kx, ws(ixr), nxr, ky, ws(iyr), nyr, 1 tstart, tstop, dt, af, bc, errpar, handle) dt = 1 errpar(1) = errpar(1)/10. errpar(2) = errpar(2)/10. c space for the solution. iue = istkgt(nu*(nx-kx)*(ny-ky), 4) call setd(nu*(nx-kx)*(ny-ky), 0d0, ws(iue)) temp = i1mach(2) write (temp, 11) 11 format (24h solving with errpar/10.) call dttgr(ws(iue), nu, kx, ws(ix), nx, ky, ws(iy), ny, tstart, 1 tstop, dt, af, bc, errpar, handle) errr = eerr(kx, ix, nx, ky, iy, ny, ws(iu), nu, ixr, nxr, iyr, 1 nyr, ws(iur), tstop) erre = 0 temp = nu*(nx-kx)*(ny-ky) do 12 i = 1, temp temp2 = iu+i temp1 = iue+i erre = dmax1(erre, dabs(ws(temp2-1)-ws(temp1-1))) 12 continue temp = i1mach(2) write (temp, 13) erre 13 format (24h u error from u and ue =, 1pe10.2) temp = i1mach(2) write (temp, 14) errr 14 format (24h u error from u and ur =, 1pe10.2) call leave call wrapup stop end subroutine af(t, xi, nx, yi, ny, nu, u, ut, ux, uy, uxt, 1 uyt, a, au, aut, aux, auy, auxt, auyt, f, fu, fut, fux, fuy, 2 fuxt, fuyt) integer nu, nx, ny double precision t, xi(nx), yi(ny), u(nx, ny, nu), ut(nx, ny, nu), 1 ux(nx, ny, nu) double precision uy(nx, ny, nu), uxt(nx, ny, nu), uyt(nx, ny, nu), 1 a(nx, ny, nu, 2), au(nx, ny, nu, nu, 2), aut(nx, ny, nu, nu, 2) double precision aux(nx, ny, nu, nu, 2), auy(nx, ny, nu, nu, 2), 1 auxt(nx, ny, nu, nu, 2), auyt(nx, ny, nu, nu, 2), f(nx, ny, nu) 2 , fu(nx, ny, nu, nu) double precision fut(nx, ny, nu, nu), fux(nx, ny, nu, nu), fuy(nx, 1 ny, nu, nu), fuxt(nx, ny, nu, nu), fuyt(nx, ny, nu, nu) integer i, p, q do 3 i = 1, nu do 2 q = 1, ny do 1 p = 1, nx a(p, q, i, 1) = ux(p, q, i) a(p, q, i, 2) = uy(p, q, i) aux(p, q, i, i, 1) = 1 auy(p, q, i, i, 2) = 1 1 continue 2 continue 3 continue return end subroutine bc(t, x, nx, y, ny, lx, rx, ly, ry, u, ut, ux, 1 uy, uxt, uyt, nu, b, bu, but, bux, buy, buxt, buyt) integer nu, nx, ny double precision t, x(nx), y(ny), lx, rx, ly double precision ry, u(nx, ny, nu), ut(nx, ny, nu), ux(nx, ny, nu) 1 , uy(nx, ny, nu), uxt(nx, ny, nu) double precision uyt(nx, ny, nu), b(nx, ny, nu), bu(nx, ny, nu, 1 nu), but(nx, ny, nu, nu), bux(nx, ny, nu, nu), buy(nx, ny, nu 2 , nu) double precision buxt(nx, ny, nu, nu), buyt(nx, ny, nu, nu) integer i, j double precision r, dcos, dlog, dsin, datan, theta double precision dsqrt do 6 j = 1, ny do 5 i = 1, nx if (y(j) .ne. ly) goto 1 b(i, j, 1) = uy(i, j, 1) c neumann data on bottom. buy(i, j, 1, 1) = 1 goto 4 1 r = dsqrt(x(i)**2+y(j)**2) c dirichlet data. if (x(i) .le. 0d0) goto 2 theta = datan(y(j)/x(i)) goto 3 2 theta = 2d0*datan(1d0) 3 b(i, j, 1) = u(i, j, 1)-r*(dcos(theta)*dlog(r)-theta* 1 dsin(theta)) bu(i, j, 1, 1) = 1 4 continue 5 continue 6 continue return end subroutine handle(t0, u0, t, u, nv, dt, tstop) integer nv double precision t0, u0(nv), t, u(nv), dt, tstop common /d7tgrp/ errpar, nu, mxq, myq integer nu, mxq, myq real errpar(2) common /d7tgrm/ kx, ix, nx, ky, iy, ny integer kx, ix, nx, ky, iy, ny if (t0 .ne. t) goto 2 write (6, 1) t 1 format (16h restart for t =, 1pe10.2) return 2 call gerr(kx, ix, nx, ky, iy, ny, u, nu, t) return end subroutine gerr(kx, ix, nx, ky, iy, ny, u, nu, t) integer kx, ix, nx, ky, iy, ny integer nu double precision u(1), t common /cstak/ ds double precision ds(500) integer ifa, ita(2), ixa(2), nta(2), nxa(2), idlumd integer ixs, iys, nxs, nys, istkgt, i integer iewe, ka(2), ma(2), is(1000), i1mach real