#! /bin/sh # This is a shell archive. Remove anything before this line, then unpack # it by saving it into a file and typing "sh file". To overwrite existing # files, type "sh file -c". You can also feed this as standard input via # unshar, or by typing "sh 'AREADME.1ST' <<'END_OF_FILE' X *************************************************************************** X * All the software contained in this library is protected by copyright. * X * Permission to use, copy, modify, and distribute this software for any * X * purpose without fee is hereby granted, provided that this entire notice * X * is included in all copies of any software which is or includes a copy * X * or modification of this software and in all copies of the supporting * X * documentation for such software. * X *************************************************************************** X * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * X * WARRANTY. IN NO EVENT, NEITHER THE AUTHORS, NOR THE PUBLISHER, NOR ANY * X * MEMBER OF THE EDITORIAL BOARD OF THE JOURNAL "NUMERICAL ALGORITHMS", * X * NOR ITS EDITOR-IN-CHIEF, BE LIABLE FOR ANY ERROR IN THE SOFTWARE, ANY * X * MISUSE OF IT OR ANY DAMAGE ARISING OUT OF ITS USE. THE ENTIRE RISK OF * X * USING THE SOFTWARE LIES WITH THE PARTY DOING SO. * X *************************************************************************** X * ANY USE OF THE SOFTWARE CONSTITUTES ACCEPTANCE OF THE TERMS OF THE * X * ABOVE STATEMENT. * X *************************************************************************** X X AUTHOR: X X P. C. HANSEN X DEPT. OF MATHEMATICAL MODELLING X TECHNICAL UNIVERSITY OF DENMARK X X REFERENCE: X X REGULARIZATION TOOLS: A MATLAB PACKAGE FOR ANALYSIS AND SOLUTION OF X DISCRETE ILL-POSED PROBLEMS, X NUMERICAL ALGORITHMS, 6 (1994), PP. 1-35 X X SOFTWARE REVISION: X X Ver 3.0 APRIL 16, 1998 X X SOFTWARE LANGUAGE: X X MATLAB 5 X X************************************************************************** X XRegularization Tools. XVersion 3.0 16-April-98. XCopyright (c) 1998 by Per Christian Hansen. X XThe installation of Regularization Tools is very simple: X X 1. Unpack the shell archive NA4 by executing the command X /bin/sh na4 X X 2. Remove the file na4 X X 3. The file Manual.ps contains the related manual in PostScript form X X*************************************************************** X* This is Version 3.0 of Regularization Tools for Matlab 5.2 * X*-------------------------------------------------------------* X* Per Christian Hansen, IMM * X*************************************************************** X X02/01/94: XFixed bug in cgls (s -> s2). X X08/03/94: XExpanded stopping criterion in newton. X X08/09/94: XRevised comment lines in maxent. X X10/07/94: XRemoved superfluorus statements in mtsvd. X X11/01/94: XModified get_l slightly such that the sign of L*x is correct. X X02/09/95: XRevised qr in csd, l_curve and mtsvd to compute "economy size" decomposition. XRenamed csd to csdecomp (csd is now a function in the Signal Proc. Toolbox). XRevised gsvd to call csdecomp. X X11/08/95: XFixed bug in csdecomp when p=1. X X03/22/96: XChanged tsvd and tgsvd to allow k=0. X X10/08/96: XChanged tgsvd to allow a square L. X X10/22/96: XChanged tikhonov to allow a square L. X X04/17/97: XReplaced (..==NaN) with isnan(..) in bsvd. XAdded initialization of U2t in csdecomp. X X04/21/97: XChanged variable name "case" to "example" in deriv2. XChanged meshdom to meshgrid in spikes, and deleted the flipud command. XChanged variable xi to eta in picard. X X06/30/97: XRemoved function bsvd (obsolete with sparse format of bidiagonal matrices). XChanged to sparse format of bidiagonal matrix in bidiag. XChanged to sparse format of bidiagonal matrix in lanc_b. XAdded function regutm. X X07/02/97: XAdded reorthogonalization of normal eq. residual vectors to cgls and pcgls. XFixed bug in pcgls when computing filter factors. X X07/29/97: XChanged variable name in pinit. XModified lsolve, ltsolve, and std_form according to simpler formulas. X X09/18/97: XAdded blur test problem. XDeleted mgs, and included the MGS process in get_l. X X11/11/97: XModified gen_hh to compensate for Matlab's signum function. X X12/22/97: XReplaced gsvd with cgsvd, and deleted csdecomp. XAdded more output arguments to dsvd, mtsvd, tgsvd, tikhonov, and tsvd. XAdded method = 'ttls' to fil_fac. XImproved the plots in gcv, lagrange, picard, plot_lc, and quasiopt. XAdded input parameter x_0 to tikhonov. X X12/29/97: XAdded call to fmin in gcv, l_curve, and quasiopt. XCorrected bugs in discrep and lsqi. XModified heb_new and newton to work with lambda instead of lambda squared. X X02/05/98: XAdded d==0 to get_l. X X04/16/98: XModified l_corner and spleval to be consistent with Spline Toolbox v. 2.0. X END_OF_FILE if test 4627 -ne `wc -c <'AREADME.1ST'`; then echo shar: \"'AREADME.1ST'\" unpacked with wrong size! fi # end of 'AREADME.1ST' fi if test -f 'Manual.ps' -a "${1}" != "-c" ; then echo shar: Will not clobber existing file \"'Manual.ps'\" else echo shar: Extracting \"'Manual.ps'\" \(2119016 characters\) sed "s/^X//" >'Manual.ps' <<'END_OF_FILE' X%!PS-Adobe-2.0 X%%Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software X%%Title: book.dvi X%%Pages: 111 X%%PageOrder: Ascend X%%BoundingBox: 0 0 596 842 X%%EndComments X%DVIPSCommandLine: dvips book X%DVIPSParameters: dpi=300, compressed, comments removed X%DVIPSSource: TeX output 1998.03.26:0819 X%%BeginProcSet: texc.pro X/TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N X/X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 Xmul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} Xifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale Xisls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div Xhsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul XTR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} Xforall round exch round exch]setmatrix}N /@landscape{/isls true N}B X/@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B X/FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ X/nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N Xstring /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N Xend dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ X/sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] XN df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup Xlength 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ X128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub Xget 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data Xdup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N X/rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup X/base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx X0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff Xsetcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff X.1 sub]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N X/cp 0 N{rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id Xgp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp Xadd /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add X/gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{ Xdup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1 Xadv}B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2 Xidiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string Xputinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval Xadv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg} X{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{ Xadv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2 Xchg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{] X}if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup Xlength 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ Xcc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin X0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul Xadd .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore userdict X/eop-hook known{eop-hook}if showpage}N /@start{userdict /start-hook Xknown{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X X/IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for X65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 X0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V X{}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 Xgetinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} Xifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false XRMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 Xfalse RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform Xround exch round exch itransform moveto rulex 0 rlineto 0 ruley neg Xrlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail X{dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M} XB /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{ X4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{ Xp 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p Xa}B /bos{/SS save N}B /eos{SS restore}B end X%%EndProcSet X%%BeginProcSet: special.pro XTeXDict begin /SDict 200 dict N SDict begin /@SpecialDefaults{/hs 612 N X/vs 792 N /ho 0 N /vo 0 N /hsc 1 N /vsc 1 N /ang 0 N /CLIP 0 N /rwiSeen Xfalse N /rhiSeen false N /letter{}N /note{}N /a4{}N /legal{}N}B X/@scaleunit 100 N /@hscale{@scaleunit div /hsc X}B /@vscale{@scaleunit Xdiv /vsc X}B /@hsize{/hs X /CLIP 1 N}B /@vsize{/vs X /CLIP 1 N}B /@clip{ X/CLIP 2 N}B /@hoffset{/ho X}B /@voffset{/vo X}B /@angle{/ang X}B /@rwi{ X10 div /rwi X /rwiSeen true N}B /@rhi{10 div /rhi X /rhiSeen true N}B X/@llx{/llx X}B /@lly{/lly X}B /@urx{/urx X}B /@ury{/ury X}B /magscale Xtrue def end /@MacSetUp{userdict /md known{userdict /md get type X/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup Xlength 20 add dict copy def}if end md begin /letter{}N /note{}N /legal{} XN /od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath Xclippath mark{transform{itransform moveto}}{transform{itransform lineto} X}{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{ Xitransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{ Xclosepath}}pathforall newpath counttomark array astore /gc xdf pop ct 39 X0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}if}N X/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 Xscale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get Xppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip Xnot and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 XTR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{noflips{TR Xpop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 X-1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg XTR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg Xsub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr X0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add X2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N /cp X{pop pop showpage pm restore}N end}if}if}N /normalscale{Resolution 72 Xdiv VResolution 72 div neg scale magscale{DVImag dup scale}if 0 setgray} XN /psfts{S 65781.76 div N}N /startTexFig{/psf$SavedState save N userdict Xmaxlength dict begin /magscale true def normalscale currentpoint TR X/psf$ury psfts /psf$urx psfts /psf$lly psfts /psf$llx psfts /psf$y psfts X/psf$x psfts currentpoint /psf$cy X /psf$cx X /psf$sx psf$x psf$urx Xpsf$llx sub div N /psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy Xscale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR X/showpage{}N /erasepage{}N /copypage{}N /p 3 def @MacSetUp}N /doclip{ Xpsf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 Xroll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath Xmoveto}N /endTexFig{end psf$SavedState restore}N /@beginspecial{SDict Xbegin /SpecialSave save N gsave normalscale currentpoint TR X@SpecialDefaults count /ocount X /dcount countdictstack N}N /@setspecial X{CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto Xclosepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx Xsub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR X}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse XCLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury Xlineto closepath clip}if /showpage{}N /erasepage{}N /copypage{}N newpath X}N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{ Xend}repeat grestore SpecialSave restore end}N /@defspecial{SDict begin} XN /@fedspecial{end}B /li{lineto}B /rl{rlineto}B /rc{rcurveto}B /np{ X/SaveX currentpoint /SaveY X N 1 setlinecap newpath}N /st{stroke SaveX XSaveY moveto}N /fil{fill SaveX SaveY moveto}N /ellipse{/endangle X X/startangle X /yrad X /xrad X /savematrix matrix currentmatrix N TR xrad Xyrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end X%%EndProcSet XTeXDict begin 39158280 55380996 1000 300 300 (book.dvi) X@start /Fa 2 108 df<137013F8A2EA01DCA2139CEA038EA2130E487EA2380E0380A212 X0C381C01C0EA1FFF4813E0EA3800A2481370A2126000E0133815177F9618>65 XD<12E0A813F8EAE1F0EAE3E013C0EAE780EAEF0012FE7E138012F3EAE1C013E012E013F0 X13780D177E9611>107 D E /Fb 26 122 df12 D<13FE3803FF80000F13C04813E0EB X07F0383C01F8387800FC147C127000F0133EA212601220C7FCA3147CA2147814F8EB01F0 X14E01303EB07C0EB0F80EB1F00133E5B5B485A485A5B485A48C7FC121E5A387FFFFEA417 X287EA71D>50 D97 D<12F8AF133F38F9FFC000FB13E0B512F0EB07F8EAFC0138F800FC147CA2143EA814 X7E147CA26C13F8130138FF07F0EBFFE000FB13C000F9138038F87E00172A7CA91E>II<143EAFEA01FCEA03FF000F13BE X4813FE13C1383F007E003E133E5AA212FC5AA77E127CA2007E137E6C13FEEA1FC113FF6C X13BE3803FE3EEA01F8172A7EA91E>I<13FCEA03FF4813804813C0381F87E0EA3F01383E X00F05A1470481378B512F8A400F8C7FCA31278127CA27E003F1318381FC0F8EA0FFF7E00 X0113E038007F00151B7E9A1A>II<90387C07803901FF3FC0000713FF5A903883E000381F01F0A2383E X00F8A56C485AA2380F83E013FF485B001D90C7FCEA1C7C003CC8FCA2123E381FFFE014F8 X6C13FE487F481480387E003F007CEB0FC0481307A46C130F007EEB1F80393F807F00381F XFFFE6C5B000313F038007F801A287F9A1D>I<12F8AF133FEBFFC000FB13E0B512F01383 X38FE01F8EAFC00A35AB2152A7CA91E>I<12F8A51200AA12F8B3A9052A7CA90E>I<12F8AF XEB01F8EB03F0EB07E0EB0FC01480EB1F00133E5B5BEAF9F012FB12FF7F7FA2EAFE7E487E X12F8EB1F80130F14C0EB07E0A2EB03F0130114F8EB00FC162A7CA91C>107 XD<12F8B3B3A6052A7CA90E>III<137E3801FF80000713E04813F0381F X81F8383F00FC003E137C48133EA20078131E00F8131FA7007C133EA36C137C003F13FC38 X1FC3F8380FFFF06C13E06C13C038007E00181B7E9A1D>IIIIII<00F813F8B3A213011303EAFC07B5FCEA7FFEEA3FF8EA1FC0151B X7C9A1E>I<00F8131FA2007C133EA36C137CA36C13F8A3380F81F0A33807C3E0A3000313 XC013E700011380A30000130013F713FF137EA2181B7F9A1B>I<00F801F813F8130100FC X7F007C9038DC01F0A21303003E90389E03E0A21307149F001F90388F07C0140F130F000F X158090388F078FA2138ED8079E1400EC03CFA2D803DC13DEA2140113D8D801F813FCA214 X00251B7F9A28>I<007CEB1F80007EEB3F006C133E6C5B380F80FC6C6C5AEBE1F03803E3 XE0EA01F76CB45A6D5A91C7FC133EA2133F497E497E3801F3E0EA03E1803807C0F8380F80 X7C121F497E003E7F007E148048EB0FC01A1B809A1B>I<00F8131F7E007C133EA27E147C XA27E14F81380000F13F01381EA07C114E013C31203EBE3C0120113E71480EA00F7140013 X77A2137E133EA2133CA2137C1378A25BA21201EA7FE05B5B90C7FC18277F9A1B>I XE /Fc 2 95 df<126012F0A27E1278127C123CA2123E121E121F7EA27F12077F1203A27F X12017F12007F1378A2137C133C133E131EA2131F7F14801307A2EB030011247D9F18>92 XD94 D XE /Fd 3 52 df<1218127812981218AC12FF08107D8F0F>49 D<121FEA6180EA40C0EA80 X6012C01200A213C0EA0180EA030012065AEA10201220EA7FC012FF0B107F8F0F>I<121F XEA2180EA60C0A212001380EA0100121FEA00801340136012C0A2EA8040EA6080EA1F000B X107F8F0F>I E /Fe 5 122 df0 D2 D<1202A3EAC218EAF278EA3AE0EA0F80A2EA3AE0EAF278EA XC218EA0200A30D0E7E8E12>I<1206120FA2120E121EA2121C123C1238A212301270A212 X6012E012C0124008117F910A>48 D<1206A8EAFFF0A2EA0600B30C1D7E9611>121 XD E /Ff 14 123 df82 D<007FB512F839780780780060141800401408A200C0140C00801404A400001400B3 X497E0003B5FC1E1F7D9E24>84 D<1318A2133CA3134EA213CF1387A238010380A2000313 XC0EA0201A23807FFE0EA0400A2481370A2001813380038137838FE01FF18177F961C>97 XD101 D103 D105 XD108 XD<38FC01FC381E007014201217EA1380A2EA11C0EA10E0A213701338A2131C130E1307A2 XEB03A0EB01E0A213001460123800FE132016177E961C>110 D<13FE38038380380E00E0 X481370003C1378003813380078133C0070131C00F0131EA70070131C0078133C00381338 X003C1378001C13706C13E0380383803800FE0017177E961D>I114 D XI<387FFFFC3870381C00401304A200C0130600801302A300001300AE3803FF8017177F96 X1B>I<38FF81FC381C00701420B0000C1340120E6C138038018300EA007C16177E961C>I< XB5128038F0070012E0EAC00EEA801E131C5B1378EA00705BA2485A485AA2380700805A12 X0EEA1C01003C13001238485A130FB5FC11177E9617>122 D E /Fg X26 121 df11 D<120E1203A2EA0180A213C01200A21360A313 X30A213781398EA0118EA020C1204EA080EEA18061230EAE00312C010177E9615>21 XD<380FFFC0123F382108001241485A1202A212061204A2EA0C18A212181308120E7F8D14 X>25 D<126012F0A2126004047D830A>58 D<126012F0A212701210A21220A21240A2040A X7D830A>I<130813181330A31360A313C0A3EA0180A3EA0300A21206A35AA35AA35AA35A XA35AA20D217E9812>61 D<14C0A21301A21303130514E01308131813101320A213401380 XA23801FFF0EB007012025AA25A121838FE03FE17177F961A>65 D<0007B512803800E003 XEC0100A3EA01C0A21440A248485A138113FF1381D80701C7FCA390C8FC120EA45AEAFFC0 X19177F9616>70 D73 D76 D<381FFFFE38381C0E0020130412601240133812800000 X1300A25BA45BA4485AA41203EA3FFC17177F9615>84 D97 D<127C1218A45AA4EA6780EA X68C0EA7040EA606012C0A4EA80C0A2EA8180EAC1001246123C0B177E960F>II<133E130C XA41318A4EA0730EA18F0EA30701260136012C0A3EA80C013C4A212C1EA46C8EA38700F17 X7E9612>I<120313801300C7FCA6121C12241246A25A120C5AA31231A21232A2121C0917 X7F960C>105 D<1318133813101300A6EA01C0EA0220EA0430A2EA08601200A313C0A4EA X0180A4EA630012E312C612780D1D80960E>I<121F1206A45AA4EA181C1366138EEA190C XEA3200123C123FEA3180EA60C013C4A3EAC0C813700F177E9612>I<38383C1E3844C663 X3847028138460301388E0703EA0C06A338180C061520140C154039301804C0EC07001B0E X7F8D1F>109 DIIII X115 D<1203A21206A4EAFFC0EA0C00A35AA45A1380A2EA31001232121C0A147F930D>I< XEA0F1F3811A180EA20C31400EA41801201A348C7FC130212C3EAE704EAC508EA78F0110E X7F8D14>120 D E /Fh 26 114 df<132013401380EA01005A1206A25AA25AA212381230 XA21270A3126012E0AD12601270A31230A212381218A27EA27EA27E7EEA0080134013200B X317A8113>0 D<7E12407E7E12187EA27EA27EA213801201A213C0A3120013E0AD13C012 X01A31380A212031300A21206A25AA25A12105A5A5A0B317F8113>I13 D<1306130C131813301370136013C012011380120313005A1206120E120C121C XA212181238A312301270A65AB21270A612301238A31218121CA2120C120E120612077E13 X80120113C012001360137013301318130C13060F4A788119>16 D<12C012607E7E121C12 X0C7E12077E1380120113C0120013E013601370A213301338A31318131CA6130EB2131CA6 X13181338A313301370A2136013E013C012011380120313005A12065A121C12185A5A5A0F X4A7F8119>I<1430146014C0EB0180EB03005B130E130C5B1338133013705B5B12015B12 X03A290C7FC5A1206120EA2120C121CA312181238A45AA75AB3A31270A77EA41218121CA3 X120C120EA2120612077E7FA212017F12007F13701330133813187F130E7F7FEB0180EB00 XC014601430146377811F>I<12C012607E7E7E120E7E7E6C7E7F12007F13701330133813 X18131CA2130C130E13061307A27F1480A3130114C0A4EB00E0A71470B3A314E0A7EB01C0 XA414801303A314005BA21306130E130C131CA213181338133013705B5B12015B48C7FC5A X120E120C5A5A5A5A14637F811F>I<14181430146014E014C0EB01801303EB0700130613 X0E130C131C5BA25BA25BA212015BA2485AA3120790C7FCA25A120EA2121EA3121CA2123C XA412381278A8127012F0B3A812701278A81238123CA4121CA2121EA3120EA2120F7EA27F X1203A36C7EA27F1200A21370A27FA27F130C130E13061307EB03801301EB00C014E01460 X14301418157C768121>32 D<12C012607E123812187E120E7E7E7F12017F6C7EA21370A2 X7FA2133C131CA27FA3130F7FA214801303A214C0A31301A214E0A4130014F0A814701478 XB3A8147014F0A814E01301A414C0A21303A31480A213071400A25B130EA35BA2133C1338 XA25BA25BA2485A5B120390C7FC5A120E120C5A123812305A5A157C7F8121>I<141C143C X14F8EB01E0EB03C0EB0780EB0F00130E131E5BA35BB3B3A25BA3485AA2485A5B48C7FC12 X0E5A127812E0A21278121C7E7E6C7E7F6C7EA26C7EA31378B3B3A27FA37F130E130FEB07 X80EB03C0EB01E0EB00F8143C141C167C7B8121>40 D<12E07E127C121E7E6C7E6C7E1201 X7F6C7EA31378B3B3A27FA37FA27F7FEB0380EB01C0EB00E01478141CA2147814E0EB01C0 XEB0380EB07005B131EA25BA35BB3B3A25BA3485A5B1203485A48C7FC121E127C12F05A16 X7C7B8121>I<140C141814381430146014E014C01301EB0380A2EB0700A2130EA25BA25B XA21378137013F0A25B1201A2485AA4485AA3120F90C7FCA35AA2121EA3123EA4123CA312 X7CA81278A212F8B1164B748024>48 D<12C01260127012307E121C120C120E7EA26C7EA2 X6C7EA26C7EA21370A213781338133CA2131C131EA27FA4EB0780A314C01303A314E0A213 X01A314F0A41300A314F8A81478A2147CB1164B7F8024>I<12F8B11278A2127CA8123CA3 X123EA4121EA3121FA27EA37F1207A36C7EA46C7EA212007FA2137013781338A27FA27FA2 X7FA2EB0380A2EB01C0130014E01460143014381418140C164B748224>64 XD<147CB11478A214F8A814F0A31301A414E0A31303A214C0A313071480A3EB0F00A4131E XA2131C133CA2133813781370A25BA2485AA2485AA248C7FCA2120E120C121C12185A1270 X12605A164B7F8224>I<12F8B3A9051B748024>I<12F8B3A9051B6E8024>I80 D<14F8EB0184EB0306EB060E1404EB0E00A35BAA5BAA5BAA5BA3EA40C012E0EAC180 X0043C7FC123E172E7E7F14>82 D88 DII<14E01303EB0F80EB1E005B1370A25BB3A5485AA2485A48C7FC120E123C12 XF0A2123C120E7E6C7E6C7EA26C7EB3A51370A2133C7FEB0F80EB03E01300134A7C811C> X110 D<12E012F8123E120F6C7EEA01C0A26C7EB3A51370A27F7F7FEB0780EB01E0A2EB07 X80EB0E005B5B5BA25BB3A5485AA2EA078048C7FC123E12F812E0134A7C811C>I<160216 X06160CA21618A21630A21660A216C0A2ED0180A2ED0300A21506A25DA25DA25DA25D1208 X001C5C123C00CE495A120E4AC7FC7E1406EA03805CEA01C05C13E000005BA2EB7060A26D X5AA2EB1D80A2011FC8FC7F130E130627327C812A>I<16021606A2160CA31618A31630A3 X1660A316C0A3ED0180A3ED0300A31506A35DA35DA35DA35DA21208001C5C123C127C00DC X495A128E120E4AC7FC7EA21406EA0380A25CA2EA01C05CA2EA00E05CA3EB7060A36D5AA3 XEB1D80A3011FC8FC7FA2130E1306A2274B7C812A>I E /Fi 1 121 Xdf<38FE1FC0A2381E0C006C5AEA07B813F06C5A1201487E1378EA063CEA0E3EEA1C1E38 XFC1FC0A2120F7F8E15>120 D E /Fj 23 121 df<120112021204120C1218A21230A212 X701260A312E0AA1260A312701230A21218A2120C12041202120108227D980E>40 XD<12801240122012301218A2120CA2120E1206A31207AA1206A3120E120CA21218A21230 X12201240128008227E980E>I<1330ABB512FCA238003000AB16187E931B>43 XD48 D<1206120E12FE120EB1EAFFE00B157D9412>III<1330 XA2137013F012011370120212041208121812101220124012C0EAFFFEEA0070A5EA03FE0F X157F9412>II56 D61 XD66 D76 D<13FCEA0303380E01C0381C00E0481370003013300070 X1338A248131CA700601318007013380030133038387870381C84E0380E85C03803830038 X00FE0413021303148CEB01F8A2EB00F0161D7E961B>81 D83 D101 D103 D<12301278A212301200A512F81238AC12FE07177F960A>105 XD<38F8F83E383B1CC7393C0F0380EA380EAA39FE3F8FE01B0E7F8D1E>109 XDI112 XD114 D120 D E /Fk 57 124 df<91383F03E09138C38470903901878CF00103139891380338 X60D907001300A35D130EA390B6FC90380E00E05BA44A5A1338A549485AA54948C7FCA4EB XC00E1201140CEA318638798F1838F31E1038620C60383C07C02429829F1C>11 XDI<121C123E127EA2123A1202 X1204A21208A21210122012401280070E769F0E>39 D<121C123CA41204A21208A2121012 X20A212401280060E7D840E>44 DI<127012F8A212F0 X12E005057B840E>I<1302A21306130E133C13DCEA031C12001338A41370A413E0A4EA01 XC0A4EA0380A41207EAFFF80F1E7B9D17>49 D<1207120F121FA2120E1200AA127012F8A2 X12F012E008147B930E>58 DI<14021406A2140E141EA2143F142F144F14CF148FEB010FA2 X1302A213041308A20110138014071320EB3FFFEB40071380A2EA0100A212021206120400 X1E14C039FF807FF81D207E9F22>65 D<48B512C039001E00F015781538153C5BA4491378 XA215F0EC01E09038F007809038FFFE009038F00F80EC03C03801E00115E0A3EA03C0A315 XC038078003EC0780EC0F00141E380F007CB512E01E1F7D9E20>II<90 XB5128090381E00E015701538151C5B150EA35BA449131EA44848133CA3157848481370A2 X15E0EC01C0380780031580EC0E005C380F0070B512C01F1F7D9E22>I<48B512FE39001E X001C150C1504A25BA490387804081500A2140C495AEBFFF8EBF018A23801E010A3EC0010 X48481320A21540A248481380140115001407380F001FB512FE1F1F7D9E1F>I<48B512FC X39001E003815181508A25BA4491310EC0800A3495A1430EBFFF0EBF0303801E020A44848 XC7FCA4485AA4120FEAFFF81E1F7D9E1E>II<3801 XFFF038001F00131EA35BA45BA45BA4485AA4485AA4485AA4120FEAFFF0141F7D9E12>73 XD<9039FFF01FE090391F000F80011EEB0E0015085D495B5D4AC7FC1402495A5C5C1430EB XF0F0EBF1F8EBF27813F448487E13F013E080EA03C0A280A2EA07806E7EA3000F8039FFF0 X3FF8231F7D9E23>75 D<3801FFF8D8001FC7FC131EA35BA45BA45BA4485AA315803903C0 X0100A25C140238078006A25C141C380F0078B512F8191F7D9E1D>II<01FFEB3FE0011FEB0F001504EB1780A201 X275BEB23C0A3903841E010A214F0134001805B1478A348486C5AA3141E00025CA2140FA2 X4891C7FC80A2120C001C1302EAFF80231F7D9E22>II<48B5128039001E00E015701538153C5BA4491378A215F015E09038F0 X03C0EC0F00EBFFFC01F0C7FC485AA4485AA4485AA4120FEAFFF01E1F7D9E1F>II< X90B5FC90381E03C0EC00E0157015785BA44913F0A2EC01E015C09038F00700141EEBFFF0 XEBF01C48487E140F8015803903C00F00A43807801E1508A21510000F130ED8FFF01320C7 XEA03C01D207D9E21>I<903807E04090381C18C09038300580EB600313C0000113010180 X13001203A391C7FC7FA213F86CB47E14E06C6C7E131FEB01F8EB0078A21438A21220A214 X3000601370146014E000705B38E80380D8C606C7FCEA81F81A217D9F1A>I<000FB512FC X391E03C03800181418001014081220EB078012601240A239800F001000001400A3131EA4 X5BA45BA45BA41201387FFF801E1F799E21>I<393FFC0FF83907C003C09038800100A338 X0F0002A4001E5BA4485BA4485BA4485BA35CA200705B49C7FCEA3002EA3804EA0C18EA07 XE01D20779E22>I<39FFF003FC001FC712E06C14C01580EC0100A21402A25C5C13800007 X5B143014205CA25C138191C7FC13C2120313C413CC13C813D0A213E05BA25B120190C8FC X1E20779E22>I<3BFFE1FFC07F803B1F003E001C00001E013C13181610143E021E5B121F X6C013E5BA2025E5B149E4BC7FC9038011E02A201025BA201045BA201085BA201105B1320 X5D01405BA2D9801FC8FC80EB000E7E0006130CA2000413082920779E2D>I97 DI<137EEA01C138030080EA0E07121E001C1300EA3C0248C7FCA35AA5EA70011302EA30 X04EA1838EA07C011147C9315>I<1478EB03F8EB0070A414E0A4EB01C0A213F1EA038938 X070780EA0E03121C123C383807001278A3EAF00EA31420EB1C40A2EA703C135C38308C80 X380F070015207C9F17>I<137CEA01C2EA0701120E121C123CEA3802EA780CEA7BF0EA7C X0012F0A4127013011302EA3804EA1838EA07C010147C9315>I<1478EB019CEB033CA2EB X07181400A2130EA5EBFFE0EB1C00A45BA55BA55BA5485AA35B1231007BC7FC12F3126612 X3C1629829F0E>III<13C0EA01E0A213C0C7FCA7120E12131223EA4380EA4700A21287120EA35AA3EA X38401380A21270EA31001232121C0B1F7C9E0E>IIII<391C0F80F0392630C318394740640C903880680EEB0070 XA2008E495A120EA34848485AA3ED70803A3803807100A215E115623970070064D8300313 X3821147C9325>I<381C0F80382630C0384740601380EB0070A2008E13E0120EA3381C01 XC0A3EB038400381388A2EB0708EB031000701330383001C016147C931A>I<137CEA01C3 X38030180000E13C0121E001C13E0123C1278A338F003C0A3EB07801400EA700F130EEA30 X18EA1870EA07C013147C9317>I<3801C1E0380262183804741C1378EB701EA2EA08E012 X00A33801C03CA3143838038078147014E0EBC1C038072380EB1E0090C7FCA2120EA45AA2 XB47E171D809317>III<13 XFCEA0302EA0601EA0C03130713061300EA0F8013F0EA07F8EA03FCEA003E130E1270EAF0 X0CA2EAE008EA4010EA2060EA1F8010147D9313>II<000E13C0 X001313E0382301C0EA4381EA4701A238870380120EA3381C0700A31410EB0E201218A238 X1C1E40EA0C263807C38014147C9318>I<380E0380EA1307002313C0EA4383EA47011300 X00871380120EA3381C0100A31302A25BA25BEA0E30EA03C012147C9315>I<000EEBC1C0 X001313E3392301C3E0384381C1384701C015603987038040120EA3391C070080A3EC0100 XA21306EB0F02000C5B380E13083803E1F01B147C931E>I<38038380380CC440381068E0 X13711220EB70C03840E0001200A3485AA314403863808012F3EB810012E5EA84C6EA7878 X13147D9315>I<000E13C0001313E0382301C0EA4381EA4701A238870380120EA3381C07 X00A4130E1218A2EA1C1EEA0C3CEA07DCEA001CA25B12F05BEAE060485AEA4380003EC7FC X131D7C9316>I<3801C0403803E080EA07F1380C1F00EA0802C65A5B5B5B5B5B48C7FC12 X02485AEA08021210EA3E0CEA63FCEA41F8EA80E012147D9313>II XE /Fl 70 124 df<14F013F8120112033807800090C7FC5AA738FFF8F0A3EA0F00B11421 X80A018>12 D<1278A412181230A21260A212E0050A7D9F0D>39 D<13E0EA01C0EA038012 X0713005A121EA2121C123CA212381278A3127012F0AE12701278A31238123CA2121C121E XA27E7E13801203EA01C0EA00E00B2E7CA112>I<12E012707E123C121C121E7EA27E1380 XA2120313C0A3120113E0AE13C01203A313801207A213005AA2121E121C123C12385A5A0B X2E7EA112>II<1303AFB612FCA2D800 X03C7FCAF1E207E9A23>I<1278A412181230A21260A212E0050A7D830D>II<12F0A404047C830D>I<144014C0EB0180A3EB0300A31306A25BA35BA35BA25B XA35BA3485AA348C7FCA21206A35AA35AA25AA35AA35AA2122D7EA117>II<13C01201120712FFA212FB1203B3A4EAFFFEA3 X0F1F7C9E17>III<131FA2132F136FA213EF13CF12011203138F1207130F120F121EA212 X3C1238127812F0B512F0A338000F00A8141E7F9D17>I<383FFF80A3003CC7FCA713F8EA X3FFE7FEB8F80EA3E0314C0123C380001E0A7384003C0126038F00780387C0F00EA3FFEEA X0FFCEA03F0131F7F9D17>I<137CEA01FE1207EA0F8290C7FC121E5AA25AA213F8EAF3FC XEAF7FEEAFE1F38FC0F80EAF807A238F003C0A512701278A2EB07801238383C0F00EA1E1E XEA0FFEEA07F8EA01F012207E9E17>IIII<12 XF0A41200AC12F0A404147C930D>I<1278A41200AC1278A412181230A21260A212E0051A X7D930D>I61 D<131FA2497E133BA2EB7BC013 X731371EBF1E013E113E000017FA213C000031378A2138000077FA21300380FFFFEA2487F X381E000FA24814801407A24814C01403A248EB01E01B207F9F1E>65 XDI70 DI<12F0B3AE04207C9F0D>73 XD<00F0EB1F801500143E5C5C495A495A495A495A49C7FC133E5B5B12F1EAF3FC12F7EAFF X9E131F487E486C7E00F87FEAF0038013016D7E80147880143E141E80158019207C9F20> X75 D<12F0B3ABB512C0A312207C9F19>I<00F8147E6C14FEA200F414DE00F61301A300F3 XEB039EA2EB8007A200F1141EEBC00FA200F0130EEBE01EA2EB601CEB703CA2EB3038EB38 X78A2EB1870EB1CF0A2EB0CE0A2EB07C0A390C7FC1F207C9F28>I<00FC131E7EA212F7A2 X138012F3A2EAF1C0A213E012F013F013701378A2133CA2131C131E130E130F1307A2EB03 X9EA214DE1301A2EB00FEA2147E17207C9F20>I81 DIII<00F0133CB3A700781378A26C13F0EA3E01381F03 XE0380FFFC000031300EA00FC16217C9F1F>I<00F0EB01E0A2007814C01403A26CEB0780 XA36CEB0F00A36C131EA2138000075BA23803C0381478A23801E07014F0A26C6C5A13F1A2 XEB71C0137BEB3B80A2133F6DC7FCA21B207F9F1E>I<00F0017C130F147EA20078016E13 X0E02EE131E14E7A26C153C0101138014C714C3001E1578010313C01483000E0181137000 X0F15F0010713E014010007010013E0018713E1018F13F1138E0003EC71C0A201CE1373D8 X01DCEB7B80153BA213D8D800F8EB1F00A328207F9F2B>I<0078EB0780007C130F6CEB1F X00001E131E001F133E6C6C5A000713786C6C5A13E13801F1E03800F3C0137F5C6DC7FC7F X131E133F80497E13F33801F1E0EBE0F048487E00071378497E380F003E48131E001E7F48 X1480007CEB07C0007813034814E01B207F9F1E>I91 D93 DI X97 D<12F0ACEAF1F0EAF7FCB47EEAFC1F38F80F80EAF007A2EB03C0A6EB0780A238F80F X00EAFC3FEAFFFEEAF7FCEAF1F012207D9F17>IIII<137EEA01FE1203 XEA078013005AA7EAFFF0A3EA0F00B10F20809F0E>I<3803E0F0EA0FFF5A383E3E00EA3C X1E487EA5EA3C1EEA3E3EEA1FFC485AEA33E00030C7FC1238EA3FFEEBFF806C13C0007F13 XE0387803F0EAF000A3EAF801387E07E0383FFFC0000F1300EA03FC141E7F9317>I<12F0 XACEAF1F8EAF3FCEAF7FEEAFC1FEAF80FA212F0AE10207D9F17>I<12F0A41200A812F0B3 XA204207D9F0B>II< X12F0AC131F131E5B5B5BEAF1E0EAF3C0EAF780B47EA27FEAF9F012F8487E137CA27F131E X131FEB0F8011207D9F16>I<12F0B3AE04207D9F0B>I<39F0FC07E039F3FE1FF039F7FF3F XF839FE0FF07C39F807C03CA200F01380AE1E147D9325>IIII<3803E3C0EA0FFBEA1FFFEA3F0FEA3C07EA78 X03A212F0A61278A2EA7C07EA3F0FEA1FFFEA0FFBEA03E3EA0003A9121D7F9317>III<121EA6EAFFF0A3EA1E00AD1310EA0FF8A2EA07E00D1A7F9910>II<38F003C0A212F838780780A2383C0F00A3 XEA1E0E131EA2EA0F1C133CA2EA0738A213B8EA03F0A26C5A12147F9315>II<387801E0387C03C0383E0780EA1E X0F000F1300EA079EEA03FC5B12016C5A12017F487EEA079EEA0F0F120E381E0780383C03 XC0387801E000F813F01414809315>I<38F003C0A238780780A2127C383C0F00A2121E13 X1EA2EA0F1CA2EA073C133813B8120313B0EA01F05B1200A2485AA212035B1207B4C7FC5A X5A121D7F9315>III E X/Fm 29 121 df0 D<127012F8A3127005057C8D0D>I<00401304 X00C0130C006013186C13306C13606C13C03806018038030300EA0186EA00CC13781330A2 X137813CCEA0186EA030338060180380C00C048136048133048131848130C004013041618 X7A9623>II<5B5BAEB612FCA2D80003C7FCADB612FCA21E207E9E23>6 XD10 D15 D17 D<15C01403EC0F00141C1470495AEB0780011EC7FC X1378EA01E0EA0380000EC8FC123C12F0A2123C120EEA0380EA01E0EA0078131EEB0780EB X01E0EB0070141C140FEC03C014001500A8007FB51280B612C01A267C9C23>20 XD<12C012F0123C120EEA0380EA01E0EA0078131EEB0780EB01E0EB0070141C140FEC03C0 XA2EC0F00141C1470495AEB0780011EC7FC1378EA01E0EA0380000EC8FC123C127012C0C9 XFCA8007FB51280B612C01A267C9C23>I25 XD28 XDI< X13C0A3485AA2120390C9FC12065A121C1230B712FEA20030C9FC121C120C7E7E7F1201A2 X6C7EA327187D962D>32 D<1506A381A216801501ED00C0166016701618B8FCA2C9121816 X70166016C0ED018015031600A21506A328187E962D>I<15C0A2156081A28181B612FE81 XC8EA01C0ED00F0163C160F163C167016C0ED0380B712005DC8120C5D5D157015605DA228 X1A7E972D>41 D49 XDI<140CA21418A21430A21460A214C0A2EB X0180A3EB0300A21306A25BA25BA25BA25BA25BA2485AA248C7FCA21206A35AA25AA25AA2 X5AA25A1240162C7AA000>54 D69 D<0130131E01F0137E0003 XEB018E3900E0060EEC180C0001EB20005CEBE18001E2C7FC13E45B13D8EA03F8A213B813 XBC1207139C131C131E120FEA0E0FA2381E0780121C6D7E003C1406393801E00CECF008D8 X780013100070EB7C200060EB7FC048EB1F001F217F9F23>75 D<17F01603160702C0EB0F XE00101EC0E00496C13181610A25E497EA213046E5BA2147801085C147CA2143C9026103E X01C7FCA2141E141F01201302140F15821340EC07C4A2EB800315E4D8010013EC0063EB01 XF8127E00FE6D5A481460007891C8FC2C2581A225>78 D<130F1338136013E0EA01C0AFEA X0380EA0700121E12F8121E1207EA0380EA01C0AFEA00E013601338130F102D7DA117> X102 D<12F8121E1207EA0380EA01C0AFEA00E013601338130F1338136013E0EA01C0AFEA X0380EA0700121E12F8102D7DA117>I<12C0B3B3A9022D7BA10D>106 XDI<160816181630A21660A216C0A2ED0180 XA2ED0300A21506A25DA25DA25DA25DA25D1206001E495A122F004F49C7FCEA8780000713 X06EA03C05CA26C6C5AA26C6C5AA2EB7860A26D5AA2EB1F80A26DC8FCA21306A2252E7E81 X26>112 D114 D120 D E /Fn 62 122 df<137EEA01C33903018080380E00C0001E X13E0001CEBE100123C5A14E214E45A14E814F0A25C1270EB016038300671381818323807 XE01C19147E931D>11 D<14F8EB03061304EB080313101320EB4007A2138014063801000E X140CEB07F8EB0470380207D8EB001CA2141E5AA448133CA3147800181370001413F014E0 X381201C038218700EA207C90C7FCA25AA45AA318297F9F1A>I<3803C002380FE004EA1F XF0383FF808EA701838400C10EAC00400801320EA00021440A21480A2EB0300A31302A313 X06A35BA45BA31310171E7F9318>I<133EEB7FC013833801018090C7FC7FA27F12007FA2 X13701378A2EA01BCEA071E120EEA1C0E1218EA380F12707FA2EAE006130EA2130CA2EA60 X18A26C5A6C5AEA0F8012217EA014>I<137CEA0180EA0700120E5A123C12381278A2EA7F XF0EAF000A31270A312301238EA0C18EA07E00E147E9312>I<131E1363EBC380EA01C1EA X0381EB01C01207120F120EEA1E03121C123CA338780780EA7FFFA2EA780738F00F00A313 X0E131EEAE01C133C13381330EA60705BEA70C0EA3180001EC7FC12207E9F15>18 XD<1207EA01C07F12007F1370A213781338A2133C131CA2131E130EA2130F7F131FEB3780 X136313C3380183C0EA0381EA0701000E13E0EA1C005A48137012F048137848133815207D X9F1B>21 D<38018018EBC01C38038038A438070070A4000E13E0A314E1381E01C2A21303 XEB05C4EA3F083839F0780038C7FCA25AA45AA35A181E7F931B>I<000F1330007F133800 X0E1370A314E05AEB01C0A2EB03800038130013065B5B485A5BEA71C00073C7FC12FC12E0 X15147E9316>I<1308A3EB0FE0EB3810EBF7E03801E000485A485AA248C7FCA57E6CB4FC X3801C08038027F00000CC7FC5A121012305AA312E0A212701278123EEA1FC0EA0FF0EA03 XFCEA007F131F1303A21201EA00C6133C1429809F14>I<380FFFFC4813FE4813FC386082 X0012C01281EA010613041203A21202EA060C130E120CA2121CA2EA180FEA3807EA300617 X147E931A>I27 D<1440A21480A4EB0100A41302 XA2EB1FC0EBE270380384183806040C000C130E001C13063838080712301270A238E0100E XA2140C141C386020380070133000301360381821C0380E4700EA03F8EA0040A25BA448C7 XFCA318297E9F1B>30 D<1410A35CA45CA45C000FEB818039118083C0002114E0EBC10100 X411300D84381136000831440EA0702A3000E14805BEC0100A21402495A00065B00071330 X3801C8C0D8007FC7FC1310A35BA45BA21B297E9F1E>32 D<127012F8A3127005057C840D X>58 D<127012F012F8A212781208A31210A31220A21240050E7C840D>I<15C01403EC0F X00141C1470495AEB0780011EC7FC1378EA01E0EA0380000EC8FC123C12F0A2123C120EEA X0380EA01E0EA0078131EEB0780EB01E0EB0070141C140FEC03C014001A1C7C9823>I<14 X4014C0EB0180A3EB0300A31306A25BA35BA35BA25BA35BA3485AA348C7FCA21206A35AA3 X5AA25AA35AA35AA2122D7EA117>I<12C012F0123C120EEA0380EA01E0EA0078131EEB07 X80EB01E0EB0070141C140FEC03C0A2EC0F00141C1470495AEB0780011EC7FC1378EA01E0 XEA0380000EC8FC123C12F012C01A1C7C9823>I<14021406140EA2141E141F142F146F14 X4F148FA2EB010F1303130201041380A2EB0807131813101320A2EB7FFFEB8007A2D80100 X13C0140312025AA2120C003C1307B4EB3FFC1E207E9F22>65 D<48B512E039001E007815 X3C151C151E5BA449133CA2157815F09038F003C090B512009038F007C0EC00E0484813F0 X1578A3485AA31570484813F0EC01E0EC03C0EC0780390F001E00B512F01F1F7E9E22>I< X027F1380903803C0C190390E0023000138131749130F5B48481306485A48C7FC5A000E14 X04121E4891C7FCA25AA45AA400701420A35D6C5CA26C49C7FC6C13066C13183801C06038 X007F8021217F9F21>I<48B612803A001E000F001503A2815BA4903878020292C7FCA214 X06495AEBFFFCEBF00CA23801E008A3EC000448485BA25DA248485B15601540EC01C0380F X0007B65A211F7E9E22>69 D<48B6FC39001E001E1506A215025BA4491304EC0200A3495A X140CEBFFFCEBF00C3801E008A44848C7FCA4485AA4120FEAFFFC201F7E9E1D>I<027F13 X80903803C0C190390E0023000138131749130F5B48481306485A48C7FC5A000E1404121E X4891C7FCA25AA45AEC3FFEEC00F0A20070495AA46C495AA26C13076C13056CEB19803801 XC06026007F80C7FC21217F9F24>I<3A01FFF0FFF83A001F000F80011E1400A349131EA4 X495BA4495B90B512F89038F00078A248485BA44848485AA44848485AA4000F130739FFF8 X7FFC251F7E9E26>I<3801FFF038001F00131EA35BA45BA45BA4485AA4485AA4485AA412 X0FEAFFF0141F7E9E14>I<3A01FFF00FF83A001F0003E0011E1480ED02005D4913105D5D X4A5AD97802C7FC5C5C1438EBF07814F8EBF13C13F448487E13F0EBE01F80EA03C06E7EA2 X8138078003A26E7EA2000F8039FFF80FFE251F7E9E27>75 D<3801FFF8D8001FC7FC131E XA35BA45BA45BA4485AA3154048481380A21401150048485AA21406140E380F007CB512FC X1A1F7E9E1F>II<14FF90380781C090381C00E0491370491338D801C0131C120349131E48C7120E5A X121EA25AA248141EA448143CA2153815781570007014F0EC01E0007814C0EC03800038EB X07006C130E5C000F1370380381C0C6B4C7FC1F217F9F23>79 D<48B512E039001E007815 X1C150E150F5BA449131EA2153C15784913E0EC03C09038FFFE0001F0C7FC485AA4485AA4 X485AA4120FEAFFF8201F7E9E1D>I<14FF90380781C090381C00E0491370491338484813 X1C485A49131E48C7FC48140E121EA25A151E5AA448143CA2153815781570007014F015E0 X90380E01C039783003803938408700001C138E149C000E13F03903C1C020EA00FF010013 X60154015C0ECE18014FF1500147E143C1F297F9F24>I<48B5128039001E00F01538151C XA249131EA449133CA2157815F09038F001C0EC0700EBFFF8EBF00E48487E1580140315C0 X3903C00780A43907800F001502A21504000F130739FFF80308C7EA01F01F207E9E23>I< X903803F04090380C08C09038300580EB600313C000011301018013001203A391C7FC7F7F X13FC3801FFC06C13F06D7E131FEB01FCEB007C143C141CA21220A2141800601338143014 X7000705B38E80180D8C603C7FCEA81FC1A217E9F1C>I<000FB512FC391E03C038001814 X18001014081220EB078012601240A239800F001000001400A3131EA45BA45BA45BA41201 X387FFFC01E1F7F9E1B>I<397FFC07FE3907C000F0491340A348C71280A4001EEB0100A4 X481302A4485BA4485BA35C00705BA25C6C5BD81803C7FCEA0E0CEA03F01F207D9E1F>I< X39FFF001FF390F80007890C712301520154015807F0007EB01005C14025CA25C6D5AA200 X035B146014405CA201C1C7FC13E2120113E413E8A213F0A25B5B12005B20207E9E1B>I< X3BFFF03FFC0FF83B1F8007C003C0D80F00903880018017001602140F5E14176F5A14235E X0243133002C3132002835BEB81035EEA078203C1C7FC138415C2018813C4139015C813A0 X15F0EBC0015D13805D01005B120692C8FC2D207E9E2B>I<9039FFF01FF890390FC00780 X9138800600010713046E5A5D01035B6E5A010113C0ECF18002F3C7FCEB00F214FC147814 X7CA314BEEB011EEB021F1304EB0C0F01187FEB100701207F1340EB8003D801007F000713 X01001F497E39FFC01FFE251F7F9E26>I97 XDI<137CEA01C338070080EA0E07 X121E001C1300EA3C0248C7FCA35AA5EA70011302EA3004EA1838EA0FC011147E9314>I< X1478EB03F8EB0070A414E0A4EB01C0A213F1EA038938070780EA0E03121C123C38380700 X1278A3EAF00EA31410EB1C20A2EA703CEB5C40EA308C380F078015207E9F18>I<137CEA X0182EA0701120E121C123CEA3802EA780CEA7BF0EA7C0012F0A4127013011302EA3004EA X1838EA0FC010147E9315>I<147C14CEEB019E1303140CEB0700A4130EA3EBFFF0EB0E00 XA25BA55BA55BA55BA45B1201EA3180127948C7FC1262123C17297E9F16>III<13E01201A2EA00 XC01300A7120E1213EA23801243A3EA87001207A2120EA25AA21320EA3840A31380EA1900 X120E0B1F7E9E10>I<14C0EB01E0A214C090C7FCA7131E1323EB43801383EA0103A23802 X07001200A3130EA45BA45BA45BA21230EA78E0EAF1C0EA6380003EC7FC1328819E13>I< XEA01E0120FEA01C0A4485AA448C7FCA2EB01E0EB0610380E0870EB10F013201460381C40 X00EA1D80001EC7FCEA1FC0EA38707FA2EB1C2038703840A3EB188012E038600F0014207E X9F18>I<391E07C07C39231861869038A032033843C034D980381380A23A870070070012 X07A3000EEBE00EA3ED1C10261C01C01320153816401518263803801380D81801EB0F0024 X147E9328>109 D<381E0780382318C0EBA0603843C0701380A2388700E01207A3380E01 XC0A3EB0382001C1384EB07041408130300381310381801E017147E931B>I<137CEA01C3 X38030180000E13C0121E001C13E0123C1278A338F003C0A3EB07801400EA700F130EEA30 X18EA1870EA07C013147E9316>I<3803C1E038046218EB741CEA0878EB701EA2EA10E012 X00A33801C03CA3143838038078147014E0EBC1C038072380EB1E0090C7FCA2120EA45AA2 XEAFFC0171D819317>II<13FCEA X030338060080EA0C0113031400000EC7FCEA0F8013F86C7EEA01FEEA001F13071270EAF0 X06A2EAE004EA4008EA2030EA1FC011147E9315>115 DI<00 X0F136038118070002113E013C01241EA4380388381C0EA0701A3380E0380A31484EB0708 X120CA2380E0F10EA06133803E1E016147E931A>I<000FEB607039118070F00021EBE0F8 X01C0137800411438D843801318398381C010EA0701A3390E038020A31540A21580130700 X06EB8100380709C23801F07C1D147E9321>119 D<3803C1C0380C622038103470EB38F0 X12201460384070001200A35BA314203861C04012F1148012E238446300EA383C14147E93 X1A>I<001E13600023137014E0EA438013001247388701C0120EA3381C0380A4EB070012 X18121C5BEA0C3EEA03CEEA000EA25BEAF0181338485AEAC060EA41C0003FC7FC141D7E93 X16>I E /Fo 95 128 df<80497EA2497EA2EB05F01304497E1478EB107C143CEB203E14 X1EEB401F8001807F1407D801007F14030002801401488014004880157848147C153C4814 X3E151E007FB6FCA2B7128021207E9F26>1 D6 XD10 D<90381F83E09038F06E303901 XC07878380380F8903800F03048EB7000A7B612803907007000B2383FE3FF1D20809F1B> XI<133FEBE0C0EA01C0380381E0EA0701A290C7FCA6B512E0EA0700B2383FC3FC1620809F X19>II<9038 X1F81F89038F04F043901C07C06390380F80FEB00F05A0270C7FCA6B7FC3907007007B23A X3FE3FE3FE02320809F26>I<1207A2120F121C12381230126012C00808779F17>19 XDI22 XD<123E1241EA8080A4EA4100123E090874A022>I<127012F8A71270AA1220A51200A512 X7012F8A3127005217CA00D>33 DI<137813841201EA03021207A45BA25BA2EA039090 X38A00FFC9038C001E0EC00C000011480EC0100EA02E000041302EA087038187804383038 X08EA703CEB1C10EAF00EEB0F20EB07C09038038004387001C0397802E008393804701839 X1C183C303907E00FC01E227EA023>38 D<127012F812FCA212741204A31208A21210A212 X201240060E7C9F0D>I<13401380EA01005A12061204120C5AA212381230A212701260A4 X12E0AC1260A412701230A212381218A27E120412067E7EEA008013400A2E7BA112>I<7E X12407E12307E1208120C7EA212077EA213801201A413C0AC1380A412031300A25A1206A2 X5A120812185A12205A5A0A2E7EA112>I<1303AFB612FCA2D80003C7FCAF1E207E9A23> X43 D<127012F012F8A212781208A31210A31220A21240050E7C840D>II<127012F8A3127005057C840D>I<144014C0EB0180A3EB0300A31306A25BA35BA3 X5BA25BA35BA3485AA348C7FCA21206A35AA35AA25AA35AA35AA2122D7EA117>II<13801203120F12F31203B3A6EA07C0EAFFFE0F1E7C X9D17>III<1306A2130EA2131E132EA2134E138EA2EA010E1202A2120412 X08A212101220A2124012C0B512F038000E00A7EBFFE0141E7F9D17>II<137CEA0182EA0701380E03 X80EA0C0712183838030090C7FC12781270A2EAF1F0EAF21CEAF406EAF807EB0380A200F0 X13C0A51270A214801238EB07001218EA0C0E6C5AEA01F0121F7E9D17>I<1240387FFFE0 X14C0A23840008038800100A21302485AA25B5BA25BA21360A213E05B1201A41203A76C5A X131F7E9D17>III<127012F8A312701200AA127012F8 XA3127005147C930D>I<127012F8A312701200AA127012F012F8A212781208A31210A312 X20A21240051D7C930D>I61 XD<5B497EA3497EA3EB09E0A3EB10F0A3EB2078A3497EA2EBC03EEB801EA248B5FCEB000F XA20002EB0780A348EB03C0A2120C001E14E039FF801FFE1F207F9F22>65 XDI<90380FE0109038381C30 X9038E002703803C00139078000F048C71270121E15305A1510127C127800F81400A91278 X007C1410123CA26C1420A27E6C6C13406C6C13803900E00300EB380CEB0FF01C217E9F21 X>IIII<90380FE01090 X38381C309038E002703803C00139078000F048C71270121E15305A1510127C127800F814 X00A7EC3FFEEC01F000781300127C123CA27EA27E6C7E3903C001703900E002309038380C X1090380FF0001F217E9F24>I<39FFF07FF8390F000780AD90B5FCEB0007AF39FFF07FF8 X1D1F7E9E22>II<3807FFC038003E00131EB3A3 X122012F8A3EAF01CEA403CEA6038EA1070EA0FC012207F9E17>I<39FFF007FC390F0003 XE0EC0180150014025C5C5C5C5C5C49C7FC5B497E130FEB13C0EB21E01341EB80F0EB0078 XA28080A280EC0780A2EC03C015E015F039FFF01FFE1F1F7E9E23>IIIIIIII<3803F040 X380C0CC0EA1803EA3001EA6000A212E01440A36C13007E127CEA7F80EA3FF86CB4FC0007 X1380C613C0EB1FE013031301EB00F014707EA46C136014E06C13C038F8018038C60300EA X81FC14217E9F19>I<007FB512E038780F010060EB006000401420A200C0143000801410 XA400001400B3497E3803FFFC1C1F7E9E21>I<39FFF00FF8390F0003E0EC0080B3A46CEB X01001380120314026C6C5A6C6C5AEB3830EB0FC01D207E9E22>I<39FFF003FE391F8000 XF86CC7126015206C6C1340A36C6C1380A2EBE00100011400A23800F002A213F8EB7804A2 X6D5AA36D5AA2131F6D5AA2EB07C0A36D5AA36DC7FC1F207F9E22>I<3BFFF07FF81FF03B X1F000FC007C06C903907800180170015C001805C00071502EC09E013C000035DEC19F014 X10D801E05CA2EC2078D800F05CA2EC403C01785CA2EC801E017C1460013C144090383D00 X0F133F6D5CA2011E1307010E91C7FCA2010C7F010413022C207F9E2F>I<397FF81FF839 X0FE007C03907C0030000031302EBE0063801F00400005BEBF818EB78106D5AEB3E60EB1E X406D5AA213076D7E497E1305EB08F0EB18F8EB1078EB207CEB603EEB401EEB801F390100 X0F801407000214C000061303001FEB07E039FFC01FFE1F1F7F9E22>I<39FFF001FF391F X800078000F146012076D1340000314807F3901F001001200EBF802EB7C06EB3C04EB3E08 X131EEB1F10EB0FB0EB07A014E06D5AACEB3FFC201F7F9E22>I<387FFFFE387E003C1278 X00701378006013F814F0384001E0130314C0EB07801200EB0F00131EA25B137C13785B12 X01EBE002EA03C0A2EA0780000F13061300001E1304003E130C123C48133C14FCB5FC171F X7E9E1C>I<12FFA212C0B3B3A512FFA2082D7CA10D>II<12FFA21203B3B3A512FFA208 X2D80A10D>I<120C121E1233EA6180EAC0C0EA80400A067A9E17>I97 D<121C12FC121CAA137CEA1D87381E0180EB00C0001C13E01470A214 X78A6147014F014E0001E13C0381A018038198700EA107C15207E9F19>III XI<137CEA01C6EA030F1207EA0E061300A7EAFFF0EA0E00B2EA7FE01020809F0E>I<14E0 X3803E330EA0E3CEA1C1C38380E00EA780FA5EA380E6C5AEA1E38EA33E00020C7FCA21230 XA2EA3FFE381FFF8014C0383001E038600070481330A4006013606C13C0381C03803803FC X00141F7F9417>I<121C12FC121CAA137C1386EA1D03001E1380A2121CAE38FF8FF01420 X7E9F19>I<1238127CA31238C7FCA6121C12FC121CB1EAFF80091F7F9E0C>I<13E0EA01F0 XA3EA00E01300A61370EA07F012001370B3A31260EAF06013C0EA6180EA3F000C28829E0E X>I<121C12FC121CAAEB1FE0EB0780EB060013045B5B5B136013E0EA1DF0EA1E70EA1C38 X133C131C7F130F7F148014C038FF9FF014207E9F18>I<121C12FC121CB3ABEAFF800920 X7F9F0C>I<391C3E03E039FCC30C30391D039038391E01E01CA2001C13C0AE3AFF8FF8FF X8021147E9326>IIII< X3801F04038070CC0EA0E02EA1C03EA38011278127012F0A6127012781238EA1C03EA0C05 XEA0709EA01F1EA0001A8EB0FF8151D7F9318>III<1202A31206A2 X120EA2123EEAFFF8EA0E00AB1304A5EA07081203EA01F00E1C7F9B12>I<381C0380EAFC X1FEA1C03AE1307120CEA061B3803E3F014147E9319>I<38FF83F8383E00E0001C13C06C X1380A338070100A21383EA0382A2EA01C4A213E4EA00E8A21370A3132015147F9318>I< X39FF9FE1FC393C078070391C030060EC8020000E1440A214C0D80704138014E0A2390388 X61001471A23801D032143A143E3800E01CA2EB6018EB40081E147F9321>I<38FF87F838 X1E03C0380E0180EB0300EA0702EA0384EA01C813D8EA00F01370137813F8139CEA010E12 X02EA060738040380000C13C0003C13E038FE07FC16147F9318>I<38FF83F8383E00E000 X1C13C06C1380A338070100A21383EA0382A2EA01C4A213E4EA00E8A21370A31320A25BA3 XEAF080A200F1C7FC1262123C151D7F9318>IIII126 DI E /Fp 58 X123 df<1238127C12FE12FFA2127F123B1203A21206A2120E120C12181230122008107C X860F>44 DI<1238127C12FEA3127C123807077C860F>I<146014 XE0A2EB01C0A2EB0380A3EB0700A3130EA25BA35BA35BA25BA3485AA2485AA348C7FCA312 X0EA25AA35AA35AA25AA25A132D7DA11A>II<137013F0120712FF12F91201B3A4387FFFC0A2121D7D9C1A>IIII< X001C13E0EA1FFF14C01480140013FC13C00018C7FCA4EA19FE381FFF80381E07C0381803 XE0381001F0120014F8A2127812FCA314F0EA7803007013E0383C0FC0380FFF00EA03FC15 X1D7E9C1A>I<133F3801FFC03807C0E0EA0F81381F03F0121E123E127CEB01E090C7FCEA XFC1013FF00FD13C0EB03E038FE01F0A200FC13F8A4127CA3003C13F0123E381E03E0380F X07C03807FF803801FE00151D7E9C1A>I<1260387FFFF8A214F014E014C038E0018038C0 X0300A21306C65A5B13381330137013F0A2485AA21203A41207A56C5A6C5A151E7D9D1A> XIII<1238127C12FE XA3127C12381200A61238127C12FEA3127C123807147C930F>I<14E0A2497EA3497EA2EB X06FCA2EB0EFEEB0C7EA2497EA201307F141F01707FEB600FA2496C7E90B5FC4880EB8003 X000380EB0001A200066D7EA2000E803AFFE00FFFE0A2231F7E9E28>65 XD XI<903807FC0290383FFF0E9038FE03DE3903F000FE4848133E4848131E485A48C7120EA2 X481406127EA200FE1400A7127E1506127F7E150C6C7E6C6C13186C6C13386C6C13703900 XFE01C090383FFF80903807FC001F1F7D9E26>IIII<903807FC0290383FFF0E9038FE03DE3903F000FE4848133E48 X48131E485A48C7120EA2481406127EA200FE91C7FCA591381FFFE0A2007E9038007E00A2 X127F7EA26C7E6C7E6C7E6C6C13FE3800FE0190383FFF8E903807FC06231F7D9E29>I73 D76 DII80 DII<3803FC X08380FFF38381E03F8EA3800481378143812F01418A26C13007EEA7FC013FE383FFF806C X13C06C13E06C13F0C613F81307EB00FC147C143C12C0A36C1338147800F8137038FE01E0 X38EFFFC000811300161F7D9E1D>I<007FB512FCA2397C07E07C0070141C0060140CA200 XE0140E00C01406A400001400B10003B512C0A21F1E7E9D24>I86 D97 XDIIIII<3803FC3C380FFFFE381E079E383C03DE007C13E0A5003C13C0381E X0780381FFF00EA13FC0030C7FCA21238383FFF806C13F06C13F84813FC3878007C007013 X3E00F0131EA30078133CA2383F01F8380FFFE000011300171E7F931A>II<121C123E127FA3 X123E121CC7FCA6B4FCA2121FB0EAFFE0A20B217EA00E>I<1338137C13FEA3137C133813 X00A6EA01FEA2EA003EB3A212301278EAFC3C137CEA7878EA3FF0EA1FC00F2A83A010>I< XB4FCA2121FAAEB01FEA2EB00F014C0EB0380EB0700130C5B137C13FC139E130F001E1380 XEB07C01303EB01E014F0EB00F838FFC3FFA218207E9F1C>II<3AFE0FE03F8090391FF07FC03A1E70F9C3E09039407D01F0EB807E121F XEB007CAC3AFFE3FF8FFEA227147D932C>I<38FE0FC0EB3FE0381E61F0EBC0F81380EA1F X00AD38FFE7FFA218147D931D>I<48B4FC000713C0381F83F0383E00F8A248137CA200FC X137EA6007C137CA26C13F8A2381F83F03807FFC00001130017147F931A>I<38FF1FC0EB X7FF0381FE1F8EB80FCEB007EA2143E143FA6143E147E147CEB80FCEBC1F8EB7FE0EB1F80 X90C7FCA7EAFFE0A2181D7E931D>I<3801F8183807FE38381F8778383F01F8123EEA7E00 X127C12FCA6127C127EA2EA3F01EA1F87EA0FFEEA03F8C7FCA7EB07FFA2181D7E931C>I< XEAFE3EEB7F80381ECFC0138FA2121FEB030090C7FCABEAFFF0A212147E9316>II<1203A45AA25AA2123FEAFFFCA2EA X1F00AA1306A5EA0F8CEA07F8EA03F00F1D7F9C14>I<38FF07F8A2EA1F00AD1301A2EA0F X063807FCFF6C5A18147D931D>I<39FFE07F80A2391F001C00380F8018A26C6C5AA26C6C X5AA2EBF0E000015B13F900005B13FF6DC7FCA2133EA2131CA219147F931C>I<3AFFC7FE X1FE0A23A1F00F0030014F8D80F801306A29038C1BC0E0007140CEBC3BE3903E31E18A290 X38F60F380001143001FE13B03900FC07E0A2EBF80301785BA2903830018023147F9326> XI<38FFC0FFA2380F80703807C0606D5A3803E180EA01F36CB4C7FC137E133E133F497E13 X6FEBC7C0380183E0380381F048C67E000E7F39FF81FF80A219147F931C>I<39FFE07F80 XA2391F001C00380F8018A26C6C5AA26C6C5AA2EBF0E000015B13F900005B13FF6DC7FCA2 X133EA2131CA21318A2EA783012FC5BEAC0E0EAE1C0EA7F80001EC8FC191D7F931C>I<38 X3FFFE0A2383C07C038380F80EA701F38603F00133E5BC65A1201485AEBE060EA07C0EA0F X80001F13E0383F00C0EA3E01EA7C03B5FCA213147F9317>I E /Fq X36 123 df45 D<123C127E12FFA4127E123C0808798717>I48 XD<1306131E133E13FE121FEAFF3E12E01200B3B3EBFF80007F13FFA2182F78AE28>IIII66 DII X73 D80 D82 D<90381FE0029038FFFC063903E01F0E390780038E390E0001 XDE48EB007E48143EA248141EA200F0140EA315067EA26C91C7FC127E127FEA3FC013FC38 X1FFFC06C13FC6CEBFF806C80C614F0011F7F01017FEB001FEC01FEEC007F8181ED0F80A2 X12C01507A37E1600A26C5C150E6C141E6C141C00F75CD8E3C013F039E0F803E039C03FFF X80268007FCC7FC21337BB12C>I<007FB712FCA29039000FF001007C903907E0007C0078 X163C0070161C0060160CA200E0160EA2481606A6C71500B3ACEC1FF8011FB512F8A22F31 X7CB038>I86 XD<14301478A314FCA2497E14BEA2EB031FA201077FEB060FA2496C7EA3496C7EA2496C7E XA3496C7EEB7FFF90B57E9038C0007CA248487FA20003143F90C77EA248EC0F805A486CEB X1FC0D8FFE0EBFFFCA226257EA42C>97 DIIIII<02FF1320010FEBC06090393F80F0E090387C00 X38D801F0130D4848130748481303485A150148C7FC481400123E127E1660127C12FC1600 XA6913801FFFEA2007C90380007F0007EEC03E0A2123E123F7E6C7EA26C7E6C7ED801F813 X07D8007E130C90393F80786090390FFFF0200100EB800027277DA52E>I<3AFFFE07FFF0 XA23A0FE0007F006C48133EAE90B512FEA29038C0003EAF486C137F3AFFFE07FFF0A22425 X7DA42C>II108 XDIII< XB512FEECFFC0390FC007F00007EB01F8EC007C157E153E153FA6153E157E157CEC01F8EC X07F090B512C0ECFE0001C0C7FCAE487EEAFFFEA220257DA428>I114 DI<007FB612E0A2397C00F80300701400A20060156000E01570A2481530A4 XC71400B3A4497E90387FFFF0A224257EA42A>II121 D<003FB512F0A290388003E0383E X0007003C14C00038EB0F8048131F1500143E0060137E147C5CEA00015C495A13075C495A X131F91C7FC133E137E137C49133012015B485A000714705B485A001F146090C712E0003E X1301007E1303007C131FB6FCA21C257DA424>I E /Fr 44 123 df45 D<1238127C12FEA3127C123807077C8610>I<13181378EA01F812FFA21201B3A7 X387FFFE0A213207C9F1C>49 DI<13FE3807FFC0380F07E0 X381E03F0123FEB81F8A3EA1F0314F0120014E0EB07C0EB1F803801FE007F380007C0EB01 XF014F8EB00FCA2003C13FE127EB4FCA314FCEA7E01007813F8381E07F0380FFFC03801FE X0017207E9F1C>I<14E013011303A21307130F131FA21337137713E7EA01C71387EA0307 X1207120E120C12181238127012E0B6FCA2380007E0A790B5FCA218207E9F1C>I<003013 X20383E01E0383FFFC0148014005B13F8EA33C00030C7FCA4EA31FCEA37FF383E0FC03838 X07E0EA3003000013F0A214F8A21238127C12FEA200FC13F0A2387007E0003013C0383C1F X80380FFF00EA03F815207D9F1C>II<1260 X1278387FFFFEA214FC14F8A214F038E0006014C038C00180EB0300A2EA00065B131C1318 X13381378A25BA31201A31203A76C5A17227DA11C>I<13FE3803FFC0380703E0380E00F0 X5A1478123C123E123F1380EBE0F0381FF9E0EBFFC06C13806C13C06C13E04813F0381E7F XF8383C1FFCEA7807EB01FEEAF000143E141EA36C131C007813387E001F13F0380FFFC000 X01130017207E9F1C>II67 DI70 XDI73 D76 DII80 XD82 XD<3801FE023807FF86381F01FE383C007E007C131E0078130EA200F81306A27E1400B4FC X13E06CB4FC14C06C13F06C13F86C13FC000313FEEA003F1303EB007F143FA200C0131FA3 X6C131EA26C133C12FCB413F838C7FFE00080138018227DA11F>I<007FB61280A2397E03 XF80F00781407007014030060140100E015C0A200C01400A400001500B3A248B512F0A222 X227EA127>I86 D97 DIII<13FE3807FF80380F87C0381E01E0003E13F0EA7C0014F812FCA2B5FCA2 X00FCC7FCA3127CA2127E003E13186C1330380FC0703803FFC0C6130015167E951A>II<3801FE0F3907FFBF80380F87C7381F03E7391E01E000003E7FA5001E5BEA X1F03380F87C0EBFF80D809FEC7FC0018C8FCA2121C381FFFE06C13F86C13FE001F7F383C X003F48EB0F80481307A40078EB0F006C131E001F137C6CB45A000113C019217F951C>I< XB4FCA2121FABEB07E0EB1FF8EB307CEB403CEB803EA21300AE39FFE1FFC0A21A237EA21F X>I<121C123E127FA3123E121CC7FCA7B4FCA2121FB2EAFFE0A20B247EA310>I108 D<3AFF07F007F090391FFC1FFC3A1F303E303E0140 X1340496C487EA201001300AE3BFFE0FFE0FFE0A22B167E9530>I<38FF07E0EB1FF8381F X307CEB403CEB803EA21300AE39FFE1FFC0A21A167E951F>I<13FE3807FFC0380F83E038 X1E00F0003E13F848137CA300FC137EA7007C137CA26C13F8381F01F0380F83E03807FFC0 X3800FE0017167E951C>I113 XDII<487EA41203A2 X1207A2120F123FB5FCA2EA0F80ABEB8180A5EB8300EA07C3EA03FEEA00F811207F9F16> XI<38FF01FEA2381F003EAF147E14FE380F81BE3907FF3FC0EA01FC1A167E951F>I<39FF XE01FE0A2391F800700000F1306EBC00E0007130C13E000035BA26C6C5AA26C6C5AA2EB7C XC0A2137F6D5AA26DC7FCA2130EA21B167F951E>I<387FFFF0A2387C03E0387007C0EA60 X0F38E01F8000C01300133E137EC65A5B485A00031330EA07E013C0380F8070121F383F00 X60003E13E0EA7C03B5FCA214167E9519>122 D E /Fs 25 127 df<1230127812FCA212 X781230060676851A>46 D<14C0EB01E0A2130314C013071480130F1400A25B131E133E13 X3C137C1378A213F85B12015B12035BA212075B120F90C7FC5A121EA2123E123C127C1278 X12F85AA2126013277DA21A>I52 D<1230127812FCA2127812301200A91230127812FCA212781230061576941A> X58 D<133E3801FF804813C03807C1E0EA0F00381E0F70383C3FF0EA387F387070F8EBE0 X78A238E1C038A83870E070A2EB70E0EA387F383C3FC0381E0F00380F00383807C0F83803 XFFF06C13E038003F00151E7E9D1A>64 D97 D<127E12FE127E120EA6133EEBFF80000F13E0EBC1F0EB8070EB0038120E14 X1CA7000F13381478EB80F0EBC1E0EBFFC0000E138038063E00161E7F9D1A>III XI<3801F87C3807FFFE5A381E078C381C0380383801C0A5381C0380EA1E07381FFF005BEA X39F80038C7FCA27E381FFF8014E04813F83878007C0070131C48130EA40070131C007813 X3C003E13F8381FFFF0000713C00001130017217F941A>103 D<127E12FE127E120EA613 X3EEBFF80000F13C013C1EB80E01300120EAC387FC3FC38FFE7FE387FC3FC171E7F9D1A> XI<13C0487EA26C5A90C7FCA6EA7FE0A31200AF387FFF80B512C06C1380121F7C9E1A>I< X12FEA3120EA6EB0FFC131F130FEB03C0EB0780EB0F00131E5B5B13FC120F13DE138F380E X07801303EB01C014E0EB00F038FFE3FEA3171E7F9D1A>107 DI<387CE0E038FFFBF8EA7FFF381F1F1CEA1E1E XA2EA1C1CAC387F1F1F39FFBFBF80397F1F1F00191580941A>IIII<387F81F838FF8FFC387F9FFE3803FE1EEBF80CEBE0 X00A25B5BAAEA7FFFB5FC7E17157F941A>114 D<3807FB80EA1FFF127FEA7807EAE003A3 X0078C7FCEA7FC0EA1FFCEA07FE38003F801307386001C012E0A2EAF00338FC0780B51200 XEAEFFEEAE3F812157C941A>I<487E1203A6387FFFE0B5FCA238038000AA1470A43801C1 XE013FF6C1380EB3F00141C7F9B1A>I<387E07E0EAFE0FEA7E07EA0E00AD1301EA0F0338 X07FFFC6C13FE3800FCFC17157F941A>I<38FF83FEA338380038A26C1370A31338137CA2 X380C6C60380EEEE0A413C6000613C0EA07C71383A217157F941A>119 XD126 XD E /Ft 11 117 df<91387FE003903907FFFC07011FEBFF0F90397FF00F9F9039FF0001 XFFD801FC7F4848147F4848143F4848141F485A160F485A1607127FA290C9FC5AA97E7F16 X07123FA26C7E160E6C7E6C6C141C6C6C143C6C6C14786CB4EB01F090397FF007C0011FB5 X12800107EBFE009038007FF028297CA831>67 D72 D80 D<3803FF80000F13F0381F01FC383F80FE147F801580EA X1F00C7FCA4EB3FFF3801FC3FEA0FE0EA1F80EA3F00127E5AA4145F007E13DF393F839FFC X381FFE0F3803FC031E1B7E9A21>97 D101 D104 D<1207EA0F80EA1FC0EA3FE0A3EA1FC0EA0F80EA0700C7FCA7EAFFE0A3120FB3A3 XEAFFFEA30F2B7EAA12>I<38FFC07E9038C1FF809038C30FC0D80FC413E0EBC80701D813 XF013D0A213E0B039FFFE3FFFA3201B7D9A25>110 D<38FFC1F0EBC7FCEBC63E380FCC7F X13D813D0A2EBF03EEBE000B0B5FCA3181B7F9A1B>114 D<3803FE30380FFFF0EA3E03EA X7800127000F01370A27E00FE1300EAFFE06CB4FC14C06C13E06C13F0000713F8C6FCEB07 XFC130000E0137C143C7E14387E6C137038FF01E038E7FFC000C11300161B7E9A1B>I<13 XE0A41201A31203A21207120F381FFFE0B5FCA2380FE000AD1470A73807F0E0000313C038 X01FF8038007F0014267FA51A>I E /Fu 48 124 df12 XD<132013401380EA01005A12061204120CA25AA25AA312701260A312E0AE1260A3127012 X30A37EA27EA2120412067E7EEA0080134013200B327CA413>40 D<7E12407E7E12187E12 X041206A27EA2EA0180A313C01200A313E0AE13C0A312011380A3EA0300A21206A2120412 X0C5A12105A5A5A0B327DA413>I<127012F812FCA212741204A41208A21210A212201240 X060F7C840E>44 DI<127012F8A3127005057C840E>I48 D<13801203120F12F31203B3A9EA07C0EA XFFFE0F217CA018>III< X1303A25BA25B1317A21327136713471387120113071202120612041208A212101220A212 X4012C0B512F838000700A7EB0F80EB7FF015217FA018>I<00101380381E0700EA1FFF5B X13F8EA17E00010C7FCA6EA11F8EA120CEA1C07381803801210380001C0A214E0A4127012 XF0A200E013C01280EA4003148038200700EA1006EA0C1CEA03F013227EA018>I56 DI<497EA3497EA3EB05E0A2 XEB09F01308A2EB1078A3497EA3497EA2EBC01F497EA248B51280EB0007A20002EB03C0A3 X48EB01E0A348EB00F0121C003EEB01F839FF800FFF20237EA225>65 XDI68 D<3803FFE038001F007FB3A6127012F8A2130EEAF01EEA401C6C5AEA1870EA X07C013237EA119>74 DIII<39FF8007 XFF3907C000F81570D805E01320EA04F0A21378137C133C7F131F7FEB0780A2EB03C0EB01 XE0A2EB00F014F81478143C143E141E140FA2EC07A0EC03E0A21401A21400000E1460121F XD8FFE0132020227EA125>I<007FB512F839780780780060141800401408A300C0140C00 X801404A400001400B3A3497E3801FFFE1E227EA123>84 D<39FFFC07FF390FC000F86C48 X13701520B3A5000314407FA2000114806C7E9038600100EB3006EB1C08EB03F020237EA1 X25>II97 XD<120E12FE121E120EAB131FEB61C0EB8060380F0030000E1338143C141C141EA7141C14 X3C1438000F1370380C8060EB41C038083F0017237FA21B>II<14E0130F13011300ABEA01F8EA0704EA0C02EA1C01EA38001278127012F0 XA7127012781238EA1801EA0C0238070CF03801F0FE17237EA21B>II<133E13E33801C780EA0387130748C7FCA9EAFFF8 X0007C7FCB27FEA7FF0112380A20F>I<14703803F198380E1E18EA1C0E38380700A20078 X1380A400381300A2EA1C0EEA1E1CEA33F00020C7FCA212301238EA3FFE381FFFC06C13E0 X383000F0481330481318A400601330A2003813E0380E03803803FE0015217F9518>I<12 X0E12FE121E120EABEB1F80EB60C0EB80E0380F0070A2120EAF38FFE7FF18237FA21B>I< X121C123EA3121CC7FCA8120E127E121E120EB1EAFFC00A227FA10E>I<120E12FE121E12 X0EABEB03FCEB01F014C01480EB02005B5B5B133813F8EA0F1CEA0E1E130E7F1480EB03C0 X130114E0EB00F014F838FFE3FE17237FA21A>107 D<120E12FE121E120EB3ADEAFFE00B X237FA20E>I<390E1FC07F3AFE60E183803A1E807201C03A0F003C00E0A2000E1338AF3A XFFE3FF8FFE27157F942A>I<380E1F8038FE60C0381E80E0380F0070A2120EAF38FFE7FF X18157F941B>III114 DI<1202A41206A3120E121E123EEAFFFCEA0E00AB1304A6EA07081203EA01F00E1F7F9E X13>I<000E137038FE07F0EA1E00000E1370AD14F0A238060170380382783800FC7F1815 X7F941B>I<38FF80FE381E00781430000E1320A26C1340A2EB80C000031380A23801C100 XA2EA00E2A31374A21338A3131017157F941A>I<39FF8FF87F393E01E03C001CEBC01814 XE0000E1410EB0260147000071420EB04301438D803841340EB8818141CD801C81380EBD0 X0C140E3900F00F00497EA2EB6006EB400220157F9423>I<38FF80FE381E00781430000E X1320A26C1340A2EB80C000031380A23801C100A2EA00E2A31374A21338A31310A25BA35B X12F05B12F10043C7FC123C171F7F941A>121 D123 XD E /Fv 25 122 df45 D<1403A34A7EA24A7EA3EC17E01413A2 XEC23F01421A2EC40F8A3EC807CA2903801007E153EA20102133F81A2496D7EA3496D7EA2 X011880011FB5FCA29039200003F01501A2496D7EA349147CA20001157E90C8123EA24815 X3F825AD81F80EC3F80D8FFE0903801FFFCA22E327EB132>65 D68 D73 XD X77 D80 D<90387F80203801FFE03907C07860380F001C001EEB06E04813030038130100 X7813001270156012F0A21520A37E1500127C127E7E13C0EA1FF86CB47E6C13F06C13FCC6 X13FF010F1380010013C0EC1FE01407EC03F01401140015F8A26C1478A57E15706C14F015 XE07E6CEB01C000ECEB038000C7EB070038C1F01E38807FFCEB0FF01D337CB125>83 XD<13FE380303C0380C00E00010137080003C133C003E131C141EA21208C7FCA3EB0FFEEB XFC1EEA03E0EA0F80EA1F00123E123C127C481404A3143EA21278007C135E6CEB8F08390F X0307F03903FC03E01E1F7D9E21>97 DII<15F0141F XA214011400AFEB0FC0EB70303801C00C3803800238070001120E001E13005AA2127C1278 XA212F8A71278A2127C123CA27E000E13016C1302380380046C6C487E3A00F030FF80EB1F XC021327EB125>III<15F090387F03083901C1 XC41C380380E8390700700848EB7800001E7FA2003E133EA6001E133CA26C5B6C13706D5A X3809C1C0D8087FC7FC0018C8FCA5121C7E380FFFF86C13FF6C1480390E000FC00018EB01 XE048EB00F000701470481438A500701470A26C14E06CEB01C00007EB07003801C01C3800 X3FE01E2F7E9F21>I<120FEA1F80A4EA0F00C7FCABEA0780127FA2120F1207B3A6EA0FC0 XEAFFF8A20D307EAF12>105 D107 DI<260780FEEB1FC03BFF83078060F0903A8C03 XC180783B0F9001E2003CD807A013E4DA00F47F01C013F8A2495BB3A2486C486C133F3CFF XFC1FFF83FFF0A2341F7E9E38>I<380780FE39FF83078090388C03C0390F9001E0EA07A0 X6E7E13C0A25BB3A2486C487E3AFFFC1FFF80A2211F7E9E25>II<380783E038FF8418EB887CEA0F90EA07A01438EBC000A35BB3487EEAFFFEA216 X1F7E9E19>114 D<3801FC10380E0330381800F048137048133012E01410A37E6C130012 X7EEA3FF06CB4FC6C13C0000313E038003FF0EB01F813006C133CA2141C7EA27E14186C13 X38143000CC136038C301C03880FE00161F7E9E1A>I<1340A513C0A31201A21203120712 X0F381FFFE0B5FC3803C000B01410A80001132013E000001340EB78C0EB1F00142C7FAB19 X>II121 D E /Fw 14 123 df82 D<003FBA12FCA49026FE00 X079038E0007F01F0170FD87FC0EF03FE49170190C71600007E197EA2007C193EA3007819 X1EA400F8191F48190FA5C81700B3B3A60103B812C0A448467CC551>84 XD<90380FFFF090B6FC000315C03A07F8007FF0486CEB1FFCED07FE486C6D7E838183816C X48816C5A6C5AC9FCA5157F023FB5FC0103B6FC011F13F090387FFE003801FFE0481380D8 X0FFEC7FC485A5B123F485AA2485AA45DA26C6C5BED077F6C6C130F6C6C013E13F83C0FFF X80F83FFFE000039038FFF01FC6ECC00F90390FFE0003332E7CAD38>97 XD X101 D<171FDA7FF0EBFFC00107B5000313E0011FECC7E7903B7FE03FFF0FF09039FF800F XFC48EB00074848EB03FE00079238FF07E0496DEB03C0000FEE8000A2001F82A8000F5EA2 X000793C7FC6D5B00035D6C6C495A6C6D485A9138E03FF0D801DFB512C0D803C791C8FC90 X38C07FF04848CAFCA37FA27FA213F890B612F06C15FF17E06C8217FC6C826D8148B81280 X1207D80FF0C7001F13C0D81FC014014848EC007F007FEE3FE048C9FC171FA56C6CED3FC0 XA26C6CED7F806C6CEDFF00D80FF8EC03FED803FEEC0FF82601FFE0EBFFF06C6CB612C001 X0F4AC7FCD9007F13C034447DAE3A>103 D<137C48B4FC4813804813C0A24813E0A56C13 XC0A26C13806C1300EA007C90C7FCACEB7FC0B5FCA412037EB3B2B6FCA418497CC820> X105 D108 XD<9039FF8007FEB590383FFFC04B13F0913981F81FF8913983C00FFC00039039870007FE X6C138E029C8002B87F188014F0A25CA35CB3A9B60081B6FCA4382E7BAD41>110 XDI<90397F X803F80B5EBFFE0028113F8913883C3FC91388707FE0003138E6C90389C0FFF14B8A214F0 XA2ED07FE9138E003FCED01F892C7FCA25CB3A8B612E0A4282E7DAD2F>114 XD<90390FFE01C090B512C7000314FF3807F801390FC0007F48C7121F48140F007E1407A2 X150312FEA27E7F01E090C7FC13F8387FFFC014FF6C14E015F86C806C14FF6C1580000115 XC06C6C14E0131F010014F014039138007FF80070141F00F0140F15077E1503A26C15F0A2 X7E6CEC07E07F6DEB0FC001F0EB1F80D8FEFCEBFF0039F87FFFFCD8F01F13F0D8E0031380 X252E7CAD2E>III<001FB712E0A39026FE000313C001F049138001C05B4949 X130090C75B4B5A003E147F5E4B5A003C495B5C5E4A5B5CC74890C7FC5D4A5A147F4A5A5D X495B5B495B92388001E04913005B495A4A1303494814C013FF5C485B484913075A4A130F X4890C7FC48151F4848147F49ECFF804848130FB8FCA32B2E7DAD34>122 XD E end X%%EndProlog X%%BeginSetup X%%Feature: *Resolution 300dpi XTeXDict begin X%%PaperSize: A4 X X%%EndSetup X%%Page: 0 1 X0 0 bop 422 645 a Fw(Regularization)39 b(T)-10 b(o)s(ols)630 X827 y Fv(A)22 b(Matlab)f(P)n(ac)n(k)l(age)h(for)187 919 Xy(Analysis)e(and)g(Solution)h(of)g(Discrete)i(Ill-P)n(osed)e(Problems) X666 1101 y Fu(V)l(ersion)15 b(3.0)i(for)f(Matlab)h(5.2)626 X1413 y Ft(P)n(er)23 b(Christian)h(Hansen)520 1529 y Fu(Departmen)o(t)15 Xb(of)i(Mathematical)d(Mo)q(delling)443 1587 y(Building)i(305,)h(T)l(ec) Xo(hnical)d(Univ)o(ersit)o(y)g(of)j(Denmark)652 1645 y(DK-2800)h(Lyngb)o X(y)l(,)e(Denmark)765 1762 y Fs(pch@imm.dtu)o(.dk)612 X1820 y(http://ww)o(w.i)o(mm.)o(dt)o(u.d)o(k/~)o(pc)o(h)838 X2060 y Fu(June)g(1992)675 2118 y(Last)i(revision)d(Marc)o(h)h(1998)387 X2641 y(The)g(soft)o(w)o(are)g(describ)q(ed)g(in)g(this)g(rep)q(ort)h X(is)f(published)f(in)286 2699 y(Numerical)f(Algorithms)g XFr(6)j Fu(\(1994\),)g(pp.)f(1{35,)h(and)g(is)f(a)o(v)m(ailable)g(via) X266 2757 y(Netlib)f(\()p Fs(netlib@re)o(sea)o(rch)o(.a)o(tt.)o(com)o XFu(\))e(in)j(the)g(\014le)g Fs(numeralgo/)o(na4)o Fu(.)p Xeop X%%Page: 1 2 X1 1 bop eop X%%Page: 1 3 X1 2 bop 59 547 a Fq(Contents)59 802 y Fp(Changes)17 b(Since)i(V)l X(ersion)d(2.0)1144 b(3)59 906 y(1)42 b(In)o(tro)q(duction)1391 Xb(5)59 1011 y(2)42 b(Discrete)18 b(Ill-P)o(osed)g(Problems)e(and)i X(their)g(Regularization)464 b(7)127 1069 y Fo(2.1)46 Xb(Discrete)15 b(Ill-P)o(osed)i(Problems)32 b(.)22 b(.)h(.)f(.)g(.)h(.)f X(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.) Xg(.)h(.)f(.)63 b(7)127 1127 y(2.2)46 b(Regularization)17 Xb(Metho)q(ds)34 b(.)22 b(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.) Xh(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)63 Xb(9)127 1185 y(2.3)46 b(SVD)15 b(and)g(Generalized)i(SVD)42 Xb(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.) Xh(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(10)232 1243 Xy(2.3.1)50 b(The)16 b(Singular)g(V)l(alue)g(Decomp)q(osition)27 Xb(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.) Xh(.)f(.)40 b(10)232 1301 y(2.3.2)50 b(The)16 b(Generalized)h(Singular)f X(V)l(alue)g(Decomp)q(osition)26 b(.)c(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g X(.)h(.)f(.)40 b(11)127 1359 y(2.4)46 b(The)15 b(Discrete)h(Picard)f X(Condition)i(and)e(Filter)h(F)l(actors)i(.)k(.)h(.)f(.)g(.)h(.)f(.)h(.) Xf(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(13)127 1417 y(2.5)46 Xb(The)15 b(L-Curv)o(e)43 b(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h X(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.) Xf(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(15)127 1475 y(2.6)46 Xb(T)l(ransformation)14 b(to)h(Standard)g(F)l(orm)43 b(.)23 Xb(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h X(.)f(.)g(.)h(.)f(.)40 b(17)232 1533 y(2.6.1)50 b(T)l(ransformation)14 Xb(for)h(Direct)g(Metho)q(ds)j(.)k(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f X(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(18)232 1591 y(2.6.2)50 Xb(T)l(ransformation)14 b(for)h(Iterativ)o(e)g(Metho)q(ds)43 Xb(.)23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.) X40 b(19)232 1649 y(2.6.3)50 b(Norm)15 b(Relations)h(etc.)37 Xb(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.) Xh(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(20)127 1708 Xy(2.7)46 b(Direct)15 b(Regularization)i(Metho)q(ds)38 Xb(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.) Xh(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(21)232 1766 y(2.7.1)50 Xb(Tikhono)o(v)16 b(Regularization)g(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g X(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 Xb(21)232 1824 y(2.7.2)50 b(Least)15 b(Squares)h(with)f(a)g(Quadratic)h X(Constrain)o(t)36 b(.)23 b(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h X(.)f(.)40 b(21)232 1882 y(2.7.3)50 b(TSVD,)15 b(MTSVD,)f(and)i(TGSVD)45 Xb(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.) Xf(.)g(.)h(.)f(.)40 b(22)232 1940 y(2.7.4)50 b(Damp)q(ed)16 Xb(SVD/GSVD)41 b(.)23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h X(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 Xb(23)232 1998 y(2.7.5)50 b(Maxim)o(um)15 b(En)o(trop)o(y)f X(Regularization)40 b(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f X(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(23)232 2056 y(2.7.6)50 Xb(T)l(runcated)16 b(T)l(otal)f(Least)g(Squares)34 b(.)22 Xb(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g X(.)h(.)f(.)40 b(24)127 2114 y(2.8)46 b(Iterativ)o(e)15 Xb(Regularization)i(Metho)q(ds)28 b(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h X(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 Xb(25)232 2172 y(2.8.1)50 b(Conjugate)15 b(Gradien)o(ts)g(and)g(LSQR)46 Xb(.)23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.) Xg(.)h(.)f(.)40 b(25)232 2230 y(2.8.2)50 b(Bidiagonalization)18 Xb(with)d(Regularization)38 b(.)23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f X(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(27)232 2288 y(2.8.3)50 Xb(The)16 b Fn(\027)s Fo(-Metho)q(d)42 b(.)22 b(.)g(.)h(.)f(.)h(.)f(.)g X(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.) Xh(.)f(.)g(.)h(.)f(.)40 b(28)232 2346 y(2.8.4)50 b(Extension)16 Xb(to)f(General-F)l(orm)g(Problems)d(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h X(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(29)127 2404 Xy(2.9)46 b(Metho)q(ds)15 b(for)f(Cho)q(osing)i(the)f(Regularization)i X(P)o(arameter)31 b(.)22 b(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f X(.)40 b(29)59 2509 y Fp(3)i(Regularization)21 b(T)l(o)q(ols)d(T)l X(utorial)980 b(33)127 2567 y Fo(3.1)46 b(The)15 b(Discrete)h(Picard)f X(Condition)42 b(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f X(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(33)127 X2625 y(3.2)46 b(Filter)16 b(F)l(actors)26 b(.)c(.)h(.)f(.)g(.)h(.)f(.)g X(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.) Xh(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(34)127 2683 Xy(3.3)46 b(The)15 b(L-Curv)o(e)43 b(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h X(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.) Xf(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(35)127 2741 Xy(3.4)46 b(Regularization)17 b(P)o(arameters)e(.)23 b(.)f(.)h(.)f(.)g X(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.) Xh(.)f(.)g(.)h(.)f(.)40 b(36)127 2799 y(3.5)46 b(Standard)15 Xb(F)l(orm)f(V)l(ersus)i(General)g(F)l(orm)22 b(.)g(.)g(.)h(.)f(.)g(.)h X(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 Xb(38)127 2857 y(3.6)46 b(No)15 b(Square)g(In)o(tegrable)h(Solution)g(.) X23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.) Xh(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(40)p eop X%%Page: 2 4 X2 3 bop 64 159 a Fo(2)1486 b(CONTENTS)p 64 178 1767 2 Xv 59 304 a Fp(4)42 b(Regularization)21 b(T)l(o)q(ols)d(Reference)937 Xb(43)127 361 y Fo(Routines)17 b(b)o(y)e(Sub)s(ject)g(Area)30 Xb(.)23 b(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.) Xg(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 Xb(43)127 417 y(The)16 b(T)l(est)f(Problems)24 b(.)e(.)h(.)f(.)g(.)h(.)f X(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.) Xg(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(45)127 X474 y(Alphab)q(etical)18 b(List)e(of)e(Routines)30 b(.)22 Xb(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g X(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(46)59 X576 y Fp(Bibliograph)o(y)1401 b(105)p eop X%%Page: 3 5 X3 4 bop 59 546 a Fq(Changes)27 b(Since)g(Version)g(2.0)59 X752 y Fo(The)15 b(follo)o(wing)h(is)g(a)f(list)h(of)f(the)g(ma)s(jor)f X(c)o(hanges)h(since)h(V)l(ersion)g(2.0)f(of)f(the)i(pac)o(k)m(age.)127 X846 y Fm(\017)23 b Fo(Replaced)17 b Fl(gsvd)f Fo(b)o(y)f XFl(cgsvd)h Fo(whic)o(h)g(has)f(a)g Fk(di\013er)n(ent)f XFo(sequence)i(of)f(output)g(argumen)o(ts.)127 940 y Fm(\017)23 Xb Fo(Remo)o(v)o(ed)15 b(the)g(obsolete)h(function)g Fl(csdecomp)g XFo(\(whic)o(h)g(replaced)g(the)f(function)h Fl(csd)p XFo(\))127 1034 y Fm(\017)23 b Fo(Deleted)16 b(the)f(function)h XFl(mgs)p Fo(.)127 1127 y Fm(\017)23 b Fo(Changed)e(the)g(storage)f X(format)f(of)i(bidiagonal)i(matrices)e(to)f(sparse,)i(instead)g(of)e(a) Xh(dense)173 1184 y(matrix)15 b(with)g(t)o(w)o(o)f(columns.)127 X1278 y Fm(\017)23 b Fo(Remo)o(v)o(ed)15 b(the)g(obsolete)h(function)g XFl(bsvd)p Fo(.)127 1372 y Fm(\017)23 b Fo(Added)c(the)f(function)h XFl(regutm)e Fo(that)g(generates)h(random)g(test)f(matrices)h(for)g X(regularization)173 1428 y(metho)q(ds.)127 1522 y Fm(\017)23 Xb Fo(Added)16 b(the)f Fl(blur)h Fo(test)e(problem.)127 X1616 y Fm(\017)23 b Fo(F)l(unctions)d Fl(tsvd)g Fo(and)f XFl(tgsvd)h Fo(no)o(w)f(allo)o(w)g Fl(k)g Fo(=)h(0,)f(and)g(functions)h XFl(tgsvd)g Fo(and)f Fl(tikhonov)h Fo(no)o(w)173 1672 Xy(allo)o(w)15 b(a)g(square)g Fl(L)p Fo(.)127 1766 y Fm(\017)23 Xb Fo(Added)16 b(output)g(argumen)o(ts)e Fl(rho)h Fo(and)h XFl(eta)g Fo(to)f(functions)h Fl(dsvd)p Fo(,)h Fl(mtsvd)p XFo(,)e Fl(tgsvd)p Fo(,)h Fl(tikhonov)p Fo(,)g(and)173 X1822 y Fl(tsvd)p Fo(.)127 1916 y Fm(\017)23 b Fo(Added)16 Xb(a)f(priori)h(guess)f Fl(x)p 623 1916 14 2 v 16 w(0)g XFo(as)g(input)h(to)f Fl(tikhonov)p Fo(.)127 2010 y Fm(\017)23 Xb Fo(Corrected)15 b Fl(get)p 445 2010 V 16 w(l)g Fo(suc)o(h)h(that)e X(the)i(sign)f(of)g Fl(L*x)f Fo(is)i(correct.)127 2104 Xy Fm(\017)23 b Fo(Added)16 b(MGS)f(reorthogonalization)g(of)g(the)g X(normal)g(equation)h(residual)g(v)o(ectors)f(in)h(the)f(t)o(w)o(o)173 X2160 y(functions)h Fl(cgls)f Fo(and)g Fl(p)q(cgls)p Fo(.)127 X2254 y Fm(\017)23 b Fo(Added)16 b(the)f(metho)q(d)h Fl('ttls')f XFo(to)g(the)g(function)h Fl(\014l)p 1013 2254 V 17 w(fac)p XFo(.)127 2348 y Fm(\017)23 b Fo(More)17 b(precise)j(computation)e(of)f X(the)i(regularization)g(parameter)e(in)i Fl(gcv)p Fo(,)g XFl(lcurve)p Fo(,)f(and)h Fl(qua-)173 2404 y(siopt)p Fo(.)127 X2498 y Fm(\017)k Fo(Changed)15 b Fl(heb)p 431 2498 V X18 w(new)h Fo(and)f Fl(newton)h Fo(to)f(w)o(ork)f(with)i XFn(\025)e Fo(instead)i(of)f Fn(\025)1324 2482 y Fj(2)1343 X2498 y Fo(.)127 2592 y Fm(\017)23 b Fo(Added)16 b(legend)g(to)f XFl(lagrange)f Fo(and)i Fl(pica)o(rd)p Fo(.)p eop X%%Page: 4 6 X4 5 bop 64 159 a Fo(4)1486 b(CONTENTS)p 64 178 1767 2 Xv eop X%%Page: 5 7 X5 6 bop 59 546 a Fq(1.)35 b(Intr)n(oduction)59 752 y XFo(Ill-p)q(osed)17 b(problems|and)f(regularization)g(metho)q(ds)f(for)f X(computing)i(stabilized)h(solutions)e(to)g(the)59 809 Xy(ill-p)q(osed)i(problems|o)q(ccur)f(frequen)o(tly)e(enough)h(in)g X(science)h(and)e(engineering)i(to)d(mak)o(e)h(it)h(w)o(orth-)59 X865 y(while)j(to)d(presen)o(t)i(a)f(general)g(framew)o(ork)f(for)h X(their)h(n)o(umerical)g(treatmen)o(t.)22 b(The)16 b(purp)q(ose)h(of)f X(this)59 922 y(pac)o(k)m(age)f(of)g(Matlab)g(routines)h(is)g(to)e(pro)o X(vide)i(the)g(user)f(with)h(easy-to-use)f(routines,)g(based)h(on)f(n)o X(u-)59 978 y(merically)f(robust)f(and)g(e\016cien)o(t)g(algorithms,)g X(for)f(doing)h(exp)q(erimen)o(ts)h(with)f(analysis)g(and)g(solution)59 X1034 y(of)i(discrete)h(ill-p)q(osed)i(problems)e(b)o(y)f(means)g(of)g X(regularization)h(metho)q(ds.)130 1091 y(The)i(theory)h(for)f(ill-p)q X(osed)j(problems)e(is)g(w)o(ell)g(dev)o(elop)q(ed)i(in)e(the)g X(literature.)30 b(W)l(e)19 b(can)g(easily)59 1147 y(illustrate)12 Xb(the)g(main)f(di\016culties)j(asso)q(ciated)d(with)h(suc)o(h)f X(problems)h(b)o(y)g(means)f(of)f(a)h(small)h(n)o(umerical)59 X1204 y(example.)21 b(Consider)16 b(the)f(follo)o(wing)h(least)f X(squares)g(problem)794 1306 y(min)821 1330 y Fi(x)877 X1306 y Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)i Fp(b)p Fm(k)1077 X1313 y Fj(2)59 1416 y Fo(with)16 b(co)q(e\016cien)o(t)g(matrix)f XFn(A)g Fo(and)g(righ)o(t-hand)h(side)g Fp(b)f Fo(giv)o(en)h(b)o(y)544 X1565 y Fn(A)d Fo(=)639 1480 y Fh(0)639 1555 y(@)683 1508 Xy Fo(0)p Fn(:)p Fo(16)44 b(0)p Fn(:)p Fo(10)683 1565 Xy(0)p Fn(:)p Fo(17)g(0)p Fn(:)p Fo(11)683 1621 y(2)p XFn(:)p Fo(02)g(1)p Fn(:)p Fo(29)897 1480 y Fh(1)897 1555 Xy(A)941 1565 y Fn(;)98 b Fp(b)13 b Fo(=)1142 1480 y Fh(0)1142 X1555 y(@)1186 1508 y Fo(0)p Fn(:)p Fo(27)1186 1565 y(0)p XFn(:)p Fo(25)1186 1621 y(3)p Fn(:)p Fo(33)1274 1480 y XFh(1)1274 1555 y(A)1333 1565 y Fn(:)59 1713 y Fo(Here,)h(the)g(righ)o X(t-hand)g(side)g Fp(b)g Fo(is)g(generated)g(b)o(y)f(adding)i(a)e(small) Xi(p)q(erturbation)f(to)f(an)g(exact)h(righ)o(t-)59 1770 Xy(hand)i(side)g(corresp)q(onding)g(to)f(the)g(exact)g(solution)984 X1769 y(\026)982 1770 y Fp(x)1010 1753 y Fg(T)1050 1770 Xy Fo(=)d(\(1)j(1\):)523 1921 y Fp(b)e Fo(=)613 1837 y XFh(0)613 1912 y(@)656 1865 y Fo(0)p Fn(:)p Fo(16)45 b(0)p XFn(:)p Fo(10)656 1921 y(0)p Fn(:)p Fo(17)g(0)p Fn(:)p XFo(11)656 1978 y(2)p Fn(:)p Fo(02)g(1)p Fn(:)p Fo(29)871 X1837 y Fh(1)871 1912 y(A)915 1862 y(\022)953 1893 y Fo(1)p XFn(:)p Fo(00)953 1949 y(1)p Fn(:)p Fo(00)1041 1862 y XFh(\023)1082 1921 y Fo(+)1128 1837 y Fh(0)1128 1912 y(@)1207 X1865 y Fo(0)p Fn(:)p Fo(01)1171 1921 y Fm(\000)p Fo(0)p XFn(:)p Fo(03)1207 1978 y(0)p Fn(:)p Fo(02)1295 1837 y XFh(1)1295 1912 y(A)1354 1921 y Fn(:)59 2070 y Fo(The)17 Xb(di\016cult)o(y)i(with)e(this)h(least)f(squares)g(problem)h(is)g(that) Xe(the)h(matrix)g Fn(A)g Fo(is)h(ill-conditione)q(d;)i(its)59 X2127 y(condition)c(n)o(um)o(b)q(er)g(is)f(1)p Fn(:)p XFo(1)9 b Fm(\001)g Fo(10)605 2110 y Fj(3)624 2127 y Fo(.)20 Xb(This)c(implies)h(that)d(the)h(computed)g(solution)h(is)g(p)q(oten)o X(tially)g(v)o(ery)59 2183 y(sensitiv)o(e)j(to)d(p)q(erturbations)i(of)f X(the)g(data.)26 b(Indeed,)19 b(if)f(w)o(e)f(compute)h(the)f(ordinary)h X(least-squares)59 2239 y(solution)e Fp(x)259 2246 y Fj(LSQ)345 X2239 y Fo(b)o(y)f(means)g(of)g(a)g(QR)h(factorization)f(of)g XFn(A)p Fo(,)f(then)i(w)o(e)f(obtain)751 2365 y Fp(x)779 X2372 y Fj(LSQ)863 2365 y Fo(=)911 2305 y Fh(\022)984 X2337 y Fo(7)p Fn(:)p Fo(01)949 2393 y Fm(\000)p Fo(8)p XFn(:)p Fo(40)1073 2305 y Fh(\023)1126 2365 y Fn(:)59 X2485 y Fo(This)i(solution)g(is)g(ob)o(viously)g(w)o(orthless,)e(and)i X(something)f(m)o(ust)g(b)q(e)h(done)f(in)h(order)f(to)g(compute)g(a)59 X2542 y(b)q(etter)f(appro)o(ximation)g(to)g(the)g(exact)g(solution)926 X2541 y(\026)923 2542 y Fp(x)951 2525 y Fg(T)991 2542 Xy Fo(=)e(\(1)h(1\).)130 2598 y(The)i(large)g(condition)i(n)o(um)o(b)q X(er)e(implies)j(that)c(the)h(columns)h(of)f Fn(A)g Fo(are)g(nearly)h X(linearly)h(dep)q(en-)59 2655 y(den)o(t.)k(One)17 b(could)g(therefore)f X(think)h(of)e(replacing)j(the)e(ill-conditioned)k(matrix)15 Xb Fn(A)f Fo(=)h(\()p Fp(a)1628 2662 y Fj(1)1664 2655 Xy Fp(a)1689 2662 y Fj(2)1709 2655 y Fo(\))g(with)59 2711 Xy(either)d(\()p Fp(a)227 2718 y Fj(1)257 2711 y Fp(0)p XFo(\))f(or)g(\()p Fp(0)f(a)443 2718 y Fj(2)463 2711 y XFo(\),)h(b)q(oth)h(of)e(whic)o(h)i(are)e(w)o(ell)i(conditioned.)21 Xb(The)11 b(t)o(w)o(o)e(corresp)q(onding)j(so-called)59 X2768 y(basic)k(solutions)g(are)568 2834 y Fp(x)596 2810 Xy Fj(\(1\))596 2848 y(B)655 2834 y Fo(=)703 2775 y Fh(\022)741 X2806 y Fo(1)p Fn(:)p Fo(65)741 2862 y(0)p Fn(:)p Fo(00)830 X2775 y Fh(\023)883 2834 y Fn(;)98 b Fp(x)1022 2810 y XFj(\(2\))1022 2848 y(B)1082 2834 y Fo(=)1129 2775 y Fh(\022)1168 X2806 y Fo(0)p Fn(:)p Fo(00)1168 2862 y(2)p Fn(:)p Fo(58)1256 X2775 y Fh(\023)1309 2834 y Fn(:)p eop X%%Page: 6 8 X6 7 bop 64 159 a Fo(6)1267 b(Chapter)15 b(1.)g(In)o(tro)q(duction)p X64 178 1767 2 v 59 304 a(Although)d(these)g(solutions)g(are)f(m)o(uc)o X(h)h(less)g(sensitiv)o(e)g(to)f(p)q(erturbations)h(of)f(the)h(data,)f X(and)g(although)59 361 y(the)k(corresp)q(onding)i(residual)f(norms)f X(are)g(b)q(oth)g(small,)438 445 y Fm(k)p Fn(A)8 b Fp(x)531 X421 y Fj(\(1\))531 459 y(B)587 445 y Fm(\000)i Fp(b)p XFm(k)684 452 y Fj(2)716 445 y Fo(=)j(0)p Fn(:)p Fo(031)h XFn(;)98 b Fm(k)p Fn(A)8 b Fp(x)1087 421 y Fj(\(2\))1087 X459 y(B)1143 445 y Fm(\000)j Fp(b)p Fm(k)1241 452 y Fj(2)1273 X445 y Fo(=)i(0)p Fn(:)p Fo(036)h Fn(;)59 524 y Fo(the)h(basic)h X(solutions)g(nev)o(ertheless)g(ha)o(v)o(e)f(nothing)h(in)g(common)f X(with)1307 523 y(\026)1304 524 y Fp(x)1332 508 y Fg(T)1372 X524 y Fo(=)e(\(1)h(1\).)130 581 y(A)19 b(ma)s(jor)e(di\016cult)o(y)k X(with)e(the)g(ordinary)g(least)h(squares)f(solution)g XFp(x)1368 588 y Fj(LSQ)1458 581 y Fo(is)h(that)e(its)h(norm)g(is)59 X637 y(signi\014can)o(tly)f(greater)c(than)i(the)g(norm)g(of)f(the)h X(exact)g(solution.)22 b(One)17 b(ma)o(y)e(therefore)h(try)f(another)59 X694 y(approac)o(h)22 b(to)f(solving)i(the)f(least)g(squares)g(problem)g X(b)o(y)g(adding)h(the)f(side)h(constrain)o(t)e(that)h(the)59 X750 y(solution)16 b(norm)f(m)o(ust)f(not)h(exceed)h(a)f(certain)h(v)m X(alue)g Fn(\013)p Fo(,)544 829 y(min)571 854 y Fi(x)627 X829 y Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)i Fp(b)p Fm(k)827 X836 y Fj(2)892 829 y Fo(sub)s(ject)k(to)45 b Fm(k)p Fp(x)p XFm(k)1210 836 y Fj(2)1241 829 y Fm(\024)13 b Fn(\013)i(:)59 X917 y Fo(The)g(suc)o(h)f(computed)h(solution)g Fp(x)661 X924 y Fg(\013)699 917 y Fo(dep)q(ends)h(in)f(a)f(non-linear)i(w)o(a)o X(y)d(on)i Fn(\013)p Fo(,)f(and)g(for)g Fn(\013)g Fo(equal)h(to)f(0.1,) X59 973 y(1,)h(1.385,)e(and)i(10)g(w)o(e)g(obtain)125 X1071 y Fp(x)153 1078 y Fj(0)p Fg(:)p Fj(1)212 1071 y XFo(=)260 1012 y Fh(\022)298 1043 y Fo(0)p Fn(:)p Fo(08)298 X1100 y(0)p Fn(:)p Fo(05)387 1012 y Fh(\023)440 1071 y XFn(;)98 b Fp(x)579 1078 y Fj(1)611 1071 y Fo(=)659 1012 Xy Fh(\022)697 1043 y Fo(0)p Fn(:)p Fo(84)697 1100 y(0)p XFn(:)p Fo(54)786 1012 y Fh(\023)839 1071 y Fn(;)g Fp(x)978 X1078 y Fj(1)p Fg(:)p Fj(385)1073 1071 y Fo(=)1121 1012 Xy Fh(\022)1159 1043 y Fo(1)p Fn(:)p Fo(17)1159 1100 y(0)p XFn(:)p Fo(74)1247 1012 y Fh(\023)1300 1071 y Fn(;)h Fp(x)1440 X1078 y Fj(10)1489 1071 y Fo(=)1537 1012 y Fh(\022)1611 X1043 y Fo(6)p Fn(:)p Fo(51)1575 1100 y Fm(\000)p Fo(7)p XFn(:)p Fo(60)1699 1012 y Fh(\023)1752 1071 y Fn(:)59 X1169 y Fo(W)l(e)19 b(see)h(that)f(b)o(y)g(a)g(prop)q(er)g(c)o(hoice)h X(of)f Fn(\013)h Fo(w)o(e)f(can)g(indeed)i(compute)f(a)f(solution)h XFp(x)1565 1176 y Fj(1)p Fg(:)p Fj(385)1666 1169 y Fo(whic)o(h)g(is)59 X1226 y(fairly)d(close)g(to)f(the)h(desired)h(exact)e(solution)878 X1225 y(\026)876 1226 y Fp(x)904 1209 y Fg(T)946 1226 Xy Fo(=)f(\(1)h(1\).)23 b(Ho)o(w)o(ev)o(er,)16 b(care)g(m)o(ust)g(b)q(e) Xh(tak)o(en)f(when)59 1282 y(c)o(ho)q(osing)g Fn(\013)p XFo(,)f(and)g(the)g(prop)q(er)h(c)o(hoice)g(of)f Fn(\013)g XFo(is)h(not)f(ob)o(vious.)130 1339 y(Although)k(the)h(ab)q(o)o(v)o(e)e X(example)i(is)g(a)f(small)h(one,)f(it)h(highligh)o(ts)g(the)g(three)f X(main)g(di\016culties)59 1395 y(asso)q(ciates)c(with)h(discrete)g X(ill-p)q(osed)i(problems:)115 1470 y(1.)k(the)15 b(condition)h(n)o(um)o X(b)q(er)g(of)f(the)g(matrix)g Fn(A)g Fo(is)h(large)115 X1556 y(2.)22 b(replacing)c Fn(A)f Fo(b)o(y)g(a)g(w)o(ell-conditioned)j X(matrix)c(deriv)o(ed)i(from)f Fn(A)g Fo(do)q(es)g(not)f(necessarily)j X(lead)173 1612 y(to)14 b(a)h(useful)h(solution)115 1698 Xy(3.)22 b(care)15 b(m)o(ust)f(tak)o(en)h(when)h(imp)q(osing)g X(additional)h(constrain)o(ts.)59 1773 y(The)d(purp)q(ose)g(of)f(n)o X(umerical)h(regularization)h(theory)e(is)h(to)e(pro)o(vide)i(e\016cien) Xo(t)g(and)g(n)o(umerically)h(sta-)59 1830 y(ble)i(metho)q(ds)f(for)g X(including)j(prop)q(er)d(side)h(constrain)o(ts)e(that)h(lead)h(to)e X(useful)i(stabilized)h(solutions,)59 1886 y(and)g(to)f(pro)o(vide)h X(robust)f(metho)q(ds)h(for)e(c)o(ho)q(osing)i(the)g(optimal)g(w)o(eigh) Xo(t)f(giv)o(en)h(to)f(these)h(side)g(con-)59 1943 y(strain)o(ts)11 Xb(suc)o(h)i(that)e(the)h(regularized)i(solution)e(is)h(a)f(go)q(o)q(d)g X(appro)o(ximation)g(to)f(the)h(desired)h(unkno)o(wn)59 X1999 y(solution.)130 2055 y(The)k(routines)h(pro)o(vided)g(in)g(this)g X(pac)o(k)m(age)f(are)g(examples)h(of)f(suc)o(h)g(pro)q(cedures.)27 Xb(In)18 b(addition,)59 2112 y(w)o(e)g(pro)o(vide)i(a)e(n)o(um)o(b)q(er) Xh(of)f(utilit)o(y)i(routines)f(for)f(analyzing)i(the)f(discrete)g X(ill-p)q(osed)j(problems)d(in)59 2168 y(details,)g(for)e(displa)o(ying) Xj(these)e(prop)q(erties,)h(and)f(for)f(easy)h(generation)f(of)h(simple) Xh(test)e(problems.)59 2225 y(By)h(means)h(of)f(the)g(routines)h(in)g XFf(Regulariza)m(tion)h(Tools)p Fo(,)f(the)f(user)h(can|at)f(least)g X(for)g(small)59 2281 y(to)i(medium-size)j(problems|exp)q(erimen)o(t)g X(with)f(di\013eren)o(t)f(regularization)h(strategies,)f(compare)59 X2338 y(them,)14 b(and)g(dra)o(w)f(conclusions)j(from)d(these)h(exp)q X(erimen)o(ts)h(that)e(w)o(ould)h(otherwise)g(require)h(a)e(ma)s(jor)59 X2394 y(programming)18 b(e\013ort.)30 b(F)l(or)18 b(discrete)i(ill-p)q X(osed)h(problems,)f(whic)o(h)g(are)f(indeed)h(di\016cult)g(to)f(treat) X59 2451 y(n)o(umerically)l(,)e(suc)o(h)e(an)h(approac)o(h)e(is)i X(certainly)g(sup)q(erior)g(to)f(a)g(single)h(blac)o(k-b)q(o)o(x)g X(routine.)130 2507 y(The)i(pac)o(k)m(age)h(w)o(as)f(mainly)h(dev)o X(elop)q(ed)i(in)e(the)g(p)q(erio)q(d)h(1990{1992)c(at)i(UNI)p XFm(\017)p Fo(C)g(and)h(to)f(some)59 2564 y(exten)o(t)d(it)h(re\015ects) Xg(the)g(author's)e(o)o(wn)i(w)o(ork.)k(Prof.)14 b(Dianne)j(P)l(.)e X(O'Leary)h(and)g(Dr.)e(Martin)i(Hank)o(e)59 2620 y(help)q(ed)k(with)e X(the)f(iterativ)o(e)h(metho)q(ds.)27 b(Prof.)17 b(Lars)g(Eld)o(\023)-21 Xb(en|and)19 b(his)f(1979)f(Sim)o(ula)h(pac)o(k)m(age)g([22)o(])59 X2676 y(with)i(the)g(same)g(purp)q(ose)g(as)g Ff(Regulariza)m(tion)i X(Tools)p Fo(|pro)o(vided)f(a)e(great)g(source)h(of)g(inspi-)59 X2733 y(ration.)31 b(The)19 b(pac)o(k)m(age)g(w)o(as)f(also)h(inspired)i X(b)o(y)e(a)g(pap)q(er)g(b)o(y)g(Natterer)f([58)o(])h(where)g(a)g(\\n)o X(umerical)59 2789 y(analyst's)g(to)q(olkit)h(for)g(ill-p)q(osed)i X(problems")e(is)h(suggested.)33 b(The)20 b(F)l(ortran)f(programs)g(b)o X(y)h(Drak)o(e)59 2846 y([19)o(],)15 b(te)g(Riele)i([66)o(],)d(and)i(W)l X(ah)o(ba)e(and)i(her)f(co-w)o(ork)o(ers)f([6])g(also)i(deserv)o(e)f(to) Xg(b)q(e)g(men)o(tioned)h(here.)p eop X%%Page: 7 9 X7 8 bop 59 548 a Fq(2.)35 b(Discrete)28 b(Ill-Posed)f(Pr)n(oblems)f X(and)h(their)59 640 y(Regulariza)-5 b(tion)59 848 y Fo(In)14 Xb(this)f(c)o(hapter)g(w)o(e)g(giv)o(e)g(a)g(brief)h(in)o(tro)q(duction) Xg(to)f(discrete)h(ill-p)q(osed)h(problems,)f(w)o(e)f(discuss)h(some)59 X905 y(n)o(umerical)h(regularization)g(metho)q(ds,)f(and)g(w)o(e)g(in)o X(tro)q(duce)h(sev)o(eral)f(n)o(umerical)h(\\to)q(ols")f(suc)o(h)g(as)g X(the)59 961 y(singular)19 b(v)m(alue)g(decomp)q(osition,)h(the)e X(discrete)h(Picard)f(condition,)i(and)e(the)g(L-curv)o(e,)h(whic)o(h)g X(are)59 1018 y(suited)g(for)e(analysis)i(of)e(the)h(discrete)h(ill-p)q X(osed)i(problems.)28 b(A)18 b(more)g(complete)h(treatmen)o(t)d(of)i X(all)59 1074 y(these)d(asp)q(ects)h(is)g(giv)o(en)f(in)h([47)o(].)59 X1215 y Fr(2.1.)i(Discrete)f(Ill-P)n(osed)h(Problems)59 X1322 y Fo(The)g(concept)h(of)e(ill-p)q(osed)k(problems)d(go)q(es)g(bac) Xo(k)g(to)f(Hadamard)g(in)i(the)f(b)q(eginning)i(of)e(this)g(cen-)59 X1378 y(tury)l(,)k(cf.)f(e.g.)f([34)o(].)37 b(Hadamard)21 Xb(essen)o(tially)h(de\014ned)g(a)f(problem)h(to)e(b)q(e)i XFk(il)r(l-p)n(ose)n(d)e Fo(if)i(the)f(solu-)59 1434 y(tion)c(is)h(not)f X(unique)h(or)f(if)h(it)f(is)h(not)e(a)h(con)o(tin)o(uous)h(function)f X(of)g(the)g(data|i.e.,)g(if)h(an)f(arbitrarily)59 1491 Xy(small)k(p)q(erturbation)g(of)e(the)h(data)g(can)g(cause)h(an)f X(arbitrarily)g(large)h(p)q(erturbation)f(of)g(the)g(solu-)59 X1547 y(tion.)h(Hadamard)15 b(b)q(eliev)o(ed)j(that)d(ill-p)q(osed)j X(problems)f(w)o(ere)e(\\arti\014cial")h(in)h(that)d(they)i(w)o(ould)g X(not)59 1604 y(describ)q(e)k(ph)o(ysical)f(systems.)29 Xb(He)18 b(w)o(as)g(wrong,)g(though,)g(and)g(to)q(da)o(y)g(there)g(is)h X(a)f(v)m(ast)g(amoun)o(t)f(of)59 1660 y(literature)g(on)g(ill-p)q(osed) Xi(problems)e(arising)g(in)h(man)o(y)e(areas)g(of)g(science)i(and)f X(engineering,)h(cf.)f(e.g.)59 1717 y([14)o(,)e(15)o(,)g(16,)f(32,)h(57) Xo(,)g(61)o(,)g(63,)f(69,)h(79)o(].)130 1776 y(The)i(classical)i X(example)g(of)e(an)g(ill-p)q(osed)j(problem)f(is)f(a)f(F)l(redholm)h X(in)o(tegral)g(equation)g(of)f(the)59 1832 y(\014rst)e(kind)h(with)g(a) Xf(square)g(in)o(tegrable)h(k)o(ernel)g([31)o(],)537 1911 Xy Fh(Z)578 1924 y Fg(b)560 2005 y(a)603 1968 y Fn(K)s XFo(\()p Fn(s;)8 b(t)p Fo(\))g Fn(f)d Fo(\()p Fn(t)p Fo(\))j XFn(dt)j Fo(=)i Fn(g)r Fo(\()p Fn(s)p Fo(\))h Fn(;)98 Xb(c)13 b Fm(\024)g Fn(s)f Fm(\024)h Fn(d)i(;)384 b Fo(\(2.1\))59 X2094 y(where)20 b(the)g(righ)o(t-hand)h(side)g Fn(g)g XFo(and)f(the)g(k)o(ernel)h Fn(K)i Fo(are)d(giv)o(en,)h(and)f(where)h XFn(f)k Fo(is)20 b(the)g(unkno)o(wn)59 2150 y(solution.)h(If)15 Xb(the)g(solution)h Fn(f)21 b Fo(is)15 b(p)q(erturb)q(ed)i(b)o(y)380 X2260 y(\001)p Fn(f)5 b Fo(\()p Fn(t)p Fo(\))13 b(=)g XFn(\017)i Fo(sin)q(\(2)p Fn(\031)r(p)8 b(t)p Fo(\))14 Xb Fn(;)98 b(p)12 b Fo(=)h(1)p Fn(;)8 b Fo(2)p Fn(;)g(:)g(:)g(:)19 Xb(;)98 b(\017)13 b Fo(=)g(constan)o(t)59 2370 y(then)j(the)f(corresp)q X(onding)h(p)q(erturbation)g(of)e(the)i(righ)o(t-hand)f(side)i XFn(g)f Fo(is)g(giv)o(en)f(b)o(y)442 2503 y(\001)p Fn(g)r XFo(\()p Fn(s)p Fo(\))d(=)h Fn(\017)647 2446 y Fh(Z)688 X2459 y Fg(b)670 2540 y(a)713 2503 y Fn(K)s Fo(\()p Fn(s;)8 Xb(t)p Fo(\))14 b(sin)q(\(2)p Fn(\031)r(p)8 b(t)p Fo(\))g XFn(dt)13 b(;)98 b(p)13 b Fo(=)g(1)p Fn(;)8 b Fo(2)p Fn(;)g(:)g(:)f(:)59 X2631 y Fo(and)19 b(due)g(to)f(the)g(Riemann-Leb)q(esgue)k(lemma)c(it)h X(follo)o(ws)g(that)e(\001)p Fn(g)i Fm(!)g Fo(0)f(as)g XFn(p)g Fm(!)h(1)g Fo([31)o(,)f(p.)h(2].)59 2688 y(Hence,)f(the)f(ratio) Xf Fm(k)p Fo(\001)p Fn(f)5 b Fm(k)p Fn(=)p Fm(k)p Fo(\001)p XFn(g)r Fm(k)14 b Fo(can)j(b)q(ecome)h(arbitrary)e(large)h(b)o(y)f(c)o X(ho)q(osing)h(the)g(in)o(teger)g Fn(p)g Fo(large)59 2744 Xy(enough,)24 b(th)o(us)f(sho)o(wing)f(that)g(\(2.1\))f(is)i(an)g(ill-p) Xq(osed)i(problem.)43 b(In)23 b(particular,)i(this)e(example)59 X2801 y(illustrates)14 b(that)e(F)l(redholm)h(in)o(tegral)g(equations)g X(of)g(the)g(\014rst)f(kind)i(with)f(square)f(in)o(tegrable)i(k)o X(ernels)59 2857 y(are)h(extremely)h(sensitiv)o(e)g(to)f(high-frequency) Xh(p)q(erturbations.)p eop X%%Page: 8 10 X8 9 bop 64 159 a Fo(8)974 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 130 304 a(Strictly)c(sp)q(eaking,)h(ill-p)q(osed)i X(problems)d(m)o(ust)f(b)q(e)i(in\014nite)h(dimensional|otherwise)g(the) Xe(ratio)59 361 y Fm(k)p Fo(\001)p Fn(f)5 b Fm(k)p Fn(=)p XFm(k)p Fo(\001)p Fn(g)r Fm(k)14 b Fo(sta)o(ys)i(b)q(ounded,)h(although) Xg(it)f(ma)o(y)g(b)q(ecome)h(v)o(ery)f(large.)23 b(Ho)o(w)o(ev)o(er,)16 Xb(certain)h(\014nite-)59 417 y(dimensional)g(discrete)e(problems)g(ha)o X(v)o(e)f(prop)q(erties)h(v)o(ery)g(similar)g(to)f(those)g(of)g(ill-p)q X(osed)j(problems,)59 474 y(suc)o(h)11 b(as)f(b)q(eing)i(highly)g X(sensitiv)o(e)g(to)e(high-frequency)i(p)q(erturbations,)f(and)g(it)g X(is)g(natural)g(to)f(asso)q(ciate)59 530 y(the)18 b(term)g XFk(discr)n(ete)h(il)r(l-p)n(ose)n(d)f(pr)n(oblems)g Fo(with)h(these)f X(problems.)30 b(W)l(e)19 b(can)f(b)q(e)h(more)f(precise)h(with)59 X587 y(this)d(c)o(haracterization)f(for)g(linear)h(systems)f(of)f X(equations)696 678 y Fn(A)8 b Fp(x)j Fo(=)i Fp(b)j Fn(;)98 Xb(A)12 b Fm(2)h Fp(I)-8 b(R)1122 659 y Fg(n)p Fe(\002)p XFg(n)1737 678 y Fo(\(2.2\))59 769 y(and)15 b(linear)i(least-squares)e X(problems)478 860 y(min)505 885 y Fi(x)561 860 y Fm(k)p XFn(A)8 b Fp(x)h Fm(\000)i Fp(b)p Fm(k)761 867 y Fj(2)796 X860 y Fn(;)98 b(A)12 b Fm(2)h Fp(I)-8 b(R)1048 841 y XFg(m)p Fe(\002)p Fg(n)1145 860 y Fn(;)98 b(m)13 b(>)g(n)i(:)325 Xb Fo(\(2.3\))59 960 y(W)l(e)22 b(sa)o(y)f(that)g(these)h(are)g X(discrete)h(ill-p)q(osed)h(problems)e(if)h(b)q(oth)f(of)f(the)h(follo)o X(wing)h(criteria)f(are)59 1016 y(satis\014ed:)115 1101 Xy(1.)g(the)15 b(singular)h(v)m(alues)g(of)f Fn(A)g Fo(deca)o(y)h X(gradually)g(to)e(zero)115 1191 y(2.)22 b(the)15 b(ratio)g(b)q(et)o(w)o X(een)g(the)g(largest)g(and)h(the)f(smallest)h(nonzero)f(singular)h(v)m X(alues)h(is)e(large.)59 1275 y(Singular)i(v)m(alues)f(are)g(discussed)h X(in)f(detail)g(in)h(Section)f(2.3.)k(Criterion)c(2)f(implies)j(that)c X(the)i(matrix)59 1332 y Fn(A)i Fo(is)h(ill-conditione)q(d,)i(i.e.,)e X(that)e(the)i(solution)g(is)f(p)q(oten)o(tially)i(v)o(ery)e(sensitiv)o X(e)h(to)f(p)q(erturbations;)59 1388 y(criterion)g(1)f(implies)j(that)d X(there)g(is)h(no)g(\\nearb)o(y")e(problem)i(with)g(a)f(w)o X(ell-conditioned)k(co)q(e\016cien)o(t)59 1445 y(matrix)15 Xb(and)g(with)h(w)o(ell-determined)i(n)o(umerical)e(rank.)130 X1501 y(The)11 b(t)o(ypical)g(manifestations)g(of)f(discrete)i(ill-p)q X(osed)h(problems)e(are)g(systems)f(of)g(linear)i(equations)59 X1558 y(and)i(linear)g(least-squares)g(problems)g(arising)g(from)e X(discretization)j(of)e(ill-p)q(osed)j(problems.)k(E.g.,)12 Xb(if)59 1614 y(a)h(Galerkin-t)o(yp)q(e)h(metho)q(d)f([3)o(])f(is)i X(used)f(to)g(discretize)h(the)f(F)l(redholm)g(in)o(tegral)h(equation)f X(\(2.1\),)e(then)59 1671 y(a)k(problem)h(of)e(the)i(form)e(\(2.2\))g X(or)g(\(2.3\))g(arises|dep)q(ending)k(on)d(the)g(t)o(yp)q(e)g(of)g X(collo)q(cation)h(metho)q(d)59 1727 y(used|with)h(the)e(elemen)o(ts)h XFn(a)585 1734 y Fg(ij)630 1727 y Fo(and)g Fn(b)739 1734 Xy Fg(i)767 1727 y Fo(of)f(the)g(matrix)g Fn(A)h Fo(and)f(the)g(righ)o X(t-hand)h(side)g Fp(b)f Fo(giv)o(en)h(b)o(y)318 1847 Xy Fn(a)342 1854 y Fg(ij)385 1847 y Fo(=)433 1789 y Fh(Z)474 X1802 y Fg(b)456 1883 y(a)499 1789 y Fh(Z)541 1802 y Fg(d)522 X1883 y(c)568 1847 y Fn(K)s Fo(\()p Fn(s;)8 b(t)p Fo(\))g XFn(\036)739 1854 y Fg(i)752 1847 y Fo(\()p Fn(s)p Fo(\))g XFn( )847 1854 y Fg(j)864 1847 y Fo(\()p Fn(t)p Fo(\))g XFn(ds)g(dt)15 b(;)98 b(b)1163 1854 y Fg(i)1189 1847 y XFo(=)1237 1789 y Fh(Z)1278 1802 y Fg(d)1260 1883 y(c)1306 X1847 y Fn(\036)1333 1854 y Fg(i)1347 1847 y Fo(\()p Fn(s)p XFo(\))8 b Fn(g)r Fo(\()p Fn(s)p Fo(\))g Fn(ds)13 b(;)165 Xb Fo(\(2.4\))59 1954 y(where)15 b Fn(\036)217 1961 y XFg(i)245 1954 y Fo(and)g Fn( )363 1961 y Fg(j)395 1954 Xy Fo(are)f(the)g(particular)h(basis)g(functions)g(used)g(in)g(the)g X(Galerkin)g(metho)q(d.)20 b(F)l(or)13 b(suc)o(h)59 2010 Xy(problems,)h(the)g(close)g(relationship)h(b)q(et)o(w)o(een)f(the)g X(ill-p)q(osedness)i(of)d(the)h(in)o(tegral)g(equation)g(and)g(the)59 X2067 y(ill-conditioni)q(ng)21 b(of)c(the)h(matrix)f Fn(A)h XFo(are)f(w)o(ell)i(understo)q(o)q(d)f([1,)f(39)o(,)h(78)o(].)27 Xb(In)19 b(particular,)f(it)g(can)g(b)q(e)59 2123 y(sho)o(wn)d(that)f X(the)h(singular)h(v)m(alues)g(of)f Fn(A)g Fo(deca)o(y)g(in)h(suc)o(h)f X(a)g(w)o(a)o(y)f(that)g(b)q(oth)h(criteria)h(1)e(and)h(2)g(ab)q(o)o(v)o X(e)59 2180 y(are)g(satis\014ed.)130 2236 y(An)23 b(in)o(teresting)g X(and)g(imp)q(ortan)o(t)f(asp)q(ect)h(of)f(discrete)h(ill-p)q(osed)j X(problems)d(is)g(that)f(the)h(ill-)59 2293 y(conditioning)14 Xb(of)e(the)g(problem)g(do)q(es)h(not)e(mean)h(that)f(a)h(meaningful)i X(appro)o(ximate)d(solution)i(cannot)59 2349 y(b)q(e)20 Xb(computed.)34 b(Rather,)20 b(the)g(ill-conditioni)q(ng)i(implies)g X(that)d(standard)g(metho)q(ds)h(in)g(n)o(umerical)59 X2406 y(linear)13 b(algebra)g([9)o(,)f(29)o(])g(for)f(solving)i(\(2.2\)) Xe(and)h(\(2.3\),)f(suc)o(h)i(as)e(LU,)i(Cholesky)l(,)g(or)e(QR)i X(factorization,)59 2462 y(cannot)18 b(b)q(e)g(used)h(in)f(a)g(straigh)o X(tforw)o(ard)d(manner)j(to)f(compute)h(suc)o(h)h(a)e(solution.)29 Xb(Instead,)18 b(more)59 2518 y(sophisticated)13 b(metho)q(ds)g(m)o(ust) Xe(b)q(e)i(applied)h(in)f(order)f(to)g(ensure)g(the)h(computation)f(of)f X(a)h(meaningful)59 2575 y(solution.)21 b(This)15 b(is)h(the)f(essen)o X(tial)i(goal)e(of)f(regularization)i(metho)q(ds.)130 X2631 y(The)c(pac)o(k)m(age)g Ff(Regulariza)m(tion)i(Tools)e XFo(pro)o(vides)g(a)g(collection)i(of)d(easy-to-use)h(Matlab)g(rou-)59 X2688 y(tines)18 b(for)f(the)g(n)o(umerical)i(treatmen)o(t)d(of)h X(discrete)h(ill-p)q(osed)i(problems.)26 b(The)18 b(philosoph)o(y)h(b)q X(ehind)59 2744 y Ff(Regulariza)m(tion)g(Tools)d Fo(is)h(mo)q(dularit)o X(y)g(and)g(regularit)o(y)f(b)q(et)o(w)o(een)h(the)g(routines.)24 Xb(Man)o(y)16 b(rou-)59 2801 y(tines)d(require)f(the)g(SVD)g(of)g(the)g X(co)q(e\016cien)o(t)h(matrix)e Fn(A)p Fo(|this)i(is)g(not)e X(necessarily)j(the)e(b)q(est)g(approac)o(h)59 2857 y(in)k(a)f(giv)o(en) Xg(application,)i(but)e(it)h(is)f(certainly)h(w)o(ell)h(suited)f(for)e X(Matlab)h([54)o(])g(and)g(for)f(this)i(pac)o(k)m(age.)p Xeop X%%Page: 9 11 X9 10 bop 59 159 a Fo(2.2.)14 b(Regularization)j(Metho)q(ds)1182 Xb(9)p 59 178 1767 2 v 130 304 a(The)16 b(n)o(umerical)h(treatmen)o(t)d X(of)i(in)o(tegral)g(equations)g(in)h(general)f(is)g(treated)g(in)g X(standard)g(refer-)59 361 y(ences)g(suc)o(h)f(as)g([4)o(,)g(5,)f(13,)g X(17,)g(18],)g(and)h(surv)o(eys)g(of)g(regularization)h(theory)e(can)h X(b)q(e)h(found)f(in,)h(e.g.,)59 417 y([7)o(,)f(10,)f(31,)h(32)o(,)g(46) Xo(,)g(47,)f(50,)h(51)o(,)g(65)o(,)g(73)o(,)g(79].)59 X548 y Fr(2.2.)j(Regularization)f(Metho)r(ds)59 651 y XFo(The)j(primary)f(di\016cult)o(y)i(with)e(the)h(discrete)g(ill-p)q X(osed)i(problems)e(\(2.2\))e(and)h(\(2.3\))f(is)i(that)f(they)59 X707 y(are)e(essen)o(tially)i(underdetermined)g(due)f(to)f(the)g X(cluster)h(of)f(small)h(singular)g(v)m(alues)g(of)f Fn(A)p XFo(.)26 b(Hence,)59 764 y(it)18 b(is)h(necessary)f(to)f(incorp)q(orate) Xh(further)g(information)g(ab)q(out)g(the)g(desired)h(solution)g(in)g X(order)e(to)59 820 y(stabilize)i(the)e(problem)g(and)g(to)f(single)i X(out)f(a)f(useful)i(and)f(stable)g(solution.)25 b(This)18 Xb(is)f(the)g(purp)q(ose)59 877 y(of)e Fk(r)n(e)n(gularization)p XFo(.)130 934 y(Although)21 b(man)o(y)f(t)o(yp)q(es)h(of)f(additional)i X(information)f(ab)q(out)g(the)f(solution)i Fp(x)e Fo(is)h(p)q(ossible)i X(in)59 990 y(principle,)e(the)e(dominating)g(approac)o(h)e(to)h X(regularization)h(of)f(discrete)h(ill-p)q(osed)i(problems)e(is)f(to)59 X1047 y(require)13 b(that)e(the)h(2-norm|or)f(an)h(appropriate)g X(seminorm|of)g(the)g(solution)g(b)q(e)h(small.)19 b(An)13 Xb(initial)59 1103 y(estimate)k Fp(x)271 1087 y Fe(\003)308 X1103 y Fo(of)g(the)g(solution)h(ma)o(y)f(also)g(b)q(e)h(included)i(in)e X(the)f(side)h(constrain)o(t.)26 b(Hence,)18 b(the)g(side)59 X1160 y(constrain)o(t)d(in)o(v)o(olv)o(es)h(minimization)h(of)e(the)g X(quan)o(tit)o(y)718 1264 y(\012\()p Fp(x)p Fo(\))c(=)i XFm(k)p Fn(L)8 b Fo(\()p Fp(x)h Fm(\000)h Fp(x)1064 1245 Xy Fe(\003)1084 1264 y Fo(\))p Fm(k)1125 1271 y Fj(2)1159 X1264 y Fn(:)565 b Fo(\(2.5\))59 1369 y(Here,)17 b(the)f(matrix)g XFn(L)h Fo(is)g(t)o(ypically)g(either)h(the)e(iden)o(tit)o(y)h(matrix)f XFn(I)1238 1376 y Fg(n)1278 1369 y Fo(or)g(a)g Fn(p)11 Xb Fm(\002)g Fn(n)17 b Fo(discrete)g(appro)o(xi-)59 1425 Xy(mation)d(of)g(the)h(\()p Fn(n)8 b Fm(\000)h Fn(p)p XFo(\)-th)14 b(deriv)m(ativ)o(e)i(op)q(erator,)d(in)i(whic)o(h)h(case)e XFn(L)g Fo(is)h(a)f(banded)i(matrix)e(with)g(full)59 1481 Xy(ro)o(w)f(rank.)19 b(In)14 b(some)f(cases)g(it)h(is)g(more)f X(appropriate)g(that)g(the)g(side)i(constrain)o(t)d(b)q(e)j(a)e(Sob)q X(olev)h(norm)59 1538 y(of)h(the)g(form)493 1618 y(\012\()p XFp(x)p Fo(\))590 1600 y Fj(2)621 1618 y Fo(=)e Fn(\013)698 X1600 y Fj(2)698 1630 y(0)718 1618 y Fm(k)p Fp(x)c Fm(\000)i XFp(x)852 1600 y Fe(\003)871 1618 y Fm(k)894 1600 y Fj(2)894 X1630 y(2)924 1618 y Fo(+)991 1563 y Fg(q)969 1578 y Fh(X)971 X1669 y Fg(i)p Fj(=1)1037 1618 y Fn(\013)1066 1600 y Fj(2)1066 X1630 y Fg(i)1086 1618 y Fm(k)p Fn(L)1140 1625 y Fg(i)1161 X1618 y Fo(\()p Fp(x)e Fm(\000)i Fp(x)1290 1600 y Fe(\003)1309 X1618 y Fo(\))p Fm(k)1350 1600 y Fj(2)1350 1630 y(2)1384 X1618 y Fn(;)59 1738 y Fo(where)21 b Fn(L)227 1745 y Fg(i)262 X1738 y Fo(appro)o(ximates)f(the)h Fn(i)p Fo(th)g(deriv)m(ativ)o(e)h(op) Xq(erator.)36 b(Notice)21 b(that)f(this)h(\012)g(can)g(alw)o(a)o(ys)f(b) Xq(e)59 1795 y(written)c(in)h(the)f(form)f(\(2.5\))f(b)o(y)i(setting)g XFn(L)g Fo(equal)h(to)e(the)h(Cholesky)g(factor)f(of)h(the)g(matrix)f XFn(\013)1721 1778 y Fj(2)1721 1806 y(0)1741 1795 y Fn(I)1761 X1802 y Fg(n)1795 1795 y Fo(+)59 1819 y Fh(P)103 1829 Xy Fg(q)103 1864 y(i)p Fj(=1)170 1851 y Fn(\013)199 1835 Xy Fj(2)199 1863 y Fg(i)219 1851 y Fn(L)250 1835 y Fg(T)250 X1863 y(i)277 1851 y Fn(L)308 1858 y Fg(i)322 1851 y Fo(.)k(By)13 Xb(means)f(of)g(the)h(side)g(constrain)o(t)f(\012)h(one)f(can)h X(therefore)f(con)o(trol)g(the)h(smo)q(othness)59 1908 Xy(of)i(the)g(regularized)i(solution.)130 1965 y(When)10 Xb(the)h(side)g(constrain)o(t)g(\012\()p Fp(x)p Fo(\))e(is)i(in)o(tro)q X(duced,)h(one)f(m)o(ust)e(giv)o(e)i(up)g(the)g(requiremen)o(t)g(that)e XFn(A)f Fp(x)59 2021 y Fo(equals)14 b Fp(b)g Fo(in)g(the)g(linear)g X(system)f(\(2.2\))f(and)i(instead)g(seek)g(a)f(solution)h(that)f(pro)o X(vides)h(a)f(fair)h(balance)59 2078 y(b)q(et)o(w)o(een)i(minimizing)i X(\012\()p Fp(x)p Fo(\))c(and)i(minimizing)i(the)e(residual)h(norm)e XFm(k)p Fn(A)8 b Fp(x)h Fm(\000)i Fp(b)p Fm(k)1473 2085 Xy Fj(2)1492 2078 y Fo(.)21 b(The)16 b(underlying)59 2134 Xy(idea)11 b(is)g(that)f(a)g(regularized)h(solution)h(with)e(small)h X(\(semi\)norm)f(and)h(a)f(suitably)h(small)g(residual)h(norm)59 X2191 y(is)j(not)f(to)q(o)g(far)g(from)g(the)h(desired,)g(unkno)o(wn)g X(solution)h(to)d(the)i(unp)q(erturb)q(ed)h(problem)g(underlying)59 X2247 y(the)c(giv)o(en)h(problem.)20 b(The)12 b(same)g(idea)i(of)d X(course)i(also)f(applies)i(to)e(the)g(least)h(squares)f(problem)h X(\(2.3\).)130 2305 y(Undoubtedly)l(,)26 b(the)c(most)g(common)g(and)h X(w)o(ell-kno)o(wn)h(form)e(of)g(regularization)i(is)f(the)g(one)59 X2361 y(kno)o(wn)16 b(as)g Fk(Tikhonov)g(r)n(e)n(gularization)g XFo([62)o(,)g(67)o(,)g(68)o(].)23 b(Here,)16 b(the)h(idea)f(is)h(to)f X(de\014ne)h(the)f(regularized)59 2417 y(solution)h Fp(x)260 X2424 y Fg(\025)299 2417 y Fo(as)f(the)g(minimizer)i(of)e(the)h(follo)o X(wing)g(w)o(eigh)o(ted)f(com)o(bination)h(of)f(the)g(residual)i(norm)59 X2474 y(and)d(the)h(side)g(constrain)o(t)476 2578 y Fp(x)504 X2585 y Fg(\025)539 2578 y Fo(=)d(argmin)733 2531 y Fh(n)761 X2578 y Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)h Fp(b)p Fm(k)960 X2559 y Fj(2)960 2589 y(2)990 2578 y Fo(+)g Fn(\025)1062 X2559 y Fj(2)1082 2578 y Fm(k)p Fn(L)e Fo(\()p Fp(x)g XFm(\000)j Fp(x)1272 2559 y Fe(\003)1291 2578 y Fo(\))p XFm(k)1332 2559 y Fj(2)1332 2589 y(2)1351 2531 y Fh(o)1401 X2578 y Fn(;)323 b Fo(\(2.6\))59 2688 y(where)14 b(the)f XFk(r)n(e)n(gularization)h(p)n(ar)n(ameter)f Fn(\025)g XFo(con)o(trols)g(the)g(w)o(eigh)o(t)g(giv)o(en)h(to)e(minimization)k X(of)c(the)i(side)59 2744 y(constrain)o(t)h(relativ)o(e)g(to)g X(minimization)i(of)d(the)h(residual)i(norm.)i(Clearly)l(,)d(a)e(large)h XFn(\025)g Fo(\(equiv)m(alen)o(t)h(to)59 2801 y(a)g(large)h(amoun)o(t)e X(of)h(regularization\))h(fa)o(v)o(ors)e(a)h(small)h(solution)h X(seminorm)e(at)g(the)h(cost)f(of)g(a)g(large)59 2857 Xy(residual)k(norm,)e(while)i(a)e(small)h Fn(\025)f Fo(\(i.e.,)g(a)g X(small)h(amoun)o(t)f(of)g(regularization\))g(has)h(the)f(opp)q(osite)p Xeop X%%Page: 10 12 X10 11 bop 64 159 a Fo(10)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(e\013ect.)36 b(As)21 b(w)o(e)f(shall)i(see)f X(in)g(Eq.)g(\(2.14\),)e Fn(\025)i Fo(also)f(con)o(trols)h(the)f X(sensitivit)o(y)i(of)f(the)f(regularized)59 361 y(solution)e XFp(x)261 368 y Fg(\025)300 361 y Fo(to)e(p)q(erturbations)i(in)g XFn(A)f Fo(and)g Fp(b)p Fo(,)g(and)g(the)g(p)q(erturbation)g(b)q(ound)h X(is)g(prop)q(ortional)f(to)59 417 y Fn(\025)86 401 y XFe(\000)p Fj(1)133 417 y Fo(.)28 b(Th)o(us,)19 b(the)f(regularization)h X(parameter)f Fn(\025)f Fo(is)i(an)f(imp)q(ortan)o(t)g(quan)o(tit)o(y)g X(whic)o(h)h(con)o(trols)f(the)59 474 y(prop)q(erties)j(of)f(the)h X(regularized)g(solution,)h(and)f Fn(\025)f Fo(should)h(therefore)f(b)q X(e)h(c)o(hosen)g(with)g(care.)35 b(In)59 530 y(Section)16 Xb(2.9)e(w)o(e)h(return)g(to)g(n)o(umerical)h(metho)q(ds)g(for)e X(actually)i(computing)g Fn(\025)p Fo(.)130 589 y(W)l(e)i(remark)f(that) Xg(an)h(underlying)h(assumption)f(for)g(the)g(use)g(of)f(Tikhono)o(v)h X(regularization)h(in)59 646 y(the)c(form)g(of)g(Eq.)f(\(2.6\))g(is)i X(that)e(the)h(errors)g(in)h(the)f(righ)o(t-hand)h(side)g(are)f(un)o X(biased)h(and)g(that)e(their)59 702 y(co)o(v)m(ariance)21 Xb(matrix)e(is)i(prop)q(ortional)f(to)f(the)h(iden)o(tit)o(y)h(matrix.) X34 b(If)20 b(the)g(latter)f(condition)j(is)e(not)59 758 Xy(satis\014ed)14 b(one)g(should)g(incorp)q(orate)g(the)f(additional)i X(information)f(and)g(rescale)g(the)f(problem)h(or)f(use)59 X815 y(a)i(regularized)i(v)o(ersion)e(of)g(the)g(general)h(Gauss-Mark)o X(o)o(v)d(linear)j(mo)q(del:)357 930 y(min)448 882 y Fh(n)475 X930 y Fm(k)p Fp(u)p Fm(k)550 911 y Fj(2)550 941 y(2)580 X930 y Fo(+)10 b Fn(\025)652 911 y Fj(2)671 930 y Fm(k)p XFn(L)e Fp(x)p Fm(k)784 911 y Fj(2)784 941 y(2)803 882 Xy Fh(o)929 930 y Fo(sub)s(ject)15 b(to)90 b Fn(A)8 b XFp(x)i Fo(+)g Fn(C)g Fp(u)j Fo(=)g Fp(b)i Fn(;)204 b XFo(\(2.7\))59 1047 y(where)15 b Fn(C)j Fo(is)e(the)f(Cholesky)h(factor) Xe(of)h(the)g(co)o(v)m(ariance)h(matrix.)j(The)d(latter)f(approac)o(h)f X(using)i(\(2.7\))59 1103 y(m)o(ust)g(b)q(e)i(used)g(if)f(the)g(co)o(v)m X(ariance)h(matrix)e(is)i(rank)e(de\014cien)o(t,)j(i.e.,)e(if)g XFn(C)j Fo(is)d(not)g(a)g(square)f(matrix.)59 1160 y(F)l(or)f(a)f X(discussion)j(of)e(this)h(approac)o(h)f(and)g(a)g(n)o(umerical)h X(algorithm)g(for)e(solving)i(\(2.7\),)d(cf.)i([80)o(].)130 X1219 y(Besides)21 b(Tikhono)o(v)e(regularization,)j(there)d(are)h(man)o X(y)f(other)g(regularization)i(metho)q(ds)e(with)59 1275 Xy(prop)q(erties)g(that)f(mak)o(e)g(them)g(b)q(etter)h(suited)g(to)f X(certain)g(problems)h(or)f(certain)h(computers.)30 b(W)l(e)59 X1331 y(return)12 b(to)f(these)i(metho)q(ds)f(in)h(Sections)g(2.7)e(and) Xh(2.8,)f(but)h(\014rst)g(it)g(is)h(con)o(v)o(enien)o(t)g(to)e(in)o(tro) Xq(duce)i(some)59 1388 y(imp)q(ortan)o(t)g(n)o(umerical)h(\\to)q(ols")e X(for)h(analysis)h(of)e(discrete)i(ill-p)q(osed)i(problems)d(in)h X(Sections)g(2.3{2.5.)59 1444 y(As)20 b(w)o(e)f(shall)i(demonstrate,)f X(getting)f(insigh)o(t)i(in)o(to)f(the)f(discrete)i(ill-p)q(osed)h X(problem)f(is)f(often)f(at)59 1501 y(least)g(as)g(imp)q(ortan)o(t)g(as) Xg(computing)h(a)f(solution,)h(b)q(ecause)h(the)e(regularized)i X(solution)f(should)g(b)q(e)59 1557 y(computed)i(with)f(suc)o(h)h(care.) X38 b(Finally)l(,)24 b(in)e(Section)g(2.9)f(w)o(e)g(shall)h(describ)q(e) Xh(some)e(metho)q(ds)g(for)59 1614 y(c)o(ho)q(osing)16 Xb(the)f(regularization)h(parameter.)59 1754 y Fr(2.3.)i(SVD)h(and)g X(Generalized)e(SVD)59 1860 y Fo(The)e(sup)q(erior)g(n)o(umerical)h X(\\to)q(ols")e(for)g(analysis)h(of)f(discrete)h(ill-p)q(osed)i X(problems)f(are)e(the)g Fk(singular)59 1917 y(value)20 Xb(de)n(c)n(omp)n(osition)e Fo(\(SVD\))h(of)f Fn(A)h Fo(and)h(its)f X(generalization)h(to)f(t)o(w)o(o)f(matrices,)h(the)g XFk(gener)n(alize)n(d)59 1973 y(singular)13 b(value)g(de)n(c)n(omp)n X(osition)f Fo(\(GSVD\))f(of)g(the)h(matrix)g(pair)h(\()p XFn(A;)8 b(L)p Fo(\))i([29)o(,)i Fm(x)p Fo(2.5.3)f(and)h XFm(x)p Fo(8.7.3].)17 b(The)59 2030 y(SVD)f(rev)o(eals)h(all)g(the)f X(di\016culties)i(asso)q(ciated)f(with)f(the)g(ill-conditi)q(oning)j(of) Xd(the)g(matrix)g Fn(A)g Fo(while)59 2086 y(the)k(GSVD)g(of)g(\()p XFn(A;)8 b(L)p Fo(\))19 b(yields)j(imp)q(ortan)o(t)e(insigh)o(t)h(in)o X(to)f(the)g(regularization)h(problem)g(in)o(v)o(olving)59 X2143 y(b)q(oth)15 b(the)h(co)q(e\016cien)o(t)g(matrix)f XFn(A)g Fo(and)g(the)h(regularization)g(matrix)f Fn(L)p XFo(,)f(suc)o(h)i(as)f(in)h(\(2.6\).)59 2277 y Fp(2.3.1.)g(The)i X(Singular)h(V)l(alue)e(Decomp)q(osition)59 2367 y Fo(Let)e XFn(A)d Fm(2)h Fp(I)-8 b(R)281 2349 y Fg(m)p Fe(\002)p XFg(n)377 2367 y Fo(b)q(e)15 b(a)f(rectangular)h(matrix)f(with)g XFn(m)f Fm(\025)g Fn(n)p Fo(.)20 b(Then)14 b(the)h(SVD)f(of)g XFn(A)h Fo(is)f(a)g(decomp)q(osi-)59 2424 y(tion)h(of)g(the)h(form)665 X2506 y Fn(A)c Fo(=)h Fn(U)g Fo(\006)8 b Fn(V)880 2488 Xy Fg(T)920 2506 y Fo(=)987 2453 y Fg(n)968 2466 y Fh(X)969 X2557 y Fg(i)p Fj(=1)1043 2506 y Fp(u)1072 2513 y Fg(i)1094 X2506 y Fn(\033)1120 2513 y Fg(i)1142 2506 y Fp(v)1171 X2488 y Fg(T)1170 2518 y(i)1212 2506 y Fn(;)512 b Fo(\(2.8\))59 X2635 y(where)20 b Fn(U)k Fo(=)19 b(\()p Fp(u)351 2642 Xy Fj(1)371 2635 y Fn(;)8 b(:)g(:)g(:)d(;)j Fp(u)502 2642 Xy Fg(n)524 2635 y Fo(\))19 b(and)h Fn(V)29 b Fo(=)19 Xb(\()p Fp(v)810 2642 y Fj(1)829 2635 y Fn(;)8 b(:)g(:)g(:)d(;)j XFp(v)959 2642 y Fg(n)981 2635 y Fo(\))19 b(are)g(matrices)g(with)h X(orthonormal)e(columns,)59 2691 y Fn(U)95 2675 y Fg(T)123 X2691 y Fn(U)i Fo(=)d Fn(V)262 2675 y Fg(T)290 2691 y XFn(V)25 b Fo(=)17 b Fn(I)414 2698 y Fg(n)437 2691 y Fo(,)g(and)h(where) Xf(\006)f(=)g(diag)q(\()p Fn(\033)919 2698 y Fj(1)938 X2691 y Fn(;)8 b(:)g(:)g(:)d(;)j(\033)1066 2698 y Fg(n)1089 X2691 y Fo(\))17 b(has)g(non-negativ)o(e)g(diagonal)h(elemen)o(ts)59 X2748 y(app)q(earing)e(in)g(non-increasing)h(order)e(suc)o(h)g(that)755 X2857 y Fn(\033)781 2864 y Fj(1)813 2857 y Fm(\025)e Fn(:)8 Xb(:)g(:)j Fm(\025)i Fn(\033)1001 2864 y Fg(n)1037 2857 Xy Fm(\025)g Fo(0)i Fn(:)601 b Fo(\(2.9\))p eop X%%Page: 11 13 X11 12 bop 59 159 a Fo(2.3.)14 b(SVD)h(and)h(Generalized)g(SVD)1096 Xb(11)p 59 178 1767 2 v 59 304 a(The)16 b(n)o(um)o(b)q(ers)h XFn(\033)364 311 y Fg(i)394 304 y Fo(are)e(the)h Fk(singular)h(values)e XFo(of)h Fn(A)g Fo(while)h(the)f(v)o(ectors)g Fp(u)1345 X311 y Fg(i)1375 304 y Fo(and)g Fp(v)1492 311 y Fg(i)1521 X304 y Fo(are)g(the)g(left)g(and)59 361 y(righ)o(t)f(singular)i(v)o X(ectors)e(of)g Fn(A)p Fo(,)g(resp)q(ectiv)o(ely)l(.)23 Xb(The)16 b(condition)h(n)o(um)o(b)q(er)f(of)f Fn(A)h XFo(is)g(equal)g(to)f(the)h(ratio)59 417 y Fn(\033)85 X424 y Fj(1)105 417 y Fn(=\033)154 424 y Fg(n)177 417 Xy Fo(.)130 474 y(F)l(rom)e(the)g(relations)i Fn(A)545 X458 y Fg(T)572 474 y Fn(A)d Fo(=)g Fn(V)k Fo(\006)744 X458 y Fj(2)771 474 y Fn(V)808 458 y Fg(T)850 474 y Fo(and)e XFn(A)8 b(A)1014 458 y Fg(T)1054 474 y Fo(=)13 b Fn(U)f XFo(\006)1178 458 y Fj(2)1198 474 y Fn(U)1234 458 y Fg(T)1276 X474 y Fo(w)o(e)j(see)g(that)f(the)g(SVD)h(of)f Fn(A)h XFo(is)59 530 y(strongly)i(link)o(ed)j(to)c(the)i(eigen)o(v)m(alue)i X(decomp)q(ositions)e(of)g(the)f(symmetric)h(p)q(ositiv)o(e)g X(semi-de\014nite)59 587 y(matrices)12 b Fn(A)272 570 Xy Fg(T)300 587 y Fn(A)g Fo(and)h Fn(A)8 b(A)508 570 y XFg(T)535 587 y Fo(.)19 b(This)13 b(sho)o(ws)f(that)f(the)i(SVD)f(is)h X(unique)h(for)e(a)g(giv)o(en)h(matrix)f Fn(A)p Fo(|except)59 X643 y(for)k(singular)h(v)o(ectors)e(asso)q(ciated)i(with)f(m)o(ultiple) Xi(singular)f(v)m(alues.)24 b(In)17 b(connection)g(with)g(discrete)59 X700 y(ill-p)q(osed)h(problems,)d(t)o(w)o(o)f(c)o(haracteristic)i X(features)f(of)f(the)i(SVD)f(of)g Fn(A)g Fo(are)g(v)o(ery)g(often)f X(found.)127 795 y Fm(\017)23 b Fo(The)10 b(singular)i(v)m(alues)f XFn(\033)585 802 y Fg(i)610 795 y Fo(deca)o(y)f(gradually)h(to)f(zero)g X(with)h(no)g(particular)g(gap)f(in)h(the)g(sp)q(ectrum.)173 X851 y(An)i(increase)h(of)f(the)g(dimensions)h(of)f Fn(A)g XFo(will)i(increase)f(the)f(n)o(um)o(b)q(er)g(of)g(small)h(singular)g(v) Xm(alues.)127 946 y Fm(\017)23 b Fo(The)13 b(left)h(and)g(righ)o(t)f X(singular)h(v)o(ectors)f Fp(u)889 953 y Fg(i)916 946 Xy Fo(and)g Fp(v)1030 953 y Fg(i)1057 946 y Fo(tend)h(to)f(ha)o(v)o(e)g X(more)g(sign)h(c)o(hanges)f(in)h(their)173 1003 y(elemen)o(ts)i(as)e X(the)i(index)g Fn(i)f Fo(increases,)h(i.e.,)e(as)h Fn(\033)1016 X1010 y Fg(i)1045 1003 y Fo(decreases.)59 1098 y(Although)g(these)f X(features)g(are)g(found)h(in)g(man)o(y)f(discrete)h(ill-p)q(osed)i X(problems)e(arising)g(in)g(practical)59 1154 y(applications,)23 Xb(they)e(are)g(unfortunately)g(v)o(ery)f(di\016cult|or)i(p)q(erhaps)g X(imp)q(ossible|to)h(pro)o(v)o(e)d(in)59 1211 y(general.)130 X1267 y(T)l(o)14 b(see)h(ho)o(w)e(the)i(SVD)f(giv)o(es)h(insigh)o(t)g X(in)o(to)g(the)f(ill-conditi)q(onin)q(g)j(of)d Fn(A)p XFo(,)g(consider)h(the)g(follo)o(wing)59 1324 y(relations)h(whic)o(h)g X(follo)o(w)f(directly)i(from)d(Eq.)h(\(2.8\):)640 1431 Xy Fn(A)8 b Fp(v)710 1438 y Fg(i)765 1431 y Fo(=)42 b XFn(\033)868 1438 y Fg(i)890 1431 y Fp(u)919 1438 y Fg(i)575 X1488 y Fm(k)p Fn(A)8 b Fp(v)668 1495 y Fg(i)681 1488 Xy Fm(k)704 1495 y Fj(2)765 1488 y Fo(=)42 b Fn(\033)868 X1495 y Fg(i)953 1387 y Fh(\))1085 1459 y Fn(i)13 b Fo(=)g(1)p XFn(;)8 b(:)g(:)g(:)t(;)g(n)15 b(:)374 b Fo(\(2.10\))59 X1595 y(W)l(e)16 b(see)g(that)f(a)g(small)i(singular)f(v)m(alue)h XFn(\033)785 1602 y Fg(i)799 1595 y Fo(,)e(compared)h(to)f XFm(k)p Fn(A)p Fm(k)1171 1602 y Fj(2)1204 1595 y Fo(=)f XFn(\033)1279 1602 y Fj(1)1298 1595 y Fo(,)i(means)f(that)g(there)h X(exists)g(a)59 1651 y(certain)f(linear)g(com)o(bination)g(of)e(the)i X(columns)g(of)e Fn(A)p Fo(,)h(c)o(haracterized)h(b)o(y)f(the)g(elemen)o X(ts)h(of)f(the)g(righ)o(t)59 1708 y(singular)j(v)o(ector)e XFp(v)397 1715 y Fg(i)411 1708 y Fo(,)h(suc)o(h)g(that)f XFm(k)p Fn(A)8 b Fp(v)735 1715 y Fg(i)748 1708 y Fm(k)771 X1715 y Fj(2)804 1708 y Fo(=)15 b Fn(\033)880 1715 y Fg(i)910 X1708 y Fo(is)h(small.)23 b(In)16 b(other)g(w)o(ords,)f(one)h(or)f(more) Xh(small)h Fn(\033)1817 1715 y Fg(i)59 1764 y Fo(implies)f(that)d XFn(A)h Fo(is)g(nearly)g(rank)g(de\014cien)o(t,)h(and)f(the)g(v)o X(ectors)e Fp(v)1177 1771 y Fg(i)1205 1764 y Fo(asso)q(ciated)i(with)g X(the)g(small)g Fn(\033)1742 1771 y Fg(i)1770 1764 y Fo(are)59 X1821 y(n)o(umerical)19 b(n)o(ull-v)o(ectors)f(of)f Fn(A)p XFo(.)28 b(F)l(rom)16 b(this)i(and)g(the)g(c)o(haracteristic)g(features) Xf(of)g Fn(A)h Fo(w)o(e)f(conclude)59 1877 y(that)i(the)g(matrix)g(in)h X(a)f(discrete)i(ill-p)q(osed)h(problem)e(is)g(alw)o(a)o(ys)e(highly)j X(ill-conditione)q(d,)i(and)c(its)59 1934 y(n)o(umerical)e(n)o X(ull-space)g(is)e(spanned)h(b)o(y)f(v)o(ectors)g(with)g(man)o(y)g(sign) Xh(c)o(hanges.)130 1990 y(The)10 b(SVD)h(also)f(giv)o(es)g(imp)q(ortan)o X(t)g(insigh)o(t)h(in)o(to)g(another)f(asp)q(ect)g(of)g(discrete)h X(ill-p)q(osed)i(problems,)59 2047 y(namely)k(the)g(smo)q(othing)f X(e\013ect)h(t)o(ypically)h(asso)q(ciated)f(with)f(a)h(square)f(in)o X(tegrable)h(k)o(ernel.)25 b(Notice)59 2103 y(that)18 Xb(as)h Fn(\033)247 2110 y Fg(i)280 2103 y Fo(decreases,)g(the)g X(singular)h(v)o(ectors)e Fp(u)939 2110 y Fg(i)972 2103 Xy Fo(and)h Fp(v)1092 2110 y Fg(i)1125 2103 y Fo(b)q(ecome)g(more)g(and) Xg(more)f(oscillatory)l(.)59 2160 y(Consider)i(no)o(w)g(the)g(mapping)g XFn(A)8 b Fp(x)19 b Fo(of)h(an)f(arbitrary)g(v)o(ector)h XFp(x)p Fo(.)33 b(Using)20 b(the)g(SVD,)g(w)o(e)f(get)g XFp(x)h Fo(=)59 2184 y Fh(P)103 2197 y Fg(n)103 2228 y(i)p XFj(=1)162 2216 y Fo(\()p Fp(v)209 2200 y Fg(T)208 2228 Xy(i)236 2216 y Fp(x)p Fo(\))8 b Fp(v)318 2223 y Fg(i)345 X2216 y Fo(and)724 2305 y Fn(A)g Fp(x)k Fo(=)873 2252 Xy Fg(n)854 2264 y Fh(X)855 2355 y Fg(i)p Fj(=1)921 2305 Xy Fn(\033)947 2312 y Fg(i)969 2305 y Fo(\()p Fp(v)1016 X2286 y Fg(T)1015 2316 y(i)1042 2305 y Fp(x)p Fo(\))c XFp(u)1125 2312 y Fg(i)1153 2305 y Fn(:)59 2423 y Fo(This)15 Xb(clearly)g(sho)o(ws)f(that)f(the)h(due)h(to)f(the)g(m)o(ultiplication) Xj(with)d(the)g Fn(\033)1323 2430 y Fg(i)1352 2423 y Fo(the)g X(high-frequency)i(com-)59 2480 y(p)q(onen)o(ts)d(of)f XFp(x)g Fo(are)g(more)g(damp)q(ed)h(in)g Fn(A)8 b Fp(x)k XFo(than)g(then)h(lo)o(w-frequency)g(comp)q(onen)o(ts.)19 Xb(Moreo)o(v)o(er,)12 b(the)59 2536 y(in)o(v)o(erse)j(problem,)g(namely) Xg(that)e(of)h(computing)h Fp(x)f Fo(from)f Fn(A)8 b Fp(x)k XFo(=)h Fp(b)i Fo(or)e(min)c Fm(k)p Fn(A)f Fp(x)f Fm(\000)i XFp(b)p Fm(k)1583 2543 y Fj(2)1602 2536 y Fo(,)14 b(m)o(ust)g(ha)o(v)o X(e)59 2593 y(the)h(opp)q(osite)h(e\013ect:)k(it)15 b(ampli\014es)i(the) Xe(high-frequency)i(oscillations)g(in)f(the)f(righ)o(t-hand)h(side)g XFp(b)p Fo(.)59 2714 y Fp(2.3.2.)g(The)i(Generalized)h(Singular)g(V)l X(alue)e(Decomp)q(osition)59 2801 y Fo(The)d(GSVD)g(of)g(the)g(matrix)g X(pair)g(\()p Fn(A;)8 b(L)p Fo(\))13 b(is)i(a)e(generalization)j(of)d X(the)i(SVD)f(of)g Fn(A)g Fo(in)h(the)f(sense)g(that)59 X2857 y(the)f(generalized)h(singular)g(v)m(alues)f(of)f(\()p XFn(A;)c(L)p Fo(\))k(are)g(the)g(square)h(ro)q(ots)f(of)g(the)g X(generalized)j(eigen)o(v)m(alues)p eop X%%Page: 12 14 X12 13 bop 64 159 a Fo(12)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(of)g(the)g(matrix)g(pair)g(\()p XFn(A)490 288 y Fg(T)518 304 y Fn(A;)8 b(L)604 288 y Fg(T)630 X304 y Fn(L)p Fo(\).)26 b(In)18 b(order)e(to)h(k)o(eep)g(our)g(exp)q X(osition)i(simple,)f(w)o(e)f(assume)g(that)59 361 y(the)e(dimensions)i X(of)e Fn(A)d Fm(2)h Fp(I)-8 b(R)563 343 y Fg(m)p Fe(\002)p XFg(n)660 361 y Fo(and)15 b Fn(L)e Fm(2)g Fp(I)-8 b(R)886 X343 y Fg(p)p Fe(\002)p Fg(n)970 361 y Fo(satisfy)15 b XFn(m)d Fm(\025)h Fn(n)g Fm(\025)g Fn(p)p Fo(,)i(whic)o(h)h(is)f(alw)o X(a)o(ys)f(the)i(case)59 417 y(in)h(connection)h(with)e(discrete)h X(ill-p)q(osed)i(problems.)24 b(Then)17 b(the)f(GSVD)g(is)h(a)f(decomp)q X(osition)i(of)e Fn(A)59 474 y Fo(and)f Fn(L)h Fo(in)g(the)f(form)434 X588 y Fn(A)e Fo(=)g Fn(U)573 529 y Fh(\022)611 560 y XFo(\006)78 b(0)616 617 y(0)50 b Fn(I)709 624 y Fg(n)p XFe(\000)p Fg(p)785 529 y Fh(\023)824 588 y Fn(X)866 570 Xy Fe(\000)p Fj(1)927 588 y Fn(;)98 b(L)13 b Fo(=)g Fn(V)k XFo(\()p Fn(M)j(;)i Fo(0\))8 b Fn(X)1382 570 y Fe(\000)p XFj(1)1443 588 y Fn(;)259 b Fo(\(2.11\))59 719 y(where)12 Xb(the)f(columns)h(of)f Fn(U)18 b Fm(2)13 b Fp(I)-8 b(R)625 X701 y Fg(m)p Fe(\002)p Fg(n)718 719 y Fo(and)12 b Fn(V)22 Xb Fm(2)13 b Fp(I)-8 b(R)947 701 y Fg(p)p Fe(\002)p Fg(p)1023 X719 y Fo(are)11 b(orthonormal,)g Fn(X)16 b Fm(2)d Fp(I)-8 Xb(R)1513 701 y Fg(n)p Fe(\002)p Fg(n)1597 719 y Fo(is)12 Xb(nonsingu-)59 775 y(lar,)g(and)h(\006)e(and)h Fn(M)17 Xb Fo(are)12 b Fn(p)t Fm(\002)t Fn(p)f Fo(diagonal)i(matrices:)18 Xb(\006)13 b(=)g(diag)q(\()p Fn(\033)1185 782 y Fj(1)1204 X775 y Fn(;)8 b(:)g(:)g(:)d(;)j(\033)1332 782 y Fg(p)1351 X775 y Fo(\),)k Fn(M)17 b Fo(=)c(diag)q(\()p Fn(\026)1632 X782 y Fj(1)1652 775 y Fn(;)8 b(:)g(:)g(:)d(;)j(\026)1781 X782 y Fg(p)1800 775 y Fo(\).)59 831 y(Moreo)o(v)o(er,)13 Xb(the)j(diagonal)g(en)o(tries)f(of)g(\006)g(and)g Fn(M)20 Xb Fo(are)15 b(non-negativ)o(e)h(and)f(ordered)h(suc)o(h)f(that)419 X936 y(0)d Fm(\024)h Fn(\033)528 943 y Fj(1)576 936 y XFm(\024)g Fn(:)8 b(:)g(:)i Fm(\024)j Fn(\033)763 943 Xy Fg(p)796 936 y Fm(\024)g Fo(1)i Fn(;)98 b Fo(1)12 b XFm(\025)h Fn(\026)1103 943 y Fj(1)1151 936 y Fm(\025)g XFn(:)8 b(:)g(:)j Fm(\025)i Fn(\026)1340 943 y Fg(p)1372 X936 y Fn(>)g Fo(0)i Fn(;)59 1041 y Fo(and)g(they)h(are)f(normalized)h X(suc)o(h)g(that)640 1146 y Fn(\033)668 1127 y Fj(2)666 X1157 y Fg(i)697 1146 y Fo(+)11 b Fn(\026)770 1127 y Fj(2)770 X1157 y Fg(i)802 1146 y Fo(=)i(1)i Fn(;)98 b(i)13 b Fo(=)g(1)p XFn(;)8 b(:)g(:)g(:)t(;)g(p)14 b(:)59 1250 y Fo(Then)i(the)f XFk(gener)n(alize)n(d)g(singular)g(values)g Fn(\015)819 X1257 y Fg(i)848 1250 y Fo(of)g(\()p Fn(A;)8 b(L)p Fo(\))13 Xb(are)i(de\014ned)i(as)e(the)g(ratios)655 1355 y Fn(\015)679 X1362 y Fg(i)705 1355 y Fo(=)e Fn(\033)779 1362 y Fg(i)793 X1355 y Fn(=\026)843 1362 y Fg(i)873 1355 y Fn(;)98 b(i)12 Xb Fo(=)h(1)p Fn(;)8 b(:)g(:)g(:)d(;)j(p)14 b(;)480 b XFo(\(2.12\))59 1460 y(and)17 b(they)h(ob)o(viously)g(app)q(ear)f(in)h X(non-decreasing)h(order.)26 b(F)l(or)16 b(historical)j(reasons,)e(this) Xg(ordering)59 1516 y(is)f(the)f(opp)q(osite)h(of)f(the)g(ordering)g(of) Xg(the)h(ordinary)f(singular)h(v)m(alues)g(of)f Fn(A)p XFo(.)130 1573 y(F)l(or)9 b Fn(p)k(<)g(n)d Fo(the)h(matrix)f XFn(L)i Fm(2)h Fp(I)-8 b(R)682 1555 y Fg(p)p Fe(\002)p XFg(n)761 1573 y Fo(alw)o(a)o(ys)9 b(has)i(a)f(non)o(trivial)h(n)o X(ull-space)h Fm(N)7 b Fo(\()p Fn(L)p Fo(\).)18 b(E.g.,)10 Xb(if)h Fn(L)f Fo(is)h(an)59 1630 y(appro)o(ximation)k(to)f(the)h X(second)g(deriv)m(ativ)o(e)h(op)q(erator)e(on)h(a)g(regular)f(mesh,)h XFn(L)e Fo(=)g(tridiag)q(\(1)p Fn(;)8 b Fm(\000)p Fo(2)p XFn(;)g Fo(1\),)59 1686 y(then)17 b Fm(N)7 b Fo(\()p Fn(L)p XFo(\))15 b(is)i(spanned)g(b)o(y)f(the)g(t)o(w)o(o)f(v)o(ectors)h(\(1)p XFn(;)8 b Fo(1)p Fn(;)g(:)f(:)h(:)t(;)g Fo(1\))1127 1670 Xy Fg(T)1169 1686 y Fo(and)16 b(\(1)p Fn(;)8 b Fo(2)p XFn(;)g(:)g(:)f(:)e(;)j(n)p Fo(\))1489 1670 y Fg(T)1515 X1686 y Fo(.)23 b(In)17 b(the)f(GSVD,)59 1743 y(the)f(last)g XFn(n)c Fm(\000)f Fn(p)15 b Fo(columns)h Fp(x)549 1750 Xy Fg(i)578 1743 y Fo(of)f(the)g(nonsingular)i(matrix)d XFn(X)19 b Fo(satisfy)645 1847 y Fn(L)8 b Fp(x)712 1854 Xy Fg(i)738 1847 y Fo(=)13 b Fp(0)j Fn(;)98 b(i)12 b Fo(=)h XFn(p)d Fo(+)g(1)p Fn(;)e(:)g(:)g(:)d(;)j(n)470 b Fo(\(2.13\))59 X1952 y(and)15 b(they)h(are)f(therefore)g(basis)g(v)o(ectors)g(for)f X(the)h(n)o(ull-space)j Fm(N)7 b Fo(\()p Fn(L)p Fo(\).)130 X2009 y(There)19 b(is)h(a)f(sligh)o(t)g(notational)g(problem)h(here)g(b) Xq(ecause)g(the)f(matrices)g Fn(U)5 b Fo(,)20 b(\006,)g(and)f XFn(V)29 b Fo(in)20 b(the)59 2066 y(GSVD)15 b(of)h(\()p XFn(A;)8 b(L)p Fo(\))14 b(are)h Fk(di\013er)n(ent)g Fo(from)g(the)h X(matrices)g(with)g(the)f(same)h(sym)o(b)q(ols)g(in)g(the)g(SVD)g(of)f XFn(A)p Fo(.)59 2122 y(Ho)o(w)o(ev)o(er,)d(in)h(this)g(presen)o(tation)g X(it)f(will)j(alw)o(a)o(ys)c(b)q(e)j(clear)f(from)e(the)i(con)o(text)f X(whic)o(h)h(decomp)q(osition)59 2179 y(is)k(used.)24 Xb(When)16 b Fn(L)h Fo(is)g(the)f(iden)o(tit)o(y)h(matrix)f XFn(I)876 2186 y Fg(n)899 2179 y Fo(,)h(then)f(the)h Fn(U)k XFo(and)c Fn(V)25 b Fo(of)16 b(the)h(GSVD)f(are)g(iden)o(tical)59 X2235 y(to)e(the)g Fn(U)20 b Fo(and)14 b Fn(V)24 b Fo(of)14 Xb(the)h(SVD,)f(and)g(the)h(generalized)h(singular)f(v)m(alues)h(of)e X(\()p Fn(A;)8 b(I)1479 2242 y Fg(n)1501 2235 y Fo(\))14 Xb(are)g(iden)o(tical)i(to)59 2292 y(the)f(singular)h(v)m(alues)h(of)e XFn(A)p Fo(|except)h(for)e(the)i(ordering)f(of)g(the)g(singular)h(v)m X(alues)h(and)e(v)o(ectors.)130 2349 y(In)g(general,)f(there)h(is)g(no)f X(connection)h(b)q(et)o(w)o(een)g(the)g(generalized)h(singular)f(v)m X(alues/v)o(ectors)f(and)59 2406 y(the)e(ordinary)g(singular)h(v)m X(alues/v)o(ectors.)19 b(F)l(or)11 b(discrete)i(ill-p)q(osed)i X(problems,)e(though,)f(w)o(e)g(can)g(actu-)59 2462 y(ally)17 Xb(sa)o(y)d(something)i(ab)q(out)g(the)f(SVD-GSVD)h(connection)g(b)q X(ecause)h Fn(L)e Fo(is)h(t)o(ypically)h(a)e(reasonably)59 X2518 y(w)o(ell-conditioned)23 b(matrix.)33 b(When)20 Xb(this)g(is)g(the)g(case,)h(then)f(it)g(can)f(b)q(e)i(sho)o(wn)e(that)g X(the)h(matrix)59 2575 y Fn(X)h Fo(in)d(\(2.11\))e(is)i(also)f(w)o X(ell-conditioned.)30 b(Hence,)18 b(the)g(diagonal)g(matrix)f(\006)h(m)o X(ust)f(displa)o(y)h(the)g(ill-)59 2631 y(conditioning)f(of)f XFn(A)p Fo(,)f(and)h(since)g Fn(\015)658 2638 y Fg(i)685 X2631 y Fo(=)e Fn(\033)760 2638 y Fg(i)781 2631 y Fo(\(1)c XFm(\000)h Fn(\033)906 2615 y Fj(2)904 2643 y Fg(i)925 X2631 y Fo(\))943 2615 y Fj(1)p Fg(=)p Fj(2)1011 2631 Xy Fm(\031)j Fn(\033)1086 2638 y Fg(i)1115 2631 y Fo(for)h(small)h XFn(\033)1330 2638 y Fg(i)1360 2631 y Fo(the)f(generalized)j(singular)59 X2688 y(v)m(alues)e(m)o(ust)e(deca)o(y)h(gradually)g(to)f(zero)h(as)f X(the)g(ordinary)h(singular)h(v)m(alues)g(do.)j(Moreo)o(v)o(er,)13 Xb(the)i(os-)59 2744 y(cillation)i(prop)q(erties)f(\(i.e.,)f(the)g X(increase)i(in)f(sign)f(c)o(hanges\))g(of)g(the)h(righ)o(t)f(singular)h X(v)o(ectors)e(carries)59 2801 y(o)o(v)o(er)j(to)f(the)i(columns)g(of)f XFn(X)j Fo(in)f(the)e(GSVD:)g(the)g(smaller)h(the)g Fn(\015)1228 X2808 y Fg(i)1259 2801 y Fo(the)f(more)g(sign)h(c)o(hanges)f(in)h XFp(x)1804 2808 y Fg(i)1818 2801 y Fo(.)59 2857 y(F)l(or)d(more)f(sp)q X(eci\014c)j(results,)f(cf.)f([41)o(].)p eop X%%Page: 13 15 X13 14 bop 59 159 a Fo(2.4.)14 b(The)h(Discrete)h(Picard)g(Condition)g X(and)f(Filter)h(F)l(actors)648 b(13)p 59 178 1767 2 v X130 304 a(As)17 b(an)h(immediate)h(example)f(of)f(the)h(use)g(of)f X(GSVD)h(in)g(the)g(analysis)g(of)f(discrete)i(regulariza-)59 X361 y(tion)d(problems,)g(w)o(e)g(men)o(tion)g(the)f(follo)o(wing)i(p)q X(erturbation)f(b)q(ound)h(for)e(Tikhono)o(v)h(regularization)59 X417 y(deriv)o(ed)j(in)f([40)o(].)27 b(Let)18 b Fn(E)h XFo(and)f Fp(e)g Fo(denote)g(the)f(p)q(erturbations)h(of)f XFn(A)h Fo(and)g Fp(b)p Fo(,)g(resp)q(ectiv)o(ely)l(,)h(and)f(let)61 X473 y(\026)59 474 y Fp(x)87 481 y Fg(\025)127 474 y Fo(denote)f(the)h X(exact)f(solution)h(to)f(the)g(unp)q(erturb)q(ed)j(problem;)e(then)g X(the)g(relativ)o(e)g(error)e(in)j(the)59 530 y(p)q(erturb)q(ed)d X(solution)g Fp(x)471 537 y Fg(\025)509 530 y Fo(satis\014es)190 X611 y Fm(k)p Fp(x)241 618 y Fg(\025)273 611 y Fm(\000)321 X610 y Fo(\026)318 611 y Fp(x)346 618 y Fg(\025)369 611 Xy Fm(k)392 618 y Fj(2)p 190 632 222 2 v 243 673 a Fm(k)268 X672 y Fo(\026)266 673 y Fp(x)294 680 y Fg(\025)316 673 Xy Fm(k)339 680 y Fj(2)458 642 y Fm(\024)580 611 y(k)p XFn(A)p Fm(k)660 618 y Fj(2)686 611 y Fm(k)p Fn(X)t Fm(k)774 X618 y Fj(2)800 611 y Fn(\025)827 595 y Fe(\000)p Fj(1)p X539 632 375 2 v 539 673 a Fo(1)10 b Fm(\000)h(k)p Fn(E)s XFm(k)701 680 y Fj(2)727 673 y Fm(k)p Fn(X)t Fm(k)815 X680 y Fj(2)841 673 y Fn(\025)868 660 y Fe(\000)p Fj(1)929 X642 y Fm(\002)580 707 y Fh(\022)610 766 y Fo(\(1)f(+)g(cond)q(\()p XFn(X)t Fo(\)\))907 735 y Fm(k)p Fn(E)s Fm(k)990 742 y XFj(2)p 907 756 102 2 v 908 797 a Fm(k)p Fn(A)p Fm(k)988 X804 y Fj(2)1023 766 y Fo(+)1087 735 y Fm(k)p Fp(e)p Fm(k)1157 X742 y Fj(2)p 1074 756 117 2 v 1074 797 a Fm(k)p Fp(b)1126 X804 y Fg(\025)1148 797 y Fm(k)1171 804 y Fj(2)1205 766 Xy Fo(+)h Fm(k)p Fn(E)s Fm(k)1334 773 y Fj(2)1360 766 Xy Fm(k)p Fn(X)t Fm(k)1448 773 y Fj(2)1474 766 y Fn(\025)1501 X747 y Fe(\000)p Fj(1)1556 735 y Fm(k)p Fp(r)1601 742 Xy Fg(\025)1623 735 y Fm(k)1646 742 y Fj(2)p 1552 756 XV 1552 797 a Fm(k)p Fp(b)1604 804 y Fg(\025)1627 797 Xy Fm(k)1650 804 y Fj(2)1674 707 y Fh(\023)1715 766 y XFo(\(2.14\))59 875 y(where)h(w)o(e)g(ha)o(v)o(e)f(de\014ned)i XFp(b)534 882 y Fg(\025)570 875 y Fo(=)g Fn(A)8 b Fp(x)688 X882 y Fg(\025)721 875 y Fo(and)k Fp(r)828 882 y Fg(\025)863 X875 y Fo(=)h Fp(b)s Fm(\000)s Fp(b)1010 882 y Fg(\025)1034 X875 y Fo(.)19 b(The)12 b(imp)q(ortan)o(t)f(conclusion)j(w)o(e)d(can)h X(mak)o(e)59 931 y(from)k(this)h(relation)g(is)g(that)e(for)h(all)h X(reasonable)g Fn(\025)f Fo(the)h(p)q(erturbation)g(b)q(ound)g(for)f X(the)g(regularized)59 988 y(solution)g Fp(x)259 995 y XFg(\025)297 988 y Fo(is)g(prop)q(ortional)g(to)f Fn(\025)688 X971 y Fe(\000)p Fj(1)750 988 y Fo(and)h(to)f(the)g(norm)g(of)g(the)h X(matrix)f Fn(X)t Fo(.)20 b(The)c(latter)f(quan)o(tit)o(y)59 X1044 y(is)i(analyzed)g(in)f([41)o(])g(where)g(it)g(is)h(sho)o(wn)f X(that)f Fm(k)p Fn(X)t Fm(k)986 1051 y Fj(2)1020 1044 Xy Fo(is)i(appro)o(ximately)f(b)q(ounded)h(b)o(y)f Fm(k)p XFn(L)1671 1028 y Fe(y)1689 1044 y Fm(k)1712 1051 y Fj(2)1731 X1044 y Fo(,)g(i.e.,)59 1100 y(b)o(y)i(the)g(in)o(v)o(erse)g(of)f(the)h X(smallest)h(singular)f(v)m(alue)h(of)f Fn(L)p Fo(.)27 Xb(Hence,)19 b(in)g(addition)g(to)e(con)o(trolling)i(the)59 X1157 y(smo)q(othness)12 b(of)f(the)h(regularized)h(solution,)g XFn(\025)f Fo(and)g Fn(L)f Fo(also)h(con)o(trol)g(its)g(sensitivit)o(y)h X(to)e(p)q(erturbations)59 1213 y(of)k Fn(A)g Fo(and)g XFp(b)p Fo(.)130 1270 y(The)j(SVD)g(and)g(the)g(GSVD)f(are)h(computed)g X(b)o(y)g(means)g(of)f(routines)i Fl(csvd)g Fo(and)f Fl(cgsvd)g XFo(in)h(this)59 1326 y(pac)o(k)m(age.)59 1450 y Fr(2.4.)f(The)g X(Discrete)f(Picard)i(Condition)g(and)g(Filter)e(F)-5 Xb(actors)59 1552 y Fo(As)13 b(w)o(e)g(ha)o(v)o(e)g(seen)h(in)g(Section) Xg(2.3,)e(the)h(in)o(tegration)g(in)h(Eq.)f(\(2.1\))f(with)h(a)g(square) Xg(in)o(tegrable)h(k)o(ernel)59 1608 y Fn(K)23 b Fo(\(2.1\))18 Xb(has)i(a)f(smo)q(othing)h(e\013ect)g(on)g Fn(f)5 b Fo(.)34 Xb(The)20 b(opp)q(osite)h(op)q(eration,)g(namely)l(,)g(that)e(of)h X(solving)59 1665 y(the)d(\014rst)f(kind)h(F)l(redholm)g(in)o(tegral)g X(equation)g(for)e Fn(f)5 b Fo(,)17 b(therefore)f(tends)h(to)e(amplify)j X(oscillations)g(in)59 1721 y(the)i(righ)o(t-hand)h(side)g XFn(g)r Fo(.)33 b(Hence,)22 b(if)f(w)o(e)e(require)i(that)e(the)i X(solution)f Fn(f)26 b Fo(b)q(e)20 b(a)g(square)g(in)o(tegrable)59 X1778 y(solution)15 b(with)f(\014nite)h Fn(L)478 1785 Xy Fj(2)497 1778 y Fo(-norm,)f(then)g(not)f(all)i(functions)g(are)e(v)m X(alid)i(as)f(righ)o(t-hand)g(side)h Fn(g)r Fo(.)k(Indeed,)59 X1834 y Fn(g)h Fo(m)o(ust)f(b)q(e)h(su\016cien)o(tly)g(smo)q(oth)f(to)f X(\\surviv)o(e")i(the)f(in)o(v)o(ersion)h(bac)o(k)f(to)f XFn(f)5 b Fo(.)32 b(The)20 b(mathematical)59 1891 y(form)o(ulation)d(of) Xg(this)g(smo)q(othness)g(criterion)h(on)f Fn(g)r Fo(|once)h(the)f(k)o X(ernel)h Fn(K)i Fo(is)d(giv)o(en|is)i(called)g(the)59 X1947 y(Picard)d(condition)g([31)o(,)f Fm(x)p Fo(1.2].)130 X2004 y(F)l(or)e(discrete)i(ill-p)q(osed)h(problems)f(there)f(is,)g X(strictly)g(sp)q(eaking,)h(no)f(Picard)g(condition)i(b)q(ecause)59 X2060 y(the)h(norm)f(of)g(the)h(solution)h(is)f(alw)o(a)o(ys)f(b)q X(ounded.)26 b(Nev)o(ertheless,)17 b(it)g(mak)o(es)f(sense)h(to)f(in)o X(tro)q(duce)i(a)59 2117 y(discrete)12 b(Picard)g(condition)h(as)d X(follo)o(ws.)19 b(In)12 b(a)f(real-w)o(orld)h(application,)h(the)e X(righ)o(t-hand)h(side)g Fp(b)f Fo(is)h(al-)59 2173 y(w)o(a)o(ys)g(con)o X(taminated)h(b)o(y)f(v)m(arious)i(t)o(yp)q(es)f(or)f(errors,)g(suc)o(h) Xh(as)g(measuremen)o(t)g(errors,)f(appro)o(ximation)59 X2229 y(errors,)i(and)h(rounding)i(errors.)i(Hence,)c XFp(b)h Fo(can)f(b)q(e)h(written)f(as)832 2316 y Fp(b)e XFo(=)925 2304 y(\026)922 2316 y Fp(b)d Fo(+)g Fp(e)15 Xb Fn(;)657 b Fo(\(2.15\))59 2403 y(where)18 b Fp(e)g XFo(are)g(the)g(errors,)g(and)636 2391 y(\026)632 2403 Xy Fp(b)h Fo(is)f(the)g(unp)q(erturb)q(ed)i(righ)o(t-hand)f(side.)29 Xb(Both)1538 2391 y(\026)1535 2403 y Fp(b)18 b Fo(and)h(the)f(cor-)59 X2459 y(resp)q(onding)i(unp)q(erturb)q(ed)g(solution)738 X2458 y(\026)736 2459 y Fp(x)e Fo(represen)o(t)h(the)g(underlying)h(unp) Xq(erturb)q(ed)h(and)d(unkno)o(wn)59 2516 y(problem.)i(No)o(w,)12 Xb(if)h(w)o(e)g(w)o(an)o(t)f(to)g(b)q(e)h(able)h(to)e(compute)h(a)f X(regularized)j(solution)e Fp(x)1484 2523 y Fj(reg)1546 X2516 y Fo(from)f(the)h(giv)o(en)59 2572 y(righ)o(t-hand)18 Xb(side)h Fp(b)f Fo(suc)o(h)h(that)e Fp(x)661 2579 y Fj(reg)728 X2572 y Fo(appro)o(ximates)h(the)g(exact)f(solution)1393 X2571 y(\026)1390 2572 y Fp(x)p Fo(,)h(then)g(it)h(is)f(sho)o(wn)g(in)59 X2629 y([44)o(])f(that)g(the)g(corresp)q(onding)i(exact)e(righ)o(t-hand) Xh(side)1068 2617 y(\026)1064 2629 y Fp(b)g Fo(m)o(ust)f(satisfy)g(a)g X(criterion)h(v)o(ery)f(similar)59 2685 y(to)e(the)g(Picard)h X(condition:)59 2801 y Fp(The)k(discrete)h(Picard)f(condition)p XFo(.)29 b(The)17 b(unp)q(erturb)q(ed)i(righ)o(t-hand)f(side)1470 X2789 y(\026)1467 2801 y Fp(b)f Fo(in)h(a)f(discrete)i(ill-)59 X2857 y(p)q(osed)e(problem)h(with)f(regularization)h(matrix)e XFn(L)h Fo(satis\014es)g(the)g(discrete)h(Picard)f(condition)h(if)g(the) Xp eop X%%Page: 14 16 X14 15 bop 64 159 a Fo(14)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(F)l(ourier)d(co)q(e\016cien)o(ts)g XFm(j)p Fp(u)485 288 y Fg(T)485 316 y(i)515 292 y Fo(\026)512 X304 y Fp(b)p Fm(j)f Fo(on)g(the)g(a)o(v)o(erage)f(deca)o(y)h(to)g(zero) Xg(faster)f(than)h(the)h(generalized)h(singular)59 361 Xy(v)m(alues)h Fn(\015)218 368 y Fg(i)232 361 y Fo(.)59 X476 y(The)11 b(discrete)g(Picard)h(condition)g(is)f(not)f(as)g X(\\arti\014cial")i(as)e(it)h(\014rst)f(ma)o(y)g(seem:)18 Xb(it)11 b(can)g(b)q(e)g(sho)o(wn)f(that)59 533 y(if)18 Xb(the)g(underlying)h(in)o(tegral)f(equation)g(\(2.1\))e(satis\014es)i X(the)g(Picard)g(condition,)h(then)f(the)g(discrete)59 X589 y(ill-p)q(osed)g(problem)f(obtained)f(b)o(y)f(discretization)i(of)f X(the)f(in)o(tegral)h(equation)g(satis\014es)g(the)g(discrete)59 X646 y(Picard)g(condition)g([39)o(].)k(See)c(also)f([73)o(,)g(74)o(].) X130 702 y(The)j(main)g(di\016cult)o(y)i(with)e(discrete)h(ill-p)q(osed) Xi(problems)d(is)h(caused)f(b)o(y)g(the)g(errors)g Fp(e)g XFo(in)h(the)59 759 y(giv)o(en)i(righ)o(t-hand)g(side)h XFp(b)e Fo(\(2.15\),)g(b)q(ecause)h(suc)o(h)g(errors)f(t)o(ypically)i X(tend)f(to)e(ha)o(v)o(e)i(comp)q(onen)o(ts)59 815 y(along)14 Xb(all)h(the)g(left)f(singular)h(v)o(ectors)f Fp(u)751 X822 y Fg(i)765 815 y Fo(.)19 b(F)l(or)14 b(example,)h(if)g XFm(k)p Fp(e)p Fm(k)1179 822 y Fj(2)1210 815 y Fo(=)e XFn(\017)i Fo(and)f(if)h(the)f(elemen)o(ts)h(of)f Fp(e)g XFo(are)59 872 y(un)o(biased)i(and)f(uncorrelated,)g(then)h(the)e(exp)q X(ected)j(v)m(alue)f(of)e(the)h(F)l(ourier)g(co)q(e\016cien)o(ts)h(of)e XFp(e)h Fo(satisfy)576 969 y Fm(E)604 922 y Fh(\020)629 X969 y Fm(j)p Fp(u)671 951 y Fg(T)671 981 y(i)698 969 Xy Fp(e)p Fm(j)735 922 y Fh(\021)772 969 y Fo(=)e Fn(m)860 X951 y Fe(\000)892 937 y Fd(1)p 892 943 16 2 v 892 964 Xa(2)914 969 y Fn(\017)j(;)98 b(i)12 b Fo(=)h(1)p Fn(;)8 Xb(:)g(:)g(:)d(;)j(n)14 b(:)401 b Fo(\(2.16\))59 1075 Xy(As)15 b(a)f(consequence,)i(the)f(F)l(ourier)g(co)q(e\016cien)o(ts)h XFm(j)p Fp(u)939 1058 y Fg(T)939 1087 y(i)966 1075 y Fp(b)p XFm(j)f Fo(of)f(the)h(p)q(erturb)q(ed)h(righ)o(t-hand)f(side)h(lev)o(el) Xg(o\013)59 1131 y(at)g(appro)o(ximately)h Fn(m)457 1115 Xy Fe(\000)p Fj(1)p Fg(=)p Fj(2)539 1131 y Fn(\017)g Fo(ev)o(en)g(if)h X(the)e(unp)q(erturb)q(ed)j(righ)o(t-hand)e(side)1388 X1119 y(\026)1384 1131 y Fp(b)g Fo(satis\014es)g(the)g(discrete)59 X1188 y(Picard)f(condition,)g(b)q(ecause)g(these)f(F)l(ourier)h(co)q X(e\016cien)o(ts)g(are)f(dominated)h(b)o(y)f Fm(j)p Fp(u)1494 X1171 y Fg(T)1494 1200 y(i)1521 1188 y Fp(e)p Fm(j)g Fo(for)f(large)h XFn(i)p Fo(.)130 1244 y(Consider)g(no)o(w)f(the)g(linear)i(system)e X(\(2.2\))f(and)h(the)h(least)f(squares)g(problem)i(\(2.3\),)c(and)j X(assume)59 1301 y(for)f(simplicit)o(y)j(that)d Fn(A)g XFo(has)h(no)f(exact)g(zero)h(singular)g(v)m(alues.)21 Xb(Using)15 b(the)g(SVD,)f(it)h(is)g(easy)f(to)g(sho)o(w)59 X1357 y(that)h(the)g(solutions)h(to)e(b)q(oth)i(systems)e(are)h(giv)o X(en)h(b)o(y)f(the)g(same)g(equation:)741 1478 y Fp(x)769 X1485 y Fj(LSQ)853 1478 y Fo(=)920 1425 y Fg(n)901 1437 Xy Fh(X)902 1528 y Fg(i)p Fj(=1)981 1447 y Fp(u)1010 1430 Xy Fg(T)1010 1459 y(i)1037 1447 y Fp(b)p 981 1467 86 2 Xv 1004 1509 a Fn(\033)1030 1516 y Fg(i)1079 1478 y Fp(v)1107 X1485 y Fg(i)1136 1478 y Fn(:)566 b Fo(\(2.17\))59 1607 Xy(This)22 b(relation)f(clearly)h(illustrates)g(the)f(di\016culties)i X(with)f(the)f(standard)f(solution)i(to)e(\(2.2\))f(and)59 X1663 y(\(2.3\).)g(Since)e(the)f(F)l(ourier)g(co)q(e\016cien)o(ts)g XFm(j)p Fp(u)814 1647 y Fg(T)814 1675 y(i)841 1663 y Fp(b)p XFm(j)f Fo(corresp)q(onding)i(to)e(the)g(smaller)i(singular)f(v)m(alues) Xh Fn(\033)1817 1670 y Fg(i)59 1720 y Fo(do)c(not)f(deca)o(y)g(as)g X(fast)g(as)g(the)h(singular)g(v)m(alues|but)i(rather)d(tend)h(to)e(lev) Xo(el)j(o\013|the)f(solution)g Fp(x)1760 1727 y Fj(LSQ)59 X1776 y Fo(is)h(dominated)g(b)o(y)f(the)g(terms)g(in)h(the)g(sum)f X(corresp)q(onding)h(to)f(the)g(smallest)h Fn(\033)1429 X1783 y Fg(i)1443 1776 y Fo(.)19 b(As)14 b(a)f(consequence,)59 X1833 y(the)i(solution)h Fp(x)337 1840 y Fj(LSQ)423 1833 Xy Fo(has)f(man)o(y)g(sign)h(c)o(hanges)f(and)g(th)o(us)g(app)q(ears)h X(completely)g(random.)130 1889 y(With)i(this)h(analysis)g(in)g(mind,)g X(w)o(e)f(can)h(see)f(that)g(the)g(purp)q(ose)h(of)e(a)h(regularization) Xh(metho)q(d)59 1945 y(is)h(to)f(damp)q(en)h(or)g(\014lter)g(out)f(the)g X(con)o(tributions)i(to)e(the)g(solution)i(corresp)q(onding)f(to)f(the)h X(small)59 2002 y(generalized)c(singular)g(v)m(alues.)k(Hence,)15 Xb(w)o(e)g(will)h(require)f(that)f(a)g(regularization)h(metho)q(d)g(pro) Xq(duces)59 2058 y(a)g(regularized)i(solution)e Fp(x)529 X2065 y Fj(reg)594 2058 y Fo(whic)o(h,)h(for)e Fp(x)834 X2042 y Fe(\003)866 2058 y Fo(=)f Fp(0)p Fo(,)i(can)g(b)q(e)h(written)f X(as)g(follo)o(ws)445 2183 y Fp(x)473 2190 y Fj(reg)535 X2183 y Fo(=)602 2130 y Fg(n)583 2143 y Fh(X)585 2234 Xy Fg(i)p Fj(=1)658 2183 y Fn(f)680 2190 y Fg(i)707 2152 Xy Fp(u)736 2136 y Fg(T)736 2165 y(i)764 2152 y Fp(b)p X707 2173 V 730 2214 a Fn(\033)756 2221 y Fg(i)805 2183 Xy Fp(v)833 2190 y Fg(i)1213 2183 y Fo(if)46 b Fn(L)12 Xb Fo(=)h Fn(I)1396 2190 y Fg(n)1715 2183 y Fo(\(2.18\))442 X2329 y Fp(x)470 2336 y Fj(reg)532 2329 y Fo(=)601 2273 Xy Fg(p)580 2288 y Fh(X)581 2380 y Fg(i)p Fj(=1)655 2329 Xy Fn(f)677 2336 y Fg(i)704 2298 y Fp(u)733 2282 y Fg(T)733 X2310 y(i)760 2298 y Fp(b)p 704 2318 V 727 2360 a Fn(\033)753 X2367 y Fg(i)802 2329 y Fp(x)830 2336 y Fg(i)854 2329 Xy Fo(+)940 2276 y Fg(n)920 2288 y Fh(X)899 2380 y Fg(i)p XFj(=)p Fg(p)p Fj(+1)1002 2329 y Fo(\()p Fp(u)1049 2310 Xy Fg(T)1049 2340 y(i)1076 2329 y Fp(b)p Fo(\))8 b Fp(x)1159 X2336 y Fg(i)1213 2329 y Fo(if)46 b Fn(L)12 b Fm(6)p Fo(=)h XFn(I)1396 2336 y Fg(n)1435 2329 y Fn(:)267 b Fo(\(2.19\))59 X2462 y(Here,)14 b(the)h(n)o(um)o(b)q(ers)f Fn(f)460 2469 Xy Fg(i)489 2462 y Fo(are)g Fk(\014lter)g(factors)h Fo(for)e(the)i X(particular)g(regularization)g(metho)q(d.)20 b(The)14 Xb(\014lter)59 2518 y(factors)f(m)o(ust)g(ha)o(v)o(e)g(the)g(imp)q X(ortan)o(t)h(prop)q(ert)o(y)f(that)g(as)g Fn(\033)1071 X2525 y Fg(i)1098 2518 y Fo(decreases,)h(the)g(corresp)q(onding)h XFn(f)1697 2525 y Fg(i)1724 2518 y Fo(tends)59 2575 y(to)g(zero)g(in)h