rs(1000) logical ls(1000) complex cs(500) double precision dabs, erru, dmax1, ws(500) integer temp, temp1, temp2 equivalence (ds(1), cs(1), ws(1), rs(1), is(1), ls(1)) c to get and print the error at each time-step. c u(nx-kx,ny-ky,nu). c the port library stack and its aliases. call enter(1) c find the error in the solution at 2*kx * 2*ky points / mesh rectangle. c x search grid. ixs = idlumd(ws(ix), nx, 2*kx, nxs) c y search grid. iys = idlumd(ws(iy), ny, 2*ky, nys) c u search grid values. iewe = istkgt(nxs*nys, 4) c the exact solution. call ewe(t, ws(ixs), nxs, ws(iys), nys, ws(iewe), nu) ka(1) = kx ka(2) = ky ita(1) = ix ita(2) = iy nta(1) = nx nta(2) = ny ixa(1) = ixs ixa(2) = iys nxa(1) = nxs nxa(2) = nys ma(1) = 0 c get solution. ma(2) = 0 c approximate solution values. ifa = istkgt(nxs*nys, 4) c evaluate them. call dtsd1(2, ka, ws, ita, nta, u, ws, ixa, nxa, ma, ws(ifa)) c error in solution values. erru = 0 temp = nxs*nys do 1 i = 1, temp temp2 = iewe+i temp1 = ifa+i erru = dmax1(erru, dabs(ws(temp2-1)-ws(temp1-1))) 1 continue temp = i1mach(2) write (temp, 2) t, erru 2 format (14h error in u(.,, 1pe10.2, 3h) =, 1pe10.2) call leave return end double precision function eerr(kx, ix, nx, ky, iy, ny, u, 1 nu, ixr, nxr, iyr, nyr, ur, t) integer kx, ix, nx, ky, iy, ny integer nu, ixr, nxr, iyr, nyr double precision u(1), ur(1), t common /cstak/ ds double precision ds(500) integer ifa, ita(2), ixa(2), nta(2), nxa(2), idlumd integer ixs, iys, nxs, nys, istkgt, i integer ifar, ka(2), ma(2), is(1000), i1mach real rs(1000) logical ls(1000) complex cs(500) double precision dabs, erru, dmax1, ws(500) integer temp, temp1, temp2 equivalence (ds(1), cs(1), ws(1), rs(1), is(1), ls(1)) c to get and print the error estimate at each time-step. c u(nx-kx,ny-ky,nu), ur(nxr-kx,nyr-ky,nu). c the port library stack and its aliases. call enter(1) c find the error in the solution at 2*kx * 2*ky points / fine mesh recta cngle. c x search grid. ixs = idlumd(ws(ixr), nxr, 2*kx, nxs) c y search grid. iys = idlumd(ws(iyr), nyr, 2*ky, nys) ka(1) = kx ka(2) = ky ita(1) = ix ita(2) = iy nta(1) = nx nta(2) = ny ixa(1) = ixs ixa(2) = iys nxa(1) = nxs nxa(2) = nys ma(1) = 0 c get solution. ma(2) = 0 c approximate solution values. ifa = istkgt(nxs*nys, 4) c evaluate them. call dtsd1(2, ka, ws, ita, nta, u, ws, ixa, nxa, ma, ws(ifa)) ka(1) = kx ka(2) = ky ita(1) = ixr ita(2) = iyr nta(1) = nxr nta(2) = nyr ixa(1) = ixs ixa(2) = iys nxa(1) = nxs nxa(2) = nys ma(1) = 0 c get solution. ma(2) = 0 c approximate solution values. ifar = istkgt(nxs*nys, 4) c evaluate them. call dtsd1(2, ka, ws, ita, nta, ur, ws, ixa, nxa, ma, ws(ifar)) c error in solution values. erru = 0 temp = nxs*nys do 1 i = 1, temp temp2 = ifar+i temp1 = ifa+i erru = dmax1(erru, dabs(ws(temp2-1)-ws(temp1-1))) 1 continue call leave eerr = erru return end subroutine ewe(t, x, nx, y, ny, u, nu) integer nu, nx, ny double precision t, x(nx), y(ny), u(nx, ny, nu) integer i, j, p double precision r, dcos, dlog, dsin, datan, theta double precision dsqrt c the exact solution. do 7 p = 1, nu do 6 i = 1, nx do 5 j = 1, ny r = dsqrt(x(i)**2+y(j)**2) if (x(i) .le. 0d0) goto 1 theta = datan(y(j)/x(i)) goto 2 1 theta = 2d0*datan(1d0) 2 if (r .le. 0d0) goto 3 u(i, j, p) = r*(dcos(theta)*dlog(r)-theta*dsin(theta)) goto 4 3 u(i, j, p) = 0 4 continue 5 continue 6 continue 7 continue return end