X(suc)o(h)f(a)g(w)o(a)o(y)f(that)g(the)i(con)o(tributions)g(\()p XFp(u)997 2558 y Fg(T)997 2587 y(i)1024 2575 y Fp(b)p XFn(=\033)1102 2582 y Fg(i)1116 2575 y Fo(\))8 b Fp(x)1170 X2582 y Fg(i)1198 2575 y Fo(to)14 b(the)h(solution)h(from)f(the)g X(smaller)59 2631 y Fn(\033)85 2638 y Fg(i)115 2631 y XFo(are)h(e\013ectiv)o(ely)h(\014ltered)g(out.)23 b(The)16 Xb(di\013erence)i(b)q(et)o(w)o(een)e(the)h(v)m(arious)f(regularization)i X(metho)q(ds)59 2688 y(lies)f(essen)o(tially)h(in)e(the)g(w)o(a)o(y)f X(that)g(these)h(\014lter)g(factors)f Fn(f)1078 2695 y XFg(i)1108 2688 y Fo(are)h(de\014ned.)23 b(Hence,)16 b(the)g(\014lter)h X(factors)59 2744 y(pla)o(y)h(an)f(imp)q(ortan)o(t)g(role)h(in)h X(connection)f(with)g(regularization)g(theory)l(,)g(and)g(it)g(is)g(w)o X(orth)o(while)f(to)59 2801 y(c)o(haracterize)e(the)g(\014lter)g X(factors)f(for)g(the)h(v)m(arious)g(regularization)h(metho)q(ds)f(that) Xf(w)o(e)h(shall)h(presen)o(t)59 2857 y(b)q(elo)o(w.)p Xeop X%%Page: 15 17 X15 16 bop 59 159 a Fo(2.5.)14 b(The)h(L-Curv)o(e)1380 Xb(15)p 59 178 1767 2 v 130 304 a(F)l(or)17 b(Tikhono)o(v)i X(regularization,)g(whic)o(h)h(pla)o(ys)e(a)g(cen)o(tral)h(role)g(in)g X(regularization)g(theory)l(,)g(the)59 361 y(\014lter)d(factors)f(are)h X(either)g Fn(f)545 368 y Fg(i)573 361 y Fo(=)e Fn(\033)650 X344 y Fj(2)648 373 y Fg(i)670 361 y Fn(=)p Fo(\()p Fn(\033)739 X344 y Fj(2)737 373 y Fg(i)768 361 y Fo(+)d Fn(\025)841 X344 y Fj(2)860 361 y Fo(\))k(\(for)g Fn(L)f Fo(=)g Fn(I)1095 X368 y Fg(n)1118 361 y Fo(\))i(or)f Fn(f)1230 368 y Fg(i)1258 X361 y Fo(=)f Fn(\015)1334 344 y Fj(2)1331 373 y Fg(i)1353 X361 y Fn(=)p Fo(\()p Fn(\015)1421 344 y Fj(2)1418 373 Xy Fg(i)1450 361 y Fo(+)d Fn(\025)1523 344 y Fj(2)1542 X361 y Fo(\))k(\(for)g Fn(L)f Fm(6)p Fo(=)g Fn(I)1777 X368 y Fg(n)1800 361 y Fo(\),)59 417 y(and)i(the)g(\014ltering)h X(e\013ectiv)o(ely)g(sets)e(in)i(for)e Fn(\033)849 424 Xy Fg(i)877 417 y Fn(<)f(\025)h Fo(and)h Fn(\015)1081 X424 y Fg(i)1109 417 y Fn(<)e(\025)p Fo(,)h(resp)q(ectiv)o(ely)l(.)23 Xb(In)17 b(particular,)f(this)59 474 y(sho)o(ws)c(that)g(discrete)i X(ill-p)q(osed)h(problems)f(are)e(essen)o(tially)j(unregularized)f(b)o X(y)f(Tikhono)o(v's)f(metho)q(d)59 530 y(for)j Fn(\025)d(>)h(\033)242 X537 y Fj(1)277 530 y Fo(and)i Fn(\025)d(>)h(\015)476 X537 y Fg(p)495 530 y Fo(,)i(resp)q(ectiv)o(ely)l(.)130 X589 y(Filter)f(factors)e(for)h(v)m(arious)h(regularization)h(metho)q X(ds)e(can)h(b)q(e)g(computed)g(b)o(y)g(means)f(of)g(routine)59 X646 y Fl(\014l)p 97 646 14 2 v 17 w(fac)k Fo(in)h(this)f(pac)o(k)m X(age,)h(while)g(routine)g Fl(pica)o(rd)f Fo(plots)g(the)h(imp)q(ortan)o X(t)e(quan)o(tities)i Fn(\033)1572 653 y Fg(i)1586 646 Xy Fo(,)f Fm(j)p Fp(u)1658 629 y Fg(T)1658 658 y(i)1686 X646 y Fp(b)p Fm(j)p Fo(,)f(and)59 702 y Fm(j)p Fp(u)101 X686 y Fg(T)101 714 y(i)128 702 y Fp(b)p Fm(j)p Fn(=\033)219 X709 y Fg(i)248 702 y Fo(if)g Fn(L)c Fo(=)h Fn(I)401 709 Xy Fg(n)425 702 y Fo(,)h(or)h Fn(\015)532 709 y Fg(i)546 X702 y Fo(,)f Fm(j)p Fp(u)615 686 y Fg(T)615 714 y(i)643 X702 y Fp(b)p Fm(j)p Fo(,)g(and)h Fm(j)p Fp(u)842 686 Xy Fg(T)842 714 y(i)870 702 y Fp(b)p Fm(j)p Fn(=\015)959 X709 y Fg(i)987 702 y Fo(if)g Fn(L)e Fm(6)p Fo(=)g Fn(I)1140 X709 y Fg(n)1163 702 y Fo(.)59 843 y Fr(2.5.)18 b(The)g(L-Curv)n(e)59 X949 y Fo(P)o(erhaps)k(the)g(most)f(con)o(v)o(enien)o(t)h(graphical)h X(to)q(ol)f(for)f(analysis)i(of)f(discrete)g(ill-p)q(osed)j(problems)59 X1005 y(is)20 b(the)f(so-called)i Fk(L-curve)e Fo(whic)o(h)h(is)g(a)f X(plot|for)g(all)h(v)m(alid)h(regularization)f(parameters|of)f(the)59 X1062 y(\(semi\)norm)e Fm(k)p Fn(L)8 b Fp(x)394 1069 y XFj(reg)442 1062 y Fm(k)465 1069 y Fj(2)501 1062 y Fo(of)17 Xb(the)g(regularized)h(solution)g(v)o(ersus)f(the)g(corresp)q(onding)h X(residual)g(norm)59 1118 y Fm(k)p Fn(A)8 b Fp(x)152 1125 Xy Fj(reg)205 1118 y Fm(\000)d Fp(b)p Fm(k)297 1125 y XFj(2)317 1118 y Fo(.)19 b(In)13 b(this)g(w)o(a)o(y)l(,)f(the)g(L-curv)o X(e)i(clearly)f(displa)o(ys)h(the)e(compromise)h(b)q(et)o(w)o(een)g X(minimiza-)59 1175 y(tion)j(of)g(these)g(t)o(w)o(o)e(quan)o(tities,)i X(whic)o(h)h(is)g(the)f(heart)f(of)g(an)o(y)h(regularization)h(metho)q X(d.)22 b(The)16 b(use)g(of)59 1231 y(suc)o(h)i(plots)h(in)g(connection) Xg(with)f(ill-conditi)q(oned)j(least)d(squares)g(problems)h(go)q(es)f X(bac)o(k)g(to)f(Miller)59 1288 y([55)o(])e(and)g(La)o(wson)g(&)h X(Hanson)f([52)o(].)260 1354 y X 21145466 19579138 5394104 12432752 34272296 39008583 startTexFig X 260 1354 a X%%BeginDocument: regu/lcurve.eps X/FreeHandDict 200 dict def XFreeHandDict begin X/currentpacking where{pop true setpacking}if X/bdf{bind def}bind def X/bdef{bind def}bdf X/xdf{exch def}bdf X/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def}ifelse}bdf X/min{2 copy gt{exch}if pop}bdf X/max{2 copy lt{exch}if pop}bdf X/graystep .01 def X/bottom -0 def X/delta -0 def X/frac -0 def X/left -0 def X/numsteps -0 def X/numsteps1 -0 def X/radius -0 def X/right -0 def X/top -0 def X/x -0 def X/y -0 def X/df currentflat def X/tempstr 1 string def X/clipflatness 3 def X/inverted? X0 currenttransfer exec .5 ge def X/concatprocs{ X/proc2 exch cvlit def/proc1 exch cvlit def X/newproc proc1 length proc2 length add array def Xnewproc 0 proc1 putinterval newproc proc1 length proc2 putinterval Xnewproc cvx}bdf X/storerect{/top xdf/right xdf/bottom xdf/left xdf}bdf X/rectpath{newpath left bottom moveto left top lineto Xright top lineto right bottom lineto closepath}bdf X/sf{dup 0 eq{pop df dup 3 mul}{dup} ifelse /clipflatness xdf setflat}bdf Xversion cvr 38.0 le X{/setrgbcolor{ Xcurrenttransfer exec 3 1 roll Xcurrenttransfer exec 3 1 roll Xcurrenttransfer exec 3 1 roll Xsetrgbcolor}bdf}if X/gettint{0 get}bdf X/puttint{0 exch put}bdf X/vms{/vmsv save def}bdf X/vmr{vmsv restore}bdf X/vmrs{vmr vms}bdf X/CD{/NF exch def X{exch dup/FID ne{exch NF 3 1 roll put} X{pop pop}ifelse}forall NF}bdf X/MN{1 index length/Len exch def Xdup length Len add string dup XLen 4 -1 roll putinterval dup 0 4 -1 roll putinterval}bdf X/RC{256 string cvs(|______)anchorsearch X{1 index MN cvn/NewN exch def cvn Xfindfont dup maxlength dict CD dup/FontName NewN put dup X/Encoding MacVec put NewN exch definefont pop}{pop}ifelse}bdf X/RF{dup FontDirectory exch known{pop}{RC}ifelse}bdf X/FF{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known X{exch}if pop findfont}bdf Xuserdict begin /BDFontDict 20 dict def end XBDFontDict begin X/bu{}def X/bn{}def X/setTxMode{pop}def X/gm{moveto}def X/show{pop}def X/gr{pop}def X/fnt{pop pop pop}def X/fs{pop}def X/fz{pop}def X/lin{pop pop}def Xend X/MacVec 256 array def XMacVec 0 /Helvetica findfont X/Encoding get 0 128 getinterval putinterval XMacVec 127 /DEL put MacVec 16#27 /quotesingle put MacVec 16#60 /grave put X/NUL/SOH/STX/ETX/EOT/ENQ/ACK/BEL/BS/HT/LF/VT/FF/CR/SO/SI X/DLE/DC1/DC2/DC3/DC4/NAK/SYN/ETB/CAN/EM/SUB/ESC/FS/GS/RS/US XMacVec 0 32 getinterval astore pop X/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis/Udieresis/aacute X/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute/egrave X/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute X/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex/udieresis X/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls X/register/copyright/trademark/acute/dieresis/notequal/AE/Oslash X/infinity/plusminus/lessequal/greaterequal/yen/mu/partialdiff/summation X/product/pi/integral/ordfeminine/ordmasculine/Omega/ae/oslash X/questiondown/exclamdown/logicalnot/radical/florin/approxequal/Delta/guillemotleft X/guillemotright/ellipsis/nbspace/Agrave/Atilde/Otilde/OE/oe X/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide/lozenge X/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright/fi/fl X/daggerdbl/periodcentered/quotesinglbase/quotedblbase X/perthousand/Acircumflex/Ecircumflex/Aacute X/Edieresis/Egrave/Iacute/Icircumflex/Idieresis/Igrave/Oacute/Ocircumflex X/apple/Ograve/Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde X/macron/breve/dotaccent/ring/cedilla/hungarumlaut/ogonek/caron XMacVec 128 128 getinterval astore pop X/fps{currentflat exch dup 0 le{pop 1}if X{dup setflat 3 index stopped X{1.3 mul dup 3 index gt{pop setflat pop pop stop}if}{exit}ifelse X}loop pop setflat pop pop X}bdf X/fp{100 currentflat fps}bdf X/rfp{clipflatness currentflat fps}bdf X/fcp{100 clipflatness fps}bdf X/fclip{{clip}fcp}bdf X/feoclip{{eoclip}fcp}bdf Xend %. FreeHandDict XFreeHandDict begin X/ccmyk{dup 5 -1 roll sub 0 max exch}ndf X/setcmykcolor{1 exch sub ccmyk ccmyk ccmyk pop setrgbcolor}ndf X/setcmykcoloroverprint{4{dup -1 eq{pop 0}if 4 1 roll}repeat setcmykcolor}ndf X/findcmykcustomcolor{5 /packedarray where{pop packedarray}{array astore readonly}ifelse}ndf X/setcustomcolor{exch aload pop pop 4{4 index mul 4 1 roll}repeat setcmykcolor pop}ndf X/setseparationgray{1 exch sub dup dup dup setcmykcolor}ndf X/setoverprint{pop}ndf X/currentoverprint false ndf X/colorimage{pop pop X[5 -1 roll/exec cvx 6 -1 roll/exec cvx 7 -1 roll/exec cvx 8 -1 roll/exec cvx X/exch cvx/pop cvx/exch cvx/pop cvx/exch cvx/pop cvx/invbuf cvx]cvx image} X%. version 47.1 of Postscript defines colorimage incorrectly (rgb model only) Xversion cvr 47.1 le{userdict begin bdf end}{ndf}ifelse X/customcolorimage{pop image}ndf X/separationimage{image}ndf X/newcmykcustomcolor{6 /packedarray where{pop packedarray}{array astore readonly}ifelse}ndf X/inkoverprint false ndf X/setinkoverprint{pop}ndf X/overprintprocess{pop}ndf X/setspotcolor X{spots exch get 0 5 getinterval exch setcustomcolor}ndf X/currentcolortransfer{currenttransfer dup dup dup}ndf X/setcolortransfer{systemdict begin settransfer end pop pop pop}ndf X/setimagecmyk{dup length 4 eq X{aload pop} X{aload pop spots exch get 0 4 getinterval aload pop 4 X{4 index mul 4 1 roll}repeat 5 -1 roll pop} ifelse Xsystemdict /colorimage known{version cvr 47.1 gt}{false}ifelse Xnot{pop 1 currentgray sub}if X/ik xdf /iy xdf /im xdf /ic xdf X}ndf X/setcolor{dup length 4 eq X{aload overprintprocess setcmykcolor} X{aload 1 get spots exch get 5 get setinkoverprint setspotcolor} Xifelse}ndf X/bc2[0 0]def X/bc4[0 0 0 0]def X/c1[0 0 0 0]def X/c2[0 0 0 0]def X/absmax{2 copy abs exch abs gt{exch}if pop}bdf X/calcstep X{c1 length 4 eq X{ X0 1 3 X{c1 1 index get Xc2 3 -1 roll get Xsub X}for Xabsmax absmax absmax X} X{ Xbc2 c1 1 get 1 exch put Xc1 gettint c2 gettint Xsub abs X}ifelse Xgraystep div abs round dup 0 eq{pop 1}if Xdup /numsteps xdf 1 sub dup 0 eq{pop 1}if /numsteps1 xdf X}bdf X/cblend{ Xc1 length 4 eq X{ X0 1 3 X{bc4 exch Xc1 1 index get Xc2 2 index get X1 index sub Xfrac mul add put X}for bc4 X}{ Xbc2 Xc1 gettint Xc2 gettint X1 index sub Xfrac mul add Xputtint bc2 X}ifelse Xsetcolor X}bdf X/logtaper{/frac frac 9 mul 1 add log def}bdf X/imbits 1 def X/iminv false def X/invbuf{0 1 2 index length 1 sub{dup 2 index exch get 255 exch sub 2 index 3 1 roll put}for}bdf X/cyanrp{currentfile cyanbuf readhexstring pop iminv{invbuf}if}def X/magentarp{cyanbuf magentabuf copy}bdf X/yellowrp{cyanbuf yellowbuf copy}bdf X/blackrp{cyanbuf blackbuf copy}bdf X/fixtransfer{ Xdup{ic mul ic sub 1 add}concatprocs exch Xdup{im mul im sub 1 add}concatprocs exch Xdup{iy mul iy sub 1 add}concatprocs exch X{ik mul ik sub 1 add}concatprocs Xcurrentcolortransfer X5 -1 roll exch concatprocs 7 1 roll X4 -1 roll exch concatprocs 6 1 roll X3 -1 roll exch concatprocs 5 1 roll Xconcatprocs 4 1 roll Xsetcolortransfer X}bdf X/textopf false def X/curtextmtx{}def X/otw .25 def X/msf{dup/curtextmtx xdf makefont setfont}bdf X/makesetfont/msf load def X/curtextheight{.707104 .707104 curtextmtx dtransform Xdup mul exch dup mul add sqrt}bdf X/ta{1 index X{tempstr 0 2 index put tempstr 2 index Xgsave exec grestore Xtempstr stringwidth rmoveto X5 index eq{6 index 6 index rmoveto}if X3 index 3 index rmoveto X}forall 7{pop}repeat}bdf X/sts{setcolor textopf setoverprint/ts{awidthshow}def exec}bdf X/stol{setlinewidth setcolor textopf setoverprint newpath X/ts{{false charpath stroke}ta}def exec}bdf X/currentpacking where{pop false setpacking}if X/spots[1 0 0 0 (Process Cyan) false newcmykcustomcolor X0 1 0 0 (Process Magenta) false newcmykcustomcolor X0 0 1 0 (Process Yellow) false newcmykcustomcolor X0 0 0 1 (Process Black) false newcmykcustomcolor X]def Xvms X0 sf Xnewpath X130.4 581.1 moveto X130.4 243.8 lineto X510.2 243.8 lineto Xgsave X2.8 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore X/f1 /|______Helvetica-Narrow dup RF findfont def X{ Xf1 [24 0 0 24 0 0] makesetfont X245 506.445526 moveto X0 0 32 0 0 (less filtering) ts X} X[0 0 0 1] Xsts Xvmrs X/f1 /|______Helvetica-Narrow dup RF findfont def X{ Xf1 [24 0 0 24 0 0] makesetfont X391.5 349.445526 moveto X0 0 32 0 0 (more filtering) ts X} X[0 0 0 1] Xsts Xvmrs X0 sf Xnewpath X393.1 373.7 moveto X506 373.7 lineto X513.7 373.7 520 367.4 520 359.7 curveto X520 355.1 lineto X520 347.4 513.7 341.1 506 341.1 curveto X393.1 341.1 lineto X385.4 341.1 379.1 347.4 379.1 355.1 curveto X379.1 359.7 lineto X379.1 367.4 385.4 373.7 393.1 373.7 curveto Xclosepath Xgsave X0.3 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore X0 sf Xnewpath X246 531.2 moveto X351.3 531.2 lineto X359 531.2 365.3 524.9 365.3 517.2 curveto X365.3 512.9 lineto X365.3 505.2 359 498.9 351.3 498.9 curveto X246 498.9 lineto X238.3 498.9 232 505.2 232 512.9 curveto X232 517.2 lineto X232 524.9 238.3 531.2 246 531.2 curveto Xclosepath Xgsave X0.3 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore X0 sf Xnewpath X197 514.5 moveto X199 513.3 201 512 202.9 510.5 curveto X214.2 502 220.4 494.6 227.7 478.5 curveto X228.3 477.3 228.8 476.1 229.3 474.9 curveto Xgsave X0.9 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore X0 sf Xnewpath X367.3 330.7 moveto X378.5 329.2 389.6 327.1 400.9 324 curveto X409.6 321.7 415.7 318.9 420.3 315.9 curveto Xgsave X0.9 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore X0 sf Xnewpath X145.1 519.2 moveto X159.9 516.3 176.7 512.1 191.5 501 curveto X202.8 492.5 209 485.1 216.3 469 curveto X222 456.5 223.2 442.2 223.8 432.8 curveto X227.5 379 226.8 378.9 229.8 346 curveto X231 333 242 325 252.5 324.3 curveto X263.5 323.6 291.7 323.4 316.5 322.5 curveto X346.5 321.3 372 319.3 399 312 curveto X418.2 306.9 425 299.3 430 292.3 curveto X435.4 284.6 438.9 271.1 441.2 257.2 curveto Xgsave X1.7 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore X/f2 /|______Times-Roman dup RF findfont def X{ Xf2 [24 0 0 24 0 0] makesetfont X252 207.277344 moveto X0 0 32 0 0 (log || ) ts X302.947266 207.277344 moveto X0 0 32 0 0 (A) ts X318.955078 207.277344 moveto X0 0 32 0 0 ( ) ts X} X[0 0 0 1] Xsts Xvmrs X/f3 /|______Times-Bold dup RF findfont def X{ Xf3 [24 0 0 24 0 0] makesetfont X324.955078 207.277344 moveto X0 0 32 0 0 (x) ts X} X[0 0 0 1] Xsts Xvmrs X/f2 /|______Times-Roman dup RF findfont def X{ Xf2 [24 0 0 24 0 0] makesetfont X336.955078 207.277344 moveto X0 0 32 0 0 ( \320 ) ts X} X[0 0 0 1] Xsts Xvmrs X/f3 /|______Times-Bold dup RF findfont def X{ Xf3 [24 0 0 24 0 0] makesetfont X360.955078 207.277344 moveto X0 0 32 0 0 (b) ts X} X[0 0 0 1] Xsts Xvmrs X/f2 /|______Times-Roman dup RF findfont def X{ Xf2 [24 0 0 24 0 0] makesetfont X374.296875 207.277344 moveto X0 0 32 0 0 ( ||) ts X} X[0 0 0 1] Xsts Xvmrs X/f2 /|______Times-Roman dup RF findfont def X{ Xf2 [0 24 -24 0 0 0] makesetfont X112.922653 356.700012 moveto X0 0 32 0 0 (log || L) ts X112.922653 422.741028 moveto X0 0 32 0 0 ( ) ts X} X[0 0 0 1] Xsts Xvmrs X/f3 /|______Times-Bold dup RF findfont def X{ Xf3 [0 24 -24 0 0 0] makesetfont X112.922653 428.741028 moveto X0 0 32 0 0 (x) ts X} X[0 0 0 1] Xsts Xvmrs X/f2 /|______Times-Roman dup RF findfont def X{ Xf2 [0 24 -24 0 0 0] makesetfont X112.922653 440.741028 moveto X0 0 32 0 0 ( ||) ts X} X[0 0 0 1] Xsts Xvmrs X/f2 /|______Times-Roman dup RF findfont def X{ Xf2 [0 14 -14 0 0 0] makesetfont X117.029877 458.700012 moveto X0 0 32 0 0 (2) ts X} X[0 0 0 1] Xsts Xvmrs X/f2 /|______Times-Roman dup RF findfont def X{ Xf2 [14 0 0 14 0 0] makesetfont X390.799988 202.270111 moveto X0 0 32 0 0 (2) ts X} X[0 0 0 1] Xsts Xvmrs X0 sf Xnewpath X225.7 400.9 moveto X226.3 390.8 226.9 381.3 227.4 374.7 curveto X230.5 336.8 231.2 322.3 233.3 257 curveto Xgsave X[2 8] 0 setdash X1.7 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp X[] 0 setdash Xgrestore X0 sf Xnewpath X145.3 325.3 moveto X204.8 325.2 258.4 324.3 296.5 323.4 curveto Xgsave X[8 4] 0 setdash X1.1 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp X[] 0 setdash Xgrestore X0 sf Xnewpath X122.5 577.6 moveto X138.3 577.6 lineto X130.7 588.8 lineto X122.5 577.6 lineto Xclosepath Xgsave X[0 0 0 1]setcolor {fill}fp Xgrestore Xgsave X1.7 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore X0 sf Xnewpath X506.4 251.7 moveto X506.4 235.9 lineto X517.6 243.5 lineto X506.4 251.7 lineto Xclosepath Xgsave X[0 0 0 1]setcolor {fill}fp Xgrestore Xgsave X1.7 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore X0 sf Xnewpath X195.7 510.5 moveto X200.2 516.4 lineto X193.9 516.6 lineto X195.7 510.5 lineto Xclosepath Xgsave X[0 0 0 1]setcolor {fill}fp Xgrestore Xgsave X0.8 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore X0 sf Xnewpath X421 319.4 moveto X416.8 313.2 lineto X423.1 313.4 lineto X421 319.4 lineto Xclosepath Xgsave X[0 0 0 1]setcolor {fill}fp Xgrestore Xgsave X0.8 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor {stroke}fp Xgrestore Xvmr Xend % FreeHandDict X%%EndDocument X X endTexFig X 504 2692 a Fo(Figure)g(2.1:)k(The)d(generic)g(form)e(of)h(the)g X(L-curv)o(e.)130 2801 y(F)l(or)h(discrete)i(ill-p)q(osed)i(problems)e X(it)f(turns)g(out)g(that)f(the)h(L-curv)o(e,)h(when)g(plotted)g(in)g XFk(lo)n(g-lo)n(g)59 2857 y(sc)n(ale)p Fo(,)h(almost)g(alw)o(a)o(ys)g X(has)g(a)g(c)o(haracteristic)h(L-shap)q(ed)h(app)q(earance)f(\(hence)g X(its)g(name\))f(with)h(a)p eop X%%Page: 16 18 X16 17 bop 64 159 a Fo(16)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(distinct)h(corner)e(separating)h(the)f(v)o X(ertical)h(and)g(the)g(horizon)o(tal)f(parts)g(of)g(the)h(curv)o(e.)24 Xb(T)l(o)16 b(see)h(wh)o(y)59 361 y(this)k(is)h(so,)g(w)o(e)e(notice)i X(that)e(if)647 360 y(\026)645 361 y Fp(x)g Fo(denotes)h(the)g(exact,)h X(unregularized)h(solution)f(corresp)q(onding)59 417 y(to)c(the)h(exact) Xg(righ)o(t-hand)g(side)649 405 y(\026)646 417 y Fp(b)g XFo(in)h(Eq.)e(\(2.15\),)g(then)h(the)g(error)f Fp(x)1318 X424 y Fj(reg)1380 417 y Fm(\000)1431 416 y Fo(\026)1428 X417 y Fp(x)h Fo(in)g(the)g(regularized)59 474 y(solution)d(consists)f X(of)f(t)o(w)o(o)g(comp)q(onen)o(ts,)h(namely)l(,)g(a)g(p)q(erturbation) Xg(error)f(from)h(the)g(error)f Fp(e)h Fo(in)h(the)59 X530 y(giv)o(en)g(righ)o(t-hand)g(side)h Fp(b)p Fo(,)e(and)h(a)f X(regularization)i(error)e(due)h(to)f(the)h(regularization)g(of)g(the)f X(error-)59 587 y(free)k(comp)q(onen)o(t)390 575 y(\026)387 X587 y Fp(b)g Fo(in)h(the)f(righ)o(t-hand)h(side.)33 b(The)20 Xb(v)o(ertical)g(part)e(of)h(the)g(L-curv)o(e)h(corresp)q(onds)59 X643 y(to)d(solutions)h(where)f Fm(k)p Fn(L)8 b Fp(x)532 X650 y Fj(reg)581 643 y Fm(k)604 650 y Fj(2)640 643 y XFo(is)18 b(v)o(ery)f(sensitiv)o(e)i(to)d(c)o(hanges)i(in)g(the)f X(regularization)h(parameter)59 700 y(b)q(ecause)f(the)e(p)q X(erturbation)i(error)e Fp(e)g Fo(from)g(dominates)h Fp(x)1079 X707 y Fj(reg)1144 700 y Fo(and)g(b)q(ecause)g Fp(e)g XFo(do)q(es)g(not)f(satisfy)h(the)59 756 y(discrete)21 Xb(Picard)f(condition.)36 b(The)20 b(horizon)o(tal)h(part)e(of)h(the)g X(L-curv)o(e)g(corresp)q(onds)h(to)e(solutions)59 812 Xy(where)g(it)g(is)h(the)f(residual)h(norm)f Fm(k)p Fn(A)8 Xb Fp(x)764 819 y Fj(reg)825 812 y Fm(\000)13 b Fp(b)p XFm(k)925 819 y Fj(2)963 812 y Fo(that)19 b(is)g(most)f(sensitiv)o(e)i X(to)f(the)g(regularization)59 869 y(parameter)f(b)q(ecause)i XFp(x)480 876 y Fj(reg)548 869 y Fo(is)g(dominated)f(b)o(y)g(the)g X(regularization)h(error|as)f(long)g(as)1634 857 y(\026)1630 X869 y Fp(b)g Fo(satis\014es)59 925 y(the)c(discrete)h(Picard)g X(condition.)130 982 y(W)l(e)f(can)f(substan)o(tiate)h(this)g(b)o(y)g X(means)g(of)f(the)h(relations)g(for)f(the)h(regularized)h(solution)g XFp(x)1729 989 y Fj(reg)1793 982 y Fo(in)59 1038 y(terms)g(of)f(the)i X(\014lter)f(factors.)22 b(F)l(or)15 b(general-form)h(regularization)h X(\()p Fn(L)d Fm(6)p Fo(=)h Fn(I)1366 1045 y Fg(n)1389 X1038 y Fo(\))h(Eq.)g(\(2.19\))e(yields)k(the)59 1095 Xy(follo)o(wing)e(expression)g(for)f(the)g(error)f(in)i XFp(x)810 1102 y Fj(reg)860 1095 y Fo(:)226 1244 y Fp(x)254 X1251 y Fj(reg)314 1244 y Fm(\000)362 1243 y Fo(\026)359 X1244 y Fp(x)c Fo(=)447 1160 y Fh(0)447 1234 y(@)505 1189 Xy Fg(p)484 1204 y Fh(X)485 1295 y Fg(i)p Fj(=1)551 1244 Xy Fn(f)573 1251 y Fg(i)600 1213 y Fp(u)629 1197 y Fg(T)629 X1226 y(i)657 1213 y Fp(e)p 600 1234 81 2 v 620 1275 a XFn(\033)646 1282 y Fg(i)693 1244 y Fp(x)721 1251 y Fg(i)745 X1244 y Fo(+)831 1191 y Fg(n)812 1204 y Fh(X)790 1295 Xy Fg(i)p Fj(=)p Fg(p)p Fj(+1)893 1244 y Fo(\()p Fp(u)940 X1225 y Fg(T)940 1255 y(i)967 1244 y Fp(e)p Fo(\))c Fp(x)1045 X1251 y Fg(i)1058 1160 y Fh(1)1058 1234 y(A)1104 1244 Xy Fo(+)1171 1189 y Fg(p)1150 1204 y Fh(X)1151 1295 y XFg(i)p Fj(=1)1217 1244 y Fo(\()p Fn(f)1257 1251 y Fg(i)1281 X1244 y Fm(\000)j Fo(1\))1380 1213 y Fp(u)1409 1197 y XFg(T)1409 1226 y(i)1439 1201 y Fo(\026)1436 1213 y Fp(b)p X1380 1234 86 2 v 1402 1275 a Fn(\033)1428 1282 y Fg(i)1478 X1244 y Fp(x)1506 1251 y Fg(i)1535 1244 y Fn(:)167 b Fo(\(2.20\))59 X1389 y(Here,)15 b(the)f(term)g(in)i(the)f(paren)o(thesis)g(is)g(the)f XFk(p)n(erturb)n(ation)i(err)n(or)f Fo(due)h(to)d(the)i(p)q(erturbation) Xg Fp(e)p Fo(,)f(and)59 1446 y(the)19 b(second)g(term)f(is)h(the)f XFk(r)n(e)n(gularization)h(err)n(or)g Fo(caused)g(b)o(y)f X(regularization)h(of)f(the)h(unp)q(erturb)q(ed)59 1502 Xy(comp)q(onen)o(t)296 1490 y(\026)293 1502 y Fp(b)e Fo(of)f(the)h(righ) Xo(t-hand)g(side.)25 b(When)17 b(only)h(little)g(regularization)f(is)h X(in)o(tro)q(duced,)f(most)59 1558 y(of)f(the)h(\014lter)g(factors)f XFn(f)474 1565 y Fg(i)505 1558 y Fo(are)g(appro)o(ximately)h(one)g(and)g X(the)g(error)f Fp(x)1279 1565 y Fj(reg)1339 1558 y Fm(\000)1388 X1557 y Fo(\026)1385 1558 y Fp(x)h Fo(is)g(dominated)g(b)o(y)g(the)59 X1615 y(p)q(erturbation)i(error.)28 b(On)19 b(the)f(other)g(hand,)h X(with)f(plen)o(t)o(y)h(of)f(regularization)h(most)e(\014lter)i(factors) X59 1671 y(are)c(small,)h Fn(f)289 1678 y Fg(i)315 1671 Xy Fm(\034)e Fo(1,)g(and)h Fp(x)540 1678 y Fj(reg)600 X1671 y Fm(\000)648 1670 y Fo(\026)645 1671 y Fp(x)g Fo(is)h(dominated)f X(b)o(y)h(the)f(regularization)h(error.)130 1728 y(In)c([45)o(,)g(48])f X(Eq.)h(\(2.20\))e(w)o(as)i(used)g(to)g(analyze)h(the)f(relationship)i X(b)q(et)o(w)o(een)e(the)h(error)e(in)i Fp(x)1696 1735 Xy Fj(reg)1757 1728 y Fo(and)59 1784 y(the)i(b)q(eha)o(vior)g(of)f(the)g X(L-curv)o(e.)21 b(The)15 b(result)g(is)g(that)e(if)1039 X1772 y(\026)1035 1784 y Fp(b)i Fo(satis\014es)g(the)f(discrete)i X(Picard)f(condition,)59 1841 y(then)20 b(the)f(horizon)o(tal)h(part)e X(of)h(the)g(curv)o(e)h(corresp)q(onds)f(to)g(solutions)h(where)f(the)h X(regularization)59 1897 y(error)d(dominates|i.e.,)h(where)g(so)f(m)o X(uc)o(h)h(\014ltering)g(is)g(in)o(tro)q(duced)h(that)e(the)g(solution)i X(sta)o(ys)d(v)o(ery)59 1954 y(smo)q(oth)c(and)i Fm(k)p XFn(L)8 b Fp(x)394 1961 y Fj(reg)442 1954 y Fm(k)465 1961 Xy Fj(2)497 1954 y Fo(therefore)13 b(only)h(c)o(hanges)e(a)h(little)h X(with)g(the)f(regularization)h(parameter.)k(In)59 2010 Xy(con)o(trast,)c(the)i(v)o(ertical)g(part)g(of)f(the)h(L-curv)o(e)g X(corresp)q(onds)g(to)f(solutions)i(that)e(are)g(dominated)i(b)o(y)59 X2067 y(the)g(p)q(erturbation)h(error,)e(and)i(due)g(to)e(the)h X(division)i(b)o(y)e(the)h(small)g Fn(\033)1313 2074 y XFg(i)1344 2067 y Fo(it)f(is)h(clear)f(that)g Fm(k)p Fn(L)8 Xb Fp(x)1740 2074 y Fj(reg)1788 2067 y Fm(k)1811 2074 Xy Fj(2)59 2123 y Fo(v)m(aries)17 b(dramatically)g(with)g(the)f X(regularization)i(parameter)d(while,)j(sim)o(ultaneously)l(,)g(the)e X(residual)59 2180 y(norm)e(do)q(es)h(not)f(c)o(hange)g(m)o(uc)o(h.)20 Xb(Moreo)o(v)o(er,)12 b(it)j(is)g(sho)o(wn)f(in)h([48)o(])f(that)g(a)g X(log-log)h(scale)g(emphasizes)59 2236 y(the)20 b(di\013eren)o(t)h(app)q X(earances)g(of)f(the)g(v)o(ertical)h(and)f(the)h(horizon)o(tal)f X(parts.)35 b(In)21 b(this)f(w)o(a)o(y)l(,)h(the)f(L-)59 X2292 y(curv)o(e)g(clearly)g(displa)o(ys)h(the)e(trade-o\013)g(b)q(et)o X(w)o(een)h(minimizing)i(the)d(residual)i(norm)e(and)h(the)g(side)59 X2349 y(constrain)o(t.)130 2405 y(W)l(e)g(note)g(in)h(passing)g(that)e X(the)h(L-curv)o(e)h(is)g(a)f(con)o(tin)o(uous)g(curv)o(e)h(when)f(the)h X(regularization)59 2462 y(parameter)13 b(is)h(con)o(tin)o(uous)g(as)f X(in)i(Tikhono)o(v)e(regularization.)21 b(F)l(or)13 b(regularization)h X(metho)q(ds)g(with)g(a)59 2518 y(discrete)i(regularization)g X(parameter,)e(suc)o(h)i(as)f(truncated)g(SVD,)g(w)o(e)g(plot)h(the)f X(L-curv)o(e)h(as)f(a)g(\014nite)59 2575 y(set)i(of)f(p)q(oin)o(ts.)25 Xb(Ho)o(w)16 b(to)g(mak)o(e)g(suc)o(h)i(a)e(\\discrete)h(L-curv)o(e")h X(con)o(tin)o(uous)f(is)g(discussed)h(in)g([48)o(].)24 Xb(In)59 2631 y(this)14 b(reference,)h(alternativ)o(e)f(norms)f(for)g X(plotting)i(the)f(L-curv)o(e,)g(dep)q(ending)i(on)e(the)g X(regularization)59 2688 y(metho)q(d,)h(are)g(also)g(discussed.)130 X2744 y(The)i(L-curv)o(e)i(for)e(Tikhono)o(v)g(regularization)i(pla)o X(ys)f(a)f(cen)o(tral)h(role)g(in)g(connection)h(with)f(reg-)59 X2801 y(ularization)h(metho)q(ds)f(for)g(discrete)g(ill-p)q(osed)j X(problems)e(b)q(ecause)g(it)f(divides)i(the)e(\014rst)f(quadran)o(t)59 X2857 y(in)o(to)h(t)o(w)o(o)f(regions.)29 b(It)18 b(is)h(imp)q(ossible)h X(to)e(construct)f(an)o(y)h(solution)h(that)e(corresp)q(onds)i(to)e(a)h X(p)q(oin)o(t)p eop X%%Page: 17 19 X17 18 bop 59 159 a Fo(2.6.)14 b(T)l(ransformation)g(to)h(Standard)g(F)l X(orm)956 b(17)p 59 178 1767 2 v 59 304 a(b)q(elo)o(w)21 Xb(the)f(Tikhono)o(v)g(L-curv)o(e;)j(an)o(y)c(regularized)j(solution)e X(m)o(ust)g(lie)h(on)f(or)g(ab)q(o)o(v)o(e)f(this)i(curv)o(e.)59 X361 y(The)16 b(solution)h(computed)f(b)o(y)g(Tikhono)o(v)g X(regularization)g(is)h(therefore)e(optimal)i(in)f(the)g(sense)g(that)59 X417 y(for)f(a)g(giv)o(en)h(residual)h(norm)e(there)g(do)q(es)h(not)f X(exist)h(a)f(solution)h(with)g(smaller)g(seminorm)f(than)h(the)59 X474 y(Tikhono)o(v)k(solution|and)h(the)f(same)g(is)g(true)g(with)g(the) Xg(roles)g(of)f(the)h(norms)f(in)o(terc)o(hanged.)35 b(A)59 X530 y(consequence)17 b(of)d(this)i(is)g(that)e(one)i(can)f(compare)g X(other)g(regularization)h(metho)q(ds)f(with)h(Tikhono)o(v)59 X587 y(regularization)k(b)o(y)f(insp)q(ecting)j(ho)o(w)c(close)i(the)g X(L-curv)o(e)f(for)g(the)g(alternativ)o(e)h(metho)q(d)f(is)h(to)f(the)59 X643 y(Tikhono)o(v)d(L-curv)o(e.)24 b(If)499 631 y(\026)495 X643 y Fp(b)17 b Fo(satis\014es)f(the)g(discrete)h(Picard)g(condition,)g X(then)g(the)f(t)o(w)o(o)f(L-curv)o(es)i(are)59 700 y(close)k(to)e(eac)o X(h)h(other)f(and)h(the)g(solutions)h(computed)f(b)o(y)g(the)g(t)o(w)o X(o)e(regularization)j(metho)q(ds)f(are)59 756 y(similar)c([45].)130 X812 y(F)l(or)11 b(a)g(giv)o(en)i(\014xed)f(righ)o(t-hand)g(side)h XFp(b)g Fo(=)865 800 y(\026)862 812 y Fp(b)s Fo(+)s Fp(e)p XFo(,)g(there)f(is)g(ob)o(viously)h(an)e(optimal)i(regularization)59 X869 y(parameter)k(that)f(balances)i(the)f(p)q(erturbation)h(error)f X(and)g(the)g(regularization)i(error)d(in)i Fp(x)1683 X876 y Fj(reg)1732 869 y Fo(.)26 b(An)59 925 y(essen)o(tial)17 Xb(feature)f(of)g(the)h(L-curv)o(e)g(is)g(that)e(this)i(optimal)g X(regularization)g(parameter|de\014ned)h(in)59 982 y(the)e(ab)q(o)o(v)o X(e)f(sense|is)i(not)e(far)g(from)g(the)h(regularization)g(parameter)f X(that)g(corresp)q(onds)h(to)e(the)i(L-)59 1038 y(curv)o(e's)d(corner)g X([45)o(].)19 b(In)14 b(other)f(w)o(ords,)g(b)o(y)g(lo)q(cating)h(the)g X(corner)f(of)g(the)g(L-curv)o(e)i(one)e(can)h(compute)59 X1095 y(an)j(appro)o(ximation)g(to)g(the)g(optimal)h(regularization)g X(parameter)e(and)h(th)o(us,)g(in)h(turn,)g(compute)f(a)59 X1151 y(regularized)h(solution)e(with)h(a)f(go)q(o)q(d)g(balance)h(b)q X(et)o(w)o(een)f(the)h(t)o(w)o(o)d(error)i(t)o(yp)q(es.)22 Xb(W)l(e)17 b(return)f(to)f(this)59 1208 y(asp)q(ect)e(in)h(Section)f X(2.9;)g(su\016ce)g(it)g(here)g(to)f(sa)o(y)g(that)g(for)h(con)o(tin)o X(uous)g(L-curv)o(es,)g(a)g(computationally)59 1264 y(con)o(v)o(enien)o X(t)23 b(de\014nition)g(of)f(the)g(L-curv)o(e's)g(corner)g(is)g(the)g(p) Xq(oin)o(t)h(with)f(maxim)o(um)g(curv)m(ature)g(in)59 X1321 y(log-log)16 b(scale.)130 1377 y(In)k(the)g Ff(Regulariza)m(tion)i X(Tools)e Fo(pac)o(k)m(age,)h(routine)f Fl(l)p 1173 1377 X14 2 v 16 w(curve)g Fo(pro)q(duces)h(a)f(log-log)g(plot)g(of)59 X1433 y(the)i(L-curv)o(e)g(and|if)h(required|also)h(lo)q(cates)e(the)g X(corner)f(and)h(iden)o(ti\014es)i(the)e(corresp)q(onding)59 X1490 y(regularization)d(parameter.)26 b(Giv)o(en)19 b(a)e(discrete)i X(set)e(of)g(v)m(alues)i(of)f Fm(k)p Fn(A)8 b Fp(x)1350 X1497 y Fj(reg)1410 1490 y Fm(\000)k Fp(b)p Fm(k)1509 X1497 y Fj(2)1546 1490 y Fo(and)18 b Fm(k)p Fn(L)8 b Fp(x)1727 X1497 y Fj(reg)1776 1490 y Fm(k)1799 1497 y Fj(2)1818 X1490 y Fo(,)59 1546 y(routine)14 b Fl(plot)p 290 1546 XV 16 w(lc)f Fo(plots)h(the)f(corresp)q(onding)h(L-curv)o(e,)f(while)i X(routine)e Fl(l)p 1283 1546 V 17 w(co)o(rner)f Fo(lo)q(cates)h(the)g X(L-curv)o(e's)59 1603 y(corner.)59 1726 y Fr(2.6.)18 Xb(T)-5 b(ransformation)18 b(to)g(Standard)i(F)-5 b(orm)59 X1828 y Fo(A)16 b(regularization)g(problem)g(with)g(side)g(constrain)o X(t)f(\012\()p Fp(x)p Fo(\))d(=)i Fm(k)p Fn(L)8 b Fo(\()p XFp(x)h Fm(\000)h Fp(x)1331 1811 y Fe(\003)1350 1828 y XFo(\))p Fm(k)1391 1835 y Fj(2)1426 1828 y Fo(\(2.5\))k(is)i(said)g(to)f X(b)q(e)h(in)59 1884 y Fk(standar)n(d)g(form)f Fo(if)g(the)g(matrix)f XFn(L)g Fo(is)h(the)g(iden)o(tit)o(y)g(matrix)g Fn(I)1121 X1891 y Fg(n)1144 1884 y Fo(.)20 b(In)15 b(man)o(y)f(applications,)i X(regulariza-)59 1941 y(tion)g(in)h(standard)e(form)h(is)g(not)f(the)h X(b)q(est)h(c)o(hoice,)f(i.e.,)g(one)g(should)h(use)f(some)g XFn(L)e Fm(6)p Fo(=)g Fn(I)1583 1948 y Fg(n)1622 1941 Xy Fo(in)j(the)f(side)59 1997 y(constrain)o(t)i(\012\()p XFp(x)p Fo(\).)30 b(The)19 b(prop)q(er)g(c)o(hoice)h(of)e(matrix)g XFn(L)h Fo(dep)q(ends)h(on)f(the)g(particular)g(application,)59 X2054 y(but)c(often)g(an)g(appro)o(ximation)h(to)e(the)h(\014rst)g(or)g X(second)h(deriv)m(ativ)o(e)g(op)q(erator)e(giv)o(es)i(go)q(o)q(d)f X(results.)130 2110 y(Ho)o(w)o(ev)o(er,)23 b(from)e(a)i(n)o(umerical)h X(p)q(oin)o(t)f(of)f(view)h(it)g(is)g(m)o(uc)o(h)f(simpler)i(to)e(treat) Xg(problems)h(in)59 2166 y(standard)10 b(form,)h(basically)h(b)q(ecause) Xg(only)f(one)g(matrix,)f Fn(A)p Fo(,)i(is)f(in)o(v)o(olv)o(ed)g X(instead)g(of)g(the)f(t)o(w)o(o)g(matrices)59 2223 y XFn(A)17 b Fo(and)f Fn(L)p Fo(.)24 b(Hence,)17 b(it)g(is)g(con)o(v)o X(enien)o(t)g(to)f(b)q(e)h(able)g(to)f(transform)f(a)i(giv)o(en)g X(regularization)g(problem)59 2279 y(in)i(general)f(form)f(in)o(to)g(an) Xh(equiv)m(alen)o(t)h(one)f(in)g(standard)g(form)e(b)o(y)i(means)g(of)f X(n)o(umerically)i(stable)59 2336 y(metho)q(ds.)h(F)l(or)14 Xb(example,)h(for)f(Tikhono)o(v)h(regularization)h(w)o(e)e(w)o(an)o(t)g X(a)g(n)o(umerically)i(stable)f(metho)q(d)59 2392 y(for)e(transforming)g X(the)g(general-form)h(problem)g(\(2.6\))e(in)o(to)i(the)f(follo)o(wing) Xh(standard-form)f(problem)592 2482 y(min)683 2435 y Fh(n)711 X2482 y Fm(k)745 2470 y Fo(\026)734 2482 y Fn(A)777 2481 Xy Fo(\026)775 2482 y Fp(x)d Fm(\000)861 2470 y Fo(\026)858 X2482 y Fp(b)p Fm(k)910 2463 y Fj(2)910 2493 y(2)940 2482 Xy Fo(+)g Fn(\025)1012 2463 y Fj(2)1039 2482 y Fm(k)1064 X2481 y Fo(\026)1062 2482 y Fp(x)f Fm(\000)1147 2481 y XFo(\026)1145 2482 y Fp(x)1173 2463 y Fe(\003)1192 2482 Xy Fm(k)1215 2463 y Fj(2)1215 2493 y(2)1235 2435 y Fh(o)1285 X2482 y Fn(;)417 b Fo(\(2.21\))59 2575 y(where)12 b(the)g(new)g(matrix) X509 2563 y(\026)497 2575 y Fn(A)p Fo(,)g(the)g(new)g(righ)o(t-hand)g X(side)1032 2563 y(\026)1029 2575 y Fp(b)p Fo(,)g(and)g(the)g(v)o(ector) X1378 2574 y(\026)1376 2575 y Fp(x)1404 2558 y Fe(\003)1435 X2575 y Fo(are)g(deriv)o(ed)g(from)g(the)59 2631 y(original)17 Xb(quan)o(tities)g Fn(A)p Fo(,)f Fn(L)p Fo(,)g Fp(b)p XFo(,)g(and)g Fp(x)733 2615 y Fe(\003)752 2631 y Fo(.)23 Xb(Moreo)o(v)o(er,)14 b(w)o(e)i(also)g(w)o(an)o(t)f(a)h(n)o(umerically)i X(stable)e(sc)o(heme)59 2688 y(for)i(transforming)f(the)h(solution)662 X2687 y(\026)660 2688 y Fp(x)688 2695 y Fg(\025)728 2688 Xy Fo(to)g(\(2.21\))e(bac)o(k)i(to)f(the)h(general-form)g(setting.)29 Xb(Finally)l(,)20 b(w)o(e)59 2744 y(prefer)14 b(a)g(transformation)f X(that)g(leads)i(to)e(a)h(simple)h(relationship)h(b)q(et)o(w)o(een)e X(the)h(SVD)f(of)1644 2733 y(\026)1632 2744 y Fn(A)g Fo(and)h(the)59 X2801 y(GSVD)e(of)g(\()p Fn(A;)8 b(L)p Fo(\),)k(for)h(then)h(w)o(e)g(ha) Xo(v)o(e)f(a)g(p)q(erfect)h(understanding)h(of)e(the)g(relationship)j(b) Xq(et)o(w)o(een)e(the)59 2857 y(t)o(w)o(o)g(regularization)i(problems.)p Xeop X%%Page: 18 20 X18 19 bop 64 159 a Fo(18)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 130 304 a(F)l(or)g(the)h(simple)i(case)e(where)h XFn(L)f Fo(is)g(square)g(and)h(in)o(v)o(ertible,)h(the)e(transformation) Xf(is)i(ob)o(vious:)71 349 y(\026)59 361 y Fn(A)13 b Fo(=)g XFn(A)8 b(L)227 344 y Fe(\000)p Fj(1)274 361 y Fo(,)304 X349 y(\026)301 361 y Fp(b)13 b Fo(=)g Fp(b)p Fo(,)450 X360 y(\026)448 361 y Fp(x)476 344 y Fe(\003)508 361 y XFo(=)g Fn(L)8 b Fp(x)623 344 y Fe(\003)641 361 y Fo(,)15 Xb(and)h(the)f(bac)o(k-transformation)f(simply)i(b)q(ecomes)g XFp(x)1606 368 y Fg(\025)1641 361 y Fo(=)d Fn(L)1720 344 Xy Fe(\000)p Fj(1)1769 360 y Fo(\026)1767 361 y Fp(x)1795 X368 y Fg(\025)1817 361 y Fo(.)130 417 y(In)21 b(most)e(applications,)k X(ho)o(w)o(ev)o(er,)d(the)g(matrix)g Fn(L)g Fo(is)h(not)f(square,)h(and) Xg(the)f(transformation)59 474 y(b)q(ecomes)g(somewhat)f(more)h(in)o(v)o X(olv)o(ed)g(than)g(just)f(a)h(matrix)f(in)o(v)o(ersion.)34 Xb(It)20 b(turns)g(out)f(that)g(it)h(is)59 530 y(a)f(go)q(o)q(d)g(idea)g X(to)g(distinguish)i(b)q(et)o(w)o(een)e(direct)h(and)f(iterativ)o(e)g X(regularization)h(metho)q(ds|cf.)g(the)59 587 y(next)d(t)o(w)o(o)f X(sections.)27 b(F)l(or)17 b(the)g(direct)h(metho)q(ds)f(w)o(e)g(need)i X(to)d(b)q(e)i(able)g(to)f(compute)g(the)h(matrix)1809 X575 y(\026)1797 587 y Fn(A)59 643 y Fo(explicitly)h(b)o(y)d(standard)g X(metho)q(ds)h(suc)o(h)g(as)e(the)i(QR)g(factorization.)23 Xb(F)l(or)16 b(the)g(iterativ)o(e)h(metho)q(ds,)59 700 Xy(on)f(the)g(other)f(hand,)h(w)o(e)f(merely)i(need)f(to)g(b)q(e)g(able) Xh(to)e(compute)h(the)f(matrix-v)o(ector)g(pro)q(duct)1773 X688 y(\026)1761 700 y Fn(A)1806 699 y Fo(\026)1803 700 Xy Fp(x)59 756 y Fo(e\016cien)o(tly)l(.)32 b(Belo)o(w,)20 Xb(w)o(e)e(describ)q(e)j(t)o(w)o(o)c(metho)q(ds)i(for)f(transformation)f X(to)h(standard)h(form)f(whic)o(h)59 812 y(are)j(suited)i(for)e(direct)i X(and)e(iterativ)o(e)h(metho)q(ds,)i(resp)q(ectiv)o(ely)l(.)41 Xb(W)l(e)22 b(assume)f(that)g(the)h(matrix)59 869 y Fn(L)13 Xb Fm(2)g Fp(I)-8 b(R)197 851 y Fg(p)p Fe(\002)p Fg(n)281 X869 y Fo(has)15 b(full)h(ro)o(w)f(rank,)f(i.e.,)h(the)g(rank)g(of)g XFn(L)g Fo(is)h Fn(p)p Fo(.)59 987 y Fp(2.6.1.)g(T)l(ransformation)i X(for)f(Direct)h(Metho)q(ds)59 1073 y Fo(The)i(standard-form)e X(transformation)h(for)f(direct)j(metho)q(ds)e(describ)q(ed)j(here)e(w)o X(as)f(dev)o(elop)q(ed)i(b)o(y)59 1129 y(Eld)o(\023)-21 Xb(en)11 b([21)o(],)g(and)g(it)h(is)f(based)g(on)g(t)o(w)o(o)f(QR)h X(factorizations.)19 b(The)11 b(description)h(of)f(this)g X(transformation)59 1186 y(is)18 b(quite)g(algorithmic,)h(and)e(it)h(is) Xg(summarized)g(b)q(elo)o(w)g(\(where,)f(for)g(con)o(v)o(enience,)i(the) Xf(subscripts)59 1242 y Fn(p)p Fo(,)d Fn(o)p Fo(,)h(and)f XFn(q)j Fo(denote)e(matrices)f(with)h Fn(p)p Fo(,)f Fn(n)c XFm(\000)g Fn(p)p Fo(,)k(and)h Fn(m)10 b Fm(\000)h Fo(\()p XFn(n)f Fm(\000)h Fn(p)p Fo(\))k(columns,)h(resp)q(ectiv)o(ely\).)22 Xb(First,)59 1299 y(compute)15 b(a)g(QR)h(factorization)f(of)g XFn(L)712 1282 y Fg(T)739 1299 y Fo(,)643 1407 y Fn(L)674 X1388 y Fg(T)714 1407 y Fo(=)e Fn(K)d(R)j Fo(=)g(\()p XFn(K)964 1414 y Fg(p)998 1407 y Fn(K)1037 1414 y Fg(o)1056 X1407 y Fo(\))1082 1347 y Fh(\022)1119 1378 y Fn(R)1154 X1385 y Fg(p)1135 1435 y Fo(0)1181 1347 y Fh(\023)1234 X1407 y Fn(:)468 b Fo(\(2.22\))59 1523 y(W)l(e)13 b(remark)e(that)h X(since)i Fn(L)e Fo(has)g(full)i(rank,)f(its)f(pseudoin)o(v)o(erse)i(is) Xf(simply)g Fn(L)1367 1506 y Fe(y)1398 1523 y Fo(=)g Fn(K)1485 X1530 y Fg(p)1512 1523 y Fn(R)1547 1506 y Fe(\000)p Fg(T)1547 X1534 y(p)1602 1523 y Fo(.)18 b(Moreo)o(v)o(er,)59 1579 Xy(the)11 b(columns)g(of)f Fn(K)391 1586 y Fg(o)420 1579 Xy Fo(are)g(an)h(orthonormal)e(basis)i(for)f(the)g(n)o(ull)i(space)f(of) Xf Fn(L)p Fo(.)18 b(Next,)11 b(form)f(the)g(\\skinn)o(y")59 X1636 y(matrix)15 b Fn(A)8 b(K)288 1643 y Fg(o)319 1636 Xy Fm(2)13 b Fp(I)-8 b(R)413 1617 y Fg(m)p Fe(\002)p Fj(\()p XFg(n)p Fe(\000)p Fg(p)p Fj(\))583 1636 y Fo(and)16 b(compute)f(its)g X(QR)h(factorization,)629 1744 y Fn(A)8 b(K)710 1751 y XFg(o)741 1744 y Fo(=)13 b Fn(H)e(T)19 b Fo(=)13 b(\()p XFn(H)988 1751 y Fg(o)1021 1744 y Fn(H)1059 1751 y Fg(q)1078 X1744 y Fo(\))1104 1684 y Fh(\022)1142 1715 y Fn(T)1169 X1722 y Fg(o)1153 1772 y Fo(0)1195 1684 y Fh(\023)1248 X1744 y Fn(:)454 b Fo(\(2.23\))59 1858 y(Then)16 b(the)f(transformed)f X(quan)o(tities)732 1846 y(\026)720 1858 y Fn(A)h Fo(and)861 X1846 y(\026)858 1858 y Fp(b)g Fo(are)g(giv)o(en)h(b)o(y)f(the)g(follo)o X(wing)h(iden)o(tities)492 1935 y(\026)480 1947 y Fn(A)c XFo(=)h Fn(H)616 1928 y Fg(T)612 1958 y(q)643 1947 y Fn(A)8 Xb(L)716 1928 y Fe(y)746 1947 y Fo(=)13 b Fn(H)836 1928 Xy Fg(T)832 1958 y(q)863 1947 y Fn(A)8 b(K)944 1954 y XFg(p)971 1947 y Fn(R)1006 1928 y Fe(\000)p Fg(T)1006 X1958 y(p)1076 1947 y Fn(;)1190 1935 y Fo(\026)1187 1947 Xy Fp(b)13 b Fo(=)g Fn(H)1319 1928 y Fg(T)1315 1958 y(q)1353 X1947 y Fp(b)i Fn(;)305 b Fo(\(2.24\))59 2036 y(and)16 Xb(w)o(e)f(stress)g(that)g(the)g(most)g(e\016cien)o(t)h(w)o(a)o(y)f(to)f X(compute)1142 2025 y(\026)1130 2036 y Fn(A)i Fo(and)1271 X2024 y(\026)1268 2036 y Fp(b)g Fo(is)g(to)f(apply)h(the)f(orthogonal)59 X2093 y(transformations)e(that)h(mak)o(e)f(up)i Fn(K)i XFo(and)e Fn(H)j Fo(\\on)c(the)g(\015y")g(to)g Fn(A)h XFo(and)f Fp(b)g Fo(as)g(the)h(QR)g(factorizations)59 X2149 y(in)f(\(2.22\))e(and)i(\(2.23\))d(are)i(computed.)20 Xb(When)14 b(\(2.21\))e(has)h(b)q(een)i(solv)o(ed)f(for)1408 X2148 y(\026)1405 2149 y Fp(x)p Fo(,)f(the)h(transformation)59 X2205 y(bac)o(k)h(to)g(the)g(general-form)g(setting)g(then)h(tak)o(es)e X(the)i(form)595 2295 y Fp(x)c Fo(=)h Fn(L)714 2276 y XFe(y)734 2294 y Fo(\026)732 2295 y Fp(x)c Fo(+)i Fn(K)854 X2306 y Fg(o)880 2295 y Fn(T)913 2276 y Fe(\000)p Fj(1)907 X2306 y Fg(o)960 2295 y Fn(H)1002 2276 y Fg(T)998 2306 Xy(o)1029 2295 y Fo(\()p Fp(b)f Fm(\000)h Fn(A)d(L)1205 X2276 y Fe(y)1224 2294 y Fo(\026)1222 2295 y Fp(x)o Fo(\))15 Xb Fn(:)420 b Fo(\(2.25\))130 2384 y(The)14 b(SVD)f(of)g(the)h(matrix) X615 2372 y(\026)603 2384 y Fn(A)f Fo(is)i(related)f(to)f(the)g(GSVD)h X(of)f(\()p Fn(A;)8 b(L)p Fo(\))k(as)i(follo)o(ws:)19 Xb(let)1600 2372 y(\026)1588 2384 y Fn(A)13 b Fo(=)1690 X2372 y(\026)1683 2384 y Fn(U)1731 2372 y Fo(\026)1726 X2384 y(\006)1774 2372 y(\026)1767 2384 y Fn(V)1803 2367 Xy Fg(T)59 2440 y Fo(denote)f(the)h(SVD)f(of)445 2429 Xy(\026)433 2440 y Fn(A)p Fo(,)g(and)g(let)h Fn(E)674 X2447 y Fg(p)705 2440 y Fo(denote)g(the)f Fn(p)t Fm(\002)t XFn(p)g Fo(exc)o(hange)g(matrix)g Fn(E)1395 2447 y Fg(p)1427 X2440 y Fo(=)h(an)o(tidiag)q(\(1)p Fn(;)8 b(:)g(:)g(:)t(;)g XFo(1\).)59 2497 y(Also,)15 b(let)h Fn(U)5 b Fo(,)15 b XFn(V)9 b Fo(,)15 b(\006,)g Fn(M)5 b Fo(,)14 b(and)i Fn(X)i XFo(denote)e(the)f(GSVD)g(matrices)g(from)g(Eq.)f(\(2.11\).)k(Then)416 X2586 y Fn(U)g Fo(=)13 b(\()p Fn(H)569 2593 y Fg(q)602 X2574 y Fo(\026)595 2586 y Fn(U)f(E)672 2593 y Fg(p)707 X2586 y Fn(;)22 b(H)780 2593 y Fg(o)799 2586 y Fo(\))15 Xb Fn(;)82 b Fo(\006)8 b Fn(M)1017 2567 y Fe(\000)p Fj(1)1077 X2586 y Fo(=)13 b Fn(E)1159 2593 y Fg(p)1191 2574 y Fo(\026)1186 X2586 y(\006)7 b Fn(E)1260 2593 y Fg(p)1715 2586 y Fo(\(2.26\))417 X2686 y Fn(V)22 b Fo(=)521 2675 y(\026)514 2686 y Fn(V)10 Xb(E)585 2693 y Fg(p)619 2686 y Fn(;)295 b(X)111 b Fo(=)1124 X2627 y Fh(\022)1162 2658 y Fn(M)1211 2642 y Fe(\000)p XFj(1)1258 2658 y Fn(V)1295 2642 y Fg(T)1322 2658 y Fn(L)1206 X2715 y(H)1248 2698 y Fg(T)1244 2726 y(o)1275 2715 y Fn(A)1361 X2627 y Fh(\023)1391 2637 y Fe(\000)p Fj(1)1461 2686 y XFn(:)241 b Fo(\(2.27\))59 2801 y(Moreo)o(v)o(er,)15 b(the)i(last)g XFn(n)11 b Fm(\000)h Fn(p)17 b Fo(columns)g(of)f Fn(X)k XFo(are)d(giv)o(en)g(b)o(y)g Fn(K)1157 2812 y Fg(o)1183 X2801 y Fn(T)1216 2784 y Fe(\000)p Fj(1)1210 2812 y Fg(o)1263 X2801 y Fo(.)25 b(F)l(or)16 b(pro)q(ofs)g(of)h(\(2.26\){\(2.2)o(7\))59 X2857 y(and)c(an)f(in)o(v)o(estigation)h(of)f(the)h(accuracy)f(of)h(the) Xf(GSVD)g(matrices)h(computed)g(this)g(w)o(a)o(y)l(,)f(cf.)g([41)o(,)g X(43)o(].)p eop X%%Page: 19 21 X19 20 bop 59 159 a Fo(2.6.)14 b(T)l(ransformation)g(to)h(Standard)g(F)l X(orm)956 b(19)p 59 178 1767 2 v 59 304 a Fp(2.6.2.)16 Xb(T)l(ransformation)i(for)f(Iterativ)o(e)h(Metho)q(ds)59 X391 y Fo(F)l(or)c(the)h(iterativ)o(e)h(metho)q(ds)f(the)g(matrix)818 X379 y(\026)806 391 y Fn(A)g Fo(is)h(nev)o(er)f(computed)g(explicitly)l X(.)23 b(Instead,)15 b(one)g(merely)59 447 y(needs)d(to)f(b)q(e)h(able)g X(to)e(pre-m)o(ultiply)j(a)e(v)o(ector)g(with)967 436 Xy(\026)955 447 y Fn(A)g Fo(and)1096 436 y(\026)1084 447 Xy Fn(A)1118 431 y Fg(T)1157 447 y Fo(e\016cien)o(tly)l(.)20 Xb(If)12 b Fn(K)1455 454 y Fg(o)1485 447 y Fo(is)f(an)h(orthonormal)59 X504 y(basis)i(for)e(the)h(n)o(ull)i(space)e(of)g Fn(L)p XFo(,)g(e.g.)f(computed)i(b)o(y)f(\(2.22\),)e(then)j Fp(y)f XFo(=)g Fn(L)1340 487 y Fe(y)1360 503 y Fo(\026)1357 504 Xy Fp(x)g Fo(and)1487 503 y(^)1484 504 y Fp(y)g Fo(=)g(\()p XFn(L)1622 487 y Fe(y)1640 504 y Fo(\))1658 487 y Fg(T)1685 X504 y Fp(x)p Fo(,)g(b)q(oth)59 560 y(of)19 b(whic)o(h)h(are)f(used)h X(in)g(the)f(iterativ)o(e)h(pro)q(cedures,)h(can)e(easily)h(b)o(y)g X(computed)f(b)o(y)h(the)f(follo)o(wing)59 617 y(algorithms:)239 X747 y Fp(y)42 b Fm( )396 688 y Fh(\022)434 719 y Fn(I)454 X726 y Fg(n)p Fe(\000)p Fg(p)538 719 y Fo(0)482 776 y XFn(L)568 688 y Fh(\023)599 698 y Fe(\000)p Fj(1)653 688 Xy Fh(\022)692 719 y Fp(0)694 775 y Fo(\026)692 776 y XFp(x)727 688 y Fh(\023)239 826 y Fp(y)g Fm( )g Fp(y)10 Xb Fm(\000)h Fn(K)519 838 y Fg(o)545 826 y Fn(K)587 810 Xy Fg(T)584 838 y(o)614 826 y Fp(y)1019 716 y(x)80 b Fm( )42 Xb Fp(x)9 b Fm(\000)i Fn(K)1336 727 y Fg(o)1362 716 y XFn(K)1404 699 y Fg(T)1401 727 y(o)1432 716 y Fp(x)981 X745 y Fh(\022)1022 775 y Fo(^)1019 776 y Fp(y)1021 833 Xy(z)1055 745 y Fh(\023)1127 804 y Fm( )1214 745 y Fh(\022)1300 X776 y Fn(L)1252 833 y Fo(0)k Fn(I)1310 840 y Fg(n)p Fe(\000)p XFg(p)1386 745 y Fh(\023)1417 755 y Fe(\000)p Fg(T)1479 X804 y Fp(x)g Fn(:)1715 771 y Fo(\(2.28\))59 929 y(By)21 Xb(means)h(of)e(these)i(simple)g(algorithms,)h(whic)o(h)f(are)e(describ) Xq(ed)k(in)e([8)o(],)g(the)f(ab)q(o)o(v)o(e)g(standard-)59 X985 y(transformation)13 b(metho)q(d)h(can)g(also)g(b)q(e)g(used)h(for)e X(iterativ)o(e)h(metho)q(ds.)20 b(Notice)14 b(that)f(a)h(basis)g(for)g X(the)59 1042 y(n)o(ull)19 b(space)f(of)f Fn(L)g Fo(is)h X(required|often,)h(the)f(basis)g(v)o(ectors)e(can)i(b)q(e)g(computed)g X(explicitly)l(,)j(or)c(they)59 1098 y(can)e(b)q(e)h(computed)g(from)e XFn(L)h Fo(b)o(y)l(,)g(sa)o(y)l(,)g(a)g(rank)g(rev)o(ealing)h X(factorization)f([12)o(].)130 1155 y(The)d(algorithm)g(from)f XFm(x)p Fo(2.6.1)f(can)i(b)q(e)g(reform)o(ulated)g(in)h(suc)o(h)f(a)f(w) Xo(a)o(y)g(that)g(the)h(pseudoin)o(v)o(erse)h Fn(L)1813 X1138 y Fe(y)59 1211 y Fo(is)k(replaced)g(b)o(y)f(a)g(w)o(eak)o(er)f X(generalized)j(in)o(v)o(erse,)e(using)h(an)f(idea)h(from)e([23)o(])h X(\(and)g(later)g(adv)o(o)q(cated)59 1268 y(in)j([35)o(,)f(36)o(,)g X(37]\).)28 b(This)19 b(reform)o(ulation)f(has)g(certain)h(adv)m(an)o X(tages)e(for)h(iterativ)o(e)g(metho)q(ds,)h(as)f(w)o(e)59 X1324 y(shall)e(see)g(in)g Fm(x)p Fo(2.8.4.)i(De\014ne)e(the)f XFn(A)p Fk(-weighte)n(d)i(gener)n(alize)n(d)e(inverse)g(of)h XFn(L)f Fo(as)g(follo)o(ws)724 1446 y Fn(L)755 1424 y XFe(y)755 1460 y Fg(A)797 1446 y Fo(=)e Fn(X)893 1387 Xy Fh(\022)931 1418 y Fn(M)980 1401 y Fe(\000)p Fj(1)968 X1474 y Fo(0)1035 1387 y Fh(\023)1073 1446 y Fn(V)1110 X1427 y Fg(T)1153 1446 y Fn(;)549 b Fo(\(2.29\))59 1581 Xy(where)14 b(w)o(e)g(emphasize)h(that)f Fn(L)600 1559 Xy Fe(y)600 1595 y Fg(A)642 1581 y Fo(is)h(generally)g(di\013eren)o(t)f X(from)g(the)g(pseudoin)o(v)o(erse)h Fn(L)1558 1565 y XFe(y)1590 1581 y Fo(when)f Fn(p)f(<)g(n)p Fo(.)59 1638 Xy(Also,)i(de\014ne)i(the)e(v)o(ector)737 1723 y Fp(x)765 X1730 y Fj(0)797 1723 y Fo(=)885 1670 y Fg(n)866 1683 Xy Fh(X)845 1774 y Fg(i)p Fj(=)p Fg(p)p Fj(+1)955 1723 Xy Fo(\()p Fp(u)1002 1704 y Fg(T)1002 1734 y(i)1029 1723 Xy Fp(b)p Fo(\))8 b Fp(x)1112 1730 y Fg(i)1140 1723 y XFn(;)562 b Fo(\(2.30\))59 1851 y(whic)o(h)16 b(is)g(the)g X(unregularized)h(comp)q(onen)o(t)f(of)f(the)g(regularized)i(solution)f XFp(x)1393 1858 y Fj(reg)1443 1851 y Fo(,)f(cf.)g(Eq.)g(\(2.19\),)e X(i.e.,)59 1907 y Fp(x)87 1914 y Fj(0)127 1907 y Fo(is)21 Xb(the)f(comp)q(onen)o(t)h(of)f Fp(x)584 1914 y Fj(reg)654 X1907 y Fo(that)f(lies)j(in)f(the)g(n)o(ull)h(space)f(of)f XFn(L)p Fo(.)35 b(Then)21 b(the)g(standard-form)59 1964 Xy(quan)o(tities)281 1952 y(\026)269 1964 y Fn(A)15 b XFo(and)410 1952 y(\026)407 1964 y Fp(b)g Fo(in)h(the)f(alternativ)o(e)g X(v)o(ersion)h(of)f(the)g(algorithm)g(are)g(de\014ned)i(as)d(follo)o(ws) X650 2055 y(\026)638 2067 y Fn(A)f Fo(=)g Fn(A)8 b(L)806 X2044 y Fe(y)806 2080 y Fg(A)849 2067 y Fn(;)964 2055 Xy Fo(\026)960 2067 y Fp(b)13 b Fo(=)g Fp(b)d Fm(\000)h XFn(A)d Fp(x)1205 2074 y Fj(0)1239 2067 y Fn(:)463 b Fo(\(2.31\))59 X2169 y(Moreo)o(v)o(er,)13 b(the)j(transformation)e(bac)o(k)h(to)f(the)h X(general-form)h(setting)f(tak)o(es)f(the)i(simple)g(form)792 X2272 y Fp(x)c Fo(=)h Fn(L)911 2250 y Fe(y)911 2286 y XFg(A)942 2271 y Fo(\026)940 2272 y Fp(x)c Fo(+)i Fp(x)1051 X2279 y Fj(0)1085 2272 y Fn(:)617 b Fo(\(2.32\))59 2375 Xy(This)16 b(bac)o(ktransformation)e(is)h(mathematically)h(equiv)m(alen) Xo(t)h(to)e(the)g(one)g(in)h(\(2.25\))e(since)i(w)o(e)f(ha)o(v)o(e)348 X2483 y Fn(L)379 2461 y Fe(y)379 2496 y Fg(A)420 2483 Xy Fo(=)e(\()p Fn(I)506 2490 y Fg(n)540 2483 y Fm(\000)d XFn(K)624 2494 y Fg(o)650 2483 y Fn(T)683 2464 y Fe(\000)p XFj(1)677 2494 y Fg(o)730 2483 y Fn(H)772 2464 y Fg(T)768 X2494 y(o)799 2483 y Fn(A)p Fo(\))e Fn(L)890 2464 y Fe(y)998 X2483 y Fo(and)91 b Fp(x)1190 2490 y Fj(0)1222 2483 y XFo(=)13 b Fn(K)1309 2494 y Fg(o)1336 2483 y Fn(T)1369 X2464 y Fe(\000)p Fj(1)1363 2494 y Fg(o)1416 2483 y Fn(H)1458 X2464 y Fg(T)1454 2494 y(o)1485 2483 y Fp(b)i Fn(:)173 Xb Fo(\(2.33\))130 2586 y(T)l(o)17 b(use)i(this)f(alternativ)o(e)g(form) Xo(ulation)g(of)g(the)g(standard-form)f(transformation,)g(w)o(e)g(need)i X(to)59 2642 y(compute)f Fp(x)274 2649 y Fj(0)311 2642 Xy Fo(as)g(w)o(ell)h(as)e(the)i(matrix-v)o(ector)e(pro)q(ducts)h XFn(L)1114 2620 y Fe(y)1114 2656 y Fg(A)1145 2641 y Fo(\026)1142 X2642 y Fp(x)g Fo(and)g(\()p Fn(L)1328 2620 y Fe(y)1328 X2656 y Fg(A)1356 2642 y Fo(\))1374 2626 y Fg(T)1401 2642 Xy Fp(x)g Fo(e\016cien)o(tly)l(.)30 b(Giv)o(en)18 b(a)59 X2699 y(basis)e Fn(W)21 b Fo(for)15 b Fm(N)7 b Fo(\()p XFn(L)p Fo(\),)14 b(the)h(v)o(ector)f Fp(x)685 2706 y XFj(0)720 2699 y Fo(is)i(computed)f(b)o(y)g(the)h(follo)o(wing)g X(algorithm:)781 2800 y Fn(S)61 b Fm( )42 b Fo(\()p Fn(A)8 Xb(W)e Fo(\))1084 2784 y Fe(y)781 2857 y Fp(x)809 2864 Xy Fj(0)870 2857 y Fm( )42 b Fn(W)14 b(S)c Fp(b)15 b Fn(:)1715 X2829 y Fo(\(2.34\))p eop X%%Page: 20 22 X20 21 bop 64 159 a Fo(20)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(This)c(algorithm)f(in)o(v)o(olv)o(es)h XFn(O)q Fo(\()p Fn(mn)p Fo(\()p Fn(n)t Fm(\000)t Fn(p)p XFo(\)\))e(op)q(erations.)19 b(T)l(o)12 b(compute)h Fn(L)1326 X282 y Fe(y)1326 318 y Fg(A)1357 303 y Fo(\026)1354 304 Xy Fp(x)f Fo(and)g(\()p Fn(L)1528 282 y Fe(y)1528 318 Xy Fg(A)1556 304 y Fo(\))1574 288 y Fg(T)1602 304 y Fp(x)f XFo(e\016cien)o(tly)59 367 y(\(w)o(e)16 b(emphasize)j(that)d XFn(L)496 345 y Fe(y)496 381 y Fg(A)541 367 y Fo(is)i(nev)o(er)f X(computed)g(explicitly\),)i(w)o(e)e(partition)g Fn(L)f XFo(=)g(\()p Fn(L)1559 374 y Fj(11)1603 367 y Fn(;)f(L)1662 X374 y Fj(12)1699 367 y Fo(\),)i Fn(T)k Fo(=)59 424 y(\()p XFn(T)104 431 y Fj(11)148 424 y Fn(;)15 b(T)203 431 y XFj(12)240 424 y Fo(\))10 b(and)h Fp(x)380 407 y Fg(T)420 X424 y Fo(=)i(\()p Fp(x)514 407 y Fg(T)514 435 y Fj(1)548 X424 y Fn(;)i Fp(x)604 407 y Fg(T)604 435 y Fj(2)631 424 Xy Fo(\))10 b(suc)o(h)i(that)e Fn(L)883 431 y Fj(11)930 X424 y Fo(and)h Fn(T)1041 431 y Fj(11)1089 424 y Fo(ha)o(v)o(e)f XFn(p)h Fo(columns)g(and)g Fp(x)1507 431 y Fj(1)1537 424 Xy Fo(has)g Fn(p)f Fo(elemen)o(ts.)59 480 y(F)l(or)15 Xb(e\016ciency)l(,)h(w)o(e)f(also)g(need)h(to)f(compute)g(the)g(\()p XFn(n)c Fm(\000)f Fn(p)p Fo(\))g Fm(\002)g Fn(n)16 b Fo(matrix)843 X588 y Fn(T)j Fm( )13 b Fn(S)d(A)15 b(:)668 b Fo(\(2.35\))59 X699 y(Then)16 b Fp(y)d Fo(=)g Fn(L)298 677 y Fe(y)298 X713 y Fg(A)329 698 y Fo(\026)326 699 y Fp(x)i Fo(and)460 X698 y(^)457 699 y Fp(y)e Fo(=)g(\()p Fn(L)595 677 y Fe(y)595 X713 y Fg(A)623 699 y Fo(\))641 683 y Fg(T)668 699 y Fp(x)i XFo(are)g(computed)h(b)o(y:)392 808 y Fp(y)42 b Fm( )g XFn(L)580 789 y Fe(\000)p Fj(1)580 821 y(11)630 807 y XFo(\026)627 808 y Fp(x)392 888 y(y)g Fm( )549 828 y Fh(\022)587 X859 y Fp(y)590 916 y Fo(0)623 828 y Fh(\023)664 888 y XFm(\000)10 b Fn(W)k(T)793 895 y Fj(11)838 888 y Fp(y)1090 X829 y(x)41 b Fm( )h Fp(x)10 b Fm(\000)g Fn(T)1362 813 Xy Fg(T)1356 841 y Fj(11)1393 829 y Fn(W)1442 813 y Fg(T)1470 X829 y Fp(x)1092 887 y Fo(^)1089 888 y Fp(y)42 b Fm( )g XFn(L)1277 869 y Fe(\000)p Fg(T)1277 901 y Fj(11)1332 X888 y Fp(x)15 b Fn(:)1715 859 y Fo(\(2.36\))59 1014 y(In)i(the)g(ab)q X(o)o(v)o(e)f(form)o(ulas,)g Fn(W)23 b Fo(need)17 b(not)g(ha)o(v)o(e)f X(orthonormal)f(columns,)j(although)f(this)g(is)g(the)f(b)q(est)59 X1070 y(c)o(hoice)i(from)f(a)g(n)o(umerical)h(p)q(oin)o(t)g(of)f(view.) X26 b(F)l(or)17 b(more)g(details)h(ab)q(out)f(these)h(algorithms,)f(cf.) Xg([47)o(,)59 1127 y(Section)f(2.3.2].)130 1185 y(F)l(or)e(the)h(latter) Xf(standard-form)g(transformation)f(there)i(is)g(an)g(ev)o(en)g(simpler) Xh(relation)f(b)q(et)o(w)o(een)59 1241 y(the)d(SVD)f(of)300 X1230 y(\026)288 1241 y Fn(A)g Fo(and)h(part)f(of)g(the)h(GSVD)f(of)h X(\()p Fn(A;)c(L)p Fo(\))i(than)h(in)i Fm(x)p Fo(2.6.1)d(b)q(ecause)j XFn(A)8 b(L)1473 1219 y Fe(y)1473 1255 y Fg(A)1513 1241 Xy Fo(=)1561 1209 y Fh(P)1605 1219 y Fg(p)1605 1254 y(i)p XFj(=)p Fg(i)1666 1241 y Fp(u)1695 1248 y Fg(i)1717 1241 Xy Fn(\015)1741 1248 y Fg(i)1762 1241 y Fp(v)1791 1225 Xy Fg(T)1790 1253 y(i)1818 1241 y Fo(.)59 1298 y(I.e.,)13 Xb(except)h(for)f(the)g(ordering)h(the)f(GSVD)g(quan)o(tities)h XFp(u)1066 1305 y Fg(i)1080 1298 y Fo(,)f Fn(\015)1130 X1305 y Fg(i)1144 1298 y Fo(,)g(and)g Fp(v)1284 1305 y XFg(i)1311 1298 y Fo(are)g(iden)o(tical)j(to)c(the)h(similar)59 X1354 y(SVD)i(quan)o(tities,)h(and)f(with)h(the)f(same)g(notation)g(as)f X(in)i(Eq.)f(\(2.26\))f(w)o(e)g(ha)o(v)o(e)352 1462 y(\()p XFp(u)399 1469 y Fj(1)426 1462 y Fn(:)8 b(:)g(:)e Fp(u)516 X1469 y Fg(p)535 1462 y Fo(\))13 b(=)622 1450 y(\026)614 X1462 y Fn(U)f(E)691 1469 y Fg(p)726 1462 y Fn(;)98 b(V)22 Xb Fo(=)941 1450 y(\026)934 1462 y Fn(V)17 b(E)1012 1469 Xy Fg(p)1047 1462 y Fn(;)98 b Fo(\006)8 b Fn(M)1248 1443 Xy Fe(\000)p Fj(1)1307 1462 y Fo(=)13 b Fn(E)1389 1469 Xy Fg(p)1421 1450 y Fo(\026)1416 1462 y(\006)8 b Fn(E)1491 X1469 y Fg(p)1525 1462 y Fn(:)177 b Fo(\(2.37\))59 1569 Xy(This)16 b(relation)g(is)f(v)o(ery)g(imp)q(ortan)o(t)g(in)h X(connection)g(with)g(the)f(iterativ)o(e)h(regularization)g(metho)q(ds.) X59 1699 y Fp(2.6.3.)g(Norm)h(Relations)i(etc.)59 1788 Xy Fo(F)l(rom)12 b(the)h(ab)q(o)o(v)o(e)f(relations)i(\(2.26\))d(and)i X(\(2.37\))d(b)q(et)o(w)o(een)k(the)e(SVD)h(of)1322 1777 Xy(\026)1310 1788 y Fn(A)f Fo(and)h(the)g(GSVD)g(of)f(\()p XFn(A;)c(L)p Fo(\))59 1844 y(w)o(e)19 b(obtain)g(the)g(follo)o(wing)g(v) Xo(ery)g(imp)q(ortan)o(t)f(relations)h(b)q(et)o(w)o(een)g(the)g(norms)g X(related)g(to)f(the)h(t)o(w)o(o)59 1901 y(regularization)d(problems)356 X2008 y Fm(k)p Fn(L)8 b Fo(\()p Fp(x)g Fm(\000)j Fp(x)546 X1989 y Fe(\003)565 2008 y Fo(\))p Fm(k)606 2015 y Fj(2)638 X2008 y Fo(=)i Fm(k)711 2007 y Fo(\026)709 2008 y Fp(x)c XFm(\000)794 2007 y Fo(\026)792 2008 y Fp(x)820 1989 y XFe(\003)839 2008 y Fm(k)862 2015 y Fj(2)897 2008 y Fn(;)98 Xb Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)h Fp(b)p Fm(k)1207 2015 Xy Fj(2)1239 2008 y Fo(=)j Fm(k)1322 1997 y Fo(\026)1310 X2008 y Fn(A)1354 2007 y Fo(\026)1352 2008 y Fp(x)c Fm(\000)1438 X1996 y Fo(\026)1435 2008 y Fp(b)p Fm(k)1487 2015 y Fj(2)1521 X2008 y Fn(;)181 b Fo(\(2.38\))59 2116 y(where)19 b Fp(x)f XFo(denotes)h(the)g(solution)g(obtained)h(b)o(y)e(transforming)1198 X2115 y(\026)1195 2116 y Fp(x)h Fo(bac)o(k)f(to)g(the)h(general-form)g X(set-)59 2172 y(ting.)35 b(These)21 b(relations)f(are)g(v)o(ery)g(imp)q X(ortan)o(t)g(in)h(connection)g(with)f(metho)q(ds)h(for)e(c)o(ho)q X(osing)i(the)59 2228 y(regularization)16 b(parameter)e(b)q(ecause)i X(they)e(sho)o(w)h(that)f(an)o(y)g(parameter-c)o(hoice)h(strategy)f X(based)h(on)59 2285 y(these)d(norms)g(will)i(yield)g(the)e XFk(same)g Fo(regularization)h(parameter)e(when)i(applied)h(to)d(the)i X(general-form)59 2341 y(problem)j(and)f(the)h(transformed)e X(standard-form)g(problem.)130 2400 y(Sev)o(eral)20 b(routines)h(are)e X(included)k(in)e Ff(Regulariza)m(tion)h(Tools)e Fo(for)f(computations)h X(related)59 2456 y(to)g(the)g(standard-form)g(transformations.)34 Xb(First)20 b(of)g(all,)j(the)d(routines)h Fl(std)p 1445 X2456 14 2 v 18 w(fo)o(rm)d Fo(and)j Fl(gen)p 1730 2456 XV 17 w(fo)o(rm)59 2512 y Fo(p)q(erform)14 b(b)q(oth)g(transformations)f X(to)h(standard)g(from)f(and)h(bac)o(k)h(to)e(general)i(form.)k(These)14 Xb(routines)59 2569 y(are)h(mainly)h(included)h(for)e(p)q(edagogical)h X(reasons.)j(Routine)d Fl(pinit)h Fo(computes)e(the)g(v)o(ector)f XFp(x)1676 2576 y Fj(0)1710 2569 y Fo(in)i(Eq.)59 2625 Xy(\(2.30\))e(as)i(w)o(ell)g(as)g(the)g(matrix)f Fn(T)f(A)i XFo(b)o(y)g(means)g(of)f(Algorithm)h(\(2.34\).)k(Finally)l(,)e(the)e(t)o X(w)o(o)e(routines)59 2686 y Fl(lsolve)h Fo(and)h Fl(ltsolve)f XFo(compute)h Fn(L)616 2664 y Fe(y)616 2700 y Fg(A)646 X2685 y Fo(\026)644 2686 y Fp(x)f Fo(and)g(\()p Fn(L)824 X2664 y Fe(y)824 2700 y Fg(A)852 2686 y Fo(\))870 2670 Xy Fg(T)897 2686 y Fp(x)g Fo(b)o(y)g(the)h(algorithms)f(in)h(\(2.36\).) X130 2744 y(Regarding)g(the)g(matrix)f Fn(L)p Fo(,)g(discrete)i(appro)o X(ximations)e(to)g(deriv)m(ativ)o(e)i(op)q(erators)e(on)g(a)h(regular)59 X2801 y(mesh)e(can)g(b)q(e)g(computed)g(b)o(y)g(routine)g XFl(get)p 803 2801 V 17 w(l)f Fo(whic)o(h)i(also)f(pro)o(vides)g(a)f X(matrix)h Fn(W)19 b Fo(with)c(orthonormal)59 2857 y(basis)h(v)o(ectors) Xe(for)h(the)g(n)o(ull)i(space)e(of)g Fn(L)p Fo(.)p eop X%%Page: 21 23 X21 22 bop 59 159 a Fo(2.7.)14 b(Direct)h(Regularization)i(Metho)q(ds) X1021 b(21)p 59 178 1767 2 v 59 304 a Fr(2.7.)18 b(Direct)f X(Regularization)g(Metho)r(ds)59 406 y Fo(In)k(this)f(and)g(the)g(next)g X(section)g(w)o(e)g(shall)h(brie\015y)g(review)f(the)g(regularization)h X(metho)q(ds)f(for)f(n)o(u-)59 462 y(merical)c(treatmen)o(t)d(of)h X(discrete)h(ill-p)q(osed)i(problems)f(included)h(in)e(the)g XFf(Regulariza)m(tion)h(Tools)59 519 y Fo(pac)o(k)m(age.)20 Xb(Our)14 b(aim)h(is)f(not)g(to)g(compare)g(these)h(and)f(other)g(metho) Xq(ds,)g(b)q(ecause)h(that)f(is)h(outside)g(the)59 575 Xy(scop)q(e)g(of)g(this)g(pap)q(er.)21 b(In)15 b(fact,)f(v)o(ery)h X(little)h(has)f(b)q(een)h(done)f(in)h(this)f(area,)f(cf.)h([2)o(,)f X(37,)g(42,)g(53].)19 b(This)59 632 y(section)e(fo)q(cuses)g(on)g(metho) Xq(ds)g(whic)o(h)g(are)f(essen)o(tially)j(direct,)e(i.e.,)g(metho)q(ds)f X(where)h(the)g(solution)59 688 y(is)g(de\014ned)h(b)o(y)e(a)g(direct)h X(computation)f(\(whic)o(h)h(ma)o(y)e(still)j(in)o(v)o(olv)o(e)f(an)f X(iterativ)o(e)h(ro)q(ot-\014nding)g(pro-)59 745 y(cedure,)g(sa)o(y\),)e X(while)j(regularization)f(metho)q(ds)g(whic)o(h)g(are)f(in)o X(trinsically)j(iterativ)o(e)d(are)g(treated)g(in)59 801 Xy(the)f(next)h(section.)59 920 y Fp(2.7.1.)g(Tikhono)o(v)i X(Regularization)59 1006 y Fo(Tikhono)o(v's)k(metho)q(d)h(is)g(of)g X(course)f(a)h(direct)g(metho)q(d)g(b)q(ecause)h(the)e(regularized)i X(solution)g Fp(x)1796 1013 y Fg(\025)1818 1006 y Fo(,)59 X1062 y(de\014ned)17 b(b)o(y)e(Eq.)f(\(2.6\),)g(is)h(the)h(solution)g X(to)e(the)h(follo)o(wing)h(least)g(squares)f(problem)646 X1180 y(min)729 1118 y Fh(\015)729 1143 y(\015)729 1168 Xy(\015)729 1193 y(\015)752 1120 y(\022)802 1151 y Fn(A)791 X1208 y(\025L)856 1120 y Fh(\023)894 1180 y Fp(x)9 b Fm(\000)977 X1120 y Fh(\022)1057 1151 y Fp(b)1015 1208 y Fn(\025L)f XFp(x)1109 1191 y Fe(\003)1135 1120 y Fh(\023)1166 1118 Xy(\015)1166 1143 y(\015)1166 1168 y(\015)1166 1193 y(\015)1189 X1221 y Fj(2)1231 1180 y Fn(;)471 b Fo(\(2.39\))59 1296 Xy(and)20 b(it)f(is)h(easy)g(to)f(see)g(that)g Fp(x)624 X1303 y Fg(\025)666 1296 y Fo(is)h(unique)h(if)f(the)f(n)o(ull)i(spaces) Xf(of)f Fn(A)g Fo(and)h Fn(L)f Fo(in)o(tersect)h(trivially)59 X1353 y(\(as)15 b(they)h(usually)i(do)e(in)g(practice\).)23 Xb(The)16 b(most)f(e\016cien)o(t)i(algorithm)f(for)f(n)o(umerical)i X(treatmen)o(t)e(of)59 1409 y(Tikhono)o(v's)d(metho)q(d)h(for)e(a)h X(general)h(regularization)g(matrix)f Fn(L)h Fo(consists)f(of)g(three)h X(steps)f([21)o(].)18 b(First,)59 1466 y(the)c(problem)g(is)h X(transformed)d(in)o(to)i(standard)f(form)g(b)o(y)h(means)g(of)f(Eqs.)g X(\(2.22\){\(2.24\))d(from)j Fm(x)p Fo(2.6.1)59 1522 y(\()89 X1511 y(\026)77 1522 y Fn(A)f Fo(=)h Fn(A)i Fo(if)f Fn(L)f XFo(=)g Fn(I)372 1529 y Fg(n)395 1522 y Fo(\),)h(then)g(the)g(matrix)778 X1511 y(\026)766 1522 y Fn(A)g Fo(is)h(transformed)e(in)o(to)h(a)g XFn(p)7 b Fm(\002)h Fn(p)14 b Fo(upp)q(er)h(bidiagonal)h(matrix)70 X1567 y(\026)59 1579 y Fn(B)i Fo(b)o(y)d(means)g(of)g(left)h(and)f(righ) Xo(t)g(orthogonal)f(transformations,)820 1663 y(\026)808 X1675 y Fn(A)e Fo(=)910 1663 y(\026)902 1675 y Fn(U)957 X1663 y Fo(\026)946 1675 y Fn(B)997 1663 y Fo(\026)990 X1675 y Fn(V)1027 1656 y Fg(T)1070 1675 y Fn(;)59 1771 Xy Fo(and)21 b(\014nally)h(the)f(resulting)g(sparse)g(problem)g(with)g X(a)f(banded)1224 1759 y(\026)1214 1771 y Fn(B)j Fo(is)e(solv)o(ed)g X(for)1546 1759 y(\026)1539 1771 y Fn(V)1575 1754 y Fg(T)1605 X1770 y Fo(\026)1603 1771 y Fp(x)1631 1778 y Fg(\025)1674 X1771 y Fo(and)g(the)59 1827 y(solution)16 b(is)g(transformed)e(bac)o(k) Xh(to)g(the)g(original)h(setting)f(b)o(y)h(means)f(of)f(\(2.25\).)130 X1883 y(In)g(this)h(pac)o(k)m(age)f(w)o(e)g(tak)o(e)f(another)h(approac) Xo(h)g(to)f(solving)i(\(2.39\),)d(namely)l(,)j(b)o(y)f(using)h(the)f X(\014lter)59 1940 y(factors)g(and)h(the)h(GSVD)f(explicitly)j(\(or)c X(the)h(SVD,)g(if)h Fn(L)c Fo(=)h Fn(I)1142 1947 y Fg(n)1166 X1940 y Fo(\),)h(cf.)h(Eqs.)f(\(2.18\))g(and)h(\(2.19\).)j(This)59 X1996 y(approac)o(h,)i(whic)o(h)h(is)g(implemen)o(ted)g(in)g(routine)f XFl(tikhonov)p Fo(,)i(is)e(more)g(suited)h(to)e(Matlab's)g(coarse)59 X2053 y(gran)o(ularit)o(y)l(.)g(F)l(or)12 b(p)q(edagogical)j(reasons,)d X(w)o(e)h(also)g(include)i(a)e(routine)h Fl(bidiag)f Fo(for)f X(bidiagonalization)59 2109 y(of)j(a)g(matrix.)59 2228 Xy Fp(2.7.2.)h(Least)j(Squares)d(with)i(a)g(Quadratic)h(Constrain)o(t)59 X2314 y Fo(There)h(are)f(t)o(w)o(o)f(other)h(regularization)h(metho)q X(ds)f(whic)o(h)h(are)f(almost)g(equiv)m(alen)o(t)i(to)e(Tikhono)o(v's) X59 2371 y(metho)q(d,)c(and)g(whic)o(h)h(can)f(b)q(e)g(treated)g(n)o X(umerically)i(b)o(y)d(essen)o(tially)j(the)e(same)f(tec)o(hnique)j(as)d X(men-)59 2427 y(tioned)g(ab)q(o)o(v)o(e)f(in)o(v)o(olving)i(a)e X(transformation)f(to)h(standard)g(form)f(follo)o(w)o(ed)i(b)o(y)f X(bidiagonalization)j(of)59 2484 y(the)h(co)q(e\016cien)o(t)g(matrix.)24 Xb(These)16 b(t)o(w)o(o)g(metho)q(ds)g(are)g(the)h(follo)o(wing)g(least) Xg(squares)f(problems)h(with)59 2540 y(a)e(quadratic)g(inequalit)o(y)i X(constrain)o(t)432 2636 y(min)8 b Fm(k)p Fn(A)g Fp(x)h XFm(\000)h Fp(b)p Fm(k)714 2643 y Fj(2)844 2636 y Fo(sub)s(ject)15 Xb(to)56 b Fm(k)p Fn(L)8 b Fo(\()p Fp(x)g Fm(\000)j Fp(x)1289 X2617 y Fe(\003)1308 2636 y Fo(\))p Fm(k)1349 2643 y Fj(2)1381 X2636 y Fm(\024)i Fn(\013)257 b Fo(\(2.40\))434 2705 y(min)9 Xb Fm(k)p Fn(L)f Fo(\()p Fp(x)g Fm(\000)j Fp(x)708 2686 Xy Fe(\003)727 2705 y Fo(\))p Fm(k)768 2712 y Fj(2)844 X2705 y Fo(sub)s(ject)k(to)56 b Fm(k)p Fn(A)8 b Fp(x)h XFm(\000)h Fp(b)p Fm(k)1298 2712 y Fj(2)1331 2705 y Fm(\024)i XFn(\016)18 b(;)286 b Fo(\(2.41\))59 2801 y(where)13 b XFn(\013)g Fo(and)f Fn(\016)j Fo(are)d(nonzero)g(parameters)g(eac)o(h)h X(pla)o(ying)g(the)g(role)g(as)f(regularization)h(parameter)f(in)59 X2857 y(\(2.40\))f(and)h(\(2.41\),)f(resp)q(ectiv)o(ely)l(.)21 Xb(The)13 b(solution)g(to)f(b)q(oth)h(these)f(problems)h(is)g(iden)o X(tical)i(to)d Fp(x)1704 2864 y Fg(\025)1738 2857 y Fo(from)p Xeop X%%Page: 22 24 X22 23 bop 64 159 a Fo(22)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(Tikhono)o(v's)11 b(metho)q(d)g(for)g(suitably) Xh(c)o(hosen)f(v)m(alues)i(of)d Fn(\025)h Fo(that)g(dep)q(end)h(in)g(a)f X(nonlinear)i(w)o(a)o(y)d(on)h Fn(\013)g Fo(and)59 361 Xy Fn(\016)r Fo(.)19 b(The)13 b(solution)h(to)e(the)i(\014rst)e(problem) Xi(\(2.40\))d(is)j(computed)f(as)g(follo)o(ws:)18 b(if)c XFm(k)p Fn(L)8 b Fo(\()p Fp(x)1517 368 y Fj(LSQ)1592 361 Xy Fm(\000)e Fp(x)1661 368 y Fj(0)1681 361 y Fo(\))p Fm(k)1722 X368 y Fj(2)1753 361 y Fm(\024)13 b Fn(\013)59 417 y Fo(then)j XFn(\025)c Fm( )h Fo(0)i(and)g Fp(x)414 424 y Fg(\025)449 X417 y Fm( )e Fp(x)535 424 y Fj(LSQ)606 417 y Fo(,)i(else)h(use)f(an)g X(iterativ)o(e)h(sc)o(heme)f(to)g(solv)o(e)401 517 y(min)9 Xb Fm(k)p Fn(A)f Fp(x)578 524 y Fg(\025)609 517 y Fm(\000)j XFp(b)p Fm(k)707 524 y Fj(2)817 517 y Fo(sub)s(ject)k(to)91 Xb Fm(k)p Fn(L)8 b Fo(\()p Fp(x)1215 524 y Fg(\025)1246 X517 y Fm(\000)i Fp(x)1319 499 y Fe(\003)1339 517 y Fo(\))p XFm(k)1380 524 y Fj(2)1411 517 y Fo(=)j Fn(\013)59 617 Xy Fo(for)i Fn(\025)g Fo(and)g Fp(x)287 624 y Fg(\025)309 X617 y Fo(.)21 b(Similarly)l(,)c(the)e(solution)i(to)d(the)i(second)g X(problem)g(\(2.41\))d(is)j(computed)g(as)f(follo)o(ws)59 X674 y(\(where)h Fp(x)237 681 y Fj(0)271 674 y Fo(is)g(giv)o(en)h(b)o(y) Xe(Eq.)g(\(2.30\)\):)j(if)f Fm(k)p Fn(A)8 b Fp(x)886 681 Xy Fj(0)915 674 y Fm(\000)i Fp(b)p Fm(k)1012 681 y Fj(2)1045 X674 y Fm(\024)k Fn(\016)j Fo(then)f Fn(\025)d Fm( )g(1)j XFo(and)g Fp(x)1511 681 y Fg(\025)1547 674 y Fm( )d Fp(x)1633 X681 y Fj(0)1653 674 y Fo(,)i(else)h(use)59 730 y(an)f(iterativ)o(e)h X(sc)o(heme)f(to)g(solv)o(e)405 830 y(min)8 b Fm(k)p Fn(L)g XFo(\()p Fp(x)596 837 y Fg(\025)627 830 y Fm(\000)j Fp(x)701 X812 y Fe(\003)720 830 y Fo(\))p Fm(k)761 837 y Fj(2)871 X830 y Fo(sub)s(ject)k(to)91 b Fm(k)p Fn(A)8 b Fp(x)1254 X837 y Fg(\025)1285 830 y Fm(\000)j Fp(b)p Fm(k)1383 837 Xy Fj(2)1415 830 y Fo(=)i Fn(\016)59 930 y Fo(for)e Fn(\025)f XFo(and)h Fp(x)274 937 y Fg(\025)297 930 y Fo(.)18 b(In)12 Xb Ff(Regulariza)m(tion)h(Tools)p Fo(,)e(routines)h Fl(lsqi)f XFo(and)h Fl(discrep)g Fo(solv)o(e)f(\(2.40\))f(and)h(\(2.41\),)59 X987 y(resp)q(ectiv)o(ely)l(.)25 b(The)16 b(name)g(\\discrep")h(is)g X(related)f(to)g(the)g(discrepancy)i(principle)h(for)c(c)o(ho)q(osing)i X(the)59 1043 y(regularization)e(parameter,)e(cf.)g(Section)i(2.9.)k(An) X14 b(e\016cien)o(t)g(algorithm)g(for)g(solving)g(\(2.40\))e(when)j XFn(A)59 1100 y Fo(is)d(large)g(and)g(sparse,)g(based)g(on)g(Gauss)f X(quadrature)g(and)h(Lanczos)g(bidiagonalization,)i(is)f(describ)q(ed)59 X1156 y(in)j([30)o(].)59 1276 y Fp(2.7.3.)g(TSVD,)h(MTSVD,)g(and)h X(TGSVD)59 1362 y Fo(A)11 b(fundamen)o(tal)g(observ)m(ation)g(regarding) Xg(the)g(ab)q(o)o(v)o(emen)o(tioned)g(metho)q(ds)g(is)g(that)g(they)f X(circum)o(v)o(en)o(t)59 1418 y(the)21 b(ill)h(conditioning)h(af)d XFn(A)h Fo(b)o(y)f(in)o(tro)q(ducing)i(a)f(new)f(problem)i(\(2.39\))c X(with)j(a)g(w)o(ell-conditioned)59 1496 y(co)q(e\016cien)o(t)e(matrix) X425 1436 y Fh(\022)474 1468 y Fn(A)463 1524 y(\025L)528 X1436 y Fh(\023)576 1496 y Fo(with)f(full)i(rank.)28 b(A)18 Xb(di\013eren)o(t)g(w)o(a)o(y)f(to)g(treat)g(the)h(ill-conditi)q(oning)j X(of)59 1571 y Fn(A)16 b Fo(is)g(to)e(deriv)o(e)j(a)e(new)h(problem)g X(with)g(a)f(w)o(ell-conditioned)j Fk(r)n(ank)e(de\014cient)f XFo(co)q(e\016cien)o(t)h(matrix.)21 b(A)59 1628 y(fundamen)o(tal)16 Xb(result)g(ab)q(out)g(rank)f(de\014cien)o(t)i(matrices,)f(whic)o(h)g X(can)g(b)q(e)g(deriv)o(ed)h(from)e(the)g(SVD)h(of)59 X1684 y Fn(A)p Fo(,)c(is)g(that)e(the)i(closest)f(rank-)p XFn(k)i Fo(appro)o(ximation)e Fn(A)944 1691 y Fg(k)977 X1684 y Fo(to)f Fn(A)p Fo(|measured)j(in)f(the)f(2-norm|is)h(obtained)59 X1741 y(b)o(y)j(truncating)h(the)f(SVD)g(expansion)h(in)g(\(2.8\))e(at)g XFn(k)q Fo(,)h(i.e.,)g Fn(A)1133 1748 y Fg(k)1170 1741 Xy Fo(is)g(giv)o(en)h(b)o(y)639 1880 y Fn(A)673 1887 y XFg(k)707 1880 y Fo(=)775 1827 y Fg(k)755 1839 y Fh(X)756 X1931 y Fg(i)p Fj(=1)830 1880 y Fp(u)859 1887 y Fg(i)881 X1880 y Fn(\033)907 1887 y Fg(i)928 1880 y Fp(v)957 1861 Xy Fg(T)956 1891 y(i)999 1880 y Fn(;)98 b(k)14 b Fm(\024)f XFn(n)i(:)464 b Fo(\(2.42\))59 2017 y(The)15 b(truncated)g(SVD)h X(\(TSVD\))e([72)o(,)h(38)o(,)g(42)o(])g(and)g(the)g(mo)q(di\014ed)i X(TSVD)e(\(MTSVD\))f([49)o(])g(regular-)59 2073 y(ization)i(metho)q(ds)f X(are)g(based)h(on)f(this)h(observ)m(ation)f(in)h(that)f(one)g(solv)o X(es)g(the)h(problems)505 2173 y(min)8 b Fm(k)p Fp(x)p XFm(k)662 2180 y Fj(2)779 2173 y Fo(sub)s(ject)15 b(to)56 Xb(min)8 b Fm(k)p Fn(A)1174 2180 y Fg(k)1203 2173 y Fp(x)i XFm(\000)g Fp(b)p Fm(k)1338 2180 y Fj(2)1715 2173 y Fo(\(2.43\))507 X2242 y(min)f Fm(k)p Fn(L)f Fp(x)p Fm(k)704 2249 y Fj(2)779 X2242 y Fo(sub)s(ject)15 b(to)56 b(min)8 b Fm(k)p Fn(A)1174 X2249 y Fg(k)1203 2242 y Fp(x)i Fm(\000)g Fp(b)p Fm(k)1338 X2249 y Fj(2)1373 2242 y Fn(;)329 b Fo(\(2.44\))59 2342 Xy(where)20 b Fn(A)229 2349 y Fg(k)269 2342 y Fo(is)g(the)g(rank-)p XFn(k)g Fo(matrix)f(in)h(Eq.)f(\(2.42\).)31 b(The)19 b(solutions)i(to)d X(these)i(t)o(w)o(o)e(problems)i(are)59 2398 y(giv)o(en)c(b)o(y)780 X2491 y Fp(x)808 2498 y Fg(k)842 2491 y Fo(=)910 2439 Xy Fg(k)890 2451 y Fh(X)891 2542 y Fg(i)p Fj(=1)970 2461 Xy Fp(u)999 2444 y Fg(T)999 2473 y(i)1026 2461 y Fp(b)p X970 2481 86 2 v 993 2523 a Fn(\033)1019 2530 y Fg(i)1068 X2491 y Fp(v)1096 2498 y Fg(i)1715 2491 y Fo(\(2.45\))666 X2618 y Fp(x)694 2625 y Fg(L;k)761 2618 y Fo(=)d Fp(x)837 X2625 y Fg(k)868 2618 y Fm(\000)e Fn(V)941 2625 y Fg(k)969 X2618 y Fo(\()p Fn(L)d(V)1053 2625 y Fg(k)1073 2618 y XFo(\))1091 2600 y Fe(y)1109 2618 y Fn(L)g Fp(x)1176 2625 Xy Fg(k)1211 2618 y Fn(;)491 b Fo(\(2.46\))59 2701 y(where)16 Xb(\()p Fn(L)8 b(V)275 2708 y Fg(k)295 2701 y Fo(\))313 X2684 y Fe(y)347 2701 y Fo(is)16 b(the)h(pseudoin)o(v)o(erse)g(of)e XFn(L)8 b(V)879 2708 y Fg(k)900 2701 y Fo(,)16 b(and)g XFn(V)1045 2708 y Fg(k)1080 2701 y Fm(\021)e Fo(\()p Fp(v)1175 X2708 y Fg(k)q Fj(+1)1241 2701 y Fn(;)8 b(:)g(:)g(:)d(;)j XFp(v)1371 2708 y Fg(n)1393 2701 y Fo(\).)22 b(In)17 b(other)e(w)o X(ords,)h(the)59 2757 y(correction)f(to)g Fp(x)355 2764 Xy Fg(k)391 2757 y Fo(in)h(\(2.46\))d(is)j(the)f(solution)h(to)f(the)g X(follo)o(wing)h(least)f(squares)g(problem)709 2857 y(min)8 Xb Fm(k)p Fo(\()p Fn(L)g(V)899 2864 y Fg(k)919 2857 y XFo(\))g Fp(z)i Fm(\000)g Fn(L)e Fp(x)1090 2864 y Fg(k)1111 X2857 y Fm(k)1134 2864 y Fj(2)1168 2857 y Fn(:)p eop X%%Page: 23 25 X23 24 bop 59 159 a Fo(2.7.)14 b(Direct)h(Regularization)i(Metho)q(ds) X1021 b(23)p 59 178 1767 2 v 59 304 a(W)l(e)15 b(note)g(in)i(passing)e X(that)g(the)g(TSVD)g(solution)h Fp(x)970 311 y Fg(k)1006 X304 y Fo(is)g(the)f(only)h(regularized)h(solution)f(whic)o(h)g(has)59 X361 y(no)g(comp)q(onen)o(t)f(in)i(the)e(n)o(umerical)i(n)o(ull-space)g X(of)e Fn(A)p Fo(,)h(spanned)g(b)o(y)g(the)f(columns)h(of)g XFn(V)1598 368 y Fg(k)1618 361 y Fo(.)21 b(All)c(other)59 X417 y(regularized)i(solutions,)f(exempli\014ed)i(b)o(y)d(the)h(MTSVD)f X(solution)h Fp(x)1274 424 y Fg(L;k)1328 417 y Fo(,)g(has)f(some)g(comp) Xq(onen)o(t)h(in)59 474 y Fn(A)p Fo('s)j(n)o(umerical)h(n)o(ull)h(space) Xe(in)h(order)f(to)g(ac)o(hiev)o(e)h(the)f(desired)h(prop)q(erties)g(of) Xf(the)g(solution,)i(as)59 530 y(con)o(trolled)16 b(b)o(y)f(the)g X(matrix)g Fn(L)p Fo(.)130 587 y(As)h(an)g(alternativ)o(e)h(to)f(the)g X(ab)q(o)o(v)o(emen)o(tioned)h(MTSVD)f(metho)q(d)h(for)f(general-form)g X(problems)59 643 y(one)c(can)h(generalize)h(the)e(TSVD)g(metho)q(d)h X(to)e(the)i(GSVD)f(setting)g([41)o(,)g(44)o(].)19 b(The)12 Xb(resulting)i(metho)q(d,)59 700 y(truncated)h(GSVD)g(\(TGSVD\),)f(is)i X(easiest)g(to)e(in)o(tro)q(duce)j(via)e(the)h(standard-form)e X(transformation)59 760 y(from)j Fm(x)p Fo(2.6.2)g(with)419 X749 y(\026)407 760 y Fn(A)h Fo(=)f Fn(A)8 b(L)584 738 Xy Fe(y)584 774 y Fg(A)612 760 y Fo(,)647 748 y(\026)644 X760 y Fp(b)17 b Fo(=)h Fp(b)12 b Fm(\000)g Fn(A)c Fp(x)901 X767 y Fj(0)920 760 y Fo(,)18 b(and)g Fp(x)f Fo(=)h Fn(L)1171 X738 y Fe(y)1171 774 y Fg(A)1202 759 y Fo(\026)1199 760 Xy Fp(x)12 b Fo(+)g Fp(x)1314 767 y Fj(0)1351 760 y Fm(\))17 Xb Fn(L)8 b Fp(x)17 b Fo(=)1552 759 y(\026)1550 760 y XFp(x)o Fo(.)28 b(In)19 b(analogy)59 817 y(with)d(the)h(TSVD)e(metho)q X(d)i(w)o(e)e(no)o(w)h(in)o(tro)q(duce)h(a)f(rank-)p Fn(k)h XFo(appro)o(ximation)1419 805 y(\026)1407 817 y Fn(A)1441 X824 y Fg(k)1478 817 y Fo(to)1546 805 y(\026)1534 817 Xy Fn(A)f Fo(via)h(its)f(SVD.)59 873 y(Due)j(to)f(the)g(SVD-GSVD)h X(relations)g(b)q(et)o(w)o(een)934 862 y(\026)922 873 Xy Fn(A)g Fo(and)g(\()p Fn(A;)8 b(L)p Fo(\),)17 b(computation)h(of)h X(the)f(matrix)1787 862 y(\026)1775 873 y Fn(A)1809 880 Xy Fg(k)59 930 y Fo(is)f(essen)o(tially)h(a)f(\\truncated)f(GSVD")g(b)q X(ecause)946 918 y(\026)934 930 y Fn(A)968 937 y Fg(k)1005 X930 y Fo(=)1055 898 y Fh(P)1099 908 y Fg(p)1099 944 y(i)p XFj(=)p Fg(p)p Fe(\000)p Fg(k)q Fj(+1)1258 930 y Fp(u)1287 X937 y Fg(i)1308 930 y Fn(\015)1332 937 y Fg(i)1354 930 Xy Fp(v)1383 913 y Fg(T)1382 942 y(i)1409 930 y Fo(.)24 Xb(Then)18 b(w)o(e)e(de\014ne)i(the)59 999 y(truncated)d(GSVD)g X(\(TGSVD\))f(solution)i(as)854 998 y(^)852 999 y Fp(x)880 X1006 y Fg(L;k)947 999 y Fo(=)d Fn(L)1026 977 y Fe(y)1026 X1013 y Fg(A)1057 998 y Fo(\026)1055 999 y Fp(x)1083 1006 Xy Fg(k)1114 999 y Fo(+)d Fp(x)1187 1006 y Fj(0)1207 999 Xy Fo(,)k(where)1368 998 y(\026)1366 999 y Fp(x)1394 1006 Xy Fg(k)1430 999 y Fo(solv)o(es)h(the)g(problem)487 1101 Xy(min)8 b Fm(k)595 1100 y Fo(\026)593 1101 y Fp(x)p Fm(k)644 X1108 y Fj(2)754 1101 y Fo(sub)s(ject)15 b(to)98 b(min)8 Xb Fm(k)1169 1090 y Fo(\026)1157 1101 y Fn(A)1191 1108 Xy Fg(k)1223 1100 y Fo(\026)1220 1101 y Fp(x)i Fm(\000)1306 X1089 y Fo(\026)1303 1101 y Fp(b)p Fm(k)1355 1108 y Fj(2)1390 X1101 y Fn(:)312 b Fo(\(2.47\))59 1203 y(De\014nition)14 Xb(\(2.47\))d(together)g(with)i(the)g(GSVD)f(of)h(\()p XFn(A;)8 b(L)p Fo(\))j(then)i(immediately)h(lead)f(to)f(the)h(follo)o X(wing)59 1260 y(simple)k(expression)f(of)f(the)g(TGSVD)g(solution)547 X1391 y(^)545 1392 y Fp(x)573 1399 y Fg(k)q(;L)640 1392 Xy Fo(=)754 1336 y Fg(p)732 1352 y Fh(X)688 1444 y Fg(i)p XFj(=)p Fg(p)p Fe(\000)p Fg(k)q Fj(+1)849 1361 y Fp(u)878 X1345 y Fg(T)878 1373 y(i)906 1361 y Fp(b)p 849 1382 86 X2 v 872 1423 a Fn(\033)898 1430 y Fg(i)948 1392 y Fp(x)976 X1399 y Fg(i)999 1392 y Fo(+)1085 1339 y Fg(n)1066 1352 Xy Fh(X)1045 1443 y Fg(i)p Fj(=)p Fg(p)p Fj(+1)1147 1392 Xy Fo(\()p Fp(u)1194 1373 y Fg(T)1194 1403 y(i)1221 1392 Xy Fp(b)p Fo(\))8 b Fp(x)1304 1399 y Fg(i)1333 1392 y XFn(;)369 b Fo(\(2.48\))59 1538 y(where)16 b(the)h(last)f(term)g(is)g X(the)g(comp)q(onen)o(t)h Fp(x)855 1545 y Fj(0)890 1538 Xy Fo(\(2.30\))d(in)j(the)g(n)o(ull)g(space)g(of)f Fn(L)p XFo(.)22 b(De\014ned)17 b(this)g(w)o(a)o(y)l(,)59 1595 Xy(the)g(TGSVD)g(solution)h(is)f(a)g(natural)g(generalization)i(of)d X(the)i(TSVD)e(solution)i Fp(x)1513 1602 y Fg(k)1534 1595 Xy Fo(.)26 b(The)17 b(TGSVD)59 1651 y(metho)q(d)g(is)g(also)g(a)g X(generalization)h(of)e(TSVD)h(b)q(ecause)h(b)q(oth)f XFp(x)1202 1658 y Fg(k)1240 1651 y Fo(and)1332 1650 y(^)1330 X1651 y Fp(x)1358 1658 y Fg(k)q(;L)1429 1651 y Fo(can)g(b)q(e)h(deriv)o X(ed)f(from)59 1708 y(the)d(corresp)q(onding)h(Tikhono)o(v)f(solutions)g X(\(2.18\))e(and)i(\(2.19\))e(b)o(y)i(substituting)h(0's)e(and)h(1's)f X(for)h(the)59 1764 y(Tikhono)o(v)h(\014lter)h(factors)e XFn(f)541 1771 y Fg(i)555 1764 y Fo(.)130 1820 y(The)k(TSVD,)f(MTSVD,)g X(and)h(TGSVD)g(solutions)g(are)g(computed)g(b)o(y)g(the)g(routines)g X(with)h(the)59 1877 y(ob)o(vious)c(names)h Fl(tsvd)p XFo(,)g Fl(mtsvd)p Fo(,)f(and)g Fl(tgsvd)p Fo(.)59 1997 Xy Fp(2.7.4.)h(Damp)q(ed)i(SVD/GSVD)59 2083 y Fo(A)12 Xb(less)h(kno)o(w)f(regularization)h(metho)q(d)g(whic)o(h)g(is)f(based)h X(on)f(the)h(SVD)f(or)g(the)g(GSVD)g(is)h(the)f(damp)q(ed)59 X2139 y(SVD/GSVD)21 b(\(damp)q(ed)h(SVD)f(w)o(as)g(in)o(tro)q(duced)i X(in)f([20)o(],)g(and)g(our)f(generalization)i(to)e(damp)q(ed)59 X2196 y(GSVD)15 b(is)g(ob)o(vious\).)20 b(Here,)15 b(instead)h(of)e X(using)i(\014lter)g(factors)e(0)h(and)g(1)g(as)f(in)i(TSVD)f(and)h X(TGSVD,)59 2252 y(one)f(in)o(tro)q(duces)h(a)f(smo)q(other)g(cut-o\013) Xg(b)o(y)g(means)g(of)g(\014lter)g(factors)f Fn(f)1274 X2259 y Fg(i)1304 2252 y Fo(de\014ned)j(as)206 2361 y XFn(f)228 2368 y Fg(i)255 2361 y Fo(=)349 2330 y Fn(\033)375 X2337 y Fg(i)p 308 2350 123 2 v 308 2392 a Fn(\033)334 X2399 y Fg(i)359 2392 y Fo(+)10 b Fn(\025)481 2361 y Fo(\(for)k XFn(L)f Fo(=)g Fn(I)680 2368 y Fg(n)703 2361 y Fo(\))91 Xb(and)g Fn(f)998 2368 y Fg(i)1025 2361 y Fo(=)1143 2330 Xy Fn(\033)1169 2337 y Fg(i)p 1078 2350 172 2 v 1078 2392 Xa Fn(\033)1104 2399 y Fg(i)1128 2392 y Fo(+)10 b Fn(\025)e(\026)1235 X2399 y Fg(i)1299 2361 y Fo(\(for)15 b Fn(L)d Fm(6)p Fo(=)h XFn(I)1498 2368 y Fg(n)1522 2361 y Fo(\))i Fn(:)147 b XFo(\(2.49\))59 2482 y(These)21 b(\014lter)f(factors)f(deca)o(y)h(slo)o X(w)o(er)g(than)g(the)g(Tikhono)o(v)g(\014lter)h(factors)e(and)h(th)o X(us,)h(in)g(a)f(sense,)59 2538 y(in)o(tro)q(duce)h(less)f(\014ltering.) X34 b(The)19 b(damp)q(ed)i(SVD/GSVD)e(solutions)h(are)f(computed)h(b)o X(y)g(means)f(of)59 2595 y(routine)d Fl(dsvd)p Fo(.)59 X2715 y Fp(2.7.5.)g(Maxim)o(um)h(En)o(trop)o(y)f(Regularization)59 X2801 y Fo(This)h(regularization)g(metho)q(d)g(is)g(frequen)o(tly)g X(used)g(in)g(image)g(reconstruction)g(and)f(related)h(appli-)59 X2857 y(cations)g(where)g(a)f(solution)i(with)f(p)q(ositiv)o(e)g(elemen) Xo(ts)h(is)f(sough)o(t.)23 b(In)18 b(maxim)o(um)e(en)o(trop)o(y)g X(regular-)p eop X%%Page: 24 26 X24 25 bop 64 159 a Fo(24)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(ization,)f(the)f(follo)o(wing)h(nonlinear)g X(function)h(is)e(used)h(as)f(side)h(constrain)o(t:)693 X431 y(\012\()p Fp(x)p Fo(\))c(=)869 378 y Fg(n)850 391 Xy Fh(X)851 482 y Fg(i)p Fj(=1)925 431 y Fn(x)951 438 Xy Fg(i)980 431 y Fo(log)q(\()p Fn(w)1090 438 y Fg(i)1111 X431 y Fn(x)1137 438 y Fg(i)1151 431 y Fo(\))j Fn(;)518 Xb Fo(\(2.50\))59 564 y(where)16 b Fn(x)217 571 y Fg(i)248 X564 y Fo(are)f(the)i(p)q(ositiv)o(e)g(elemen)o(ts)g(of)e(the)i(v)o X(ector)e Fp(x)p Fo(,)h(and)g Fn(w)1208 571 y Fj(1)1227 X564 y Fn(;)8 b(:)g(:)g(:)d(;)j(w)1362 571 y Fg(n)1400 X564 y Fo(are)16 b Fn(n)h Fo(w)o(eigh)o(ts.)22 b(Notice)59 X621 y(that)12 b Fm(\000)p Fo(\012\()p Fp(x)p Fo(\))g(measures)g(the)h X(en)o(trop)o(y)e(of)i Fp(x)p Fo(,)f(hence)h(the)g(name)g(of)f(this)h X(regularization)g(metho)q(d.)19 b(The)59 677 y(mathematical)e X(justi\014cation)g(for)f(this)g(particular)h(c)o(hoice)h(of)e(\012\()p XFp(x)p Fo(\))f(is)i(that)e(it)i(yields)h(a)e(solution)h XFp(x)59 733 y Fo(whic)o(h)f(is)g(most)f(ob)s(jectiv)o(e,)g(or)g X(maximally)h(uncommitted,)g(with)g(resp)q(ect)f(to)g(missing)i X(information)59 790 y(in)f(the)f(righ)o(t-hand)h(side,)g(cf.)f(e.g.)f X([64)o(].)130 846 y(Maxim)o(um)j(en)o(trop)o(y)g(regularization)h(is)g X(implemen)o(ted)i(in)e Ff(Regulariza)m(tion)i(Tools)d XFo(in)i(the)59 903 y(routine)13 b Fl(maxent)f Fo(whic)o(h)i(uses)e(a)h X(nonlinear)g(conjugate)f(gradien)o(t)h(algorithm)f([28)o(,)h XFm(x)p Fo(4.1])e(with)i(inexact)59 959 y(line)18 b(searc)o(h)e(to)g X(compute)g(the)h(regularized)g(solution.)24 b(The)17 Xb(t)o(ypical)g(step)f(in)h(this)g(metho)q(d)f(has)h(the)59 X1016 y(form)592 1061 y Fp(x)620 1045 y Fj(\()p Fg(k)q XFj(+1\))757 1061 y Fm( )42 b Fp(x)872 1045 y Fj(\()p XFg(k)q Fj(\))930 1061 y Fo(+)11 b Fn(\013)1005 1068 y XFg(k)1034 1061 y Fp(p)1063 1045 y Fj(\()p Fg(k)q Fj(\))592 X1120 y Fp(p)621 1103 y Fj(\()p Fg(k)q Fj(+1\))757 1120 Xy Fm( )42 b(\000r)p Fn(F)6 b Fo(\()p Fp(x)998 1103 y XFj(\()p Fg(k)q Fj(+1\))1092 1120 y Fo(\))j(+)i Fn(\014)1191 X1127 y Fg(k)1220 1120 y Fp(p)1249 1103 y Fj(\()p Fg(k)q XFj(\))1715 1090 y Fo(\(2.51\))59 1198 y(in)16 b(whic)o(h)g XFn(F)22 b Fo(is)16 b(the)f(function)h(to)e(b)q(e)i(minimized,)532 X1324 y Fn(F)6 b Fo(\()p Fp(x)p Fo(\))12 b(=)h Fm(k)p XFn(A)8 b Fp(x)h Fm(\000)h Fp(b)p Fm(k)890 1306 y Fj(2)890 X1336 y(2)920 1324 y Fo(+)g Fn(\025)992 1306 y Fj(2)1038 X1271 y Fg(n)1019 1284 y Fh(X)1021 1375 y Fg(i)p Fj(=1)1094 X1324 y Fn(x)1120 1331 y Fg(i)1142 1324 y Fo(log)q(\()p XFn(w)1252 1331 y Fg(i)1273 1324 y Fn(x)1299 1331 y Fg(i)1313 X1324 y Fo(\))k Fn(;)59 1457 y Fo(and)h Fn(F)6 b Fo('s)16 Xb(gradien)o(t)f(is)h(giv)o(en)f(b)o(y)451 1614 y Fm(r)p XFn(F)6 b Fo(\()p Fp(x)p Fo(\))12 b(=)h(2)8 b Fn(A)713 X1596 y Fg(T)740 1614 y Fo(\()p Fn(A)g Fp(x)h Fm(\000)h XFp(b)p Fo(\))g(+)g Fn(\025)1011 1596 y Fj(2)1038 1517 Xy Fh(0)1038 1590 y(B)1038 1617 y(@)1086 1547 y Fo(1)g(+)g(log)q(\()p XFn(w)1274 1554 y Fj(1)1293 1547 y Fn(x)1319 1554 y Fj(1)1338 X1547 y Fo(\))1215 1592 y(.)1215 1609 y(.)1215 1625 y(.)1082 X1682 y(1)g(+)g(log)q(\()p Fn(w)1270 1689 y Fg(n)1293 X1682 y Fn(x)1319 1689 y Fg(n)1342 1682 y Fo(\))1367 1517 Xy Fh(1)1367 1590 y(C)1367 1617 y(A)1426 1614 y Fn(:)59 X1781 y Fo(In)18 b(Algorithm)f(\(2.51\),)f(the)h(step-length)h X(parameter)f Fn(\013)1051 1788 y Fg(k)1089 1781 y Fo(miminizes)j XFn(F)6 b Fo(\()p Fp(x)1385 1765 y Fj(\()p Fg(k)q Fj(\))1445 X1781 y Fo(+)11 b Fn(\013)1520 1788 y Fg(k)1549 1781 y XFp(p)1578 1765 y Fj(\()p Fg(k)q Fj(\))1627 1781 y Fo(\))17 Xb(with)h(the)59 1837 y(constrain)o(t)d(that)g(all)h(elemen)o(ts)h(of)e XFp(x)702 1821 y Fj(\()p Fg(k)q Fj(\))760 1837 y Fo(+)c XFn(\013)835 1844 y Fg(k)864 1837 y Fp(p)893 1821 y Fj(\()p XFg(k)q Fj(\))957 1837 y Fo(b)q(e)17 b(p)q(ositiv)o(e,)f(and)f(it)h(is)g X(computed)g(b)o(y)g(means)f(of)59 1894 y(an)g(inexact)h(line)h(searc)o X(h.)j(Then)15 b Fn(\014)666 1901 y Fg(k)702 1894 y Fo(is)h(computed)g X(b)o(y)329 1993 y Fn(\014)355 2000 y Fg(k)388 1993 y XFo(=)d(\()p Fm(r)p Fn(F)6 b Fo(\()p Fp(x)573 1974 y Fj(\()p XFg(k)q Fj(+1\))666 1993 y Fo(\))k Fm(\000)h(r)p Fn(F)6 Xb Fo(\()p Fp(x)859 1974 y Fj(\()p Fg(k)q Fj(\))907 1993 Xy Fo(\)\))943 1974 y Fg(T)970 1993 y Fm(r)p Fn(F)g Fo(\()p XFp(x)1089 1974 y Fj(\()p Fg(k)q Fj(+1\))1183 1993 y Fo(\))i XFn(=)g Fm(kr)p Fn(F)e Fo(\()p Fp(x)1382 1974 y Fj(\()p XFg(k)q Fj(+1\))1473 1993 y Fo(\))p Fm(k)1514 1974 y Fj(2)1514 X2004 y(2)1549 1993 y Fn(:)59 2092 y Fo(This)21 b(c)o(hoice)g(of)f XFn(\014)391 2099 y Fg(k)432 2092 y Fo(has)h(the)f(p)q(oten)o(tial)h X(adv)m(an)o(tage)f(that)f(it)i(giv)o(es)g(\\automatic")e(restart)g(to)h X(the)59 2148 y(steep)q(est)c(descen)o(t)f(direction)i(in)f(case)f(of)g X(slo)o(w)g(con)o(v)o(ergence.)59 2268 y Fp(2.7.6.)h(T)l(runcated)i(T)l X(otal)h(Least)f(Squares)59 2353 y Fo(The)f(last)f(direct)h X(regularization)g(metho)q(d)g(included)h(in)g Ff(Regulariza)m(tion)g X(Tools)e Fo(is)h(truncated)59 2410 y(total)22 b(least)g(squares)h X(\(TTLS\).)e(F)l(or)h(rank)g(de\014cien)o(t)i(matrices,)g(total)e X(least)g(squares)g([26)o(])g(tak)o(es)59 2466 y(its)g(basis)g(in)h(an)f X(SVD)g(of)f(the)h(comp)q(ound)g(matrix)g(\()p Fn(A)f XFp(b)p Fo(\))j(=)1229 2455 y(~)1221 2466 y Fn(U)1269 X2455 y Fo(~)1264 2466 y(\006)1312 2455 y(~)1305 2466 Xy Fn(V)1341 2450 y Fg(T)1391 2466 y Fo(with)e(the)g(matrix)1747 X2455 y(~)1740 2466 y Fn(V)33 b Fm(2)59 2523 y Fp(I)-8 Xb(R)111 2505 y Fj(\()p Fg(n)p Fj(+1\))p Fe(\002)p Fj(\()p XFg(n)p Fj(+1\))343 2523 y Fo(partitioned)16 b(suc)o(h)g(that)335 X2629 y(~)328 2641 y Fn(V)22 b Fo(=)425 2581 y Fh(\022)470 X2601 y Fo(~)463 2612 y Fn(V)490 2619 y Fj(11)579 2601 Xy Fo(~)572 2612 y Fn(V)599 2619 y Fj(12)470 2657 y Fo(~)463 X2669 y Fn(V)490 2676 y Fj(21)579 2657 y Fo(~)572 2669 Xy Fn(V)599 2676 y Fj(22)644 2581 y Fh(\023)697 2641 y XFn(;)815 2629 y Fo(~)808 2641 y Fn(V)835 2648 y Fj(11)885 X2641 y Fm(2)13 b Fp(I)-8 b(R)979 2622 y Fg(n)p Fe(\002)p XFg(k)1064 2641 y Fn(;)1183 2629 y Fo(~)1176 2641 y Fn(V)1203 X2648 y Fj(22)1252 2641 y Fm(2)13 b Fp(I)-8 b(R)1346 2622 Xy Fj(1)p Fe(\002)p Fj(\()p Fg(n)p Fj(+1)p Fe(\000)p Fg(k)q XFj(\))1549 2641 y Fn(;)153 b Fo(\(2.52\))59 2758 y(where)15 Xb Fn(k)i Fo(is)e(the)h(n)o(umerical)g(rank)f(of)g Fn(A)p XFo(.)20 b(Then)15 b(the)h(TLS)f(solution)h(is)g(giv)o(en)g(b)o(y)594 X2856 y(~)592 2857 y Fp(x)620 2864 y Fg(k)653 2857 y Fo(=)d XFm(\000)743 2846 y Fo(~)736 2857 y Fn(V)763 2864 y Fj(12)815 X2846 y Fo(~)808 2857 y Fn(V)845 2835 y Fe(y)835 2870 Xy Fj(22)884 2857 y Fo(=)g Fm(\000)974 2846 y Fo(~)967 X2857 y Fn(V)994 2864 y Fj(12)1046 2846 y Fo(~)1039 2857 Xy Fn(V)1076 2838 y Fg(T)1066 2868 y Fj(22)1111 2857 y XFn(=)8 b Fm(k)1172 2846 y Fo(~)1165 2857 y Fn(V)1192 X2864 y Fj(22)1228 2857 y Fm(k)1251 2838 y Fj(2)1251 2868 Xy(2)1285 2857 y Fn(:)417 b Fo(\(2.53\))p eop X%%Page: 25 27 X25 26 bop 59 159 a Fo(2.8.)14 b(Iterativ)o(e)h(Regularization)i(Metho)q X(ds)976 b(25)p 59 178 1767 2 v 59 304 a(The)15 b(TLS)g(solution)h(is)f X(robust)g(to)f(p)q(erturbations)h(of)g Fn(A)f Fo(b)q(ecause)i X(inaccuracies)h(in)e Fn(A)g Fo(are)g(explicitly)59 361 Xy(tak)o(en)f(in)o(to)g(accoun)o(t)g(in)h(the)g(TLS)g(metho)q(d.)k X(Therefore,)14 b(for)g(discrete)h(ill-p)q(osed)i(problems)e(with)g(no) X59 417 y(gap)e(in)g(the)g(singular)h(v)m(alue)g(sp)q(ectrum)g(of)e XFn(A)p Fo(,)h(it)g(mak)o(es)f(sense)i(to)e(de\014ne)i(a)f(truncated)g X(TLS)g(solution)59 474 y(b)o(y)k(means)h(of)f(\(2.53\))f(where)h XFn(k)i Fo(then)f(pla)o(ys)f(the)h(role)g(of)f(the)g(regularization)i X(parameter;)e(see)h([27)o(])59 530 y(for)d(more)f(details.)21 Xb(The)16 b(truncated)f(TLS)h(solution)g(is)f(computed)h(b)o(y)f(means)g X(of)g(routine)h Fl(ttls)p Fo(.)59 662 y Fr(2.8.)i(Iterativ)n(e)f X(Regularization)g(Metho)r(ds)59 765 y Fo(This)f(section)g(describ)q(es) Xh(the)f(iterativ)o(e)f(regularization)i(metho)q(ds)e(included)j(in)f XFf(Regulariza)m(tion)59 822 y(Tools)p Fo(.)24 b(W)l(e)17 Xb(stress)f(that)g(our)g(Matlab)g(routines)i(should)f(b)q(e)h X(considered)g(as)e(mo)q(del)h(implemen)o(ta-)59 878 y(tions;)c(real)f X(implemen)o(tations)i(should)f(incorp)q(orate)f(an)o(y)f(sparsit)o(y)h X(and/or)g(structure)f(of)h(the)g(matrix)59 935 y(A.)18 Xb(W)l(e)h(shall)g(\014rst)f(describ)q(e)i(standard-form)e(v)o(ersions)g X(of)g(the)h(metho)q(ds)f(and)h(then)f(describ)q(e)j(the)59 X991 y(extension)15 b(necessary)g(for)f(treating)g(general-form)g X(problems.)20 b(F)l(or)14 b(more)g(details)i(ab)q(out)e(these)g(and)59 X1048 y(other)h(iterativ)o(e)g(metho)q(ds,)g(cf.)g([37)o(,)g(Chapter)g X(6{7].)59 1173 y Fp(2.8.1.)h(Conjugate)j(Gradien)o(ts)e(and)h(LSQR)59 X1261 y Fo(The)13 b(conjugate)f(gradien)o(t)h(\(CG\))e(algorithm)i(is)g X(a)g(w)o(ell-kno)o(wn)g(metho)q(d)g(for)f(solving)i(sparse)e(systems)59 X1317 y(of)20 b(equations)i(with)f(a)f(symmetric)h(p)q(ositiv)o(e)h X(de\014nite)h(co)q(e\016cien)o(t)e(matrix.)37 b(In)21 Xb(connection)h(with)59 1374 y(discrete)14 b(ill-p)q(osed)i(problems,)e X(it)f(is)h(an)f(in)o(teresting)h(fact)f(that)f(when)i(the)f(CG)g X(algorithm)g(is)h(applied)59 1430 y(to)g(the)g(unregularized)i(normal)e X(equations)h Fn(A)863 1414 y Fg(T)891 1430 y Fn(A)8 b XFp(x)k Fo(=)h Fn(A)1055 1414 y Fg(T)1082 1430 y Fp(b)h XFo(\(implemen)o(ted)i(suc)o(h)f(that)e Fn(A)1644 1414 Xy Fg(T)1672 1430 y Fn(A)h Fo(is)h(not)59 1487 y(formed\))h(then)h(the)g X(lo)o(w-frequency)g(comp)q(onen)o(ts)g(of)f(the)h(solution)h(tend)f(to) Xf(con)o(v)o(erge)g(faster)g(than)59 1543 y(the)g(high-frequency)h(comp) Xq(onen)o(ts.)k(Hence,)16 b(the)g(CG)f(pro)q(cess)h(has)f(some)g X(inheren)o(t)i(regularization)59 1600 y(e\013ect)f(where)f(the)h(n)o X(um)o(b)q(er)g(of)g(iterations)f(pla)o(ys)h(the)g(role)g(of)f(the)h X(regularization)h(parameter.)j(The)59 1656 y Fn(k)q Fo(th)15 Xb(step)g(of)g(the)g(CG)g(pro)q(cess)h(essen)o(tially)g(has)f(the)h X(form)614 1759 y Fn(\014)640 1766 y Fg(k)733 1759 y Fm( )42 Xb(k)p Fp(q)871 1742 y Fj(\()p Fg(k)q Fe(\000)p Fj(1\))964 X1759 y Fm(k)987 1742 y Fj(2)987 1770 y(2)1007 1759 y XFn(=)p Fm(k)p Fp(q)1081 1742 y Fj(\()p Fg(k)q Fe(\000)p XFj(2\))1174 1759 y Fm(k)1197 1742 y Fj(2)1197 1770 y(2)614 X1817 y Fp(p)643 1801 y Fj(\()p Fg(k)q Fj(\))733 1817 Xy Fm( )g Fp(q)848 1801 y Fj(\()p Fg(k)q Fe(\000)p Fj(1\))952 X1817 y Fo(+)10 b Fn(\014)1023 1824 y Fg(k)1052 1817 y XFp(p)1081 1801 y Fj(\()p Fg(k)q Fe(\000)p Fj(1\))614 X1876 y Fn(\013)643 1883 y Fg(k)733 1876 y Fm( )42 b(k)p XFp(q)871 1859 y Fj(\()p Fg(k)q Fe(\000)p Fj(1\))964 1876 Xy Fm(k)987 1859 y Fj(2)987 1887 y(2)1007 1876 y Fn(=)p XFm(k)p Fn(A)1087 1859 y Fg(T)1114 1876 y Fn(A)8 b Fp(p)1185 X1859 y Fj(\()p Fg(k)q Fj(\))1233 1876 y Fm(k)1256 1859 Xy Fj(2)1256 1887 y(2)614 1934 y Fp(x)642 1917 y Fj(\()p XFg(k)q Fj(\))733 1934 y Fm( )42 b Fp(x)848 1917 y Fj(\()p XFg(k)q Fe(\000)p Fj(1\))952 1934 y Fo(+)10 b Fn(\013)1026 X1941 y Fg(k)1055 1934 y Fp(p)1084 1917 y Fj(\()p Fg(k)q XFj(\))614 1992 y Fp(q)642 1976 y Fj(\()p Fg(k)q Fj(\))733 X1992 y Fm( )42 b Fp(q)848 1976 y Fj(\()p Fg(k)q Fe(\000)p XFj(1\))952 1992 y Fm(\000)10 b Fn(\013)1026 1999 y Fg(k)1055 X1992 y Fn(A)1089 1976 y Fg(T)1117 1992 y Fn(A)e Fp(p)1188 X1976 y Fj(\()p Fg(k)q Fj(\))1715 1875 y Fo(\(2.54\))59 X2103 y(where)j Fp(x)214 2087 y Fj(\()p Fg(k)q Fj(\))274 X2103 y Fo(is)g(the)g(appro)o(ximation)g(to)f Fp(x)h Fo(after)f XFn(k)i Fo(iterations,)g(while)g Fp(p)1272 2087 y Fj(\()p XFg(k)q Fj(\))1332 2103 y Fo(and)f Fp(q)1444 2087 y Fj(\()p XFg(k)q Fj(\))1503 2103 y Fo(are)g(t)o(w)o(o)e(auxiliary)59 X2160 y(iteration)16 b(v)o(ectors)e(of)h(length)h Fn(n)p XFo(.)130 2217 y(T)l(o)11 b(explain)i(this)g(regularizing)g(e\013ect)e X(of)h(the)g(CG)f(metho)q(d,)h(w)o(e)g(in)o(tro)q(duce)g(the)g(Krylo)o X(v)g(subspace)350 2322 y Fm(K)385 2329 y Fg(k)406 2322 Xy Fo(\()p Fn(A)458 2303 y Fg(T)486 2322 y Fn(A;)c(A)575 X2303 y Fg(T)602 2322 y Fp(b)p Fo(\))k(=)h(span)p Fm(f)p XFn(A)857 2303 y Fg(T)884 2322 y Fp(b)p Fn(;)8 b(A)968 X2303 y Fg(T)995 2322 y Fn(A)g(A)1071 2303 y Fg(T)1098 X2322 y Fp(b)p Fn(;)g(:)g(:)g(:)d(;)j Fo(\()p Fn(A)1281 X2303 y Fg(T)1308 2322 y Fn(A)p Fo(\))1360 2303 y Fg(k)q XFe(\000)p Fj(1)1426 2322 y Fn(A)1460 2303 y Fg(T)1488 X2322 y Fp(b)p Fm(g)59 2427 y Fo(asso)q(ciated)19 b(with)h(the)f XFn(k)q Fo(th)f(step)h(of)g(the)g(CG)f(algorithm)h(applied)i(to)e XFn(A)1348 2410 y Fg(T)1375 2427 y Fn(A)8 b Fp(x)18 b XFo(=)h Fn(A)1551 2410 y Fg(T)1579 2427 y Fp(b)p Fo(.)31 Xb(It)19 b(is)h(also)59 2483 y(con)o(v)o(enien)o(t)c(to)e(in)o(tro)q X(duce)j(the)e(Ritz)h(p)q(olynomial)h Fn(P)983 2490 y XFg(k)1019 2483 y Fo(asso)q(ciated)f(with)f(step)h Fn(k)q XFo(:)686 2630 y Fn(P)715 2637 y Fg(k)737 2630 y Fo(\()p XFn(\033)r Fo(\))11 b(=)881 2577 y Fg(k)864 2590 y Fh(Y)860 X2681 y Fg(j)r Fj(=1)942 2594 y Fo(\()p Fn(\022)982 2570 Xy Fj(\()p Fg(k)q Fj(\))981 2607 y Fg(j)1031 2594 y Fo(\))1049 X2577 y Fj(2)1078 2594 y Fm(\000)g Fn(\033)1152 2577 y XFj(2)p 942 2620 230 2 v 993 2674 a Fo(\()p Fn(\022)1033 X2650 y Fj(\()p Fg(k)q Fj(\))1032 2686 y Fg(j)1082 2674 Xy Fo(\))1100 2660 y Fj(2)1191 2630 y Fn(:)511 b Fo(\(2.55\))59 X2794 y(Here,)18 b(\()p Fn(\022)222 2770 y Fj(\()p Fg(k)q XFj(\))221 2807 y Fg(j)271 2794 y Fo(\))289 2778 y Fj(2)326 X2794 y Fo(are)f(the)g(Ritz)i(v)m(alues,)f(i.e.,)g(the)g XFn(k)g Fo(eigen)o(v)m(alues)h(of)e Fn(A)1273 2778 y Fg(T)1301 X2794 y Fn(A)g Fo(restricted)h(to)f(the)g(Krylo)o(v)59 X2857 y(subspace)g Fm(K)285 2864 y Fg(k)306 2857 y Fo(\()p XFn(A)358 2841 y Fg(T)386 2857 y Fn(A;)8 b(A)475 2841 Xy Fg(T)501 2857 y Fp(b)p Fo(\).)24 b(The)17 b(large)g(Ritz)g(v)m(alues) Xh(are)e(appro)o(ximations)h(to)f(some)g(of)g(the)h(large)p Xeop X%%Page: 26 28 X26 27 bop 64 159 a Fo(26)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(eigen)o(v)m(alues)i Fn(\033)324 X288 y Fj(2)322 316 y Fg(i)360 304 y Fo(of)e(the)g(cross-pro)q(duct)h X(matrix)e Fn(A)962 288 y Fg(T)990 304 y Fn(A)p Fo(.)26 Xb(Then)17 b(the)g(\014lter)h(factors)e(asso)q(ciated)h(with)59 X361 y(the)e(solution)h(after)f Fn(k)h Fo(steps)f(of)g(the)g(CG)g X(algorithm)g(are)g(giv)o(en)h(b)o(y)585 471 y Fn(f)612 X447 y Fj(\()p Fg(k)q Fj(\))607 484 y Fg(i)673 471 y Fo(=)d(1)d XFm(\000)h Fn(P)829 478 y Fg(k)850 471 y Fo(\()p Fn(\033)894 X478 y Fg(i)908 471 y Fo(\))k Fn(;)98 b(i)12 b Fo(=)h(1)p XFn(;)8 b(:)g(:)g(:)d(;)j(k)15 b(:)410 b Fo(\(2.56\))59 X576 y(As)16 b Fn(k)g Fo(increases,)g(and)g(the)g(Ritz)h(v)m(alues)f X(con)o(v)o(erge)f(to)g(some)h(of)f(the)h(eigen)o(v)m(alues)h(of)e XFn(A)1582 559 y Fg(T)1610 576 y Fn(A)p Fo(,)g(then)h(for)59 X637 y(selected)f Fn(i)d Fo(and)i Fn(j)h Fo(w)o(e)e(ha)o(v)o(e)g XFn(\022)566 613 y Fj(\()p Fg(k)q Fj(\))565 650 y Fg(j)628 X637 y Fm(\031)g Fn(\033)702 644 y Fg(i)716 637 y Fo(.)19 Xb(Moreo)o(v)o(er,)12 b(as)h Fn(k)h Fo(increases)g(these)g(appro)o X(ximations)f(impro)o(v)o(e)59 700 y(while,)i(sim)o(ultaneously)l(,)g X(more)f(eigen)o(v)m(alues)h(of)f Fn(A)936 684 y Fg(T)963 X700 y Fn(A)g Fo(are)f(b)q(eing)i(appro)o(ximated)f(b)o(y)f(the)h X(additional)59 757 y(Ritz)i(v)m(alues.)130 814 y(Equations)k(\(2.55\))e X(and)j(\(2.56\))d(for)h(the)i(CG)e(\014lter)i(factors)e(shed)i(ligh)o X(t)g(on)f(the)g(regularizing)59 878 y(prop)q(ert)o(y)c(of)g(the)g(CG)g X(metho)q(d.)24 b(After)15 b Fn(k)j Fo(iterations,)e(if)h(all)g(the)g X(largest)f(Ritz)h(v)m(alues)g(\()p Fn(\022)1638 854 y XFj(\()p Fg(k)q Fj(\))1637 891 y Fg(j)1687 878 y Fo(\))1705 X862 y Fj(2)1741 878 y Fo(ha)o(v)o(e)59 941 y(con)o(v)o(erged)i(to)f X(all)i(the)g(largest)e(eigen)o(v)m(alues)j Fn(\033)900 X925 y Fj(2)898 953 y Fg(i)939 941 y Fo(of)d Fn(A)1028 X925 y Fg(T)1056 941 y Fn(A)p Fo(,)i(then)f(the)g(corresp)q(onding)h XFn(P)1637 948 y Fg(k)1659 941 y Fo(\()p Fn(\033)1703 X948 y Fg(i)1717 941 y Fo(\))f Fm(\031)g Fo(0)59 997 y(and)c(the)g X(\014lter)g(factors)f(asso)q(ciated)h(with)g(these)h XFn(\033)943 1004 y Fg(i)971 997 y Fo(will)h(therefore)e(b)q(e)g(close)h X(to)e(one.)20 b(On)15 b(the)g(other)59 1054 y(hand,)21 Xb(for)e(all)i(those)f(eigen)o(v)m(alues)h(smaller)g(than)f(the)g X(smallest)g(Ritz)h(v)m(alue,)h(the)e(corresp)q(onding)59 X1110 y(\014lter)c(factors)e(satisfy)464 1252 y Fn(f)491 X1228 y Fj(\()p Fg(k)q Fj(\))486 1265 y Fg(i)552 1252 Xy Fo(=)f Fn(\033)628 1233 y Fj(2)626 1263 y Fg(i)676 X1199 y(k)656 1211 y Fh(X)655 1302 y Fg(j)r Fj(=1)724 X1252 y Fo(\()p Fn(\022)764 1228 y Fj(\()p Fg(k)q Fj(\))763 X1265 y Fg(j)813 1252 y Fo(\))831 1233 y Fe(\000)p Fj(2)888 X1252 y Fo(+)e Fn(O)970 1205 y Fh(\020)994 1252 y Fn(\033)1022 X1233 y Fj(4)1020 1263 y Fg(i)1042 1252 y Fo(\()p Fn(\022)1082 X1228 y Fj(\()p Fg(k)q Fj(\))1081 1266 y Fg(k)1131 1252 Xy Fo(\))1149 1233 y Fe(\000)p Fj(2)1196 1252 y Fo(\()p XFn(\022)1236 1228 y Fj(\()p Fg(k)q Fj(\))1235 1266 y XFg(k)q Fe(\000)p Fj(1)1301 1252 y Fo(\))1319 1233 y Fe(\000)p XFj(2)1366 1205 y Fh(\021)1413 1252 y Fn(;)59 1403 y Fo(sho)o(wing)k X(that)g(these)g(\014lter)h(factors)e(deca)o(y)h(lik)o(e)i XFn(\033)942 1387 y Fj(2)940 1415 y Fg(i)976 1403 y Fo(for)e XFn(\033)1072 1410 y Fg(i)1098 1403 y Fn(<)e(\022)1167 X1410 y Fg(k)1189 1403 y Fo(\()p Fn(k)q Fo(\))o(.)130 X1461 y(F)l(rom)k(this)h(analysis)h(of)f(the)g(CG)f(\014lter)i(factors)d X(w)o(e)i(see)g(that)g(the)g(CG)f(pro)q(cess)h(indeed)i(has)e(a)59 X1517 y(regularizing)h(e\013ect)e(if)g(the)g(Ritz)h(v)m(alues)g(con)o(v) Xo(erge)f(to)g(the)g(eigen)o(v)m(alues)i(of)d Fn(A)1442 X1501 y Fg(T)1470 1517 y Fn(A)h Fo(in)h(their)g(natural)59 X1573 y(order,)13 b(starting)h(with)g(the)g(largest.)19 Xb(When)14 b(this)g(is)g(the)g(case,)g(w)o(e)f(are)h(sure)g(that)f(the)g X(CG)h(algorithm)59 1630 y(is)i(a)f(regularizing)i(pro)q(cess)f(with)g X(the)f(n)o(um)o(b)q(er)h(of)f(iterations)g Fn(k)i Fo(as)e(the)g X(regularization)i(parameter.)59 1686 y(Unfortunately)l(,)i(pro)o(ving)f X(that)f(the)i(Ritz)g(v)m(alues)g(actually)g(con)o(v)o(erge)e(in)i(this) Xg(order)f(is)g(a)g(di\016cult)59 1743 y(task.)30 b(F)l(or)18 Xb(problems)i(with)f(a)g(gap)f(in)i(the)f(singular)h(v)m(alue)g(sp)q X(ectrum)f(of)f Fn(A)h Fo(it)g(is)h(pro)o(v)o(ed)e(in)i([47)o(,)59 X1799 y Fm(x)p Fo(6.4])13 b(that)f(all)j(the)f(large)f(eigen)o(v)m X(alues)j(of)d Fn(A)826 1783 y Fg(T)854 1799 y Fn(A)g XFo(will)j(b)q(e)e(appro)o(ximated)f(b)o(y)h(Ritz)g(v)m(alues)h(b)q X(efore)f(an)o(y)59 1856 y(of)h(the)g(small)h(eigen)o(v)m(alues)h(of)e XFn(A)629 1839 y Fg(T)657 1856 y Fn(A)g Fo(get)g(appro)o(ximated.)k(The) Xd(case)f(where)g(the)h(singular)g(v)m(alues)g(of)59 1912 Xy Fn(A)h Fo(deca)o(y)f(gradually)h(to)f(zero)g(with)h(no)f(gap)g(in)i X(the)e(sp)q(ectrum)h(is)g(more)f(di\016cult)i(to)d(analyze|but)59 X1969 y(n)o(umerical)h(examples)g(and)g(mo)q(del)g(problems)f([70)o(,)g X(71])f(indicate)j(that)d(the)h(desired)i(con)o(v)o(ergence)e(of)59 X2025 y(the)h(Ritz)h(v)m(alues)h(actually)f(holds)f(as)g(long)h(as)e X(the)i(discrete)g(Picard)f(condition)i(is)e(satis\014ed)h(for)f(the)59 X2082 y(unp)q(erturb)q(ed)h(comp)q(onen)o(t)f(of)f(the)g(righ)o(t-hand)h X(side)g(and)g(there)f(is)h(a)f(go)q(o)q(d)h(separation)f(among)g(the)59 X2138 y(large)g(singular)h(v)m(alues)h(of)e Fn(A)p Fo(.)130 X2195 y(T)l(o)k(put)i(the)f(CG)f(metho)q(d)i(in)o(to)f(the)g(common)g X(framew)o(ork)e(from)h(the)i(previous)f(section,)i(w)o(e)59 X2252 y(notice)16 b(that)e(the)i(solution)g Fp(x)570 2235 Xy Fj(\()p Fg(k)q Fj(\))633 2252 y Fo(after)f Fn(k)h Fo(CG)e(steps)i X(can)f(b)q(e)h(de\014ned)g(as)399 2356 y(min)8 b Fm(k)p XFn(A)g Fp(x)i Fm(\000)g Fp(b)p Fm(k)682 2363 y Fj(2)792 X2356 y Fo(sub)s(ject)16 b(to)90 b Fp(x)12 b Fm(2)h(K)1200 X2363 y Fg(k)1221 2356 y Fo(\()p Fn(A)1273 2338 y Fg(T)1300 X2356 y Fn(A;)8 b(A)1389 2338 y Fg(T)1416 2356 y Fp(b)p XFo(\))15 b Fn(;)224 b Fo(\(2.57\))59 2461 y(where)13 Xb Fm(K)223 2468 y Fg(k)244 2461 y Fo(\()p Fn(A)296 2445 Xy Fg(T)323 2461 y Fn(A;)8 b(A)412 2445 y Fg(T)439 2461 Xy Fp(b)p Fo(\))13 b(is)g(the)g(Krylo)o(v)h(subspace)f(asso)q(ciated)g X(with)h(the)f(normal)g(equations.)19 b(Th)o(us,)59 2518 Xy(w)o(e)g(see)g(that)g(CG)g(replaces)h(the)f(side)h(constrain)o(t)f X(\012\()p Fp(x)p Fo(\))f(=)i Fm(k)p Fp(x)p Fm(k)1213 X2525 y Fj(2)1251 2518 y Fo(with)f(the)h(side)g(constrain)o(t)f XFp(x)f Fm(2)59 2574 y(K)94 2581 y Fg(k)115 2574 y Fo(\()p XFn(A)167 2558 y Fg(T)194 2574 y Fn(A;)8 b(A)283 2558 Xy Fg(T)310 2574 y Fp(b)p Fo(\).)18 b(Ob)o(viously)l(,)13 Xb(if)e(the)f(Ritz)i(v)m(alues)f(con)o(v)o(erge)g(as)f(desired,)i(then)f X(the)f(Krylo)o(v)h(subspace)59 2630 y(satis\014es)i Fm(K)259 X2637 y Fg(k)280 2630 y Fo(\()p Fn(A)332 2614 y Fg(T)360 X2630 y Fn(A;)8 b(A)449 2614 y Fg(T)476 2630 y Fp(b)p XFo(\))k Fm(\031)h Fo(span)p Fm(f)p Fp(v)725 2637 y Fj(1)744 X2630 y Fn(;)8 b(:)g(:)g(:)d(;)j Fp(v)874 2637 y Fg(k)894 X2630 y Fm(g)13 b Fo(indicating)i(that)d(the)h(CG)g(solution)h XFp(x)1592 2614 y Fj(\()p Fg(k)q Fj(\))1653 2630 y Fo(is)f(similar)59 X2687 y(to,)h(sa)o(y)l(,)h(the)g(TSVD)g(solution)h Fp(x)635 X2694 y Fg(k)656 2687 y Fo(.)130 2744 y(Ev)o(en)d(the)g(b)q(est)h X(implemen)o(tation)g(of)f(the)h(normal-equation)g(CG)e(algorithm)i X(su\013ers)e(from)h(some)59 2801 y(loss)19 b(of)g(accuracy)g(due)h(to)f X(the)g(implicit)i(use)f(of)f(the)g(cross-pro)q(duct)g(matrix)g XFn(A)1492 2784 y Fg(T)1519 2801 y Fn(A)p Fo(.)32 b(An)20 Xb(alterna-)59 2857 y(tiv)o(e)g(iterativ)o(e)f(algorithm)h(that)f(a)o(v) Xo(oids)g Fn(A)826 2841 y Fg(T)853 2857 y Fn(A)h Fo(completely)h(is)f X(the)f(algorithm)h(LSQR)h([60)o(].)32 b(This)p eop X%%Page: 27 29 X27 28 bop 59 159 a Fo(2.8.)14 b(Iterativ)o(e)h(Regularization)i(Metho)q X(ds)976 b(27)p 59 178 1767 2 v 59 304 a(algorithm)19 Xb(uses)h(the)f(Lanczos)h(bidiagonalization)i(algorithm)d([29)o(,)h XFm(x)p Fo(9.3.4])d(to)i(build)i(up)f(a)f(lo)o(w)o(er)59 X361 y(bidiagonal)d(matrix)e(and,)h(sim)o(ultaneously)l(,)h(up)q(dates)f X(a)f(QR)h(factorization)g(of)f(this)h(bidiagonal)h(ma-)59 X417 y(trix.)k(The)c(QR)g(factorization,)e(in)i(turn,)f(is)h(used)g(to)e X(up)q(date)i(the)f(LSQR)i(solution)f(in)g(eac)o(h)f(step.)20 Xb(If)59 474 y Fn(B)93 481 y Fg(k)131 474 y Fo(denotes)d(the)f(\()p XFn(k)c Fo(+)f(1\))f Fm(\002)i Fn(k)17 b Fo(bidiagonalization)i(matrix)d X(generated)g(in)h(the)g Fn(k)q Fo(th)f(step)h(of)f(LSQR,)59 X538 y(then)f(the)f(quan)o(tities)h Fn(\022)470 514 y XFj(\()p Fg(k)q Fj(\))469 551 y Fg(j)534 538 y Fo(in)g(Eq.)f(\(2.55\))e X(are)i(the)h(singular)g(v)m(alues)h(of)e(this)g Fn(B)1429 X545 y Fg(k)1451 538 y Fo(.)20 b(Hence,)15 b(the)f(LSQR)59 X595 y(algorithm)h(is)h(mathematically)g(equiv)m(alen)o(t)h(to)e(the)h X(normal-equation)g(CG)e(algorithm)i(in)g(that)f(the)59 X651 y Fn(k)q Fo(th)g(iteration)h(v)o(ectors)e Fp(x)509 X635 y Fj(\()p Fg(k)q Fj(\))573 651 y Fo(in)i(CG)e(and)i(LSQR)g(are)f X(iden)o(tical)i(in)f(exact)f(arithmetic.)130 709 y(In)e(real)g X(computations,)g(the)g(con)o(v)o(ergence)g(of)f(CG)g(and)h(LSQR)h(is)g X(dela)o(y)o(ed)f(due)g(to)g(the)f(in\015uence)59 765 Xy(of)g(the)h(\014nite)g(precision)i(arithmetic,)e(and)g(the)f X(dimension)j(of)d(the)g(subspace)i(in)f(whic)o(h)h Fp(x)1607 X749 y Fj(\()p Fg(k)q Fj(\))1667 765 y Fo(lies)g(do)q(es)59 X821 y(not)i(increase)h(in)h(eac)o(h)e(step.)23 b(As)17 Xb(a)f(consequence,)h Fp(x)995 805 y Fj(\()p Fg(k)q Fj(\))1060 X821 y Fo(t)o(ypically)h(sta)o(ys)d(almost)h(unc)o(hanged)h(for)f(a)59 X878 y(few)i(steps,)f(then)h(c)o(hanges)g(to)f(a)g(new)h(v)o(ector)f X(and)g(sta)o(ys)g(unc)o(hanged)h(again)g(for)f(some)g(steps,)h(etc.)59 X934 y(\(The)d(underlying)h(phenomenon)g(is)f(related)h(to)e(CG)g(and)h X(LSQR)h(computing)f(\\ghost")f(eigen)o(v)m(alues)59 991 Xy(and)i(singular)h(v)m(alues,)g(resp)q(ectiv)o(ely)l(,)g(cf.)f([29)o(,) Xf Fm(x)p Fo(9.2.5]\).)20 b(In)d(LSQR,)g(it)f(is)g(p)q(ossible)i(to)d X(store)g(the)h(so-)59 1047 y(called)i(Lanczos)g(v)o(ectors)e(generated) Xh(during)g(the)g(pro)q(cess)g(and)g(apply)h(some)f(reorthogonalization) X59 1104 y(sc)o(heme)g(to)f(them,)h(whic)o(h)h(prev)o(en)o(ts)e(the)h X(ab)q(o)o(v)o(emen)o(tioned)g(dela)o(y|but)h(in)g(practice)f(it)g(is)g X(usually)59 1160 y(less)g(computationally)h(demanding)f(just)g(to)f X(use)h(LSQR)h(without)e(an)o(y)g(reorthogonalization.)24 Xb(Or-)59 1217 y(thogonalization)13 b(can)g(also)f(b)q(e)h(applied)h(to) Xe(the)h(normal)f(equation)h(residual)h(v)o(ectors)d Fn(A)1576 X1200 y Fg(T)1604 1217 y Fo(\()p Fn(A)d Fp(x)1692 1200 Xy Fj(\()p Fg(k)q Fj(\))1744 1217 y Fm(\000)d Fp(b)p Fo(\))59 X1273 y(in)16 b(the)f(CG)g(algorithm.)130 1331 y(There)g(are)h(sev)o X(eral)f(w)o(a)o(ys)g(to)g(implemen)o(t)i(the)e(CG)g(algorithm)h(for)f X(the)g(normal)h(equations)g(in)g(a)59 1387 y(n)o(umerically)h(stable)f X(fashion.)21 b(The)16 b(one)f(used)h(in)g(the)g(routine)g XFl(cgls)f Fo(in)i Ff(Regulariza)m(tion)g(Tools)59 1444 Xy Fo(is)h(from)e([9)o(,)i(p.)f(289].)24 b(The)18 b(implemen)o(tation)g XFl(lsqr)f Fo(is)h(iden)o(tical)h(to)e(the)g(original)h(LSQR)h X(algorithm)59 1500 y(from)c([60)o(].)130 1558 y(Regarding)d(the)f X(\014lter)h(factors)e(for)h(CG)f(and)i(LSQR,)g(w)o(e)f(ha)o(v)o(e)g X(found)h(that)e(the)h(expression)i(\(2.56\))59 1614 y(using)j(the)f X(Ritz)h(p)q(olynomial)h(is)e(extremely)h(sensitiv)o(e)g(to)f(rounding)h X(errors.)j(Instead,)c(w)o(e)g(compute)59 1676 y(the)h(\014lter)g X(factors)e Fn(f)422 1652 y Fj(\()p Fg(k)q Fj(\))417 1689 Xy Fg(i)486 1676 y Fo(b)o(y)i(means)f(of)g(n)o(umerically)j(more)d X(robust)g(recursions)h(deriv)o(ed)g(in)h([76)o(])e(\(see)59 X1732 y(also)g([47)o(]\).)k(Notice)c(that)e(the)i(exact)f(singular)i(v)m X(alues)g Fn(\033)1040 1739 y Fg(i)1068 1732 y Fo(of)e XFn(A)h Fo(are)f(required)i(to)e(compute)g(the)h(\014lter)59 X1789 y(factors;)f(hence)i(this)g(option)f(is)h(mainly)g(of)f(p)q X(edagogical)h(in)o(terest.)59 1915 y Fp(2.8.2.)g(Bidiagonali)q(za)q X(tio)q(n)k(with)e(Regularization)59 2003 y Fo(It)11 b(is)h(p)q(ossible) Xh(to)d(mo)q(dify)i(the)f(LSQR)i(algorithm)e(and)g(deriv)o(e)h(a)f(h)o X(ybrid)h(b)q(et)o(w)o(een)f(a)g(direct)h(and)f(an)g(it-)59 X2059 y(erativ)o(e)h(regularization)g(algorithm.)19 b(The)12 Xb(idea)g(is)g(to)f(use)h(the)g(ab)q(o)o(v)o(emen)o(tioned)g(Lanczos)g X(algorithm)59 2116 y(to)h(build)i(up)f(the)f(bidiagonal)i(matrix)e XFn(B)765 2123 y Fg(k)800 2116 y Fo(sequen)o(tially)l(,)j(and)d(in)i X(eac)o(h)e(step)g(to)g(replace)i(LSQR's)f(QR)59 2172 Xy(factorization)k(of)g Fn(B)415 2179 y Fg(k)456 2172 Xy Fo(with)h(a)f(direct)h(regularization)g(sc)o(heme)g(suc)o(h)g(as)f X(Tikhono)o(v)h(regularization)59 2229 y(or)14 b(TSVD.)h(These)g(ideas)h X(are)e(outlined)j(in)f([8)o(,)f(59)o(];)f(see)i(also)e(the)h X(discussion)i([37)o(,)e(Chapter)f(7].)19 b(The)59 2285 Xy(w)o(ork)e(in)o(v)o(olv)o(ed)i(in)g(the)g(direct)g(regularization)g X(pro)q(cess)f(is)h(small)g(compared)f(to)g(the)g(w)o(ork)g(in)h(the)59 X2342 y(iterativ)o(e)d(pro)q(cess)g(b)q(ecause)h(of)e(the)h(bidiagonal)i X(form)d(of)g Fn(B)1113 2349 y Fg(k)1135 2342 y Fo(.)21 Xb(Again,)16 b(reorthogonalization)g(of)g(the)59 2398 Xy(Lanczos)g(v)o(ectors)e(is)i(p)q(ossible)h(but)e(rarely)g(used)h(in)g X(practice.)130 2455 y(One)f(rationale)g(b)q(ehind)i(this)f(\\h)o X(ybrid")f(algorithm)f(is)i(that)e(if)h(the)g(n)o(um)o(b)q(er)g XFn(k)h Fo(of)f(Lanczos)g(bidi-)59 2512 y(agonalization)g(steps)f(is)g X(so)g(large)g(that)g Fn(B)790 2519 y Fg(k)825 2512 y XFo(b)q(ecomes)h(ill-conditi)q(oned)i(and)d(needs)h(regularization|)59 X2574 y(b)q(ecause)j(the)f(singular)h(v)m(alues)g Fn(\022)642 X2550 y Fj(\()p Fg(k)q Fj(\))641 2588 y Fg(k)708 2574 Xy Fo(of)e Fn(B)795 2581 y Fg(k)834 2574 y Fo(start)g(to)g(appro)o X(ximate)g(some)h(of)f(the)h(smaller)h(singular)59 2630 Xy(v)m(alues)e(of)f Fn(A)p Fo(|then)h(hop)q(efully)h(all)f(the)f XFk(lar)n(ge)g Fo(singular)h(v)m(alues)g(of)f Fn(A)g Fo(are)g(appro)o X(ximated)g(b)o(y)g(singu-)59 2687 y(lar)j(v)m(alues)g(of)g XFn(B)356 2694 y Fg(k)377 2687 y Fo(.)27 b(When)18 b(this)g(is)h(the)e X(case,)h(then)g(w)o(e)f(are)h(ensured)g(that)f(the)h(\\h)o(ybrid")f X(metho)q(d)59 2743 y(computes)d(a)f(prop)q(er)g(regularized)i X(solution,)f(pro)o(vided)g(of)f(course)h(that)f(the)g(explicit)j X(regularization)59 2800 y(in)g(eac)o(h)f(step)h(prop)q(erly)g X(\014lters)f(out)g(the)g(in\015uence)j(of)d(the)g(small)h(singular)g(v) Xm(alues.)130 2857 y(The)22 b(second,)i(and)e(p)q(erhaps)g(most)f(imp)q X(ortan)o(t,)i(rational)f(b)q(ehind)i(the)e(\\h)o(ybrid")h(algorithm)p Xeop X%%Page: 28 30 X28 29 bop 64 159 a Fo(28)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(is)j(that)f(it)h(requires)g(a)g(di\013eren)o X(t)g(stopping)g(criterion)g(whic)o(h)h(is)f(not)f(as)h(dep)q(enden)o(t) Xh(on)e(c)o(ho)q(osing)59 361 y(the)j(correct)f Fn(k)i XFo(as)e(the)h(previously)h(men)o(tioned)g(metho)q(ds.)40 Xb(Pro)o(vided)22 b(again)g(that)f(the)h(explicit)59 417 Xy(regularization)c(sc)o(heme)f(in)g(eac)o(h)g(step)f(is)h(successful)h X(in)g(\014ltering)f(out)g(the)f(in\015uence)j(of)d(the)h(small)59 X474 y(singular)23 b(v)m(alues,)i(then)d(after)g(a)g(certain)g(stage)g XFn(k)h Fo(the)f(iteration)g(v)o(ector)g Fp(x)1442 457 Xy Fj(\()p Fg(k)q Fj(\))1512 474 y Fo(of)g(the)g(\\h)o(ybrid")59 X530 y(algorithm)17 b(will)h(hardly)f(c)o(hange.)24 b(This)17 Xb(is)g(so)f(b)q(ecause)h(all)h(the)e(comp)q(onen)o(ts)h(asso)q(ciated)g X(with)g(the)59 587 y(large)e(singular)i(v)m(alues)f(ha)o(v)o(e)f(b)q X(een)i(captured)e(while)i(the)f(comp)q(onen)o(ts)f(asso)q(ciated)h X(with)f(the)h(small)59 643 y(singular)i(v)m(alues)h(are)e(\014ltered)h X(out.)26 b(Th)o(us,)17 b(the)h(stopping)g(criteria)g(should)g(no)o(w)f X(b)q(e)h(based)f(on)h(the)59 700 y(relativ)o(e)e(c)o(hange)f(in)i XFp(x)453 683 y Fj(\()p Fg(k)q Fj(\))501 700 y Fo(.)j(With)c(this)g X(stopping)f(criteria,)h(w)o(e)f(see)h(that)f(taking)g(to)q(o)g(man)o(y) Xg(steps)g(in)59 756 y(the)i(\\h)o(ybrid")g(algorithm)g(will)i(not)e X(deteriorate)f(the)h(iteration)h(v)o(ector,)e(but)h(merely)h(increase)g X(the)59 812 y(computational)e(e\013ort.)130 880 y(F)l(or)f(con)o(v)o X(enience,)i Ff(Regulariza)m(tion)h(Tools)e Fo(pro)o(vides)g(the)g X(routine)h Fl(lanc)p 1498 880 14 2 v 16 w(b)g Fo(for)e(computing)59 X937 y(the)d(lo)o(w)o(er)g(bidiagonal)i(matrix)e Fn(B)646 X944 y Fg(k)680 937 y Fo(as)g(w)o(ell)h(as)f(the)h(corresp)q(onding)g X(left)g(and)f(righ)o(t)g(Lanczos)h(v)o(ectors.)59 993 Xy(The)20 b(routine)h Fl(csvd)f Fo(computes)g(the)g(SVD)g(of)g XFn(B)915 1000 y Fg(k)937 993 y Fo(.)33 b(The)21 b(user)f(can)g(then)g X(com)o(bine)h(the)e(necessary)59 1050 y(routines)d(to)e(form)h(a)g(sp)q X(eci\014c)i(\\h)o(ybrid")e(algorithm.)59 1236 y Fp(2.8.3.)h(The)i XFn(\027)s Fp(-Metho)q(d)59 1344 y Fo(Both)i(CG)g(and)g(LSQR)h(con)o(v)o X(erge)f(rather)f(fast)h(to)f(a)h(regularized)h(solution)g(with)g(damp)q X(ed)g(high-)59 1400 y(frequency)d(comp)q(onen)o(ts,)g(and)f(if)h(the)g X(iterations)f(are)g(con)o(tin)o(ued)h(then)g(the)g(high-frequency)h X(com-)59 1457 y(p)q(onen)o(ts)c(v)o(ery)g(so)q(on)g(start)f(to)g X(dominate)i(the)f(iteration)g(v)o(ector.)k(F)l(or)c(some)g(metho)q(ds)g X(for)f(c)o(ho)q(osing)59 1513 y(the)f(regularization)g(parameter,)f X(i.e.,)g(the)h(n)o(um)o(b)q(er)g(of)f(iterations)g Fn(k)i XFo(\(suc)o(h)e(as)g(the)h(L-curv)o(e)g(criterion)59 1569 Xy(describ)q(ed)19 b(in)f(Section)h(2.9\),)d(this)h(is)h(a)f(fa)o(v)o X(orable)g(prop)q(ert)o(y)l(.)26 b(Ho)o(w)o(ev)o(er,)16 Xb(there)i(are)f(other)g(circum-)59 1626 y(stances)c(in)h(whic)o(h)f(is) Xh(is)f(more)g(desirable)h(to)f(ha)o(v)o(e)f(an)h(iterativ)o(e)g(sc)o X(heme)g(that)g(con)o(v)o(erges)f(slo)o(w)o(er)g(and)59 X1682 y(th)o(us)j(is)h(less)g(sensitiv)o(e)g(to)e(the)i(c)o(hoice)g(of)f XFn(k)q Fo(.)130 1750 y(This)j(is)h(exactly)g(the)f(philosoph)o(y)h(b)q X(ehind)i(the)d Fn(\027)s Fo(-metho)q(d)h([11)o(])e(whic)o(h)i(is)g X(similar)g(to)f(the)g(CG)59 1807 y(metho)q(d)j(except)g(that)e(the)i X(co)q(e\016cien)o(ts)g Fn(\013)829 1814 y Fg(k)871 1807 Xy Fo(and)g Fn(\014)991 1814 y Fg(k)1032 1807 y Fo(used)g(to)f(up)q X(date)h(the)f(iteration)h(v)o(ectors)f(in)59 1863 y(Algorithm)g X(\(2.54\))d(are)i(problem)h(indep)q(enden)o(t)i(and)d(dep)q(end)i(only) Xf(on)f(the)g(iteration)h(n)o(um)o(b)q(er)g Fn(k)59 1920 Xy Fo(and)15 b(a)g(presp)q(eci\014ed)j(constan)o(t)c Fn(\027)19 Xb Fo(satisfying)c(0)e Fn(<)g(\027)j(<)d Fo(1:)154 2085 Xy Fn(\013)183 2092 y Fg(k)217 2085 y Fo(=)g(4)323 2052 Xy(\()p Fn(k)e Fo(+)g Fn(\027)s Fo(\)\()p Fn(k)f Fo(+)h XFn(\027)i Fo(+)649 2034 y Fj(1)p 649 2041 18 2 v 649 X2068 a(2)671 2052 y Fo(\))p 301 2074 412 2 v 301 2119 Xa(\()p Fn(k)d Fo(+)h(2)p Fn(\027)s Fo(\)\()p Fn(k)f Fo(+)h(2)p XFn(\027)i Fo(+)672 2101 y Fj(1)p 672 2108 18 2 v 672 X2134 a(2)694 2119 y Fo(\))732 2085 y Fn(;)98 b(\014)869 X2092 y Fg(k)903 2085 y Fo(=)1059 2052 y(\()p Fn(k)11 Xb Fo(+)g Fn(\027)s Fo(\)\()p Fn(k)g Fo(+)f(1\)\()p Fn(k)g XFo(+)1443 2034 y Fj(1)p 1443 2041 V 1443 2068 a(2)1465 X2052 y Fo(\))p 956 2074 631 2 v 956 2119 a(\()p Fn(k)h XFo(+)f(2)p Fn(\027)s Fo(\)\()p Fn(k)h Fo(+)f(2)p Fn(\027)j XFo(+)1327 2101 y Fj(1)p 1327 2108 18 2 v 1327 2134 a(2)1349 X2119 y Fo(\)\()p Fn(k)e Fo(+)f Fn(\027)k Fo(+)c(1\))1607 X2085 y Fn(:)95 b Fo(\(2.58\))59 2253 y(\(It)15 b(can)g(b)q(e)h(sho)o X(wn)e(that)h(the)g(\014lter)g(factors)f(can)h(b)q(e)h(expressed)g(in)g X(terms)e(of)h(Jacobi)h(p)q(olynomials\).)130 2321 y(A)f(sligh)o(t)h X(incon)o(v)o(enience)i(with)d(the)h Fn(\027)s Fo(-metho)q(d)g(is)g X(that)f(it)g(requires)h(the)g(problem)g(to)f(b)q(e)h(scaled)59 X2377 y(suc)o(h)e(that)e Fm(k)p Fn(A)p Fm(k)336 2384 y XFj(2)368 2377 y Fo(is)i(sligh)o(tly)g(less)g(than)f(one,)g(otherwise)h X(the)f(metho)q(d)g(either)h(div)o(erges)g(or)e(con)o(v)o(erges)59 X2434 y(to)q(o)g(slo)o(w.)18 b(A)13 b(practical)g(w)o(a)o(y)e(to)h X(treat)f(this)i(di\016cult)o(y)g([37)o(,)g Fm(x)p Fo(6.3])e(is)i(use)f X(the)h(Lanczos)f(bidiagonaliza-)59 2498 y(tion)h(algorithm)g(to)f X(compute)h(a)f(go)q(o)q(d)h(appro)o(ximation)g Fn(\022)1057 X2474 y Fj(\()p Fg(k)q Fj(\))1056 2510 y(1)1119 2498 y XFo(=)g Fm(k)p Fn(B)1224 2505 y Fg(k)1245 2498 y Fm(k)1268 X2505 y Fj(2)1300 2498 y Fo(to)f Fm(k)p Fn(A)p Fm(k)1433 X2505 y Fj(2)1465 2498 y Fo(and)h(then)g(rescale)h Fn(A)59 X2563 y Fo(and)h Fp(b)h Fo(b)o(y)f(0)p Fn(:)p Fo(99)p XFn(=\022)382 2539 y Fj(\()p Fg(k)q Fj(\))381 2576 y(1)430 X2563 y Fo(.)20 b(Usually)c(a)f(few)g(Lanczos)h(steps)f(are)g X(su\016cien)o(t.)20 b(This)c(initialization)i(pro)q(cess)59 X2620 y(can)d(also)h(b)q(e)f(used)h(to)f(pro)o(vide)h(the)f XFn(\027)s Fo(-metho)q(d)h(with)f(a)g(go)q(o)q(d)g(initial)j(guess,)c X(namely)l(,)i(the)f(iteration)59 2676 y(v)o(ector)g Fp(x)224 X2660 y Fj(\()p Fg(k)q Fj(\))287 2676 y Fo(after)g(a)f(few)h(LSQR)i X(steps.)130 2744 y(The)d(routine)h Fl(nu)g Fo(in)g Ff(Regulariza)m X(tion)h(Tools)e Fo(implemen)o(ts)i(the)e Fn(\027)s Fo(-metho)q(d)h(as)f X(describ)q(ed)i(in)59 2801 y([11)o(])h(with)h(the)f(ab)q(o)o(v)o(emen)o X(tioned)h(rescaling.)27 b(The)17 b(LSQR)i(start-v)o(ector)d(is)h(not)g X(used,)h(but)g(can)f(b)q(e)59 2857 y(supplied)h(b)o(y)d(the)g(user)g X(if)h(desired.)p eop X%%Page: 29 31 X29 30 bop 59 159 a Fo(2.9.)14 b(Metho)q(ds)h(for)g(Cho)q(osing)g(the)g X(Regularization)i(P)o(arameter)590 b(29)p 59 178 1767 X2 v 59 304 a Fp(2.8.4.)16 b(Extension)i(to)g(General-F)l(orm)f X(Problems)59 390 y Fo(So)d(far)g(w)o(e)h(ha)o(v)o(e)f(describ)q(ed)i X(sev)o(eral)f(iterativ)o(e)g(metho)q(ds)f(for)g(treating)g X(regularization)i(problems)f(in)59 447 y(standard)f(form;)f(w)o(e)h X(shall)h(no)o(w)f(brie\015y)h(describ)q(e)h(the)f(necessary)f X(extension)h(to)f(these)g(metho)q(ds)g(for)59 503 y(treating)c X(problems)i(in)f(general)h(form.)17 b(The)11 b(idea)h(presen)o(ted)f X(here)g(is)g(originally)i(from)d([35)o(,)g(36)o(].)18 Xb(F)l(rom)59 560 y(the)d(discussion)h(of)e(the)g(standard-form)g X(transformation)f(for)h(iterativ)o(e)g(metho)q(ds)h(in)g XFm(x)p Fo(2.6.2,)e(w)o(e)h(see)59 616 y(that)c(essen)o(tially)j(w)o(e)e X(m)o(ust)g(apply)g(the)h(ab)q(o)o(v)o(e)e(standard-form)h(iterativ)o(e) Xg(metho)q(ds)g(to)g(a)g(transformed)59 672 y(problem)k(with)350 X661 y(\026)338 672 y Fn(A)f Fo(and)477 660 y(\026)473 X672 y Fp(b)q Fo(.)19 b(I.e.,)14 b(according)h(to)e(\(2.57\))g(w)o(e)h X(m)o(ust)f(compute)i(the)f(solution)1625 671 y(\026)1622 X672 y Fp(x)1650 656 y Fj(\()p Fg(k)q Fj(\))1713 672 y XFo(to)g(the)59 729 y(problem)399 785 y(min)8 b Fm(k)517 X774 y Fo(\026)505 785 y Fn(A)549 784 y Fo(\026)547 785 Xy Fp(x)i Fm(\000)633 773 y Fo(\026)630 785 y Fp(b)p Fm(k)682 X792 y Fj(2)792 785 y Fo(sub)s(ject)16 b(to)1084 784 y(\026)1082 X785 y Fp(x)c Fm(2)h(K)1200 792 y Fg(k)1221 785 y Fo(\()1251 X774 y(\026)1239 785 y Fn(A)1273 767 y Fg(T)1312 774 y XFo(\026)1300 785 y Fn(A;)1366 774 y Fo(\026)1355 785 Xy Fn(A)1389 767 y Fg(T)1419 773 y Fo(\026)1416 785 y XFp(b)p Fo(\))i Fn(:)224 b Fo(\(2.59\))130 870 y(If)17 Xb(w)o(e)h(use)g(the)f(alternativ)o(e)h(form)o(ulation)f(from)g XFm(x)p Fo(2.6.2)f(with)1244 859 y(\026)1232 870 y Fn(A)h XFo(=)g Fn(A)8 b(L)1408 848 y Fe(y)1408 884 y Fg(A)1453 X870 y Fo(and)1547 858 y(\026)1544 870 y Fp(b)17 b Fo(=)f XFp(b)c Fm(\000)g Fn(A)c Fp(x)1799 877 y Fj(0)1818 870 Xy Fo(,)59 927 y(then)18 b(the)f(standard-form)g(transformation)f(can)h X(b)q(e)h(\\built)h(in)o(to")e(the)g(iterativ)o(e)h(sc)o(heme.)26 Xb(In)18 b(this)59 983 y(w)o(a)o(y)l(,)d(w)o(e)h(w)o(ork)f(directly)i X(with)g Fp(x)640 967 y Fj(\()p Fg(k)q Fj(\))704 983 y XFo(and)f(a)o(v)o(oid)g(the)g(bac)o(k-transformation)f(from)1521 X982 y(\026)1518 983 y Fp(x)1546 967 y Fj(\()p Fg(k)q XFj(\))1611 983 y Fo(to)g Fp(x)1695 967 y Fj(\()p Fg(k)q XFj(\))1744 983 y Fo(.)22 b(T)l(o)59 1040 y(deriv)o(e)16 Xb(this)f(tec)o(hnique,)h(consider)g(the)f(side)g(constrain)o(t)g(in)h X(\(2.59\))d(whic)o(h)i(implies)i(that)d(there)h(exist)59 X1096 y(constan)o(ts)f Fn(\030)280 1103 y Fj(0)300 1096 Xy Fn(;)8 b(:)g(:)g(:)d(;)j(\030)422 1103 y Fg(k)q Fe(\000)p XFj(1)502 1096 y Fo(suc)o(h)16 b(that)683 1230 y(\026)680 X1231 y Fp(x)708 1212 y Fj(\()p Fg(k)q Fj(\))769 1231 Xy Fo(=)817 1178 y Fg(k)q Fe(\000)p Fj(1)819 1191 y Fh(X)821 X1282 y Fg(i)p Fj(=0)897 1231 y Fn(\030)917 1238 y Fg(i)938 X1231 y Fo(\()968 1220 y(\026)956 1231 y Fn(A)990 1212 Xy Fg(T)1030 1220 y Fo(\026)1018 1231 y Fn(A)p Fo(\))1070 X1212 y Fg(i)1103 1220 y Fo(\026)1091 1231 y Fn(A)1125 X1212 y Fg(T)1156 1219 y Fo(\026)1153 1231 y Fp(b)f Fn(:)59 X1375 y Fo(If)h(w)o(e)e(insert)310 1364 y(\026)298 1375 Xy Fn(A)f Fo(=)g Fn(A)8 b(L)466 1353 y Fe(y)466 1389 y XFg(A)509 1375 y Fo(and)601 1363 y(\026)597 1375 y Fp(b)13 Xb Fo(=)g Fp(b)d Fm(\000)h Fn(A)d Fp(x)842 1382 y Fj(0)876 X1375 y Fo(in)o(to)15 b(this)h(relation,)f(w)o(e)g(obtain)426 X1512 y(\026)424 1513 y Fp(x)452 1494 y Fj(\()p Fg(k)q XFj(\))513 1513 y Fo(=)561 1460 y Fg(k)q Fe(\000)p Fj(1)563 X1473 y Fh(X)564 1564 y Fg(i)p Fj(=0)640 1513 y Fn(\030)660 X1520 y Fg(i)682 1466 y Fh(\020)706 1513 y Fo(\()p Fn(L)755 X1491 y Fe(y)755 1527 y Fg(A)784 1513 y Fo(\))802 1494 Xy Fg(T)829 1513 y Fn(A)863 1494 y Fg(T)890 1513 y Fn(A)8 Xb(L)963 1491 y Fe(y)963 1527 y Fg(A)991 1466 y Fh(\021)1016 X1478 y Fg(i)1046 1513 y Fo(\()p Fn(L)1095 1491 y Fe(y)1095 X1527 y Fg(A)1123 1513 y Fo(\))1141 1494 y Fg(T)1168 1513 Xy Fn(A)1202 1494 y Fg(T)1229 1513 y Fo(\()p Fp(b)i Fm(\000)h XFn(A)d Fp(x)1402 1520 y Fj(0)1421 1513 y Fo(\))14 b Fn(:)59 X1657 y Fo(Using)i(Eqs.)e(\(2.31\))f(and)i(\(2.30\))e(for)h XFn(L)737 1635 y Fe(y)737 1671 y Fg(A)780 1657 y Fo(and)h XFp(x)896 1664 y Fj(0)930 1657 y Fo(together)g(with)g(the)g(GSVD)f(it)h X(is)h(straigh)o(tforw)o(ard)59 1720 y(to)e(sho)o(w)g(that)g(\()p XFn(L)373 1698 y Fe(y)373 1734 y Fg(A)401 1720 y Fo(\))419 X1704 y Fg(T)446 1720 y Fn(A)480 1704 y Fg(T)508 1720 Xy Fn(A)8 b Fp(x)578 1727 y Fj(0)609 1720 y Fo(=)13 b XFp(0)p Fo(.)20 b(Th)o(us,)14 b(b)o(y)h(inserting)g(the)g(ab)q(o)o(v)o X(e)f(expression)h(for)1588 1719 y(\026)1585 1720 y Fp(x)1613 X1704 y Fj(\()p Fg(k)q Fj(\))1676 1720 y Fo(in)o(to)g(the)59 X1783 y(bac)o(k-transformation)f Fp(x)503 1767 y Fj(\()p XFg(k)q Fj(\))564 1783 y Fo(=)f Fn(L)643 1761 y Fe(y)643 X1797 y Fg(A)674 1782 y Fo(\026)671 1783 y Fp(x)699 1767 Xy Fj(\()p Fg(k)q Fj(\))758 1783 y Fo(+)d Fp(x)831 1790 Xy Fj(0)851 1783 y Fo(,)k(w)o(e)h(obtain)429 1921 y Fp(x)457 X1902 y Fj(\()p Fg(k)q Fj(\))518 1921 y Fo(=)566 1868 Xy Fg(k)q Fe(\000)p Fj(1)568 1881 y Fh(X)569 1972 y Fg(i)p XFj(=0)645 1921 y Fn(\030)665 1928 y Fg(i)687 1874 y Fh(\020)711 X1921 y Fn(L)742 1899 y Fe(y)742 1935 y Fg(A)778 1921 Xy Fo(\()p Fn(L)827 1899 y Fe(y)827 1935 y Fg(A)856 1921 Xy Fo(\))874 1902 y Fg(T)901 1921 y Fn(A)935 1902 y Fg(T)962 X1921 y Fn(A)996 1874 y Fh(\021)1021 1886 y Fg(i)1051 X1921 y Fn(L)1082 1899 y Fe(y)1082 1935 y Fg(A)1118 1921 Xy Fo(\()p Fn(L)1167 1899 y Fe(y)1167 1935 y Fg(A)1195 X1921 y Fo(\))1213 1902 y Fg(T)1240 1921 y Fn(A)1274 1902 Xy Fg(T)1301 1921 y Fp(b)c Fo(+)f Fp(x)1414 1928 y Fj(0)1448 X1921 y Fn(:)254 b Fo(\(2.60\))59 2065 y(F)l(rom)17 b(this)h(relation)g X(w)o(e)f(see)h(that)f(w)o(e)g(can)h(consider)h(the)e(matrix)h XFn(L)1284 2043 y Fe(y)1284 2079 y Fg(A)1320 2065 y Fo(\()p XFn(L)1369 2043 y Fe(y)1369 2079 y Fg(A)1397 2065 y Fo(\))1415 X2049 y Fg(T)1459 2065 y Fo(a)g(\\preconditioner")59 2122 Xy(for)f(the)h(iterativ)o(e)f(metho)q(ds,)h(and)g(w)o(e)f(stress)g(that) Xg(the)h(purp)q(ose)g(of)f(the)g(\\preconditioner")i(is)f(not)59 X2178 y(to)h(impro)o(v)o(e)g(the)h(condition)g(n)o(um)o(b)q(er)g(of)f X(the)g(iteration)h(matrix)f(but)g(rather)g(to)g(ensure)h(that)f(the)59 X2235 y(\\preconditioned")k(iteration)f(v)o(ector)e Fp(x)780 X2218 y Fj(\()p Fg(k)q Fj(\))850 2235 y Fo(lies)j(in)f(the)g(correct)f X(subspace)h(and)f(th)o(us)g(minimizes)59 2291 y Fm(k)p XFn(L)8 b Fp(x)149 2275 y Fj(\()p Fg(k)q Fj(\))197 2291 Xy Fm(k)220 2298 y Fj(2)239 2291 y Fo(.)20 b(Minimization)d(of)e(the)g X(correct)g(residual)h(norm)f(is)h(ensured)g(b)o(y)f(Eq.)g(\(2.38\).)130 X2348 y(\\Preconditioning")g(is)f(easy)g(to)f(build)j(in)o(to)d(CG,)g X(LSQR,)i(and)f(the)g Fn(\027)s Fo(-metho)q(d)h(b)o(y)e(means)h(of)g X(the)59 2404 y(algorithms)i(in)h(\(2.36\))d(from)i Fm(x)p XFo(2.6.2.)21 b(The)16 b(sp)q(ecial)i(\\preconditioned")g(v)o(ersions)e X(are)g(implemen)o(ted)59 2461 y(as)f(routines)g Fl(p)q(cgls)p XFo(,)h Fl(plsqr)p Fo(,)g(and)f Fl(pnu)i Fo(in)f Ff(Regulariza)m(tion)h X(Tools)p Fo(.)59 2586 y Fr(2.9.)h(Metho)r(ds)g(for)h(Cho)r(osing)f(the) Xh(Regularization)e(P)n(arameter)59 2688 y Fo(No)i(regularization)h(pac) Xo(k)m(age)f(is)g(complete)h(without)f(routines)g(for)g(computation)g X(of)f(the)h(regular-)59 2744 y(ization)j(parameter.)37 Xb(As)21 b(w)o(e)g(ha)o(v)o(e)g(already)g(discussed)i(in)f(Section)g X(2.5)e(a)h(go)q(o)q(d)g(regularization)59 2801 y(parameter)15 Xb(should)i(yield)g(a)f(fair)g(balance)g(b)q(et)o(w)o(een)h(the)f(p)q X(erturbation)g(error)f(and)h(the)g(regulariza-)59 2857 Xy(tion)e(error)g(in)h(the)f(regularized)i(solution.)k(Throughout)14 Xb(the)g(y)o(ears)f(a)h(v)m(ariet)o(y)h(of)e(parameter-c)o(hoice)p Xeop X%%Page: 30 32 X30 31 bop 64 159 a Fo(30)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v 59 304 a(strategies)h(ha)o(v)o(e)h(b)q(een)h(prop)q X(osed.)31 b(These)20 b(metho)q(ds)f(can)g(roughly)g(b)q(e)h(divided)h X(in)o(to)e(t)o(w)o(o)e(classes)59 361 y(dep)q(ending)d(on)f(their)f X(assumption)h(ab)q(out)f Fm(k)p Fp(e)p Fm(k)875 368 y XFj(2)894 361 y Fo(,)g(the)h(norm)e(of)h(the)h(p)q(erturbation)f(of)g X(the)g(righ)o(t-hand)59 417 y(side.)21 b(The)15 b(t)o(w)o(o)f(classes)i X(can)f(b)q(e)h(c)o(haracterized)g(as)f(follo)o(ws:)115 X514 y(1.)22 b(Metho)q(ds)15 b(based)g(on)g(kno)o(wledge,)h(or)e(a)h(go) Xq(o)q(d)g(estimate,)g(of)g Fm(k)p Fp(e)p Fm(k)1303 521 Xy Fj(2)1322 514 y Fo(.)115 611 y(2.)22 b(Metho)q(ds)17 Xb(that)f(do)h(not)f(require)i Fm(k)p Fp(e)p Fm(k)834 X618 y Fj(2)853 611 y Fo(,)f(but)g(instead)h(seek)f(to)f(extract)g(the)h X(necessary)g(infor-)173 667 y(mation)e(from)f(the)h(giv)o(en)h(righ)o X(t-hand)g(side.)59 764 y(F)l(or)g(man)o(y)h(of)g(these)g(metho)q(ds,)g X(the)g(con)o(v)o(ergence)h(rate)e(for)g(the)h(solution)h(as)f XFm(k)p Fp(e)p Fm(k)1520 771 y Fj(2)1555 764 y Fm(!)f XFo(0)h(has)g(b)q(een)59 820 y(analyzed)i([25)o(,)e(33,)g(75].)28 Xb(F)l(our)17 b(parameter-c)o(hoice)h(routines)h(are)e(included)k(in)e XFf(Regulariza)m(tion)59 877 y(Tools)p Fo(,)14 b(one)i(from)e(class)i(1) Xf(and)g(three)g(from)g(class)g(2.)130 934 y(The)d(only)h(metho)q(d)g(b) Xq(elonging)h(to)d(class)i(1)f(is)h(the)f Fk(discr)n(ep)n(ancy)h X(principle)f Fo([56)o(,)h Fm(x)p Fo(27])e(whic)o(h,)j(in)f(all)59 X990 y(simplicit)o(y)l(,)k(amoun)o(ts)d(to)g(c)o(ho)q(osing)h(the)g X(regularization)h(parameter)e(suc)o(h)h(that)f(the)h(residual)h(norm)59 X1047 y(for)f(the)g(regularized)h(solution)g(satis\014es)722 X1151 y Fm(k)p Fn(A)8 b Fp(x)815 1158 y Fj(reg)874 1151 Xy Fm(\000)i Fp(b)p Fm(k)971 1158 y Fj(2)1003 1151 y Fo(=)j XFm(k)p Fp(e)p Fm(k)1121 1158 y Fj(2)1155 1151 y Fn(:)547 Xb Fo(\(2.61\))59 1255 y(When)19 b(a)g(go)q(o)q(d)f(estimate)h(for)f XFm(k)p Fp(e)p Fm(k)680 1262 y Fj(2)718 1255 y Fo(is)h(kno)o(wn,)g(this) Xg(metho)q(d)g(yields)h(a)e(go)q(o)q(d)h(regularization)h(pa-)59 X1312 y(rameter)14 b(corresp)q(onding)j(to)d(a)h(regularized)h(solution) Xg(immediately)h(to)d(the)i(righ)o(t)f(of)f(the)h(L-curv)o(e's)59 X1368 y(corner.)k(Due)14 b(to)f(the)g(steep)h(part)f(of)g(the)g(L-curv)o X(e)h(w)o(e)g(see)f(that)g(an)g(underestimate)h(of)f Fm(k)p XFp(e)p Fm(k)1649 1375 y Fj(2)1682 1368 y Fo(is)h(lik)o(ely)59 X1424 y(to)e(pro)q(duce)h(an)f(underregularized)j(solution)e(with)f(a)g X(v)o(ery)g(large)h(\(semi\)norm.)18 b(On)13 b(the)g(other)f(hand,)59 X1481 y(an)h(o)o(v)o(erestimate)g(of)g Fm(k)p Fp(e)p Fm(k)503 X1488 y Fj(2)535 1481 y Fo(pro)q(duces)h(an)g(o)o(v)o(erregularized)g X(solution)g(with)g(to)q(o)e(large)i(regularization)59 X1537 y(error.)130 1595 y(The)k(three)h(metho)q(ds)g(from)e(class)i(2)g X(that)e(w)o(e)i(ha)o(v)o(e)f(included)j(in)e Ff(Regulariza)m(tion)i X(Tools)59 1651 y Fo(are)15 b(the)h(L-curv)o(e)g(criterion,)h X(generalized)g(cross-v)m(alidation,)g(and)f(the)f(quasi-optimalit)o(y)i X(criterion.)59 1707 y(The)g Fk(L-curve)h(criterion)e XFo(has)h(already)g(b)q(een)h(discussed)g(in)g(connection)f(with)h(the)e X(in)o(tro)q(duction)i(of)59 1764 y(the)c(L-curv)o(e)g(in)h(Section)f X(2.5.)19 b(Our)14 b(implemen)o(tation)h(follo)o(ws)f(the)f(description) Xj(in)e([48)o(])f(closely)l(.)21 b(F)l(or)59 1820 y(a)15 Xb(con)o(tin)o(uous)g(regularization)i(parameter)d Fn(\025)h XFo(w)o(e)g(compute)g(the)g(curv)m(ature)h(of)f(the)g(curv)o(e)645 X1925 y(\(log)8 b Fm(k)p Fn(A)g Fp(x)822 1932 y Fg(\025)854 X1925 y Fm(\000)j Fp(b)p Fm(k)952 1932 y Fj(2)979 1925 Xy Fn(;)j Fo(log)9 b Fm(k)p Fn(L)f Fp(x)1163 1932 y Fg(\025)1184 X1925 y Fm(k)1207 1932 y Fj(2)1227 1925 y Fo(\))59 2029 Xy(\(with)19 b Fn(\025)g Fo(as)f(its)h(parameter\))f(and)i(seek)f(the)g X(p)q(oin)o(t)g(with)h(maxim)o(um)f(curv)m(ature,)h(whic)o(h)g(w)o(e)e X(then)59 2085 y(de\014ne)e(as)e(the)h(L-curv)o(e's)g(corner.)k(When)c X(the)g(regularization)h(parameter)d(is)j(discrete)f(w)o(e)f(appro)o X(xi-)59 2142 y(mate)g(the)h(discrete)h(L-curv)o(e)g(in)f(log-log)h X(scale)f(b)o(y)g(a)g(2D)f(spline)j(curv)o(e,)d(compute)h(the)g(p)q(oin) Xo(t)h(on)f(the)59 2198 y(spline)21 b(curv)o(e)e(with)g(maxim)o(um)g X(curv)m(ature,)h(and)f(de\014ne)h(the)f(corner)g(of)g(the)g(discrete)g X(L-curv)o(e)h(as)59 2255 y(that)15 b(p)q(oin)o(t)g(whic)o(h)h(is)g X(closest)f(to)g(the)g(corner)g(of)g(the)g(spline)j(curv)o(e.)130 X2312 y Fk(Gener)n(alize)n(d)h(cr)n(oss-validation)h Fo(\(GCV\))f(is)i X(based)g(on)f(the)h(philosoph)o(y)g(that)f(if)h(an)f(arbitrary)59 X2368 y(elemen)o(t)15 b Fn(b)246 2375 y Fg(i)273 2368 Xy Fo(of)f(the)g(righ)o(t-hand)h(side)g Fp(b)f Fo(is)g(left)g(out,)g X(then)g(the)g(corresp)q(onding)h(regularized)h(solution)59 X2425 y(should)f(predict)g(this)g(observ)m(ation)g(w)o(ell,)g(and)f(the) Xg(c)o(hoice)h(of)f(regularization)h(parameter)f(should)h(b)q(e)59 X2481 y(indep)q(enden)o(t)22 b(of)c(an)h(orthogonal)f(transformation)g X(of)h Fp(b)p Fo(;)h(cf.)f([77)o(,)h(Chapter)f(4])f(for)g(more)h X(details.)59 2538 y(This)d(leads)g(to)e(c)o(ho)q(osing)i(the)f X(regularization)h(parameter)f(whic)o(h)h(minimizes)h(the)e(GCV)g X(function)681 2667 y Fn(G)d Fm(\021)845 2636 y(k)p Fn(A)c XFp(x)938 2643 y Fj(reg)997 2636 y Fm(\000)i Fp(b)p Fm(k)1094 X2620 y Fj(2)1094 2648 y(2)p 782 2657 394 2 v 782 2698 Xa Fo(\(trace\()p Fn(I)937 2705 y Fg(m)980 2698 y Fm(\000)g XFn(A)e(A)1101 2685 y Fg(I)1121 2698 y Fo(\)\))1157 2685 Xy Fj(2)1196 2667 y Fn(;)506 b Fo(\(2.62\))59 2801 y(where)17 Xb Fn(A)226 2784 y Fg(I)263 2801 y Fo(is)g(a)g(matrix)f(whic)o(h)i(pro)q X(duces)f(the)g(regularized)h(solution)g Fp(x)1339 2808 Xy Fj(reg)1405 2801 y Fo(when)f(m)o(ultiplied)i(with)59 X2857 y Fp(b)p Fo(,)14 b(i.e.,)f Fp(x)227 2864 y Fj(reg)289 X2857 y Fo(=)g Fn(A)371 2841 y Fg(I)391 2857 y Fp(b)p XFo(.)19 b(Note)14 b(that)f Fn(G)g Fo(is)h(de\014ned)h(for)e(b)q(oth)h X(con)o(tin)o(uous)g(and)f(discrete)i(regularization)p Xeop X%%Page: 31 33 X31 32 bop 59 159 a Fo(2.9.)14 b(Metho)q(ds)h(for)g(Cho)q(osing)g(the)g X(Regularization)i(P)o(arameter)590 b(31)p 59 178 1767 X2 v 59 304 a(parameters.)23 b(The)17 b(denominator)g(in)h(\(2.62\))c X(can)j(b)q(e)g(computed)g(in)h Fn(O)q Fo(\()p Fn(n)p XFo(\))e(op)q(erations)h(if)g(the)g(bidi-)59 361 y(agonalization)f X(algorithm)g(from)f(Section)h(2.7)f(is)h(used)g([24].)k(Alternativ)o X(ely)l(,)d(the)f(\014lter)g(factors)f(can)59 417 y(b)q(e)h(used)g(to)e X(ev)m(aluate)i(the)g(denominator)f(b)o(y)g(means)g(of)g(the)g(simple)i X(expression)530 550 y(trace)o(\()p Fn(I)666 557 y Fg(m)709 X550 y Fm(\000)11 b Fn(A)d(A)831 531 y Fg(I)851 550 y XFo(\))k(=)h Fn(m)d Fm(\000)g Fo(\()p Fn(n)g Fm(\000)h XFn(p)p Fo(\))e Fm(\000)1242 494 y Fg(p)1221 510 y Fh(X)1222 X601 y Fg(i)p Fj(=1)1296 550 y Fn(f)1318 557 y Fg(i)1347 X550 y Fn(:)355 b Fo(\(2.63\))59 689 y(This)18 b(is)g(the)g(approac)o(h) Xf(used)h(in)g(routine)g Fl(gcv)p Fo(.)27 b(In)18 b([45)o(])f(it)h(is)g X(illustrated)h(that)e(the)g(GCV)g(metho)q(d)59 745 y(indeed)j(seeks)f X(to)f(balance)h(the)f(p)q(erturbation)h(and)g(regularization)g(errors)f X(and)g(th)o(us,)h(in)g(turn,)g(is)59 802 y(related)d(to)e(the)i(corner) Xf(of)f(the)i(L-curv)o(e.)130 858 y(The)10 b(\014nal)h(metho)q(d)g X(included)i(in)e Ff(Regulariza)m(tion)i(Tools)d Fo(is)g(the)h XFk(quasi-optimality)i(criterion)59 915 y Fo([56)o(,)k XFm(x)p Fo(27].)25 b(This)18 b(metho)q(d)f(is,)h(strictly)f(sp)q X(eaking,)h(only)g(de\014ned)g(for)f(a)f(con)o(tin)o(uous)i X(regularization)59 971 y(parameter)c Fn(\025)h Fo(and)h(amoun)o(ts)e X(to)g(minimizing)k(the)e(function)472 1128 y Fn(Q)c Fm(\021)h XFn(\025)603 1066 y Fh(\015)602 1091 y(\015)602 1116 y(\015)602 X1141 y(\015)630 1097 y Fn(d)p Fp(x)682 1104 y Fg(\025)p X630 1117 74 2 v 642 1159 a Fn(d\025)709 1066 y Fh(\015)709 X1091 y(\015)709 1116 y(\015)709 1141 y(\015)732 1168 Xy Fj(2)765 1128 y Fo(=)813 1043 y Fh(0)813 1118 y(@)870 X1072 y Fg(p)849 1087 y Fh(X)850 1178 y Fg(i)p Fj(=1)916 X1056 y Fh( )949 1128 y Fn(f)971 1135 y Fg(i)993 1128 Xy Fo(\(1)d Fm(\000)g Fn(f)1111 1135 y Fg(i)1126 1128 Xy Fo(\))1156 1097 y Fp(u)1185 1080 y Fg(T)1185 1109 y(i)1212 X1097 y Fp(b)p 1156 1117 86 2 v 1180 1159 a Fn(\015)1204 X1166 y Fg(i)1246 1056 y Fh(!)1279 1067 y Fj(2)1307 1043 Xy Fh(1)1307 1118 y(A)1343 1055 y Fj(1)p Fg(=)p Fj(2)1405 X1128 y Fn(:)297 b Fo(\(2.64\))59 1275 y(As)22 b(demonstrated)f(in)i X([45)o(],)f(under)h(certain)f(assumptions)g(the)f(approac)o(h)h(also)f X(corresp)q(onds)h(to)59 1331 y(\014nding)13 b(a)e(go)q(o)q(d)g(balance) Xh(b)q(et)o(w)o(een)g(p)q(erturbation)f(and)h(regularization)g(errors)e X(in)i Fp(x)1513 1338 y Fg(\025)1536 1331 y Fo(.)18 b(F)l(or)11 Xb(a)g(discrete)59 1388 y(regularization)16 b(parameter)f XFn(k)q Fo(,)f(w)o(e)h(use)h Fn(\025)c Fo(=)h Fn(\015)874 X1395 y Fg(k)910 1388 y Fo(and)i(the)h(appro)o(ximations)268 X1455 y Fh(\015)268 1480 y(\015)268 1505 y(\015)268 1530 Xy(\015)296 1486 y Fn(d)p Fp(x)348 1493 y Fg(\025)p 296 X1506 74 2 v 308 1548 a Fn(d\025)375 1455 y Fh(\015)375 X1480 y(\015)375 1505 y(\015)375 1530 y(\015)398 1557 Xy Fj(2)430 1516 y Fm(\031)483 1486 y(k)p Fo(\001)p Fp(x)572 X1493 y Fg(k)593 1486 y Fm(k)616 1493 y Fj(2)p 483 1506 X152 2 v 514 1548 a Fm(j)p Fo(\001)p Fn(\025)p Fm(j)655 X1516 y Fn(;)99 b Fm(k)p Fo(\001)p Fp(x)856 1523 y Fg(k)876 X1516 y Fm(k)899 1523 y Fj(2)931 1516 y Fo(=)984 1486 Xy Fp(u)1013 1469 y Fg(T)1013 1499 y(k)1041 1486 y Fp(b)p X984 1506 86 2 v 1004 1548 a Fn(\015)1028 1555 y Fg(k)1090 X1516 y Fn(;)f Fo(\001)p Fn(\025)12 b Fo(=)h Fn(\015)1350 X1523 y Fg(k)q Fj(+1)1426 1516 y Fm(\000)d Fn(\015)1495 X1523 y Fg(k)1529 1516 y Fm(\031)j Fn(\015)1601 1523 y XFg(k)59 1640 y Fo(to)i(obtain)g(the)g(expressions)420 X1769 y Fn(Q)d Fm(\031)521 1738 y Fp(u)550 1722 y Fg(T)550 X1751 y(k)578 1738 y Fp(b)p 521 1758 V 540 1800 a Fn(\033)566 X1807 y Fg(k)657 1769 y Fo(if)50 b Fn(L)12 b Fo(=)h Fn(I)844 X1776 y Fg(n)883 1769 y Fn(;)98 b(Q)13 b Fm(\031)1096 X1738 y Fp(u)1125 1722 y Fg(T)1125 1751 y(k)1152 1738 Xy Fp(b)p 1096 1758 V 1116 1800 a Fn(\015)1140 1807 y XFg(k)1232 1769 y Fo(if)49 b Fn(L)13 b Fm(6)p Fo(=)g Fn(I)1419 X1776 y Fg(n)1457 1769 y Fn(:)245 b Fo(\(2.65\))130 1890 Xy(The)23 b(discrepancy)h(principle)h(is)e(implemen)o(ted)i(in)e X(routine)h Fl(discrep)f Fo(describ)q(ed)i(in)f Fm(x)p XFo(2.7.2)d(in)59 1947 y(connection)e(with)f(direct)g(regularization)h X(metho)q(ds.)27 b(The)18 b(L-curv)o(e)h(criterion)f(is)g(implemen)o X(ted)i(in)59 2003 y(the)13 b(t)o(w)o(o)f(routines)i Fl(l)p X406 2003 14 2 v 16 w(curve)g Fo(and)f Fl(l)p 633 2003 XV 16 w(co)o(rner)p Fo(,)g(while)i(GCV)d(is)i(is)g(pro)o(vided)g(b)o(y)f X(routine)h Fl(gcv)p Fo(.)19 b(Finally)l(,)c(the)59 2060 Xy(quasi-optimalit)o(y)h(criterion)h(is)e(implemen)o(ted)i(in)f(routine) Xg Fl(quasiopt)p Fo(.)p eop X%%Page: 32 34 X32 33 bop 64 159 a Fo(32)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p X64 178 1767 2 v eop X%%Page: 33 35 X33 34 bop 59 548 a Fq(3.)35 b(Regulariza)-5 b(tion)27 Xb(Tools)f(Tutorial)59 756 y Fo(The)19 b(purp)q(ose)h(of)e(this)h X(section)h(is)f(to)g(giv)o(e)g(a)f(brief)i(in)o(tro)q(duction)g(to)e X(the)h(use)g(of)g(the)g(routines)g(in)59 813 y Ff(Regulariza)m(tion)k X(Tools)d Fo(b)o(y)h(means)f(of)h(some)f(fairly)h(simple)h(examples.)37 Xb(In)22 b(particular,)g(w)o(e)59 869 y(sho)o(w)13 b(ho)o(w)g(to)f X(compute)i(regularized)g(solutions)g(and)g(ho)o(w)f(to)f(ev)m(aluate)i X(these)g(solutions)g(b)o(y)f(v)m(arious)59 925 y(graphical)j(to)q(ols.) Xj(Although)c(the)g(examples)g(giv)o(en)g(b)q(elo)o(w)g(do)g(not)f(touc) Xo(h)g(up)q(on)i(all)f(the)g(features)f(of)59 982 y Ff(Regulariza)m X(tion)19 b(Tools)p Fo(,)d(they)g(illustrate)i(the)f(fundamen)o(tal)g X(ideas)g(underlying)h(the)f(pac)o(k)m(age,)59 1038 y(namely)l(,)h(mo)q X(dularit)o(y)g(and)g(regularit)o(y)f(b)q(et)o(w)o(een)h(the)g X(routines.)27 b(F)l(or)16 b(con)o(v)o(enience,)j(the)f(examples)59 X1095 y(are)h(also)h(a)o(v)m(ailable)h(in)f(the)g(annotated)f(script)h XFl(regudemo)p Fo(,)g(with)f(appropriate)h Fl(pause)h XFo(statemen)o(ts)59 1151 y(added.)59 1289 y Fr(3.1.)d(The)g(Discrete)f X(Picard)i(Condition)59 1395 y Fo(W)l(e)i(shall)h(\014rst)e(illustrate)i X(the)f(use)g(of)g(the)f(routine)i Fl(pica)o(rd)f Fo(for)f(visually)i(c) Xo(hec)o(king)g(the)f(discrete)59 1451 y(Picard)14 b(condition,)h(cf.)e X(Section)i(2.4.)j(First,)13 b(w)o(e)h(generate)f(a)g(discrete)i(ill-p)q X(osed)h(problem)e(using)h(one)59 1507 y(of)h(the)f(man)o(y)h(built-in)i X(test)e(problems;)g(the)g(one)g(used)g(here)h(is)f Fl(sha)o(w)h XFo(whic)o(h)f(is)h(a)e(one-dimensional)59 1564 y(mo)q(del)i(of)e(an)h X(image)f(restoration)g(problem.)22 b(Then)16 b(w)o(e)g(add)g(white)g X(noise)g(to)f(the)h(righ)o(t-hand)g(side,)59 1620 y(th)o(us)f(pro)q X(ducing)i(a)d(more)h(\\realistic")h(problem.)130 1679 Xy(Before)e(p)q(erforming)h(the)g(analysis)g(of)f(the)h(problem,)g(w)o X(e)f(compute)h(the)f(SVD)h(of)f(the)h(co)q(e\016cien)o(t)59 X1735 y(matrix;)d(this)g(is)g(the)g(t)o(ypical)h(situation)f(in)g XFf(Regulariza)m(tion)i(Tools)p Fo(,)e(since)g(most)f(of)g(the)h X(routines)59 1792 y(mak)o(e)i(use)h(of)g(either)g(the)g(SVD)g(\(for)f X(standard-form)f(problems\))i(or)g(the)f(GSVD)h(\(for)f(general-form)59 X1848 y(problems\).)22 b(W)l(e)16 b(then)g(use)g Fl(pica)o(rd)g XFo(to)f(plot)h(the)f(singular)i(v)m(alues)g(and)f(the)g(F)l(ourier)g X(co)q(e\016cien)o(ts)g(for)59 1905 y(b)q(oth)f(the)h(unp)q(erturb)q(ed) Xh(and)e(the)g(p)q(erturb)q(ed)i(problem,)e(see)h(Fig.)e(3.1.)130 X2022 y Fl([A,b)p 212 2022 14 2 v 17 w(ba)o(r,x])g(=)i(sha)o(w)8 Xb(\(32\);)130 2095 y(randn)g(\('seed',70957\);)130 2168 Xy(e)15 b(=)g(1e-3)p Fm(\003)p Fl(rand)8 b(\(size)g(\(b)p X549 2168 V 16 w(ba)o(r\)\);)14 b(b)h(=)h(b)p 800 2168 XV 17 w(ba)o(r)e(+)i(e;)130 2241 y([U,s,V])f(=)h(csvd)8 Xb(\(A\);)130 2314 y(subplot)g(\(2,1,1\);)14 b(pica)o(rd)8 Xb(\(U,s,b)p 672 2314 V 16 w(ba)o(r\);)130 2386 y(subplot)g(\(2,2,2\);) X14 b(pica)o(rd)8 b(\(U,s,b\);)130 2518 y Fo(Clearly)l(,)k(most)d(of)i X(the)f(F)l(ourier)h(co)q(e\016cien)o(ts)h(for)e(the)g(unp)q(erturb)q X(ed)j(problem)e(satisfy)f(the)h(discrete)59 2575 y(Picard)h X(condition|although)h(ev)o(en)o(tually)l(,)g(for)e(large)g XFn(i)p Fo(,)h(b)q(oth)f(the)h(singular)g(v)m(alues)g(and)g(the)f(F)l X(ourier)59 2631 y(co)q(e\016cien)o(ts)18 b(b)q(ecome)g(dominated)f(b)o X(y)g(rounding)h(errors.)24 b(F)l(or)17 b(the)g(\\noisy")g(test)f X(problem,)i(w)o(e)e(see)59 2688 y(that)c(the)g(F)l(ourier)g(co)q X(e\016cien)o(ts)h(for)f(the)g(righ)o(t-hand)h(side)g(b)q(ecome)g X(dominated)g(b)o(y)f(the)g(p)q(erturbation)59 2744 y(for)19 Xb Fn(i)h Fo(m)o(uc)o(h)g(smaller)g(than)g(b)q(efore.)34 Xb(W)l(e)20 b(also)g(see)g(that)f(in)i(the)f(left)g(part)f(of)g(curv)o X(e)h(the)g(F)l(ourier)59 2801 y(co)q(e\016cien)o(ts)h(still)h(deca)o(y) Xf(faster)f(than)g(the)h(singular)g(v)m(alues,)i(indicating)f(that)e X(the)h(unp)q(erturb)q(ed)59 2857 y(righ)o(t-hand)h(side)g(satis\014es)f X(the)g(discrete)h(Picard)g(condition.)38 b(T)l(o)21 b(regularize)i X(this)e(problem,)i(w)o(e)p eop X%%Page: 34 36 X34 35 bop 64 159 a Fo(34)1473 b(TUTORIAL)p 64 178 1767 X2 v 177 259 a X 22376156 18646798 4341596 13222133 35982622 39469056 startTexFig X 177 259 a X%%BeginDocument: tutorial/fig1.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 595 134 5775 4796 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 1782 5356 0 0 -1782 898 2170 4 MP XPP X-5356 0 0 1782 5356 0 0 -1782 898 2170 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 2170 mt 6254 2170 L X 898 388 mt 6254 388 L X 898 2170 mt 898 388 L X6254 2170 mt 6254 388 L X 898 2170 mt 6254 2170 L X 898 2170 mt 898 388 L X 898 2170 mt 898 2116 L X 898 388 mt 898 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 865 2316 mt X(0) s X1663 2170 mt 1663 2116 L X1663 388 mt 1663 442 L X1630 2316 mt X(5) s X2428 2170 mt 2428 2116 L X2428 388 mt 2428 442 L X2362 2316 mt X(10) s X3193 2170 mt 3193 2116 L X3193 388 mt 3193 442 L X3127 2316 mt X(15) s X3959 2170 mt 3959 2116 L X3959 388 mt 3959 442 L X3893 2316 mt X(20) s X4724 2170 mt 4724 2116 L X4724 388 mt 4724 442 L X4658 2316 mt X(25) s X5489 2170 mt 5489 2116 L X5489 388 mt 5489 442 L X5423 2316 mt X(30) s X6254 2170 mt 6254 2116 L X6254 388 mt 6254 442 L X6188 2316 mt X(35) s X 898 2170 mt 952 2170 L X6254 2170 mt 6200 2170 L X 595 2214 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 2140 mt X(-20) s X 898 2051 mt 925 2051 L X6254 2051 mt 6227 2051 L X 898 1932 mt 925 1932 L X6254 1932 mt 6227 1932 L X 898 1814 mt 925 1814 L X6254 1814 mt 6227 1814 L X 898 1695 mt 925 1695 L X6254 1695 mt 6227 1695 L X 898 1576 mt 925 1576 L X6254 1576 mt 6227 1576 L X 898 1457 mt 925 1457 L X6254 1457 mt 6227 1457 L X 898 1338 mt 925 1338 L X6254 1338 mt 6227 1338 L X 898 1220 mt 925 1220 L X6254 1220 mt 6227 1220 L X 898 1101 mt 925 1101 L X6254 1101 mt 6227 1101 L X 898 1576 mt 952 1576 L X6254 1576 mt 6200 1576 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 1620 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 1546 mt X(-10) s X 898 1457 mt 925 1457 L X6254 1457 mt 6227 1457 L X 898 1338 mt 925 1338 L X6254 1338 mt 6227 1338 L X 898 1220 mt 925 1220 L X6254 1220 mt 6227 1220 L X 898 1101 mt 925 1101 L X6254 1101 mt 6227 1101 L X 898 982 mt 925 982 L X6254 982 mt 6227 982 L X 898 863 mt 925 863 L X6254 863 mt 6227 863 L X 898 744 mt 925 744 L X6254 744 mt 6227 744 L X 898 626 mt 925 626 L X6254 626 mt 6227 626 L X 898 507 mt 925 507 L X6254 507 mt 6227 507 L X 898 982 mt 952 982 L X6254 982 mt 6200 982 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 1026 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 952 mt X(0) s X 898 863 mt 925 863 L X6254 863 mt 6227 863 L X 898 744 mt 925 744 L X6254 744 mt 6227 744 L X 898 626 mt 925 626 L X6254 626 mt 6227 626 L X 898 507 mt 925 507 L X6254 507 mt 6227 507 L X 898 388 mt 925 388 L X6254 388 mt 6227 388 L X 898 388 mt 952 388 L X6254 388 mt 6200 388 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 432 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 358 mt X(10) s X 898 2170 mt 6254 2170 L X 898 388 mt 6254 388 L X 898 2170 mt 898 388 L X6254 2170 mt 6254 388 L Xgs 898 388 5357 1783 MR c np X153 13 153 7 153 11 153 15 153 11 153 1 153 2 153 6 X153 16 153 3 153 14 153 127 153 32 153 32 154 96 153 55 X153 70 153 67 153 56 153 42 153 35 153 56 153 74 153 32 X153 45 153 9 153 14 153 49 153 25 153 15 153 12 1051 954 32 MP stroke Xgs 978 881 4891 1189 MR c np X24 w X1051 954 PD X1204 966 PD X1357 981 PD X1510 1006 PD X1663 1055 PD X1816 1069 PD X1969 1078 PD X2122 1123 PD X2275 1155 PD X2428 1229 PD X2581 1285 PD X2734 1320 PD X2887 1362 PD X3040 1418 PD X3193 1485 PD X3346 1555 PD X3499 1610 PD X3653 1706 PD X3806 1738 PD X3959 1770 PD X4112 1897 PD X4265 1911 PD X4418 1914 PD X4571 1930 PD X4724 1936 PD X4877 1938 PD X5030 1939 PD X5183 1950 PD X5336 1965 PD X5489 1976 PD X5642 1983 PD X5795 1996 PD X Xgr X24 w X6 w Xgs 978 844 4891 1160 MR c np X1026 892 mt 1076 942 L X1076 892 mt 1026 942 L X1179 939 mt 1229 989 L X1229 939 mt 1179 989 L X1332 926 mt 1382 976 L X1382 926 mt 1332 976 L X1485 975 mt 1535 1025 L X1535 975 mt 1485 1025 L X1638 1049 mt 1688 1099 L X1688 1049 mt 1638 1099 L X1791 1059 mt 1841 1109 L X1841 1059 mt 1791 1109 L X1944 1068 mt 1994 1118 L X1994 1068 mt 1944 1118 L X2097 1188 mt 2147 1238 L X2147 1188 mt 2097 1238 L X2250 1172 mt 2300 1222 L X2300 1172 mt 2250 1222 L X2403 1253 mt 2453 1303 L X2453 1253 mt 2403 1303 L X2556 1354 mt 2606 1404 L X2606 1354 mt 2556 1404 L X2709 1357 mt 2759 1407 L X2759 1357 mt 2709 1407 L X2862 1422 mt 2912 1472 L X2912 1422 mt 2862 1472 L X3015 1569 mt 3065 1619 L X3065 1569 mt 3015 1619 L X3168 1565 mt 3218 1615 L X3218 1565 mt 3168 1615 L X3321 1664 mt 3371 1714 L X3371 1664 mt 3321 1714 L X3474 1745 mt 3524 1795 L X3524 1745 mt 3474 1795 L X3628 1841 mt 3678 1891 L X3678 1841 mt 3628 1891 L X3781 1887 mt 3831 1937 L X3831 1887 mt 3781 1937 L X3934 1833 mt 3984 1883 L X3984 1833 mt 3934 1883 L X4087 1876 mt 4137 1926 L X4137 1876 mt 4087 1926 L X4240 1863 mt 4290 1913 L X4290 1863 mt 4240 1913 L X4393 1867 mt 4443 1917 L X4443 1867 mt 4393 1917 L X4546 1905 mt 4596 1955 L X4596 1905 mt 4546 1955 L X4699 1837 mt 4749 1887 L X4749 1837 mt 4699 1887 L X4852 1851 mt 4902 1901 L X4902 1851 mt 4852 1901 L X5005 1837 mt 5055 1887 L X5055 1837 mt 5005 1887 L X Xgr Xgs 978 844 4891 1160 MR c np X5311 1833 mt 5361 1883 L X5361 1833 mt 5311 1883 L X5464 1861 mt 5514 1911 L X5514 1861 mt 5464 1911 L X5617 1905 mt 5667 1955 L X5667 1905 mt 5617 1955 L X5770 1876 mt 5820 1926 L X5820 1876 mt 5770 1926 L X Xgr Xgs 978 802 4891 430 MR c np X 36 36 1051 945 FO X 36 36 1204 980 FO X 36 36 1357 952 FO X 36 36 1510 976 FO X 36 36 1663 1001 FO X 36 36 1816 997 FO X 36 36 1969 997 FO X 36 36 2122 1072 FO X 36 36 2275 1024 FO X 36 36 2428 1031 FO X 36 36 2581 1077 FO X 36 36 2734 1045 FO X 36 36 2887 1067 FO X 36 36 3040 1158 FO X 36 36 3193 1087 FO X 36 36 3346 1117 FO X 36 36 3499 1142 FO X 36 36 3653 1142 FO X 36 36 3806 1156 FO X 36 36 3959 1070 FO X 36 36 4112 986 FO X 36 36 4265 959 FO X 36 36 4418 959 FO X 36 36 4571 981 FO X 36 36 4724 908 FO X 36 36 4877 920 FO X 36 36 5030 905 FO X Xgr Xgs 978 802 4891 430 MR c np X 36 36 5336 875 FO X 36 36 5489 892 FO X 36 36 5642 929 FO X 36 36 5795 888 FO X Xgr X Xgr X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3562 2459 mt X(i) s X3294 293 mt X(Picard plot) s X1 sg X0 924 1646 0 0 -924 4470 1416 4 MP XPP X-1646 0 0 924 1646 0 0 -924 4470 1416 5 MP stroke X4 w XDO XSO X6 w X0 sg X4470 1416 mt 6116 1416 L X4470 492 mt 6116 492 L X4470 1416 mt 4470 492 L X6116 1416 mt 6116 492 L X4470 1416 mt 6116 1416 L X4470 1416 mt 4470 492 L X4470 1416 mt 6116 1416 L X4470 492 mt 6116 492 L X4470 1416 mt 4470 492 L X6116 1416 mt 6116 492 L X/Symbol /WindowsLatin1Encoding 168 FMSR X X5273 751 mt X(s) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5374 835 mt X(i) s X/Helvetica /WindowsLatin1Encoding 168 FMSR X X5403 751 mt X( ) s Xgs 4470 492 1647 925 MR c np X428 0 4577 723 2 MP stroke Xgs 4504 650 575 147 MR c np X24 w X4577 723 PD X5005 723 PD X Xgr X24 w X Xgr X24 w X5273 1001 mt X(|u) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5410 1085 mt X(i) s X5410 917 mt X(T) s X/Helvetica /WindowsLatin1Encoding 168 FMSR X X5490 1001 mt X(b| ) s Xgs 4470 492 1647 925 MR c np X6 w Xgs 4504 881 575 147 MR c np X4552 929 mt 4602 979 L X4602 929 mt 4552 979 L X4980 929 mt 5030 979 L X5030 929 mt 4980 979 L X Xgr X Xgr X6 w X5273 1232 mt X(|u) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5410 1316 mt X(i) s X5410 1148 mt X(T) s X/Helvetica /WindowsLatin1Encoding 168 FMSR X X5490 1232 mt X(b|/) s X/Symbol /WindowsLatin1Encoding 168 FMSR X X5673 1232 mt X(s) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5774 1316 mt X(i) s Xgs 4470 492 1647 925 MR c np Xgs 4504 1112 575 147 MR c np X 36 36 4577 1185 FO X 36 36 5005 1185 FO X Xgr X Xgr X1 sg X0 1782 5356 0 0 -1782 898 4612 4 MP XPP X-5356 0 0 1782 5356 0 0 -1782 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 6254 4612 L X 898 2830 mt 6254 2830 L X 898 4612 mt 898 2830 L X6254 4612 mt 6254 2830 L X 898 4612 mt 6254 4612 L X 898 4612 mt 898 2830 L X 898 4612 mt 898 4558 L X 898 2830 mt 898 2884 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 865 4758 mt X(0) s X1663 4612 mt 1663 4558 L X1663 2830 mt 1663 2884 L X1630 4758 mt X(5) s X2428 4612 mt 2428 4558 L X2428 2830 mt 2428 2884 L X2362 4758 mt X(10) s X3193 4612 mt 3193 4558 L X3193 2830 mt 3193 2884 L X3127 4758 mt X(15) s X3959 4612 mt 3959 4558 L X3959 2830 mt 3959 2884 L X3893 4758 mt X(20) s X4724 4612 mt 4724 4558 L X4724 2830 mt 4724 2884 L X4658 4758 mt X(25) s X5489 4612 mt 5489 4558 L X5489 2830 mt 5489 2884 L X5423 4758 mt X(30) s X6254 4612 mt 6254 4558 L X6254 2830 mt 6254 2884 L X6188 4758 mt X(35) s X 898 4612 mt 952 4612 L X6254 4612 mt 6200 4612 L X 595 4656 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 4582 mt X(-20) s X 898 4389 mt 925 4389 L X6254 4389 mt 6227 4389 L X 898 4167 mt 925 4167 L X6254 4167 mt 6227 4167 L X 898 3944 mt 925 3944 L X6254 3944 mt 6227 3944 L X 898 3721 mt 925 3721 L X6254 3721 mt 6227 3721 L X 898 3498 mt 925 3498 L X6254 3498 mt 6227 3498 L X 898 3276 mt 925 3276 L X6254 3276 mt 6227 3276 L X 898 3053 mt 925 3053 L X6254 3053 mt 6227 3053 L X 898 2830 mt 925 2830 L X6254 2830 mt 6227 2830 L X 898 4167 mt 952 4167 L X6254 4167 mt 6200 4167 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 4211 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 4137 mt X(-10) s X 898 3944 mt 925 3944 L X6254 3944 mt 6227 3944 L X 898 3721 mt 925 3721 L X6254 3721 mt 6227 3721 L X 898 3498 mt 925 3498 L X6254 3498 mt 6227 3498 L X 898 3276 mt 925 3276 L X6254 3276 mt 6227 3276 L X 898 3053 mt 925 3053 L X6254 3053 mt 6227 3053 L X 898 2830 mt 925 2830 L X6254 2830 mt 6227 2830 L X 898 3721 mt 952 3721 L X6254 3721 mt 6200 3721 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 3765 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 3691 mt X(0) s X 898 3498 mt 925 3498 L X6254 3498 mt 6227 3498 L X 898 3276 mt 925 3276 L X6254 3276 mt 6227 3276 L X 898 3053 mt 925 3053 L X6254 3053 mt 6227 3053 L X 898 2830 mt 925 2830 L X6254 2830 mt 6227 2830 L X 898 3276 mt 952 3276 L X6254 3276 mt 6200 3276 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 3320 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 3246 mt X(10) s X 898 3053 mt 925 3053 L X6254 3053 mt 6227 3053 L X 898 2830 mt 925 2830 L X6254 2830 mt 6227 2830 L X 898 2830 mt 952 2830 L X6254 2830 mt 6200 2830 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 2874 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 2800 mt X(20) s X 898 4612 mt 6254 4612 L X 898 2830 mt 6254 2830 L X 898 4612 mt 898 2830 L X6254 4612 mt 6254 2830 L Xgs 898 2830 5357 1783 MR c np X153 9 153 6 153 8 153 11 153 9 153 0 153 2 153 4 X153 12 153 2 153 11 153 95 153 24 153 24 154 72 153 42 X153 52 153 50 153 42 153 32 153 26 153 42 153 56 153 23 X153 34 153 7 153 10 153 37 153 19 153 11 153 9 1051 3700 32 MP stroke Xgs 978 3627 4891 928 MR c np X24 w X1051 3700 PD X1204 3709 PD X1357 3720 PD X1510 3739 PD X1663 3776 PD X1816 3786 PD X1969 3793 PD X2122 3827 PD X2275 3850 PD X2428 3906 PD X2581 3948 PD X2734 3974 PD X2887 4006 PD X3040 4048 PD X3193 4098 PD X3346 4150 PD X3499 4192 PD X3653 4264 PD X3806 4288 PD X3959 4312 PD X4112 4407 PD X4265 4418 PD X4418 4420 PD X4571 4432 PD X4724 4436 PD X4877 4438 PD X5030 4438 PD X5183 4447 PD X5336 4458 PD X5489 4466 PD X5642 4472 PD X5795 4481 PD X Xgr X24 w X6 w Xgs 978 3599 4891 374 MR c np X1026 3647 mt 1076 3697 L X1076 3647 mt 1026 3697 L X1179 3682 mt 1229 3732 L X1229 3682 mt 1179 3732 L X1332 3673 mt 1382 3723 L X1382 3673 mt 1332 3723 L X1485 3710 mt 1535 3760 L X1535 3710 mt 1485 3760 L X1638 3764 mt 1688 3814 L X1688 3764 mt 1638 3814 L X1791 3773 mt 1841 3823 L X1841 3773 mt 1791 3823 L X1944 3778 mt 1994 3828 L X1994 3778 mt 1944 3828 L X2097 3843 mt 2147 3893 L X2147 3843 mt 2097 3893 L X2250 3853 mt 2300 3903 L X2300 3853 mt 2250 3903 L X2403 3841 mt 2453 3891 L X2453 3841 mt 2403 3891 L X2556 3853 mt 2606 3903 L X2606 3853 mt 2556 3903 L X2709 3825 mt 2759 3875 L X2759 3825 mt 2709 3875 L X2862 3838 mt 2912 3888 L X2912 3838 mt 2862 3888 L X3015 3858 mt 3065 3908 L X3065 3858 mt 3015 3908 L X3168 3867 mt 3218 3917 L X3218 3867 mt 3168 3917 L X3321 3836 mt 3371 3886 L X3371 3836 mt 3321 3886 L X3474 3827 mt 3524 3877 L X3524 3827 mt 3474 3877 L X3628 3874 mt 3678 3924 L X3678 3874 mt 3628 3924 L X3781 3833 mt 3831 3883 L X3831 3833 mt 3781 3883 L X3934 3848 mt 3984 3898 L X3984 3848 mt 3934 3898 L X4087 3833 mt 4137 3883 L X4137 3833 mt 4087 3883 L X4240 3827 mt 4290 3877 L X4290 3827 mt 4240 3877 L X4393 3820 mt 4443 3870 L X4443 3820 mt 4393 3870 L X4546 3829 mt 4596 3879 L X4596 3829 mt 4546 3879 L X4699 3846 mt 4749 3896 L X4749 3846 mt 4699 3896 L X4852 3825 mt 4902 3875 L X4902 3825 mt 4852 3875 L X5005 3829 mt 5055 3879 L X5055 3829 mt 5005 3879 L X5158 3830 mt 5208 3880 L X5208 3830 mt 5158 3880 L X5311 3833 mt 5361 3883 L X5361 3833 mt 5311 3883 L X5464 3811 mt 5514 3861 L X5514 3811 mt 5464 3861 L X5617 3825 mt 5667 3875 L X5667 3825 mt 5617 3875 L X5770 3819 mt 5820 3869 L X5820 3819 mt 5770 3869 L X Xgr Xgs 978 3011 4891 825 MR c np X 36 36 1051 3693 FO X 36 36 1204 3719 FO X 36 36 1357 3698 FO X 36 36 1510 3717 FO X 36 36 1663 3734 FO X 36 36 1816 3733 FO X 36 36 1969 3732 FO X 36 36 2122 3762 FO X 36 36 2275 3749 FO X 36 36 2428 3680 FO X 36 36 2581 3651 FO X 36 36 2734 3597 FO X 36 36 2887 3579 FO X 36 36 3040 3556 FO X 36 36 3193 3515 FO X 36 36 3346 3432 FO X 36 36 3499 3381 FO X 36 36 3653 3357 FO X 36 36 3806 3292 FO X 36 36 3959 3282 FO X 36 36 4112 3172 FO X 36 36 4265 3155 FO X 36 36 4418 3145 FO X 36 36 4571 3143 FO X 36 36 4724 3156 FO X 36 36 4877 3133 FO X 36 36 5030 3136 FO X 36 36 5183 3129 FO X 36 36 5336 3121 FO X 36 36 5489 3091 FO X 36 36 5642 3099 FO X 36 36 5795 3084 FO X Xgr X Xgr X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3562 4901 mt X(i) s X3294 2735 mt X(Picard plot) s X1 sg X0 925 1646 0 0 -925 4470 3859 4 MP XPP X-1646 0 0 925 1646 0 0 -925 4470 3859 5 MP stroke X4 w XDO XSO X6 w X0 sg X4470 3859 mt 6116 3859 L X4470 2934 mt 6116 2934 L X4470 3859 mt 4470 2934 L X6116 3859 mt 6116 2934 L X4470 3859 mt 6116 3859 L X4470 3859 mt 4470 2934 L X4470 3859 mt 6116 3859 L X4470 2934 mt 6116 2934 L X4470 3859 mt 4470 2934 L X6116 3859 mt 6116 2934 L X/Symbol /WindowsLatin1Encoding 168 FMSR X X5273 3193 mt X(s) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5374 3277 mt X(i) s X/Helvetica /WindowsLatin1Encoding 168 FMSR X X5403 3193 mt X( ) s Xgs 4470 2934 1647 926 MR c np X428 0 4577 3165 2 MP stroke Xgs 4504 3092 575 147 MR c np X24 w X4577 3165 PD X5005 3165 PD X Xgr X24 w X Xgr X24 w X5273 3444 mt X(|u) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5410 3528 mt X(i) s X5410 3360 mt X(T) s X/Helvetica /WindowsLatin1Encoding 168 FMSR X X5490 3444 mt X(b| ) s Xgs 4470 2934 1647 926 MR c np X6 w Xgs 4504 3324 575 147 MR c np X4552 3372 mt 4602 3422 L X4602 3372 mt 4552 3422 L X4980 3372 mt 5030 3422 L X5030 3372 mt 4980 3422 L X Xgr X Xgr X6 w X5273 3675 mt X(|u) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5410 3759 mt X(i) s X5410 3591 mt X(T) s X/Helvetica /WindowsLatin1Encoding 168 FMSR X X5490 3675 mt X(b|/) s X/Symbol /WindowsLatin1Encoding 168 FMSR X X5673 3675 mt X(s) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5774 3759 mt X(i) s Xgs 4470 2934 1647 926 MR c np Xgs 4504 3555 575 147 MR c np X 36 36 4577 3628 FO X 36 36 5005 3628 FO X Xgr X Xgr X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 175 1538 a Fo(Figure)15 b(3.1:)k(Output)d(from)e Fl(pica)o(rd)h XFo(for)g(the)g(\\pure")g(and)h(the)f(\\noisy")g(test)g(problems.)59 X1675 y(should)22 b(preferably)g(damp)q(en)h(the)e(comp)q(onen)o(ts)g X(for)g(whic)o(h)h(the)g(p)q(erturbation)g(dominates,)g(and)59 X1732 y(lea)o(v)o(e)15 b(the)h(rest)e(of)h(the)h(comp)q(onen)o(ts)f X(\(for)f(small)i Fn(i)p Fo(\))e(in)o(tact.)59 1858 y XFr(3.2.)k(Filter)f(F)-5 b(actors)59 1960 y Fo(In)17 b(this)g(part)e(of) Xh(the)g(tutorial)h(w)o(e)f(consider)h(only)g(the)f(\\noisy")g(test)g X(problem)h(from)e(Example)i(3.1,)59 2016 y(w)o(e)j(compute)h X(regularized)h(solutions)g(b)o(y)e(means)h(of)f(Tikhono)o(v's)h(metho)q X(d)f(and)h(LSQR,)h(and)f(w)o(e)59 2073 y(compute)15 b(the)h(\014lter)f X(factors)g(for)f(t)o(w)o(o)g(regularization)i(metho)q(ds.)130 X2188 y Fl(lamb)q(da)f(=)g([1,3e-1,1e-1,3e-2,1e-2,3e-3,1e-3,)o(3e-4,1)o X(e-4,3e-5];)130 2257 y(X)p 163 2257 14 2 v 16 w(tikh)h(=)g(tikhonov)8 Xb(\(U,s,V,b,lamb)q(da\);)130 2326 y(F)p 159 2326 V 16 Xw(tikh)16 b(=)g(\014l)p 349 2326 V 16 w(fac)8 b(\(s,lamb)q(da\);)130 X2395 y(iter)15 b(=)g(30;)g(reo)o(rth)f(=)i(0;)130 2464 Xy([X)p 176 2464 V 16 w(lsqr,rho,eta,F)p 444 2464 V 16 Xw(lsqr])g(=)f(lsqr)8 b(\(A,b,iter,reo)o(rth,s\);)130 X2533 y(subplot)g(\(2,2,1\);)14 b(surf)8 b(\(X)p 561 2533 XV 16 w(tikh\),)15 b(axis)8 b(\('ij'\),)13 b(title)8 b(\('Tikhonov)16 Xb(solutions'\))130 2602 y(subplot)8 b(\(2,2,2\);)14 b(surf)8 Xb(\(log10)g(\(F)p 686 2602 V 13 w(tikh\)\),)16 b(axis)8 Xb(\('ij'\),)13 b(title)8 b(\('Tikh)15 b(\014lter)g(facto)o(rs,)g(log)f X(scale'\))130 2671 y(subplot)8 b(\(2,2,3\);)14 b(surf)8 Xb(\(X)p 561 2671 V 16 w(lsqr)g(\(:,1:17\)\),)k(axis)c(\('ij'\),)13 Xb(title)8 b(\('LSQR)15 b(solutions'\))130 2740 y(subplot)8 Xb(\(2,2,4\);)14 b(surf)8 b(\(log10)g(\(F)p 686 2740 V X13 w(lsqr\)\),)15 b(axis)8 b(\('ij'\),)13 b(title)8 b(\('LSQR)15 Xb(\014lter)h(facto)o(rs,)e(log)h(scale'\))p eop X%%Page: 35 37 X35 36 bop 59 159 a Fo(3.3.)14 b(The)h(L-Curv)o(e)1380 Xb(35)p 59 178 1767 2 v 118 259 a X 23122024 18646798 4933632 14011514 36706222 39469056 startTexFig X 118 259 a X%%BeginDocument: tutorial/fig2.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 701 134 5797 4645 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X-981 -451 1278 -346 981 451 898 734 4 MP XPP X-1278 346 -981 -451 1278 -346 981 451 898 734 5 MP stroke X0 985 981 451 0 -985 898 1719 4 MP XPP X-981 -451 0 985 981 451 0 -985 898 1719 5 MP stroke X0 985 1278 -346 0 -985 1879 2170 4 MP XPP X-1278 346 0 985 1278 -346 0 -985 1879 2170 5 MP stroke X4 w XDO X0 sg X1879 2170 mt 898 1719 L X 898 1719 mt 898 734 L X2518 1997 mt 1537 1546 L X1537 1546 mt 1537 561 L X3157 1824 mt 2176 1373 L X2176 1373 mt 2176 388 L X 898 1719 mt 2176 1373 L X2176 1373 mt 2176 388 L X1388 1944 mt 2667 1598 L X2667 1598 mt 2667 614 L X1879 2170 mt 3157 1824 L X3157 1824 mt 3157 839 L X 898 1719 mt 2176 1373 L X2176 1373 mt 3157 1824 L X 898 1391 mt 2176 1045 L X2176 1045 mt 3157 1496 L X 898 1062 mt 2176 716 L X2176 716 mt 3157 1167 L X 898 734 mt 2176 388 L X2176 388 mt 3157 839 L XSO X6 w X1879 2170 mt 3157 1824 L X 898 1719 mt 1879 2170 L X 898 1719 mt 898 734 L X1879 2170 mt 1909 2184 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X1940 2309 mt X(0) s X2518 1997 mt 2548 2011 L X2579 2136 mt X(5) s X3157 1824 mt 3187 1838 L X3218 1963 mt X(10) s X 898 1719 mt 866 1728 L X 767 1848 mt X(0) s X1388 1944 mt 1356 1953 L X1190 2073 mt X(20) s X1879 2170 mt 1847 2179 L X1680 2299 mt X(40) s X 898 1719 mt 868 1705 L X 701 1735 mt X(-2) s X 898 1391 mt 868 1377 L X 771 1406 mt X(0) s X 898 1062 mt 868 1049 L X 771 1078 mt X(2) s X 898 734 mt 868 720 L X 771 750 mt X(4) s Xgs 898 388 2260 1783 MR c np X/c8 { 0.250000 1.000000 0.812500 sr} bdef Xc8 X25 86 127 126 2809 1363 3 MP XPP X0 sg X2809 1363 mt 2936 1489 L X2936 1489 mt 2961 1575 L Xc8 X128 4 24 208 2809 1363 3 MP XPP X0 sg X2809 1363 mt 2833 1571 L X2833 1571 mt 2961 1575 L X/c9 { 0.875000 1.000000 0.187500 sr} bdef Xc9 X24 638 128 -317 2073 891 3 MP XPP X0 sg X2073 891 mt 2201 574 L X2201 574 mt 2225 1212 L Xc9 X128 73 24 248 2073 891 3 MP XPP X0 sg X2073 891 mt 2097 1139 L X2097 1139 mt 2225 1212 L X/c10 { 0.000000 0.812500 1.000000 sr} bdef Xc10 X128 -18 25 -92 2146 1157 3 MP XPP X0 sg X2146 1157 mt 2171 1065 L X2171 1065 mt 2299 1047 L Xc10 X25 173 128 73 2097 1139 3 MP XPP X0 sg X2097 1139 mt 2225 1212 L X2225 1212 mt 2250 1385 L Xc10 X25 -233 128 123 2146 1157 3 MP XPP X0 sg X2146 1157 mt 2274 1280 L X2274 1280 mt 2299 1047 L X/c11 { 0.312500 1.000000 0.750000 sr} bdef Xc11 X24 -229 128 -18 2171 1065 3 MP XPP X0 sg X2171 1065 mt 2299 1047 L X2299 1047 mt 2323 818 L X/c12 { 0.687500 1.000000 0.375000 sr} bdef Xc12 X127 111 25 73 2269 1028 3 MP XPP X0 sg X2269 1028 mt 2294 1101 L X2294 1101 mt 2421 1212 L Xc12 X24 233 128 -49 2269 1028 3 MP XPP X0 sg X2269 1028 mt 2397 979 L X2397 979 mt 2421 1212 L X/c13 { 0.437500 1.000000 0.625000 sr} bdef Xc13 X25 -239 127 105 2343 1118 3 MP XPP X0 sg X2343 1118 mt 2470 1223 L X2470 1223 mt 2495 984 L Xc12 X24 305 128 -93 2441 1106 3 MP XPP X0 sg X2441 1106 mt 2569 1013 L X2569 1013 mt 2593 1318 L Xc12 X128 106 24 106 2441 1106 3 MP XPP X0 sg X2441 1106 mt 2465 1212 L X2465 1212 mt 2593 1318 L Xc8 X25 159 128 106 2465 1212 3 MP XPP X0 sg X2465 1212 mt 2593 1318 L X2593 1318 mt 2618 1477 L X/c14 { 0.125000 1.000000 0.937500 sr} bdef Xc14 X25 -288 128 108 2514 1265 3 MP XPP X0 sg X2514 1265 mt 2642 1373 L X2642 1373 mt 2667 1085 L Xc14 X128 -91 25 -89 2514 1265 3 MP XPP X0 sg X2514 1265 mt 2539 1176 L X2539 1176 mt 2667 1085 L X/c15 { 0.562500 1.000000 0.500000 sr} bdef Xc15 X24 -268 128 -91 2539 1176 3 MP XPP X0 sg X2539 1176 mt 2667 1085 L X2667 1085 mt 2691 817 L X/c16 { 1.000000 0.625000 0.000000 sr} bdef Xc16 X24 163 128 104 2637 1040 3 MP XPP X0 sg X2637 1040 mt 2765 1144 L X2765 1144 mt 2789 1307 L Xc16 X128 193 24 74 2637 1040 3 MP XPP X0 sg X2637 1040 mt 2661 1114 L X2661 1114 mt 2789 1307 L X/c17 { 1.000000 0.937500 0.000000 sr} bdef Xc17 X25 -17 128 193 2661 1114 3 MP XPP X0 sg X2661 1114 mt 2789 1307 L X2789 1307 mt 2814 1290 L Xc17 X128 119 25 57 2661 1114 3 MP XPP X0 sg X2661 1114 mt 2686 1171 L X2686 1171 mt 2814 1290 L X/c18 { 0.937500 1.000000 0.125000 sr} bdef Xc18 X24 -156 128 119 2686 1171 3 MP XPP X0 sg X2686 1171 mt 2814 1290 L X2814 1290 mt 2838 1134 L X/c19 { 0.750000 1.000000 0.312500 sr} bdef Xc19 X24 300 128 -59 2784 1248 3 MP XPP X0 sg X2784 1248 mt 2912 1189 L X2912 1189 mt 2936 1489 L Xc19 X127 126 25 115 2784 1248 3 MP XPP X0 sg X2784 1248 mt 2809 1363 L X2809 1363 mt 2936 1489 L Xc18 X128 -59 25 45 2759 1203 3 MP XPP X0 sg X2759 1203 mt 2784 1248 L X2784 1248 mt 2912 1189 L Xc18 X128 -62 24 25 2686 1171 3 MP XPP X0 sg X2686 1171 mt 2710 1196 L X2710 1196 mt 2838 1134 L Xc15 X128 -248 24 -111 2539 1176 3 MP XPP X0 sg X2539 1176 mt 2563 1065 L X2563 1065 mt 2691 817 L X/c20 { 1.000000 0.437500 0.000000 sr} bdef Xc20 X128 104 25 53 2612 987 3 MP XPP X0 sg X2612 987 mt 2637 1040 L X2637 1040 mt 2765 1144 L Xc20 X25 244 128 -87 2612 987 3 MP XPP X0 sg X2612 987 mt 2740 900 L X2740 900 mt 2765 1144 L Xc9 X25 -153 128 -62 2710 1196 3 MP XPP X0 sg X2710 1196 mt 2838 1134 L X2838 1134 mt 2863 981 L Xc18 X25 208 128 -222 2759 1203 3 MP XPP X0 sg X2759 1203 mt 2887 981 L X2887 981 mt 2912 1189 L Xc9 X128 -222 24 6 2735 1197 3 MP XPP X0 sg X2735 1197 mt 2759 1203 L X2759 1203 mt 2887 981 L Xc9 X24 0 128 -216 2735 1197 3 MP XPP X0 sg X2735 1197 mt 2863 981 L X2863 981 mt 2887 981 L Xc9 X128 -216 25 1 2710 1196 3 MP XPP X0 sg X2710 1196 mt 2735 1197 L X2735 1197 mt 2863 981 L Xc14 X128 76 24 65 2681 1430 3 MP XPP X0 sg X2681 1430 mt 2705 1495 L X2705 1495 mt 2833 1571 L Xc14 X24 208 128 -67 2681 1430 3 MP XPP X0 sg X2681 1430 mt 2809 1363 L X2809 1363 mt 2833 1571 L X/c21 { 0.375000 1.000000 0.687500 sr} bdef Xc21 X25 115 128 -120 2656 1368 3 MP XPP X0 sg X2656 1368 mt 2784 1248 L X2784 1248 mt 2809 1363 L Xc21 X128 -67 25 62 2656 1368 3 MP XPP X0 sg X2656 1368 mt 2681 1430 L X2681 1430 mt 2809 1363 L X/c22 { 0.625000 1.000000 0.437500 sr} bdef Xc22 X25 45 127 -103 2632 1306 3 MP XPP X0 sg X2632 1306 mt 2759 1203 L X2759 1203 mt 2784 1248 L Xc22 X128 -120 24 62 2632 1306 3 MP XPP X0 sg X2632 1306 mt 2656 1368 L X2656 1368 mt 2784 1248 L X/c23 { 0.812500 1.000000 0.250000 sr} bdef Xc23 X127 -103 25 62 2607 1244 3 MP XPP X0 sg X2607 1244 mt 2632 1306 L X2632 1306 mt 2759 1203 L Xc23 X24 6 128 -47 2607 1244 3 MP XPP X0 sg X2607 1244 mt 2735 1197 L X2735 1197 mt 2759 1203 L Xc17 X25 -69 128 -248 2563 1065 3 MP XPP X0 sg X2563 1065 mt 2691 817 L X2691 817 mt 2716 748 L Xc17 X128 -244 25 -73 2563 1065 3 MP XPP X0 sg X2563 1065 mt 2588 992 L X2588 992 mt 2716 748 L X/c24 { 1.000000 0.500000 0.000000 sr} bdef Xc24 X128 -87 24 -5 2588 992 3 MP XPP X0 sg X2588 992 mt 2612 987 L X2612 987 mt 2740 900 L Xc24 X24 152 128 -244 2588 992 3 MP XPP X0 sg X2588 992 mt 2716 748 L X2716 748 mt 2740 900 L X/c25 { 1.000000 0.750000 0.000000 sr} bdef Xc25 X127 13 25 56 2558 1127 3 MP XPP X0 sg X2558 1127 mt 2583 1183 L X2583 1183 mt 2710 1196 L Xc25 X24 25 128 44 2558 1127 3 MP XPP X0 sg X2558 1127 mt 2686 1171 L X2686 1171 mt 2710 1196 L X/c26 { 1.000000 1.000000 0.000000 sr} bdef Xc26 X25 1 127 13 2583 1183 3 MP XPP X0 sg X2583 1183 mt 2710 1196 L X2710 1196 mt 2735 1197 L Xc26 X128 -47 24 61 2583 1183 3 MP XPP X0 sg X2583 1183 mt 2607 1244 L X2607 1244 mt 2735 1197 L Xc21 X128 182 24 37 2294 1101 3 MP XPP X0 sg X2294 1101 mt 2318 1138 L X2318 1138 mt 2446 1320 L Xc21 X25 108 127 111 2294 1101 3 MP XPP X0 sg X2294 1101 mt 2421 1212 L X2421 1212 mt 2446 1320 L Xc8 X127 105 25 -20 2318 1138 3 MP XPP X0 sg X2318 1138 mt 2343 1118 L X2343 1118 mt 2470 1223 L Xc8 X24 -97 128 182 2318 1138 3 MP XPP X0 sg X2318 1138 mt 2446 1320 L X2446 1320 mt 2470 1223 L Xc8 X128 198 25 67 2465 1212 3 MP XPP X0 sg X2465 1212 mt 2490 1279 L X2490 1279 mt 2618 1477 L X/c27 { 0.000000 1.000000 1.000000 sr} bdef Xc27 X24 -104 128 198 2490 1279 3 MP XPP X0 sg X2490 1279 mt 2618 1477 L X2618 1477 mt 2642 1373 L X/c28 { 0.062500 1.000000 1.000000 sr} bdef Xc28 X24 65 128 -42 2553 1472 3 MP XPP X0 sg X2553 1472 mt 2681 1430 L X2681 1430 mt 2705 1495 L Xc28 X128 -20 24 43 2553 1472 3 MP XPP X0 sg X2553 1472 mt 2577 1515 L X2577 1515 mt 2705 1495 L Xc15 X128 3 24 39 2313 1170 3 MP XPP X0 sg X2313 1170 mt 2337 1209 L X2337 1209 mt 2465 1212 L Xc15 X24 106 128 -64 2313 1170 3 MP XPP X0 sg X2313 1170 mt 2441 1106 L X2441 1106 mt 2465 1212 L Xc15 X24 -111 128 -31 2411 1207 3 MP XPP X0 sg X2411 1207 mt 2539 1176 L X2539 1176 mt 2563 1065 L Xc15 X128 -92 24 -50 2411 1207 3 MP XPP X0 sg X2411 1207 mt 2435 1157 L X2435 1157 mt 2563 1065 L Xc13 X128 -76 24 -58 2343 1118 3 MP XPP X0 sg X2343 1118 mt 2367 1060 L X2367 1060 mt 2495 984 L Xc19 X24 -203 128 -76 2367 1060 3 MP XPP X0 sg X2367 1060 mt 2495 984 L X2495 984 mt 2519 781 L X/c29 { 1.000000 1.000000 0.062500 sr} bdef Xc29 X25 230 128 -243 2416 1026 3 MP XPP X0 sg X2416 1026 mt 2544 783 L X2544 783 mt 2569 1013 L Xc29 X128 -93 25 80 2416 1026 3 MP XPP X0 sg X2416 1026 mt 2441 1106 L X2441 1106 mt 2569 1013 L Xc9 X25 -73 128 -92 2435 1157 3 MP XPP X0 sg X2435 1157 mt 2563 1065 L X2563 1065 mt 2588 992 L Xc16 X128 44 24 42 2534 1085 3 MP XPP X0 sg X2534 1085 mt 2558 1127 L X2558 1127 mt 2686 1171 L Xc16 X25 57 127 29 2534 1085 3 MP XPP X0 sg X2534 1085 mt 2661 1114 L X2661 1114 mt 2686 1171 L Xc11 X128 -42 25 56 2528 1416 3 MP XPP X0 sg X2528 1416 mt 2553 1472 L X2553 1472 mt 2681 1430 L Xc27 X128 108 24 -14 2490 1279 3 MP XPP X0 sg X2490 1279 mt 2514 1265 L X2514 1265 mt 2642 1373 L Xc11 X25 62 128 -48 2528 1416 3 MP XPP X0 sg X2528 1416 mt 2656 1368 L X2656 1368 mt 2681 1430 L Xc9 X128 -114 25 -51 2435 1157 3 MP XPP X0 sg X2435 1157 mt 2460 1106 L X2460 1106 mt 2588 992 L X/c30 { 1.000000 0.875000 0.000000 sr} bdef Xc30 X24 -5 128 -114 2460 1106 3 MP XPP X0 sg X2460 1106 mt 2588 992 L X2588 992 mt 2612 987 L Xc30 X127 -85 25 -34 2460 1106 3 MP XPP X0 sg X2460 1106 mt 2485 1072 L X2485 1072 mt 2612 987 L X/c31 { 1.000000 0.687500 0.000000 sr} bdef Xc31 X25 53 127 -85 2485 1072 3 MP XPP X0 sg X2485 1072 mt 2612 987 L X2612 987 mt 2637 1040 L Xc31 X128 -24 24 -8 2485 1072 3 MP XPP X0 sg X2485 1072 mt 2509 1064 L X2509 1064 mt 2637 1040 L X/c32 { 1.000000 0.562500 0.000000 sr} bdef Xc32 X127 29 25 21 2509 1064 3 MP XPP X0 sg X2509 1064 mt 2534 1085 L X2534 1085 mt 2661 1114 L Xc32 X24 74 128 -24 2509 1064 3 MP XPP X0 sg X2509 1064 mt 2637 1040 L X2637 1040 mt 2661 1114 L Xc15 X128 -48 24 67 2504 1349 3 MP XPP X0 sg X2504 1349 mt 2528 1416 L X2528 1416 mt 2656 1368 L Xc15 X24 62 128 -43 2504 1349 3 MP XPP X0 sg X2504 1349 mt 2632 1306 L X2632 1306 mt 2656 1368 L Xc13 X128 43 25 27 2337 1209 3 MP XPP X0 sg X2337 1209 mt 2362 1236 L X2362 1236 mt 2490 1279 L Xc13 X25 67 128 3 2337 1209 3 MP XPP X0 sg X2337 1209 mt 2465 1212 L X2465 1212 mt 2490 1279 L Xc21 X24 -14 128 43 2362 1236 3 MP XPP X0 sg X2362 1236 mt 2490 1279 L X2490 1279 mt 2514 1265 L Xc9 X25 62 128 -33 2479 1277 3 MP XPP X0 sg X2479 1277 mt 2607 1244 L X2607 1244 mt 2632 1306 L Xc9 X128 -43 25 72 2479 1277 3 MP XPP X0 sg X2479 1277 mt 2504 1349 L X2504 1349 mt 2632 1306 L Xc21 X128 28 24 1 2362 1236 3 MP XPP X0 sg X2362 1236 mt 2386 1237 L X2386 1237 mt 2514 1265 L Xc21 X25 -89 128 28 2386 1237 3 MP XPP X0 sg X2386 1237 mt 2514 1265 L X2514 1265 mt 2539 1176 L Xc21 X128 -31 25 -30 2386 1237 3 MP XPP X0 sg X2386 1237 mt 2411 1207 L X2411 1207 mt 2539 1176 L Xc17 X128 -33 24 69 2455 1208 3 MP XPP X0 sg X2455 1208 mt 2479 1277 L X2479 1277 mt 2607 1244 L Xc17 X24 61 128 -25 2455 1208 3 MP XPP X0 sg X2455 1208 mt 2583 1183 L X2583 1183 mt 2607 1244 L Xc10 X128 182 25 64 2097 1139 3 MP XPP X0 sg X2097 1139 mt 2122 1203 L X2122 1203 mt 2250 1385 L X/c33 { 0.000000 0.562500 1.000000 sr} bdef Xc33 X128 123 24 -46 2122 1203 3 MP XPP X0 sg X2122 1203 mt 2146 1157 L X2146 1157 mt 2274 1280 L X/c34 { 0.500000 1.000000 0.562500 sr} bdef Xc34 X24 39 128 -42 2185 1212 3 MP XPP X0 sg X2185 1212 mt 2313 1170 L X2313 1170 mt 2337 1209 L Xc34 X127 -31 25 28 2185 1212 3 MP XPP X0 sg X2185 1212 mt 2210 1240 L X2210 1240 mt 2337 1209 L Xc13 X128 -23 24 19 2210 1240 3 MP XPP X0 sg X2210 1240 mt 2234 1259 L X2234 1259 mt 2362 1236 L Xc13 X25 27 127 -31 2210 1240 3 MP XPP X0 sg X2210 1240 mt 2337 1209 L X2337 1209 mt 2362 1236 L Xc22 X127 -42 25 -40 2283 1239 3 MP XPP X0 sg X2283 1239 mt 2308 1199 L X2308 1199 mt 2435 1157 L Xc22 X24 -50 128 -32 2283 1239 3 MP XPP X0 sg X2283 1239 mt 2411 1207 L X2411 1207 mt 2435 1157 L Xc9 X25 -51 127 -42 2308 1199 3 MP XPP X0 sg X2308 1199 mt 2435 1157 L X2435 1157 mt 2460 1106 L Xc25 X128 -25 25 58 2430 1150 3 MP XPP X0 sg X2430 1150 mt 2455 1208 L X2455 1208 mt 2583 1183 L Xc25 X25 56 128 -23 2430 1150 3 MP XPP X0 sg X2430 1150 mt 2558 1127 L X2558 1127 mt 2583 1183 L Xc28 X127 -38 25 46 2425 1507 3 MP XPP X0 sg X2425 1507 mt 2450 1553 L X2450 1553 mt 2577 1515 L Xc28 X24 43 128 -35 2425 1507 3 MP XPP X0 sg X2425 1507 mt 2553 1472 L X2553 1472 mt 2577 1515 L Xc8 X24 248 128 -171 1945 1062 3 MP XPP X0 sg X1945 1062 mt 2073 891 L X2073 891 mt 2097 1139 L Xc8 X127 22 25 55 1945 1062 3 MP XPP X0 sg X1945 1062 mt 1970 1117 L X1970 1117 mt 2097 1139 L Xc28 X25 64 127 22 1970 1117 3 MP XPP X0 sg X1970 1117 mt 2097 1139 L X2097 1139 mt 2122 1203 L Xc14 X25 -92 127 33 2019 1124 3 MP XPP X0 sg X2019 1124 mt 2146 1157 L X2146 1157 mt 2171 1065 L Xc12 X24 37 128 24 2166 1077 3 MP XPP X0 sg X2166 1077 mt 2294 1101 L X2294 1101 mt 2318 1138 L Xc12 X128 46 24 15 2166 1077 3 MP XPP X0 sg X2166 1077 mt 2190 1092 L X2190 1092 mt 2318 1138 L Xc22 X25 -20 128 46 2190 1092 3 MP XPP X0 sg X2190 1092 mt 2318 1138 L X2318 1138 mt 2343 1118 L Xc12 X128 -64 25 34 2288 1136 3 MP XPP X0 sg X2288 1136 mt 2313 1170 L X2313 1170 mt 2441 1106 L Xc22 X128 16 25 10 2190 1092 3 MP XPP X0 sg X2190 1092 mt 2215 1102 L X2215 1102 mt 2343 1118 L Xc14 X128 -37 24 -22 2019 1124 3 MP XPP X0 sg X2019 1124 mt 2043 1102 L X2043 1102 mt 2171 1065 L Xc11 X25 -84 128 -37 2043 1102 3 MP XPP X0 sg X2043 1102 mt 2171 1065 L X2171 1065 mt 2196 981 L Xc12 X128 24 25 15 2141 1062 3 MP XPP X0 sg X2141 1062 mt 2166 1077 L X2166 1077 mt 2294 1101 L Xc11 X127 -163 25 -84 2171 1065 3 MP XPP X0 sg X2171 1065 mt 2196 981 L X2196 981 mt 2323 818 L Xc12 X25 73 128 -34 2141 1062 3 MP XPP X0 sg X2141 1062 mt 2269 1028 L X2269 1028 mt 2294 1101 L Xc12 X24 -58 128 16 2215 1102 3 MP XPP X0 sg X2215 1102 mt 2343 1118 L X2343 1118 mt 2367 1060 L Xc12 X25 80 128 -110 2288 1136 3 MP XPP X0 sg X2288 1136 mt 2416 1026 L X2416 1026 mt 2441 1106 L Xc9 X128 -47 24 -46 2308 1199 3 MP XPP X0 sg X2308 1199 mt 2332 1153 L X2332 1153 mt 2460 1106 L Xc17 X128 -44 25 -37 2332 1153 3 MP XPP X0 sg X2332 1153 mt 2357 1116 L X2357 1116 mt 2485 1072 L Xc17 X25 -34 128 -47 2332 1153 3 MP XPP X0 sg X2332 1153 mt 2460 1106 L X2460 1106 mt 2485 1072 L Xc32 X24 42 128 -26 2406 1111 3 MP XPP X0 sg X2406 1111 mt 2534 1085 L X2534 1085 mt 2558 1127 L Xc32 X128 -23 24 39 2406 1111 3 MP XPP X0 sg X2406 1111 mt 2430 1150 L X2430 1150 mt 2558 1127 L Xc11 X25 56 127 -33 2401 1449 3 MP XPP X0 sg X2401 1449 mt 2528 1416 L X2528 1416 mt 2553 1472 L Xc11 X128 -35 24 58 2401 1449 3 MP XPP X0 sg X2401 1449 mt 2425 1507 L X2425 1507 mt 2553 1472 L Xc19 X127 -232 25 -47 2367 1060 3 MP XPP X0 sg X2367 1060 mt 2392 1013 L X2392 1013 mt 2519 781 L Xc29 X25 2 127 -232 2392 1013 3 MP XPP X0 sg X2392 1013 mt 2519 781 L X2519 781 mt 2544 783 L Xc29 X128 -243 24 13 2392 1013 3 MP XPP X0 sg X2392 1013 mt 2416 1026 L X2416 1026 mt 2544 783 L Xc25 X24 -8 128 -44 2357 1116 3 MP XPP X0 sg X2357 1116 mt 2485 1072 L X2485 1072 mt 2509 1064 L Xc25 X128 -36 24 -16 2357 1116 3 MP XPP X0 sg X2357 1116 mt 2381 1100 L X2381 1100 mt 2509 1064 L Xc32 X25 21 128 -36 2381 1100 3 MP XPP X0 sg X2381 1100 mt 2509 1064 L X2509 1064 mt 2534 1085 L Xc32 X128 -26 25 11 2381 1100 3 MP XPP X0 sg X2381 1100 mt 2406 1111 L X2406 1111 mt 2534 1085 L Xc15 X127 -33 25 68 2376 1381 3 MP XPP X0 sg X2376 1381 mt 2401 1449 L X2401 1449 mt 2528 1416 L Xc15 X24 67 128 -32 2376 1381 3 MP XPP X0 sg X2376 1381 mt 2504 1349 L X2504 1349 mt 2528 1416 L Xc9 X128 -32 25 71 2351 1310 3 MP XPP X0 sg X2351 1310 mt 2376 1381 L X2376 1381 mt 2504 1349 L Xc9 X25 72 128 -33 2351 1310 3 MP XPP X0 sg X2351 1310 mt 2479 1277 L X2479 1277 mt 2504 1349 L Xc21 X24 1 128 -23 2234 1259 3 MP XPP X0 sg X2234 1259 mt 2362 1236 L X2362 1236 mt 2386 1237 L Xc21 X127 -23 25 1 2234 1259 3 MP XPP X0 sg X2234 1259 mt 2259 1260 L X2259 1260 mt 2386 1237 L Xc13 X25 -30 127 -23 2259 1260 3 MP XPP X0 sg X2259 1260 mt 2386 1237 L X2386 1237 mt 2411 1207 L Xc17 X128 -33 24 68 2327 1242 3 MP XPP X0 sg X2327 1242 mt 2351 1310 L X2351 1310 mt 2479 1277 L Xc17 X24 69 128 -34 2327 1242 3 MP XPP X0 sg X2327 1242 mt 2455 1208 L X2455 1208 mt 2479 1277 L X Xgr Xgs 898 388 2260 1783 MR c np Xc33 X24 -105 128 182 2122 1203 3 MP XPP X0 sg X2122 1203 mt 2250 1385 L X2250 1385 mt 2274 1280 L Xc34 X25 28 128 -37 2057 1249 3 MP XPP X0 sg X2057 1249 mt 2185 1212 L X2185 1212 mt 2210 1240 L Xc22 X25 34 127 -47 2161 1183 3 MP XPP X0 sg X2161 1183 mt 2288 1136 L X2288 1136 mt 2313 1170 L Xc22 X128 -42 24 29 2161 1183 3 MP XPP X0 sg X2161 1183 mt 2185 1212 L X2185 1212 mt 2313 1170 L Xc9 X24 -46 128 -32 2180 1231 3 MP XPP X0 sg X2180 1231 mt 2308 1199 L X2308 1199 mt 2332 1153 L Xc25 X25 58 128 -35 2302 1185 3 MP XPP X0 sg X2302 1185 mt 2430 1150 L X2430 1150 mt 2455 1208 L Xc13 X128 -32 24 -21 2259 1260 3 MP XPP X0 sg X2259 1260 mt 2283 1239 L X2283 1239 mt 2411 1207 L Xc25 X128 -34 25 57 2302 1185 3 MP XPP X0 sg X2302 1185 mt 2327 1242 L X2327 1242 mt 2455 1208 L Xc14 X25 46 128 -27 2297 1534 3 MP XPP X0 sg X2297 1534 mt 2425 1507 L X2425 1507 mt 2450 1553 L Xc14 X128 -26 25 45 2297 1534 3 MP XPP X0 sg X2297 1534 mt 2322 1579 L X2322 1579 mt 2450 1553 L Xc28 X128 70 24 16 1970 1117 3 MP XPP X0 sg X1970 1117 mt 1994 1133 L X1994 1133 mt 2122 1203 L Xc28 X127 33 25 -9 1994 1133 3 MP XPP X0 sg X1994 1133 mt 2019 1124 L X2019 1124 mt 2146 1157 L Xc28 X24 -46 128 70 1994 1133 3 MP XPP X0 sg X1994 1133 mt 2122 1203 L X2122 1203 mt 2146 1157 L Xc12 X24 20 128 -44 2136 1160 3 MP XPP X0 sg X2136 1160 mt 2264 1116 L X2264 1116 mt 2288 1136 L Xc12 X127 -47 25 23 2136 1160 3 MP XPP X0 sg X2136 1160 mt 2161 1183 L X2161 1183 mt 2288 1136 L Xc12 X128 -47 24 5 2215 1102 3 MP XPP X0 sg X2215 1102 mt 2239 1107 L X2239 1107 mt 2367 1060 L Xc12 X25 -47 128 -47 2239 1107 3 MP XPP X0 sg X2239 1107 mt 2367 1060 L X2367 1060 mt 2392 1013 L Xc12 X128 -110 24 20 2264 1116 3 MP XPP X0 sg X2264 1116 mt 2288 1136 L X2288 1136 mt 2416 1026 L Xc17 X128 -36 25 -35 2204 1187 3 MP XPP X0 sg X2204 1187 mt 2229 1152 L X2229 1152 mt 2357 1116 L Xc17 X25 -37 128 -34 2204 1187 3 MP XPP X0 sg X2204 1187 mt 2332 1153 L X2332 1153 mt 2357 1116 L Xc16 X24 39 128 -37 2278 1148 3 MP XPP X0 sg X2278 1148 mt 2406 1111 L X2406 1111 mt 2430 1150 L Xc9 X128 -34 24 -44 2180 1231 3 MP XPP X0 sg X2180 1231 mt 2204 1187 L X2204 1187 mt 2332 1153 L Xc16 X128 -35 24 37 2278 1148 3 MP XPP X0 sg X2278 1148 mt 2302 1185 L X2302 1185 mt 2430 1150 L Xc11 X24 58 128 -29 2273 1478 3 MP XPP X0 sg X2273 1478 mt 2401 1449 L X2401 1449 mt 2425 1507 L Xc11 X128 -27 24 56 2273 1478 3 MP XPP X0 sg X2273 1478 mt 2297 1534 L X2297 1534 mt 2425 1507 L Xc12 X24 13 128 -103 2264 1116 3 MP XPP X0 sg X2264 1116 mt 2392 1013 L X2392 1013 mt 2416 1026 L Xc25 X24 -16 128 -36 2229 1152 3 MP XPP X0 sg X2229 1152 mt 2357 1116 L X2357 1116 mt 2381 1100 L Xc25 X128 -37 24 -15 2229 1152 3 MP XPP X0 sg X2229 1152 mt 2253 1137 L X2253 1137 mt 2381 1100 L Xc16 X128 -37 25 11 2253 1137 3 MP XPP X0 sg X2253 1137 mt 2278 1148 L X2278 1148 mt 2406 1111 L Xc16 X25 11 128 -37 2253 1137 3 MP XPP X0 sg X2253 1137 mt 2381 1100 L X2381 1100 mt 2406 1111 L Xc15 X25 68 128 -33 2248 1414 3 MP XPP X0 sg X2248 1414 mt 2376 1381 L X2376 1381 mt 2401 1449 L Xc15 X128 -29 25 64 2248 1414 3 MP XPP X0 sg X2248 1414 mt 2273 1478 L X2273 1478 mt 2401 1449 L Xc18 X25 209 127 -192 2245 962 3 MP XPP X0 sg X2245 962 mt 2372 770 L X2372 770 mt 2397 979 L Xc18 X128 -49 24 66 2245 962 3 MP XPP X0 sg X2245 962 mt 2269 1028 L X2269 1028 mt 2397 979 L Xc12 X128 -103 25 9 2239 1107 3 MP XPP X0 sg X2239 1107 mt 2264 1116 L X2264 1116 mt 2392 1013 L Xc9 X25 71 127 -36 2224 1346 3 MP XPP X0 sg X2224 1346 mt 2351 1310 L X2351 1310 mt 2376 1381 L Xc9 X128 -33 24 68 2224 1346 3 MP XPP X0 sg X2224 1346 mt 2248 1414 L X2248 1414 mt 2376 1381 L Xc19 X25 -112 127 -163 2196 981 3 MP XPP X0 sg X2196 981 mt 2323 818 L X2323 818 mt 2348 706 L Xc29 X127 -192 25 21 2220 941 3 MP XPP X0 sg X2220 941 mt 2245 962 L X2245 962 mt 2372 770 L Xc29 X24 64 128 -235 2220 941 3 MP XPP X0 sg X2220 941 mt 2348 706 L X2348 706 mt 2372 770 L Xc17 X24 68 128 -37 2199 1279 3 MP XPP X0 sg X2199 1279 mt 2327 1242 L X2327 1242 mt 2351 1310 L Xc17 X127 -36 25 67 2199 1279 3 MP XPP X0 sg X2199 1279 mt 2224 1346 L X2224 1346 mt 2351 1310 L Xc19 X128 -235 24 -40 2196 981 3 MP XPP X0 sg X2196 981 mt 2220 941 L X2220 941 mt 2348 706 L Xc13 X24 17 128 -37 1954 1314 3 MP XPP X0 sg X1954 1314 mt 2082 1277 L X2082 1277 mt 2106 1294 L Xc34 X128 -37 25 28 2057 1249 3 MP XPP X0 sg X2057 1249 mt 2082 1277 L X2082 1277 mt 2210 1240 L Xc13 X24 19 128 -37 2082 1277 3 MP XPP X0 sg X2082 1277 mt 2210 1240 L X2210 1240 mt 2234 1259 L Xc13 X128 -35 24 17 2082 1277 3 MP XPP X0 sg X2082 1277 mt 2106 1294 L X2106 1294 mt 2234 1259 L Xc22 X25 -40 128 -32 2027 1303 3 MP XPP X0 sg X2027 1303 mt 2155 1271 L X2155 1271 mt 2180 1231 L Xc34 X128 -37 25 28 1929 1286 3 MP XPP X0 sg X1929 1286 mt 1954 1314 L X1954 1314 mt 2082 1277 L Xc34 X25 28 128 -37 1929 1286 3 MP XPP X0 sg X1929 1286 mt 2057 1249 L X2057 1249 mt 2082 1277 L Xc22 X128 -32 25 -40 2027 1303 3 MP XPP X0 sg X2027 1303 mt 2052 1263 L X2052 1263 mt 2180 1231 L Xc22 X128 -37 24 30 2033 1219 3 MP XPP X0 sg X2033 1219 mt 2057 1249 L X2057 1249 mt 2185 1212 L Xc22 X24 29 128 -36 2033 1219 3 MP XPP X0 sg X2033 1219 mt 2161 1183 L X2161 1183 mt 2185 1212 L Xc9 X24 -44 128 -32 2052 1263 3 MP XPP X0 sg X2052 1263 mt 2180 1231 L X2180 1231 mt 2204 1187 L Xc21 X128 -33 25 -1 2106 1294 3 MP XPP X0 sg X2106 1294 mt 2131 1293 L X2131 1293 mt 2259 1260 L Xc21 X25 1 128 -35 2106 1294 3 MP XPP X0 sg X2106 1294 mt 2234 1259 L X2234 1259 mt 2259 1260 L Xc13 X24 -21 128 -33 2131 1293 3 MP XPP X0 sg X2131 1293 mt 2259 1260 L X2259 1260 mt 2283 1239 L Xc13 X128 -32 24 -22 2131 1293 3 MP XPP X0 sg X2131 1293 mt 2155 1271 L X2155 1271 mt 2283 1239 L Xc22 X25 -40 128 -32 2155 1271 3 MP XPP X0 sg X2155 1271 mt 2283 1239 L X2283 1239 mt 2308 1199 L Xc22 X128 -32 25 -40 2155 1271 3 MP XPP X0 sg X2155 1271 mt 2180 1231 L X2180 1231 mt 2308 1199 L Xc25 X128 -37 24 55 2175 1224 3 MP XPP X0 sg X2175 1224 mt 2199 1279 L X2199 1279 mt 2327 1242 L Xc25 X25 57 127 -39 2175 1224 3 MP XPP X0 sg X2175 1224 mt 2302 1185 L X2302 1185 mt 2327 1242 L Xc8 X25 45 128 -9 2169 1543 3 MP XPP X0 sg X2169 1543 mt 2297 1534 L X2297 1534 mt 2322 1579 L Xc8 X128 -5 25 41 2169 1543 3 MP XPP X0 sg X2169 1543 mt 2194 1584 L X2194 1584 mt 2322 1579 L Xc12 X128 -36 25 26 2008 1193 3 MP XPP X0 sg X2008 1193 mt 2033 1219 L X2033 1219 mt 2161 1183 L Xc12 X25 23 128 -33 2008 1193 3 MP XPP X0 sg X2008 1193 mt 2136 1160 L X2136 1160 mt 2161 1183 L Xc17 X128 -34 24 -34 2077 1220 3 MP XPP X0 sg X2077 1220 mt 2101 1186 L X2101 1186 mt 2229 1152 L Xc17 X25 -35 127 -33 2077 1220 3 MP XPP X0 sg X2077 1220 mt 2204 1187 L X2204 1187 mt 2229 1152 L Xc16 X24 37 128 -38 2150 1186 3 MP XPP X0 sg X2150 1186 mt 2278 1148 L X2278 1148 mt 2302 1185 L Xc9 X127 -33 25 -43 2052 1263 3 MP XPP X0 sg X2052 1263 mt 2077 1220 L X2077 1220 mt 2204 1187 L Xc16 X127 -39 25 38 2150 1186 3 MP XPP X0 sg X2150 1186 mt 2175 1224 L X2175 1224 mt 2302 1185 L Xc13 X128 -9 24 49 2145 1494 3 MP XPP X0 sg X2145 1494 mt 2169 1543 L X2169 1543 mt 2297 1534 L Xc13 X24 56 128 -16 2145 1494 3 MP XPP X0 sg X2145 1494 mt 2273 1478 L X2273 1478 mt 2297 1534 L Xc25 X127 -36 25 -13 2101 1186 3 MP XPP X0 sg X2101 1186 mt 2126 1173 L X2126 1173 mt 2253 1137 L Xc25 X24 -15 128 -34 2101 1186 3 MP XPP X0 sg X2101 1186 mt 2229 1152 L X2229 1152 mt 2253 1137 L Xc16 X25 11 127 -36 2126 1173 3 MP XPP X0 sg X2126 1173 mt 2253 1137 L X2253 1137 mt 2278 1148 L Xc16 X128 -38 24 13 2126 1173 3 MP XPP X0 sg X2126 1173 mt 2150 1186 L X2150 1186 mt 2278 1148 L Xc22 X128 -16 25 55 2120 1439 3 MP XPP X0 sg X2120 1439 mt 2145 1494 L X2145 1494 mt 2273 1478 L Xc22 X25 64 128 -25 2120 1439 3 MP XPP X0 sg X2120 1439 mt 2248 1414 L X2248 1414 mt 2273 1478 L Xc12 X24 66 128 -92 2117 1054 3 MP XPP X0 sg X2117 1054 mt 2245 962 L X2245 962 mt 2269 1028 L Xc12 X128 -34 24 8 2117 1054 3 MP XPP X0 sg X2117 1054 mt 2141 1062 L X2141 1062 mt 2269 1028 L Xc12 X25 9 127 -34 2112 1141 3 MP XPP X0 sg X2112 1141 mt 2239 1107 L X2239 1107 mt 2264 1116 L Xc12 X128 -44 24 19 2112 1141 3 MP XPP X0 sg X2112 1141 mt 2136 1160 L X2136 1160 mt 2264 1116 L Xc9 X128 -25 24 59 2096 1380 3 MP XPP X0 sg X2096 1380 mt 2120 1439 L X2120 1439 mt 2248 1414 L Xc9 X24 68 128 -34 2096 1380 3 MP XPP X0 sg X2096 1380 mt 2224 1346 L X2224 1346 mt 2248 1414 L Xc11 X128 -96 25 -25 2043 1102 3 MP XPP X0 sg X2043 1102 mt 2068 1077 L X2068 1077 mt 2196 981 L Xc13 X24 -40 128 -96 2068 1077 3 MP XPP X0 sg X2068 1077 mt 2196 981 L X2196 981 mt 2220 941 L Xc22 X25 21 128 -118 2092 1059 3 MP XPP X0 sg X2092 1059 mt 2220 941 L X2220 941 mt 2245 962 L Xc22 X128 -92 25 -5 2092 1059 3 MP XPP X0 sg X2092 1059 mt 2117 1054 L X2117 1054 mt 2245 962 L Xc12 X127 -34 25 15 2087 1126 3 MP XPP X0 sg X2087 1126 mt 2112 1141 L X2112 1141 mt 2239 1107 L Xc12 X24 5 128 -24 2087 1126 3 MP XPP X0 sg X2087 1126 mt 2215 1102 L X2215 1102 mt 2239 1107 L Xc26 X128 -34 25 58 2071 1322 3 MP XPP X0 sg X2071 1322 mt 2096 1380 L X2096 1380 mt 2224 1346 L Xc26 X25 67 128 -43 2071 1322 3 MP XPP X0 sg X2071 1322 mt 2199 1279 L X2199 1279 mt 2224 1346 L Xc13 X128 -118 24 -18 2068 1077 3 MP XPP X0 sg X2068 1077 mt 2092 1059 L X2092 1059 mt 2220 941 L Xc12 X25 10 128 -21 2062 1113 3 MP XPP X0 sg X2062 1113 mt 2190 1092 L X2190 1092 mt 2215 1102 L Xc12 X128 -24 25 13 2062 1113 3 MP XPP X0 sg X2062 1113 mt 2087 1126 L X2087 1126 mt 2215 1102 L Xc13 X128 -40 24 26 1802 1328 3 MP XPP X0 sg X1802 1328 mt 1826 1354 L X1826 1354 mt 1954 1314 L Xc13 X25 28 127 -42 1802 1328 3 MP XPP X0 sg X1802 1328 mt 1929 1286 L X1929 1286 mt 1954 1314 L Xc21 X24 17 128 -40 1826 1354 3 MP XPP X0 sg X1826 1354 mt 1954 1314 L X1954 1314 mt 1978 1331 L Xc13 X128 -37 24 17 1954 1314 3 MP XPP X0 sg X1954 1314 mt 1978 1331 L X1978 1331 mt 2106 1294 L Xc12 X25 -40 127 -25 1900 1328 3 MP XPP X0 sg X1900 1328 mt 2027 1303 L X2027 1303 mt 2052 1263 L Xc21 X25 -1 128 -37 1978 1331 3 MP XPP X0 sg X1978 1331 mt 2106 1294 L X2106 1294 mt 2131 1293 L Xc21 X128 -35 25 -3 1978 1331 3 MP XPP X0 sg X1978 1331 mt 2003 1328 L X2003 1328 mt 2131 1293 L Xc13 X24 -22 128 -35 2003 1328 3 MP XPP X0 sg X2003 1328 mt 2131 1293 L X2131 1293 mt 2155 1271 L Xc13 X128 -32 24 -25 2003 1328 3 MP XPP X0 sg X2003 1328 mt 2027 1303 L X2027 1303 mt 2155 1271 L X/c35 { 1.000000 0.812500 0.000000 sr} bdef Xc35 X128 -43 24 51 2047 1271 3 MP XPP X0 sg X2047 1271 mt 2071 1322 L X2071 1322 mt 2199 1279 L Xc35 X24 55 128 -47 2047 1271 3 MP XPP X0 sg X2047 1271 mt 2175 1224 L X2175 1224 mt 2199 1279 L Xc21 X128 -8 24 35 2042 1557 3 MP XPP X0 sg X2042 1557 mt 2066 1592 L X2066 1592 mt 2194 1584 L Xc21 X25 41 127 -14 2042 1557 3 MP XPP X0 sg X2042 1557 mt 2169 1543 L X2169 1543 mt 2194 1584 L Xc14 X128 -15 24 5 1842 1143 3 MP XPP X0 sg X1842 1143 mt 1866 1148 L X1866 1148 mt 1994 1133 L Xc14 X24 16 128 -26 1842 1143 3 MP XPP X0 sg X1842 1143 mt 1970 1117 L X1970 1117 mt 1994 1133 L Xc14 X25 -9 128 -15 1866 1148 3 MP XPP X0 sg X1866 1148 mt 1994 1133 L X1994 1133 mt 2019 1124 L Xc14 X128 -21 25 -3 1866 1148 3 MP XPP X0 sg X1866 1148 mt 1891 1145 L X1891 1145 mt 2019 1124 L X/c36 { 0.187500 1.000000 0.875000 sr} bdef Xc36 X24 -22 128 -21 1891 1145 3 MP XPP X0 sg X1891 1145 mt 2019 1124 L X2019 1124 mt 2043 1102 L Xc36 X128 -33 24 -10 1891 1145 3 MP XPP X0 sg X1891 1145 mt 1915 1135 L X1915 1135 mt 2043 1102 L Xc12 X24 15 128 -26 2038 1103 3 MP XPP X0 sg X2038 1103 mt 2166 1077 L X2166 1077 mt 2190 1092 L Xc12 X128 -21 24 10 2038 1103 3 MP XPP X0 sg X2038 1103 mt 2062 1113 L X2062 1113 mt 2190 1092 L Xc22 X24 30 128 -35 1905 1254 3 MP XPP X0 sg X1905 1254 mt 2033 1219 L X2033 1219 mt 2057 1249 L Xc15 X127 -42 25 33 1777 1295 3 MP XPP X0 sg X1777 1295 mt 1802 1328 L X1802 1328 mt 1929 1286 L Xc15 X24 32 128 -41 1777 1295 3 MP XPP X0 sg X1777 1295 mt 1905 1254 L X1905 1254 mt 1929 1286 L Xc22 X128 -37 24 32 1905 1254 3 MP XPP X0 sg X1905 1254 mt 1929 1286 L X1929 1286 mt 2057 1249 L Xc18 X128 -31 25 -39 1924 1290 3 MP XPP X0 sg X1924 1290 mt 1949 1251 L X1949 1251 mt 2077 1220 L Xc18 X25 -43 128 -27 1924 1290 3 MP XPP X0 sg X1924 1290 mt 2052 1263 L X2052 1263 mt 2077 1220 L Xc12 X128 -35 25 28 1880 1226 3 MP XPP X0 sg X1880 1226 mt 1905 1254 L X1905 1254 mt 2033 1219 L Xc12 X25 26 128 -33 1880 1226 3 MP XPP X0 sg X1880 1226 mt 2008 1193 L X2008 1193 mt 2033 1219 L Xc17 X24 -34 128 -31 1949 1251 3 MP XPP X0 sg X1949 1251 mt 2077 1220 L X2077 1220 mt 2101 1186 L Xc31 X25 38 128 -49 2022 1235 3 MP XPP X0 sg X2022 1235 mt 2150 1186 L X2150 1186 mt 2175 1224 L Xc12 X128 -27 24 -38 1900 1328 3 MP XPP X0 sg X1900 1328 mt 1924 1290 L X1924 1290 mt 2052 1263 L Xc31 X128 -47 25 36 2022 1235 3 MP XPP X0 sg X2022 1235 mt 2047 1271 L X2047 1271 mt 2175 1224 L Xc34 X127 -14 25 40 2017 1517 3 MP XPP X0 sg X2017 1517 mt 2042 1557 L X2042 1557 mt 2169 1543 L Xc34 X24 49 128 -23 2017 1517 3 MP XPP X0 sg X2017 1517 mt 2145 1494 L X2145 1494 mt 2169 1543 L Xc14 X25 55 128 -64 1817 1126 3 MP XPP X0 sg X1817 1126 mt 1945 1062 L X1945 1062 mt 1970 1117 L Xc14 X128 -26 25 17 1817 1126 3 MP XPP X0 sg X1817 1126 mt 1842 1143 L X1842 1143 mt 1970 1117 L Xc11 X25 -25 128 -33 1915 1135 3 MP XPP X0 sg X1915 1135 mt 2043 1102 L X2043 1102 mt 2068 1077 L Xc12 X128 -26 25 4 2013 1099 3 MP XPP X0 sg X2013 1099 mt 2038 1103 L X2038 1103 mt 2166 1077 L Xc12 X25 15 128 -37 2013 1099 3 MP XPP X0 sg X2013 1099 mt 2141 1062 L X2141 1062 mt 2166 1077 L Xc17 X128 -39 24 -26 1949 1251 3 MP XPP X0 sg X1949 1251 mt 1973 1225 L X1973 1225 mt 2101 1186 L Xc25 X25 -13 128 -39 1973 1225 3 MP XPP X0 sg X1973 1225 mt 2101 1186 L X2101 1186 mt 2126 1173 L Xc31 X24 13 128 -46 1998 1219 3 MP XPP X0 sg X1998 1219 mt 2126 1173 L X2126 1173 mt 2150 1186 L Xc31 X128 -49 24 16 1998 1219 3 MP XPP X0 sg X1998 1219 mt 2022 1235 L X2022 1235 mt 2150 1186 L Xc22 X128 -23 24 45 1993 1472 3 MP XPP X0 sg X1993 1472 mt 2017 1517 L X2017 1517 mt 2145 1494 L Xc22 X25 55 127 -33 1993 1472 3 MP XPP X0 sg X1993 1472 mt 2120 1439 L X2120 1439 mt 2145 1494 L Xc11 X128 -44 25 -14 1915 1135 3 MP XPP X0 sg X1915 1135 mt 1940 1121 L X1940 1121 mt 2068 1077 L Xc13 X128 -50 24 -12 1940 1121 3 MP XPP X0 sg X1940 1121 mt 1964 1109 L X1964 1109 mt 2092 1059 L Xc13 X24 -18 128 -44 1940 1121 3 MP XPP X0 sg X1940 1121 mt 2068 1077 L X2068 1077 mt 2092 1059 L Xc22 X24 8 128 -46 1989 1100 3 MP XPP X0 sg X1989 1100 mt 2117 1054 L X2117 1054 mt 2141 1062 L Xc22 X128 -37 24 -1 1989 1100 3 MP XPP X0 sg X1989 1100 mt 2013 1099 L X2013 1099 mt 2141 1062 L Xc12 X24 19 128 -32 1984 1173 3 MP XPP X0 sg X1984 1173 mt 2112 1141 L X2112 1141 mt 2136 1160 L Xc12 X128 -33 24 20 1984 1173 3 MP XPP X0 sg X1984 1173 mt 2008 1193 L X2008 1193 mt 2136 1160 L Xc25 X128 -46 25 -6 1973 1225 3 MP XPP X0 sg X1973 1225 mt 1998 1219 L X1998 1219 mt 2126 1173 L Xc23 X127 -33 25 49 1968 1423 3 MP XPP X0 sg X1968 1423 mt 1993 1472 L X1993 1472 mt 2120 1439 L Xc23 X24 59 128 -43 1968 1423 3 MP XPP X0 sg X1968 1423 mt 2096 1380 L X2096 1380 mt 2120 1439 L Xc34 X25 -5 128 -50 1964 1109 3 MP XPP X0 sg X1964 1109 mt 2092 1059 L X2092 1059 mt 2117 1054 L Xc34 X128 -46 25 -9 1964 1109 3 MP XPP X0 sg X1964 1109 mt 1989 1100 L X1989 1100 mt 2117 1054 L Xc19 X128 -32 25 15 1959 1158 3 MP XPP X0 sg X1959 1158 mt 1984 1173 L X1984 1173 mt 2112 1141 L Xc19 X25 15 128 -32 1959 1158 3 MP XPP X0 sg X1959 1158 mt 2087 1126 L X2087 1126 mt 2112 1141 L Xc29 X25 58 128 -52 1943 1374 3 MP XPP X0 sg X1943 1374 mt 2071 1322 L X2071 1322 mt 2096 1380 L Xc29 X128 -43 25 49 1943 1374 3 MP XPP X0 sg X1943 1374 mt 1968 1423 L X1968 1423 mt 2096 1380 L Xc19 X128 -32 24 11 1935 1147 3 MP XPP X0 sg X1935 1147 mt 1959 1158 L X1959 1158 mt 2087 1126 L Xc19 X25 13 127 -34 1935 1147 3 MP XPP X0 sg X1935 1147 mt 2062 1113 L X2062 1113 mt 2087 1126 L Xc21 X127 -34 25 11 1826 1354 3 MP XPP X0 sg X1826 1354 mt 1851 1365 L X1851 1365 mt 1978 1331 L Xc21 X25 -3 127 -34 1851 1365 3 MP XPP X0 sg X1851 1365 mt 1978 1331 L X1978 1331 mt 2003 1328 L Xc21 X128 -28 24 -9 1851 1365 3 MP XPP X0 sg X1851 1365 mt 1875 1356 L X1875 1356 mt 2003 1328 L Xc34 X24 -25 128 -28 1875 1356 3 MP XPP X0 sg X1875 1356 mt 2003 1328 L X2003 1328 mt 2027 1303 L Xc34 X127 -25 25 -28 1875 1356 3 MP XPP X0 sg X1875 1356 mt 1900 1328 L X1900 1328 mt 2027 1303 L Xc30 X128 -52 24 47 1919 1327 3 MP XPP X0 sg X1919 1327 mt 1943 1374 L X1943 1374 mt 2071 1322 L Xc30 X24 51 128 -56 1919 1327 3 MP XPP X0 sg X1919 1327 mt 2047 1271 L X2047 1271 mt 2071 1322 L Xc11 X128 -37 24 31 1914 1598 3 MP XPP X0 sg X1914 1598 mt 1938 1629 L X1938 1629 mt 2066 1592 L Xc11 X24 35 128 -41 1914 1598 3 MP XPP X0 sg X1914 1598 mt 2042 1557 L X2042 1557 mt 2066 1592 L Xc12 X127 -34 25 7 1910 1140 3 MP XPP X0 sg X1910 1140 mt 1935 1147 L X1935 1147 mt 2062 1113 L Xc12 X24 10 128 -37 1910 1140 3 MP XPP X0 sg X1910 1140 mt 2038 1103 L X2038 1103 mt 2062 1113 L Xc29 X25 -39 128 -18 1796 1308 3 MP XPP X0 sg X1796 1308 mt 1924 1290 L X1924 1290 mt 1949 1251 L Xc25 X25 36 128 -55 1894 1290 3 MP XPP X0 sg X1894 1290 mt 2022 1235 L X2022 1235 mt 2047 1271 L Xc21 X24 26 128 -49 1674 1377 3 MP XPP X0 sg X1674 1377 mt 1802 1328 L X1802 1328 mt 1826 1354 L Xc19 X24 -38 128 -18 1772 1346 3 MP XPP X0 sg X1772 1346 mt 1900 1328 L X1900 1328 mt 1924 1290 L Xc34 X128 -49 25 35 1649 1342 3 MP XPP X0 sg X1649 1342 mt 1674 1377 L X1674 1377 mt 1802 1328 L Xc34 X25 33 128 -47 1649 1342 3 MP XPP X0 sg X1649 1342 mt 1777 1295 L X1777 1295 mt 1802 1328 L Xc19 X128 -18 24 -38 1772 1346 3 MP XPP X0 sg X1772 1346 mt 1796 1308 L X1796 1308 mt 1924 1290 L Xc25 X128 -56 25 37 1894 1290 3 MP XPP X0 sg X1894 1290 mt 1919 1327 L X1919 1327 mt 2047 1271 L Xc13 X25 40 128 -47 1889 1564 3 MP XPP X0 sg X1889 1564 mt 2017 1517 L X2017 1517 mt 2042 1557 L Xc13 X128 -41 25 34 1889 1564 3 MP XPP X0 sg X1889 1564 mt 1914 1598 L X1914 1598 mt 2042 1557 L Xc14 X128 -30 24 0 1714 1178 3 MP XPP X0 sg X1714 1178 mt 1738 1178 L X1738 1178 mt 1866 1148 L Xc14 X24 5 128 -35 1714 1178 3 MP XPP X0 sg X1714 1178 mt 1842 1143 L X1842 1143 mt 1866 1148 L Xc14 X25 -3 128 -30 1738 1178 3 MP XPP X0 sg X1738 1178 mt 1866 1148 L X1866 1148 mt 1891 1145 L Xc14 X128 -28 25 -5 1738 1178 3 MP XPP X0 sg X1738 1178 mt 1763 1173 L X1763 1173 mt 1891 1145 L Xc8 X127 -30 25 -8 1763 1173 3 MP XPP X0 sg X1763 1173 mt 1788 1165 L X1788 1165 mt 1915 1135 L Xc8 X24 -10 128 -28 1763 1173 3 MP XPP X0 sg X1763 1173 mt 1891 1145 L X1891 1145 mt 1915 1135 L Xc11 X25 -14 127 -30 1788 1165 3 MP XPP X0 sg X1788 1165 mt 1915 1135 L X1915 1135 mt 1940 1121 L Xc12 X128 -37 24 3 1886 1137 3 MP XPP X0 sg X1886 1137 mt 1910 1140 L X1910 1140 mt 2038 1103 L Xc11 X128 -34 24 -10 1788 1165 3 MP XPP X0 sg X1788 1165 mt 1812 1155 L X1812 1155 mt 1940 1121 L Xc13 X24 -12 128 -34 1812 1155 3 MP XPP X0 sg X1812 1155 mt 1940 1121 L X1940 1121 mt 1964 1109 L Xc12 X25 4 127 -38 1886 1137 3 MP XPP X0 sg X1886 1137 mt 2013 1099 L X2013 1099 mt 2038 1103 L X Xgr X1534 293 mt X(Tikhonov solutions) s Xgs 898 388 2260 1783 MR c np Xc12 X128 -41 24 33 1753 1262 3 MP XPP X0 sg X1753 1262 mt 1777 1295 L X1777 1295 mt 1905 1254 L Xc12 X25 28 127 -36 1753 1262 3 MP XPP X0 sg X1753 1262 mt 1880 1226 L X1880 1226 mt 1905 1254 L Xc30 X24 -26 128 -26 1821 1277 3 MP XPP X0 sg X1821 1277 mt 1949 1251 L X1949 1251 mt 1973 1225 L Xc25 X24 16 128 -48 1870 1267 3 MP XPP X0 sg X1870 1267 mt 1998 1219 L X1998 1219 mt 2022 1235 L Xc29 X128 -26 25 -31 1796 1308 3 MP XPP X0 sg X1796 1308 mt 1821 1277 L X1821 1277 mt 1949 1251 L Xc25 X128 -55 24 23 1870 1267 3 MP XPP X0 sg X1870 1267 mt 1894 1290 L X1894 1290 mt 2022 1235 L Xc15 X24 45 128 -53 1865 1525 3 MP XPP X0 sg X1865 1525 mt 1993 1472 L X1993 1472 mt 2017 1517 L Xc15 X128 -47 24 39 1865 1525 3 MP XPP X0 sg X1865 1525 mt 1889 1564 L X1889 1564 mt 2017 1517 L Xc13 X127 -37 25 -9 1812 1155 3 MP XPP X0 sg X1812 1155 mt 1837 1146 L X1837 1146 mt 1964 1109 L Xc34 X25 -9 127 -37 1837 1146 3 MP XPP X0 sg X1837 1146 mt 1964 1109 L X1964 1109 mt 1989 1100 L Xc22 X24 -1 128 -39 1861 1139 3 MP XPP X0 sg X1861 1139 mt 1989 1100 L X1989 1100 mt 2013 1099 L Xc22 X127 -38 25 -2 1861 1139 3 MP XPP X0 sg X1861 1139 mt 1886 1137 L X1886 1137 mt 2013 1099 L Xc19 X24 20 128 -32 1856 1205 3 MP XPP X0 sg X1856 1205 mt 1984 1173 L X1984 1173 mt 2008 1193 L Xc19 X128 -33 24 21 1856 1205 3 MP XPP X0 sg X1856 1205 mt 1880 1226 L X1880 1226 mt 2008 1193 L Xc30 X128 -37 24 -15 1821 1277 3 MP XPP X0 sg X1821 1277 mt 1845 1262 L X1845 1262 mt 1973 1225 L Xc25 X128 -48 25 5 1845 1262 3 MP XPP X0 sg X1845 1262 mt 1870 1267 L X1870 1267 mt 1998 1219 L Xc25 X25 -6 128 -37 1845 1262 3 MP XPP X0 sg X1845 1262 mt 1973 1225 L X1973 1225 mt 1998 1219 L Xc12 X128 -53 25 43 1840 1482 3 MP XPP X0 sg X1840 1482 mt 1865 1525 L X1865 1525 mt 1993 1472 L Xc12 X25 49 128 -59 1840 1482 3 MP XPP X0 sg X1840 1482 mt 1968 1423 L X1968 1423 mt 1993 1472 L Xc34 X128 -39 24 -7 1837 1146 3 MP XPP X0 sg X1837 1146 mt 1861 1139 L X1861 1139 mt 1989 1100 L Xc19 X128 -32 25 14 1831 1191 3 MP XPP X0 sg X1831 1191 mt 1856 1205 L X1856 1205 mt 1984 1173 L Xc19 X25 15 128 -33 1831 1191 3 MP XPP X0 sg X1831 1191 mt 1959 1158 L X1959 1158 mt 1984 1173 L Xc9 X128 -59 24 46 1816 1436 3 MP XPP X0 sg X1816 1436 mt 1840 1482 L X1840 1482 mt 1968 1423 L Xc9 X25 49 127 -62 1816 1436 3 MP XPP X0 sg X1816 1436 mt 1943 1374 L X1943 1374 mt 1968 1423 L Xc19 X24 11 128 -34 1807 1181 3 MP XPP X0 sg X1807 1181 mt 1935 1147 L X1935 1147 mt 1959 1158 L Xc19 X128 -33 24 10 1807 1181 3 MP XPP X0 sg X1807 1181 mt 1831 1191 L X1831 1191 mt 1959 1158 L Xc21 X25 11 128 -45 1698 1399 3 MP XPP X0 sg X1698 1399 mt 1826 1354 L X1826 1354 mt 1851 1365 L Xc21 X128 -35 25 1 1698 1399 3 MP XPP X0 sg X1698 1399 mt 1723 1400 L X1723 1400 mt 1851 1365 L Xc21 X24 -9 128 -35 1723 1400 3 MP XPP X0 sg X1723 1400 mt 1851 1365 L X1851 1365 mt 1875 1356 L Xc21 X128 -45 24 22 1674 1377 3 MP XPP X0 sg X1674 1377 mt 1698 1399 L X1698 1399 mt 1826 1354 L Xc21 X128 -24 24 -20 1723 1400 3 MP XPP X0 sg X1723 1400 mt 1747 1380 L X1747 1380 mt 1875 1356 L Xc15 X25 -28 128 -24 1747 1380 3 MP XPP X0 sg X1747 1380 mt 1875 1356 L X1875 1356 mt 1900 1328 L Xc29 X24 47 128 -65 1791 1392 3 MP XPP X0 sg X1791 1392 mt 1919 1327 L X1919 1327 mt 1943 1374 L Xc29 X127 -62 25 44 1791 1392 3 MP XPP X0 sg X1791 1392 mt 1816 1436 L X1816 1436 mt 1943 1374 L Xc36 X128 -56 24 22 1786 1663 3 MP XPP X0 sg X1786 1663 mt 1810 1685 L X1810 1685 mt 1938 1629 L Xc36 X24 31 128 -65 1786 1663 3 MP XPP X0 sg X1786 1663 mt 1914 1598 L X1914 1598 mt 1938 1629 L Xc12 X128 -34 25 5 1782 1176 3 MP XPP X0 sg X1782 1176 mt 1807 1181 L X1807 1181 mt 1935 1147 L Xc12 X25 7 128 -36 1782 1176 3 MP XPP X0 sg X1782 1176 mt 1910 1140 L X1910 1140 mt 1935 1147 L Xc21 X24 22 128 -37 1546 1414 3 MP XPP X0 sg X1546 1414 mt 1674 1377 L X1674 1377 mt 1698 1399 L Xc22 X25 -34 127 -16 1620 1396 3 MP XPP X0 sg X1620 1396 mt 1747 1380 L X1747 1380 mt 1772 1346 L Xc15 X128 -18 25 -34 1747 1380 3 MP XPP X0 sg X1747 1380 mt 1772 1346 L X1772 1346 mt 1900 1328 L Xc17 X25 37 127 -62 1767 1352 3 MP XPP X0 sg X1767 1352 mt 1894 1290 L X1894 1290 mt 1919 1327 L Xc17 X128 -65 24 40 1767 1352 3 MP XPP X0 sg X1767 1352 mt 1791 1392 L X1791 1392 mt 1919 1327 L Xc8 X25 34 128 -75 1761 1639 3 MP XPP X0 sg X1761 1639 mt 1889 1564 L X1889 1564 mt 1914 1598 L Xc8 X128 -65 25 24 1761 1639 3 MP XPP X0 sg X1761 1639 mt 1786 1663 L X1786 1663 mt 1914 1598 L Xc22 X128 -36 24 1 1758 1175 3 MP XPP X0 sg X1758 1175 mt 1782 1176 L X1782 1176 mt 1910 1140 L Xc22 X24 3 128 -38 1758 1175 3 MP XPP X0 sg X1758 1175 mt 1886 1137 L X1886 1137 mt 1910 1140 L Xc13 X25 35 128 -43 1521 1385 3 MP XPP X0 sg X1521 1385 mt 1649 1342 L X1649 1342 mt 1674 1377 L Xc13 X128 -37 25 29 1521 1385 3 MP XPP X0 sg X1521 1385 mt 1546 1414 L X1546 1414 mt 1674 1377 L Xc22 X128 -17 24 -33 1620 1396 3 MP XPP X0 sg X1620 1396 mt 1644 1363 L X1644 1363 mt 1772 1346 L Xc22 X128 -47 24 41 1625 1301 3 MP XPP X0 sg X1625 1301 mt 1649 1342 L X1649 1342 mt 1777 1295 L Xc23 X127 -24 25 -31 1644 1363 3 MP XPP X0 sg X1644 1363 mt 1669 1332 L X1669 1332 mt 1796 1308 L Xc23 X24 -38 128 -17 1644 1363 3 MP XPP X0 sg X1644 1363 mt 1772 1346 L X1772 1346 mt 1796 1308 L Xc35 X127 -62 25 29 1742 1323 3 MP XPP X0 sg X1742 1323 mt 1767 1352 L X1767 1352 mt 1894 1290 L Xc22 X24 33 128 -39 1625 1301 3 MP XPP X0 sg X1625 1301 mt 1753 1262 L X1753 1262 mt 1777 1295 L Xc26 X25 -31 127 -24 1669 1332 3 MP XPP X0 sg X1669 1332 mt 1796 1308 L X1796 1308 mt 1821 1277 L Xc35 X24 23 128 -56 1742 1323 3 MP XPP X0 sg X1742 1323 mt 1870 1267 L X1870 1267 mt 1894 1290 L Xc11 X24 39 128 -86 1737 1611 3 MP XPP X0 sg X1737 1611 mt 1865 1525 L X1865 1525 mt 1889 1564 L Xc11 X128 -75 24 28 1737 1611 3 MP XPP X0 sg X1737 1611 mt 1761 1639 L X1761 1639 mt 1889 1564 L Xc14 X127 -31 25 -3 1586 1212 3 MP XPP X0 sg X1586 1212 mt 1611 1209 L X1611 1209 mt 1738 1178 L Xc14 X24 0 128 -34 1586 1212 3 MP XPP X0 sg X1586 1212 mt 1714 1178 L X1714 1178 mt 1738 1178 L Xc11 X128 -33 24 -8 1660 1196 3 MP XPP X0 sg X1660 1196 mt 1684 1188 L X1684 1188 mt 1812 1155 L Xc11 X24 -10 128 -31 1660 1196 3 MP XPP X0 sg X1660 1196 mt 1788 1165 L X1788 1165 mt 1812 1155 L Xc13 X25 -9 128 -33 1684 1188 3 MP XPP X0 sg X1684 1188 mt 1812 1155 L X1812 1155 mt 1837 1146 L Xc15 X25 -2 128 -37 1733 1176 3 MP XPP X0 sg X1733 1176 mt 1861 1139 L X1861 1139 mt 1886 1137 L Xc36 X25 -5 127 -31 1611 1209 3 MP XPP X0 sg X1611 1209 mt 1738 1178 L X1738 1178 mt 1763 1173 L Xc36 X128 -31 24 -5 1611 1209 3 MP XPP X0 sg X1611 1209 mt 1635 1204 L X1635 1204 mt 1763 1173 L Xc8 X128 -31 25 -8 1635 1204 3 MP XPP X0 sg X1635 1204 mt 1660 1196 L X1660 1196 mt 1788 1165 L Xc8 X25 -8 128 -31 1635 1204 3 MP XPP X0 sg X1635 1204 mt 1763 1173 L X1763 1173 mt 1788 1165 L Xc15 X128 -38 25 -1 1733 1176 3 MP XPP X0 sg X1733 1176 mt 1758 1175 L X1758 1175 mt 1886 1137 L Xc19 X127 -36 25 26 1728 1236 3 MP XPP X0 sg X1728 1236 mt 1753 1262 L X1753 1262 mt 1880 1226 L Xc19 X24 21 128 -31 1728 1236 3 MP XPP X0 sg X1728 1236 mt 1856 1205 L X1856 1205 mt 1880 1226 L Xc26 X128 -35 24 -20 1669 1332 3 MP XPP X0 sg X1669 1332 mt 1693 1312 L X1693 1312 mt 1821 1277 L Xc35 X128 -56 24 14 1718 1309 3 MP XPP X0 sg X1718 1309 mt 1742 1323 L X1742 1323 mt 1870 1267 L Xc30 X24 -15 128 -35 1693 1312 3 MP XPP X0 sg X1693 1312 mt 1821 1277 L X1821 1277 mt 1845 1262 L Xc35 X25 5 127 -47 1718 1309 3 MP XPP X0 sg X1718 1309 mt 1845 1262 L X1845 1262 mt 1870 1267 L Xc21 X128 -86 25 31 1712 1580 3 MP XPP X0 sg X1712 1580 mt 1737 1611 L X1737 1611 mt 1865 1525 L Xc21 X25 43 128 -98 1712 1580 3 MP XPP X0 sg X1712 1580 mt 1840 1482 L X1840 1482 mt 1865 1525 L Xc13 X128 -35 25 -7 1684 1188 3 MP XPP X0 sg X1684 1188 mt 1709 1181 L X1709 1181 mt 1837 1146 L Xc34 X128 -37 24 -5 1709 1181 3 MP XPP X0 sg X1709 1181 mt 1733 1176 L X1733 1176 mt 1861 1139 L Xc34 X24 -7 128 -35 1709 1181 3 MP XPP X0 sg X1709 1181 mt 1837 1146 L X1837 1146 mt 1861 1139 L Xc19 X25 14 127 -28 1704 1219 3 MP XPP X0 sg X1704 1219 mt 1831 1191 L X1831 1191 mt 1856 1205 L Xc19 X128 -31 24 17 1704 1219 3 MP XPP X0 sg X1704 1219 mt 1728 1236 L X1728 1236 mt 1856 1205 L Xc30 X127 -47 25 -3 1693 1312 3 MP XPP X0 sg X1693 1312 mt 1718 1309 L X1718 1309 mt 1845 1262 L Xc28 X128 -35 25 5 1689 1173 3 MP XPP X0 sg X1689 1173 mt 1714 1178 L X1714 1178 mt 1842 1143 L Xc28 X25 17 128 -47 1689 1173 3 MP XPP X0 sg X1689 1173 mt 1817 1126 L X1817 1126 mt 1842 1143 L Xc34 X128 -98 24 34 1688 1546 3 MP XPP X0 sg X1688 1546 mt 1712 1580 L X1712 1580 mt 1840 1482 L Xc34 X24 46 128 -110 1688 1546 3 MP XPP X0 sg X1688 1546 mt 1816 1436 L X1816 1436 mt 1840 1482 L Xc19 X24 10 128 -29 1679 1210 3 MP XPP X0 sg X1679 1210 mt 1807 1181 L X1807 1181 mt 1831 1191 L Xc19 X127 -28 25 9 1679 1210 3 MP XPP X0 sg X1679 1210 mt 1704 1219 L X1704 1219 mt 1831 1191 L Xc22 X25 44 128 -119 1663 1511 3 MP XPP X0 sg X1663 1511 mt 1791 1392 L X1791 1392 mt 1816 1436 L Xc22 X128 -110 25 35 1663 1511 3 MP XPP X0 sg X1663 1511 mt 1688 1546 L X1688 1546 mt 1816 1436 L Xc12 X25 5 128 -32 1654 1208 3 MP XPP X0 sg X1654 1208 mt 1782 1176 L X1782 1176 mt 1807 1181 L Xc12 X128 -29 25 2 1654 1208 3 MP XPP X0 sg X1654 1208 mt 1679 1210 L X1679 1210 mt 1807 1181 L Xc21 X25 1 128 -27 1570 1426 3 MP XPP X0 sg X1570 1426 mt 1698 1399 L X1698 1399 mt 1723 1400 L Xc21 X128 -27 24 12 1546 1414 3 MP XPP X0 sg X1546 1414 mt 1570 1426 L X1570 1426 mt 1698 1399 L Xc21 X128 -19 25 -7 1570 1426 3 MP XPP X0 sg X1570 1426 mt 1595 1419 L X1595 1419 mt 1723 1400 L Xc13 X127 -16 25 -23 1595 1419 3 MP XPP X0 sg X1595 1419 mt 1620 1396 L X1620 1396 mt 1747 1380 L Xc13 X24 -20 128 -19 1595 1419 3 MP XPP X0 sg X1595 1419 mt 1723 1400 L X1723 1400 mt 1747 1380 L Xc19 X24 40 128 -124 1639 1476 3 MP XPP X0 sg X1639 1476 mt 1767 1352 L X1767 1352 mt 1791 1392 L Xc19 X128 -119 24 35 1639 1476 3 MP XPP X0 sg X1639 1476 mt 1663 1511 L X1663 1511 mt 1791 1392 L Xc22 X24 1 128 -35 1630 1210 3 MP XPP X0 sg X1630 1210 mt 1758 1175 L X1758 1175 mt 1782 1176 L Xc22 X128 -32 24 -2 1630 1210 3 MP XPP X0 sg X1630 1210 mt 1654 1208 L X1654 1208 mt 1782 1176 L Xc23 X25 29 128 -120 1614 1443 3 MP XPP X0 sg X1614 1443 mt 1742 1323 L X1742 1323 mt 1767 1352 L Xc23 X128 -124 25 33 1614 1443 3 MP XPP X0 sg X1614 1443 mt 1639 1476 L X1639 1476 mt 1767 1352 L Xc15 X128 -35 25 -5 1605 1215 3 MP XPP X0 sg X1605 1215 mt 1630 1210 L X1630 1210 mt 1758 1175 L Xc15 X25 -1 128 -39 1605 1215 3 MP XPP X0 sg X1605 1215 mt 1733 1176 L X1733 1176 mt 1758 1175 L Xc19 X25 26 128 -30 1600 1266 3 MP XPP X0 sg X1600 1266 mt 1728 1236 L X1728 1236 mt 1753 1262 L Xc19 X128 -39 25 35 1600 1266 3 MP XPP X0 sg X1600 1266 mt 1625 1301 L X1625 1301 mt 1753 1262 L Xc34 X25 29 127 -22 1394 1407 3 MP XPP X0 sg X1394 1407 mt 1521 1385 L X1521 1385 mt 1546 1414 L Xc34 X128 -2 24 9 1394 1407 3 MP XPP X0 sg X1394 1407 mt 1418 1416 L X1418 1416 mt 1546 1414 L Xc12 X128 -7 25 -10 1467 1413 3 MP XPP X0 sg X1467 1413 mt 1492 1403 L X1492 1403 mt 1620 1396 L Xc15 X24 12 128 -2 1418 1416 3 MP XPP X0 sg X1418 1416 mt 1546 1414 L X1546 1414 mt 1570 1426 L Xc12 X25 -23 128 6 1467 1413 3 MP XPP X0 sg X1467 1413 mt 1595 1419 L X1595 1419 mt 1620 1396 L Xc19 X24 -33 128 -7 1492 1403 3 MP XPP X0 sg X1492 1403 mt 1620 1396 L X1620 1396 mt 1644 1363 L Xc9 X24 14 128 -108 1590 1417 3 MP XPP X0 sg X1590 1417 mt 1718 1309 L X1718 1309 mt 1742 1323 L Xc15 X127 8 25 2 1418 1416 3 MP XPP X0 sg X1418 1416 mt 1443 1418 L X1443 1418 mt 1570 1426 L Xc15 X25 -7 127 8 1443 1418 3 MP XPP X0 sg X1443 1418 mt 1570 1426 L X1570 1426 mt 1595 1419 L Xc15 X128 6 24 -5 1443 1418 3 MP XPP X0 sg X1443 1418 mt 1467 1413 L X1467 1413 mt 1595 1419 L Xc9 X128 -120 24 26 1590 1417 3 MP XPP X0 sg X1590 1417 mt 1614 1443 L X1614 1443 mt 1742 1323 L Xc34 X128 -39 24 -7 1581 1222 3 MP XPP X0 sg X1581 1222 mt 1605 1215 L X1605 1215 mt 1733 1176 L Xc34 X24 -5 128 -41 1581 1222 3 MP XPP X0 sg X1581 1222 mt 1709 1181 L X1709 1181 mt 1733 1176 L Xc23 X24 17 128 -23 1576 1242 3 MP XPP X0 sg X1576 1242 mt 1704 1219 L X1704 1219 mt 1728 1236 L Xc23 X128 -30 24 24 1576 1242 3 MP XPP X0 sg X1576 1242 mt 1600 1266 L X1600 1266 mt 1728 1236 L Xc19 X128 -32 24 -8 1492 1403 3 MP XPP X0 sg X1492 1403 mt 1516 1395 L X1516 1395 mt 1644 1363 L Xc15 X128 -43 24 37 1497 1348 3 MP XPP X0 sg X1497 1348 mt 1521 1385 L X1521 1385 mt 1649 1342 L Xc15 X24 41 128 -47 1497 1348 3 MP XPP X0 sg X1497 1348 mt 1625 1301 L X1625 1301 mt 1649 1342 L Xc9 X25 -31 128 -32 1516 1395 3 MP XPP X0 sg X1516 1395 mt 1644 1363 L X1644 1363 mt 1669 1332 L Xc18 X128 -108 25 17 1565 1400 3 MP XPP X0 sg X1565 1400 mt 1590 1417 L X1590 1417 mt 1718 1309 L Xc9 X128 -61 25 -2 1516 1395 3 MP XPP X0 sg X1516 1395 mt 1541 1393 L X1541 1393 mt 1669 1332 L Xc18 X24 -20 128 -61 1541 1393 3 MP XPP X0 sg X1541 1393 mt 1669 1332 L X1669 1332 mt 1693 1312 L Xc18 X25 -3 128 -88 1565 1400 3 MP XPP X0 sg X1565 1400 mt 1693 1312 L X1693 1312 mt 1718 1309 L Xc28 X25 5 127 -38 1562 1211 3 MP XPP X0 sg X1562 1211 mt 1689 1173 L X1689 1173 mt 1714 1178 L Xc28 X128 -34 24 1 1562 1211 3 MP XPP X0 sg X1562 1211 mt 1586 1212 L X1586 1212 mt 1714 1178 L Xc21 X128 -41 25 -6 1556 1228 3 MP XPP X0 sg X1556 1228 mt 1581 1222 L X1581 1222 mt 1709 1181 L Xc36 X24 -5 128 -33 1483 1242 3 MP XPP X0 sg X1483 1242 mt 1611 1209 L X1611 1209 mt 1635 1204 L Xc36 X128 -35 24 -3 1483 1242 3 MP XPP X0 sg X1483 1242 mt 1507 1239 L X1507 1239 mt 1635 1204 L Xc8 X25 -8 128 -35 1507 1239 3 MP XPP X0 sg X1507 1239 mt 1635 1204 L X1635 1204 mt 1660 1196 L Xc8 X128 -39 25 -4 1507 1239 3 MP XPP X0 sg X1507 1239 mt 1532 1235 L X1532 1235 mt 1660 1196 L Xc11 X24 -8 128 -39 1532 1235 3 MP XPP X0 sg X1532 1235 mt 1660 1196 L X1660 1196 mt 1684 1188 L Xc21 X25 -7 128 -40 1556 1228 3 MP XPP X0 sg X1556 1228 mt 1684 1188 L X1684 1188 mt 1709 1181 L Xc8 X127 -46 25 -7 1404 1281 3 MP XPP X0 sg X1404 1281 mt 1429 1274 L X1429 1274 mt 1556 1228 L Xc21 X25 -6 127 -46 1429 1274 3 MP XPP X0 sg X1429 1274 mt 1556 1228 L X1556 1228 mt 1581 1222 L Xc21 X128 -42 24 -10 1429 1274 3 MP XPP X0 sg X1429 1274 mt 1453 1264 L X1453 1264 mt 1581 1222 L Xc13 X24 -7 128 -42 1453 1264 3 MP XPP X0 sg X1453 1264 mt 1581 1222 L X1581 1222 mt 1605 1215 L Xc36 X128 -46 24 -3 1380 1284 3 MP XPP X0 sg X1380 1284 mt 1404 1281 L X1404 1281 mt 1532 1235 L Xc8 X24 -7 128 -46 1404 1281 3 MP XPP X0 sg X1404 1281 mt 1532 1235 L X1532 1235 mt 1556 1228 L Xc13 X127 -37 25 -12 1453 1264 3 MP XPP X0 sg X1453 1264 mt 1478 1252 L X1478 1252 mt 1605 1215 L Xc14 X127 -45 25 0 1355 1284 3 MP XPP X0 sg X1355 1284 mt 1380 1284 L X1380 1284 mt 1507 1239 L Xc14 X24 -3 128 -42 1355 1284 3 MP XPP X0 sg X1355 1284 mt 1483 1242 L X1483 1242 mt 1507 1239 L Xc36 X25 -4 127 -45 1380 1284 3 MP XPP X0 sg X1380 1284 mt 1507 1239 L X1507 1239 mt 1532 1235 L Xc15 X25 -5 127 -37 1478 1252 3 MP XPP X0 sg X1478 1252 mt 1605 1215 L X1605 1215 mt 1630 1210 L Xc11 X128 -40 24 -7 1532 1235 3 MP XPP X0 sg X1532 1235 mt 1556 1228 L X1556 1228 mt 1684 1188 L Xc15 X128 -30 24 -12 1478 1252 3 MP XPP X0 sg X1478 1252 mt 1502 1240 L X1502 1240 mt 1630 1210 L Xc23 X128 -23 25 11 1551 1231 3 MP XPP X0 sg X1551 1231 mt 1576 1242 L X1576 1242 mt 1704 1219 L Xc23 X25 9 128 -21 1551 1231 3 MP XPP X0 sg X1551 1231 mt 1679 1210 L X1679 1210 mt 1704 1219 L Xc18 X128 -88 24 7 1541 1393 3 MP XPP X0 sg X1541 1393 mt 1565 1400 L X1565 1400 mt 1693 1312 L Xc12 X24 -2 128 -30 1502 1240 3 MP XPP X0 sg X1502 1240 mt 1630 1210 L X1630 1210 mt 1654 1208 L Xc12 X127 -24 25 -8 1502 1240 3 MP XPP X0 sg X1502 1240 mt 1527 1232 L X1527 1232 mt 1654 1208 L Xc19 X25 2 127 -24 1527 1232 3 MP XPP X0 sg X1527 1232 mt 1654 1208 L X1654 1208 mt 1679 1210 L Xc19 X128 -21 24 -1 1527 1232 3 MP XPP X0 sg X1527 1232 mt 1551 1231 L X1551 1231 mt 1679 1210 L Xc12 X25 35 128 -47 1472 1313 3 MP XPP X0 sg X1472 1313 mt 1600 1266 L X1600 1266 mt 1625 1301 L Xc12 X128 -47 25 35 1472 1313 3 MP XPP X0 sg X1472 1313 mt 1497 1348 L X1497 1348 mt 1625 1301 L Xc14 X128 -33 25 -1 1458 1243 3 MP XPP X0 sg X1458 1243 mt 1483 1242 L X1483 1242 mt 1611 1209 L Xc14 X25 -3 128 -31 1458 1243 3 MP XPP X0 sg X1458 1243 mt 1586 1212 L X1586 1212 mt 1611 1209 L Xc19 X24 24 128 -44 1448 1286 3 MP XPP X0 sg X1448 1286 mt 1576 1242 L X1576 1242 mt 1600 1266 L Xc19 X128 -47 24 27 1448 1286 3 MP XPP X0 sg X1448 1286 mt 1472 1313 L X1472 1313 mt 1600 1266 L Xc28 X128 -31 24 2 1434 1241 3 MP XPP X0 sg X1434 1241 mt 1458 1243 L X1458 1243 mt 1586 1212 L Xc28 X24 1 128 -30 1434 1241 3 MP XPP X0 sg X1434 1241 mt 1562 1211 L X1562 1211 mt 1586 1212 L Xc36 X24 -3 128 -32 1252 1316 3 MP XPP X0 sg X1252 1316 mt 1380 1284 L X1380 1284 mt 1404 1281 L Xc36 X128 -31 24 -4 1252 1316 3 MP XPP X0 sg X1252 1316 mt 1276 1312 L X1276 1312 mt 1404 1281 L Xc21 X24 -10 128 -31 1301 1305 3 MP XPP X0 sg X1301 1305 mt 1429 1274 L X1429 1274 mt 1453 1264 L Xc14 X25 0 128 -33 1227 1317 3 MP XPP X0 sg X1227 1317 mt 1355 1284 L X1355 1284 mt 1380 1284 L Xc14 X128 -32 25 -1 1227 1317 3 MP XPP X0 sg X1227 1317 mt 1252 1316 L X1252 1316 mt 1380 1284 L Xc21 X128 -31 24 -10 1301 1305 3 MP XPP X0 sg X1301 1305 mt 1325 1295 L X1325 1295 mt 1453 1264 L Xc13 X25 -12 128 -31 1325 1295 3 MP XPP X0 sg X1325 1295 mt 1453 1264 L X1453 1264 mt 1478 1252 L Xc23 X25 11 128 -40 1423 1271 3 MP XPP X0 sg X1423 1271 mt 1551 1231 L X1551 1231 mt 1576 1242 L Xc23 X128 -44 25 15 1423 1271 3 MP XPP X0 sg X1423 1271 mt 1448 1286 L X1448 1286 mt 1576 1242 L Xc14 X24 2 128 -32 1203 1314 3 MP XPP X0 sg X1203 1314 mt 1331 1282 L X1331 1282 mt 1355 1284 L Xc14 X128 -33 24 3 1203 1314 3 MP XPP X0 sg X1203 1314 mt 1227 1317 L X1227 1317 mt 1355 1284 L Xc14 X128 -42 24 2 1331 1282 3 MP XPP X0 sg X1331 1282 mt 1355 1284 L X1355 1284 mt 1483 1242 L Xc13 X128 -32 25 -11 1325 1295 3 MP XPP X0 sg X1325 1295 mt 1350 1284 L X1350 1284 mt 1478 1252 L Xc15 X128 -33 24 -11 1350 1284 3 MP XPP X0 sg X1350 1284 mt 1374 1273 L X1374 1273 mt 1502 1240 L Xc15 X24 -12 128 -32 1350 1284 3 MP XPP X0 sg X1350 1284 mt 1478 1252 L X1478 1252 mt 1502 1240 L Xc19 X128 -40 24 3 1399 1268 3 MP XPP X0 sg X1399 1268 mt 1423 1271 L X1423 1271 mt 1551 1231 L Xc12 X25 -8 128 -33 1374 1273 3 MP XPP X0 sg X1374 1273 mt 1502 1240 L X1502 1240 mt 1527 1232 L Xc19 X24 -1 128 -36 1399 1268 3 MP XPP X0 sg X1399 1268 mt 1527 1232 L X1527 1232 mt 1551 1231 L Xc12 X128 -36 25 -5 1374 1273 3 MP XPP X0 sg X1374 1273 mt 1399 1268 L X1399 1268 mt 1527 1232 L Xc15 X127 -22 25 15 1369 1392 3 MP XPP X0 sg X1369 1392 mt 1394 1407 L X1394 1407 mt 1521 1385 L Xc15 X24 37 128 -44 1369 1392 3 MP XPP X0 sg X1369 1392 mt 1497 1348 L X1497 1348 mt 1521 1385 L Xc15 X128 -44 24 17 1345 1375 3 MP XPP X0 sg X1345 1375 mt 1369 1392 L X1369 1392 mt 1497 1348 L Xc15 X25 35 127 -62 1345 1375 3 MP XPP X0 sg X1345 1375 mt 1472 1313 L X1472 1313 mt 1497 1348 L Xc14 X25 -1 127 -39 1331 1282 3 MP XPP X0 sg X1331 1282 mt 1458 1243 L X1458 1243 mt 1483 1242 L Xc15 X24 27 128 -75 1320 1361 3 MP XPP X0 sg X1320 1361 mt 1448 1286 L X1448 1286 mt 1472 1313 L Xc15 X127 -62 25 14 1320 1361 3 MP XPP X0 sg X1320 1361 mt 1345 1375 L X1345 1375 mt 1472 1313 L Xc28 X24 2 128 -36 1306 1277 3 MP XPP X0 sg X1306 1277 mt 1434 1241 L X1434 1241 mt 1458 1243 L Xc28 X127 -39 25 5 1306 1277 3 MP XPP X0 sg X1306 1277 mt 1331 1282 L X1331 1282 mt 1458 1243 L Xc15 X128 -75 24 10 1296 1351 3 MP XPP X0 sg X1296 1351 mt 1320 1361 L X1320 1361 mt 1448 1286 L Xc8 X25 -7 128 -31 1276 1312 3 MP XPP X0 sg X1276 1312 mt 1404 1281 L X1404 1281 mt 1429 1274 L Xc8 X128 -31 25 -7 1276 1312 3 MP XPP X0 sg X1276 1312 mt 1301 1305 L X1301 1305 mt 1429 1274 L Xc15 X25 15 127 -80 1296 1351 3 MP XPP X0 sg X1296 1351 mt 1423 1271 L X1423 1271 mt 1448 1286 L Xc15 X127 -80 25 5 1271 1346 3 MP XPP X0 sg X1271 1346 mt 1296 1351 L X1296 1351 mt 1423 1271 L Xc15 X24 3 128 -78 1271 1346 3 MP XPP X0 sg X1271 1346 mt 1399 1268 L X1399 1268 mt 1423 1271 L Xc34 X128 -78 25 0 1246 1346 3 MP XPP X0 sg X1246 1346 mt 1271 1346 L X1271 1346 mt 1399 1268 L Xc34 X25 -5 128 -73 1246 1346 3 MP XPP X0 sg X1246 1346 mt 1374 1273 L X1374 1273 mt 1399 1268 L Xc13 X24 -11 128 -65 1222 1349 3 MP XPP X0 sg X1222 1349 mt 1350 1284 L X1350 1284 mt 1374 1273 L Xc13 X128 -73 24 -3 1222 1349 3 MP XPP X0 sg X1222 1349 mt 1246 1346 L X1246 1346 mt 1374 1273 L X Xgr Xgs 898 388 2260 1783 MR c np Xc8 X128 -52 25 -2 1148 1359 3 MP XPP X0 sg X1148 1359 mt 1173 1357 L X1173 1357 mt 1301 1305 L Xc8 X25 -7 128 -47 1148 1359 3 MP XPP X0 sg X1148 1359 mt 1276 1312 L X1276 1312 mt 1301 1305 L Xc11 X24 -10 128 -52 1173 1357 3 MP XPP X0 sg X1173 1357 mt 1301 1305 L X1301 1305 mt 1325 1295 L Xc11 X128 -58 24 -4 1173 1357 3 MP XPP X0 sg X1173 1357 mt 1197 1353 L X1197 1353 mt 1325 1295 L Xc21 X25 -11 128 -58 1197 1353 3 MP XPP X0 sg X1197 1353 mt 1325 1295 L X1325 1295 mt 1350 1284 L Xc21 X128 -65 25 -4 1197 1353 3 MP XPP X0 sg X1197 1353 mt 1222 1349 L X1222 1349 mt 1350 1284 L Xc28 X25 5 128 -33 1178 1310 3 MP XPP X0 sg X1178 1310 mt 1306 1277 L X1306 1277 mt 1331 1282 L Xc28 X128 -32 25 4 1178 1310 3 MP XPP X0 sg X1178 1310 mt 1203 1314 L X1203 1314 mt 1331 1282 L Xc36 X128 -47 24 -1 1124 1360 3 MP XPP X0 sg X1124 1360 mt 1148 1359 L X1148 1359 mt 1276 1312 L Xc36 X24 -4 128 -44 1124 1360 3 MP XPP X0 sg X1124 1360 mt 1252 1316 L X1252 1316 mt 1276 1312 L Xc14 X25 -1 128 -41 1099 1358 3 MP XPP X0 sg X1099 1358 mt 1227 1317 L X1227 1317 mt 1252 1316 L Xc14 X128 -44 25 2 1099 1358 3 MP XPP X0 sg X1099 1358 mt 1124 1360 L X1124 1360 mt 1252 1316 L Xc28 X24 3 128 -40 1075 1354 3 MP XPP X0 sg X1075 1354 mt 1203 1314 L X1203 1314 mt 1227 1317 L Xc28 X128 -41 24 4 1075 1354 3 MP XPP X0 sg X1075 1354 mt 1099 1358 L X1099 1358 mt 1227 1317 L Xc28 X25 4 128 -39 1050 1349 3 MP XPP X0 sg X1050 1349 mt 1178 1310 L X1178 1310 mt 1203 1314 L Xc28 X128 -40 25 5 1050 1349 3 MP XPP X0 sg X1050 1349 mt 1075 1354 L X1075 1354 mt 1203 1314 L X Xgr X1 sg X-981 -451 1279 -346 981 451 3994 734 4 MP XPP X-1279 346 -981 -451 1279 -346 981 451 3994 734 5 MP stroke X0 985 981 451 0 -985 3994 1719 4 MP XPP X-981 -451 0 985 981 451 0 -985 3994 1719 5 MP stroke X0 985 1279 -346 0 -985 4975 2170 4 MP XPP X-1279 346 0 985 1279 -346 0 -985 4975 2170 5 MP stroke X4 w XDO X0 sg X4975 2170 mt 3994 1719 L X3994 1719 mt 3994 734 L X5615 1997 mt 4633 1546 L X4633 1546 mt 4633 561 L X6254 1824 mt 5273 1373 L X5273 1373 mt 5273 388 L X3994 1719 mt 5273 1373 L X5273 1373 mt 5273 388 L X4485 1944 mt 5763 1598 L X5763 1598 mt 5763 614 L X4975 2170 mt 6254 1824 L X6254 1824 mt 6254 839 L X3994 1719 mt 5273 1373 L X5273 1373 mt 6254 1824 L X3994 1227 mt 5273 880 L X5273 880 mt 6254 1331 L X3994 734 mt 5273 388 L X5273 388 mt 6254 839 L XSO X6 w X4975 2170 mt 6254 1824 L X3994 1719 mt 4975 2170 L X3994 1719 mt 3994 734 L X4975 2170 mt 5005 2184 L X5037 2309 mt X(0) s X5615 1997 mt 5645 2011 L X5676 2136 mt X(5) s X6254 1824 mt 6284 1838 L X6316 1963 mt X(10) s X3994 1719 mt 3962 1728 L X3863 1848 mt X(0) s X4485 1944 mt 4453 1953 L X4286 2073 mt X(20) s X4975 2170 mt 4943 2179 L X4777 2299 mt X(40) s X3994 1719 mt 3964 1705 L X3729 1735 mt X(-40) s X3994 1227 mt 3964 1213 L X3729 1242 mt X(-20) s X3994 734 mt 3964 720 L X3866 750 mt X(0) s Xgs 3994 388 2261 1783 MR c np X/c37 { 0.000000 0.500000 1.000000 sr} bdef Xc37 X25 22 128 -60 5905 1405 3 MP XPP X0 sg X5905 1405 mt 6033 1345 L X6033 1345 mt 6058 1367 L Xc37 X128 -60 25 22 5905 1405 3 MP XPP X0 sg X5905 1405 mt 5930 1427 L X5930 1427 mt 6058 1367 L Xc33 X24 18 128 -61 5881 1388 3 MP XPP X0 sg X5881 1388 mt 6009 1327 L X6009 1327 mt 6033 1345 L Xc33 X128 -60 24 17 5881 1388 3 MP XPP X0 sg X5881 1388 mt 5905 1405 L X5905 1405 mt 6033 1345 L Xc33 X128 -61 25 20 5856 1368 3 MP XPP X0 sg X5856 1368 mt 5881 1388 L X5881 1388 mt 6009 1327 L Xc33 X25 20 128 -61 5856 1368 3 MP XPP X0 sg X5856 1368 mt 5984 1307 L X5984 1307 mt 6009 1327 L X/c38 { 0.000000 0.625000 1.000000 sr} bdef Xc38 X128 -61 24 24 5832 1344 3 MP XPP X0 sg X5832 1344 mt 5856 1368 L X5856 1368 mt 5984 1307 L Xc38 X24 24 128 -61 5832 1344 3 MP XPP X0 sg X5832 1344 mt 5960 1283 L X5960 1283 mt 5984 1307 L X/c39 { 0.000000 0.687500 1.000000 sr} bdef Xc39 X25 20 128 -60 5807 1323 3 MP XPP X0 sg X5807 1323 mt 5935 1263 L X5935 1263 mt 5960 1283 L Xc39 X128 -61 25 21 5807 1323 3 MP XPP X0 sg X5807 1323 mt 5832 1344 L X5832 1344 mt 5960 1283 L Xc39 X24 12 128 -60 5783 1311 3 MP XPP X0 sg X5783 1311 mt 5911 1251 L X5911 1251 mt 5935 1263 L Xc39 X128 -60 24 12 5783 1311 3 MP XPP X0 sg X5783 1311 mt 5807 1323 L X5807 1323 mt 5935 1263 L X/c40 { 0.000000 0.437500 1.000000 sr} bdef Xc40 X128 -58 25 22 5777 1463 3 MP XPP X0 sg X5777 1463 mt 5802 1485 L X5802 1485 mt 5930 1427 L Xc40 X25 22 128 -58 5777 1463 3 MP XPP X0 sg X5777 1463 mt 5905 1405 L X5905 1405 mt 5930 1427 L Xc39 X128 -60 25 13 5758 1298 3 MP XPP X0 sg X5758 1298 mt 5783 1311 L X5783 1311 mt 5911 1251 L Xc39 X25 13 128 -60 5758 1298 3 MP XPP X0 sg X5758 1298 mt 5886 1238 L X5886 1238 mt 5911 1251 L Xc40 X24 17 128 -58 5753 1446 3 MP XPP X0 sg X5753 1446 mt 5881 1388 L X5881 1388 mt 5905 1405 L Xc40 X128 -58 24 17 5753 1446 3 MP XPP X0 sg X5753 1446 mt 5777 1463 L X5777 1463 mt 5905 1405 L X/c41 { 0.000000 0.750000 1.000000 sr} bdef Xc41 X128 -60 24 15 5734 1283 3 MP XPP X0 sg X5734 1283 mt 5758 1298 L X5758 1298 mt 5886 1238 L Xc41 X24 16 128 -61 5734 1283 3 MP XPP X0 sg X5734 1283 mt 5862 1222 L X5862 1222 mt 5886 1238 L Xc37 X25 20 128 -58 5728 1426 3 MP XPP X0 sg X5728 1426 mt 5856 1368 L X5856 1368 mt 5881 1388 L Xc37 X128 -58 25 20 5728 1426 3 MP XPP X0 sg X5728 1426 mt 5753 1446 L X5753 1446 mt 5881 1388 L Xc10 X25 25 128 -61 5709 1258 3 MP XPP X0 sg X5709 1258 mt 5837 1197 L X5837 1197 mt 5862 1222 L Xc10 X128 -61 25 25 5709 1258 3 MP XPP X0 sg X5709 1258 mt 5734 1283 L X5734 1283 mt 5862 1222 L Xc33 X128 -58 24 24 5704 1402 3 MP XPP X0 sg X5704 1402 mt 5728 1426 L X5728 1426 mt 5856 1368 L Xc33 X24 24 128 -58 5704 1402 3 MP XPP X0 sg X5704 1402 mt 5832 1344 L X5832 1344 mt 5856 1368 L Xc10 X128 -61 24 14 5685 1244 3 MP XPP X0 sg X5685 1244 mt 5709 1258 L X5709 1258 mt 5837 1197 L Xc10 X25 13 127 -60 5685 1244 3 MP XPP X0 sg X5685 1244 mt 5812 1184 L X5812 1184 mt 5837 1197 L Xc33 X128 -58 25 21 5679 1381 3 MP XPP X0 sg X5679 1381 mt 5704 1402 L X5704 1402 mt 5832 1344 L Xc33 X25 21 128 -58 5679 1381 3 MP XPP X0 sg X5679 1381 mt 5807 1323 L X5807 1323 mt 5832 1344 L X/c42 { 0.000000 0.875000 1.000000 sr} bdef Xc42 X127 -60 25 23 5660 1221 3 MP XPP X0 sg X5660 1221 mt 5685 1244 L X5685 1244 mt 5812 1184 L Xc42 X24 23 128 -60 5660 1221 3 MP XPP X0 sg X5660 1221 mt 5788 1161 L X5788 1161 mt 5812 1184 L Xc33 X24 12 128 -58 5655 1369 3 MP XPP X0 sg X5655 1369 mt 5783 1311 L X5783 1311 mt 5807 1323 L Xc33 X128 -58 24 12 5655 1369 3 MP XPP X0 sg X5655 1369 mt 5679 1381 L X5679 1381 mt 5807 1323 L X/c43 { 0.000000 0.312500 1.000000 sr} bdef Xc43 X25 22 127 -60 5650 1523 3 MP XPP X0 sg X5650 1523 mt 5777 1463 L X5777 1463 mt 5802 1485 L Xc43 X128 -60 24 22 5650 1523 3 MP XPP X0 sg X5650 1523 mt 5674 1545 L X5674 1545 mt 5802 1485 L Xc21 X128 -60 24 117 5636 1104 3 MP XPP X0 sg X5636 1104 mt 5660 1221 L X5660 1221 mt 5788 1161 L Xc21 X25 117 127 -60 5636 1104 3 MP XPP X0 sg X5636 1104 mt 5763 1044 L X5763 1044 mt 5788 1161 L Xc38 X128 -58 25 13 5630 1356 3 MP XPP X0 sg X5630 1356 mt 5655 1369 L X5655 1369 mt 5783 1311 L Xc38 X25 13 128 -58 5630 1356 3 MP XPP X0 sg X5630 1356 mt 5758 1298 L X5758 1298 mt 5783 1311 L Xc43 X127 -60 25 17 5625 1506 3 MP XPP X0 sg X5625 1506 mt 5650 1523 L X5650 1523 mt 5777 1463 L Xc43 X24 17 128 -60 5625 1506 3 MP XPP X0 sg X5625 1506 mt 5753 1446 L X5753 1446 mt 5777 1463 L Xc34 X24 38 128 -60 5611 1066 3 MP XPP X0 sg X5611 1066 mt 5739 1006 L X5739 1006 mt 5763 1044 L Xc34 X127 -60 25 38 5611 1066 3 MP XPP X0 sg X5611 1066 mt 5636 1104 L X5636 1104 mt 5763 1044 L Xc38 X128 -58 24 15 5606 1341 3 MP XPP X0 sg X5606 1341 mt 5630 1356 L X5630 1356 mt 5758 1298 L Xc38 X24 15 128 -58 5606 1341 3 MP XPP X0 sg X5606 1341 mt 5734 1283 L X5734 1283 mt 5758 1298 L X/c44 { 0.000000 0.375000 1.000000 sr} bdef Xc44 X128 -60 24 20 5601 1486 3 MP XPP X0 sg X5601 1486 mt 5625 1506 L X5625 1506 mt 5753 1446 L Xc44 X25 20 127 -60 5601 1486 3 MP XPP X0 sg X5601 1486 mt 5728 1426 L X5728 1426 mt 5753 1446 L Xc22 X25 38 128 -61 5586 1029 3 MP XPP X0 sg X5586 1029 mt 5714 968 L X5714 968 mt 5739 1006 L Xc22 X128 -60 25 37 5586 1029 3 MP XPP X0 sg X5586 1029 mt 5611 1066 L X5611 1066 mt 5739 1006 L Xc39 X128 -58 25 25 5581 1316 3 MP XPP X0 sg X5581 1316 mt 5606 1341 L X5606 1341 mt 5734 1283 L Xc39 X25 25 128 -58 5581 1316 3 MP XPP X0 sg X5581 1316 mt 5709 1258 L X5709 1258 mt 5734 1283 L Xc40 X24 24 128 -60 5576 1462 3 MP XPP X0 sg X5576 1462 mt 5704 1402 L X5704 1402 mt 5728 1426 L Xc40 X127 -60 25 24 5576 1462 3 MP XPP X0 sg X5576 1462 mt 5601 1486 L X5601 1486 mt 5728 1426 L Xc29 X128 -61 24 91 5562 938 3 MP XPP X0 sg X5562 938 mt 5586 1029 L X5586 1029 mt 5714 968 L Xc29 X24 90 128 -60 5562 938 3 MP XPP X0 sg X5562 938 mt 5690 878 L X5690 878 mt 5714 968 L Xc39 X24 14 128 -58 5557 1302 3 MP XPP X0 sg X5557 1302 mt 5685 1244 L X5685 1244 mt 5709 1258 L Xc39 X128 -58 24 14 5557 1302 3 MP XPP X0 sg X5557 1302 mt 5581 1316 L X5581 1316 mt 5709 1258 L Xc40 X128 -60 25 20 5551 1442 3 MP XPP X0 sg X5551 1442 mt 5576 1462 L X5576 1462 mt 5704 1402 L Xc40 X25 21 128 -61 5551 1442 3 MP XPP X0 sg X5551 1442 mt 5679 1381 L X5679 1381 mt 5704 1402 L Xc30 X128 -60 25 57 5537 881 3 MP XPP X0 sg X5537 881 mt 5562 938 L X5562 938 mt 5690 878 L Xc30 X25 58 128 -61 5537 881 3 MP XPP X0 sg X5537 881 mt 5665 820 L X5665 820 mt 5690 878 L Xc41 X128 -58 25 23 5532 1279 3 MP XPP X0 sg X5532 1279 mt 5557 1302 L X5557 1302 mt 5685 1244 L Xc41 X25 23 128 -58 5532 1279 3 MP XPP X0 sg X5532 1279 mt 5660 1221 L X5660 1221 mt 5685 1244 L Xc40 X128 -61 24 12 5527 1430 3 MP XPP X0 sg X5527 1430 mt 5551 1442 L X5551 1442 mt 5679 1381 L Xc40 X24 12 128 -61 5527 1430 3 MP XPP X0 sg X5527 1430 mt 5655 1369 L X5655 1369 mt 5679 1381 L X/c45 { 0.000000 0.187500 1.000000 sr} bdef Xc45 X128 -59 24 22 5522 1582 3 MP XPP X0 sg X5522 1582 mt 5546 1604 L X5546 1604 mt 5674 1545 L Xc45 X24 22 128 -59 5522 1582 3 MP XPP X0 sg X5522 1582 mt 5650 1523 L X5650 1523 mt 5674 1545 L Xc32 X128 -61 24 70 5513 811 3 MP XPP X0 sg X5513 811 mt 5537 881 L X5537 881 mt 5665 820 L Xc32 X24 69 128 -60 5513 811 3 MP XPP X0 sg X5513 811 mt 5641 751 L X5641 751 mt 5665 820 L Xc8 X128 -58 24 117 5508 1162 3 MP XPP X0 sg X5508 1162 mt 5532 1279 L X5532 1279 mt 5660 1221 L Xc8 X24 117 128 -58 5508 1162 3 MP XPP X0 sg X5508 1162 mt 5636 1104 L X5636 1104 mt 5660 1221 L Xc37 X25 13 128 -61 5502 1417 3 MP XPP X0 sg X5502 1417 mt 5630 1356 L X5630 1356 mt 5655 1369 L Xc37 X128 -61 25 13 5502 1417 3 MP XPP X0 sg X5502 1417 mt 5527 1430 L X5527 1430 mt 5655 1369 L Xc45 X25 17 128 -58 5497 1564 3 MP XPP X0 sg X5497 1564 mt 5625 1506 L X5625 1506 mt 5650 1523 L Xc45 X128 -59 25 18 5497 1564 3 MP XPP X0 sg X5497 1564 mt 5522 1582 L X5522 1582 mt 5650 1523 L X/c46 { 1.000000 0.312500 0.000000 sr} bdef Xc46 X25 66 128 -60 5488 745 3 MP XPP X0 sg X5488 745 mt 5616 685 L X5616 685 mt 5641 751 L Xc46 X128 -60 25 66 5488 745 3 MP XPP X0 sg X5488 745 mt 5513 811 L X5513 811 mt 5641 751 L Xc21 X128 -58 25 38 5483 1124 3 MP XPP X0 sg X5483 1124 mt 5508 1162 L X5508 1162 mt 5636 1104 L Xc21 X25 38 128 -58 5483 1124 3 MP XPP X0 sg X5483 1124 mt 5611 1066 L X5611 1066 mt 5636 1104 L Xc37 X24 15 128 -60 5478 1401 3 MP XPP X0 sg X5478 1401 mt 5606 1341 L X5606 1341 mt 5630 1356 L Xc37 X128 -61 24 16 5478 1401 3 MP XPP X0 sg X5478 1401 mt 5502 1417 L X5502 1417 mt 5630 1356 L X/c47 { 0.000000 0.250000 1.000000 sr} bdef Xc47 X128 -58 24 20 5473 1544 3 MP XPP X0 sg X5473 1544 mt 5497 1564 L X5497 1564 mt 5625 1506 L Xc47 X24 20 128 -58 5473 1544 3 MP XPP X0 sg X5473 1544 mt 5601 1486 L X5601 1486 mt 5625 1506 L X/c48 { 1.000000 0.062500 0.000000 sr} bdef Xc48 X128 -60 24 58 5464 687 3 MP XPP X0 sg X5464 687 mt 5488 745 L X5488 745 mt 5616 685 L Xc48 X24 58 128 -60 5464 687 3 MP XPP X0 sg X5464 687 mt 5592 627 L X5592 627 mt 5616 685 L Xc34 X128 -58 24 37 5459 1087 3 MP XPP X0 sg X5459 1087 mt 5483 1124 L X5483 1124 mt 5611 1066 L Xc34 X25 37 127 -58 5459 1087 3 MP XPP X0 sg X5459 1087 mt 5586 1029 L X5586 1029 mt 5611 1066 L Xc33 X128 -60 25 25 5453 1376 3 MP XPP X0 sg X5453 1376 mt 5478 1401 L X5478 1401 mt 5606 1341 L Xc33 X25 25 128 -60 5453 1376 3 MP XPP X0 sg X5453 1376 mt 5581 1316 L X5581 1316 mt 5606 1341 L Xc43 X128 -58 25 24 5448 1520 3 MP XPP X0 sg X5448 1520 mt 5473 1544 L X5473 1544 mt 5601 1486 L Xc43 X25 24 128 -58 5448 1520 3 MP XPP X0 sg X5448 1520 mt 5576 1462 L X5576 1462 mt 5601 1486 L X/c49 { 0.937500 0.000000 0.000000 sr} bdef Xc49 X25 46 128 -60 5439 641 3 MP XPP X0 sg X5439 641 mt 5567 581 L X5567 581 mt 5592 627 L Xc49 X128 -60 25 46 5439 641 3 MP XPP X0 sg X5439 641 mt 5464 687 L X5464 687 mt 5592 627 L Xc9 X24 91 128 -58 5434 996 3 MP XPP X0 sg X5434 996 mt 5562 938 L X5562 938 mt 5586 1029 L Xc9 X127 -58 25 91 5434 996 3 MP XPP X0 sg X5434 996 mt 5459 1087 L X5459 1087 mt 5586 1029 L Xc33 X24 14 128 -61 5429 1363 3 MP XPP X0 sg X5429 1363 mt 5557 1302 L X5557 1302 mt 5581 1316 L Xc33 X128 -60 24 13 5429 1363 3 MP XPP X0 sg X5429 1363 mt 5453 1376 L X5453 1376 mt 5581 1316 L Xc44 X128 -58 24 20 5424 1500 3 MP XPP X0 sg X5424 1500 mt 5448 1520 L X5448 1520 mt 5576 1462 L Xc44 X25 20 127 -58 5424 1500 3 MP XPP X0 sg X5424 1500 mt 5551 1442 L X5551 1442 mt 5576 1462 L X/c50 { 0.812500 0.000000 0.000000 sr} bdef Xc50 X24 40 128 -60 5415 601 3 MP XPP X0 sg X5415 601 mt 5543 541 L X5543 541 mt 5567 581 L Xc50 X128 -60 24 40 5415 601 3 MP XPP X0 sg X5415 601 mt 5439 641 L X5439 641 mt 5567 581 L Xc17 X25 57 127 -58 5410 939 3 MP XPP X0 sg X5410 939 mt 5537 881 L X5537 881 mt 5562 938 L Xc17 X128 -58 24 57 5410 939 3 MP XPP X0 sg X5410 939 mt 5434 996 L X5434 996 mt 5562 938 L Xc38 X128 -61 25 24 5404 1339 3 MP XPP X0 sg X5404 1339 mt 5429 1363 L X5429 1363 mt 5557 1302 L Xc38 X25 23 128 -60 5404 1339 3 MP XPP X0 sg X5404 1339 mt 5532 1279 L X5532 1279 mt 5557 1302 L X Xgr Xgs 3994 388 2261 1783 MR c np Xc44 X24 12 128 -58 5399 1488 3 MP XPP X0 sg X5399 1488 mt 5527 1430 L X5527 1430 mt 5551 1442 L Xc44 X127 -58 25 12 5399 1488 3 MP XPP X0 sg X5399 1488 mt 5424 1500 L X5424 1500 mt 5551 1442 L X/c51 { 0.000000 0.062500 1.000000 sr} bdef Xc51 X24 22 128 -60 5394 1642 3 MP XPP X0 sg X5394 1642 mt 5522 1582 L X5522 1582 mt 5546 1604 L Xc51 X128 -60 24 22 5394 1642 3 MP XPP X0 sg X5394 1642 mt 5418 1664 L X5418 1664 mt 5546 1604 L X/c52 { 0.562500 0.000000 0.000000 sr} bdef Xc52 X25 38 128 -44 5390 547 3 MP XPP X0 sg X5390 547 mt 5518 503 L X5518 503 mt 5543 541 L Xc52 X128 -60 25 54 5390 547 3 MP XPP X0 sg X5390 547 mt 5415 601 L X5415 601 mt 5543 541 L Xc31 X24 70 128 -59 5385 870 3 MP XPP X0 sg X5385 870 mt 5513 811 L X5513 811 mt 5537 881 L Xc31 X127 -58 25 69 5385 870 3 MP XPP X0 sg X5385 870 mt 5410 939 L X5410 939 mt 5537 881 L Xc14 X24 117 128 -61 5380 1223 3 MP XPP X0 sg X5380 1223 mt 5508 1162 L X5508 1162 mt 5532 1279 L Xc14 X128 -60 24 116 5380 1223 3 MP XPP X0 sg X5380 1223 mt 5404 1339 L X5404 1339 mt 5532 1279 L Xc44 X25 13 127 -58 5375 1475 3 MP XPP X0 sg X5375 1475 mt 5502 1417 L X5502 1417 mt 5527 1430 L Xc44 X128 -58 24 13 5375 1475 3 MP XPP X0 sg X5375 1475 mt 5399 1488 L X5399 1488 mt 5527 1430 L Xc51 X25 18 128 -61 5369 1625 3 MP XPP X0 sg X5369 1625 mt 5497 1564 L X5497 1564 mt 5522 1582 L Xc51 X128 -60 25 17 5369 1625 3 MP XPP X0 sg X5369 1625 mt 5394 1642 L X5394 1642 mt 5522 1582 L Xc52 X24 14 128 -35 5366 524 3 MP XPP X0 sg X5366 524 mt 5494 489 L X5494 489 mt 5518 503 L Xc52 X128 -44 24 23 5366 524 3 MP XPP X0 sg X5366 524 mt 5390 547 L X5390 547 mt 5518 503 L Xc20 X128 -59 25 67 5360 803 3 MP XPP X0 sg X5360 803 mt 5385 870 L X5385 870 mt 5513 811 L Xc20 X25 66 128 -58 5360 803 3 MP XPP X0 sg X5360 803 mt 5488 745 L X5488 745 mt 5513 811 L Xc8 X128 -61 25 38 5355 1185 3 MP XPP X0 sg X5355 1185 mt 5380 1223 L X5380 1223 mt 5508 1162 L Xc8 X25 38 128 -61 5355 1185 3 MP XPP X0 sg X5355 1185 mt 5483 1124 L X5483 1124 mt 5508 1162 L Xc44 X127 -58 25 16 5350 1459 3 MP XPP X0 sg X5350 1459 mt 5375 1475 L X5375 1475 mt 5502 1417 L Xc44 X24 16 128 -58 5350 1459 3 MP XPP X0 sg X5350 1459 mt 5478 1401 L X5478 1401 mt 5502 1417 L X/c53 { 0.000000 0.125000 1.000000 sr} bdef Xc53 X24 20 128 -60 5345 1604 3 MP XPP X0 sg X5345 1604 mt 5473 1544 L X5473 1544 mt 5497 1564 L Xc53 X128 -61 24 21 5345 1604 3 MP XPP X0 sg X5345 1604 mt 5369 1625 L X5369 1625 mt 5497 1564 L Xc52 X25 11 128 -35 5341 513 3 MP XPP X0 sg X5341 513 mt 5469 478 L X5469 478 mt 5494 489 L Xc52 X128 -35 25 11 5341 513 3 MP XPP X0 sg X5341 513 mt 5366 524 L X5366 524 mt 5494 489 L X/c54 { 1.000000 0.187500 0.000000 sr} bdef Xc54 X128 -58 24 58 5336 745 3 MP XPP X0 sg X5336 745 mt 5360 803 L X5360 803 mt 5488 745 L Xc54 X24 58 128 -58 5336 745 3 MP XPP X0 sg X5336 745 mt 5464 687 L X5464 687 mt 5488 745 L Xc21 X128 -61 24 38 5331 1147 3 MP XPP X0 sg X5331 1147 mt 5355 1185 L X5355 1185 mt 5483 1124 L Xc21 X24 37 128 -60 5331 1147 3 MP XPP X0 sg X5331 1147 mt 5459 1087 L X5459 1087 mt 5483 1124 L Xc40 X128 -58 25 25 5325 1434 3 MP XPP X0 sg X5325 1434 mt 5350 1459 L X5350 1459 mt 5478 1401 L Xc40 X25 25 128 -58 5325 1434 3 MP XPP X0 sg X5325 1434 mt 5453 1376 L X5453 1376 mt 5478 1401 L Xc45 X25 24 128 -61 5320 1581 3 MP XPP X0 sg X5320 1581 mt 5448 1520 L X5448 1520 mt 5473 1544 L Xc45 X128 -60 25 23 5320 1581 3 MP XPP X0 sg X5320 1581 mt 5345 1604 L X5345 1604 mt 5473 1544 L Xc52 X128 -35 24 11 5317 502 3 MP XPP X0 sg X5317 502 mt 5341 513 L X5341 513 mt 5469 478 L Xc52 X25 11 127 -35 5317 502 3 MP XPP X0 sg X5317 502 mt 5444 467 L X5444 467 mt 5469 478 L Xc48 X25 46 128 -58 5311 699 3 MP XPP X0 sg X5311 699 mt 5439 641 L X5439 641 mt 5464 687 L Xc48 X128 -58 25 46 5311 699 3 MP XPP X0 sg X5311 699 mt 5336 745 L X5336 745 mt 5464 687 L Xc19 X25 91 128 -61 5306 1057 3 MP XPP X0 sg X5306 1057 mt 5434 996 L X5434 996 mt 5459 1087 L Xc19 X128 -60 25 90 5306 1057 3 MP XPP X0 sg X5306 1057 mt 5331 1147 L X5331 1147 mt 5459 1087 L Xc40 X24 13 128 -58 5301 1421 3 MP XPP X0 sg X5301 1421 mt 5429 1363 L X5429 1363 mt 5453 1376 L Xc40 X128 -58 24 13 5301 1421 3 MP XPP X0 sg X5301 1421 mt 5325 1434 L X5325 1434 mt 5453 1376 L Xc47 X24 20 128 -60 5296 1560 3 MP XPP X0 sg X5296 1560 mt 5424 1500 L X5424 1500 mt 5448 1520 L Xc47 X128 -61 24 21 5296 1560 3 MP XPP X0 sg X5296 1560 mt 5320 1581 L X5320 1581 mt 5448 1520 L Xc52 X127 -35 25 12 5292 490 3 MP XPP X0 sg X5292 490 mt 5317 502 L X5317 502 mt 5444 467 L Xc52 X24 11 128 -34 5292 490 3 MP XPP X0 sg X5292 490 mt 5420 456 L X5420 456 mt 5444 467 L X/c55 { 0.875000 0.000000 0.000000 sr} bdef Xc55 X24 40 128 -58 5287 659 3 MP XPP X0 sg X5287 659 mt 5415 601 L X5415 601 mt 5439 641 L Xc55 X128 -58 24 40 5287 659 3 MP XPP X0 sg X5287 659 mt 5311 699 L X5311 699 mt 5439 641 L Xc29 X128 -61 24 58 5282 999 3 MP XPP X0 sg X5282 999 mt 5306 1057 L X5306 1057 mt 5434 996 L Xc29 X24 57 128 -60 5282 999 3 MP XPP X0 sg X5282 999 mt 5410 939 L X5410 939 mt 5434 996 L Xc37 X128 -58 25 23 5276 1398 3 MP XPP X0 sg X5276 1398 mt 5301 1421 L X5301 1421 mt 5429 1363 L Xc37 X25 24 128 -59 5276 1398 3 MP XPP X0 sg X5276 1398 mt 5404 1339 L X5404 1339 mt 5429 1363 L Xc47 X128 -60 25 12 5271 1548 3 MP XPP X0 sg X5271 1548 mt 5296 1560 L X5296 1560 mt 5424 1500 L Xc47 X25 12 128 -60 5271 1548 3 MP XPP X0 sg X5271 1548 mt 5399 1488 L X5399 1488 mt 5424 1500 L Xc52 X25 12 127 -35 5268 479 3 MP XPP X0 sg X5268 479 mt 5395 444 L X5395 444 mt 5420 456 L Xc52 X128 -34 24 11 5268 479 3 MP XPP X0 sg X5268 479 mt 5292 490 L X5292 490 mt 5420 456 L X/c56 { 0.000000 0.000000 0.937500 sr} bdef Xc56 X24 22 128 -58 5266 1700 3 MP XPP X0 sg X5266 1700 mt 5394 1642 L X5394 1642 mt 5418 1664 L Xc56 X128 -58 24 22 5266 1700 3 MP XPP X0 sg X5266 1700 mt 5290 1722 L X5290 1722 mt 5418 1664 L X/c57 { 0.687500 0.000000 0.000000 sr} bdef Xc57 X128 -58 25 57 5262 602 3 MP XPP X0 sg X5262 602 mt 5287 659 L X5287 659 mt 5415 601 L Xc57 X25 54 128 -55 5262 602 3 MP XPP X0 sg X5262 602 mt 5390 547 L X5390 547 mt 5415 601 L Xc35 X128 -60 25 69 5257 930 3 MP XPP X0 sg X5257 930 mt 5282 999 L X5282 999 mt 5410 939 L Xc35 X25 69 128 -60 5257 930 3 MP XPP X0 sg X5257 930 mt 5385 870 L X5385 870 mt 5410 939 L Xc27 X128 -59 24 117 5252 1281 3 MP XPP X0 sg X5252 1281 mt 5276 1398 L X5276 1398 mt 5404 1339 L Xc27 X24 116 128 -58 5252 1281 3 MP XPP X0 sg X5252 1281 mt 5380 1223 L X5380 1223 mt 5404 1339 L Xc47 X24 13 128 -60 5247 1535 3 MP XPP X0 sg X5247 1535 mt 5375 1475 L X5375 1475 mt 5399 1488 L Xc47 X128 -60 24 13 5247 1535 3 MP XPP X0 sg X5247 1535 mt 5271 1548 L X5271 1548 mt 5399 1488 L Xc52 X24 11 128 -35 5243 468 3 MP XPP X0 sg X5243 468 mt 5371 433 L X5371 433 mt 5395 444 L Xc52 X127 -35 25 11 5243 468 3 MP XPP X0 sg X5243 468 mt 5268 479 L X5268 479 mt 5395 444 L Xc56 X128 -58 25 17 5241 1683 3 MP XPP X0 sg X5241 1683 mt 5266 1700 L X5266 1700 mt 5394 1642 L Xc56 X25 17 128 -58 5241 1683 3 MP XPP X0 sg X5241 1683 mt 5369 1625 L X5369 1625 mt 5394 1642 L Xc52 X24 23 128 -35 5238 559 3 MP XPP X0 sg X5238 559 mt 5366 524 L X5366 524 mt 5390 547 L Xc52 X128 -55 24 43 5238 559 3 MP XPP X0 sg X5238 559 mt 5262 602 L X5262 602 mt 5390 547 L Xc32 X128 -60 24 66 5233 864 3 MP XPP X0 sg X5233 864 mt 5257 930 L X5257 930 mt 5385 870 L Xc32 X25 67 127 -61 5233 864 3 MP XPP X0 sg X5233 864 mt 5360 803 L X5360 803 mt 5385 870 L Xc14 X128 -58 25 38 5227 1243 3 MP XPP X0 sg X5227 1243 mt 5252 1281 L X5252 1281 mt 5380 1223 L Xc14 X25 38 128 -58 5227 1243 3 MP XPP X0 sg X5227 1243 mt 5355 1185 L X5355 1185 mt 5380 1223 L Xc47 X25 16 128 -60 5222 1519 3 MP XPP X0 sg X5222 1519 mt 5350 1459 L X5350 1459 mt 5375 1475 L Xc47 X128 -60 25 16 5222 1519 3 MP XPP X0 sg X5222 1519 mt 5247 1535 L X5247 1535 mt 5375 1475 L Xc52 X128 -35 25 12 5218 456 3 MP XPP X0 sg X5218 456 mt 5243 468 L X5243 468 mt 5371 433 L Xc52 X25 11 128 -34 5218 456 3 MP XPP X0 sg X5218 456 mt 5346 422 L X5346 422 mt 5371 433 L X/c58 { 0.000000 0.000000 1.000000 sr} bdef Xc58 X128 -58 24 20 5217 1663 3 MP XPP X0 sg X5217 1663 mt 5241 1683 L X5241 1683 mt 5369 1625 L Xc58 X24 21 128 -59 5217 1663 3 MP XPP X0 sg X5217 1663 mt 5345 1604 L X5345 1604 mt 5369 1625 L Xc52 X25 11 128 -34 5213 547 3 MP XPP X0 sg X5213 547 mt 5341 513 L X5341 513 mt 5366 524 L Xc52 X128 -35 25 12 5213 547 3 MP XPP X0 sg X5213 547 mt 5238 559 L X5238 559 mt 5366 524 L Xc46 X24 58 128 -60 5208 805 3 MP XPP X0 sg X5208 805 mt 5336 745 L X5336 745 mt 5360 803 L Xc46 X127 -61 25 59 5208 805 3 MP XPP X0 sg X5208 805 mt 5233 864 L X5233 864 mt 5360 803 L Xc8 X24 38 128 -58 5203 1205 3 MP XPP X0 sg X5203 1205 mt 5331 1147 L X5331 1147 mt 5355 1185 L Xc8 X128 -58 24 38 5203 1205 3 MP XPP X0 sg X5203 1205 mt 5227 1243 L X5227 1243 mt 5355 1185 L Xc43 X25 25 127 -61 5198 1495 3 MP XPP X0 sg X5198 1495 mt 5325 1434 L X5325 1434 mt 5350 1459 L Xc43 X128 -60 24 24 5198 1495 3 MP XPP X0 sg X5198 1495 mt 5222 1519 L X5222 1519 mt 5350 1459 L Xc52 X24 11 128 -34 5194 445 3 MP XPP X0 sg X5194 445 mt 5322 411 L X5322 411 mt 5346 422 L Xc52 X128 -34 24 11 5194 445 3 MP XPP X0 sg X5194 445 mt 5218 456 L X5218 456 mt 5346 422 L Xc51 X128 -59 25 24 5192 1639 3 MP XPP X0 sg X5192 1639 mt 5217 1663 L X5217 1663 mt 5345 1604 L Xc51 X25 23 128 -58 5192 1639 3 MP XPP X0 sg X5192 1639 mt 5320 1581 L X5320 1581 mt 5345 1604 L Xc52 X24 11 128 -34 5189 536 3 MP XPP X0 sg X5189 536 mt 5317 502 L X5317 502 mt 5341 513 L Xc52 X128 -34 24 11 5189 536 3 MP XPP X0 sg X5189 536 mt 5213 547 L X5213 547 mt 5341 513 L Xc54 X128 -60 24 46 5184 759 3 MP XPP X0 sg X5184 759 mt 5208 805 L X5208 805 mt 5336 745 L Xc54 X25 46 127 -60 5184 759 3 MP XPP X0 sg X5184 759 mt 5311 699 L X5311 699 mt 5336 745 L Xc22 X128 -58 25 90 5178 1115 3 MP XPP X0 sg X5178 1115 mt 5203 1205 L X5203 1205 mt 5331 1147 L Xc22 X25 90 128 -58 5178 1115 3 MP XPP X0 sg X5178 1115 mt 5306 1057 L X5306 1057 mt 5331 1147 L Xc43 X24 13 128 -60 5173 1481 3 MP XPP X0 sg X5173 1481 mt 5301 1421 L X5301 1421 mt 5325 1434 L Xc43 X127 -61 25 14 5173 1481 3 MP XPP X0 sg X5173 1481 mt 5198 1495 L X5198 1495 mt 5325 1434 L Xc52 X128 -34 25 11 5169 434 3 MP XPP X0 sg X5169 434 mt 5194 445 L X5194 445 mt 5322 411 L Xc52 X25 12 128 -35 5169 434 3 MP XPP X0 sg X5169 434 mt 5297 399 L X5297 399 mt 5322 411 L Xc53 X128 -58 24 21 5168 1618 3 MP XPP X0 sg X5168 1618 mt 5192 1639 L X5192 1639 mt 5320 1581 L Xc53 X24 21 128 -58 5168 1618 3 MP XPP X0 sg X5168 1618 mt 5296 1560 L X5296 1560 mt 5320 1581 L Xc52 X128 -34 25 11 5164 525 3 MP XPP X0 sg X5164 525 mt 5189 536 L X5189 536 mt 5317 502 L Xc52 X25 12 128 -35 5164 525 3 MP XPP X0 sg X5164 525 mt 5292 490 L X5292 490 mt 5317 502 L X/c59 { 1.000000 0.000000 0.000000 sr} bdef Xc59 X24 40 128 -60 5159 719 3 MP XPP X0 sg X5159 719 mt 5287 659 L X5287 659 mt 5311 699 L Xc59 X127 -60 25 40 5159 719 3 MP XPP X0 sg X5159 719 mt 5184 759 L X5184 759 mt 5311 699 L Xc9 X128 -58 24 58 5154 1057 3 MP XPP X0 sg X5154 1057 mt 5178 1115 L X5178 1115 mt 5306 1057 L Xc9 X24 58 128 -58 5154 1057 3 MP XPP X0 sg X5154 1057 mt 5282 999 L X5282 999 mt 5306 1057 L Xc44 X128 -60 24 23 5149 1458 3 MP XPP X0 sg X5149 1458 mt 5173 1481 L X5173 1481 mt 5301 1421 L Xc44 X25 23 127 -60 5149 1458 3 MP XPP X0 sg X5149 1458 mt 5276 1398 L X5276 1398 mt 5301 1421 L Xc53 X128 -58 25 12 5143 1606 3 MP XPP X0 sg X5143 1606 mt 5168 1618 L X5168 1618 mt 5296 1560 L Xc53 X25 12 128 -58 5143 1606 3 MP XPP X0 sg X5143 1606 mt 5271 1548 L X5271 1548 mt 5296 1560 L Xc52 X24 11 128 -35 5140 514 3 MP XPP X0 sg X5140 514 mt 5268 479 L X5268 479 mt 5292 490 L Xc52 X128 -35 24 11 5140 514 3 MP XPP X0 sg X5140 514 mt 5164 525 L X5164 525 mt 5292 490 L X/c60 { 0.000000 0.000000 0.812500 sr} bdef Xc60 X127 -60 25 22 5138 1760 3 MP XPP X0 sg X5138 1760 mt 5163 1782 L X5163 1782 mt 5290 1722 L Xc60 X24 22 128 -60 5138 1760 3 MP XPP X0 sg X5138 1760 mt 5266 1700 L X5266 1700 mt 5290 1722 L Xc50 X25 57 128 -60 5134 662 3 MP XPP X0 sg X5134 662 mt 5262 602 L X5262 602 mt 5287 659 L Xc50 X128 -60 25 57 5134 662 3 MP XPP X0 sg X5134 662 mt 5159 719 L X5159 719 mt 5287 659 L Xc17 X25 69 128 -58 5129 988 3 MP XPP X0 sg X5129 988 mt 5257 930 L X5257 930 mt 5282 999 L Xc17 X128 -58 25 69 5129 988 3 MP XPP X0 sg X5129 988 mt 5154 1057 L X5154 1057 mt 5282 999 L Xc42 X127 -60 25 117 5124 1341 3 MP XPP X0 sg X5124 1341 mt 5149 1458 L X5149 1458 mt 5276 1398 L Xc42 X24 117 128 -60 5124 1341 3 MP XPP X0 sg X5124 1341 mt 5252 1281 L X5252 1281 mt 5276 1398 L Xc53 X24 13 128 -58 5119 1593 3 MP XPP X0 sg X5119 1593 mt 5247 1535 L X5247 1535 mt 5271 1548 L Xc53 X128 -58 24 13 5119 1593 3 MP XPP X0 sg X5119 1593 mt 5143 1606 L X5143 1606 mt 5271 1548 L Xc52 X128 -35 25 12 5115 502 3 MP XPP X0 sg X5115 502 mt 5140 514 L X5140 514 mt 5268 479 L Xc52 X25 11 128 -34 5115 502 3 MP XPP X0 sg X5115 502 mt 5243 468 L X5243 468 mt 5268 479 L X/c61 { 0.000000 0.000000 0.875000 sr} bdef Xc61 X128 -60 24 17 5114 1743 3 MP XPP X0 sg X5114 1743 mt 5138 1760 L X5138 1760 mt 5266 1700 L Xc61 X25 17 127 -60 5114 1743 3 MP XPP X0 sg X5114 1743 mt 5241 1683 L X5241 1683 mt 5266 1700 L Xc52 X128 -60 24 63 5110 599 3 MP XPP X0 sg X5110 599 mt 5134 662 L X5134 662 mt 5262 602 L Xc52 X24 43 128 -40 5110 599 3 MP XPP X0 sg X5110 599 mt 5238 559 L X5238 559 mt 5262 602 L Xc31 X24 66 128 -58 5105 922 3 MP XPP X0 sg X5105 922 mt 5233 864 L X5233 864 mt 5257 930 L Xc31 X128 -58 24 66 5105 922 3 MP XPP X0 sg X5105 922 mt 5129 988 L X5129 988 mt 5257 930 L Xc27 X128 -60 25 38 5099 1303 3 MP XPP X0 sg X5099 1303 mt 5124 1341 L X5124 1341 mt 5252 1281 L Xc27 X25 38 128 -60 5099 1303 3 MP XPP X0 sg X5099 1303 mt 5227 1243 L X5227 1243 mt 5252 1281 L Xc53 X25 16 128 -59 5094 1578 3 MP XPP X0 sg X5094 1578 mt 5222 1519 L X5222 1519 mt 5247 1535 L Xc53 X128 -58 25 15 5094 1578 3 MP XPP X0 sg X5094 1578 mt 5119 1593 L X5119 1593 mt 5247 1535 L Xc52 X25 12 127 -35 5091 491 3 MP XPP X0 sg X5091 491 mt 5218 456 L X5218 456 mt 5243 468 L Xc52 X128 -34 24 11 5091 491 3 MP XPP X0 sg X5091 491 mt 5115 502 L X5115 502 mt 5243 468 L Xc61 X127 -60 25 20 5089 1723 3 MP XPP X0 sg X5089 1723 mt 5114 1743 L X5114 1743 mt 5241 1683 L Xc61 X24 20 128 -60 5089 1723 3 MP XPP X0 sg X5089 1723 mt 5217 1663 L X5217 1663 mt 5241 1683 L Xc52 X25 12 128 -36 5085 583 3 MP XPP X0 sg X5085 583 mt 5213 547 L X5213 547 mt 5238 559 L Xc52 X128 -40 25 16 5085 583 3 MP XPP X0 sg X5085 583 mt 5110 599 L X5110 599 mt 5238 559 L Xc20 X25 59 128 -58 5080 863 3 MP XPP X0 sg X5080 863 mt 5208 805 L X5208 805 mt 5233 864 L Xc20 X128 -58 25 59 5080 863 3 MP XPP X0 sg X5080 863 mt 5105 922 L X5105 922 mt 5233 864 L Xc14 X128 -60 24 37 5075 1266 3 MP XPP X0 sg X5075 1266 mt 5099 1303 L X5099 1303 mt 5227 1243 L Xc14 X24 38 128 -61 5075 1266 3 MP XPP X0 sg X5075 1266 mt 5203 1205 L X5203 1205 mt 5227 1243 L Xc45 X24 24 128 -58 5070 1553 3 MP XPP X0 sg X5070 1553 mt 5198 1495 L X5198 1495 mt 5222 1519 L Xc45 X128 -59 24 25 5070 1553 3 MP XPP X0 sg X5070 1553 mt 5094 1578 L X5094 1578 mt 5222 1519 L Xc52 X24 11 128 -35 5066 480 3 MP XPP X0 sg X5066 480 mt 5194 445 L X5194 445 mt 5218 456 L Xc52 X127 -35 25 11 5066 480 3 MP XPP X0 sg X5066 480 mt 5091 491 L X5091 491 mt 5218 456 L Xc56 X128 -60 25 24 5064 1699 3 MP XPP X0 sg X5064 1699 mt 5089 1723 L X5089 1723 mt 5217 1663 L Xc56 X25 24 128 -60 5064 1699 3 MP XPP X0 sg X5064 1699 mt 5192 1639 L X5192 1639 mt 5217 1663 L Xc52 X24 11 128 -35 5061 571 3 MP XPP X0 sg X5061 571 mt 5189 536 L X5189 536 mt 5213 547 L Xc52 X128 -36 24 12 5061 571 3 MP XPP X0 sg X5061 571 mt 5085 583 L X5085 583 mt 5213 547 L X/c62 { 1.000000 0.250000 0.000000 sr} bdef Xc62 X128 -58 24 46 5056 817 3 MP XPP X0 sg X5056 817 mt 5080 863 L X5080 863 mt 5208 805 L Xc62 X24 46 128 -58 5056 817 3 MP XPP X0 sg X5056 817 mt 5184 759 L X5184 759 mt 5208 805 L Xc34 X25 90 128 -60 5050 1175 3 MP XPP X0 sg X5050 1175 mt 5178 1115 L X5178 1115 mt 5203 1205 L Xc34 X128 -61 25 91 5050 1175 3 MP XPP X0 sg X5050 1175 mt 5075 1266 L X5075 1266 mt 5203 1205 L Xc47 X25 14 128 -58 5045 1539 3 MP XPP X0 sg X5045 1539 mt 5173 1481 L X5173 1481 mt 5198 1495 L Xc47 X128 -58 25 14 5045 1539 3 MP XPP X0 sg X5045 1539 mt 5070 1553 L X5070 1553 mt 5198 1495 L Xc52 X128 -35 24 11 5042 469 3 MP XPP X0 sg X5042 469 mt 5066 480 L X5066 480 mt 5194 445 L Xc52 X25 11 127 -35 5042 469 3 MP XPP X0 sg X5042 469 mt 5169 434 L X5169 434 mt 5194 445 L Xc58 X24 21 128 -61 5040 1679 3 MP XPP X0 sg X5040 1679 mt 5168 1618 L X5168 1618 mt 5192 1639 L Xc58 X128 -60 24 20 5040 1679 3 MP XPP X0 sg X5040 1679 mt 5064 1699 L X5064 1699 mt 5192 1639 L Xc52 X25 11 128 -35 5036 560 3 MP XPP X0 sg X5036 560 mt 5164 525 L X5164 525 mt 5189 536 L Xc52 X128 -35 25 11 5036 560 3 MP XPP X0 sg X5036 560 mt 5061 571 L X5061 571 mt 5189 536 L X/c63 { 1.000000 0.125000 0.000000 sr} bdef Xc63 X128 -58 25 40 5031 777 3 MP XPP X0 sg X5031 777 mt 5056 817 L X5056 817 mt 5184 759 L Xc63 X25 40 128 -58 5031 777 3 MP XPP X0 sg X5031 777 mt 5159 719 L X5159 719 mt 5184 759 L Xc19 X24 58 128 -61 5026 1118 3 MP XPP X0 sg X5026 1118 mt 5154 1057 L X5154 1057 mt 5178 1115 L Xc19 X128 -60 24 57 5026 1118 3 MP XPP X0 sg X5026 1118 mt 5050 1175 L X5050 1175 mt 5178 1115 L Xc47 X24 23 128 -58 5021 1516 3 MP XPP X0 sg X5021 1516 mt 5149 1458 L X5149 1458 mt 5173 1481 L Xc47 X128 -58 24 23 5021 1516 3 MP XPP X0 sg X5021 1516 mt 5045 1539 L X5045 1539 mt 5173 1481 L Xc58 X128 -61 25 12 5015 1667 3 MP XPP X0 sg X5015 1667 mt 5040 1679 L X5040 1679 mt 5168 1618 L Xc58 X25 12 128 -61 5015 1667 3 MP XPP X0 sg X5015 1667 mt 5143 1606 L X5143 1606 mt 5168 1618 L Xc52 X128 -35 24 12 5012 548 3 MP XPP X0 sg X5012 548 mt 5036 560 L X5036 560 mt 5164 525 L Xc52 X24 11 128 -34 5012 548 3 MP XPP X0 sg X5012 548 mt 5140 514 L X5140 514 mt 5164 525 L X/c64 { 0.000000 0.000000 0.687500 sr} bdef Xc64 X128 -58 25 22 5010 1818 3 MP XPP X0 sg X5010 1818 mt 5035 1840 L X5035 1840 mt 5163 1782 L Xc64 X25 22 128 -58 5010 1818 3 MP XPP X0 sg X5010 1818 mt 5138 1760 L X5138 1760 mt 5163 1782 L Xc49 X128 -58 24 57 5007 720 3 MP XPP X0 sg X5007 720 mt 5031 777 L X5031 777 mt 5159 719 L Xc49 X25 57 127 -58 5007 720 3 MP XPP X0 sg X5007 720 mt 5134 662 L X5134 662 mt 5159 719 L Xc29 X128 -61 25 70 5001 1048 3 MP XPP X0 sg X5001 1048 mt 5026 1118 L X5026 1118 mt 5154 1057 L Xc29 X25 69 128 -60 5001 1048 3 MP XPP X0 sg X5001 1048 mt 5129 988 L X5129 988 mt 5154 1057 L Xc41 X128 -58 25 117 4996 1399 3 MP XPP X0 sg X4996 1399 mt 5021 1516 L X5021 1516 mt 5149 1458 L Xc41 X25 117 128 -58 4996 1399 3 MP XPP X0 sg X4996 1399 mt 5124 1341 L X5124 1341 mt 5149 1458 L Xc58 X24 13 128 -61 4991 1654 3 MP XPP X0 sg X4991 1654 mt 5119 1593 L X5119 1593 mt 5143 1606 L Xc58 X128 -61 24 13 4991 1654 3 MP XPP X0 sg X4991 1654 mt 5015 1667 L X5015 1667 mt 5143 1606 L Xc52 X128 -34 25 11 4987 537 3 MP XPP X0 sg X4987 537 mt 5012 548 L X5012 548 mt 5140 514 L Xc52 X25 12 128 -35 4987 537 3 MP XPP X0 sg X4987 537 mt 5115 502 L X5115 502 mt 5140 514 L X/c65 { 0.000000 0.000000 0.750000 sr} bdef Xc65 X24 17 128 -58 4986 1801 3 MP XPP X0 sg X4986 1801 mt 5114 1743 L X5114 1743 mt 5138 1760 L Xc65 X128 -58 24 17 4986 1801 3 MP XPP X0 sg X4986 1801 mt 5010 1818 L X5010 1818 mt 5138 1760 L X/c66 { 0.625000 0.000000 0.000000 sr} bdef Xc66 X127 -58 25 72 4982 648 3 MP XPP X0 sg X4982 648 mt 5007 720 L X5007 720 mt 5134 662 L Xc66 X24 63 128 -49 4982 648 3 MP XPP X0 sg X4982 648 mt 5110 599 L X5110 599 mt 5134 662 L Xc35 X24 66 128 -60 4977 982 3 MP XPP X0 sg X4977 982 mt 5105 922 L X5105 922 mt 5129 988 L Xc35 X128 -60 24 66 4977 982 3 MP XPP X0 sg X4977 982 mt 5001 1048 L X5001 1048 mt 5129 988 L X/c67 { 0.000000 0.937500 1.000000 sr} bdef Xc67 X128 -58 24 38 4972 1361 3 MP XPP X0 sg X4972 1361 mt 4996 1399 L X4996 1399 mt 5124 1341 L Xc67 X25 38 127 -58 4972 1361 3 MP XPP X0 sg X4972 1361 mt 5099 1303 L X5099 1303 mt 5124 1341 L X Xgr X4420 293 mt X(Tikh filter factors, log scale) s Xgs 3994 388 2261 1783 MR c np Xc58 X25 15 128 -60 4966 1638 3 MP XPP X0 sg X4966 1638 mt 5094 1578 L X5094 1578 mt 5119 1593 L Xc58 X128 -61 25 16 4966 1638 3 MP XPP X0 sg X4966 1638 mt 4991 1654 L X4991 1654 mt 5119 1593 L Xc52 X24 11 128 -35 4963 526 3 MP XPP X0 sg X4963 526 mt 5091 491 L X5091 491 mt 5115 502 L Xc52 X128 -35 24 11 4963 526 3 MP XPP X0 sg X4963 526 mt 4987 537 L X4987 537 mt 5115 502 L Xc65 X25 20 128 -58 4961 1781 3 MP XPP X0 sg X4961 1781 mt 5089 1723 L X5089 1723 mt 5114 1743 L Xc65 X128 -58 25 20 4961 1781 3 MP XPP X0 sg X4961 1781 mt 4986 1801 L X4986 1801 mt 5114 1743 L Xc52 X25 16 127 -38 4958 621 3 MP XPP X0 sg X4958 621 mt 5085 583 L X5085 583 mt 5110 599 L Xc52 X128 -49 24 27 4958 621 3 MP XPP X0 sg X4958 621 mt 4982 648 L X4982 648 mt 5110 599 L Xc32 X25 59 128 -61 4952 924 3 MP XPP X0 sg X4952 924 mt 5080 863 L X5080 863 mt 5105 922 L Xc32 X128 -60 25 58 4952 924 3 MP XPP X0 sg X4952 924 mt 4977 982 L X4977 982 mt 5105 922 L Xc28 X24 37 128 -58 4947 1324 3 MP XPP X0 sg X4947 1324 mt 5075 1266 L X5075 1266 mt 5099 1303 L Xc28 X127 -58 25 37 4947 1324 3 MP XPP X0 sg X4947 1324 mt 4972 1361 L X4972 1361 mt 5099 1303 L Xc51 X128 -60 24 25 4942 1613 3 MP XPP X0 sg X4942 1613 mt 4966 1638 L X4966 1638 mt 5094 1578 L Xc51 X24 25 128 -60 4942 1613 3 MP XPP X0 sg X4942 1613 mt 5070 1553 L X5070 1553 mt 5094 1578 L Xc52 X25 11 128 -34 4938 514 3 MP XPP X0 sg X4938 514 mt 5066 480 L X5066 480 mt 5091 491 L Xc52 X128 -35 25 12 4938 514 3 MP XPP X0 sg X4938 514 mt 4963 526 L X4963 526 mt 5091 491 L Xc60 X128 -58 24 24 4937 1757 3 MP XPP X0 sg X4937 1757 mt 4961 1781 L X4961 1781 mt 5089 1723 L Xc60 X25 24 127 -58 4937 1757 3 MP XPP X0 sg X4937 1757 mt 5064 1699 L X5064 1699 mt 5089 1723 L Xc52 X24 12 128 -35 4933 606 3 MP XPP X0 sg X4933 606 mt 5061 571 L X5061 571 mt 5085 583 L Xc52 X127 -38 25 15 4933 606 3 MP XPP X0 sg X4933 606 mt 4958 621 L X4958 621 mt 5085 583 L X/c68 { 1.000000 0.375000 0.000000 sr} bdef Xc68 X128 -61 24 46 4928 878 3 MP XPP X0 sg X4928 878 mt 4952 924 L X4952 924 mt 5080 863 L Xc68 X24 46 128 -61 4928 878 3 MP XPP X0 sg X4928 878 mt 5056 817 L X5056 817 mt 5080 863 L Xc13 X25 91 127 -58 4923 1233 3 MP XPP X0 sg X4923 1233 mt 5050 1175 L X5050 1175 mt 5075 1266 L Xc13 X128 -58 24 91 4923 1233 3 MP XPP X0 sg X4923 1233 mt 4947 1324 L X4947 1324 mt 5075 1266 L Xc53 X25 14 128 -61 4917 1600 3 MP XPP X0 sg X4917 1600 mt 5045 1539 L X5045 1539 mt 5070 1553 L Xc53 X128 -60 25 13 4917 1600 3 MP XPP X0 sg X4917 1600 mt 4942 1613 L X4942 1613 mt 5070 1553 L Xc52 X128 -34 24 11 4914 503 3 MP XPP X0 sg X4914 503 mt 4938 514 L X4938 514 mt 5066 480 L Xc52 X24 11 128 -34 4914 503 3 MP XPP X0 sg X4914 503 mt 5042 469 L X5042 469 mt 5066 480 L Xc61 X127 -58 25 20 4912 1737 3 MP XPP X0 sg X4912 1737 mt 4937 1757 L X4937 1757 mt 5064 1699 L Xc61 X24 20 128 -58 4912 1737 3 MP XPP X0 sg X4912 1737 mt 5040 1679 L X5040 1679 mt 5064 1699 L Xc52 X128 -35 25 12 4908 594 3 MP XPP X0 sg X4908 594 mt 4933 606 L X4933 606 mt 5061 571 L Xc52 X25 11 128 -34 4908 594 3 MP XPP X0 sg X4908 594 mt 5036 560 L X5036 560 mt 5061 571 L Xc62 X25 40 128 -61 4903 838 3 MP XPP X0 sg X4903 838 mt 5031 777 L X5031 777 mt 5056 817 L Xc62 X128 -61 25 40 4903 838 3 MP XPP X0 sg X4903 838 mt 4928 878 L X4928 878 mt 5056 817 L Xc22 X24 57 128 -58 4898 1176 3 MP XPP X0 sg X4898 1176 mt 5026 1118 L X5026 1118 mt 5050 1175 L Xc22 X127 -58 25 57 4898 1176 3 MP XPP X0 sg X4898 1176 mt 4923 1233 L X4923 1233 mt 5050 1175 L Xc53 X128 -61 24 24 4893 1576 3 MP XPP X0 sg X4893 1576 mt 4917 1600 L X4917 1600 mt 5045 1539 L Xc53 X24 23 128 -60 4893 1576 3 MP XPP X0 sg X4893 1576 mt 5021 1516 L X5021 1516 mt 5045 1539 L Xc61 X25 12 127 -58 4888 1725 3 MP XPP X0 sg X4888 1725 mt 5015 1667 L X5015 1667 mt 5040 1679 L Xc61 X128 -58 24 12 4888 1725 3 MP XPP X0 sg X4888 1725 mt 4912 1737 L X4912 1737 mt 5040 1679 L Xc52 X24 12 128 -35 4884 583 3 MP XPP X0 sg X4884 583 mt 5012 548 L X5012 548 mt 5036 560 L Xc52 X128 -34 24 11 4884 583 3 MP XPP X0 sg X4884 583 mt 4908 594 L X4908 594 mt 5036 560 L X/c69 { 0.000000 0.000000 0.562500 sr} bdef Xc69 X128 -61 25 22 4882 1879 3 MP XPP X0 sg X4882 1879 mt 4907 1901 L X4907 1901 mt 5035 1840 L Xc69 X25 22 128 -61 4882 1879 3 MP XPP X0 sg X4882 1879 mt 5010 1818 L X5010 1818 mt 5035 1840 L Xc48 X128 -61 24 58 4879 780 3 MP XPP X0 sg X4879 780 mt 4903 838 L X4903 838 mt 5031 777 L Xc48 X24 57 128 -60 4879 780 3 MP XPP X0 sg X4879 780 mt 5007 720 L X5007 720 mt 5031 777 L Xc9 X25 70 128 -58 4873 1106 3 MP XPP X0 sg X4873 1106 mt 5001 1048 L X5001 1048 mt 5026 1118 L Xc9 X128 -58 25 70 4873 1106 3 MP XPP X0 sg X4873 1106 mt 4898 1176 L X4898 1176 mt 5026 1118 L Xc39 X128 -60 25 116 4868 1460 3 MP XPP X0 sg X4868 1460 mt 4893 1576 L X4893 1576 mt 5021 1516 L Xc39 X25 117 128 -61 4868 1460 3 MP XPP X0 sg X4868 1460 mt 4996 1399 L X4996 1399 mt 5021 1516 L Xc61 X24 13 128 -58 4863 1712 3 MP XPP X0 sg X4863 1712 mt 4991 1654 L X4991 1654 mt 5015 1667 L Xc61 X127 -58 25 13 4863 1712 3 MP XPP X0 sg X4863 1712 mt 4888 1725 L X4888 1725 mt 5015 1667 L Xc52 X25 11 128 -35 4859 572 3 MP XPP X0 sg X4859 572 mt 4987 537 L X4987 537 mt 5012 548 L Xc52 X128 -35 25 11 4859 572 3 MP XPP X0 sg X4859 572 mt 4884 583 L X4884 583 mt 5012 548 L X/c70 { 0.000000 0.000000 0.625000 sr} bdef Xc70 X24 17 128 -60 4858 1861 3 MP XPP X0 sg X4858 1861 mt 4986 1801 L X4986 1801 mt 5010 1818 L Xc70 X128 -61 24 18 4858 1861 3 MP XPP X0 sg X4858 1861 mt 4882 1879 L X4882 1879 mt 5010 1818 L X/c71 { 0.750000 0.000000 0.000000 sr} bdef Xc71 X128 -60 25 73 4854 707 3 MP XPP X0 sg X4854 707 mt 4879 780 L X4879 780 mt 5007 720 L Xc71 X25 72 128 -59 4854 707 3 MP XPP X0 sg X4854 707 mt 4982 648 L X4982 648 mt 5007 720 L Xc30 X24 66 128 -58 4849 1040 3 MP XPP X0 sg X4849 1040 mt 4977 982 L X4977 982 mt 5001 1048 L Xc30 X128 -58 24 66 4849 1040 3 MP XPP X0 sg X4849 1040 mt 4873 1106 L X4873 1106 mt 5001 1048 L Xc10 X24 38 128 -61 4844 1422 3 MP XPP X0 sg X4844 1422 mt 4972 1361 L X4972 1361 mt 4996 1399 L Xc10 X128 -61 24 38 4844 1422 3 MP XPP X0 sg X4844 1422 mt 4868 1460 L X4868 1460 mt 4996 1399 L Xc56 X128 -58 25 16 4838 1696 3 MP XPP X0 sg X4838 1696 mt 4863 1712 L X4863 1712 mt 4991 1654 L Xc56 X25 16 128 -58 4838 1696 3 MP XPP X0 sg X4838 1696 mt 4966 1638 L X4966 1638 mt 4991 1654 L Xc52 X128 -35 24 12 4835 560 3 MP XPP X0 sg X4835 560 mt 4859 572 L X4859 572 mt 4987 537 L Xc52 X24 11 128 -34 4835 560 3 MP XPP X0 sg X4835 560 mt 4963 526 L X4963 526 mt 4987 537 L Xc70 X25 20 128 -60 4833 1841 3 MP XPP X0 sg X4833 1841 mt 4961 1781 L X4961 1781 mt 4986 1801 L Xc70 X128 -60 25 20 4833 1841 3 MP XPP X0 sg X4833 1841 mt 4858 1861 L X4858 1861 mt 4986 1801 L Xc66 X24 27 128 -50 4830 671 3 MP XPP X0 sg X4830 671 mt 4958 621 L X4958 621 mt 4982 648 L Xc66 X128 -59 24 36 4830 671 3 MP XPP X0 sg X4830 671 mt 4854 707 L X4854 707 mt 4982 648 L Xc31 X128 -58 25 58 4824 982 3 MP XPP X0 sg X4824 982 mt 4849 1040 L X4849 1040 mt 4977 982 L Xc31 X25 58 128 -58 4824 982 3 MP XPP X0 sg X4824 982 mt 4952 924 L X4952 924 mt 4977 982 L Xc67 X128 -61 25 38 4819 1384 3 MP XPP X0 sg X4819 1384 mt 4844 1422 L X4844 1422 mt 4972 1361 L Xc67 X25 37 128 -60 4819 1384 3 MP XPP X0 sg X4819 1384 mt 4947 1324 L X4947 1324 mt 4972 1361 L Xc58 X128 -58 24 25 4814 1671 3 MP XPP X0 sg X4814 1671 mt 4838 1696 L X4838 1696 mt 4966 1638 L Xc58 X24 25 128 -58 4814 1671 3 MP XPP X0 sg X4814 1671 mt 4942 1613 L X4942 1613 mt 4966 1638 L Xc52 X25 12 128 -35 4810 549 3 MP XPP X0 sg X4810 549 mt 4938 514 L X4938 514 mt 4963 526 L Xc52 X128 -34 25 11 4810 549 3 MP XPP X0 sg X4810 549 mt 4835 560 L X4835 560 mt 4963 526 L Xc64 X128 -60 24 23 4809 1818 3 MP XPP X0 sg X4809 1818 mt 4833 1841 L X4833 1841 mt 4961 1781 L Xc64 X24 24 128 -61 4809 1818 3 MP XPP X0 sg X4809 1818 mt 4937 1757 L X4937 1757 mt 4961 1781 L Xc52 X128 -50 25 29 4805 642 3 MP XPP X0 sg X4805 642 mt 4830 671 L X4830 671 mt 4958 621 L Xc52 X25 15 128 -36 4805 642 3 MP XPP X0 sg X4805 642 mt 4933 606 L X4933 606 mt 4958 621 L Xc24 X24 46 128 -58 4800 936 3 MP XPP X0 sg X4800 936 mt 4928 878 L X4928 878 mt 4952 924 L Xc24 X128 -58 24 46 4800 936 3 MP XPP X0 sg X4800 936 mt 4824 982 L X4824 982 mt 4952 924 L Xc11 X128 -60 24 90 4795 1294 3 MP XPP X0 sg X4795 1294 mt 4819 1384 L X4819 1384 mt 4947 1324 L Xc11 X24 91 128 -61 4795 1294 3 MP XPP X0 sg X4795 1294 mt 4923 1233 L X4923 1233 mt 4947 1324 L Xc58 X128 -58 25 13 4789 1658 3 MP XPP X0 sg X4789 1658 mt 4814 1671 L X4814 1671 mt 4942 1613 L Xc58 X25 13 128 -58 4789 1658 3 MP XPP X0 sg X4789 1658 mt 4917 1600 L X4917 1600 mt 4942 1613 L Xc52 X128 -35 24 11 4786 538 3 MP XPP X0 sg X4786 538 mt 4810 549 L X4810 549 mt 4938 514 L Xc52 X24 11 128 -35 4786 538 3 MP XPP X0 sg X4786 538 mt 4914 503 L X4914 503 mt 4938 514 L Xc65 X128 -61 25 21 4784 1797 3 MP XPP X0 sg X4784 1797 mt 4809 1818 L X4809 1818 mt 4937 1757 L Xc65 X25 20 128 -60 4784 1797 3 MP XPP X0 sg X4784 1797 mt 4912 1737 L X4912 1737 mt 4937 1757 L Xc52 X25 12 127 -36 4781 630 3 MP XPP X0 sg X4781 630 mt 4908 594 L X4908 594 mt 4933 606 L Xc52 X128 -36 24 12 4781 630 3 MP XPP X0 sg X4781 630 mt 4805 642 L X4805 642 mt 4933 606 L Xc68 X25 40 128 -58 4775 896 3 MP XPP X0 sg X4775 896 mt 4903 838 L X4903 838 mt 4928 878 L Xc68 X128 -58 25 40 4775 896 3 MP XPP X0 sg X4775 896 mt 4800 936 L X4800 936 mt 4928 878 L Xc34 X25 57 128 -60 4770 1236 3 MP XPP X0 sg X4770 1236 mt 4898 1176 L X4898 1176 mt 4923 1233 L Xc34 X128 -61 25 58 4770 1236 3 MP XPP X0 sg X4770 1236 mt 4795 1294 L X4795 1294 mt 4923 1233 L Xc51 X24 24 128 -58 4765 1634 3 MP XPP X0 sg X4765 1634 mt 4893 1576 L X4893 1576 mt 4917 1600 L Xc51 X128 -58 24 24 4765 1634 3 MP XPP X0 sg X4765 1634 mt 4789 1658 L X4789 1658 mt 4917 1600 L Xc65 X24 12 128 -60 4760 1785 3 MP XPP X0 sg X4760 1785 mt 4888 1725 L X4888 1725 mt 4912 1737 L Xc65 X128 -60 24 12 4760 1785 3 MP XPP X0 sg X4760 1785 mt 4784 1797 L X4784 1797 mt 4912 1737 L Xc52 X24 11 128 -35 4756 618 3 MP XPP X0 sg X4756 618 mt 4884 583 L X4884 583 mt 4908 594 L Xc52 X127 -36 25 12 4756 618 3 MP XPP X0 sg X4756 618 mt 4781 630 L X4781 630 mt 4908 594 L Xc63 X24 58 128 -58 4751 838 3 MP XPP X0 sg X4751 838 mt 4879 780 L X4879 780 mt 4903 838 L Xc63 X128 -58 24 58 4751 838 3 MP XPP X0 sg X4751 838 mt 4775 896 L X4775 896 mt 4903 838 L Xc23 X25 70 127 -61 4746 1167 3 MP XPP X0 sg X4746 1167 mt 4873 1106 L X4873 1106 mt 4898 1176 L Xc23 X128 -60 24 69 4746 1167 3 MP XPP X0 sg X4746 1167 mt 4770 1236 L X4770 1236 mt 4898 1176 L Xc33 X25 116 128 -58 4740 1518 3 MP XPP X0 sg X4740 1518 mt 4868 1460 L X4868 1460 mt 4893 1576 L Xc33 X128 -58 25 116 4740 1518 3 MP XPP X0 sg X4740 1518 mt 4765 1634 L X4765 1634 mt 4893 1576 L Xc65 X25 13 128 -60 4735 1772 3 MP XPP X0 sg X4735 1772 mt 4863 1712 L X4863 1712 mt 4888 1725 L Xc65 X128 -60 25 13 4735 1772 3 MP XPP X0 sg X4735 1772 mt 4760 1785 L X4760 1785 mt 4888 1725 L Xc52 X25 11 127 -34 4732 606 3 MP XPP X0 sg X4732 606 mt 4859 572 L X4859 572 mt 4884 583 L Xc52 X128 -35 24 12 4732 606 3 MP XPP X0 sg X4732 606 mt 4756 618 L X4756 618 mt 4884 583 L Xc55 X25 73 128 -58 4726 765 3 MP XPP X0 sg X4726 765 mt 4854 707 L X4854 707 mt 4879 780 L Xc55 X128 -58 25 73 4726 765 3 MP XPP X0 sg X4726 765 mt 4751 838 L X4751 838 mt 4879 780 L Xc26 X24 66 128 -61 4721 1101 3 MP XPP X0 sg X4721 1101 mt 4849 1040 L X4849 1040 mt 4873 1106 L Xc26 X127 -61 25 66 4721 1101 3 MP XPP X0 sg X4721 1101 mt 4746 1167 L X4746 1167 mt 4873 1106 L Xc39 X24 38 128 -58 4716 1480 3 MP XPP X0 sg X4716 1480 mt 4844 1422 L X4844 1422 mt 4868 1460 L Xc39 X128 -58 24 38 4716 1480 3 MP XPP X0 sg X4716 1480 mt 4740 1518 L X4740 1518 mt 4868 1460 L Xc60 X25 16 127 -60 4711 1756 3 MP XPP X0 sg X4711 1756 mt 4838 1696 L X4838 1696 mt 4863 1712 L Xc60 X128 -60 24 16 4711 1756 3 MP XPP X0 sg X4711 1756 mt 4735 1772 L X4735 1772 mt 4863 1712 L Xc52 X127 -34 25 11 4707 595 3 MP XPP X0 sg X4707 595 mt 4732 606 L X4732 606 mt 4859 572 L Xc52 X24 12 128 -35 4707 595 3 MP XPP X0 sg X4707 595 mt 4835 560 L X4835 560 mt 4859 572 L Xc71 X128 -58 24 37 4702 728 3 MP XPP X0 sg X4702 728 mt 4726 765 L X4726 765 mt 4854 707 L Xc71 X24 36 128 -57 4702 728 3 MP XPP X0 sg X4702 728 mt 4830 671 L X4830 671 mt 4854 707 L Xc35 X25 58 127 -60 4697 1042 3 MP XPP X0 sg X4697 1042 mt 4824 982 L X4824 982 mt 4849 1040 L Xc35 X128 -61 24 59 4697 1042 3 MP XPP X0 sg X4697 1042 mt 4721 1101 L X4721 1101 mt 4849 1040 L Xc10 X25 38 128 -58 4691 1442 3 MP XPP X0 sg X4691 1442 mt 4819 1384 L X4819 1384 mt 4844 1422 L Xc10 X128 -58 25 38 4691 1442 3 MP XPP X0 sg X4691 1442 mt 4716 1480 L X4716 1480 mt 4844 1422 L Xc61 X24 25 128 -61 4686 1732 3 MP XPP X0 sg X4686 1732 mt 4814 1671 L X4814 1671 mt 4838 1696 L Xc61 X127 -60 25 24 4686 1732 3 MP XPP X0 sg X4686 1732 mt 4711 1756 L X4711 1756 mt 4838 1696 L Xc52 X25 11 128 -35 4682 584 3 MP XPP X0 sg X4682 584 mt 4810 549 L X4810 549 mt 4835 560 L Xc52 X128 -35 25 11 4682 584 3 MP XPP X0 sg X4682 584 mt 4707 595 L X4707 595 mt 4835 560 L Xc52 X128 -57 25 44 4677 684 3 MP XPP X0 sg X4677 684 mt 4702 728 L X4702 728 mt 4830 671 L Xc52 X25 29 128 -42 4677 684 3 MP XPP X0 sg X4677 684 mt 4805 642 L X4805 642 mt 4830 671 L Xc16 X24 46 128 -60 4672 996 3 MP XPP X0 sg X4672 996 mt 4800 936 L X4800 936 mt 4824 982 L Xc16 X127 -60 25 46 4672 996 3 MP XPP X0 sg X4672 996 mt 4697 1042 L X4697 1042 mt 4824 982 L Xc36 X128 -58 24 90 4667 1352 3 MP XPP X0 sg X4667 1352 mt 4691 1442 L X4691 1442 mt 4819 1384 L Xc36 X24 90 128 -58 4667 1352 3 MP XPP X0 sg X4667 1352 mt 4795 1294 L X4795 1294 mt 4819 1384 L Xc61 X128 -61 24 14 4662 1718 3 MP XPP X0 sg X4662 1718 mt 4686 1732 L X4686 1732 mt 4814 1671 L Xc61 X25 13 127 -60 4662 1718 3 MP XPP X0 sg X4662 1718 mt 4789 1658 L X4789 1658 mt 4814 1671 L Xc52 X24 11 128 -34 4658 572 3 MP XPP X0 sg X4658 572 mt 4786 538 L X4786 538 mt 4810 549 L Xc52 X128 -35 24 12 4658 572 3 MP XPP X0 sg X4658 572 mt 4682 584 L X4682 584 mt 4810 549 L Xc52 X128 -42 24 15 4653 669 3 MP XPP X0 sg X4653 669 mt 4677 684 L X4677 684 mt 4805 642 L Xc52 X24 12 128 -39 4653 669 3 MP XPP X0 sg X4653 669 mt 4781 630 L X4781 630 mt 4805 642 L Xc24 X128 -60 25 40 4647 956 3 MP XPP X0 sg X4647 956 mt 4672 996 L X4672 996 mt 4800 936 L Xc24 X25 40 128 -60 4647 956 3 MP XPP X0 sg X4647 956 mt 4775 896 L X4775 896 mt 4800 936 L Xc21 X128 -58 25 58 4642 1294 3 MP XPP X0 sg X4642 1294 mt 4667 1352 L X4667 1352 mt 4795 1294 L Xc21 X25 58 128 -58 4642 1294 3 MP XPP X0 sg X4642 1294 mt 4770 1236 L X4770 1236 mt 4795 1294 L Xc56 X24 24 128 -61 4637 1695 3 MP XPP X0 sg X4637 1695 mt 4765 1634 L X4765 1634 mt 4789 1658 L Xc56 X127 -60 25 23 4637 1695 3 MP XPP X0 sg X4637 1695 mt 4662 1718 L X4662 1718 mt 4789 1658 L Xc52 X25 12 128 -37 4628 655 3 MP XPP X0 sg X4628 655 mt 4756 618 L X4756 618 mt 4781 630 L Xc52 X128 -39 25 14 4628 655 3 MP XPP X0 sg X4628 655 mt 4653 669 L X4653 669 mt 4781 630 L Xc62 X24 58 128 -61 4623 899 3 MP XPP X0 sg X4623 899 mt 4751 838 L X4751 838 mt 4775 896 L Xc62 X128 -60 24 57 4623 899 3 MP XPP X0 sg X4623 899 mt 4647 956 L X4647 956 mt 4775 896 L Xc12 X128 -58 24 69 4618 1225 3 MP XPP X0 sg X4618 1225 mt 4642 1294 L X4642 1294 mt 4770 1236 L Xc12 X24 69 128 -58 4618 1225 3 MP XPP X0 sg X4618 1225 mt 4746 1167 L X4746 1167 mt 4770 1236 L Xc40 X128 -61 25 117 4612 1578 3 MP XPP X0 sg X4612 1578 mt 4637 1695 L X4637 1695 mt 4765 1634 L Xc40 X25 116 128 -60 4612 1578 3 MP XPP X0 sg X4612 1578 mt 4740 1518 L X4740 1518 mt 4765 1634 L Xc52 X128 -37 24 14 4604 641 3 MP XPP X0 sg X4604 641 mt 4628 655 L X4628 655 mt 4756 618 L Xc52 X24 12 128 -35 4604 641 3 MP XPP X0 sg X4604 641 mt 4732 606 L X4732 606 mt 4756 618 L Xc59 X25 73 128 -61 4598 826 3 MP XPP X0 sg X4598 826 mt 4726 765 L X4726 765 mt 4751 838 L Xc59 X128 -61 25 73 4598 826 3 MP XPP X0 sg X4598 826 mt 4623 899 L X4623 899 mt 4751 838 L Xc18 X25 66 128 -58 4593 1159 3 MP XPP X0 sg X4593 1159 mt 4721 1101 L X4721 1101 mt 4746 1167 L Xc18 X128 -58 25 66 4593 1159 3 MP XPP X0 sg X4593 1159 mt 4618 1225 L X4618 1225 mt 4746 1167 L Xc33 X128 -60 24 38 4588 1540 3 MP XPP X0 sg X4588 1540 mt 4612 1578 L X4612 1578 mt 4740 1518 L Xc33 X24 38 128 -60 4588 1540 3 MP XPP X0 sg X4588 1540 mt 4716 1480 L X4716 1480 mt 4740 1518 L Xc52 X128 -35 25 11 4579 630 3 MP XPP X0 sg X4579 630 mt 4604 641 L X4604 641 mt 4732 606 L Xc52 X25 11 128 -35 4579 630 3 MP XPP X0 sg X4579 630 mt 4707 595 L X4707 595 mt 4732 606 L Xc55 X24 37 128 -60 4574 788 3 MP XPP X0 sg X4574 788 mt 4702 728 L X4702 728 mt 4726 765 L Xc55 X128 -61 24 38 4574 788 3 MP XPP X0 sg X4574 788 mt 4598 826 L X4598 826 mt 4726 765 L Xc30 X24 59 128 -58 4569 1100 3 MP XPP X0 sg X4569 1100 mt 4697 1042 L X4697 1042 mt 4721 1101 L Xc30 X128 -58 24 59 4569 1100 3 MP XPP X0 sg X4569 1100 mt 4593 1159 L X4593 1159 mt 4721 1101 L Xc39 X25 38 128 -61 4563 1503 3 MP XPP X0 sg X4563 1503 mt 4691 1442 L X4691 1442 mt 4716 1480 L Xc39 X128 -60 25 37 4563 1503 3 MP XPP X0 sg X4563 1503 mt 4588 1540 L X4588 1540 mt 4716 1480 L Xc52 X128 -35 24 12 4555 618 3 MP XPP X0 sg X4555 618 mt 4579 630 L X4579 630 mt 4707 595 L Xc52 X25 11 127 -34 4555 618 3 MP XPP X0 sg X4555 618 mt 4682 584 L X4682 584 mt 4707 595 L Xc57 X128 -60 25 48 4549 740 3 MP XPP X0 sg X4549 740 mt 4574 788 L X4574 788 mt 4702 728 L Xc57 X25 44 128 -56 4549 740 3 MP XPP X0 sg X4549 740 mt 4677 684 L X4677 684 mt 4702 728 L Xc25 X25 46 128 -58 4544 1054 3 MP XPP X0 sg X4544 1054 mt 4672 996 L X4672 996 mt 4697 1042 L Xc25 X128 -58 25 46 4544 1054 3 MP XPP X0 sg X4544 1054 mt 4569 1100 L X4569 1100 mt 4697 1042 L Xc28 X128 -61 24 91 4539 1412 3 MP XPP X0 sg X4539 1412 mt 4563 1503 L X4563 1503 mt 4691 1442 L Xc28 X24 90 128 -60 4539 1412 3 MP XPP X0 sg X4539 1412 mt 4667 1352 L X4667 1352 mt 4691 1442 L Xc52 X127 -34 25 11 4530 607 3 MP XPP X0 sg X4530 607 mt 4555 618 L X4555 618 mt 4682 584 L Xc52 X24 12 128 -35 4530 607 3 MP XPP X0 sg X4530 607 mt 4658 572 L X4658 572 mt 4682 584 L Xc66 X24 15 128 -53 4525 722 3 MP XPP X0 sg X4525 722 mt 4653 669 L X4653 669 mt 4677 684 L Xc66 X128 -56 24 18 4525 722 3 MP XPP X0 sg X4525 722 mt 4549 740 L X4549 740 mt 4677 684 L Xc16 X25 40 127 -58 4520 1014 3 MP XPP X0 sg X4520 1014 mt 4647 956 L X4647 956 mt 4672 996 L Xc16 X128 -58 24 40 4520 1014 3 MP XPP X0 sg X4520 1014 mt 4544 1054 L X4544 1054 mt 4672 996 L Xc8 X25 58 128 -61 4514 1355 3 MP XPP X0 sg X4514 1355 mt 4642 1294 L X4642 1294 mt 4667 1352 L Xc8 X128 -60 25 57 4514 1355 3 MP XPP X0 sg X4514 1355 mt 4539 1412 L X4539 1412 mt 4667 1352 L Xc66 X25 14 128 -46 4500 701 3 MP XPP X0 sg X4500 701 mt 4628 655 L X4628 655 mt 4653 669 L Xc66 X128 -53 25 21 4500 701 3 MP XPP X0 sg X4500 701 mt 4525 722 L X4525 722 mt 4653 669 L Xc68 X127 -58 25 57 4495 957 3 MP XPP X0 sg X4495 957 mt 4520 1014 L X4520 1014 mt 4647 956 L Xc68 X24 57 128 -58 4495 957 3 MP XPP X0 sg X4495 957 mt 4623 899 L X4623 899 mt 4647 956 L Xc15 X128 -61 24 70 4490 1285 3 MP XPP X0 sg X4490 1285 mt 4514 1355 L X4514 1355 mt 4642 1294 L Xc15 X24 69 128 -60 4490 1285 3 MP XPP X0 sg X4490 1285 mt 4618 1225 L X4618 1225 mt 4642 1294 L Xc52 X24 14 128 -35 4476 676 3 MP XPP X0 sg X4476 676 mt 4604 641 L X4604 641 mt 4628 655 L Xc52 X128 -46 24 25 4476 676 3 MP XPP X0 sg X4476 676 mt 4500 701 L X4500 701 mt 4628 655 L Xc48 X128 -58 24 73 4471 884 3 MP XPP X0 sg X4471 884 mt 4495 957 L X4495 957 mt 4623 899 L Xc48 X25 73 127 -58 4471 884 3 MP XPP X0 sg X4471 884 mt 4598 826 L X4598 826 mt 4623 899 L Xc23 X128 -60 25 66 4465 1219 3 MP XPP X0 sg X4465 1219 mt 4490 1285 L X4490 1285 mt 4618 1225 L Xc23 X25 66 128 -60 4465 1219 3 MP XPP X0 sg X4465 1219 mt 4593 1159 L X4593 1159 mt 4618 1225 L Xc52 X25 11 128 -34 4451 664 3 MP XPP X0 sg X4451 664 mt 4579 630 L X4579 630 mt 4604 641 L Xc52 X128 -35 25 12 4451 664 3 MP XPP X0 sg X4451 664 mt 4476 676 L X4476 676 mt 4604 641 L Xc49 X24 38 128 -58 4446 846 3 MP XPP X0 sg X4446 846 mt 4574 788 L X4574 788 mt 4598 826 L Xc49 X127 -58 25 38 4446 846 3 MP XPP X0 sg X4446 846 mt 4471 884 L X4471 884 mt 4598 826 L Xc26 X128 -60 24 58 4441 1161 3 MP XPP X0 sg X4441 1161 mt 4465 1219 L X4465 1219 mt 4593 1159 L Xc26 X24 59 128 -61 4441 1161 3 MP XPP X0 sg X4441 1161 mt 4569 1100 L X4569 1100 mt 4593 1159 L Xc52 X24 12 128 -35 4427 653 3 MP XPP X0 sg X4427 653 mt 4555 618 L X4555 618 mt 4579 630 L Xc52 X128 -34 24 11 4427 653 3 MP XPP X0 sg X4427 653 mt 4451 664 L X4451 664 mt 4579 630 L Xc50 X128 -58 25 49 4421 797 3 MP XPP X0 sg X4421 797 mt 4446 846 L X4446 846 mt 4574 788 L Xc50 X25 48 128 -57 4421 797 3 MP XPP X0 sg X4421 797 mt 4549 740 L X4549 740 mt 4574 788 L Xc30 X25 46 128 -61 4416 1115 3 MP XPP X0 sg X4416 1115 mt 4544 1054 L X4544 1054 mt 4569 1100 L Xc30 X128 -61 25 46 4416 1115 3 MP XPP X0 sg X4416 1115 mt 4441 1161 L X4441 1161 mt 4569 1100 L Xc52 X25 11 128 -35 4402 642 3 MP XPP X0 sg X4402 642 mt 4530 607 L X4530 607 mt 4555 618 L Xc52 X128 -35 25 11 4402 642 3 MP XPP X0 sg X4402 642 mt 4427 653 L X4427 653 mt 4555 618 L Xc71 X128 -57 24 18 4397 779 3 MP XPP X0 sg X4397 779 mt 4421 797 L X4421 797 mt 4549 740 L Xc71 X24 18 128 -57 4397 779 3 MP XPP X0 sg X4397 779 mt 4525 722 L X4525 722 mt 4549 740 L Xc25 X128 -61 24 41 4392 1074 3 MP XPP X0 sg X4392 1074 mt 4416 1115 L X4416 1115 mt 4544 1054 L Xc25 X24 40 128 -60 4392 1074 3 MP XPP X0 sg X4392 1074 mt 4520 1014 L X4520 1014 mt 4544 1054 L Xc57 X128 -57 25 23 4372 756 3 MP XPP X0 sg X4372 756 mt 4397 779 L X4397 779 mt 4525 722 L Xc57 X25 21 128 -55 4372 756 3 MP XPP X0 sg X4372 756 mt 4500 701 L X4500 701 mt 4525 722 L Xc24 X128 -60 25 57 4367 1017 3 MP XPP X0 sg X4367 1017 mt 4392 1074 L X4392 1074 mt 4520 1014 L Xc24 X25 57 128 -60 4367 1017 3 MP XPP X0 sg X4367 1017 mt 4495 957 L X4495 957 mt 4520 1014 L Xc52 X128 -55 24 41 4348 715 3 MP XPP X0 sg X4348 715 mt 4372 756 L X4372 756 mt 4500 701 L Xc52 X24 25 128 -39 4348 715 3 MP XPP X0 sg X4348 715 mt 4476 676 L X4476 676 mt 4500 701 L Xc54 X128 -60 24 73 4343 944 3 MP XPP X0 sg X4343 944 mt 4367 1017 L X4367 1017 mt 4495 957 L Xc54 X24 73 128 -60 4343 944 3 MP XPP X0 sg X4343 944 mt 4471 884 L X4471 884 mt 4495 957 L Xc52 X128 -39 25 15 4323 700 3 MP XPP X0 sg X4323 700 mt 4348 715 L X4348 715 mt 4476 676 L Xc52 X25 12 128 -36 4323 700 3 MP XPP X0 sg X4323 700 mt 4451 664 L X4451 664 mt 4476 676 L Xc48 X25 38 128 -61 4318 907 3 MP XPP X0 sg X4318 907 mt 4446 846 L X4446 846 mt 4471 884 L Xc48 X128 -60 25 37 4318 907 3 MP XPP X0 sg X4318 907 mt 4343 944 L X4343 944 mt 4471 884 L X Xgr Xgs 3994 388 2261 1783 MR c np Xc52 X128 -36 24 12 4299 688 3 MP XPP X0 sg X4299 688 mt 4323 700 L X4323 700 mt 4451 664 L Xc52 X24 11 128 -35 4299 688 3 MP XPP X0 sg X4299 688 mt 4427 653 L X4427 653 mt 4451 664 L Xc49 X128 -61 24 49 4294 858 3 MP XPP X0 sg X4294 858 mt 4318 907 L X4318 907 mt 4446 846 L Xc49 X25 49 127 -61 4294 858 3 MP XPP X0 sg X4294 858 mt 4421 797 L X4421 797 mt 4446 846 L Xc52 X25 11 128 -34 4274 676 3 MP XPP X0 sg X4274 676 mt 4402 642 L X4402 642 mt 4427 653 L Xc52 X128 -35 25 12 4274 676 3 MP XPP X0 sg X4274 676 mt 4299 688 L X4299 688 mt 4427 653 L Xc55 X127 -61 25 19 4269 839 3 MP XPP X0 sg X4269 839 mt 4294 858 L X4294 858 mt 4421 797 L Xc55 X24 18 128 -60 4269 839 3 MP XPP X0 sg X4269 839 mt 4397 779 L X4397 779 mt 4421 797 L Xc50 X25 23 127 -60 4245 816 3 MP XPP X0 sg X4245 816 mt 4372 756 L X4372 756 mt 4397 779 L Xc50 X128 -60 24 23 4245 816 3 MP XPP X0 sg X4245 816 mt 4269 839 L X4269 839 mt 4397 779 L Xc66 X127 -60 25 50 4220 766 3 MP XPP X0 sg X4220 766 mt 4245 816 L X4245 816 mt 4372 756 L Xc66 X24 41 128 -51 4220 766 3 MP XPP X0 sg X4220 766 mt 4348 715 L X4348 715 mt 4372 756 L Xc52 X25 15 128 -40 4195 740 3 MP XPP X0 sg X4195 740 mt 4323 700 L X4323 700 mt 4348 715 L Xc52 X128 -51 25 26 4195 740 3 MP XPP X0 sg X4195 740 mt 4220 766 L X4220 766 mt 4348 715 L Xc52 X24 12 128 -37 4171 725 3 MP XPP X0 sg X4171 725 mt 4299 688 L X4299 688 mt 4323 700 L Xc52 X128 -40 24 15 4171 725 3 MP XPP X0 sg X4171 725 mt 4195 740 L X4195 740 mt 4323 700 L Xc52 X25 12 128 -36 4146 712 3 MP XPP X0 sg X4146 712 mt 4274 676 L X4274 676 mt 4299 688 L Xc52 X128 -37 25 13 4146 712 3 MP XPP X0 sg X4146 712 mt 4171 725 L X4171 725 mt 4299 688 L X Xgr X1 sg X-981 -451 1278 -346 981 451 898 3176 4 MP XPP X-1278 346 -981 -451 1278 -346 981 451 898 3176 5 MP stroke X0 985 981 451 0 -985 898 4161 4 MP XPP X-981 -451 0 985 981 451 0 -985 898 4161 5 MP stroke X0 985 1278 -346 0 -985 1879 4612 4 MP XPP X-1278 346 0 985 1278 -346 0 -985 1879 4612 5 MP stroke X4 w XDO X0 sg X1879 4612 mt 898 4161 L X 898 4161 mt 898 3176 L X2518 4439 mt 1537 3988 L X1537 3988 mt 1537 3003 L X3157 4266 mt 2176 3815 L X2176 3815 mt 2176 2830 L X 898 4161 mt 2176 3815 L X2176 3815 mt 2176 2830 L X1388 4386 mt 2667 4040 L X2667 4040 mt 2667 3056 L X1879 4612 mt 3157 4266 L X3157 4266 mt 3157 3281 L X 898 4161 mt 2176 3815 L X2176 3815 mt 3157 4266 L X 898 3669 mt 2176 3322 L X2176 3322 mt 3157 3773 L X 898 3176 mt 2176 2830 L X2176 2830 mt 3157 3281 L XSO X6 w X1879 4612 mt 3157 4266 L X 898 4161 mt 1879 4612 L X 898 4161 mt 898 3176 L X1879 4612 mt 1909 4626 L X1940 4751 mt X(0) s X2518 4439 mt 2548 4453 L X2579 4578 mt X(10) s X3157 4266 mt 3187 4280 L X3218 4405 mt X(20) s X 898 4161 mt 866 4170 L X 767 4290 mt X(0) s X1388 4386 mt 1356 4395 L X1190 4515 mt X(20) s X1879 4612 mt 1847 4621 L X1680 4741 mt X(40) s X 898 4161 mt 868 4147 L X 701 4177 mt X(-5) s X 898 3669 mt 868 3655 L X 771 3684 mt X(0) s X 898 3176 mt 868 3162 L X 771 3192 mt X(5) s Xgs 898 2830 2260 1783 MR c np Xc13 X24 373 64 -105 2681 3725 3 MP XPP X0 sg X2681 3725 mt 2745 3620 L X2745 3620 mt 2769 3993 L Xc13 X64 241 24 27 2681 3725 3 MP XPP X0 sg X2681 3725 mt 2705 3752 L X2705 3752 mt 2769 3993 L Xc22 X25 146 64 -215 2656 3689 3 MP XPP X0 sg X2656 3689 mt 2720 3474 L X2720 3474 mt 2745 3620 L Xc22 X64 -105 25 36 2656 3689 3 MP XPP X0 sg X2656 3689 mt 2681 3725 L X2681 3725 mt 2745 3620 L Xc24 X25 120 63 -129 2485 3475 3 MP XPP X0 sg X2485 3475 mt 2548 3346 L X2548 3346 mt 2573 3466 L Xc24 X64 -3 24 -6 2485 3475 3 MP XPP X0 sg X2485 3475 mt 2509 3469 L X2509 3469 mt 2573 3466 L Xc68 X24 128 64 -3 2509 3469 3 MP XPP X0 sg X2509 3469 mt 2573 3466 L X2573 3466 mt 2597 3594 L Xc68 X63 114 25 11 2509 3469 3 MP XPP X0 sg X2509 3469 mt 2534 3480 L X2534 3480 mt 2597 3594 L Xc68 X25 69 63 114 2534 3480 3 MP XPP X0 sg X2534 3480 mt 2597 3594 L X2597 3594 mt 2622 3663 L Xc24 X25 -17 64 154 2558 3509 3 MP XPP X0 sg X2558 3509 mt 2622 3663 L X2622 3663 mt 2647 3646 L Xc24 X64 97 25 40 2558 3509 3 MP XPP X0 sg X2558 3509 mt 2583 3549 L X2583 3549 mt 2647 3646 L Xc31 X24 -80 64 97 2583 3549 3 MP XPP X0 sg X2583 3549 mt 2647 3646 L X2647 3646 mt 2671 3566 L Xc31 X64 -31 24 48 2583 3549 3 MP XPP X0 sg X2583 3549 mt 2607 3597 L X2607 3597 mt 2671 3566 L Xc17 X25 -83 64 -31 2607 3597 3 MP XPP X0 sg X2607 3597 mt 2671 3566 L X2671 3566 mt 2696 3483 L Xc23 X24 -9 64 -162 2632 3645 3 MP XPP X0 sg X2632 3645 mt 2696 3483 L X2696 3483 mt 2720 3474 L Xc23 X64 -215 24 44 2632 3645 3 MP XPP X0 sg X2632 3645 mt 2656 3689 L X2656 3689 mt 2720 3474 L Xc13 X64 -17 24 26 2617 3743 3 MP XPP X0 sg X2617 3743 mt 2641 3769 L X2641 3769 mt 2705 3752 L Xc13 X24 27 64 -18 2617 3743 3 MP XPP X0 sg X2617 3743 mt 2681 3725 L X2681 3725 mt 2705 3752 L Xc17 X64 -162 25 48 2607 3597 3 MP XPP X0 sg X2607 3597 mt 2632 3645 L X2632 3645 mt 2696 3483 L Xc22 X64 -18 25 37 2592 3706 3 MP XPP X0 sg X2592 3706 mt 2617 3743 L X2617 3743 mt 2681 3725 L Xc22 X25 36 64 -17 2592 3706 3 MP XPP X0 sg X2592 3706 mt 2656 3689 L X2656 3689 mt 2681 3725 L Xc68 X64 154 24 29 2534 3480 3 MP XPP X0 sg X2534 3480 mt 2558 3509 L X2558 3509 mt 2622 3663 L Xc23 X24 44 64 -18 2568 3663 3 MP XPP X0 sg X2568 3663 mt 2632 3645 L X2632 3645 mt 2656 3689 L Xc23 X64 -17 24 43 2568 3663 3 MP XPP X0 sg X2568 3663 mt 2592 3706 L X2592 3706 mt 2656 3689 L Xc13 X24 26 64 -17 2553 3760 3 MP XPP X0 sg X2553 3760 mt 2617 3743 L X2617 3743 mt 2641 3769 L Xc13 X64 -17 24 26 2553 3760 3 MP XPP X0 sg X2553 3760 mt 2577 3786 L X2577 3786 mt 2641 3769 L Xc17 X25 48 64 -17 2543 3614 3 MP XPP X0 sg X2543 3614 mt 2607 3597 L X2607 3597 mt 2632 3645 L Xc17 X64 -18 25 49 2543 3614 3 MP XPP X0 sg X2543 3614 mt 2568 3663 L X2568 3663 mt 2632 3645 L Xc22 X25 37 64 -18 2528 3724 3 MP XPP X0 sg X2528 3724 mt 2592 3706 L X2592 3706 mt 2617 3743 L Xc22 X64 -17 25 36 2528 3724 3 MP XPP X0 sg X2528 3724 mt 2553 3760 L X2553 3760 mt 2617 3743 L Xc31 X24 48 64 -18 2519 3567 3 MP XPP X0 sg X2519 3567 mt 2583 3549 L X2583 3549 mt 2607 3597 L Xc31 X64 -17 24 47 2519 3567 3 MP XPP X0 sg X2519 3567 mt 2543 3614 L X2543 3614 mt 2607 3597 L Xc23 X64 -18 24 44 2504 3680 3 MP XPP X0 sg X2504 3680 mt 2528 3724 L X2528 3724 mt 2592 3706 L Xc23 X24 43 64 -17 2504 3680 3 MP XPP X0 sg X2504 3680 mt 2568 3663 L X2568 3663 mt 2592 3706 L Xc24 X25 40 64 -17 2494 3526 3 MP XPP X0 sg X2494 3526 mt 2558 3509 L X2558 3509 mt 2583 3549 L Xc24 X64 -18 25 41 2494 3526 3 MP XPP X0 sg X2494 3526 mt 2519 3567 L X2519 3567 mt 2583 3549 L Xc13 X24 26 64 -19 2489 3779 3 MP XPP X0 sg X2489 3779 mt 2553 3760 L X2553 3760 mt 2577 3786 L Xc13 X64 -27 24 34 2489 3779 3 MP XPP X0 sg X2489 3779 mt 2513 3813 L X2513 3813 mt 2577 3786 L Xc17 X25 49 64 -18 2479 3632 3 MP XPP X0 sg X2479 3632 mt 2543 3614 L X2543 3614 mt 2568 3663 L Xc17 X64 -17 25 48 2479 3632 3 MP XPP X0 sg X2479 3632 mt 2504 3680 L X2504 3680 mt 2568 3663 L Xc9 X24 -149 64 -4 2411 3537 3 MP XPP X0 sg X2411 3537 mt 2475 3533 L X2475 3533 mt 2499 3384 L Xc68 X64 -17 24 28 2470 3498 3 MP XPP X0 sg X2470 3498 mt 2494 3526 L X2494 3526 mt 2558 3509 L Xc68 X24 29 64 -18 2470 3498 3 MP XPP X0 sg X2470 3498 mt 2534 3480 L X2534 3480 mt 2558 3509 L Xc22 X64 -19 25 41 2464 3738 3 MP XPP X0 sg X2464 3738 mt 2489 3779 L X2489 3779 mt 2553 3760 L Xc22 X25 36 64 -14 2464 3738 3 MP XPP X0 sg X2464 3738 mt 2528 3724 L X2528 3724 mt 2553 3760 L Xc25 X63 -129 25 -19 2460 3494 3 MP XPP X0 sg X2460 3494 mt 2485 3475 L X2485 3475 mt 2548 3346 L Xc9 X64 -134 24 -19 2411 3537 3 MP XPP X0 sg X2411 3537 mt 2435 3518 L X2435 3518 mt 2499 3384 L Xc17 X25 -75 64 -134 2435 3518 3 MP XPP X0 sg X2435 3518 mt 2499 3384 L X2499 3384 mt 2524 3309 L Xc25 X24 37 64 -185 2460 3494 3 MP XPP X0 sg X2460 3494 mt 2524 3309 L X2524 3309 mt 2548 3346 L Xc23 X24 161 64 -82 2313 3501 3 MP XPP X0 sg X2313 3501 mt 2377 3419 L X2377 3419 mt 2401 3580 L Xc19 X25 -128 64 116 2386 3545 3 MP XPP X0 sg X2386 3545 mt 2450 3661 L X2450 3661 mt 2475 3533 L Xc31 X24 47 64 -17 2455 3584 3 MP XPP X0 sg X2455 3584 mt 2519 3567 L X2519 3567 mt 2543 3614 L Xc31 X64 -18 24 48 2455 3584 3 MP XPP X0 sg X2455 3584 mt 2479 3632 L X2479 3632 mt 2543 3614 L Xc17 X64 -185 25 -24 2435 3518 3 MP XPP X0 sg X2435 3518 mt 2460 3494 L X2460 3494 mt 2524 3309 L Xc25 X64 -18 25 -19 2396 3512 3 MP XPP X0 sg X2396 3512 mt 2421 3493 L X2421 3493 mt 2485 3475 L Xc25 X25 -19 64 -18 2396 3512 3 MP XPP X0 sg X2396 3512 mt 2460 3494 L X2460 3494 mt 2485 3475 L Xc68 X25 11 64 -17 2445 3486 3 MP XPP X0 sg X2445 3486 mt 2509 3469 L X2509 3469 mt 2534 3480 L Xc68 X64 -18 25 12 2445 3486 3 MP XPP X0 sg X2445 3486 mt 2470 3498 L X2470 3498 mt 2534 3480 L Xc9 X24 44 64 -12 2440 3692 3 MP XPP X0 sg X2440 3692 mt 2504 3680 L X2504 3680 mt 2528 3724 L Xc9 X64 -14 24 46 2440 3692 3 MP XPP X0 sg X2440 3692 mt 2464 3738 L X2464 3738 mt 2528 3724 L Xc24 X64 -17 25 41 2430 3543 3 MP XPP X0 sg X2430 3543 mt 2455 3584 L X2455 3584 mt 2519 3567 L Xc19 X64 -4 25 -8 2386 3545 3 MP XPP X0 sg X2386 3545 mt 2411 3537 L X2411 3537 mt 2475 3533 L Xc24 X25 41 64 -17 2430 3543 3 MP XPP X0 sg X2430 3543 mt 2494 3526 L X2494 3526 mt 2519 3567 L Xc13 X24 34 64 -17 2425 3796 3 MP XPP X0 sg X2425 3796 mt 2489 3779 L X2489 3779 mt 2513 3813 L Xc13 X63 -17 25 34 2425 3796 3 MP XPP X0 sg X2425 3796 mt 2450 3830 L X2450 3830 mt 2513 3813 L Xc24 X24 -6 64 -18 2421 3493 3 MP XPP X0 sg X2421 3493 mt 2485 3475 L X2485 3475 mt 2509 3469 L Xc24 X64 -17 24 -7 2421 3493 3 MP XPP X0 sg X2421 3493 mt 2445 3486 L X2445 3486 mt 2509 3469 L Xc23 X64 58 24 21 2313 3501 3 MP XPP X0 sg X2313 3501 mt 2337 3522 L X2337 3522 mt 2401 3580 L Xc19 X25 103 64 58 2337 3522 3 MP XPP X0 sg X2337 3522 mt 2401 3580 L X2401 3580 mt 2426 3683 L Xc19 X64 116 24 7 2362 3538 3 MP XPP X0 sg X2362 3538 mt 2386 3545 L X2386 3545 mt 2450 3661 L Xc19 X24 -22 64 145 2362 3538 3 MP XPP X0 sg X2362 3538 mt 2426 3683 L X2426 3683 mt 2450 3661 L Xc17 X25 48 64 -13 2415 3645 3 MP XPP X0 sg X2415 3645 mt 2479 3632 L X2479 3632 mt 2504 3680 L Xc17 X64 -12 25 47 2415 3645 3 MP XPP X0 sg X2415 3645 mt 2440 3692 L X2440 3692 mt 2504 3680 L Xc19 X64 145 25 16 2337 3522 3 MP XPP X0 sg X2337 3522 mt 2362 3538 L X2362 3538 mt 2426 3683 L Xc19 X24 7 64 -18 2298 3556 3 MP XPP X0 sg X2298 3556 mt 2362 3538 L X2362 3538 mt 2386 3545 L Xc19 X63 -17 25 6 2298 3556 3 MP XPP X0 sg X2298 3556 mt 2323 3562 L X2323 3562 mt 2386 3545 L Xc9 X24 -19 64 -18 2347 3555 3 MP XPP X0 sg X2347 3555 mt 2411 3537 L X2411 3537 mt 2435 3518 L Xc9 X63 -18 25 -19 2347 3555 3 MP XPP X0 sg X2347 3555 mt 2372 3536 L X2372 3536 mt 2435 3518 L Xc17 X64 -18 24 -24 2372 3536 3 MP XPP X0 sg X2372 3536 mt 2396 3512 L X2396 3512 mt 2460 3494 L Xc17 X25 -24 63 -18 2372 3536 3 MP XPP X0 sg X2372 3536 mt 2435 3518 L X2435 3518 mt 2460 3494 L Xc68 X24 28 64 -17 2406 3515 3 MP XPP X0 sg X2406 3515 mt 2470 3498 L X2470 3498 mt 2494 3526 L Xc68 X64 -17 24 28 2406 3515 3 MP XPP X0 sg X2406 3515 mt 2430 3543 L X2430 3543 mt 2494 3526 L Xc22 X25 41 63 -17 2401 3755 3 MP XPP X0 sg X2401 3755 mt 2464 3738 L X2464 3738 mt 2489 3779 L Xc22 X64 -17 24 41 2401 3755 3 MP XPP X0 sg X2401 3755 mt 2425 3796 L X2425 3796 mt 2489 3779 L Xc31 X24 48 64 -16 2391 3600 3 MP XPP X0 sg X2391 3600 mt 2455 3584 L X2455 3584 mt 2479 3632 L Xc31 X64 -13 24 45 2391 3600 3 MP XPP X0 sg X2391 3600 mt 2415 3645 L X2415 3645 mt 2479 3632 L Xc19 X25 16 64 -17 2273 3539 3 MP XPP X0 sg X2273 3539 mt 2337 3522 L X2337 3522 mt 2362 3538 L Xc25 X64 -17 25 -19 2332 3529 3 MP XPP X0 sg X2332 3529 mt 2357 3510 L X2357 3510 mt 2421 3493 L Xc25 X25 -19 64 -17 2332 3529 3 MP XPP X0 sg X2332 3529 mt 2396 3512 L X2396 3512 mt 2421 3493 L Xc68 X25 12 64 -18 2381 3504 3 MP XPP X0 sg X2381 3504 mt 2445 3486 L X2445 3486 mt 2470 3498 L Xc68 X64 -17 25 11 2381 3504 3 MP XPP X0 sg X2381 3504 mt 2406 3515 L X2406 3515 mt 2470 3498 L Xc9 X24 46 64 -18 2376 3710 3 MP XPP X0 sg X2376 3710 mt 2440 3692 L X2440 3692 mt 2464 3738 L Xc9 X63 -17 25 45 2376 3710 3 MP XPP X0 sg X2376 3710 mt 2401 3755 L X2401 3755 mt 2464 3738 L X Xgr Xgs 898 2830 2260 1783 MR c np Xc24 X25 41 64 -19 2366 3562 3 MP XPP X0 sg X2366 3562 mt 2430 3543 L X2430 3543 mt 2455 3584 L Xc24 X64 -16 25 38 2366 3562 3 MP XPP X0 sg X2366 3562 mt 2391 3600 L X2391 3600 mt 2455 3584 L Xc13 X64 -17 25 34 2361 3813 3 MP XPP X0 sg X2361 3813 mt 2386 3847 L X2386 3847 mt 2450 3830 L Xc13 X25 34 64 -17 2361 3813 3 MP XPP X0 sg X2361 3813 mt 2425 3796 L X2425 3796 mt 2450 3830 L Xc24 X64 -18 24 -6 2357 3510 3 MP XPP X0 sg X2357 3510 mt 2381 3504 L X2381 3504 mt 2445 3486 L Xc24 X24 -7 64 -17 2357 3510 3 MP XPP X0 sg X2357 3510 mt 2421 3493 L X2421 3493 mt 2445 3486 L Xc17 X64 -18 25 48 2351 3662 3 MP XPP X0 sg X2351 3662 mt 2376 3710 L X2376 3710 mt 2440 3692 L Xc17 X25 47 64 -17 2351 3662 3 MP XPP X0 sg X2351 3662 mt 2415 3645 L X2415 3645 mt 2440 3692 L Xc29 X25 130 64 -15 2141 3401 3 MP XPP X0 sg X2141 3401 mt 2205 3386 L X2205 3386 mt 2230 3516 L Xc29 X64 107 25 8 2141 3401 3 MP XPP X0 sg X2141 3401 mt 2166 3409 L X2166 3409 mt 2230 3516 L Xc29 X24 56 64 107 2166 3409 3 MP XPP X0 sg X2166 3409 mt 2230 3516 L X2230 3516 mt 2254 3572 L Xc29 X64 152 24 11 2166 3409 3 MP XPP X0 sg X2166 3409 mt 2190 3420 L X2190 3420 mt 2254 3572 L Xc29 X25 -48 64 152 2190 3420 3 MP XPP X0 sg X2190 3420 mt 2254 3572 L X2254 3572 mt 2279 3524 L Xc19 X64 -17 25 6 2234 3573 3 MP XPP X0 sg X2234 3573 mt 2259 3579 L X2259 3579 mt 2323 3562 L Xc19 X25 6 64 -17 2234 3573 3 MP XPP X0 sg X2234 3573 mt 2298 3556 L X2298 3556 mt 2323 3562 L Xc19 X64 -18 25 17 2273 3539 3 MP XPP X0 sg X2273 3539 mt 2298 3556 L X2298 3556 mt 2362 3538 L Xc9 X64 -17 25 -19 2283 3572 3 MP XPP X0 sg X2283 3572 mt 2308 3553 L X2308 3553 mt 2372 3536 L Xc9 X25 -19 64 -17 2283 3572 3 MP XPP X0 sg X2283 3572 mt 2347 3555 L X2347 3555 mt 2372 3536 L Xc17 X24 -24 64 -17 2308 3553 3 MP XPP X0 sg X2308 3553 mt 2372 3536 L X2372 3536 mt 2396 3512 L Xc17 X64 -17 24 -24 2308 3553 3 MP XPP X0 sg X2308 3553 mt 2332 3529 L X2332 3529 mt 2396 3512 L Xc19 X25 -8 63 -17 2323 3562 3 MP XPP X0 sg X2323 3562 mt 2386 3545 L X2386 3545 mt 2411 3537 L Xc19 X64 -18 24 -7 2323 3562 3 MP XPP X0 sg X2323 3562 mt 2347 3555 L X2347 3555 mt 2411 3537 L Xc20 X24 28 64 -21 2342 3536 3 MP XPP X0 sg X2342 3536 mt 2406 3515 L X2406 3515 mt 2430 3543 L Xc20 X64 -19 24 26 2342 3536 3 MP XPP X0 sg X2342 3536 mt 2366 3562 L X2366 3562 mt 2430 3543 L Xc22 X64 -17 24 40 2337 3773 3 MP XPP X0 sg X2337 3773 mt 2361 3813 L X2361 3813 mt 2425 3796 L Xc22 X24 41 64 -18 2337 3773 3 MP XPP X0 sg X2337 3773 mt 2401 3755 L X2401 3755 mt 2425 3796 L Xc31 X64 -17 24 45 2327 3617 3 MP XPP X0 sg X2327 3617 mt 2351 3662 L X2351 3662 mt 2415 3645 L Xc31 X24 45 64 -17 2327 3617 3 MP XPP X0 sg X2327 3617 mt 2391 3600 L X2391 3600 mt 2415 3645 L Xc29 X64 90 25 14 2190 3420 3 MP XPP X0 sg X2190 3420 mt 2215 3434 L X2215 3434 mt 2279 3524 L Xc29 X24 -119 64 90 2215 3434 3 MP XPP X0 sg X2215 3434 mt 2279 3524 L X2279 3524 mt 2303 3405 L Xc23 X24 21 64 -17 2249 3518 3 MP XPP X0 sg X2249 3518 mt 2313 3501 L X2313 3501 mt 2337 3522 L Xc23 X64 -17 24 21 2249 3518 3 MP XPP X0 sg X2249 3518 mt 2273 3539 L X2273 3539 mt 2337 3522 L Xc19 X25 17 63 -17 2210 3556 3 MP XPP X0 sg X2210 3556 mt 2273 3539 L X2273 3539 mt 2298 3556 L Xc31 X25 -19 64 -17 2268 3546 3 MP XPP X0 sg X2268 3546 mt 2332 3529 L X2332 3529 mt 2357 3510 L Xc31 X64 -19 25 -17 2268 3546 3 MP XPP X0 sg X2268 3546 mt 2293 3529 L X2293 3529 mt 2357 3510 L Xc20 X25 11 64 -21 2317 3525 3 MP XPP X0 sg X2317 3525 mt 2381 3504 L X2381 3504 mt 2406 3515 L Xc19 X64 -17 24 17 2210 3556 3 MP XPP X0 sg X2210 3556 mt 2234 3573 L X2234 3573 mt 2298 3556 L Xc17 X24 -24 64 -15 2244 3568 3 MP XPP X0 sg X2244 3568 mt 2308 3553 L X2308 3553 mt 2332 3529 L Xc17 X64 -17 24 -22 2244 3568 3 MP XPP X0 sg X2244 3568 mt 2268 3546 L X2268 3546 mt 2332 3529 L Xc20 X64 -21 25 11 2317 3525 3 MP XPP X0 sg X2317 3525 mt 2342 3536 L X2342 3536 mt 2406 3515 L Xc9 X64 -18 25 46 2312 3727 3 MP XPP X0 sg X2312 3727 mt 2337 3773 L X2337 3773 mt 2401 3755 L Xc9 X25 45 64 -17 2312 3727 3 MP XPP X0 sg X2312 3727 mt 2376 3710 L X2376 3710 mt 2401 3755 L Xc24 X64 -17 25 38 2302 3579 3 MP XPP X0 sg X2302 3579 mt 2327 3617 L X2327 3617 mt 2391 3600 L Xc24 X25 38 64 -17 2302 3579 3 MP XPP X0 sg X2302 3579 mt 2366 3562 L X2366 3562 mt 2391 3600 L Xc13 X25 34 64 -16 2297 3829 3 MP XPP X0 sg X2297 3829 mt 2361 3813 L X2361 3813 mt 2386 3847 L Xc13 X64 -14 25 32 2297 3829 3 MP XPP X0 sg X2297 3829 mt 2322 3861 L X2322 3861 mt 2386 3847 L Xc24 X64 -21 24 -4 2293 3529 3 MP XPP X0 sg X2293 3529 mt 2317 3525 L X2317 3525 mt 2381 3504 L Xc24 X24 -6 64 -19 2293 3529 3 MP XPP X0 sg X2293 3529 mt 2357 3510 L X2357 3510 mt 2381 3504 L Xc9 X64 -82 25 21 2288 3480 3 MP XPP X0 sg X2288 3480 mt 2313 3501 L X2313 3501 mt 2377 3419 L Xc9 X25 115 64 -176 2288 3480 3 MP XPP X0 sg X2288 3480 mt 2352 3304 L X2352 3304 mt 2377 3419 L Xc17 X25 48 63 -17 2288 3679 3 MP XPP X0 sg X2288 3679 mt 2351 3662 L X2351 3662 mt 2376 3710 L Xc17 X64 -17 24 48 2288 3679 3 MP XPP X0 sg X2288 3679 mt 2312 3727 L X2312 3727 mt 2376 3710 L Xc12 X64 -16 25 4 2170 3591 3 MP XPP X0 sg X2170 3591 mt 2195 3595 L X2195 3595 mt 2259 3579 L Xc12 X25 6 64 -18 2170 3591 3 MP XPP X0 sg X2170 3591 mt 2234 3573 L X2234 3573 mt 2259 3579 L Xc18 X25 -19 64 -14 2219 3586 3 MP XPP X0 sg X2219 3586 mt 2283 3572 L X2283 3572 mt 2308 3553 L Xc18 X64 -15 25 -18 2219 3586 3 MP XPP X0 sg X2219 3586 mt 2244 3568 L X2244 3568 mt 2308 3553 L Xc19 X24 -7 64 -17 2259 3579 3 MP XPP X0 sg X2259 3579 mt 2323 3562 L X2323 3562 mt 2347 3555 L Xc19 X64 -17 24 -7 2259 3579 3 MP XPP X0 sg X2259 3579 mt 2283 3572 L X2283 3572 mt 2347 3555 L Xc20 X64 -17 24 26 2278 3553 3 MP XPP X0 sg X2278 3553 mt 2302 3579 L X2302 3579 mt 2366 3562 L Xc20 X24 26 64 -17 2278 3553 3 MP XPP X0 sg X2278 3553 mt 2342 3536 L X2342 3536 mt 2366 3562 L Xc22 X24 40 64 -18 2273 3791 3 MP XPP X0 sg X2273 3791 mt 2337 3773 L X2337 3773 mt 2361 3813 L Xc22 X64 -16 24 38 2273 3791 3 MP XPP X0 sg X2273 3791 mt 2297 3829 L X2297 3829 mt 2361 3813 L Xc29 X64 -43 24 14 2215 3434 3 MP XPP X0 sg X2215 3434 mt 2239 3448 L X2239 3448 mt 2303 3405 L Xc18 X25 -101 64 -43 2239 3448 3 MP XPP X0 sg X2239 3448 mt 2303 3405 L X2303 3405 mt 2328 3304 L Xc18 X24 0 64 -159 2264 3463 3 MP XPP X0 sg X2264 3463 mt 2328 3304 L X2328 3304 mt 2352 3304 L Xc18 X64 -176 24 17 2264 3463 3 MP XPP X0 sg X2264 3463 mt 2288 3480 L X2288 3480 mt 2352 3304 L Xc31 X63 -17 25 45 2263 3634 3 MP XPP X0 sg X2263 3634 mt 2288 3679 L X2288 3679 mt 2351 3662 L Xc31 X24 45 64 -17 2263 3634 3 MP XPP X0 sg X2263 3634 mt 2327 3617 L X2327 3617 mt 2351 3662 L Xc19 X64 -18 24 14 2146 3577 3 MP XPP X0 sg X2146 3577 mt 2170 3591 L X2170 3591 mt 2234 3573 L Xc19 X24 17 64 -21 2146 3577 3 MP XPP X0 sg X2146 3577 mt 2210 3556 L X2210 3556 mt 2234 3573 L Xc17 X24 -22 64 -17 2180 3585 3 MP XPP X0 sg X2180 3585 mt 2244 3568 L X2244 3568 mt 2268 3546 L Xc17 X64 -17 24 -22 2180 3585 3 MP XPP X0 sg X2180 3585 mt 2204 3563 L X2204 3563 mt 2268 3546 L Xc23 X63 -17 25 21 2185 3535 3 MP XPP X0 sg X2185 3535 mt 2210 3556 L X2210 3556 mt 2273 3539 L Xc23 X24 21 64 -17 2185 3535 3 MP XPP X0 sg X2185 3535 mt 2249 3518 L X2249 3518 mt 2273 3539 L Xc31 X25 -17 64 -17 2204 3563 3 MP XPP X0 sg X2204 3563 mt 2268 3546 L X2268 3546 mt 2293 3529 L Xc31 X64 -18 25 -16 2204 3563 3 MP XPP X0 sg X2204 3563 mt 2229 3547 L X2229 3547 mt 2293 3529 L Xc20 X64 -17 25 11 2253 3542 3 MP XPP X0 sg X2253 3542 mt 2278 3553 L X2278 3553 mt 2342 3536 L Xc20 X25 11 64 -17 2253 3542 3 MP XPP X0 sg X2253 3542 mt 2317 3525 L X2317 3525 mt 2342 3536 L Xc9 X25 46 64 -19 2248 3746 3 MP XPP X0 sg X2248 3746 mt 2312 3727 L X2312 3727 mt 2337 3773 L Xc9 X64 -18 25 45 2248 3746 3 MP XPP X0 sg X2248 3746 mt 2273 3791 L X2273 3791 mt 2337 3773 L Xc18 X64 -159 25 15 2239 3448 3 MP XPP X0 sg X2239 3448 mt 2264 3463 L X2264 3463 mt 2328 3304 L Xc24 X64 -17 24 38 2239 3596 3 MP XPP X0 sg X2239 3596 mt 2263 3634 L X2263 3634 mt 2327 3617 L Xc24 X25 38 63 -17 2239 3596 3 MP XPP X0 sg X2239 3596 mt 2302 3579 L X2302 3579 mt 2327 3617 L Xc13 X64 -17 25 31 2233 3847 3 MP XPP X0 sg X2233 3847 mt 2258 3878 L X2258 3878 mt 2322 3861 L Xc13 X25 32 64 -18 2233 3847 3 MP XPP X0 sg X2233 3847 mt 2297 3829 L X2297 3829 mt 2322 3861 L Xc24 X24 -4 64 -18 2229 3547 3 MP XPP X0 sg X2229 3547 mt 2293 3529 L X2293 3529 mt 2317 3525 L Xc24 X64 -17 24 -5 2229 3547 3 MP XPP X0 sg X2229 3547 mt 2253 3542 L X2253 3542 mt 2317 3525 L Xc9 X64 -17 25 21 2224 3497 3 MP XPP X0 sg X2224 3497 mt 2249 3518 L X2249 3518 mt 2313 3501 L Xc9 X25 21 64 -17 2224 3497 3 MP XPP X0 sg X2224 3497 mt 2288 3480 L X2288 3480 mt 2313 3501 L Xc17 X24 48 64 -20 2224 3699 3 MP XPP X0 sg X2224 3699 mt 2288 3679 L X2288 3679 mt 2312 3727 L Xc17 X64 -19 24 47 2224 3699 3 MP XPP X0 sg X2224 3699 mt 2248 3746 L X2248 3746 mt 2312 3727 L Xc12 X64 -17 25 4 2106 3608 3 MP XPP X0 sg X2106 3608 mt 2131 3612 L X2131 3612 mt 2195 3595 L Xc12 X25 4 64 -17 2106 3608 3 MP XPP X0 sg X2106 3608 mt 2170 3591 L X2170 3591 mt 2195 3595 L Xc18 X64 -17 25 -18 2155 3603 3 MP XPP X0 sg X2155 3603 mt 2180 3585 L X2180 3585 mt 2244 3568 L Xc18 X25 -18 64 -17 2155 3603 3 MP XPP X0 sg X2155 3603 mt 2219 3586 L X2219 3586 mt 2244 3568 L Xc19 X24 -7 64 -16 2195 3595 3 MP XPP X0 sg X2195 3595 mt 2259 3579 L X2259 3579 mt 2283 3572 L Xc19 X64 -14 24 -9 2195 3595 3 MP XPP X0 sg X2195 3595 mt 2219 3586 L X2219 3586 mt 2283 3572 L Xc20 X63 -17 25 26 2214 3570 3 MP XPP X0 sg X2214 3570 mt 2239 3596 L X2239 3596 mt 2302 3579 L Xc20 X24 26 64 -17 2214 3570 3 MP XPP X0 sg X2214 3570 mt 2278 3553 L X2278 3553 mt 2302 3579 L Xc22 X24 38 64 -17 2209 3808 3 MP XPP X0 sg X2209 3808 mt 2273 3791 L X2273 3791 mt 2297 3829 L Xc22 X64 -18 24 39 2209 3808 3 MP XPP X0 sg X2209 3808 mt 2233 3847 L X2233 3847 mt 2297 3829 L Xc18 X64 -17 24 17 2200 3480 3 MP XPP X0 sg X2200 3480 mt 2224 3497 L X2224 3497 mt 2288 3480 L Xc18 X24 17 64 -17 2200 3480 3 MP XPP X0 sg X2200 3480 mt 2264 3463 L X2264 3463 mt 2288 3480 L Xc31 X25 45 64 -20 2199 3654 3 MP XPP X0 sg X2199 3654 mt 2263 3634 L X2263 3634 mt 2288 3679 L Xc31 X64 -20 25 45 2199 3654 3 MP XPP X0 sg X2199 3654 mt 2224 3699 L X2224 3699 mt 2288 3679 L Xc23 X25 21 64 -21 2121 3556 3 MP XPP X0 sg X2121 3556 mt 2185 3535 L X2185 3535 mt 2210 3556 L Xc23 X64 -21 25 21 2121 3556 3 MP XPP X0 sg X2121 3556 mt 2146 3577 L X2146 3577 mt 2210 3556 L Xc19 X24 14 64 -17 2082 3594 3 MP XPP X0 sg X2082 3594 mt 2146 3577 L X2146 3577 mt 2170 3591 L Xc31 X25 -16 64 -18 2140 3581 3 MP XPP X0 sg X2140 3581 mt 2204 3563 L X2204 3563 mt 2229 3547 L Xc31 X64 -17 25 -17 2140 3581 3 MP XPP X0 sg X2140 3581 mt 2165 3564 L X2165 3564 mt 2229 3547 L Xc20 X25 11 64 -17 2189 3559 3 MP XPP X0 sg X2189 3559 mt 2253 3542 L X2253 3542 mt 2278 3553 L Xc19 X64 -17 24 14 2082 3594 3 MP XPP X0 sg X2082 3594 mt 2106 3608 L X2106 3608 mt 2170 3591 L Xc17 X24 -22 64 -17 2116 3602 3 MP XPP X0 sg X2116 3602 mt 2180 3585 L X2180 3585 mt 2204 3563 L Xc17 X64 -18 24 -21 2116 3602 3 MP XPP X0 sg X2116 3602 mt 2140 3581 L X2140 3581 mt 2204 3563 L Xc20 X64 -17 25 11 2189 3559 3 MP XPP X0 sg X2189 3559 mt 2214 3570 L X2214 3570 mt 2278 3553 L Xc9 X25 45 64 -18 2184 3764 3 MP XPP X0 sg X2184 3764 mt 2248 3746 L X2248 3746 mt 2273 3791 L Xc9 X64 -17 25 44 2184 3764 3 MP XPP X0 sg X2184 3764 mt 2209 3808 L X2209 3808 mt 2273 3791 L Xc18 X25 15 64 -17 2175 3465 3 MP XPP X0 sg X2175 3465 mt 2239 3448 L X2239 3448 mt 2264 3463 L Xc18 X64 -17 25 15 2175 3465 3 MP XPP X0 sg X2175 3465 mt 2200 3480 L X2200 3480 mt 2264 3463 L Xc24 X24 38 64 -19 2175 3615 3 MP XPP X0 sg X2175 3615 mt 2239 3596 L X2239 3596 mt 2263 3634 L Xc24 X64 -20 24 39 2175 3615 3 MP XPP X0 sg X2175 3615 mt 2199 3654 L X2199 3654 mt 2263 3634 L Xc13 X64 -17 25 31 2169 3864 3 MP XPP X0 sg X2169 3864 mt 2194 3895 L X2194 3895 mt 2258 3878 L Xc13 X25 31 64 -17 2169 3864 3 MP XPP X0 sg X2169 3864 mt 2233 3847 L X2233 3847 mt 2258 3878 L Xc24 X24 -5 64 -17 2165 3564 3 MP XPP X0 sg X2165 3564 mt 2229 3547 L X2229 3547 mt 2253 3542 L Xc24 X64 -17 24 -5 2165 3564 3 MP XPP X0 sg X2165 3564 mt 2189 3559 L X2189 3559 mt 2253 3542 L Xc9 X64 -17 24 20 2161 3515 3 MP XPP X0 sg X2161 3515 mt 2185 3535 L X2185 3535 mt 2249 3518 L Xc9 X25 21 63 -18 2161 3515 3 MP XPP X0 sg X2161 3515 mt 2224 3497 L X2224 3497 mt 2249 3518 L Xc17 X24 47 64 -18 2160 3717 3 MP XPP X0 sg X2160 3717 mt 2224 3699 L X2224 3699 mt 2248 3746 L Xc17 X64 -18 24 47 2160 3717 3 MP XPP X0 sg X2160 3717 mt 2184 3764 L X2184 3764 mt 2248 3746 L Xc29 X24 14 64 -17 2151 3451 3 MP XPP X0 sg X2151 3451 mt 2215 3434 L X2215 3434 mt 2239 3448 L Xc29 X64 -17 24 14 2151 3451 3 MP XPP X0 sg X2151 3451 mt 2175 3465 L X2175 3465 mt 2239 3448 L Xc12 X64 -17 25 3 2042 3626 3 MP XPP X0 sg X2042 3626 mt 2067 3629 L X2067 3629 mt 2131 3612 L Xc12 X25 4 64 -18 2042 3626 3 MP XPP X0 sg X2042 3626 mt 2106 3608 L X2106 3608 mt 2131 3612 L Xc18 X64 -17 25 -19 2091 3621 3 MP XPP X0 sg X2091 3621 mt 2116 3602 L X2116 3602 mt 2180 3585 L Xc18 X25 -18 64 -18 2091 3621 3 MP XPP X0 sg X2091 3621 mt 2155 3603 L X2155 3603 mt 2180 3585 L Xc19 X24 -9 64 -17 2131 3612 3 MP XPP X0 sg X2131 3612 mt 2195 3595 L X2195 3595 mt 2219 3586 L Xc19 X64 -17 24 -9 2131 3612 3 MP XPP X0 sg X2131 3612 mt 2155 3603 L X2155 3603 mt 2219 3586 L Xc20 X64 -19 25 28 2150 3587 3 MP XPP X0 sg X2150 3587 mt 2175 3615 L X2175 3615 mt 2239 3596 L Xc20 X25 26 64 -17 2150 3587 3 MP XPP X0 sg X2150 3587 mt 2214 3570 L X2214 3570 mt 2239 3596 L Xc22 X64 -17 24 39 2145 3825 3 MP XPP X0 sg X2145 3825 mt 2169 3864 L X2169 3864 mt 2233 3847 L Xc22 X24 39 64 -17 2145 3825 3 MP XPP X0 sg X2145 3825 mt 2209 3808 L X2209 3808 mt 2233 3847 L Xc18 X24 17 64 -17 2136 3497 3 MP XPP X0 sg X2136 3497 mt 2200 3480 L X2200 3480 mt 2224 3497 L Xc18 X63 -18 25 18 2136 3497 3 MP XPP X0 sg X2136 3497 mt 2161 3515 L X2161 3515 mt 2224 3497 L Xc31 X25 45 64 -17 2135 3671 3 MP XPP X0 sg X2135 3671 mt 2199 3654 L X2199 3654 mt 2224 3699 L Xc31 X64 -18 25 46 2135 3671 3 MP XPP X0 sg X2135 3671 mt 2160 3717 L X2160 3717 mt 2224 3699 L Xc29 X64 -17 25 13 2126 3438 3 MP XPP X0 sg X2126 3438 mt 2151 3451 L X2151 3451 mt 2215 3434 L Xc29 X25 14 64 -18 2126 3438 3 MP XPP X0 sg X2126 3438 mt 2190 3420 L X2190 3420 mt 2215 3434 L Xc34 X25 433 64 -308 1945 3378 3 MP XPP X0 sg X1945 3378 mt 2009 3070 L X2009 3070 mt 2034 3503 L Xc34 X64 107 25 18 1945 3378 3 MP XPP X0 sg X1945 3378 mt 1970 3396 L X1970 3396 mt 2034 3503 L Xc13 X24 109 64 107 1970 3396 3 MP XPP X0 sg X1970 3396 mt 2034 3503 L X2034 3503 mt 2058 3612 L Xc13 X25 -78 64 205 1994 3407 3 MP XPP X0 sg X1994 3407 mt 2058 3612 L X2058 3612 mt 2083 3534 L Xc23 X25 21 64 -17 2057 3573 3 MP XPP X0 sg X2057 3573 mt 2121 3556 L X2121 3556 mt 2146 3577 L Xc13 X64 205 24 11 1970 3396 3 MP XPP X0 sg X1970 3396 mt 1994 3407 L X1994 3407 mt 2058 3612 L Xc23 X25 21 64 -17 1993 3590 3 MP XPP X0 sg X1993 3590 mt 2057 3573 L X2057 3573 mt 2082 3594 L Xc23 X64 -17 25 21 1993 3590 3 MP XPP X0 sg X1993 3590 mt 2018 3611 L X2018 3611 mt 2082 3594 L Xc19 X24 14 64 -17 2018 3611 3 MP XPP X0 sg X2018 3611 mt 2082 3594 L X2082 3594 mt 2106 3608 L Xc23 X64 -17 25 21 2057 3573 3 MP XPP X0 sg X2057 3573 mt 2082 3594 L X2082 3594 mt 2146 3577 L Xc31 X64 -15 24 -17 2077 3596 3 MP XPP X0 sg X2077 3596 mt 2101 3579 L X2101 3579 mt 2165 3564 L Xc31 X25 -17 63 -15 2077 3596 3 MP XPP X0 sg X2077 3596 mt 2140 3581 L X2140 3581 mt 2165 3564 L Xc68 X25 11 63 -16 2126 3575 3 MP XPP X0 sg X2126 3575 mt 2189 3559 L X2189 3559 mt 2214 3570 L Xc19 X64 -18 24 15 2018 3611 3 MP XPP X0 sg X2018 3611 mt 2042 3626 L X2042 3626 mt 2106 3608 L Xc17 X63 -15 25 -23 2052 3619 3 MP XPP X0 sg X2052 3619 mt 2077 3596 L X2077 3596 mt 2140 3581 L Xc17 X24 -21 64 -17 2052 3619 3 MP XPP X0 sg X2052 3619 mt 2116 3602 L X2116 3602 mt 2140 3581 L Xc68 X64 -17 24 12 2126 3575 3 MP XPP X0 sg X2126 3575 mt 2150 3587 L X2150 3587 mt 2214 3570 L Xc9 X64 -17 25 44 2120 3781 3 MP XPP X0 sg X2120 3781 mt 2145 3825 L X2145 3825 mt 2209 3808 L Xc9 X25 44 64 -17 2120 3781 3 MP XPP X0 sg X2120 3781 mt 2184 3764 L X2184 3764 mt 2209 3808 L Xc18 X24 127 64 -138 2117 3397 3 MP XPP X0 sg X2117 3397 mt 2181 3259 L X2181 3259 mt 2205 3386 L Xc18 X64 -15 24 4 2117 3397 3 MP XPP X0 sg X2117 3397 mt 2141 3401 L X2141 3401 mt 2205 3386 L Xc18 X64 -17 24 15 2112 3482 3 MP XPP X0 sg X2112 3482 mt 2136 3497 L X2136 3497 mt 2200 3480 L Xc18 X25 15 63 -17 2112 3482 3 MP XPP X0 sg X2112 3482 mt 2175 3465 L X2175 3465 mt 2200 3480 L Xc24 X24 39 64 -17 2111 3632 3 MP XPP X0 sg X2111 3632 mt 2175 3615 L X2175 3615 mt 2199 3654 L Xc24 X64 -17 24 39 2111 3632 3 MP XPP X0 sg X2111 3632 mt 2135 3671 L X2135 3671 mt 2199 3654 L Xc34 X25 31 64 -13 2105 3877 3 MP XPP X0 sg X2105 3877 mt 2169 3864 L X2169 3864 mt 2194 3895 L Xc34 X64 -13 25 31 2105 3877 3 MP XPP X0 sg X2105 3877 mt 2130 3908 L X2130 3908 mt 2194 3895 L Xc29 X24 11 64 -17 2102 3426 3 MP XPP X0 sg X2102 3426 mt 2166 3409 L X2166 3409 mt 2190 3420 L Xc29 X64 -18 24 12 2102 3426 3 MP XPP X0 sg X2102 3426 mt 2126 3438 L X2126 3438 mt 2190 3420 L Xc24 X24 -5 64 -15 2101 3579 3 MP XPP X0 sg X2101 3579 mt 2165 3564 L X2165 3564 mt 2189 3559 L Xc24 X63 -16 25 -4 2101 3579 3 MP XPP X0 sg X2101 3579 mt 2126 3575 L X2126 3575 mt 2189 3559 L Xc9 X24 20 64 -19 2097 3534 3 MP XPP X0 sg X2097 3534 mt 2161 3515 L X2161 3515 mt 2185 3535 L Xc9 X64 -21 24 22 2097 3534 3 MP XPP X0 sg X2097 3534 mt 2121 3556 L X2121 3556 mt 2185 3535 L Xc17 X64 -17 24 47 2096 3734 3 MP XPP X0 sg X2096 3734 mt 2120 3781 L X2120 3781 mt 2184 3764 L Xc17 X24 47 64 -17 2096 3734 3 MP XPP X0 sg X2096 3734 mt 2160 3717 L X2160 3717 mt 2184 3764 L Xc34 X24 -151 64 124 2019 3410 3 MP XPP X0 sg X2019 3410 mt 2083 3534 L X2083 3534 mt 2107 3383 L Xc34 X64 -25 24 -2 2019 3410 3 MP XPP X0 sg X2019 3410 mt 2043 3408 L X2043 3408 mt 2107 3383 L Xc22 X25 -131 64 -25 2043 3408 3 MP XPP X0 sg X2043 3408 mt 2107 3383 L X2107 3383 mt 2132 3252 L Xc23 X64 -138 25 -2 2092 3399 3 MP XPP X0 sg X2092 3399 mt 2117 3397 L X2117 3397 mt 2181 3259 L Xc23 X25 55 64 -195 2092 3399 3 MP XPP X0 sg X2092 3399 mt 2156 3204 L X2156 3204 mt 2181 3259 L Xc29 X24 14 64 -17 2087 3468 3 MP XPP X0 sg X2087 3468 mt 2151 3451 L X2151 3451 mt 2175 3465 L Xc29 X63 -17 25 14 2087 3468 3 MP XPP X0 sg X2087 3468 mt 2112 3482 L X2112 3482 mt 2175 3465 L Xc12 X25 3 64 -19 1978 3645 3 MP XPP X0 sg X1978 3645 mt 2042 3626 L X2042 3626 mt 2067 3629 L Xc12 X64 -19 25 3 1978 3645 3 MP XPP X0 sg X1978 3645 mt 2003 3648 L X2003 3648 mt 2067 3629 L Xc9 X64 -17 24 -20 2028 3639 3 MP XPP X0 sg X2028 3639 mt 2052 3619 L X2052 3619 mt 2116 3602 L Xc9 X25 -19 63 -18 2028 3639 3 MP XPP X0 sg X2028 3639 mt 2091 3621 L X2091 3621 mt 2116 3602 L Xc19 X24 -9 64 -17 2067 3629 3 MP XPP X0 sg X2067 3629 mt 2131 3612 L X2131 3612 mt 2155 3603 L Xc19 X64 -18 24 -8 2067 3629 3 MP XPP X0 sg X2067 3629 mt 2091 3621 L X2091 3621 mt 2155 3603 L Xc20 X64 -17 25 27 2086 3605 3 MP XPP X0 sg X2086 3605 mt 2111 3632 L X2111 3632 mt 2175 3615 L Xc20 X25 28 64 -18 2086 3605 3 MP XPP X0 sg X2086 3605 mt 2150 3587 L X2150 3587 mt 2175 3615 L Xc22 X24 39 64 -14 2081 3839 3 MP XPP X0 sg X2081 3839 mt 2145 3825 L X2145 3825 mt 2169 3864 L Xc22 X64 -13 24 38 2081 3839 3 MP XPP X0 sg X2081 3839 mt 2105 3877 L X2105 3877 mt 2169 3864 L Xc29 X25 8 64 -17 2077 3418 3 MP XPP X0 sg X2077 3418 mt 2141 3401 L X2141 3401 mt 2166 3409 L Xc29 X64 -17 25 8 2077 3418 3 MP XPP X0 sg X2077 3418 mt 2102 3426 L X2102 3426 mt 2166 3409 L Xc18 X64 -19 25 21 2072 3513 3 MP XPP X0 sg X2072 3513 mt 2097 3534 L X2097 3534 mt 2161 3515 L Xc18 X25 18 64 -16 2072 3513 3 MP XPP X0 sg X2072 3513 mt 2136 3497 L X2136 3497 mt 2161 3515 L Xc31 X64 -17 25 46 2071 3688 3 MP XPP X0 sg X2071 3688 mt 2096 3734 L X2096 3734 mt 2160 3717 L Xc31 X25 46 64 -17 2071 3688 3 MP XPP X0 sg X2071 3688 mt 2135 3671 L X2135 3671 mt 2160 3717 L Xc19 X24 -48 64 -151 2068 3403 3 MP XPP X0 sg X2068 3403 mt 2132 3252 L X2132 3252 mt 2156 3204 L Xc19 X64 -195 24 -4 2068 3403 3 MP XPP X0 sg X2068 3403 mt 2092 3399 L X2092 3399 mt 2156 3204 L Xc29 X25 13 64 -17 2062 3455 3 MP XPP X0 sg X2062 3455 mt 2126 3438 L X2126 3438 mt 2151 3451 L Xc29 X64 -17 25 13 2062 3455 3 MP XPP X0 sg X2062 3455 mt 2087 3468 L X2087 3468 mt 2151 3451 L Xc19 X24 15 64 -19 1954 3630 3 MP XPP X0 sg X1954 3630 mt 2018 3611 L X2018 3611 mt 2042 3626 L Xc31 X24 -17 64 -17 2013 3613 3 MP XPP X0 sg X2013 3613 mt 2077 3596 L X2077 3596 mt 2101 3579 L Xc23 X64 -19 25 23 1929 3607 3 MP XPP X0 sg X1929 3607 mt 1954 3630 L X1954 3630 mt 2018 3611 L Xc23 X25 21 64 -17 1929 3607 3 MP XPP X0 sg X1929 3607 mt 1993 3590 L X1993 3590 mt 2018 3611 L Xc31 X64 -18 24 -16 2013 3613 3 MP XPP X0 sg X2013 3613 mt 2037 3597 L X2037 3597 mt 2101 3579 L Xc68 X24 12 64 -18 2062 3593 3 MP XPP X0 sg X2062 3593 mt 2126 3575 L X2126 3575 mt 2150 3587 L Xc19 X64 -19 24 15 1954 3630 3 MP XPP X0 sg X1954 3630 mt 1978 3645 L X1978 3645 mt 2042 3626 L Xc17 X25 -23 64 -17 1988 3636 3 MP XPP X0 sg X1988 3636 mt 2052 3619 L X2052 3619 mt 2077 3596 L Xc17 X64 -17 25 -23 1988 3636 3 MP XPP X0 sg X1988 3636 mt 2013 3613 L X2013 3613 mt 2077 3596 L Xc68 X64 -18 24 12 2062 3593 3 MP XPP X0 sg X2062 3593 mt 2086 3605 L X2086 3605 mt 2150 3587 L Xc9 X25 44 64 -15 2056 3796 3 MP XPP X0 sg X2056 3796 mt 2120 3781 L X2120 3781 mt 2145 3825 L Xc9 X64 -14 25 43 2056 3796 3 MP XPP X0 sg X2056 3796 mt 2081 3839 L X2081 3839 mt 2145 3825 L Xc18 X24 4 64 -18 2053 3415 3 MP XPP X0 sg X2053 3415 mt 2117 3397 L X2117 3397 mt 2141 3401 L Xc18 X64 -17 24 3 2053 3415 3 MP XPP X0 sg X2053 3415 mt 2077 3418 L X2077 3418 mt 2141 3401 L Xc13 X64 124 25 3 1994 3407 3 MP XPP X0 sg X1994 3407 mt 2019 3410 L X2019 3410 mt 2083 3534 L Xc29 X64 -16 24 17 2048 3496 3 MP XPP X0 sg X2048 3496 mt 2072 3513 L X2072 3513 mt 2136 3497 L Xc29 X24 15 64 -14 2048 3496 3 MP XPP X0 sg X2048 3496 mt 2112 3482 L X2112 3482 mt 2136 3497 L Xc24 X24 39 64 -17 2047 3649 3 MP XPP X0 sg X2047 3649 mt 2111 3632 L X2111 3632 mt 2135 3671 L Xc24 X64 -17 24 39 2047 3649 3 MP XPP X0 sg X2047 3649 mt 2071 3688 L X2071 3688 mt 2135 3671 L Xc22 X64 -151 25 -5 2043 3408 3 MP XPP X0 sg X2043 3408 mt 2068 3403 L X2068 3403 mt 2132 3252 L Xc34 X25 31 63 -17 2042 3894 3 MP XPP X0 sg X2042 3894 mt 2105 3877 L X2105 3877 mt 2130 3908 L Xc34 X64 -17 24 31 2042 3894 3 MP XPP X0 sg X2042 3894 mt 2066 3925 L X2066 3925 mt 2130 3908 L Xc29 X64 -17 24 12 2038 3443 3 MP XPP X0 sg X2038 3443 mt 2062 3455 L X2062 3455 mt 2126 3438 L Xc29 X24 12 64 -17 2038 3443 3 MP XPP X0 sg X2038 3443 mt 2102 3426 L X2102 3426 mt 2126 3438 L Xc24 X25 -4 64 -18 2037 3597 3 MP XPP X0 sg X2037 3597 mt 2101 3579 L X2101 3579 mt 2126 3575 L Xc24 X64 -18 25 -4 2037 3597 3 MP XPP X0 sg X2037 3597 mt 2062 3593 L X2062 3593 mt 2126 3575 L Xc9 X24 22 64 -17 2033 3551 3 MP XPP X0 sg X2033 3551 mt 2097 3534 L X2097 3534 mt 2121 3556 L Xc9 X64 -17 24 22 2033 3551 3 MP XPP X0 sg X2033 3551 mt 2057 3573 L X2057 3573 mt 2121 3556 L Xc17 X24 47 64 -17 2032 3751 3 MP XPP X0 sg X2032 3751 mt 2096 3734 L X2096 3734 mt 2120 3781 L Xc17 X64 -15 24 45 2032 3751 3 MP XPP X0 sg X2032 3751 mt 2056 3796 L X2056 3796 mt 2120 3781 L Xc23 X25 -2 64 -17 2028 3416 3 MP XPP X0 sg X2028 3416 mt 2092 3399 L X2092 3399 mt 2117 3397 L Xc23 X64 -18 25 -1 2028 3416 3 MP XPP X0 sg X2028 3416 mt 2053 3415 L X2053 3415 mt 2117 3397 L Xc29 X64 -14 25 14 2023 3482 3 MP XPP X0 sg X2023 3482 mt 2048 3496 L X2048 3496 mt 2112 3482 L Xc29 X25 14 64 -14 2023 3482 3 MP XPP X0 sg X2023 3482 mt 2087 3468 L X2087 3468 mt 2112 3482 L Xc19 X24 15 64 -17 1890 3647 3 MP XPP X0 sg X1890 3647 mt 1954 3630 L X1954 3630 mt 1978 3645 L Xc19 X63 -17 25 15 1890 3647 3 MP XPP X0 sg X1890 3647 mt 1915 3662 L X1915 3662 mt 1978 3645 L Xc12 X25 3 63 -17 1915 3662 3 MP XPP X0 sg X1915 3662 mt 1978 3645 L X1978 3645 mt 2003 3648 L Xc12 X64 -18 24 4 1915 3662 3 MP XPP X0 sg X1915 3662 mt 1939 3666 L X1939 3666 mt 2003 3648 L Xc9 X64 -17 24 -20 1964 3656 3 MP XPP X0 sg X1964 3656 mt 1988 3636 L X1988 3636 mt 2052 3619 L Xc9 X24 -20 64 -17 1964 3656 3 MP XPP X0 sg X1964 3656 mt 2028 3639 L X2028 3639 mt 2052 3619 L Xc19 X63 -18 25 -9 2003 3648 3 MP XPP X0 sg X2003 3648 mt 2028 3639 L X2028 3639 mt 2091 3621 L Xc19 X24 -8 64 -19 2003 3648 3 MP XPP X0 sg X2003 3648 mt 2067 3629 L X2067 3629 mt 2091 3621 L Xc20 X25 27 64 -17 2022 3622 3 MP XPP X0 sg X2022 3622 mt 2086 3605 L X2086 3605 mt 2111 3632 L Xc20 X64 -17 25 27 2022 3622 3 MP XPP X0 sg X2022 3622 mt 2047 3649 L X2047 3649 mt 2111 3632 L Xc22 X24 38 64 -17 2017 3856 3 MP XPP X0 sg X2017 3856 mt 2081 3839 L X2081 3839 mt 2105 3877 L Xc22 X63 -17 25 38 2017 3856 3 MP XPP X0 sg X2017 3856 mt 2042 3894 L X2042 3894 mt 2105 3877 L Xc29 X25 8 64 -17 2013 3435 3 MP XPP X0 sg X2013 3435 mt 2077 3418 L X2077 3418 mt 2102 3426 L Xc29 X64 -17 25 8 2013 3435 3 MP XPP X0 sg X2013 3435 mt 2038 3443 L X2038 3443 mt 2102 3426 L Xc18 X64 -17 25 20 2008 3531 3 MP XPP X0 sg X2008 3531 mt 2033 3551 L X2033 3551 mt 2097 3534 L Xc18 X25 21 64 -18 2008 3531 3 MP XPP X0 sg X2008 3531 mt 2072 3513 L X2072 3513 mt 2097 3534 L Xc25 X64 -17 25 44 2007 3707 3 MP XPP X0 sg X2007 3707 mt 2032 3751 L X2032 3751 mt 2096 3734 L Xc25 X25 46 64 -19 2007 3707 3 MP XPP X0 sg X2007 3707 mt 2071 3688 L X2071 3688 mt 2096 3734 L Xc19 X64 -17 24 -5 2004 3421 3 MP XPP X0 sg X2004 3421 mt 2028 3416 L X2028 3416 mt 2092 3399 L Xc19 X24 -4 64 -18 2004 3421 3 MP XPP X0 sg X2004 3421 mt 2068 3403 L X2068 3403 mt 2092 3399 L Xc29 X64 -14 24 11 1999 3471 3 MP XPP X0 sg X1999 3471 mt 2023 3482 L X2023 3482 mt 2087 3468 L Xc29 X25 13 63 -16 1999 3471 3 MP XPP X0 sg X1999 3471 mt 2062 3455 L X2062 3455 mt 2087 3468 L Xc23 X25 23 63 -18 1866 3625 3 MP XPP X0 sg X1866 3625 mt 1929 3607 L X1929 3607 mt 1954 3630 L Xc23 X64 -17 24 22 1866 3625 3 MP XPP X0 sg X1866 3625 mt 1890 3647 L X1890 3647 mt 1954 3630 L Xc31 X64 -17 24 -17 1949 3631 3 MP XPP X0 sg X1949 3631 mt 1973 3614 L X1973 3614 mt 2037 3597 L Xc31 X24 -16 64 -18 1949 3631 3 MP XPP X0 sg X1949 3631 mt 2013 3613 L X2013 3613 mt 2037 3597 L Xc68 X24 12 64 -17 1998 3610 3 MP XPP X0 sg X1998 3610 mt 2062 3593 L X2062 3593 mt 2086 3605 L Xc17 X64 -18 25 -22 1924 3653 3 MP XPP X0 sg X1924 3653 mt 1949 3631 L X1949 3631 mt 2013 3613 L Xc17 X25 -23 64 -17 1924 3653 3 MP XPP X0 sg X1924 3653 mt 1988 3636 L X1988 3636 mt 2013 3613 L Xc68 X64 -17 24 12 1998 3610 3 MP XPP X0 sg X1998 3610 mt 2022 3622 L X2022 3622 mt 2086 3605 L Xc9 X64 -17 24 42 1993 3814 3 MP XPP X0 sg X1993 3814 mt 2017 3856 L X2017 3856 mt 2081 3839 L Xc9 X25 43 63 -18 1993 3814 3 MP XPP X0 sg X1993 3814 mt 2056 3796 L X2056 3796 mt 2081 3839 L Xc18 X24 3 64 -17 1989 3432 3 MP XPP X0 sg X1989 3432 mt 2053 3415 L X2053 3415 mt 2077 3418 L Xc18 X64 -17 24 3 1989 3432 3 MP XPP X0 sg X1989 3432 mt 2013 3435 L X2013 3435 mt 2077 3418 L Xc29 X64 -18 24 17 1984 3514 3 MP XPP X0 sg X1984 3514 mt 2008 3531 L X2008 3531 mt 2072 3513 L Xc29 X24 17 64 -18 1984 3514 3 MP XPP X0 sg X1984 3514 mt 2048 3496 L X2048 3496 mt 2072 3513 L Xc32 X64 -19 24 38 1983 3669 3 MP XPP X0 sg X1983 3669 mt 2007 3707 L X2007 3707 mt 2071 3688 L Xc32 X24 39 64 -20 1983 3669 3 MP XPP X0 sg X1983 3669 mt 2047 3649 L X2047 3649 mt 2071 3688 L Xc22 X64 -18 25 -4 1979 3425 3 MP XPP X0 sg X1979 3425 mt 2004 3421 L X2004 3421 mt 2068 3403 L Xc22 X25 -5 64 -17 1979 3425 3 MP XPP X0 sg X1979 3425 mt 2043 3408 L X2043 3408 mt 2068 3403 L Xc22 X64 8 24 29 1978 3888 3 MP XPP X0 sg X1978 3888 mt 2002 3917 L X2002 3917 mt 2066 3925 L Xc22 X24 31 64 6 1978 3888 3 MP XPP X0 sg X1978 3888 mt 2042 3894 L X2042 3894 mt 2066 3925 L Xc29 X63 -16 25 9 1974 3462 3 MP XPP X0 sg X1974 3462 mt 1999 3471 L X1999 3471 mt 2062 3455 L Xc29 X24 12 64 -19 1974 3462 3 MP XPP X0 sg X1974 3462 mt 2038 3443 L X2038 3443 mt 2062 3455 L Xc24 X64 -17 25 -4 1973 3614 3 MP XPP X0 sg X1973 3614 mt 1998 3610 L X1998 3610 mt 2062 3593 L Xc24 X25 -4 64 -17 1973 3614 3 MP XPP X0 sg X1973 3614 mt 2037 3597 L X2037 3597 mt 2062 3593 L Xc9 X24 22 64 -17 1969 3568 3 MP XPP X0 sg X1969 3568 mt 2033 3551 L X2033 3551 mt 2057 3573 L Xc9 X64 -17 24 22 1969 3568 3 MP XPP X0 sg X1969 3568 mt 1993 3590 L X1993 3590 mt 2057 3573 L Xc17 X63 -18 25 46 1968 3768 3 MP XPP X0 sg X1968 3768 mt 1993 3814 L X1993 3814 mt 2056 3796 L Xc17 X24 45 64 -17 1968 3768 3 MP XPP X0 sg X1968 3768 mt 2032 3751 L X2032 3751 mt 2056 3796 L Xc23 X64 -17 25 -2 1964 3434 3 MP XPP X0 sg X1964 3434 mt 1989 3432 L X1989 3432 mt 2053 3415 L Xc23 X25 -1 64 -18 1964 3434 3 MP XPP X0 sg X1964 3434 mt 2028 3416 L X2028 3416 mt 2053 3415 L Xc29 X25 14 64 -18 1959 3500 3 MP XPP X0 sg X1959 3500 mt 2023 3482 L X2023 3482 mt 2048 3496 L Xc29 X64 -18 25 14 1959 3500 3 MP XPP X0 sg X1959 3500 mt 1984 3514 L X1984 3514 mt 2048 3496 L Xc12 X24 4 64 -17 1851 3679 3 MP XPP X0 sg X1851 3679 mt 1915 3662 L X1915 3662 mt 1939 3666 L Xc12 X64 -17 24 4 1851 3679 3 MP XPP X0 sg X1851 3679 mt 1875 3683 L X1875 3683 mt 1939 3666 L Xc9 X24 -20 64 -17 1900 3673 3 MP XPP X0 sg X1900 3673 mt 1964 3656 L X1964 3656 mt 1988 3636 L Xc19 X25 15 64 -17 1826 3664 3 MP XPP X0 sg X1826 3664 mt 1890 3647 L X1890 3647 mt 1915 3662 L Xc19 X64 -17 25 15 1826 3664 3 MP XPP X0 sg X1826 3664 mt 1851 3679 L X1851 3679 mt 1915 3662 L Xc9 X64 -17 24 -20 1900 3673 3 MP XPP X0 sg X1900 3673 mt 1924 3653 L X1924 3653 mt 1988 3636 L Xc19 X64 -17 25 -10 1939 3666 3 MP XPP X0 sg X1939 3666 mt 1964 3656 L X1964 3656 mt 2028 3639 L Xc19 X25 -9 64 -18 1939 3666 3 MP XPP X0 sg X1939 3666 mt 2003 3648 L X2003 3648 mt 2028 3639 L Xc20 X25 27 64 -19 1958 3641 3 MP XPP X0 sg X1958 3641 mt 2022 3622 L X2022 3622 mt 2047 3649 L Xc20 X64 -20 25 28 1958 3641 3 MP XPP X0 sg X1958 3641 mt 1983 3669 L X1983 3669 mt 2047 3649 L Xc34 X24 -2 64 -17 1955 3427 3 MP XPP X0 sg X1955 3427 mt 2019 3410 L X2019 3410 mt 2043 3408 L Xc34 X64 -17 24 -2 1955 3427 3 MP XPP X0 sg X1955 3427 mt 1979 3425 L X1979 3425 mt 2043 3408 L Xc23 X64 6 25 34 1953 3854 3 MP XPP X0 sg X1953 3854 mt 1978 3888 L X1978 3888 mt 2042 3894 L Xc23 X25 38 64 2 1953 3854 3 MP XPP X0 sg X1953 3854 mt 2017 3856 L X2017 3856 mt 2042 3894 L Xc18 X64 -19 24 6 1950 3456 3 MP XPP X0 sg X1950 3456 mt 1974 3462 L X1974 3462 mt 2038 3443 L Xc18 X25 8 63 -21 1950 3456 3 MP XPP X0 sg X1950 3456 mt 2013 3435 L X2013 3435 mt 2038 3443 L Xc18 X25 20 64 -17 1944 3548 3 MP XPP X0 sg X1944 3548 mt 2008 3531 L X2008 3531 mt 2033 3551 L Xc18 X64 -17 25 20 1944 3548 3 MP XPP X0 sg X1944 3548 mt 1969 3568 L X1969 3568 mt 2033 3551 L Xc25 X64 -17 25 44 1943 3724 3 MP XPP X0 sg X1943 3724 mt 1968 3768 L X1968 3768 mt 2032 3751 L Xc25 X25 44 64 -17 1943 3724 3 MP XPP X0 sg X1943 3724 mt 2007 3707 L X2007 3707 mt 2032 3751 L Xc19 X64 -18 24 -4 1940 3438 3 MP XPP X0 sg X1940 3438 mt 1964 3434 L X1964 3434 mt 2028 3416 L Xc19 X24 -5 64 -17 1940 3438 3 MP XPP X0 sg X1940 3438 mt 2004 3421 L X2004 3421 mt 2028 3416 L X Xgr X1613 2735 mt X(LSQR solutions) s Xgs 898 2830 2260 1783 MR c np Xc29 X64 -18 24 12 1935 3488 3 MP XPP X0 sg X1935 3488 mt 1959 3500 L X1959 3500 mt 2023 3482 L Xc29 X24 11 64 -17 1935 3488 3 MP XPP X0 sg X1935 3488 mt 1999 3471 L X1999 3471 mt 2023 3482 L Xc23 X24 22 64 -17 1802 3642 3 MP XPP X0 sg X1802 3642 mt 1866 3625 L X1866 3625 mt 1890 3647 L Xc23 X64 -17 24 22 1802 3642 3 MP XPP X0 sg X1802 3642 mt 1826 3664 L X1826 3664 mt 1890 3647 L Xc31 X24 -17 64 -16 1885 3647 3 MP XPP X0 sg X1885 3647 mt 1949 3631 L X1949 3631 mt 1973 3614 L Xc31 X64 -17 24 -16 1885 3647 3 MP XPP X0 sg X1885 3647 mt 1909 3631 L X1909 3631 mt 1973 3614 L Xc20 X24 12 64 -19 1934 3629 3 MP XPP X0 sg X1934 3629 mt 1998 3610 L X1998 3610 mt 2022 3622 L Xc17 X25 -22 64 -16 1860 3669 3 MP XPP X0 sg X1860 3669 mt 1924 3653 L X1924 3653 mt 1949 3631 L Xc17 X64 -16 25 -22 1860 3669 3 MP XPP X0 sg X1860 3669 mt 1885 3647 L X1885 3647 mt 1949 3631 L Xc20 X64 -19 24 12 1934 3629 3 MP XPP X0 sg X1934 3629 mt 1958 3641 L X1958 3641 mt 2022 3622 L Xc13 X25 3 64 -17 1930 3424 3 MP XPP X0 sg X1930 3424 mt 1994 3407 L X1994 3407 mt 2019 3410 L Xc13 X64 -17 25 3 1930 3424 3 MP XPP X0 sg X1930 3424 mt 1955 3427 L X1955 3427 mt 2019 3410 L Xc29 X24 42 64 -3 1929 3817 3 MP XPP X0 sg X1929 3817 mt 1993 3814 L X1993 3814 mt 2017 3856 L Xc29 X64 2 24 37 1929 3817 3 MP XPP X0 sg X1929 3817 mt 1953 3854 L X1953 3854 mt 2017 3856 L Xc9 X24 3 64 -21 1925 3453 3 MP XPP X0 sg X1925 3453 mt 1989 3432 L X1989 3432 mt 2013 3435 L Xc9 X63 -21 25 3 1925 3453 3 MP XPP X0 sg X1925 3453 mt 1950 3456 L X1950 3456 mt 2013 3435 L Xc29 X24 17 64 -17 1920 3531 3 MP XPP X0 sg X1920 3531 mt 1984 3514 L X1984 3514 mt 2008 3531 L Xc29 X64 -17 24 17 1920 3531 3 MP XPP X0 sg X1920 3531 mt 1944 3548 L X1944 3548 mt 2008 3531 L Xc32 X24 38 64 -17 1919 3686 3 MP XPP X0 sg X1919 3686 mt 1983 3669 L X1983 3669 mt 2007 3707 L Xc32 X64 -17 24 38 1919 3686 3 MP XPP X0 sg X1919 3686 mt 1943 3724 L X1943 3724 mt 2007 3707 L Xc22 X25 -4 64 -17 1915 3442 3 MP XPP X0 sg X1915 3442 mt 1979 3425 L X1979 3425 mt 2004 3421 L Xc22 X64 -17 25 -4 1915 3442 3 MP XPP X0 sg X1915 3442 mt 1940 3438 L X1940 3438 mt 2004 3421 L Xc12 X24 29 64 -10 1914 3898 3 MP XPP X0 sg X1914 3898 mt 1978 3888 L X1978 3888 mt 2002 3917 L Xc12 X64 -6 24 25 1914 3898 3 MP XPP X0 sg X1914 3898 mt 1938 3923 L X1938 3923 mt 2002 3917 L Xc29 X64 -17 25 9 1910 3479 3 MP XPP X0 sg X1910 3479 mt 1935 3488 L X1935 3488 mt 1999 3471 L Xc29 X25 9 64 -17 1910 3479 3 MP XPP X0 sg X1910 3479 mt 1974 3462 L X1974 3462 mt 1999 3471 L Xc24 X64 -19 25 -2 1909 3631 3 MP XPP X0 sg X1909 3631 mt 1934 3629 L X1934 3629 mt 1998 3610 L Xc24 X25 -4 64 -17 1909 3631 3 MP XPP X0 sg X1909 3631 mt 1973 3614 L X1973 3614 mt 1998 3610 L Xc13 X24 11 64 -18 1906 3414 3 MP XPP X0 sg X1906 3414 mt 1970 3396 L X1970 3396 mt 1994 3407 L Xc13 X64 -17 24 10 1906 3414 3 MP XPP X0 sg X1906 3414 mt 1930 3424 L X1930 3424 mt 1994 3407 L Xc9 X24 22 64 -16 1905 3584 3 MP XPP X0 sg X1905 3584 mt 1969 3568 L X1969 3568 mt 1993 3590 L Xc9 X64 -17 24 23 1905 3584 3 MP XPP X0 sg X1905 3584 mt 1929 3607 L X1929 3607 mt 1993 3590 L Xc30 X64 -3 25 38 1904 3779 3 MP XPP X0 sg X1904 3779 mt 1929 3817 L X1929 3817 mt 1993 3814 L Xc30 X25 46 64 -11 1904 3779 3 MP XPP X0 sg X1904 3779 mt 1968 3768 L X1968 3768 mt 1993 3814 L Xc23 X64 -21 25 0 1900 3453 3 MP XPP X0 sg X1900 3453 mt 1925 3453 L X1925 3453 mt 1989 3432 L Xc23 X25 -2 64 -19 1900 3453 3 MP XPP X0 sg X1900 3453 mt 1964 3434 L X1964 3434 mt 1989 3432 L Xc29 X25 14 64 -17 1895 3517 3 MP XPP X0 sg X1895 3517 mt 1959 3500 L X1959 3500 mt 1984 3514 L Xc29 X64 -17 25 14 1895 3517 3 MP XPP X0 sg X1895 3517 mt 1920 3531 L X1920 3531 mt 1984 3514 L Xc12 X24 4 64 -19 1787 3698 3 MP XPP X0 sg X1787 3698 mt 1851 3679 L X1851 3679 mt 1875 3683 L Xc18 X24 -20 64 -16 1836 3689 3 MP XPP X0 sg X1836 3689 mt 1900 3673 L X1900 3673 mt 1924 3653 L Xc19 X64 -19 25 15 1762 3683 3 MP XPP X0 sg X1762 3683 mt 1787 3698 L X1787 3698 mt 1851 3679 L Xc19 X25 15 64 -19 1762 3683 3 MP XPP X0 sg X1762 3683 mt 1826 3664 L X1826 3664 mt 1851 3679 L Xc18 X64 -16 24 -20 1836 3689 3 MP XPP X0 sg X1836 3689 mt 1860 3669 L X1860 3669 mt 1924 3653 L Xc19 X25 -10 64 -17 1875 3683 3 MP XPP X0 sg X1875 3683 mt 1939 3666 L X1939 3666 mt 1964 3656 L Xc19 X64 -17 25 -10 1875 3683 3 MP XPP X0 sg X1875 3683 mt 1900 3673 L X1900 3673 mt 1964 3656 L Xc20 X64 -17 25 27 1894 3659 3 MP XPP X0 sg X1894 3659 mt 1919 3686 L X1919 3686 mt 1983 3669 L Xc20 X25 28 64 -18 1894 3659 3 MP XPP X0 sg X1894 3659 mt 1958 3641 L X1958 3641 mt 1983 3669 L Xc34 X64 -17 24 -2 1891 3444 3 MP XPP X0 sg X1891 3444 mt 1915 3442 L X1915 3442 mt 1979 3425 L Xc34 X24 -2 64 -17 1891 3444 3 MP XPP X0 sg X1891 3444 mt 1955 3427 L X1955 3427 mt 1979 3425 L Xc23 X25 34 64 -17 1889 3871 3 MP XPP X0 sg X1889 3871 mt 1953 3854 L X1953 3854 mt 1978 3888 L Xc23 X64 -10 25 27 1889 3871 3 MP XPP X0 sg X1889 3871 mt 1914 3898 L X1914 3898 mt 1978 3888 L Xc18 X64 -17 24 6 1886 3473 3 MP XPP X0 sg X1886 3473 mt 1910 3479 L X1910 3479 mt 1974 3462 L Xc18 X24 6 64 -17 1886 3473 3 MP XPP X0 sg X1886 3473 mt 1950 3456 L X1950 3456 mt 1974 3462 L Xc34 X25 18 64 -18 1881 3396 3 MP XPP X0 sg X1881 3396 mt 1945 3378 L X1945 3378 mt 1970 3396 L Xc34 X64 -18 25 18 1881 3396 3 MP XPP X0 sg X1881 3396 mt 1906 3414 L X1906 3414 mt 1970 3396 L Xc18 X64 -16 25 21 1880 3563 3 MP XPP X0 sg X1880 3563 mt 1905 3584 L X1905 3584 mt 1969 3568 L Xc18 X25 20 64 -15 1880 3563 3 MP XPP X0 sg X1880 3563 mt 1944 3548 L X1944 3548 mt 1969 3568 L Xc25 X64 -11 24 37 1880 3742 3 MP XPP X0 sg X1880 3742 mt 1904 3779 L X1904 3779 mt 1968 3768 L Xc25 X25 44 63 -18 1880 3742 3 MP XPP X0 sg X1880 3742 mt 1943 3724 L X1943 3724 mt 1968 3768 L Xc19 X64 -19 24 -1 1876 3454 3 MP XPP X0 sg X1876 3454 mt 1900 3453 L X1900 3453 mt 1964 3434 L Xc19 X24 -4 64 -16 1876 3454 3 MP XPP X0 sg X1876 3454 mt 1940 3438 L X1940 3438 mt 1964 3434 L Xc29 X64 -17 24 12 1871 3505 3 MP XPP X0 sg X1871 3505 mt 1895 3517 L X1895 3517 mt 1959 3500 L Xc29 X24 12 64 -17 1871 3505 3 MP XPP X0 sg X1871 3505 mt 1935 3488 L X1935 3488 mt 1959 3500 L Xc23 X64 -19 24 23 1738 3660 3 MP XPP X0 sg X1738 3660 mt 1762 3683 L X1762 3683 mt 1826 3664 L Xc23 X24 22 64 -18 1738 3660 3 MP XPP X0 sg X1738 3660 mt 1802 3642 L X1802 3642 mt 1826 3664 L Xc17 X64 -17 25 -22 1796 3686 3 MP XPP X0 sg X1796 3686 mt 1821 3664 L X1821 3664 mt 1885 3647 L Xc17 X25 -22 64 -17 1796 3686 3 MP XPP X0 sg X1796 3686 mt 1860 3669 L X1860 3669 mt 1885 3647 L Xc31 X64 -18 24 -15 1821 3664 3 MP XPP X0 sg X1821 3664 mt 1845 3649 L X1845 3649 mt 1909 3631 L Xc31 X24 -16 64 -17 1821 3664 3 MP XPP X0 sg X1821 3664 mt 1885 3647 L X1885 3647 mt 1909 3631 L Xc20 X64 -18 24 13 1870 3646 3 MP XPP X0 sg X1870 3646 mt 1894 3659 L X1894 3659 mt 1958 3641 L Xc20 X24 12 64 -17 1870 3646 3 MP XPP X0 sg X1870 3646 mt 1934 3629 L X1934 3629 mt 1958 3641 L Xc13 X25 3 64 -17 1866 3441 3 MP XPP X0 sg X1866 3441 mt 1930 3424 L X1930 3424 mt 1955 3427 L Xc13 X64 -17 25 3 1866 3441 3 MP XPP X0 sg X1866 3441 mt 1891 3444 L X1891 3444 mt 1955 3427 L Xc18 X64 -17 24 31 1865 3840 3 MP XPP X0 sg X1865 3840 mt 1889 3871 L X1889 3871 mt 1953 3854 L Xc18 X24 37 64 -23 1865 3840 3 MP XPP X0 sg X1865 3840 mt 1929 3817 L X1929 3817 mt 1953 3854 L Xc9 X25 3 64 -18 1861 3471 3 MP XPP X0 sg X1861 3471 mt 1925 3453 L X1925 3453 mt 1950 3456 L Xc9 X64 -17 25 2 1861 3471 3 MP XPP X0 sg X1861 3471 mt 1886 3473 L X1886 3473 mt 1950 3456 L Xc29 X24 17 64 -16 1856 3547 3 MP XPP X0 sg X1856 3547 mt 1920 3531 L X1920 3531 mt 1944 3548 L Xc29 X64 -15 24 16 1856 3547 3 MP XPP X0 sg X1856 3547 mt 1880 3563 L X1880 3563 mt 1944 3548 L Xc32 X63 -18 25 32 1855 3710 3 MP XPP X0 sg X1855 3710 mt 1880 3742 L X1880 3742 mt 1943 3724 L Xc32 X24 38 64 -24 1855 3710 3 MP XPP X0 sg X1855 3710 mt 1919 3686 L X1919 3686 mt 1943 3724 L Xc22 X25 -4 64 -14 1851 3456 3 MP XPP X0 sg X1851 3456 mt 1915 3442 L X1915 3442 mt 1940 3438 L Xc22 X64 -16 25 -2 1851 3456 3 MP XPP X0 sg X1851 3456 mt 1876 3454 L X1876 3454 mt 1940 3438 L Xc22 X64 -25 24 22 1850 3926 3 MP XPP X0 sg X1850 3926 mt 1874 3948 L X1874 3948 mt 1938 3923 L Xc22 X24 25 64 -28 1850 3926 3 MP XPP X0 sg X1850 3926 mt 1914 3898 L X1914 3898 mt 1938 3923 L Xc29 X64 -17 25 8 1846 3497 3 MP XPP X0 sg X1846 3497 mt 1871 3505 L X1871 3505 mt 1935 3488 L Xc29 X25 9 64 -18 1846 3497 3 MP XPP X0 sg X1846 3497 mt 1910 3479 L X1910 3479 mt 1935 3488 L Xc24 X64 -17 25 -3 1845 3649 3 MP XPP X0 sg X1845 3649 mt 1870 3646 L X1870 3646 mt 1934 3629 L Xc24 X25 -2 64 -18 1845 3649 3 MP XPP X0 sg X1845 3649 mt 1909 3631 L X1909 3631 mt 1934 3629 L Xc13 X64 -17 24 10 1842 3431 3 MP XPP X0 sg X1842 3431 mt 1866 3441 L X1866 3441 mt 1930 3424 L Xc13 X24 10 64 -17 1842 3431 3 MP XPP X0 sg X1842 3431 mt 1906 3414 L X1906 3414 mt 1930 3424 L Xc9 X63 -18 25 24 1841 3601 3 MP XPP X0 sg X1841 3601 mt 1866 3625 L X1866 3625 mt 1929 3607 L Xc9 X24 23 64 -17 1841 3601 3 MP XPP X0 sg X1841 3601 mt 1905 3584 L X1905 3584 mt 1929 3607 L Xc26 X64 -23 25 33 1840 3807 3 MP XPP X0 sg X1840 3807 mt 1865 3840 L X1865 3840 mt 1929 3817 L Xc26 X25 38 64 -28 1840 3807 3 MP XPP X0 sg X1840 3807 mt 1904 3779 L X1904 3779 mt 1929 3817 L Xc23 X25 0 63 -17 1837 3470 3 MP XPP X0 sg X1837 3470 mt 1900 3453 L X1900 3453 mt 1925 3453 L Xc23 X64 -18 24 1 1837 3470 3 MP XPP X0 sg X1837 3470 mt 1861 3471 L X1861 3471 mt 1925 3453 L Xc29 X64 -16 25 13 1831 3534 3 MP XPP X0 sg X1831 3534 mt 1856 3547 L X1856 3547 mt 1920 3531 L Xc29 X25 14 64 -17 1831 3534 3 MP XPP X0 sg X1831 3534 mt 1895 3517 L X1895 3517 mt 1920 3531 L Xc12 X64 -18 24 3 1723 3715 3 MP XPP X0 sg X1723 3715 mt 1747 3718 L X1747 3718 mt 1811 3700 L Xc12 X24 2 64 -17 1723 3715 3 MP XPP X0 sg X1723 3715 mt 1787 3698 L X1787 3698 mt 1811 3700 L Xc12 X64 -17 24 2 1787 3698 3 MP XPP X0 sg X1787 3698 mt 1811 3700 L X1811 3700 mt 1875 3683 L Xc19 X64 -18 25 -11 1747 3718 3 MP XPP X0 sg X1747 3718 mt 1772 3707 L X1772 3707 mt 1836 3689 L Xc19 X25 -11 64 -18 1747 3718 3 MP XPP X0 sg X1747 3718 mt 1811 3700 L X1811 3700 mt 1836 3689 L Xc18 X24 -20 64 -18 1772 3707 3 MP XPP X0 sg X1772 3707 mt 1836 3689 L X1836 3689 mt 1860 3669 L Xc19 X64 -16 25 -11 1811 3700 3 MP XPP X0 sg X1811 3700 mt 1836 3689 L X1836 3689 mt 1900 3673 L Xc19 X25 -10 64 -17 1811 3700 3 MP XPP X0 sg X1811 3700 mt 1875 3683 L X1875 3683 mt 1900 3673 L Xc24 X64 -24 24 24 1831 3686 3 MP XPP X0 sg X1831 3686 mt 1855 3710 L X1855 3710 mt 1919 3686 L Xc24 X25 27 63 -27 1831 3686 3 MP XPP X0 sg X1831 3686 mt 1894 3659 L X1894 3659 mt 1919 3686 L Xc15 X24 -2 64 -12 1827 3456 3 MP XPP X0 sg X1827 3456 mt 1891 3444 L X1891 3444 mt 1915 3442 L Xc15 X64 -14 24 0 1827 3456 3 MP XPP X0 sg X1827 3456 mt 1851 3456 L X1851 3456 mt 1915 3442 L Xc12 X64 -28 25 24 1825 3902 3 MP XPP X0 sg X1825 3902 mt 1850 3926 L X1850 3926 mt 1914 3898 L Xc12 X25 27 64 -31 1825 3902 3 MP XPP X0 sg X1825 3902 mt 1889 3871 L X1889 3871 mt 1914 3898 L Xc18 X64 -18 24 6 1822 3491 3 MP XPP X0 sg X1822 3491 mt 1846 3497 L X1846 3497 mt 1910 3479 L Xc18 X24 6 64 -18 1822 3491 3 MP XPP X0 sg X1822 3491 mt 1886 3473 L X1886 3473 mt 1910 3479 L Xc34 X25 18 64 -17 1817 3413 3 MP XPP X0 sg X1817 3413 mt 1881 3396 L X1881 3396 mt 1906 3414 L Xc34 X64 -17 25 18 1817 3413 3 MP XPP X0 sg X1817 3413 mt 1842 3431 L X1842 3431 mt 1906 3414 L Xc18 X25 21 64 -18 1816 3581 3 MP XPP X0 sg X1816 3581 mt 1880 3563 L X1880 3563 mt 1905 3584 L Xc18 X64 -17 25 20 1816 3581 3 MP XPP X0 sg X1816 3581 mt 1841 3601 L X1841 3601 mt 1905 3584 L Xc35 X24 37 64 -32 1816 3774 3 MP XPP X0 sg X1816 3774 mt 1880 3742 L X1880 3742 mt 1904 3779 L Xc35 X64 -28 24 33 1816 3774 3 MP XPP X0 sg X1816 3774 mt 1840 3807 L X1840 3807 mt 1904 3779 L Xc19 X24 -1 64 -18 1812 3472 3 MP XPP X0 sg X1812 3472 mt 1876 3454 L X1876 3454 mt 1900 3453 L Xc19 X63 -17 25 -2 1812 3472 3 MP XPP X0 sg X1812 3472 mt 1837 3470 L X1837 3470 mt 1900 3453 L Xc29 X24 12 64 -19 1807 3524 3 MP XPP X0 sg X1807 3524 mt 1871 3505 L X1871 3505 mt 1895 3517 L Xc29 X64 -17 24 10 1807 3524 3 MP XPP X0 sg X1807 3524 mt 1831 3534 L X1831 3534 mt 1895 3517 L Xc19 X64 -17 25 15 1698 3700 3 MP XPP X0 sg X1698 3700 mt 1723 3715 L X1723 3715 mt 1787 3698 L Xc19 X25 15 64 -17 1698 3700 3 MP XPP X0 sg X1698 3700 mt 1762 3683 L X1762 3683 mt 1787 3698 L Xc17 X25 -22 64 -16 1732 3702 3 MP XPP X0 sg X1732 3702 mt 1796 3686 L X1796 3686 mt 1821 3664 L Xc24 X24 13 64 -28 1806 3674 3 MP XPP X0 sg X1806 3674 mt 1870 3646 L X1870 3646 mt 1894 3659 L Xc18 X64 -17 24 -21 1772 3707 3 MP XPP X0 sg X1772 3707 mt 1796 3686 L X1796 3686 mt 1860 3669 L Xc24 X63 -27 25 12 1806 3674 3 MP XPP X0 sg X1806 3674 mt 1831 3686 L X1831 3686 mt 1894 3659 L Xc34 X25 3 64 -13 1802 3454 3 MP XPP X0 sg X1802 3454 mt 1866 3441 L X1866 3441 mt 1891 3444 L Xc34 X64 -12 25 2 1802 3454 3 MP XPP X0 sg X1802 3454 mt 1827 3456 L X1827 3456 mt 1891 3444 L Xc23 X64 -31 24 26 1801 3876 3 MP XPP X0 sg X1801 3876 mt 1825 3902 L X1825 3902 mt 1889 3871 L Xc23 X24 31 64 -36 1801 3876 3 MP XPP X0 sg X1801 3876 mt 1865 3840 L X1865 3840 mt 1889 3871 L Xc9 X25 2 64 -17 1797 3488 3 MP XPP X0 sg X1797 3488 mt 1861 3471 L X1861 3471 mt 1886 3473 L Xc9 X64 -18 25 3 1797 3488 3 MP XPP X0 sg X1797 3488 mt 1822 3491 L X1822 3491 mt 1886 3473 L Xc29 X24 16 64 -17 1792 3564 3 MP XPP X0 sg X1792 3564 mt 1856 3547 L X1856 3547 mt 1880 3563 L Xc29 X64 -18 24 17 1792 3564 3 MP XPP X0 sg X1792 3564 mt 1816 3581 L X1816 3581 mt 1880 3563 L Xc31 X25 32 64 -32 1791 3742 3 MP XPP X0 sg X1791 3742 mt 1855 3710 L X1855 3710 mt 1880 3742 L Xc31 X64 -32 25 32 1791 3742 3 MP XPP X0 sg X1791 3742 mt 1816 3774 L X1816 3774 mt 1880 3742 L Xc22 X25 -2 63 -17 1788 3473 3 MP XPP X0 sg X1788 3473 mt 1851 3456 L X1851 3456 mt 1876 3454 L Xc22 X64 -18 24 -1 1788 3473 3 MP XPP X0 sg X1788 3473 mt 1812 3472 L X1812 3472 mt 1876 3454 L Xc15 X64 -23 24 19 1786 3952 3 MP XPP X0 sg X1786 3952 mt 1810 3971 L X1810 3971 mt 1874 3948 L Xc15 X24 22 64 -26 1786 3952 3 MP XPP X0 sg X1786 3952 mt 1850 3926 L X1850 3926 mt 1874 3948 L Xc29 X64 -19 25 8 1782 3516 3 MP XPP X0 sg X1782 3516 mt 1807 3524 L X1807 3524 mt 1871 3505 L Xc29 X25 8 64 -19 1782 3516 3 MP XPP X0 sg X1782 3516 mt 1846 3497 L X1846 3497 mt 1871 3505 L Xc17 X64 -21 25 -17 1732 3702 3 MP XPP X0 sg X1732 3702 mt 1757 3685 L X1757 3685 mt 1821 3664 L Xc23 X64 -17 24 22 1674 3678 3 MP XPP X0 sg X1674 3678 mt 1698 3700 L X1698 3700 mt 1762 3683 L Xc23 X24 23 64 -18 1674 3678 3 MP XPP X0 sg X1674 3678 mt 1738 3660 L X1738 3660 mt 1762 3683 L Xc25 X63 -25 25 -11 1757 3685 3 MP XPP X0 sg X1757 3685 mt 1782 3674 L X1782 3674 mt 1845 3649 L Xc25 X24 -15 64 -21 1757 3685 3 MP XPP X0 sg X1757 3685 mt 1821 3664 L X1821 3664 mt 1845 3649 L Xc32 X64 -28 24 0 1782 3674 3 MP XPP X0 sg X1782 3674 mt 1806 3674 L X1806 3674 mt 1870 3646 L Xc32 X25 -3 63 -25 1782 3674 3 MP XPP X0 sg X1782 3674 mt 1845 3649 L X1845 3649 mt 1870 3646 L Xc13 X24 10 64 -18 1778 3449 3 MP XPP X0 sg X1778 3449 mt 1842 3431 L X1842 3431 mt 1866 3441 L Xc13 X64 -13 24 5 1778 3449 3 MP XPP X0 sg X1778 3449 mt 1802 3454 L X1802 3454 mt 1866 3441 L Xc9 X64 -17 25 23 1777 3619 3 MP XPP X0 sg X1777 3619 mt 1802 3642 L X1802 3642 mt 1866 3625 L Xc9 X25 24 64 -18 1777 3619 3 MP XPP X0 sg X1777 3619 mt 1841 3601 L X1841 3601 mt 1866 3625 L Xc18 X64 -36 25 30 1776 3846 3 MP XPP X0 sg X1776 3846 mt 1801 3876 L X1801 3876 mt 1865 3840 L Xc18 X25 33 64 -39 1776 3846 3 MP XPP X0 sg X1776 3846 mt 1840 3807 L X1840 3807 mt 1865 3840 L Xc23 X24 1 64 -18 1773 3488 3 MP XPP X0 sg X1773 3488 mt 1837 3470 L X1837 3470 mt 1861 3471 L Xc23 X64 -17 24 0 1773 3488 3 MP XPP X0 sg X1773 3488 mt 1797 3488 L X1797 3488 mt 1861 3471 L Xc29 X64 -17 25 12 1767 3552 3 MP XPP X0 sg X1767 3552 mt 1792 3564 L X1792 3564 mt 1856 3547 L Xc29 X25 13 64 -18 1767 3552 3 MP XPP X0 sg X1767 3552 mt 1831 3534 L X1831 3534 mt 1856 3547 L Xc32 X64 -32 24 28 1767 3714 3 MP XPP X0 sg X1767 3714 mt 1791 3742 L X1791 3742 mt 1855 3710 L Xc32 X24 24 64 -28 1767 3714 3 MP XPP X0 sg X1767 3714 mt 1831 3686 L X1831 3686 mt 1855 3710 L Xc15 X24 0 64 -17 1763 3473 3 MP XPP X0 sg X1763 3473 mt 1827 3456 L X1827 3456 mt 1851 3456 L Xc15 X63 -17 25 0 1763 3473 3 MP XPP X0 sg X1763 3473 mt 1788 3473 L X1788 3473 mt 1851 3456 L Xc22 X64 -26 25 21 1761 3931 3 MP XPP X0 sg X1761 3931 mt 1786 3952 L X1786 3952 mt 1850 3926 L Xc22 X25 24 64 -29 1761 3931 3 MP XPP X0 sg X1761 3931 mt 1825 3902 L X1825 3902 mt 1850 3926 L Xc18 X24 6 64 -19 1758 3510 3 MP XPP X0 sg X1758 3510 mt 1822 3491 L X1822 3491 mt 1846 3497 L Xc18 X64 -19 24 6 1758 3510 3 MP XPP X0 sg X1758 3510 mt 1782 3516 L X1782 3516 mt 1846 3497 L Xc13 X64 -18 25 8 1753 3441 3 MP XPP X0 sg X1753 3441 mt 1778 3449 L X1778 3449 mt 1842 3431 L Xc13 X25 18 64 -28 1753 3441 3 MP XPP X0 sg X1753 3441 mt 1817 3413 L X1817 3413 mt 1842 3431 L Xc18 X64 -18 24 21 1753 3598 3 MP XPP X0 sg X1753 3598 mt 1777 3619 L X1777 3619 mt 1841 3601 L Xc18 X25 20 63 -17 1753 3598 3 MP XPP X0 sg X1753 3598 mt 1816 3581 L X1816 3581 mt 1841 3601 L Xc26 X24 33 64 -41 1752 3815 3 MP XPP X0 sg X1752 3815 mt 1816 3774 L X1816 3774 mt 1840 3807 L Xc26 X64 -39 24 31 1752 3815 3 MP XPP X0 sg X1752 3815 mt 1776 3846 L X1776 3846 mt 1840 3807 L Xc19 X25 -2 64 -17 1748 3489 3 MP XPP X0 sg X1748 3489 mt 1812 3472 L X1812 3472 mt 1837 3470 L Xc19 X64 -18 25 -1 1748 3489 3 MP XPP X0 sg X1748 3489 mt 1773 3488 L X1773 3488 mt 1837 3470 L Xc29 X24 10 64 -18 1743 3542 3 MP XPP X0 sg X1743 3542 mt 1807 3524 L X1807 3524 mt 1831 3534 L Xc29 X64 -18 24 10 1743 3542 3 MP XPP X0 sg X1743 3542 mt 1767 3552 L X1767 3552 mt 1831 3534 L Xc23 X64 -17 24 20 1610 3697 3 MP XPP X0 sg X1610 3697 mt 1634 3717 L X1634 3717 mt 1698 3700 L Xc23 X24 22 64 -19 1610 3697 3 MP XPP X0 sg X1610 3697 mt 1674 3678 L X1674 3678 mt 1698 3700 L Xc19 X25 15 64 -17 1634 3717 3 MP XPP X0 sg X1634 3717 mt 1698 3700 L X1698 3700 mt 1723 3715 L Xc35 X25 -17 63 -2 1669 3704 3 MP XPP X0 sg X1669 3704 mt 1732 3702 L X1732 3702 mt 1757 3685 L Xc19 X64 -13 25 11 1634 3717 3 MP XPP X0 sg X1634 3717 mt 1659 3728 L X1659 3728 mt 1723 3715 L Xc19 X24 3 64 -13 1659 3728 3 MP XPP X0 sg X1659 3728 mt 1723 3715 L X1723 3715 mt 1747 3718 L Xc18 X64 -16 24 -17 1708 3719 3 MP XPP X0 sg X1708 3719 mt 1732 3702 L X1732 3702 mt 1796 3686 L Xc18 X24 -21 64 -12 1708 3719 3 MP XPP X0 sg X1708 3719 mt 1772 3707 L X1772 3707 mt 1796 3686 L Xc24 X25 12 64 -20 1742 3694 3 MP XPP X0 sg X1742 3694 mt 1806 3674 L X1806 3674 mt 1831 3686 L Xc19 X64 -11 24 1 1659 3728 3 MP XPP X0 sg X1659 3728 mt 1683 3729 L X1683 3729 mt 1747 3718 L Xc23 X64 -12 25 -10 1683 3729 3 MP XPP X0 sg X1683 3729 mt 1708 3719 L X1708 3719 mt 1772 3707 L Xc23 X25 -11 64 -11 1683 3729 3 MP XPP X0 sg X1683 3729 mt 1747 3718 L X1747 3718 mt 1772 3707 L Xc24 X64 -28 25 20 1742 3694 3 MP XPP X0 sg X1742 3694 mt 1767 3714 L X1767 3714 mt 1831 3686 L Xc34 X25 2 64 -17 1738 3471 3 MP XPP X0 sg X1738 3471 mt 1802 3454 L X1802 3454 mt 1827 3456 L Xc34 X64 -17 25 2 1738 3471 3 MP XPP X0 sg X1738 3471 mt 1763 3473 L X1763 3473 mt 1827 3456 L Xc12 X64 -29 24 23 1737 3908 3 MP XPP X0 sg X1737 3908 mt 1761 3931 L X1761 3931 mt 1825 3902 L Xc12 X24 26 64 -32 1737 3908 3 MP XPP X0 sg X1737 3908 mt 1801 3876 L X1801 3876 mt 1825 3902 L Xc9 X25 3 64 -18 1733 3506 3 MP XPP X0 sg X1733 3506 mt 1797 3488 L X1797 3488 mt 1822 3491 L Xc9 X64 -19 25 4 1733 3506 3 MP XPP X0 sg X1733 3506 mt 1758 3510 L X1758 3510 mt 1822 3491 L Xc29 X24 17 64 -18 1728 3582 3 MP XPP X0 sg X1728 3582 mt 1792 3564 L X1792 3564 mt 1816 3581 L Xc29 X63 -17 25 16 1728 3582 3 MP XPP X0 sg X1728 3582 mt 1753 3598 L X1753 3598 mt 1816 3581 L Xc30 X64 -41 25 32 1727 3783 3 MP XPP X0 sg X1727 3783 mt 1752 3815 L X1752 3815 mt 1816 3774 L Xc30 X25 32 64 -41 1727 3783 3 MP XPP X0 sg X1727 3783 mt 1791 3742 L X1791 3742 mt 1816 3774 L Xc22 X24 -1 64 -17 1724 3490 3 MP XPP X0 sg X1724 3490 mt 1788 3473 L X1788 3473 mt 1812 3472 L Xc22 X64 -17 24 -1 1724 3490 3 MP XPP X0 sg X1724 3490 mt 1748 3489 L X1748 3489 mt 1812 3472 L Xc13 X63 -31 25 15 1722 3987 3 MP XPP X0 sg X1722 3987 mt 1747 4002 L X1747 4002 mt 1810 3971 L Xc13 X24 19 64 -35 1722 3987 3 MP XPP X0 sg X1722 3987 mt 1786 3952 L X1786 3952 mt 1810 3971 L Xc29 X64 -18 25 8 1718 3534 3 MP XPP X0 sg X1718 3534 mt 1743 3542 L X1743 3542 mt 1807 3524 L Xc29 X25 8 64 -18 1718 3534 3 MP XPP X0 sg X1718 3534 mt 1782 3516 L X1782 3516 mt 1807 3524 L Xc35 X64 -5 24 -14 1669 3704 3 MP XPP X0 sg X1669 3704 mt 1693 3690 L X1693 3690 mt 1757 3685 L Xc16 X25 -11 64 -5 1693 3690 3 MP XPP X0 sg X1693 3690 mt 1757 3685 L X1757 3685 mt 1782 3674 L Xc24 X64 -20 24 8 1718 3686 3 MP XPP X0 sg X1718 3686 mt 1742 3694 L X1742 3694 mt 1806 3674 L Xc24 X24 0 64 -12 1718 3686 3 MP XPP X0 sg X1718 3686 mt 1782 3674 L X1782 3674 mt 1806 3674 L Xc13 X24 5 64 -17 1714 3466 3 MP XPP X0 sg X1714 3466 mt 1778 3449 L X1778 3449 mt 1802 3454 L Xc13 X64 -17 24 5 1714 3466 3 MP XPP X0 sg X1714 3466 mt 1738 3471 L X1738 3471 mt 1802 3454 L Xc9 X25 23 64 -17 1713 3636 3 MP XPP X0 sg X1713 3636 mt 1777 3619 L X1777 3619 mt 1802 3642 L Xc9 X64 -18 25 24 1713 3636 3 MP XPP X0 sg X1713 3636 mt 1738 3660 L X1738 3660 mt 1802 3642 L Xc23 X25 30 64 -36 1712 3882 3 MP XPP X0 sg X1712 3882 mt 1776 3846 L X1776 3846 mt 1801 3876 L Xc23 X64 -32 25 26 1712 3882 3 MP XPP X0 sg X1712 3882 mt 1737 3908 L X1737 3908 mt 1801 3876 L Xc23 X24 0 64 -16 1709 3504 3 MP XPP X0 sg X1709 3504 mt 1773 3488 L X1773 3488 mt 1797 3488 L Xc23 X64 -18 24 2 1709 3504 3 MP XPP X0 sg X1709 3504 mt 1733 3506 L X1733 3506 mt 1797 3488 L Xc29 X25 12 63 -17 1704 3569 3 MP XPP X0 sg X1704 3569 mt 1767 3552 L X1767 3552 mt 1792 3564 L Xc29 X64 -18 24 13 1704 3569 3 MP XPP X0 sg X1704 3569 mt 1728 3582 L X1728 3582 mt 1792 3564 L Xc31 X24 28 64 -38 1703 3752 3 MP XPP X0 sg X1703 3752 mt 1767 3714 L X1767 3714 mt 1791 3742 L Xc31 X64 -41 24 31 1703 3752 3 MP XPP X0 sg X1703 3752 mt 1727 3783 L X1727 3783 mt 1791 3742 L Xc15 X64 -17 25 -1 1699 3491 3 MP XPP X0 sg X1699 3491 mt 1724 3490 L X1724 3490 mt 1788 3473 L Xc15 X25 0 64 -18 1699 3491 3 MP XPP X0 sg X1699 3491 mt 1763 3473 L X1763 3473 mt 1788 3473 L Xc13 X64 -35 24 15 1698 3972 3 MP XPP X0 sg X1698 3972 mt 1722 3987 L X1722 3987 mt 1786 3952 L Xc13 X25 21 63 -41 1698 3972 3 MP XPP X0 sg X1698 3972 mt 1761 3931 L X1761 3931 mt 1786 3952 L Xc18 X24 6 64 -17 1694 3527 3 MP XPP X0 sg X1694 3527 mt 1758 3510 L X1758 3510 mt 1782 3516 L Xc18 X64 -18 24 7 1694 3527 3 MP XPP X0 sg X1694 3527 mt 1718 3534 L X1718 3534 mt 1782 3516 L Xc16 X64 -12 25 -4 1693 3690 3 MP XPP X0 sg X1693 3690 mt 1718 3686 L X1718 3686 mt 1782 3674 L Xc13 X25 8 64 -17 1689 3458 3 MP XPP X0 sg X1689 3458 mt 1753 3441 L X1753 3441 mt 1778 3449 L Xc13 X64 -17 25 8 1689 3458 3 MP XPP X0 sg X1689 3458 mt 1714 3466 L X1714 3466 mt 1778 3449 L Xc29 X24 21 64 -15 1689 3613 3 MP XPP X0 sg X1689 3613 mt 1753 3598 L X1753 3598 mt 1777 3619 L Xc29 X64 -17 24 23 1689 3613 3 MP XPP X0 sg X1689 3613 mt 1713 3636 L X1713 3636 mt 1777 3619 L Xc18 X24 31 64 -39 1688 3854 3 MP XPP X0 sg X1688 3854 mt 1752 3815 L X1752 3815 mt 1776 3846 L Xc18 X64 -36 24 28 1688 3854 3 MP XPP X0 sg X1688 3854 mt 1712 3882 L X1712 3882 mt 1776 3846 L Xc19 X25 -1 64 -15 1684 3504 3 MP XPP X0 sg X1684 3504 mt 1748 3489 L X1748 3489 mt 1773 3488 L Xc19 X64 -16 25 0 1684 3504 3 MP XPP X0 sg X1684 3504 mt 1709 3504 L X1709 3504 mt 1773 3488 L Xc29 X24 10 64 -17 1679 3559 3 MP XPP X0 sg X1679 3559 mt 1743 3542 L X1743 3542 mt 1767 3552 L Xc29 X63 -17 25 10 1679 3559 3 MP XPP X0 sg X1679 3559 mt 1704 3569 L X1704 3569 mt 1767 3552 L Xc22 X64 -23 25 4 1570 3747 3 MP XPP X0 sg X1570 3747 mt 1595 3751 L X1595 3751 mt 1659 3728 L Xc12 X24 1 64 -23 1595 3751 3 MP XPP X0 sg X1595 3751 mt 1659 3728 L X1659 3728 mt 1683 3729 L Xc12 X63 -13 25 -9 1595 3751 3 MP XPP X0 sg X1595 3751 mt 1620 3742 L X1620 3742 mt 1683 3729 L Xc23 X25 -10 63 -13 1620 3742 3 MP XPP X0 sg X1620 3742 mt 1683 3729 L X1683 3729 mt 1708 3719 L Xc22 X25 11 64 -30 1570 3747 3 MP XPP X0 sg X1570 3747 mt 1634 3717 L X1634 3717 mt 1659 3728 L Xc23 X64 -5 24 -18 1620 3742 3 MP XPP X0 sg X1620 3742 mt 1644 3724 L X1644 3724 mt 1708 3719 L Xc16 X64 -38 25 26 1678 3726 3 MP XPP X0 sg X1678 3726 mt 1703 3752 L X1703 3752 mt 1767 3714 L Xc26 X24 -17 64 -5 1644 3724 3 MP XPP X0 sg X1644 3724 mt 1708 3719 L X1708 3719 mt 1732 3702 L Xc26 X63 -2 25 -20 1644 3724 3 MP XPP X0 sg X1644 3724 mt 1669 3704 L X1669 3704 mt 1732 3702 L Xc16 X25 20 64 -32 1678 3726 3 MP XPP X0 sg X1678 3726 mt 1742 3694 L X1742 3694 mt 1767 3714 L Xc34 X25 2 63 -18 1675 3489 3 MP XPP X0 sg X1675 3489 mt 1738 3471 L X1738 3471 mt 1763 3473 L Xc34 X64 -18 24 2 1675 3489 3 MP XPP X0 sg X1675 3489 mt 1699 3491 L X1699 3491 mt 1763 3473 L Xc34 X24 23 64 -47 1673 3955 3 MP XPP X0 sg X1673 3955 mt 1737 3908 L X1737 3908 mt 1761 3931 L Xc34 X63 -41 25 17 1673 3955 3 MP XPP X0 sg X1673 3955 mt 1698 3972 L X1698 3972 mt 1761 3931 L Xc9 X64 -17 25 4 1669 3523 3 MP XPP X0 sg X1669 3523 mt 1694 3527 L X1694 3527 mt 1758 3510 L Xc9 X25 4 64 -17 1669 3523 3 MP XPP X0 sg X1669 3523 mt 1733 3506 L X1733 3506 mt 1758 3510 L Xc29 X25 16 64 -14 1664 3596 3 MP XPP X0 sg X1664 3596 mt 1728 3582 L X1728 3582 mt 1753 3598 L Xc29 X64 -15 25 17 1664 3596 3 MP XPP X0 sg X1664 3596 mt 1689 3613 L X1689 3613 mt 1753 3598 L Xc26 X64 -39 25 30 1663 3824 3 MP XPP X0 sg X1663 3824 mt 1688 3854 L X1688 3854 mt 1752 3815 L Xc26 X25 32 64 -41 1663 3824 3 MP XPP X0 sg X1663 3824 mt 1727 3783 L X1727 3783 mt 1752 3815 L Xc12 X24 -1 64 -15 1660 3505 3 MP XPP X0 sg X1660 3505 mt 1724 3490 L X1724 3490 mt 1748 3489 L Xc12 X64 -15 24 -1 1660 3505 3 MP XPP X0 sg X1660 3505 mt 1684 3504 L X1684 3504 mt 1748 3489 L Xc29 X25 8 64 -17 1654 3551 3 MP XPP X0 sg X1654 3551 mt 1718 3534 L X1718 3534 mt 1743 3542 L Xc29 X64 -17 25 8 1654 3551 3 MP XPP X0 sg X1654 3551 mt 1679 3559 L X1679 3559 mt 1743 3542 L Xc12 X64 -30 24 18 1546 3729 3 MP XPP X0 sg X1546 3729 mt 1570 3747 L X1570 3747 mt 1634 3717 L Xc12 X24 20 64 -32 1546 3729 3 MP XPP X0 sg X1546 3729 mt 1610 3697 L X1610 3697 mt 1634 3717 L Xc30 X25 -20 64 7 1580 3717 3 MP XPP X0 sg X1580 3717 mt 1644 3724 L X1644 3724 mt 1669 3704 L Xc32 X64 -32 24 18 1654 3708 3 MP XPP X0 sg X1654 3708 mt 1678 3726 L X1678 3726 mt 1742 3694 L Xc30 X64 0 25 -13 1580 3717 3 MP XPP X0 sg X1580 3717 mt 1605 3704 L X1605 3704 mt 1669 3704 L Xc31 X24 -14 64 0 1605 3704 3 MP XPP X0 sg X1605 3704 mt 1669 3704 L X1669 3704 mt 1693 3690 L Xc32 X24 8 64 -22 1654 3708 3 MP XPP X0 sg X1654 3708 mt 1718 3686 L X1718 3686 mt 1742 3694 L Xc13 X24 5 64 -18 1650 3484 3 MP XPP X0 sg X1650 3484 mt 1714 3466 L X1714 3466 mt 1738 3471 L Xc13 X63 -18 25 5 1650 3484 3 MP XPP X0 sg X1650 3484 mt 1675 3489 L X1675 3489 mt 1738 3471 L Xc9 X25 24 64 -17 1649 3653 3 MP XPP X0 sg X1649 3653 mt 1713 3636 L X1713 3636 mt 1738 3660 L Xc9 X64 -18 25 25 1649 3653 3 MP XPP X0 sg X1649 3653 mt 1674 3678 L X1674 3678 mt 1738 3660 L Xc15 X25 26 64 -55 1648 3937 3 MP XPP X0 sg X1648 3937 mt 1712 3882 L X1712 3882 mt 1737 3908 L Xc15 X64 -47 25 18 1648 3937 3 MP XPP X0 sg X1648 3937 mt 1673 3955 L X1673 3955 mt 1737 3908 L Xc23 X24 2 64 -17 1645 3521 3 MP XPP X0 sg X1645 3521 mt 1709 3504 L X1709 3504 mt 1733 3506 L Xc23 X64 -17 24 2 1645 3521 3 MP XPP X0 sg X1645 3521 mt 1669 3523 L X1669 3523 mt 1733 3506 L Xc29 X24 13 64 -15 1640 3584 3 MP XPP X0 sg X1640 3584 mt 1704 3569 L X1704 3569 mt 1728 3582 L Xc29 X64 -14 24 12 1640 3584 3 MP XPP X0 sg X1640 3584 mt 1664 3596 L X1664 3596 mt 1728 3582 L Xc30 X64 -41 24 30 1639 3794 3 MP XPP X0 sg X1639 3794 mt 1663 3824 L X1663 3824 mt 1727 3783 L Xc30 X24 31 64 -42 1639 3794 3 MP XPP X0 sg X1639 3794 mt 1703 3752 L X1703 3752 mt 1727 3783 L Xc15 X25 -1 64 -14 1635 3505 3 MP XPP X0 sg X1635 3505 mt 1699 3491 L X1699 3491 mt 1724 3490 L Xc15 X64 -15 25 0 1635 3505 3 MP XPP X0 sg X1635 3505 mt 1660 3505 L X1660 3505 mt 1724 3490 L Xc18 X24 7 64 -18 1630 3545 3 MP XPP X0 sg X1630 3545 mt 1694 3527 L X1694 3527 mt 1718 3534 L Xc18 X64 -17 24 6 1630 3545 3 MP XPP X0 sg X1630 3545 mt 1654 3551 L X1654 3551 mt 1718 3534 L Xc32 X25 -4 64 -11 1629 3701 3 MP XPP X0 sg X1629 3701 mt 1693 3690 L X1693 3690 mt 1718 3686 L Xc32 X64 -22 25 7 1629 3701 3 MP XPP X0 sg X1629 3701 mt 1654 3708 L X1654 3708 mt 1718 3686 L Xc13 X25 8 63 -17 1626 3475 3 MP XPP X0 sg X1626 3475 mt 1689 3458 L X1689 3458 mt 1714 3466 L Xc13 X64 -18 24 9 1626 3475 3 MP XPP X0 sg X1626 3475 mt 1650 3484 L X1650 3484 mt 1714 3466 L Xc29 X24 23 64 -18 1625 3631 3 MP XPP X0 sg X1625 3631 mt 1689 3613 L X1689 3613 mt 1713 3636 L Xc29 X64 -17 24 22 1625 3631 3 MP XPP X0 sg X1625 3631 mt 1649 3653 L X1649 3653 mt 1713 3636 L Xc22 X24 28 64 -63 1624 3917 3 MP XPP X0 sg X1624 3917 mt 1688 3854 L X1688 3854 mt 1712 3882 L Xc22 X64 -55 24 20 1624 3917 3 MP XPP X0 sg X1624 3917 mt 1648 3937 L X1648 3937 mt 1712 3882 L Xc19 X25 0 64 -17 1620 3521 3 MP XPP X0 sg X1620 3521 mt 1684 3504 L X1684 3504 mt 1709 3504 L Xc19 X64 -17 25 0 1620 3521 3 MP XPP X0 sg X1620 3521 mt 1645 3521 L X1645 3521 mt 1709 3504 L Xc29 X25 10 64 -17 1615 3576 3 MP XPP X0 sg X1615 3576 mt 1679 3559 L X1679 3559 mt 1704 3569 L Xc29 X64 -15 25 8 1615 3576 3 MP XPP X0 sg X1615 3576 mt 1640 3584 L X1640 3584 mt 1704 3569 L Xc25 X64 -42 25 28 1614 3766 3 MP XPP X0 sg X1614 3766 mt 1639 3794 L X1639 3794 mt 1703 3752 L Xc25 X25 26 64 -40 1614 3766 3 MP XPP X0 sg X1614 3766 mt 1678 3726 L X1678 3726 mt 1703 3752 L Xc34 X24 2 64 -16 1611 3505 3 MP XPP X0 sg X1611 3505 mt 1675 3489 L X1675 3489 mt 1699 3491 L Xc34 X64 -14 24 0 1611 3505 3 MP XPP X0 sg X1611 3505 mt 1635 3505 L X1635 3505 mt 1699 3491 L Xc9 X64 -18 25 4 1605 3541 3 MP XPP X0 sg X1605 3541 mt 1630 3545 L X1630 3545 mt 1694 3527 L Xc9 X25 4 64 -18 1605 3541 3 MP XPP X0 sg X1605 3541 mt 1669 3523 L X1669 3523 mt 1694 3527 L Xc31 X64 -11 24 -3 1605 3704 3 MP XPP X0 sg X1605 3704 mt 1629 3701 L X1629 3701 mt 1693 3690 L Xc29 X25 17 64 -18 1600 3614 3 MP XPP X0 sg X1600 3614 mt 1664 3596 L X1664 3596 mt 1689 3613 L Xc29 X64 -18 25 17 1600 3614 3 MP XPP X0 sg X1600 3614 mt 1625 3631 L X1625 3631 mt 1689 3613 L Xc12 X25 30 64 -72 1599 3896 3 MP XPP X0 sg X1599 3896 mt 1663 3824 L X1663 3824 mt 1688 3854 L Xc12 X64 -63 25 21 1599 3896 3 MP XPP X0 sg X1599 3896 mt 1624 3917 L X1624 3917 mt 1688 3854 L Xc12 X24 -1 64 -17 1596 3522 3 MP XPP X0 sg X1596 3522 mt 1660 3505 L X1660 3505 mt 1684 3504 L Xc12 X64 -17 24 -1 1596 3522 3 MP XPP X0 sg X1596 3522 mt 1620 3521 L X1620 3521 mt 1684 3504 L Xc18 X64 -17 24 6 1591 3570 3 MP XPP X0 sg X1591 3570 mt 1615 3576 L X1615 3576 mt 1679 3559 L Xc18 X25 8 63 -19 1591 3570 3 MP XPP X0 sg X1591 3570 mt 1654 3551 L X1654 3551 mt 1679 3559 L Xc22 X63 -11 25 4 1482 3754 3 MP XPP X0 sg X1482 3754 mt 1507 3758 L X1507 3758 mt 1570 3747 L Xc22 X24 18 64 -25 1482 3754 3 MP XPP X0 sg X1482 3754 mt 1546 3729 L X1546 3729 mt 1570 3747 L Xc23 X64 7 25 -16 1531 3751 3 MP XPP X0 sg X1531 3751 mt 1556 3735 L X1556 3735 mt 1620 3742 L Xc29 X64 7 24 -18 1556 3735 3 MP XPP X0 sg X1556 3735 mt 1580 3717 L X1580 3717 mt 1644 3724 L Xc29 X24 -18 64 7 1556 3735 3 MP XPP X0 sg X1556 3735 mt 1620 3742 L X1620 3742 mt 1644 3724 L Xc31 X24 18 64 -34 1590 3742 3 MP XPP X0 sg X1590 3742 mt 1654 3708 L X1654 3708 mt 1678 3726 L Xc12 X25 4 63 -11 1507 3758 3 MP XPP X0 sg X1507 3758 mt 1570 3747 L X1570 3747 mt 1595 3751 L Xc23 X25 -9 64 0 1531 3751 3 MP XPP X0 sg X1531 3751 mt 1595 3751 L X1595 3751 mt 1620 3742 L Xc31 X64 -40 24 24 1590 3742 3 MP XPP X0 sg X1590 3742 mt 1614 3766 L X1614 3766 mt 1678 3726 L Xc13 X25 5 64 -19 1586 3503 3 MP XPP X0 sg X1586 3503 mt 1650 3484 L X1650 3484 mt 1675 3489 L Xc13 X64 -16 25 2 1586 3503 3 MP XPP X0 sg X1586 3503 mt 1611 3505 L X1611 3505 mt 1675 3489 L Xc9 X25 25 64 -21 1585 3674 3 MP XPP X0 sg X1585 3674 mt 1649 3653 L X1649 3653 mt 1674 3678 L Xc9 X64 -19 25 23 1585 3674 3 MP XPP X0 sg X1585 3674 mt 1610 3697 L X1610 3697 mt 1674 3678 L Xc23 X64 -18 24 2 1581 3539 3 MP XPP X0 sg X1581 3539 mt 1605 3541 L X1605 3541 mt 1669 3523 L Xc23 X24 2 64 -18 1581 3539 3 MP XPP X0 sg X1581 3539 mt 1645 3521 L X1645 3521 mt 1669 3523 L Xc29 X64 -18 24 12 1576 3602 3 MP XPP X0 sg X1576 3602 mt 1600 3614 L X1600 3614 mt 1664 3596 L Xc29 X24 12 64 -18 1576 3602 3 MP XPP X0 sg X1576 3602 mt 1640 3584 L X1640 3584 mt 1664 3596 L Xc19 X24 30 64 -79 1575 3873 3 MP XPP X0 sg X1575 3873 mt 1639 3794 L X1639 3794 mt 1663 3824 L Xc19 X64 -72 24 23 1575 3873 3 MP XPP X0 sg X1575 3873 mt 1599 3896 L X1599 3896 mt 1663 3824 L Xc15 X25 0 64 -17 1571 3522 3 MP XPP X0 sg X1571 3522 mt 1635 3505 L X1635 3505 mt 1660 3505 L Xc15 X64 -17 25 0 1571 3522 3 MP XPP X0 sg X1571 3522 mt 1596 3522 L X1596 3522 mt 1660 3505 L Xc18 X63 -19 25 4 1566 3566 3 MP XPP X0 sg X1566 3566 mt 1591 3570 L X1591 3570 mt 1654 3551 L Xc18 X24 6 64 -21 1566 3566 3 MP XPP X0 sg X1566 3566 mt 1630 3545 L X1630 3545 mt 1654 3551 L Xc12 X25 28 63 -37 1458 3738 3 MP XPP X0 sg X1458 3738 mt 1521 3701 L X1521 3701 mt 1546 3729 L Xc12 X64 -25 24 16 1458 3738 3 MP XPP X0 sg X1458 3738 mt 1482 3754 L X1482 3754 mt 1546 3729 L Xc23 X64 -32 25 28 1521 3701 3 MP XPP X0 sg X1521 3701 mt 1546 3729 L X1546 3729 mt 1610 3697 L Xc30 X24 -18 64 12 1492 3723 3 MP XPP X0 sg X1492 3723 mt 1556 3735 L X1556 3735 mt 1580 3717 L Xc16 X25 7 64 -24 1565 3725 3 MP XPP X0 sg X1565 3725 mt 1629 3701 L X1629 3701 mt 1654 3708 L Xc16 X64 -34 25 17 1565 3725 3 MP XPP X0 sg X1565 3725 mt 1590 3742 L X1590 3742 mt 1654 3708 L Xc21 X64 -19 24 4 1562 3499 3 MP XPP X0 sg X1562 3499 mt 1586 3503 L X1586 3503 mt 1650 3484 L Xc21 X24 9 64 -24 1562 3499 3 MP XPP X0 sg X1562 3499 mt 1626 3475 L X1626 3475 mt 1650 3484 L Xc18 X64 -21 24 22 1561 3652 3 MP XPP X0 sg X1561 3652 mt 1585 3674 L X1585 3674 mt 1649 3653 L Xc18 X24 22 64 -21 1561 3652 3 MP XPP X0 sg X1561 3652 mt 1625 3631 L X1625 3631 mt 1649 3653 L Xc19 X25 0 64 -17 1556 3538 3 MP XPP X0 sg X1556 3538 mt 1620 3521 L X1620 3521 mt 1645 3521 L Xc19 X64 -18 25 1 1556 3538 3 MP XPP X0 sg X1556 3538 mt 1581 3539 L X1581 3539 mt 1645 3521 L Xc29 X64 -18 25 8 1551 3594 3 MP XPP X0 sg X1551 3594 mt 1576 3602 L X1576 3602 mt 1640 3584 L Xc29 X25 8 64 -18 1551 3594 3 MP XPP X0 sg X1551 3594 mt 1615 3576 L X1615 3576 mt 1640 3584 L Xc23 X25 28 64 -83 1550 3849 3 MP XPP X0 sg X1550 3849 mt 1614 3766 L X1614 3766 mt 1639 3794 L Xc23 X64 -79 25 24 1550 3849 3 MP XPP X0 sg X1550 3849 mt 1575 3873 L X1575 3873 mt 1639 3794 L Xc34 X24 0 64 -17 1547 3522 3 MP XPP X0 sg X1547 3522 mt 1611 3505 L X1611 3505 mt 1635 3505 L Xc34 X64 -17 24 0 1547 3522 3 MP XPP X0 sg X1547 3522 mt 1571 3522 L X1571 3522 mt 1635 3505 L Xc9 X64 -21 24 4 1542 3562 3 MP XPP X0 sg X1542 3562 mt 1566 3566 L X1566 3566 mt 1630 3545 L Xc9 X25 4 63 -21 1542 3562 3 MP XPP X0 sg X1542 3562 mt 1605 3541 L X1605 3541 mt 1630 3545 L Xc30 X64 0 24 -6 1492 3723 3 MP XPP X0 sg X1492 3723 mt 1516 3717 L X1516 3717 mt 1580 3717 L Xc25 X25 -13 64 0 1516 3717 3 MP XPP X0 sg X1516 3717 mt 1580 3717 L X1580 3717 mt 1605 3704 L Xc31 X24 -3 64 -13 1541 3717 3 MP XPP X0 sg X1541 3717 mt 1605 3704 L X1605 3704 mt 1629 3701 L Xc31 X64 -24 24 8 1541 3717 3 MP XPP X0 sg X1541 3717 mt 1565 3725 L X1565 3725 mt 1629 3701 L Xc29 X64 -21 25 19 1536 3633 3 MP XPP X0 sg X1536 3633 mt 1561 3652 L X1561 3652 mt 1625 3631 L Xc29 X25 17 64 -19 1536 3633 3 MP XPP X0 sg X1536 3633 mt 1600 3614 L X1600 3614 mt 1625 3631 L Xc12 X24 -1 64 -17 1532 3539 3 MP XPP X0 sg X1532 3539 mt 1596 3522 L X1596 3522 mt 1620 3521 L Xc12 X64 -17 24 -1 1532 3539 3 MP XPP X0 sg X1532 3539 mt 1556 3538 L X1556 3538 mt 1620 3521 L Xc18 X24 6 64 -18 1527 3588 3 MP XPP X0 sg X1527 3588 mt 1591 3570 L X1591 3570 mt 1615 3576 L Xc18 X64 -18 24 6 1527 3588 3 MP XPP X0 sg X1527 3588 mt 1551 3594 L X1551 3594 mt 1615 3576 L Xc12 X64 0 24 -7 1507 3758 3 MP XPP X0 sg X1507 3758 mt 1531 3751 L X1531 3751 mt 1595 3751 L Xc18 X24 24 64 -83 1526 3825 3 MP XPP X0 sg X1526 3825 mt 1590 3742 L X1590 3742 mt 1614 3766 L Xc18 X64 -83 24 24 1526 3825 3 MP XPP X0 sg X1526 3825 mt 1550 3849 L X1550 3849 mt 1614 3766 L Xc13 X64 -17 25 2 1522 3520 3 MP XPP X0 sg X1522 3520 mt 1547 3522 L X1547 3522 mt 1611 3505 L Xc13 X25 2 64 -17 1522 3520 3 MP XPP X0 sg X1522 3520 mt 1586 3503 L X1586 3503 mt 1611 3505 L Xc23 X25 23 64 -27 1521 3701 3 MP XPP X0 sg X1521 3701 mt 1585 3674 L X1585 3674 mt 1610 3697 L Xc23 X24 2 64 -20 1517 3559 3 MP XPP X0 sg X1517 3559 mt 1581 3539 L X1581 3539 mt 1605 3541 L Xc23 X63 -21 25 3 1517 3559 3 MP XPP X0 sg X1517 3559 mt 1542 3562 L X1542 3562 mt 1605 3541 L Xc25 X64 -13 25 0 1516 3717 3 MP XPP X0 sg X1516 3717 mt 1541 3717 L X1541 3717 mt 1605 3704 L Xc29 X24 12 64 -17 1512 3619 3 MP XPP X0 sg X1512 3619 mt 1576 3602 L X1576 3602 mt 1600 3614 L Xc29 X64 -19 24 14 1512 3619 3 MP XPP X0 sg X1512 3619 mt 1536 3633 L X1536 3633 mt 1600 3614 L Xc15 X64 -17 25 -1 1507 3540 3 MP XPP X0 sg X1507 3540 mt 1532 3539 L X1532 3539 mt 1596 3522 L Xc15 X25 0 64 -18 1507 3540 3 MP XPP X0 sg X1507 3540 mt 1571 3522 L X1571 3522 mt 1596 3522 L Xc18 X64 -18 25 5 1502 3583 3 MP XPP X0 sg X1502 3583 mt 1527 3588 L X1527 3588 mt 1591 3570 L Xc18 X25 4 64 -17 1502 3583 3 MP XPP X0 sg X1502 3583 mt 1566 3566 L X1566 3566 mt 1591 3570 L Xc29 X25 17 64 -76 1501 3801 3 MP XPP X0 sg X1501 3801 mt 1565 3725 L X1565 3725 mt 1590 3742 L Xc29 X64 -83 25 24 1501 3801 3 MP XPP X0 sg X1501 3801 mt 1526 3825 L X1526 3825 mt 1590 3742 L Xc21 X24 4 64 -17 1498 3516 3 MP XPP X0 sg X1498 3516 mt 1562 3499 L X1562 3499 mt 1586 3503 L Xc21 X64 -17 24 4 1498 3516 3 MP XPP X0 sg X1498 3516 mt 1522 3520 L X1522 3520 mt 1586 3503 L Xc18 X64 -27 24 31 1497 3670 3 MP XPP X0 sg X1497 3670 mt 1521 3701 L X1521 3701 mt 1585 3674 L Xc18 X24 22 64 -18 1497 3670 3 MP XPP X0 sg X1497 3670 mt 1561 3652 L X1561 3652 mt 1585 3674 L Xc19 X25 1 64 -19 1492 3557 3 MP XPP X0 sg X1492 3557 mt 1556 3538 L X1556 3538 mt 1581 3539 L Xc19 X64 -20 25 2 1492 3557 3 MP XPP X0 sg X1492 3557 mt 1517 3559 L X1517 3559 mt 1581 3539 L Xc29 X64 -17 25 10 1487 3609 3 MP XPP X0 sg X1487 3609 mt 1512 3619 L X1512 3619 mt 1576 3602 L Xc29 X25 8 64 -15 1487 3609 3 MP XPP X0 sg X1487 3609 mt 1551 3594 L X1551 3594 mt 1576 3602 L Xc34 X64 -18 24 1 1483 3539 3 MP XPP X0 sg X1483 3539 mt 1507 3540 L X1507 3540 mt 1571 3522 L Xc34 X24 0 64 -17 1483 3539 3 MP XPP X0 sg X1483 3539 mt 1547 3522 L X1547 3522 mt 1571 3522 L Xc9 X64 -17 24 3 1478 3580 3 MP XPP X0 sg X1478 3580 mt 1502 3583 L X1502 3583 mt 1566 3566 L Xc9 X24 4 64 -18 1478 3580 3 MP XPP X0 sg X1478 3580 mt 1542 3562 L X1542 3562 mt 1566 3566 L Xc19 X64 1 25 9 1369 3728 3 MP XPP X0 sg X1369 3728 mt 1394 3737 L X1394 3737 mt 1458 3738 L Xc19 X25 26 64 -16 1369 3728 3 MP XPP X0 sg X1369 3728 mt 1433 3712 L X1433 3712 mt 1458 3738 L Xc23 X24 16 64 1 1394 3737 3 MP XPP X0 sg X1394 3737 mt 1458 3738 L X1458 3738 mt 1482 3754 L Xc19 X63 -37 25 26 1433 3712 3 MP XPP X0 sg X1433 3712 mt 1458 3738 L X1458 3738 mt 1521 3701 L Xc18 X64 20 24 -7 1443 3738 3 MP XPP X0 sg X1443 3738 mt 1467 3731 L X1467 3731 mt 1531 3751 L Xc18 X24 -7 64 20 1443 3738 3 MP XPP X0 sg X1443 3738 mt 1507 3758 L X1507 3758 mt 1531 3751 L Xc26 X25 -16 64 20 1467 3731 3 MP XPP X0 sg X1467 3731 mt 1531 3751 L X1531 3751 mt 1556 3735 L Xc26 X64 12 25 -8 1467 3731 3 MP XPP X0 sg X1467 3731 mt 1492 3723 L X1492 3723 mt 1556 3735 L Xc17 X64 -76 24 23 1477 3778 3 MP XPP X0 sg X1477 3778 mt 1501 3801 L X1501 3801 mt 1565 3725 L Xc9 X25 4 64 13 1418 3741 3 MP XPP X0 sg X1418 3741 mt 1482 3754 L X1482 3754 mt 1507 3758 L Xc9 X64 20 25 -3 1418 3741 3 MP XPP X0 sg X1418 3741 mt 1443 3738 L X1443 3738 mt 1507 3758 L Xc17 X24 8 64 -61 1477 3778 3 MP XPP X0 sg X1477 3778 mt 1541 3717 L X1541 3717 mt 1565 3725 L Xc26 X25 19 64 -9 1472 3642 3 MP XPP X0 sg X1472 3642 mt 1536 3633 L X1536 3633 mt 1561 3652 L Xc26 X64 -18 25 28 1472 3642 3 MP XPP X0 sg X1472 3642 mt 1497 3670 L X1497 3670 mt 1561 3652 L Xc12 X64 -19 24 2 1468 3555 3 MP XPP X0 sg X1468 3555 mt 1492 3557 L X1492 3557 mt 1556 3538 L Xc12 X24 -1 64 -16 1468 3555 3 MP XPP X0 sg X1468 3555 mt 1532 3539 L X1532 3539 mt 1556 3538 L Xc29 X24 6 64 -14 1463 3602 3 MP XPP X0 sg X1463 3602 mt 1527 3588 L X1527 3588 mt 1551 3594 L Xc29 X64 -15 24 7 1463 3602 3 MP XPP X0 sg X1463 3602 mt 1487 3609 L X1487 3609 mt 1551 3594 L Xc13 X64 -17 25 2 1458 3537 3 MP XPP X0 sg X1458 3537 mt 1483 3539 L X1483 3539 mt 1547 3522 L Xc13 X25 2 64 -17 1458 3537 3 MP XPP X0 sg X1458 3537 mt 1522 3520 L X1522 3520 mt 1547 3522 L Xc23 X64 -18 25 3 1453 3577 3 MP XPP X0 sg X1453 3577 mt 1478 3580 L X1478 3580 mt 1542 3562 L Xc23 X25 3 64 -18 1453 3577 3 MP XPP X0 sg X1453 3577 mt 1517 3559 L X1517 3559 mt 1542 3562 L Xc23 X64 13 24 4 1394 3737 3 MP XPP X0 sg X1394 3737 mt 1418 3741 L X1418 3741 mt 1482 3754 L Xc30 X25 0 64 -41 1452 3758 3 MP XPP X0 sg X1452 3758 mt 1516 3717 L X1516 3717 mt 1541 3717 L Xc30 X64 -61 25 20 1452 3758 3 MP XPP X0 sg X1452 3758 mt 1477 3778 L X1477 3778 mt 1541 3717 L Xc17 X64 -9 24 20 1448 3622 3 MP XPP X0 sg X1448 3622 mt 1472 3642 L X1472 3642 mt 1536 3633 L Xc17 X24 14 64 -3 1448 3622 3 MP XPP X0 sg X1448 3622 mt 1512 3619 L X1512 3619 mt 1536 3633 L Xc22 X64 -16 25 3 1443 3552 3 MP XPP X0 sg X1443 3552 mt 1468 3555 L X1468 3555 mt 1532 3539 L Xc22 X25 -1 64 -12 1443 3552 3 MP XPP X0 sg X1443 3552 mt 1507 3540 L X1507 3540 mt 1532 3539 L Xc18 X64 -14 25 4 1438 3598 3 MP XPP X0 sg X1438 3598 mt 1463 3602 L X1463 3602 mt 1527 3588 L Xc18 X25 5 64 -15 1438 3598 3 MP XPP X0 sg X1438 3598 mt 1502 3583 L X1502 3583 mt 1527 3588 L Xc21 X64 -17 24 4 1434 3533 3 MP XPP X0 sg X1434 3533 mt 1458 3537 L X1458 3537 mt 1522 3520 L Xc21 X24 4 64 -17 1434 3533 3 MP XPP X0 sg X1434 3533 mt 1498 3516 L X1498 3516 mt 1522 3520 L Xc19 X24 31 64 -42 1433 3712 3 MP XPP X0 sg X1433 3712 mt 1497 3670 L X1497 3670 mt 1521 3701 L Xc19 X64 -18 24 3 1429 3574 3 MP XPP X0 sg X1429 3574 mt 1453 3577 L X1453 3577 mt 1517 3559 L Xc19 X25 2 63 -17 1429 3574 3 MP XPP X0 sg X1429 3574 mt 1492 3557 L X1492 3557 mt 1517 3559 L Xc23 X63 -32 25 14 1320 3701 3 MP XPP X0 sg X1320 3701 mt 1345 3715 L X1345 3715 mt 1408 3683 L Xc23 X64 -16 24 13 1345 3715 3 MP XPP X0 sg X1345 3715 mt 1369 3728 L X1369 3728 mt 1433 3712 L Xc23 X25 29 63 -32 1345 3715 3 MP XPP X0 sg X1345 3715 mt 1408 3683 L X1408 3683 mt 1433 3712 L Xc30 X25 -3 64 32 1354 3709 3 MP XPP X0 sg X1354 3709 mt 1418 3741 L X1418 3741 mt 1443 3738 L Xc30 X64 21 25 8 1354 3709 3 MP XPP X0 sg X1354 3709 mt 1379 3717 L X1379 3717 mt 1443 3738 L Xc30 X24 -7 64 21 1379 3717 3 MP XPP X0 sg X1379 3717 mt 1443 3738 L X1443 3738 mt 1467 3731 L Xc30 X64 4 24 10 1379 3717 3 MP XPP X0 sg X1379 3717 mt 1403 3727 L X1403 3727 mt 1467 3731 L Xc30 X25 -8 64 4 1403 3727 3 MP XPP X0 sg X1403 3727 mt 1467 3731 L X1467 3731 mt 1492 3723 L Xc30 X24 -6 64 -18 1428 3741 3 MP XPP X0 sg X1428 3741 mt 1492 3723 L X1492 3723 mt 1516 3717 L Xc30 X64 -41 24 17 1428 3741 3 MP XPP X0 sg X1428 3741 mt 1452 3758 L X1452 3758 mt 1516 3717 L Xc17 X64 -3 25 11 1423 3611 3 MP XPP X0 sg X1423 3611 mt 1448 3622 L X1448 3622 mt 1512 3619 L Xc17 X25 10 64 -2 1423 3611 3 MP XPP X0 sg X1423 3611 mt 1487 3609 L X1487 3609 mt 1512 3619 L Xc15 X24 1 64 -10 1419 3549 3 MP XPP X0 sg X1419 3549 mt 1483 3539 L X1483 3539 mt 1507 3540 L Xc15 X64 -12 24 3 1419 3549 3 MP XPP X0 sg X1419 3549 mt 1443 3552 L X1443 3552 mt 1507 3540 L Xc9 X24 3 64 -15 1414 3595 3 MP XPP X0 sg X1414 3595 mt 1478 3580 L X1478 3580 mt 1502 3583 L Xc9 X64 -15 24 3 1414 3595 3 MP XPP X0 sg X1414 3595 mt 1438 3598 L X1438 3598 mt 1502 3583 L Xc9 X64 -42 25 29 1408 3683 3 MP XPP X0 sg X1408 3683 mt 1433 3712 L X1433 3712 mt 1497 3670 L Xc9 X25 28 64 -41 1408 3683 3 MP XPP X0 sg X1408 3683 mt 1472 3642 L X1472 3642 mt 1497 3670 L Xc12 X63 -17 25 2 1404 3572 3 MP XPP X0 sg X1404 3572 mt 1429 3574 L X1429 3574 mt 1492 3557 L Xc12 X24 2 64 -17 1404 3572 3 MP XPP X0 sg X1404 3572 mt 1468 3555 L X1468 3555 mt 1492 3557 L Xc30 X64 -18 25 14 1403 3727 3 MP XPP X0 sg X1403 3727 mt 1428 3741 L X1428 3741 mt 1492 3723 L Xc18 X25 4 64 -14 1374 3612 3 MP XPP X0 sg X1374 3612 mt 1438 3598 L X1438 3598 mt 1463 3602 L Xc18 X64 -7 25 -3 1374 3612 3 MP XPP X0 sg X1374 3612 mt 1399 3609 L X1399 3609 mt 1463 3602 L Xc26 X64 -2 24 2 1399 3609 3 MP XPP X0 sg X1399 3609 mt 1423 3611 L X1423 3611 mt 1487 3609 L Xc26 X24 7 64 -7 1399 3609 3 MP XPP X0 sg X1399 3609 mt 1463 3602 L X1463 3602 mt 1487 3609 L Xc34 X25 2 64 -9 1394 3546 3 MP XPP X0 sg X1394 3546 mt 1458 3537 L X1458 3537 mt 1483 3539 L Xc34 X64 -10 25 3 1394 3546 3 MP XPP X0 sg X1394 3546 mt 1419 3549 L X1419 3549 mt 1483 3539 L Xc23 X25 3 64 -16 1389 3593 3 MP XPP X0 sg X1389 3593 mt 1453 3577 L X1453 3577 mt 1478 3580 L Xc23 X64 -15 25 2 1389 3593 3 MP XPP X0 sg X1389 3593 mt 1414 3595 L X1414 3595 mt 1478 3580 L Xc29 X64 -41 24 28 1384 3655 3 MP XPP X0 sg X1384 3655 mt 1408 3683 L X1408 3683 mt 1472 3642 L Xc29 X24 20 64 -33 1384 3655 3 MP XPP X0 sg X1384 3655 mt 1448 3622 L X1448 3622 mt 1472 3642 L Xc22 X25 3 63 -18 1380 3570 3 MP XPP X0 sg X1380 3570 mt 1443 3552 L X1443 3552 mt 1468 3555 L Xc22 X64 -17 24 2 1380 3570 3 MP XPP X0 sg X1380 3570 mt 1404 3572 L X1404 3572 mt 1468 3555 L Xc13 X24 4 64 -8 1370 3541 3 MP XPP X0 sg X1370 3541 mt 1434 3533 L X1434 3533 mt 1458 3537 L Xc13 X64 -9 24 5 1370 3541 3 MP XPP X0 sg X1370 3541 mt 1394 3546 L X1394 3546 mt 1458 3537 L Xc19 X64 -16 24 1 1365 3592 3 MP XPP X0 sg X1365 3592 mt 1389 3593 L X1389 3593 mt 1453 3577 L Xc19 X24 3 64 -18 1365 3592 3 MP XPP X0 sg X1365 3592 mt 1429 3574 L X1429 3574 mt 1453 3577 L Xc26 X25 11 64 -23 1359 3634 3 MP XPP X0 sg X1359 3634 mt 1423 3611 L X1423 3611 mt 1448 3622 L Xc26 X64 -33 25 21 1359 3634 3 MP XPP X0 sg X1359 3634 mt 1384 3655 L X1384 3655 mt 1448 3622 L Xc15 X63 -18 25 3 1355 3567 3 MP XPP X0 sg X1355 3567 mt 1380 3570 L X1380 3570 mt 1443 3552 L Xc15 X24 3 64 -18 1355 3567 3 MP XPP X0 sg X1355 3567 mt 1419 3549 L X1419 3549 mt 1443 3552 L Xc23 X24 3 64 -21 1350 3616 3 MP XPP X0 sg X1350 3616 mt 1414 3595 L X1414 3595 mt 1438 3598 L Xc23 X64 -14 24 -4 1350 3616 3 MP XPP X0 sg X1350 3616 mt 1374 3612 L X1374 3612 mt 1438 3598 L Xc12 X25 2 64 -18 1340 3590 3 MP XPP X0 sg X1340 3590 mt 1404 3572 L X1404 3572 mt 1429 3574 L Xc12 X64 -18 25 2 1340 3590 3 MP XPP X0 sg X1340 3590 mt 1365 3592 L X1365 3592 mt 1429 3574 L Xc26 X24 2 64 -11 1335 3620 3 MP XPP X0 sg X1335 3620 mt 1399 3609 L X1399 3609 mt 1423 3611 L Xc26 X64 -23 24 14 1335 3620 3 MP XPP X0 sg X1335 3620 mt 1359 3634 L X1359 3634 mt 1423 3611 L Xc34 X25 3 63 -17 1331 3563 3 MP XPP X0 sg X1331 3563 mt 1394 3546 L X1394 3546 mt 1419 3549 L Xc34 X64 -18 24 4 1331 3563 3 MP XPP X0 sg X1331 3563 mt 1355 3567 L X1355 3567 mt 1419 3549 L Xc17 X24 4 64 33 1330 3704 3 MP XPP X0 sg X1330 3704 mt 1394 3737 L X1394 3737 mt 1418 3741 L Xc17 X64 32 24 5 1330 3704 3 MP XPP X0 sg X1330 3704 mt 1354 3709 L X1354 3709 mt 1418 3741 L Xc19 X64 -21 25 -5 1325 3621 3 MP XPP X0 sg X1325 3621 mt 1350 3616 L X1350 3616 mt 1414 3595 L Xc19 X25 2 64 -28 1325 3621 3 MP XPP X0 sg X1325 3621 mt 1389 3593 L X1389 3593 mt 1414 3595 L Xc23 X24 28 64 -46 1320 3701 3 MP XPP X0 sg X1320 3701 mt 1384 3655 L X1384 3655 mt 1408 3683 L Xc22 X24 2 64 -19 1316 3589 3 MP XPP X0 sg X1316 3589 mt 1380 3570 L X1380 3570 mt 1404 3572 L Xc22 X64 -18 24 1 1316 3589 3 MP XPP X0 sg X1316 3589 mt 1340 3590 L X1340 3590 mt 1404 3572 L Xc13 X64 -31 25 6 1227 3614 3 MP XPP X0 sg X1227 3614 mt 1252 3620 L X1252 3620 mt 1316 3589 L Xc34 X24 1 64 -31 1252 3620 3 MP XPP X0 sg X1252 3620 mt 1316 3589 L X1316 3589 mt 1340 3590 L Xc34 X64 -33 24 3 1252 3620 3 MP XPP X0 sg X1252 3620 mt 1276 3623 L X1276 3623 mt 1340 3590 L Xc15 X64 -31 25 0 1276 3623 3 MP XPP X0 sg X1276 3623 mt 1301 3623 L X1301 3623 mt 1365 3592 L Xc15 X25 2 64 -33 1276 3623 3 MP XPP X0 sg X1276 3623 mt 1340 3590 L X1340 3590 mt 1365 3592 L Xc22 X64 -28 24 -2 1301 3623 3 MP XPP X0 sg X1301 3623 mt 1325 3621 L X1325 3621 mt 1389 3593 L Xc22 X24 1 64 -31 1301 3623 3 MP XPP X0 sg X1301 3623 mt 1365 3592 L X1365 3592 mt 1389 3593 L Xc9 X64 4 25 -2 1261 3614 3 MP XPP X0 sg X1261 3614 mt 1286 3612 L X1286 3612 mt 1350 3616 L Xc9 X25 -5 64 7 1261 3614 3 MP XPP X0 sg X1261 3614 mt 1325 3621 L X1325 3621 mt 1350 3616 L Xc29 X24 -4 64 4 1286 3612 3 MP XPP X0 sg X1286 3612 mt 1350 3616 L X1350 3616 mt 1374 3612 L Xc29 X64 -2 24 2 1286 3612 3 MP XPP X0 sg X1286 3612 mt 1310 3614 L X1310 3614 mt 1374 3612 L Xc26 X25 -3 64 -2 1310 3614 3 MP XPP X0 sg X1310 3614 mt 1374 3612 L X1374 3612 mt 1399 3609 L Xc26 X64 -11 25 6 1310 3614 3 MP XPP X0 sg X1310 3614 mt 1335 3620 L X1335 3620 mt 1399 3609 L Xc13 X63 -17 25 5 1306 3558 3 MP XPP X0 sg X1306 3558 mt 1331 3563 L X1331 3563 mt 1394 3546 L Xc13 X24 5 64 -17 1306 3558 3 MP XPP X0 sg X1306 3558 mt 1370 3541 L X1370 3541 mt 1394 3546 L Xc9 X24 12 64 -11 1232 3700 3 MP XPP X0 sg X1232 3700 mt 1296 3689 L X1296 3689 mt 1320 3701 L Xc9 X64 1 24 0 1232 3700 3 MP XPP X0 sg X1232 3700 mt 1256 3700 L X1256 3700 mt 1320 3701 L Xc18 X25 14 64 1 1256 3700 3 MP XPP X0 sg X1256 3700 mt 1320 3701 L X1320 3701 mt 1345 3715 L Xc18 X64 15 25 0 1256 3700 3 MP XPP X0 sg X1256 3700 mt 1281 3700 L X1281 3700 mt 1345 3715 L Xc29 X24 13 64 15 1281 3700 3 MP XPP X0 sg X1281 3700 mt 1345 3715 L X1345 3715 mt 1369 3728 L Xc26 X25 9 64 27 1305 3701 3 MP XPP X0 sg X1305 3701 mt 1369 3728 L X1369 3728 mt 1394 3737 L Xc26 X64 33 25 3 1305 3701 3 MP XPP X0 sg X1305 3701 mt 1330 3704 L X1330 3704 mt 1394 3737 L Xc23 X25 21 63 -55 1296 3689 3 MP XPP X0 sg X1296 3689 mt 1359 3634 L X1359 3634 mt 1384 3655 L Xc23 X64 -46 24 12 1296 3689 3 MP XPP X0 sg X1296 3689 mt 1320 3701 L X1320 3701 mt 1384 3655 L Xc15 X25 3 64 -20 1291 3587 3 MP XPP X0 sg X1291 3587 mt 1355 3567 L X1355 3567 mt 1380 3570 L Xc15 X64 -19 25 2 1291 3587 3 MP XPP X0 sg X1291 3587 mt 1316 3589 L X1316 3589 mt 1380 3570 L X Xgr Xgs 898 2830 2260 1783 MR c np Xc29 X64 27 24 1 1281 3700 3 MP XPP X0 sg X1281 3700 mt 1305 3701 L X1305 3701 mt 1369 3728 L Xc23 X24 14 64 -59 1271 3679 3 MP XPP X0 sg X1271 3679 mt 1335 3620 L X1335 3620 mt 1359 3634 L Xc23 X63 -55 25 10 1271 3679 3 MP XPP X0 sg X1271 3679 mt 1296 3689 L X1296 3689 mt 1359 3634 L Xc34 X64 -20 24 4 1267 3583 3 MP XPP X0 sg X1267 3583 mt 1291 3587 L X1291 3587 mt 1355 3567 L Xc34 X24 4 64 -20 1267 3583 3 MP XPP X0 sg X1267 3583 mt 1331 3563 L X1331 3563 mt 1355 3567 L Xc15 X25 6 64 -3 1163 3617 3 MP XPP X0 sg X1163 3617 mt 1227 3614 L X1227 3614 mt 1252 3620 L Xc15 X64 1 25 2 1163 3617 3 MP XPP X0 sg X1163 3617 mt 1188 3619 L X1188 3619 mt 1252 3620 L Xc22 X24 3 64 1 1188 3619 3 MP XPP X0 sg X1188 3619 mt 1252 3620 L X1252 3620 mt 1276 3623 L Xc12 X25 0 64 5 1212 3618 3 MP XPP X0 sg X1212 3618 mt 1276 3623 L X1276 3623 mt 1301 3623 L Xc12 X64 6 25 -1 1212 3618 3 MP XPP X0 sg X1212 3618 mt 1237 3617 L X1237 3617 mt 1301 3623 L Xc23 X24 -2 64 6 1237 3617 3 MP XPP X0 sg X1237 3617 mt 1301 3623 L X1301 3623 mt 1325 3621 L Xc23 X64 7 24 -3 1237 3617 3 MP XPP X0 sg X1237 3617 mt 1261 3614 L X1261 3614 mt 1325 3621 L Xc19 X25 6 64 -59 1246 3673 3 MP XPP X0 sg X1246 3673 mt 1310 3614 L X1310 3614 mt 1335 3620 L Xc19 X64 -59 25 6 1246 3673 3 MP XPP X0 sg X1246 3673 mt 1271 3679 L X1271 3679 mt 1335 3620 L Xc13 X25 5 64 -21 1242 3579 3 MP XPP X0 sg X1242 3579 mt 1306 3558 L X1306 3558 mt 1331 3563 L Xc13 X64 -20 25 4 1242 3579 3 MP XPP X0 sg X1242 3579 mt 1267 3583 L X1267 3583 mt 1331 3563 L Xc13 X25 2 64 -27 1227 3614 3 MP XPP X0 sg X1227 3614 mt 1291 3587 L X1291 3587 mt 1316 3589 L Xc22 X64 5 24 -1 1188 3619 3 MP XPP X0 sg X1188 3619 mt 1212 3618 L X1212 3618 mt 1276 3623 L Xc19 X24 2 64 -56 1222 3668 3 MP XPP X0 sg X1222 3668 mt 1286 3612 L X1286 3612 mt 1310 3614 L Xc19 X64 -59 24 5 1222 3668 3 MP XPP X0 sg X1222 3668 mt 1246 3673 L X1246 3673 mt 1310 3614 L Xc19 X64 -11 25 0 1207 3700 3 MP XPP X0 sg X1207 3700 mt 1232 3700 L X1232 3700 mt 1296 3689 L Xc19 X25 10 64 -21 1207 3700 3 MP XPP X0 sg X1207 3700 mt 1271 3679 L X1271 3679 mt 1296 3689 L Xc13 X64 -27 24 7 1203 3607 3 MP XPP X0 sg X1203 3607 mt 1227 3614 L X1227 3614 mt 1291 3587 L Xc13 X24 4 64 -24 1203 3607 3 MP XPP X0 sg X1203 3607 mt 1267 3583 L X1267 3583 mt 1291 3587 L Xc12 X64 -56 25 3 1197 3665 3 MP XPP X0 sg X1197 3665 mt 1222 3668 L X1222 3668 mt 1286 3612 L Xc12 X25 -2 64 -51 1197 3665 3 MP XPP X0 sg X1197 3665 mt 1261 3614 L X1261 3614 mt 1286 3612 L Xc12 X64 -21 24 0 1183 3700 3 MP XPP X0 sg X1183 3700 mt 1207 3700 L X1207 3700 mt 1271 3679 L Xc12 X25 6 63 -27 1183 3700 3 MP XPP X0 sg X1183 3700 mt 1246 3673 L X1246 3673 mt 1271 3679 L Xc13 X64 -24 25 8 1178 3599 3 MP XPP X0 sg X1178 3599 mt 1203 3607 L X1203 3607 mt 1267 3583 L Xc13 X25 4 64 -20 1178 3599 3 MP XPP X0 sg X1178 3599 mt 1242 3579 L X1242 3579 mt 1267 3583 L Xc22 X24 -3 64 -45 1173 3662 3 MP XPP X0 sg X1173 3662 mt 1237 3617 L X1237 3617 mt 1261 3614 L Xc22 X64 -51 24 3 1173 3662 3 MP XPP X0 sg X1173 3662 mt 1197 3665 L X1197 3665 mt 1261 3614 L Xc22 X63 -27 25 1 1158 3699 3 MP XPP X0 sg X1158 3699 mt 1183 3700 L X1183 3700 mt 1246 3673 L Xc22 X24 5 64 -31 1158 3699 3 MP XPP X0 sg X1158 3699 mt 1222 3668 L X1222 3668 mt 1246 3673 L Xc15 X64 -45 25 4 1148 3658 3 MP XPP X0 sg X1148 3658 mt 1173 3662 L X1173 3662 mt 1237 3617 L Xc15 X25 -1 64 -40 1148 3658 3 MP XPP X0 sg X1148 3658 mt 1212 3618 L X1212 3618 mt 1237 3617 L Xc34 X64 -3 24 3 1139 3614 3 MP XPP X0 sg X1139 3614 mt 1163 3617 L X1163 3617 mt 1227 3614 L Xc34 X24 7 64 -7 1139 3614 3 MP XPP X0 sg X1139 3614 mt 1203 3607 L X1203 3607 mt 1227 3614 L Xc15 X25 3 63 -31 1134 3696 3 MP XPP X0 sg X1134 3696 mt 1197 3665 L X1197 3665 mt 1222 3668 L Xc15 X64 -31 24 3 1134 3696 3 MP XPP X0 sg X1134 3696 mt 1158 3699 L X1158 3699 mt 1222 3668 L Xc34 X64 -40 24 4 1124 3654 3 MP XPP X0 sg X1124 3654 mt 1148 3658 L X1148 3658 mt 1212 3618 L Xc34 X24 -1 64 -35 1124 3654 3 MP XPP X0 sg X1124 3654 mt 1188 3619 L X1188 3619 mt 1212 3618 L Xc13 X25 8 64 -10 1114 3609 3 MP XPP X0 sg X1114 3609 mt 1178 3599 L X1178 3599 mt 1203 3607 L Xc13 X64 -7 25 5 1114 3609 3 MP XPP X0 sg X1114 3609 mt 1139 3614 L X1139 3614 mt 1203 3607 L Xc34 X24 3 64 -30 1109 3692 3 MP XPP X0 sg X1109 3692 mt 1173 3662 L X1173 3662 mt 1197 3665 L Xc34 X63 -31 25 4 1109 3692 3 MP XPP X0 sg X1109 3692 mt 1134 3696 L X1134 3696 mt 1197 3665 L Xc13 X64 -35 25 6 1099 3648 3 MP XPP X0 sg X1099 3648 mt 1124 3654 L X1124 3654 mt 1188 3619 L Xc13 X25 2 64 -31 1099 3648 3 MP XPP X0 sg X1099 3648 mt 1163 3617 L X1163 3617 mt 1188 3619 L Xc34 X64 -30 24 5 1085 3687 3 MP XPP X0 sg X1085 3687 mt 1109 3692 L X1109 3692 mt 1173 3662 L Xc34 X25 4 63 -29 1085 3687 3 MP XPP X0 sg X1085 3687 mt 1148 3658 L X1148 3658 mt 1173 3662 L Xc13 X24 3 64 -27 1075 3641 3 MP XPP X0 sg X1075 3641 mt 1139 3614 L X1139 3614 mt 1163 3617 L Xc13 X64 -31 24 7 1075 3641 3 MP XPP X0 sg X1075 3641 mt 1099 3648 L X1099 3648 mt 1163 3617 L Xc13 X63 -29 25 7 1060 3680 3 MP XPP X0 sg X1060 3680 mt 1085 3687 L X1085 3687 mt 1148 3658 L Xc13 X24 4 64 -26 1060 3680 3 MP XPP X0 sg X1060 3680 mt 1124 3654 L X1124 3654 mt 1148 3658 L Xc13 X25 5 64 -25 1050 3634 3 MP XPP X0 sg X1050 3634 mt 1114 3609 L X1114 3609 mt 1139 3614 L Xc13 X64 -27 25 7 1050 3634 3 MP XPP X0 sg X1050 3634 mt 1075 3641 L X1075 3641 mt 1139 3614 L Xc13 X64 -26 25 7 1035 3673 3 MP XPP X0 sg X1035 3673 mt 1060 3680 L X1060 3680 mt 1124 3654 L Xc13 X25 6 64 -25 1035 3673 3 MP XPP X0 sg X1035 3673 mt 1099 3648 L X1099 3648 mt 1124 3654 L Xc21 X24 7 64 -23 1011 3664 3 MP XPP X0 sg X1011 3664 mt 1075 3641 L X1075 3641 mt 1099 3648 L Xc21 X64 -25 24 9 1011 3664 3 MP XPP X0 sg X1011 3664 mt 1035 3673 L X1035 3673 mt 1099 3648 L Xc21 X25 7 64 -21 986 3655 3 MP XPP X0 sg X 986 3655 mt 1050 3634 L X1050 3634 mt 1075 3641 L Xc21 X64 -23 25 9 986 3655 3 MP XPP X0 sg X 986 3655 mt 1011 3664 L X1011 3664 mt 1075 3641 L X Xgr X1 sg X-981 -451 1279 -346 981 451 3994 3176 4 MP XPP X-1279 346 -981 -451 1279 -346 981 451 3994 3176 5 MP stroke X0 985 981 451 0 -985 3994 4161 4 MP XPP X-981 -451 0 985 981 451 0 -985 3994 4161 5 MP stroke X0 985 1279 -346 0 -985 4975 4612 4 MP XPP X-1279 346 0 985 1279 -346 0 -985 4975 4612 5 MP stroke X4 w XDO X0 sg X4975 4612 mt 3994 4161 L X3994 4161 mt 3994 3176 L X5615 4439 mt 4633 3988 L X4633 3988 mt 4633 3003 L X6254 4266 mt 5273 3815 L X5273 3815 mt 5273 2830 L X3994 4161 mt 5273 3815 L X5273 3815 mt 5273 2830 L X4485 4386 mt 5763 4040 L X5763 4040 mt 5763 3056 L X4975 4612 mt 6254 4266 L X6254 4266 mt 6254 3281 L X3994 4161 mt 5273 3815 L X5273 3815 mt 6254 4266 L X3994 3833 mt 5273 3487 L X5273 3487 mt 6254 3938 L X3994 3504 mt 5273 3158 L X5273 3158 mt 6254 3609 L X3994 3176 mt 5273 2830 L X5273 2830 mt 6254 3281 L XSO X6 w X4975 4612 mt 6254 4266 L X3994 4161 mt 4975 4612 L X3994 4161 mt 3994 3176 L X4975 4612 mt 5005 4626 L X5037 4751 mt X(0) s X5615 4439 mt 5645 4453 L X5676 4578 mt X(10) s X6254 4266 mt 6284 4280 L X6316 4405 mt X(20) s X3994 4161 mt 3962 4170 L X3863 4290 mt X(0) s X4485 4386 mt 4453 4395 L X4286 4515 mt X(20) s X4975 4612 mt 4943 4621 L X4777 4741 mt X(40) s X3994 4161 mt 3964 4147 L X3729 4177 mt X(-40) s X3994 3833 mt 3964 3819 L X3729 3848 mt X(-20) s X3994 3504 mt 3964 3491 L X3866 3520 mt X(0) s X3994 3176 mt 3964 3162 L X3799 3192 mt X(20) s Xgs 3994 2830 2261 1783 MR c np Xc44 X25 19 64 -58 5777 4034 3 MP XPP X0 sg X5777 4034 mt 5841 3976 L X5841 3976 mt 5866 3995 L Xc44 X64 -57 25 18 5777 4034 3 MP XPP X0 sg X5777 4034 mt 5802 4052 L X5802 4052 mt 5866 3995 L Xc44 X24 15 64 -58 5753 4019 3 MP XPP X0 sg X5753 4019 mt 5817 3961 L X5817 3961 mt 5841 3976 L Xc44 X64 -58 24 15 5753 4019 3 MP XPP X0 sg X5753 4019 mt 5777 4034 L X5777 4034 mt 5841 3976 L Xc40 X25 17 64 -58 5728 4002 3 MP XPP X0 sg X5728 4002 mt 5792 3944 L X5792 3944 mt 5817 3961 L Xc40 X64 -58 25 17 5728 4002 3 MP XPP X0 sg X5728 4002 mt 5753 4019 L X5753 4019 mt 5817 3961 L Xc44 X64 -18 24 19 5714 4051 3 MP XPP X0 sg X5714 4051 mt 5738 4070 L X5738 4070 mt 5802 4052 L Xc44 X25 18 63 -17 5714 4051 3 MP XPP X0 sg X5714 4051 mt 5777 4034 L X5777 4034 mt 5802 4052 L Xc37 X64 -58 24 20 5704 3982 3 MP XPP X0 sg X5704 3982 mt 5728 4002 L X5728 4002 mt 5792 3944 L Xc37 X24 20 64 -58 5704 3982 3 MP XPP X0 sg X5704 3982 mt 5768 3924 L X5768 3924 mt 5792 3944 L Xc44 X63 -17 25 15 5689 4036 3 MP XPP X0 sg X5689 4036 mt 5714 4051 L X5714 4051 mt 5777 4034 L Xc44 X24 15 64 -17 5689 4036 3 MP XPP X0 sg X5689 4036 mt 5753 4019 L X5753 4019 mt 5777 4034 L Xc37 X64 -58 25 18 5679 3964 3 MP XPP X0 sg X5679 3964 mt 5704 3982 L X5704 3982 mt 5768 3924 L Xc37 X25 17 64 -57 5679 3964 3 MP XPP X0 sg X5679 3964 mt 5743 3907 L X5743 3907 mt 5768 3924 L Xc40 X25 17 64 -17 5664 4019 3 MP XPP X0 sg X5664 4019 mt 5728 4002 L X5728 4002 mt 5753 4019 L Xc40 X64 -17 25 17 5664 4019 3 MP XPP X0 sg X5664 4019 mt 5689 4036 L X5689 4036 mt 5753 4019 L Xc37 X24 12 64 -58 5655 3953 3 MP XPP X0 sg X5655 3953 mt 5719 3895 L X5719 3895 mt 5743 3907 L Xc37 X64 -57 24 11 5655 3953 3 MP XPP X0 sg X5655 3953 mt 5679 3964 L X5679 3964 mt 5743 3907 L Xc44 X24 19 64 -18 5650 4069 3 MP XPP X0 sg X5650 4069 mt 5714 4051 L X5714 4051 mt 5738 4070 L Xc44 X64 -17 24 18 5650 4069 3 MP XPP X0 sg X5650 4069 mt 5674 4087 L X5674 4087 mt 5738 4070 L Xc37 X24 20 64 -17 5640 3999 3 MP XPP X0 sg X5640 3999 mt 5704 3982 L X5704 3982 mt 5728 4002 L Xc37 X64 -17 24 20 5640 3999 3 MP XPP X0 sg X5640 3999 mt 5664 4019 L X5664 4019 mt 5728 4002 L Xc33 X64 -58 25 13 5630 3940 3 MP XPP X0 sg X5630 3940 mt 5655 3953 L X5655 3953 mt 5719 3895 L Xc33 X25 12 64 -57 5630 3940 3 MP XPP X0 sg X5630 3940 mt 5694 3883 L X5694 3883 mt 5719 3895 L Xc44 X25 15 64 -17 5625 4053 3 MP XPP X0 sg X5625 4053 mt 5689 4036 L X5689 4036 mt 5714 4051 L Xc44 X64 -18 25 16 5625 4053 3 MP XPP X0 sg X5625 4053 mt 5650 4069 L X5650 4069 mt 5714 4051 L Xc37 X25 18 64 -18 5615 3982 3 MP XPP X0 sg X5615 3982 mt 5679 3964 L X5679 3964 mt 5704 3982 L Xc37 X64 -17 25 17 5615 3982 3 MP XPP X0 sg X5615 3982 mt 5640 3999 L X5640 3999 mt 5704 3982 L Xc33 X24 15 64 -58 5606 3926 3 MP XPP X0 sg X5606 3926 mt 5670 3868 L X5670 3868 mt 5694 3883 L Xc33 X64 -57 24 14 5606 3926 3 MP XPP X0 sg X5606 3926 mt 5630 3940 L X5630 3940 mt 5694 3883 L Xc40 X64 -17 24 17 5601 4036 3 MP XPP X0 sg X5601 4036 mt 5625 4053 L X5625 4053 mt 5689 4036 L Xc40 X25 17 63 -17 5601 4036 3 MP XPP X0 sg X5601 4036 mt 5664 4019 L X5664 4019 mt 5689 4036 L Xc37 X24 11 64 -17 5591 3970 3 MP XPP X0 sg X5591 3970 mt 5655 3953 L X5655 3953 mt 5679 3964 L Xc37 X64 -18 24 12 5591 3970 3 MP XPP X0 sg X5591 3970 mt 5615 3982 L X5615 3982 mt 5679 3964 L Xc47 X24 18 64 -35 5586 4104 3 MP XPP X0 sg X5586 4104 mt 5650 4069 L X5650 4069 mt 5674 4087 L Xc47 X64 -35 24 18 5586 4104 3 MP XPP X0 sg X5586 4104 mt 5610 4122 L X5610 4122 mt 5674 4087 L Xc38 X64 -58 25 20 5581 3906 3 MP XPP X0 sg X5581 3906 mt 5606 3926 L X5606 3926 mt 5670 3868 L Xc38 X25 20 64 -58 5581 3906 3 MP XPP X0 sg X5581 3906 mt 5645 3848 L X5645 3848 mt 5670 3868 L Xc37 X24 20 64 -18 5576 4017 3 MP XPP X0 sg X5576 4017 mt 5640 3999 L X5640 3999 mt 5664 4019 L Xc37 X63 -17 25 19 5576 4017 3 MP XPP X0 sg X5576 4017 mt 5601 4036 L X5601 4036 mt 5664 4019 L Xc33 X64 -17 25 12 5566 3958 3 MP XPP X0 sg X5566 3958 mt 5591 3970 L X5591 3970 mt 5655 3953 L Xc33 X25 13 64 -18 5566 3958 3 MP XPP X0 sg X5566 3958 mt 5630 3940 L X5630 3940 mt 5655 3953 L Xc47 X64 -35 25 16 5561 4088 3 MP XPP X0 sg X5561 4088 mt 5586 4104 L X5586 4104 mt 5650 4069 L Xc47 X25 16 64 -35 5561 4088 3 MP XPP X0 sg X5561 4088 mt 5625 4053 L X5625 4053 mt 5650 4069 L Xc38 X64 -58 24 13 5557 3893 3 MP XPP X0 sg X5557 3893 mt 5581 3906 L X5581 3906 mt 5645 3848 L Xc38 X24 13 64 -58 5557 3893 3 MP XPP X0 sg X5557 3893 mt 5621 3835 L X5621 3835 mt 5645 3848 L Xc37 X25 17 64 -17 5551 3999 3 MP XPP X0 sg X5551 3999 mt 5615 3982 L X5615 3982 mt 5640 3999 L Xc37 X64 -18 25 18 5551 3999 3 MP XPP X0 sg X5551 3999 mt 5576 4017 L X5576 4017 mt 5640 3999 L Xc33 X24 14 64 -17 5542 3943 3 MP XPP X0 sg X5542 3943 mt 5606 3926 L X5606 3926 mt 5630 3940 L Xc33 X64 -18 24 15 5542 3943 3 MP XPP X0 sg X5542 3943 mt 5566 3958 L X5566 3958 mt 5630 3940 L Xc43 X24 17 64 -35 5537 4071 3 MP XPP X0 sg X5537 4071 mt 5601 4036 L X5601 4036 mt 5625 4053 L Xc43 X64 -35 24 17 5537 4071 3 MP XPP X0 sg X5537 4071 mt 5561 4088 L X5561 4088 mt 5625 4053 L Xc39 X25 19 64 -58 5532 3874 3 MP XPP X0 sg X5532 3874 mt 5596 3816 L X5596 3816 mt 5621 3835 L Xc39 X64 -58 25 19 5532 3874 3 MP XPP X0 sg X5532 3874 mt 5557 3893 L X5557 3893 mt 5621 3835 L Xc37 X64 -17 24 11 5527 3988 3 MP XPP X0 sg X5527 3988 mt 5551 3999 L X5551 3999 mt 5615 3982 L Xc37 X24 12 64 -18 5527 3988 3 MP XPP X0 sg X5527 3988 mt 5591 3970 L X5591 3970 mt 5615 3982 L Xc47 X24 18 64 -17 5522 4121 3 MP XPP X0 sg X5522 4121 mt 5586 4104 L X5586 4104 mt 5610 4122 L Xc47 X64 -17 24 18 5522 4121 3 MP XPP X0 sg X5522 4121 mt 5546 4139 L X5546 4139 mt 5610 4122 L Xc38 X25 20 64 -17 5517 3923 3 MP XPP X0 sg X5517 3923 mt 5581 3906 L X5581 3906 mt 5606 3926 L Xc38 X64 -17 25 20 5517 3923 3 MP XPP X0 sg X5517 3923 mt 5542 3943 L X5542 3943 mt 5606 3926 L Xc44 X25 19 64 -35 5512 4052 3 MP XPP X0 sg X5512 4052 mt 5576 4017 L X5576 4017 mt 5601 4036 L Xc44 X64 -35 25 19 5512 4052 3 MP XPP X0 sg X5512 4052 mt 5537 4071 L X5537 4071 mt 5601 4036 L Xc36 X64 -58 24 82 5508 3792 3 MP XPP X0 sg X5508 3792 mt 5532 3874 L X5532 3874 mt 5596 3816 L Xc36 X24 82 64 -58 5508 3792 3 MP XPP X0 sg X5508 3792 mt 5572 3734 L X5572 3734 mt 5596 3816 L Xc33 X25 12 64 -17 5502 3975 3 MP XPP X0 sg X5502 3975 mt 5566 3958 L X5566 3958 mt 5591 3970 L Xc33 X64 -18 25 13 5502 3975 3 MP XPP X0 sg X5502 3975 mt 5527 3988 L X5527 3988 mt 5591 3970 L Xc47 X25 16 64 -18 5497 4106 3 MP XPP X0 sg X5497 4106 mt 5561 4088 L X5561 4088 mt 5586 4104 L Xc47 X64 -17 25 15 5497 4106 3 MP XPP X0 sg X5497 4106 mt 5522 4121 L X5522 4121 mt 5586 4104 L Xc38 X24 13 64 -17 5493 3910 3 MP XPP X0 sg X5493 3910 mt 5557 3893 L X5557 3893 mt 5581 3906 L Xc38 X64 -17 24 13 5493 3910 3 MP XPP X0 sg X5493 3910 mt 5517 3923 L X5517 3923 mt 5581 3906 L Xc44 X25 18 63 -35 5488 4034 3 MP XPP X0 sg X5488 4034 mt 5551 3999 L X5551 3999 mt 5576 4017 L Xc44 X64 -35 24 18 5488 4034 3 MP XPP X0 sg X5488 4034 mt 5512 4052 L X5512 4052 mt 5576 4017 L Xc11 X25 29 64 -58 5483 3763 3 MP XPP X0 sg X5483 3763 mt 5547 3705 L X5547 3705 mt 5572 3734 L Xc11 X64 -58 25 29 5483 3763 3 MP XPP X0 sg X5483 3763 mt 5508 3792 L X5508 3792 mt 5572 3734 L Xc33 X24 15 64 -18 5478 3961 3 MP XPP X0 sg X5478 3961 mt 5542 3943 L X5542 3943 mt 5566 3958 L Xc33 X64 -17 24 14 5478 3961 3 MP XPP X0 sg X5478 3961 mt 5502 3975 L X5502 3975 mt 5566 3958 L Xc43 X24 17 64 -17 5473 4088 3 MP XPP X0 sg X5473 4088 mt 5537 4071 L X5537 4071 mt 5561 4088 L Xc43 X64 -18 24 18 5473 4088 3 MP XPP X0 sg X5473 4088 mt 5497 4106 L X5497 4106 mt 5561 4088 L Xc39 X25 19 64 -17 5468 3891 3 MP XPP X0 sg X5468 3891 mt 5532 3874 L X5532 3874 mt 5557 3893 L Xc39 X64 -17 25 19 5468 3891 3 MP XPP X0 sg X5468 3891 mt 5493 3910 L X5493 3910 mt 5557 3893 L X Xgr Xgs 3994 2830 2261 1783 MR c np Xc44 X24 11 64 -34 5463 4022 3 MP XPP X0 sg X5463 4022 mt 5527 3988 L X5527 3988 mt 5551 3999 L Xc44 X63 -35 25 12 5463 4022 3 MP XPP X0 sg X5463 4022 mt 5488 4034 L X5488 4034 mt 5551 3999 L Xc13 X24 28 64 -57 5459 3734 3 MP XPP X0 sg X5459 3734 mt 5523 3677 L X5523 3677 mt 5547 3705 L Xc13 X64 -58 24 29 5459 3734 3 MP XPP X0 sg X5459 3734 mt 5483 3763 L X5483 3763 mt 5547 3705 L Xc47 X64 -18 24 19 5458 4138 3 MP XPP X0 sg X5458 4138 mt 5482 4157 L X5482 4157 mt 5546 4139 L Xc47 X24 18 64 -17 5458 4138 3 MP XPP X0 sg X5458 4138 mt 5522 4121 L X5522 4121 mt 5546 4139 L Xc38 X64 -18 25 20 5453 3941 3 MP XPP X0 sg X5453 3941 mt 5478 3961 L X5478 3961 mt 5542 3943 L Xc38 X25 20 64 -18 5453 3941 3 MP XPP X0 sg X5453 3941 mt 5517 3923 L X5517 3923 mt 5542 3943 L Xc44 X64 -17 25 19 5448 4069 3 MP XPP X0 sg X5448 4069 mt 5473 4088 L X5473 4088 mt 5537 4071 L Xc44 X25 19 64 -17 5448 4069 3 MP XPP X0 sg X5448 4069 mt 5512 4052 L X5512 4052 mt 5537 4071 L Xc36 X64 -17 24 81 5444 3810 3 MP XPP X0 sg X5444 3810 mt 5468 3891 L X5468 3891 mt 5532 3874 L Xc36 X24 82 64 -18 5444 3810 3 MP XPP X0 sg X5444 3810 mt 5508 3792 L X5508 3792 mt 5532 3874 L Xc40 X25 13 64 -35 5438 4010 3 MP XPP X0 sg X5438 4010 mt 5502 3975 L X5502 3975 mt 5527 3988 L Xc40 X64 -34 25 12 5438 4010 3 MP XPP X0 sg X5438 4010 mt 5463 4022 L X5463 4022 mt 5527 3988 L Xc19 X25 64 64 -57 5434 3670 3 MP XPP X0 sg X5434 3670 mt 5498 3613 L X5498 3613 mt 5523 3677 L Xc19 X64 -57 25 64 5434 3670 3 MP XPP X0 sg X5434 3670 mt 5459 3734 L X5459 3734 mt 5523 3677 L Xc47 X64 -17 25 15 5433 4123 3 MP XPP X0 sg X5433 4123 mt 5458 4138 L X5458 4138 mt 5522 4121 L Xc47 X25 15 64 -17 5433 4123 3 MP XPP X0 sg X5433 4123 mt 5497 4106 L X5497 4106 mt 5522 4121 L Xc38 X24 13 64 -18 5429 3928 3 MP XPP X0 sg X5429 3928 mt 5493 3910 L X5493 3910 mt 5517 3923 L Xc38 X64 -18 24 13 5429 3928 3 MP XPP X0 sg X5429 3928 mt 5453 3941 L X5453 3941 mt 5517 3923 L Xc44 X64 -17 24 18 5424 4051 3 MP XPP X0 sg X5424 4051 mt 5448 4069 L X5448 4069 mt 5512 4052 L Xc44 X24 18 64 -17 5424 4051 3 MP XPP X0 sg X5424 4051 mt 5488 4034 L X5488 4034 mt 5512 4052 L Xc11 X64 -18 25 29 5419 3781 3 MP XPP X0 sg X5419 3781 mt 5444 3810 L X5444 3810 mt 5508 3792 L Xc11 X25 29 64 -18 5419 3781 3 MP XPP X0 sg X5419 3781 mt 5483 3763 L X5483 3763 mt 5508 3792 L Xc40 X24 14 64 -35 5414 3996 3 MP XPP X0 sg X5414 3996 mt 5478 3961 L X5478 3961 mt 5502 3975 L Xc40 X64 -35 24 14 5414 3996 3 MP XPP X0 sg X5414 3996 mt 5438 4010 L X5438 4010 mt 5502 3975 L Xc29 X64 -57 24 42 5410 3628 3 MP XPP X0 sg X5410 3628 mt 5434 3670 L X5434 3670 mt 5498 3613 L Xc29 X25 42 63 -57 5410 3628 3 MP XPP X0 sg X5410 3628 mt 5473 3571 L X5473 3571 mt 5498 3613 L Xc43 X64 -17 24 17 5409 4106 3 MP XPP X0 sg X5409 4106 mt 5433 4123 L X5433 4123 mt 5497 4106 L Xc43 X24 18 64 -18 5409 4106 3 MP XPP X0 sg X5409 4106 mt 5473 4088 L X5473 4088 mt 5497 4106 L Xc39 X64 -18 25 20 5404 3908 3 MP XPP X0 sg X5404 3908 mt 5429 3928 L X5429 3928 mt 5493 3910 L Xc39 X25 19 64 -17 5404 3908 3 MP XPP X0 sg X5404 3908 mt 5468 3891 L X5468 3891 mt 5493 3910 L Xc44 X64 -17 25 11 5399 4040 3 MP XPP X0 sg X5399 4040 mt 5424 4051 L X5424 4051 mt 5488 4034 L Xc44 X25 12 64 -18 5399 4040 3 MP XPP X0 sg X5399 4040 mt 5463 4022 L X5463 4022 mt 5488 4034 L Xc13 X64 -18 24 29 5395 3752 3 MP XPP X0 sg X5395 3752 mt 5419 3781 L X5419 3781 mt 5483 3763 L Xc13 X24 29 64 -18 5395 3752 3 MP XPP X0 sg X5395 3752 mt 5459 3734 L X5459 3734 mt 5483 3763 L Xc51 X24 19 64 -40 5394 4178 3 MP XPP X0 sg X5394 4178 mt 5458 4138 L X5458 4138 mt 5482 4157 L Xc51 X64 -39 24 18 5394 4178 3 MP XPP X0 sg X5394 4178 mt 5418 4196 L X5418 4196 mt 5482 4157 L Xc37 X64 -35 25 21 5389 3975 3 MP XPP X0 sg X5389 3975 mt 5414 3996 L X5414 3996 mt 5478 3961 L Xc37 X25 20 64 -34 5389 3975 3 MP XPP X0 sg X5389 3975 mt 5453 3941 L X5453 3941 mt 5478 3961 L Xc35 X63 -57 25 50 5385 3578 3 MP XPP X0 sg X5385 3578 mt 5410 3628 L X5410 3628 mt 5473 3571 L Xc35 X24 50 64 -57 5385 3578 3 MP XPP X0 sg X5385 3578 mt 5449 3521 L X5449 3521 mt 5473 3571 L Xc44 X25 19 64 -17 5384 4086 3 MP XPP X0 sg X5384 4086 mt 5448 4069 L X5448 4069 mt 5473 4088 L Xc44 X64 -18 25 20 5384 4086 3 MP XPP X0 sg X5384 4086 mt 5409 4106 L X5409 4106 mt 5473 4088 L Xc36 X24 81 64 -17 5380 3827 3 MP XPP X0 sg X5380 3827 mt 5444 3810 L X5444 3810 mt 5468 3891 L Xc36 X64 -17 24 81 5380 3827 3 MP XPP X0 sg X5380 3827 mt 5404 3908 L X5404 3908 mt 5468 3891 L Xc40 X64 -18 24 13 5375 4027 3 MP XPP X0 sg X5375 4027 mt 5399 4040 L X5399 4040 mt 5463 4022 L Xc40 X25 12 63 -17 5375 4027 3 MP XPP X0 sg X5375 4027 mt 5438 4010 L X5438 4010 mt 5463 4022 L Xc19 X64 -18 25 64 5370 3688 3 MP XPP X0 sg X5370 3688 mt 5395 3752 L X5395 3752 mt 5459 3734 L Xc19 X25 64 64 -18 5370 3688 3 MP XPP X0 sg X5370 3688 mt 5434 3670 L X5434 3670 mt 5459 3734 L Xc53 X25 15 64 -39 5369 4162 3 MP XPP X0 sg X5369 4162 mt 5433 4123 L X5433 4123 mt 5458 4138 L Xc53 X64 -40 25 16 5369 4162 3 MP XPP X0 sg X5369 4162 mt 5394 4178 L X5394 4178 mt 5458 4138 L Xc37 X64 -34 24 12 5365 3963 3 MP XPP X0 sg X5365 3963 mt 5389 3975 L X5389 3975 mt 5453 3941 L Xc37 X24 13 64 -35 5365 3963 3 MP XPP X0 sg X5365 3963 mt 5429 3928 L X5429 3928 mt 5453 3941 L Xc32 X25 48 64 -57 5360 3530 3 MP XPP X0 sg X5360 3530 mt 5424 3473 L X5424 3473 mt 5449 3521 L Xc32 X64 -57 25 48 5360 3530 3 MP XPP X0 sg X5360 3530 mt 5385 3578 L X5385 3578 mt 5449 3521 L Xc44 X64 -17 24 17 5360 4069 3 MP XPP X0 sg X5360 4069 mt 5384 4086 L X5384 4086 mt 5448 4069 L Xc44 X24 18 64 -18 5360 4069 3 MP XPP X0 sg X5360 4069 mt 5424 4051 L X5424 4051 mt 5448 4069 L Xc11 X64 -17 25 29 5355 3798 3 MP XPP X0 sg X5355 3798 mt 5380 3827 L X5380 3827 mt 5444 3810 L Xc11 X25 29 64 -17 5355 3798 3 MP XPP X0 sg X5355 3798 mt 5419 3781 L X5419 3781 mt 5444 3810 L Xc40 X63 -17 25 14 5350 4013 3 MP XPP X0 sg X5350 4013 mt 5375 4027 L X5375 4027 mt 5438 4010 L Xc40 X24 14 64 -17 5350 4013 3 MP XPP X0 sg X5350 4013 mt 5414 3996 L X5414 3996 mt 5438 4010 L Xc29 X64 -18 24 42 5346 3646 3 MP XPP X0 sg X5346 3646 mt 5370 3688 L X5370 3688 mt 5434 3670 L Xc29 X24 42 64 -18 5346 3646 3 MP XPP X0 sg X5346 3646 mt 5410 3628 L X5410 3628 mt 5434 3670 L Xc53 X24 17 64 -39 5345 4145 3 MP XPP X0 sg X5345 4145 mt 5409 4106 L X5409 4106 mt 5433 4123 L Xc53 X64 -39 24 17 5345 4145 3 MP XPP X0 sg X5345 4145 mt 5369 4162 L X5369 4162 mt 5433 4123 L Xc33 X64 -35 25 20 5340 3943 3 MP XPP X0 sg X5340 3943 mt 5365 3963 L X5365 3963 mt 5429 3928 L Xc33 X25 20 64 -35 5340 3943 3 MP XPP X0 sg X5340 3943 mt 5404 3908 L X5404 3908 mt 5429 3928 L Xc46 X24 43 64 -58 5336 3488 3 MP XPP X0 sg X5336 3488 mt 5400 3430 L X5400 3430 mt 5424 3473 L Xc46 X64 -57 24 42 5336 3488 3 MP XPP X0 sg X5336 3488 mt 5360 3530 L X5360 3530 mt 5424 3473 L Xc44 X64 -18 25 12 5335 4057 3 MP XPP X0 sg X5335 4057 mt 5360 4069 L X5360 4069 mt 5424 4051 L Xc44 X25 11 64 -17 5335 4057 3 MP XPP X0 sg X5335 4057 mt 5399 4040 L X5399 4040 mt 5424 4051 L Xc13 X24 29 64 -17 5331 3769 3 MP XPP X0 sg X5331 3769 mt 5395 3752 L X5395 3752 mt 5419 3781 L Xc13 X64 -17 24 29 5331 3769 3 MP XPP X0 sg X5331 3769 mt 5355 3798 L X5355 3798 mt 5419 3781 L Xc51 X64 -17 24 18 5330 4195 3 MP XPP X0 sg X5330 4195 mt 5354 4213 L X5354 4213 mt 5418 4196 L Xc51 X24 18 64 -17 5330 4195 3 MP XPP X0 sg X5330 4195 mt 5394 4178 L X5394 4178 mt 5418 4196 L Xc37 X25 21 64 -18 5325 3993 3 MP XPP X0 sg X5325 3993 mt 5389 3975 L X5389 3975 mt 5414 3996 L Xc37 X64 -17 25 20 5325 3993 3 MP XPP X0 sg X5325 3993 mt 5350 4013 L X5350 4013 mt 5414 3996 L Xc35 X64 -18 25 50 5321 3596 3 MP XPP X0 sg X5321 3596 mt 5346 3646 L X5346 3646 mt 5410 3628 L Xc35 X25 50 64 -18 5321 3596 3 MP XPP X0 sg X5321 3596 mt 5385 3578 L X5385 3578 mt 5410 3628 L Xc45 X25 20 64 -39 5320 4125 3 MP XPP X0 sg X5320 4125 mt 5384 4086 L X5384 4086 mt 5409 4106 L Xc45 X64 -39 25 20 5320 4125 3 MP XPP X0 sg X5320 4125 mt 5345 4145 L X5345 4145 mt 5409 4106 L Xc28 X64 -35 24 81 5316 3862 3 MP XPP X0 sg X5316 3862 mt 5340 3943 L X5340 3943 mt 5404 3908 L Xc28 X24 81 64 -35 5316 3862 3 MP XPP X0 sg X5316 3862 mt 5380 3827 L X5380 3827 mt 5404 3908 L Xc54 X25 34 64 -57 5311 3453 3 MP XPP X0 sg X5311 3453 mt 5375 3396 L X5375 3396 mt 5400 3430 L Xc54 X64 -58 25 35 5311 3453 3 MP XPP X0 sg X5311 3453 mt 5336 3488 L X5336 3488 mt 5400 3430 L Xc40 X64 -17 24 13 5311 4044 3 MP XPP X0 sg X5311 4044 mt 5335 4057 L X5335 4057 mt 5399 4040 L Xc40 X24 13 64 -17 5311 4044 3 MP XPP X0 sg X5311 4044 mt 5375 4027 L X5375 4027 mt 5399 4040 L Xc19 X25 64 64 -17 5306 3705 3 MP XPP X0 sg X5306 3705 mt 5370 3688 L X5370 3688 mt 5395 3752 L Xc19 X64 -17 25 64 5306 3705 3 MP XPP X0 sg X5306 3705 mt 5331 3769 L X5331 3769 mt 5395 3752 L Xc53 X25 16 64 -17 5305 4179 3 MP XPP X0 sg X5305 4179 mt 5369 4162 L X5369 4162 mt 5394 4178 L Xc53 X64 -17 25 16 5305 4179 3 MP XPP X0 sg X5305 4179 mt 5330 4195 L X5330 4195 mt 5394 4178 L Xc37 X64 -18 24 13 5301 3980 3 MP XPP X0 sg X5301 3980 mt 5325 3993 L X5325 3993 mt 5389 3975 L Xc37 X24 12 64 -17 5301 3980 3 MP XPP X0 sg X5301 3980 mt 5365 3963 L X5365 3963 mt 5389 3975 L Xc32 X64 -18 24 48 5297 3548 3 MP XPP X0 sg X5297 3548 mt 5321 3596 L X5321 3596 mt 5385 3578 L Xc32 X25 48 63 -18 5297 3548 3 MP XPP X0 sg X5297 3548 mt 5360 3530 L X5360 3530 mt 5385 3578 L Xc47 X24 17 64 -39 5296 4108 3 MP XPP X0 sg X5296 4108 mt 5360 4069 L X5360 4069 mt 5384 4086 L Xc47 X64 -39 24 17 5296 4108 3 MP XPP X0 sg X5296 4108 mt 5320 4125 L X5320 4125 mt 5384 4086 L Xc36 X64 -35 25 29 5291 3833 3 MP XPP X0 sg X5291 3833 mt 5316 3862 L X5316 3862 mt 5380 3827 L Xc36 X25 29 64 -35 5291 3833 3 MP XPP X0 sg X5291 3833 mt 5355 3798 L X5355 3798 mt 5380 3827 L Xc48 X64 -57 24 30 5287 3423 3 MP XPP X0 sg X5287 3423 mt 5311 3453 L X5311 3453 mt 5375 3396 L Xc48 X24 31 64 -58 5287 3423 3 MP XPP X0 sg X5287 3423 mt 5351 3365 L X5351 3365 mt 5375 3396 L Xc40 X25 14 64 -17 5286 4030 3 MP XPP X0 sg X5286 4030 mt 5350 4013 L X5350 4013 mt 5375 4027 L Xc40 X64 -17 25 14 5286 4030 3 MP XPP X0 sg X5286 4030 mt 5311 4044 L X5311 4044 mt 5375 4027 L Xc29 X64 -17 24 42 5282 3663 3 MP XPP X0 sg X5282 3663 mt 5306 3705 L X5306 3705 mt 5370 3688 L Xc29 X24 42 64 -17 5282 3663 3 MP XPP X0 sg X5282 3663 mt 5346 3646 L X5346 3646 mt 5370 3688 L Xc53 X24 17 64 -17 5281 4162 3 MP XPP X0 sg X5281 4162 mt 5345 4145 L X5345 4145 mt 5369 4162 L Xc53 X64 -17 24 17 5281 4162 3 MP XPP X0 sg X5281 4162 mt 5305 4179 L X5305 4179 mt 5369 4162 L Xc33 X64 -17 25 19 5276 3961 3 MP XPP X0 sg X5276 3961 mt 5301 3980 L X5301 3980 mt 5365 3963 L Xc33 X25 20 64 -18 5276 3961 3 MP XPP X0 sg X5276 3961 mt 5340 3943 L X5340 3943 mt 5365 3963 L Xc46 X24 42 64 -17 5272 3505 3 MP XPP X0 sg X5272 3505 mt 5336 3488 L X5336 3488 mt 5360 3530 L Xc46 X63 -18 25 43 5272 3505 3 MP XPP X0 sg X5272 3505 mt 5297 3548 L X5297 3548 mt 5360 3530 L Xc47 X25 12 64 -39 5271 4096 3 MP XPP X0 sg X5271 4096 mt 5335 4057 L X5335 4057 mt 5360 4069 L Xc47 X64 -39 25 12 5271 4096 3 MP XPP X0 sg X5271 4096 mt 5296 4108 L X5296 4108 mt 5360 4069 L Xc11 X24 29 64 -35 5267 3804 3 MP XPP X0 sg X5267 3804 mt 5331 3769 L X5331 3769 mt 5355 3798 L Xc11 X64 -35 24 29 5267 3804 3 MP XPP X0 sg X5267 3804 mt 5291 3833 L X5291 3833 mt 5355 3798 L Xc51 X64 -18 24 19 5266 4212 3 MP XPP X0 sg X5266 4212 mt 5290 4231 L X5290 4231 mt 5354 4213 L Xc51 X24 18 64 -17 5266 4212 3 MP XPP X0 sg X5266 4212 mt 5330 4195 L X5330 4195 mt 5354 4213 L Xc50 X25 42 64 -58 5262 3381 3 MP XPP X0 sg X5262 3381 mt 5326 3323 L X5326 3323 mt 5351 3365 L Xc50 X64 -58 25 42 5262 3381 3 MP XPP X0 sg X5262 3381 mt 5287 3423 L X5287 3423 mt 5351 3365 L Xc37 X25 20 63 -17 5262 4010 3 MP XPP X0 sg X5262 4010 mt 5325 3993 L X5325 3993 mt 5350 4013 L Xc37 X64 -17 24 20 5262 4010 3 MP XPP X0 sg X5262 4010 mt 5286 4030 L X5286 4030 mt 5350 4013 L Xc35 X64 -17 25 50 5257 3613 3 MP XPP X0 sg X5257 3613 mt 5282 3663 L X5282 3663 mt 5346 3646 L Xc35 X25 50 64 -17 5257 3613 3 MP XPP X0 sg X5257 3613 mt 5321 3596 L X5321 3596 mt 5346 3646 L Xc45 X25 20 64 -18 5256 4143 3 MP XPP X0 sg X5256 4143 mt 5320 4125 L X5320 4125 mt 5345 4145 L Xc45 X64 -17 25 19 5256 4143 3 MP XPP X0 sg X5256 4143 mt 5281 4162 L X5281 4162 mt 5345 4145 L Xc28 X24 81 64 -17 5252 3879 3 MP XPP X0 sg X5252 3879 mt 5316 3862 L X5316 3862 mt 5340 3943 L Xc28 X64 -18 24 82 5252 3879 3 MP XPP X0 sg X5252 3879 mt 5276 3961 L X5276 3961 mt 5340 3943 L Xc54 X25 35 64 -18 5247 3471 3 MP XPP X0 sg X5247 3471 mt 5311 3453 L X5311 3453 mt 5336 3488 L Xc54 X64 -17 25 34 5247 3471 3 MP XPP X0 sg X5247 3471 mt 5272 3505 L X5272 3505 mt 5336 3488 L Xc47 X64 -39 24 12 5247 4084 3 MP XPP X0 sg X5247 4084 mt 5271 4096 L X5271 4096 mt 5335 4057 L Xc47 X24 13 64 -40 5247 4084 3 MP XPP X0 sg X5247 4084 mt 5311 4044 L X5311 4044 mt 5335 4057 L Xc22 X25 64 64 -35 5242 3740 3 MP XPP X0 sg X5242 3740 mt 5306 3705 L X5306 3705 mt 5331 3769 L Xc22 X64 -35 25 64 5242 3740 3 MP XPP X0 sg X5242 3740 mt 5267 3804 L X5267 3804 mt 5331 3769 L Xc53 X64 -17 25 15 5241 4197 3 MP XPP X0 sg X5241 4197 mt 5266 4212 L X5266 4212 mt 5330 4195 L Xc53 X25 16 64 -18 5241 4197 3 MP XPP X0 sg X5241 4197 mt 5305 4179 L X5305 4179 mt 5330 4195 L Xc52 X64 -58 24 52 5238 3329 3 MP XPP X0 sg X5238 3329 mt 5262 3381 L X5262 3381 mt 5326 3323 L Xc52 X24 11 64 -17 5238 3329 3 MP XPP X0 sg X5238 3329 mt 5302 3312 L X5302 3312 mt 5326 3323 L Xc37 X63 -17 25 13 5237 3997 3 MP XPP X0 sg X5237 3997 mt 5262 4010 L X5262 4010 mt 5325 3993 L Xc37 X24 13 64 -17 5237 3997 3 MP XPP X0 sg X5237 3997 mt 5301 3980 L X5301 3980 mt 5325 3993 L Xc32 X24 48 64 -17 5233 3565 3 MP XPP X0 sg X5233 3565 mt 5297 3548 L X5297 3548 mt 5321 3596 L Xc32 X64 -17 24 48 5233 3565 3 MP XPP X0 sg X5233 3565 mt 5257 3613 L X5257 3613 mt 5321 3596 L Xc47 X24 17 64 -17 5232 4125 3 MP XPP X0 sg X5232 4125 mt 5296 4108 L X5296 4108 mt 5320 4125 L Xc47 X64 -18 24 18 5232 4125 3 MP XPP X0 sg X5232 4125 mt 5256 4143 L X5256 4143 mt 5320 4125 L Xc36 X64 -17 25 29 5227 3850 3 MP XPP X0 sg X5227 3850 mt 5252 3879 L X5252 3879 mt 5316 3862 L Xc36 X25 29 64 -17 5227 3850 3 MP XPP X0 sg X5227 3850 mt 5291 3833 L X5291 3833 mt 5316 3862 L Xc48 X64 -18 24 31 5223 3440 3 MP XPP X0 sg X5223 3440 mt 5247 3471 L X5247 3471 mt 5311 3453 L Xc48 X24 30 64 -17 5223 3440 3 MP XPP X0 sg X5223 3440 mt 5287 3423 L X5287 3423 mt 5311 3453 L Xc47 X25 14 64 -40 5222 4070 3 MP XPP X0 sg X5222 4070 mt 5286 4030 L X5286 4030 mt 5311 4044 L Xc47 X64 -40 25 14 5222 4070 3 MP XPP X0 sg X5222 4070 mt 5247 4084 L X5247 4084 mt 5311 4044 L Xc9 X64 -35 24 42 5218 3698 3 MP XPP X0 sg X5218 3698 mt 5242 3740 L X5242 3740 mt 5306 3705 L Xc9 X24 42 64 -35 5218 3698 3 MP XPP X0 sg X5218 3698 mt 5282 3663 L X5282 3663 mt 5306 3705 L Xc53 X64 -18 24 17 5217 4180 3 MP XPP X0 sg X5217 4180 mt 5241 4197 L X5241 4197 mt 5305 4179 L Xc53 X24 17 64 -18 5217 4180 3 MP XPP X0 sg X5217 4180 mt 5281 4162 L X5281 4162 mt 5305 4179 L Xc52 X25 12 64 -18 5213 3318 3 MP XPP X0 sg X5213 3318 mt 5277 3300 L X5277 3300 mt 5302 3312 L Xc52 X64 -17 25 11 5213 3318 3 MP XPP X0 sg X5213 3318 mt 5238 3329 L X5238 3329 mt 5302 3312 L Xc33 X64 -17 25 19 5212 3978 3 MP XPP X0 sg X5212 3978 mt 5237 3997 L X5237 3997 mt 5301 3980 L Xc33 X25 19 64 -17 5212 3978 3 MP XPP X0 sg X5212 3978 mt 5276 3961 L X5276 3961 mt 5301 3980 L Xc46 X64 -17 25 43 5208 3522 3 MP XPP X0 sg X5208 3522 mt 5233 3565 L X5233 3565 mt 5297 3548 L Xc46 X25 43 64 -17 5208 3522 3 MP XPP X0 sg X5208 3522 mt 5272 3505 L X5272 3505 mt 5297 3548 L Xc47 X25 12 64 -18 5207 4114 3 MP XPP X0 sg X5207 4114 mt 5271 4096 L X5271 4096 mt 5296 4108 L Xc47 X64 -17 25 11 5207 4114 3 MP XPP X0 sg X5207 4114 mt 5232 4125 L X5232 4125 mt 5296 4108 L Xc11 X24 29 64 -17 5203 3821 3 MP XPP X0 sg X5203 3821 mt 5267 3804 L X5267 3804 mt 5291 3833 L Xc11 X64 -17 24 29 5203 3821 3 MP XPP X0 sg X5203 3821 mt 5227 3850 L X5227 3850 mt 5291 3833 L Xc51 X24 19 64 -23 5202 4235 3 MP XPP X0 sg X5202 4235 mt 5266 4212 L X5266 4212 mt 5290 4231 L Xc51 X63 -22 25 18 5202 4235 3 MP XPP X0 sg X5202 4235 mt 5227 4253 L X5227 4253 mt 5290 4231 L Xc50 X25 42 64 -17 5198 3398 3 MP XPP X0 sg X5198 3398 mt 5262 3381 L X5262 3381 mt 5287 3423 L Xc50 X64 -17 25 42 5198 3398 3 MP XPP X0 sg X5198 3398 mt 5223 3440 L X5223 3440 mt 5287 3423 L Xc43 X24 20 64 -39 5198 4049 3 MP XPP X0 sg X5198 4049 mt 5262 4010 L X5262 4010 mt 5286 4030 L Xc43 X64 -40 24 21 5198 4049 3 MP XPP X0 sg X5198 4049 mt 5222 4070 L X5222 4070 mt 5286 4030 L Xc17 X25 50 64 -35 5193 3648 3 MP XPP X0 sg X5193 3648 mt 5257 3613 L X5257 3613 mt 5282 3663 L Xc17 X64 -35 25 50 5193 3648 3 MP XPP X0 sg X5193 3648 mt 5218 3698 L X5218 3698 mt 5282 3663 L Xc45 X64 -18 25 20 5192 4160 3 MP XPP X0 sg X5192 4160 mt 5217 4180 L X5217 4180 mt 5281 4162 L Xc45 X25 19 64 -17 5192 4160 3 MP XPP X0 sg X5192 4160 mt 5256 4143 L X5256 4143 mt 5281 4162 L Xc52 X64 -18 24 12 5189 3306 3 MP XPP X0 sg X5189 3306 mt 5213 3318 L X5213 3318 mt 5277 3300 L Xc52 X24 11 64 -17 5189 3306 3 MP XPP X0 sg X5189 3306 mt 5253 3289 L X5253 3289 mt 5277 3300 L Xc28 X24 82 64 -17 5188 3896 3 MP XPP X0 sg X5188 3896 mt 5252 3879 L X5252 3879 mt 5276 3961 L Xc28 X64 -17 24 82 5188 3896 3 MP XPP X0 sg X5188 3896 mt 5212 3978 L X5212 3978 mt 5276 3961 L Xc54 X25 34 63 -17 5184 3488 3 MP XPP X0 sg X5184 3488 mt 5247 3471 L X5247 3471 mt 5272 3505 L Xc54 X64 -17 24 34 5184 3488 3 MP XPP X0 sg X5184 3488 mt 5208 3522 L X5208 3522 mt 5272 3505 L Xc47 X64 -18 24 13 5183 4101 3 MP XPP X0 sg X5183 4101 mt 5207 4114 L X5207 4114 mt 5271 4096 L Xc47 X24 12 64 -17 5183 4101 3 MP XPP X0 sg X5183 4101 mt 5247 4084 L X5247 4084 mt 5271 4096 L Xc22 X64 -17 25 64 5178 3757 3 MP XPP X0 sg X5178 3757 mt 5203 3821 L X5203 3821 mt 5267 3804 L Xc22 X25 64 64 -17 5178 3757 3 MP XPP X0 sg X5178 3757 mt 5242 3740 L X5242 3740 mt 5267 3804 L Xc51 X25 15 64 -23 5177 4220 3 MP XPP X0 sg X5177 4220 mt 5241 4197 L X5241 4197 mt 5266 4212 L Xc51 X64 -23 25 15 5177 4220 3 MP XPP X0 sg X5177 4220 mt 5202 4235 L X5202 4235 mt 5266 4212 L Xc52 X24 52 64 -17 5174 3346 3 MP XPP X0 sg X5174 3346 mt 5238 3329 L X5238 3329 mt 5262 3381 L Xc52 X64 -17 24 52 5174 3346 3 MP XPP X0 sg X5174 3346 mt 5198 3398 L X5198 3398 mt 5262 3381 L Xc44 X25 13 64 -39 5173 4036 3 MP XPP X0 sg X5173 4036 mt 5237 3997 L X5237 3997 mt 5262 4010 L Xc44 X64 -39 25 13 5173 4036 3 MP XPP X0 sg X5173 4036 mt 5198 4049 L X5198 4049 mt 5262 4010 L Xc31 X64 -35 24 48 5169 3600 3 MP XPP X0 sg X5169 3600 mt 5193 3648 L X5193 3648 mt 5257 3613 L Xc31 X24 48 64 -35 5169 3600 3 MP XPP X0 sg X5169 3600 mt 5233 3565 L X5233 3565 mt 5257 3613 L Xc47 X64 -17 24 17 5168 4143 3 MP XPP X0 sg X5168 4143 mt 5192 4160 L X5192 4160 mt 5256 4143 L Xc47 X24 18 64 -18 5168 4143 3 MP XPP X0 sg X5168 4143 mt 5232 4125 L X5232 4125 mt 5256 4143 L Xc52 X25 11 64 -17 5164 3295 3 MP XPP X0 sg X5164 3295 mt 5228 3278 L X5228 3278 mt 5253 3289 L Xc52 X64 -17 25 11 5164 3295 3 MP XPP X0 sg X5164 3295 mt 5189 3306 L X5189 3306 mt 5253 3289 L Xc36 X64 -17 25 29 5163 3867 3 MP XPP X0 sg X5163 3867 mt 5188 3896 L X5188 3896 mt 5252 3879 L Xc36 X25 29 64 -17 5163 3867 3 MP XPP X0 sg X5163 3867 mt 5227 3850 L X5227 3850 mt 5252 3879 L Xc48 X24 31 64 -17 5159 3457 3 MP XPP X0 sg X5159 3457 mt 5223 3440 L X5223 3440 mt 5247 3471 L Xc48 X63 -17 25 31 5159 3457 3 MP XPP X0 sg X5159 3457 mt 5184 3488 L X5184 3488 mt 5247 3471 L Xc47 X25 14 64 -17 5158 4087 3 MP XPP X0 sg X5158 4087 mt 5222 4070 L X5222 4070 mt 5247 4084 L Xc47 X64 -17 25 14 5158 4087 3 MP XPP X0 sg X5158 4087 mt 5183 4101 L X5183 4101 mt 5247 4084 L Xc9 X64 -17 24 42 5154 3715 3 MP XPP X0 sg X5154 3715 mt 5178 3757 L X5178 3757 mt 5242 3740 L Xc9 X24 42 64 -17 5154 3715 3 MP XPP X0 sg X5154 3715 mt 5218 3698 L X5218 3698 mt 5242 3740 L Xc53 X24 17 64 -22 5153 4202 3 MP XPP X0 sg X5153 4202 mt 5217 4180 L X5217 4180 mt 5241 4197 L Xc53 X64 -23 24 18 5153 4202 3 MP XPP X0 sg X5153 4202 mt 5177 4220 L X5177 4220 mt 5241 4197 L Xc52 X25 11 64 -17 5149 3335 3 MP XPP X0 sg X5149 3335 mt 5213 3318 L X5213 3318 mt 5238 3329 L Xc52 X64 -17 25 11 5149 3335 3 MP XPP X0 sg X5149 3335 mt 5174 3346 L X5174 3346 mt 5238 3329 L Xc40 X25 19 63 -39 5149 4017 3 MP XPP X0 sg X5149 4017 mt 5212 3978 L X5212 3978 mt 5237 3997 L Xc40 X64 -39 24 19 5149 4017 3 MP XPP X0 sg X5149 4017 mt 5173 4036 L X5173 4036 mt 5237 3997 L Xc20 X64 -35 25 43 5144 3557 3 MP XPP X0 sg X5144 3557 mt 5169 3600 L X5169 3600 mt 5233 3565 L Xc20 X25 43 64 -35 5144 3557 3 MP XPP X0 sg X5144 3557 mt 5208 3522 L X5208 3522 mt 5233 3565 L Xc47 X25 11 64 -17 5143 4131 3 MP XPP X0 sg X5143 4131 mt 5207 4114 L X5207 4114 mt 5232 4125 L Xc47 X64 -18 25 12 5143 4131 3 MP XPP X0 sg X5143 4131 mt 5168 4143 L X5168 4143 mt 5232 4125 L Xc52 X64 -17 24 11 5140 3284 3 MP XPP X0 sg X5140 3284 mt 5164 3295 L X5164 3295 mt 5228 3278 L Xc52 X24 11 64 -17 5140 3284 3 MP XPP X0 sg X5140 3284 mt 5204 3267 L X5204 3267 mt 5228 3278 L Xc11 X24 29 64 -18 5139 3839 3 MP XPP X0 sg X5139 3839 mt 5203 3821 L X5203 3821 mt 5227 3850 L Xc11 X64 -17 24 28 5139 3839 3 MP XPP X0 sg X5139 3839 mt 5163 3867 L X5163 3867 mt 5227 3850 L Xc51 X25 18 64 -17 5138 4252 3 MP XPP X0 sg X5138 4252 mt 5202 4235 L X5202 4235 mt 5227 4253 L Xc51 X64 -18 25 19 5138 4252 3 MP XPP X0 sg X5138 4252 mt 5163 4271 L X5163 4271 mt 5227 4253 L Xc50 X64 -17 25 42 5134 3415 3 MP XPP X0 sg X5134 3415 mt 5159 3457 L X5159 3457 mt 5223 3440 L Xc50 X25 42 64 -17 5134 3415 3 MP XPP X0 sg X5134 3415 mt 5198 3398 L X5198 3398 mt 5223 3440 L Xc43 X24 21 64 -18 5134 4067 3 MP XPP X0 sg X5134 4067 mt 5198 4049 L X5198 4049 mt 5222 4070 L Xc43 X64 -17 24 20 5134 4067 3 MP XPP X0 sg X5134 4067 mt 5158 4087 L X5158 4087 mt 5222 4070 L Xc17 X25 50 64 -17 5129 3665 3 MP XPP X0 sg X5129 3665 mt 5193 3648 L X5193 3648 mt 5218 3698 L Xc17 X64 -17 25 50 5129 3665 3 MP XPP X0 sg X5129 3665 mt 5154 3715 L X5154 3715 mt 5218 3698 L Xc45 X25 20 64 -23 5128 4183 3 MP XPP X0 sg X5128 4183 mt 5192 4160 L X5192 4160 mt 5217 4180 L Xc45 X64 -22 25 19 5128 4183 3 MP XPP X0 sg X5128 4183 mt 5153 4202 L X5153 4202 mt 5217 4180 L Xc52 X24 12 64 -18 5125 3324 3 MP XPP X0 sg X5125 3324 mt 5189 3306 L X5189 3306 mt 5213 3318 L Xc52 X64 -17 24 11 5125 3324 3 MP XPP X0 sg X5125 3324 mt 5149 3335 L X5149 3335 mt 5213 3318 L Xc42 X24 82 64 -40 5124 3936 3 MP XPP X0 sg X5124 3936 mt 5188 3896 L X5188 3896 mt 5212 3978 L Xc42 X63 -39 25 81 5124 3936 3 MP XPP X0 sg X5124 3936 mt 5149 4017 L X5149 4017 mt 5212 3978 L Xc46 X64 -35 24 34 5120 3523 3 MP XPP X0 sg X5120 3523 mt 5144 3557 L X5144 3557 mt 5208 3522 L Xc46 X24 34 64 -35 5120 3523 3 MP XPP X0 sg X5120 3523 mt 5184 3488 L X5184 3488 mt 5208 3522 L Xc47 X24 13 64 -17 5119 4118 3 MP XPP X0 sg X5119 4118 mt 5183 4101 L X5183 4101 mt 5207 4114 L Xc47 X64 -17 24 13 5119 4118 3 MP XPP X0 sg X5119 4118 mt 5143 4131 L X5143 4131 mt 5207 4114 L Xc52 X64 -17 25 11 5115 3273 3 MP XPP X0 sg X5115 3273 mt 5140 3284 L X5140 3284 mt 5204 3267 L Xc52 X25 12 64 -18 5115 3273 3 MP XPP X0 sg X5115 3273 mt 5179 3255 L X5179 3255 mt 5204 3267 L Xc22 X25 64 64 -18 5114 3775 3 MP XPP X0 sg X5114 3775 mt 5178 3757 L X5178 3757 mt 5203 3821 L Xc22 X64 -18 25 64 5114 3775 3 MP XPP X0 sg X5114 3775 mt 5139 3839 L X5139 3839 mt 5203 3821 L Xc51 X25 15 63 -17 5114 4237 3 MP XPP X0 sg X5114 4237 mt 5177 4220 L X5177 4220 mt 5202 4235 L Xc51 X64 -17 24 15 5114 4237 3 MP XPP X0 sg X5114 4237 mt 5138 4252 L X5138 4252 mt 5202 4235 L Xc52 X24 52 64 -18 5110 3364 3 MP XPP X0 sg X5110 3364 mt 5174 3346 L X5174 3346 mt 5198 3398 L Xc52 X64 -17 24 51 5110 3364 3 MP XPP X0 sg X5110 3364 mt 5134 3415 L X5134 3415 mt 5198 3398 L Xc44 X64 -18 25 13 5109 4054 3 MP XPP X0 sg X5109 4054 mt 5134 4067 L X5134 4067 mt 5198 4049 L Xc44 X25 13 64 -18 5109 4054 3 MP XPP X0 sg X5109 4054 mt 5173 4036 L X5173 4036 mt 5198 4049 L Xc31 X64 -17 24 48 5105 3617 3 MP XPP X0 sg X5105 3617 mt 5129 3665 L X5129 3665 mt 5193 3648 L Xc31 X24 48 64 -17 5105 3617 3 MP XPP X0 sg X5105 3617 mt 5169 3600 L X5169 3600 mt 5193 3648 L Xc45 X64 -23 24 18 5104 4165 3 MP XPP X0 sg X5104 4165 mt 5128 4183 L X5128 4183 mt 5192 4160 L Xc45 X24 17 64 -22 5104 4165 3 MP XPP X0 sg X5104 4165 mt 5168 4143 L X5168 4143 mt 5192 4160 L Xc52 X64 -18 25 12 5100 3312 3 MP XPP X0 sg X5100 3312 mt 5125 3324 L X5125 3324 mt 5189 3306 L Xc52 X25 11 64 -17 5100 3312 3 MP XPP X0 sg X5100 3312 mt 5164 3295 L X5164 3295 mt 5189 3306 L Xc27 X25 29 64 -40 5099 3907 3 MP XPP X0 sg X5099 3907 mt 5163 3867 L X5163 3867 mt 5188 3896 L Xc27 X64 -40 25 29 5099 3907 3 MP XPP X0 sg X5099 3907 mt 5124 3936 L X5124 3936 mt 5188 3896 L Xc54 X64 -35 25 31 5095 3492 3 MP XPP X0 sg X5095 3492 mt 5120 3523 L X5120 3523 mt 5184 3488 L Xc54 X25 31 64 -35 5095 3492 3 MP XPP X0 sg X5095 3492 mt 5159 3457 L X5159 3457 mt 5184 3488 L Xc47 X25 14 64 -17 5094 4104 3 MP XPP X0 sg X5094 4104 mt 5158 4087 L X5158 4087 mt 5183 4101 L Xc47 X64 -17 25 14 5094 4104 3 MP XPP X0 sg X5094 4104 mt 5119 4118 L X5119 4118 mt 5183 4101 L Xc52 X24 11 64 -17 5091 3261 3 MP XPP X0 sg X5091 3261 mt 5155 3244 L X5155 3244 mt 5179 3255 L Xc52 X64 -18 24 12 5091 3261 3 MP XPP X0 sg X5091 3261 mt 5115 3273 L X5115 3273 mt 5179 3255 L Xc9 X64 -18 24 43 5090 3732 3 MP XPP X0 sg X5090 3732 mt 5114 3775 L X5114 3775 mt 5178 3757 L Xc9 X24 42 64 -17 5090 3732 3 MP XPP X0 sg X5090 3732 mt 5154 3715 L X5154 3715 mt 5178 3757 L Xc53 X63 -17 25 17 5089 4220 3 MP XPP X0 sg X5089 4220 mt 5114 4237 L X5114 4237 mt 5177 4220 L Xc53 X24 18 64 -18 5089 4220 3 MP XPP X0 sg X5089 4220 mt 5153 4202 L X5153 4202 mt 5177 4220 L Xc52 X25 11 64 -17 5085 3352 3 MP XPP X0 sg X5085 3352 mt 5149 3335 L X5149 3335 mt 5174 3346 L Xc52 X64 -18 25 12 5085 3352 3 MP XPP X0 sg X5085 3352 mt 5110 3364 L X5110 3364 mt 5174 3346 L Xc40 X64 -18 24 19 5085 4035 3 MP XPP X0 sg X5085 4035 mt 5109 4054 L X5109 4054 mt 5173 4036 L Xc40 X24 19 64 -18 5085 4035 3 MP XPP X0 sg X5085 4035 mt 5149 4017 L X5149 4017 mt 5173 4036 L Xc20 X64 -17 25 42 5080 3575 3 MP XPP X0 sg X5080 3575 mt 5105 3617 L X5105 3617 mt 5169 3600 L Xc20 X25 43 64 -18 5080 3575 3 MP XPP X0 sg X5080 3575 mt 5144 3557 L X5144 3557 mt 5169 3600 L Xc45 X64 -22 25 11 5079 4154 3 MP XPP X0 sg X5079 4154 mt 5104 4165 L X5104 4165 mt 5168 4143 L Xc45 X25 12 64 -23 5079 4154 3 MP XPP X0 sg X5079 4154 mt 5143 4131 L X5143 4131 mt 5168 4143 L Xc52 X64 -17 24 11 5076 3301 3 MP XPP X0 sg X5076 3301 mt 5100 3312 L X5100 3312 mt 5164 3295 L Xc52 X24 11 64 -17 5076 3301 3 MP XPP X0 sg X5076 3301 mt 5140 3284 L X5140 3284 mt 5164 3295 L Xc14 X64 -40 24 29 5075 3878 3 MP XPP X0 sg X5075 3878 mt 5099 3907 L X5099 3907 mt 5163 3867 L Xc14 X24 28 64 -39 5075 3878 3 MP XPP X0 sg X5075 3878 mt 5139 3839 L X5139 3839 mt 5163 3867 L Xc58 X64 -27 25 19 5074 4279 3 MP XPP X0 sg X5074 4279 mt 5099 4298 L X5099 4298 mt 5163 4271 L Xc58 X25 19 64 -27 5074 4279 3 MP XPP X0 sg X5074 4279 mt 5138 4252 L X5138 4252 mt 5163 4271 L Xc49 X64 -35 24 42 5071 3450 3 MP XPP X0 sg X5071 3450 mt 5095 3492 L X5095 3492 mt 5159 3457 L Xc49 X25 42 63 -35 5071 3450 3 MP XPP X0 sg X5071 3450 mt 5134 3415 L X5134 3415 mt 5159 3457 L Xc43 X64 -17 24 20 5070 4084 3 MP XPP X0 sg X5070 4084 mt 5094 4104 L X5094 4104 mt 5158 4087 L Xc43 X24 20 64 -17 5070 4084 3 MP XPP X0 sg X5070 4084 mt 5134 4067 L X5134 4067 mt 5158 4087 L Xc52 X25 11 64 -17 5066 3250 3 MP XPP X0 sg X5066 3250 mt 5130 3233 L X5130 3233 mt 5155 3244 L Xc52 X64 -17 25 11 5066 3250 3 MP XPP X0 sg X5066 3250 mt 5091 3261 L X5091 3261 mt 5155 3244 L Xc17 X25 50 64 -17 5065 3682 3 MP XPP X0 sg X5065 3682 mt 5129 3665 L X5129 3665 mt 5154 3715 L Xc17 X64 -17 25 50 5065 3682 3 MP XPP X0 sg X5065 3682 mt 5090 3732 L X5090 3732 mt 5154 3715 L Xc45 X64 -18 25 20 5064 4200 3 MP XPP X0 sg X5064 4200 mt 5089 4220 L X5089 4220 mt 5153 4202 L Xc45 X25 19 64 -17 5064 4200 3 MP XPP X0 sg X5064 4200 mt 5128 4183 L X5128 4183 mt 5153 4202 L Xc52 X64 -17 24 11 5061 3341 3 MP XPP X0 sg X5061 3341 mt 5085 3352 L X5085 3352 mt 5149 3335 L Xc52 X24 11 64 -17 5061 3341 3 MP XPP X0 sg X5061 3341 mt 5125 3324 L X5125 3324 mt 5149 3335 L Xc42 X25 81 64 -17 5060 3953 3 MP XPP X0 sg X5060 3953 mt 5124 3936 L X5124 3936 mt 5149 4017 L Xc42 X64 -18 25 82 5060 3953 3 MP XPP X0 sg X5060 3953 mt 5085 4035 L X5085 4035 mt 5149 4017 L Xc46 X24 34 64 -17 5056 3540 3 MP XPP X0 sg X5056 3540 mt 5120 3523 L X5120 3523 mt 5144 3557 L Xc46 X64 -18 24 35 5056 3540 3 MP XPP X0 sg X5056 3540 mt 5080 3575 L X5080 3575 mt 5144 3557 L Xc47 X24 13 64 -23 5055 4141 3 MP XPP X0 sg X5055 4141 mt 5119 4118 L X5119 4118 mt 5143 4131 L Xc47 X64 -23 24 13 5055 4141 3 MP XPP X0 sg X5055 4141 mt 5079 4154 L X5079 4154 mt 5143 4131 L Xc52 X25 11 64 -17 5051 3290 3 MP XPP X0 sg X5051 3290 mt 5115 3273 L X5115 3273 mt 5140 3284 L Xc52 X64 -17 25 11 5051 3290 3 MP XPP X0 sg X5051 3290 mt 5076 3301 L X5076 3301 mt 5140 3284 L Xc34 X64 -39 25 64 5050 3814 3 MP XPP X0 sg X5050 3814 mt 5075 3878 L X5075 3878 mt 5139 3839 L Xc34 X25 64 64 -39 5050 3814 3 MP XPP X0 sg X5050 3814 mt 5114 3775 L X5114 3775 mt 5139 3839 L Xc58 X64 -27 24 15 5050 4264 3 MP XPP X0 sg X5050 4264 mt 5074 4279 L X5074 4279 mt 5138 4252 L Xc58 X24 15 64 -27 5050 4264 3 MP XPP X0 sg X5050 4264 mt 5114 4237 L X5114 4237 mt 5138 4252 L Xc57 X63 -35 25 52 5046 3398 3 MP XPP X0 sg X5046 3398 mt 5071 3450 L X5071 3450 mt 5134 3415 L Xc57 X24 51 64 -34 5046 3398 3 MP XPP X0 sg X5046 3398 mt 5110 3364 L X5110 3364 mt 5134 3415 L Xc44 X25 13 64 -17 5045 4071 3 MP XPP X0 sg X5045 4071 mt 5109 4054 L X5109 4054 mt 5134 4067 L Xc44 X64 -17 25 13 5045 4071 3 MP XPP X0 sg X5045 4071 mt 5070 4084 L X5070 4084 mt 5134 4067 L Xc52 X64 -17 24 11 5042 3239 3 MP XPP X0 sg X5042 3239 mt 5066 3250 L X5066 3250 mt 5130 3233 L Xc52 X25 12 63 -18 5042 3239 3 MP XPP X0 sg X5042 3239 mt 5105 3221 L X5105 3221 mt 5130 3233 L Xc31 X24 48 64 -18 5041 3635 3 MP XPP X0 sg X5041 3635 mt 5105 3617 L X5105 3617 mt 5129 3665 L Xc31 X64 -17 24 47 5041 3635 3 MP XPP X0 sg X5041 3635 mt 5065 3682 L X5065 3682 mt 5129 3665 L Xc45 X64 -17 24 17 5040 4183 3 MP XPP X0 sg X5040 4183 mt 5064 4200 L X5064 4200 mt 5128 4183 L Xc45 X24 18 64 -18 5040 4183 3 MP XPP X0 sg X5040 4183 mt 5104 4165 L X5104 4165 mt 5128 4183 L Xc52 X64 -17 25 11 5036 3330 3 MP XPP X0 sg X5036 3330 mt 5061 3341 L X5061 3341 mt 5125 3324 L Xc52 X25 12 64 -18 5036 3330 3 MP XPP X0 sg X5036 3330 mt 5100 3312 L X5100 3312 mt 5125 3324 L Xc27 X25 29 63 -17 5036 3924 3 MP XPP X0 sg X5036 3924 mt 5099 3907 L X5099 3907 mt 5124 3936 L Xc27 X64 -17 24 29 5036 3924 3 MP XPP X0 sg X5036 3924 mt 5060 3953 L X5060 3953 mt 5124 3936 L X Xgr X4370 2735 mt X(LSQR filter factors, log scale) s Xgs 3994 2830 2261 1783 MR c np Xc54 X64 -17 25 30 5031 3510 3 MP XPP X0 sg X5031 3510 mt 5056 3540 L X5056 3540 mt 5120 3523 L Xc54 X25 31 64 -18 5031 3510 3 MP XPP X0 sg X5031 3510 mt 5095 3492 L X5095 3492 mt 5120 3523 L Xc47 X25 14 64 -23 5030 4127 3 MP XPP X0 sg X5030 4127 mt 5094 4104 L X5094 4104 mt 5119 4118 L Xc47 X64 -23 25 14 5030 4127 3 MP XPP X0 sg X5030 4127 mt 5055 4141 L X5055 4141 mt 5119 4118 L Xc52 X24 12 64 -18 5027 3279 3 MP XPP X0 sg X5027 3279 mt 5091 3261 L X5091 3261 mt 5115 3273 L Xc52 X64 -17 24 11 5027 3279 3 MP XPP X0 sg X5027 3279 mt 5051 3290 L X5051 3290 mt 5115 3273 L Xc12 X24 43 64 -40 5026 3772 3 MP XPP X0 sg X5026 3772 mt 5090 3732 L X5090 3732 mt 5114 3775 L Xc12 X64 -39 24 42 5026 3772 3 MP XPP X0 sg X5026 3772 mt 5050 3814 L X5050 3814 mt 5114 3775 L Xc51 X25 17 64 -27 5025 4247 3 MP XPP X0 sg X5025 4247 mt 5089 4220 L X5089 4220 mt 5114 4237 L Xc51 X64 -27 25 17 5025 4247 3 MP XPP X0 sg X5025 4247 mt 5050 4264 L X5050 4264 mt 5114 4237 L Xc52 X25 12 64 -17 5021 3369 3 MP XPP X0 sg X5021 3369 mt 5085 3352 L X5085 3352 mt 5110 3364 L Xc52 X64 -34 25 29 5021 3369 3 MP XPP X0 sg X5021 3369 mt 5046 3398 L X5046 3398 mt 5110 3364 L Xc40 X24 19 64 -17 5021 4052 3 MP XPP X0 sg X5021 4052 mt 5085 4035 L X5085 4035 mt 5109 4054 L Xc40 X64 -17 24 19 5021 4052 3 MP XPP X0 sg X5021 4052 mt 5045 4071 L X5045 4071 mt 5109 4054 L Xc20 X25 42 64 -17 5016 3592 3 MP XPP X0 sg X5016 3592 mt 5080 3575 L X5080 3575 mt 5105 3617 L Xc20 X64 -18 25 43 5016 3592 3 MP XPP X0 sg X5016 3592 mt 5041 3635 L X5041 3635 mt 5105 3617 L Xc45 X25 11 64 -17 5015 4171 3 MP XPP X0 sg X5015 4171 mt 5079 4154 L X5079 4154 mt 5104 4165 L Xc45 X64 -18 25 12 5015 4171 3 MP XPP X0 sg X5015 4171 mt 5040 4183 L X5040 4183 mt 5104 4165 L Xc52 X24 11 64 -17 5012 3318 3 MP XPP X0 sg X5012 3318 mt 5076 3301 L X5076 3301 mt 5100 3312 L Xc52 X64 -18 24 12 5012 3318 3 MP XPP X0 sg X5012 3318 mt 5036 3330 L X5036 3330 mt 5100 3312 L Xc14 X63 -17 25 29 5011 3895 3 MP XPP X0 sg X5011 3895 mt 5036 3924 L X5036 3924 mt 5099 3907 L Xc14 X24 29 64 -17 5011 3895 3 MP XPP X0 sg X5011 3895 mt 5075 3878 L X5075 3878 mt 5099 3907 L Xc60 X25 19 64 -44 5010 4323 3 MP XPP X0 sg X5010 4323 mt 5074 4279 L X5074 4279 mt 5099 4298 L Xc60 X64 -44 25 19 5010 4323 3 MP XPP X0 sg X5010 4323 mt 5035 4342 L X5035 4342 mt 5099 4298 L Xc49 X64 -18 24 42 5007 3468 3 MP XPP X0 sg X5007 3468 mt 5031 3510 L X5031 3510 mt 5095 3492 L Xc49 X24 42 64 -18 5007 3468 3 MP XPP X0 sg X5007 3468 mt 5071 3450 L X5071 3450 mt 5095 3492 L Xc43 X64 -23 24 20 5006 4107 3 MP XPP X0 sg X5006 4107 mt 5030 4127 L X5030 4127 mt 5094 4104 L Xc43 X24 20 64 -23 5006 4107 3 MP XPP X0 sg X5006 4107 mt 5070 4084 L X5070 4084 mt 5094 4104 L Xc52 X25 11 64 -17 5002 3267 3 MP XPP X0 sg X5002 3267 mt 5066 3250 L X5066 3250 mt 5091 3261 L Xc52 X64 -18 25 12 5002 3267 3 MP XPP X0 sg X5002 3267 mt 5027 3279 L X5027 3279 mt 5091 3261 L Xc29 X25 50 64 -40 5001 3722 3 MP XPP X0 sg X5001 3722 mt 5065 3682 L X5065 3682 mt 5090 3732 L Xc29 X64 -40 25 50 5001 3722 3 MP XPP X0 sg X5001 3722 mt 5026 3772 L X5026 3772 mt 5090 3732 L Xc53 X64 -27 24 20 5001 4227 3 MP XPP X0 sg X5001 4227 mt 5025 4247 L X5025 4247 mt 5089 4220 L Xc53 X25 20 63 -27 5001 4227 3 MP XPP X0 sg X5001 4227 mt 5064 4200 L X5064 4200 mt 5089 4220 L Xc52 X64 -17 24 11 4997 3358 3 MP XPP X0 sg X4997 3358 mt 5021 3369 L X5021 3369 mt 5085 3352 L Xc52 X24 11 64 -17 4997 3358 3 MP XPP X0 sg X4997 3358 mt 5061 3341 L X5061 3341 mt 5085 3352 L Xc42 X64 -17 25 82 4996 3970 3 MP XPP X0 sg X4996 3970 mt 5021 4052 L X5021 4052 mt 5085 4035 L Xc42 X25 82 64 -17 4996 3970 3 MP XPP X0 sg X4996 3970 mt 5060 3953 L X5060 3953 mt 5085 4035 L Xc46 X24 35 64 -17 4992 3557 3 MP XPP X0 sg X4992 3557 mt 5056 3540 L X5056 3540 mt 5080 3575 L Xc46 X64 -17 24 35 4992 3557 3 MP XPP X0 sg X4992 3557 mt 5016 3592 L X5016 3592 mt 5080 3575 L Xc47 X64 -17 24 13 4991 4158 3 MP XPP X0 sg X4991 4158 mt 5015 4171 L X5015 4171 mt 5079 4154 L Xc47 X24 13 64 -17 4991 4158 3 MP XPP X0 sg X4991 4158 mt 5055 4141 L X5055 4141 mt 5079 4154 L Xc52 X64 -17 25 11 4987 3307 3 MP XPP X0 sg X4987 3307 mt 5012 3318 L X5012 3318 mt 5076 3301 L Xc52 X25 11 64 -17 4987 3307 3 MP XPP X0 sg X4987 3307 mt 5051 3290 L X5051 3290 mt 5076 3301 L Xc34 X64 -17 25 64 4986 3831 3 MP XPP X0 sg X4986 3831 mt 5011 3895 L X5011 3895 mt 5075 3878 L Xc34 X25 64 64 -17 4986 3831 3 MP XPP X0 sg X4986 3831 mt 5050 3814 L X5050 3814 mt 5075 3878 L Xc60 X24 15 64 -44 4986 4308 3 MP XPP X0 sg X4986 4308 mt 5050 4264 L X5050 4264 mt 5074 4279 L Xc60 X64 -44 24 15 4986 4308 3 MP XPP X0 sg X4986 4308 mt 5010 4323 L X5010 4323 mt 5074 4279 L Xc57 X64 -18 25 53 4982 3415 3 MP XPP X0 sg X4982 3415 mt 5007 3468 L X5007 3468 mt 5071 3450 L Xc57 X25 52 64 -17 4982 3415 3 MP XPP X0 sg X4982 3415 mt 5046 3398 L X5046 3398 mt 5071 3450 L Xc43 X64 -23 25 13 4981 4094 3 MP XPP X0 sg X4981 4094 mt 5006 4107 L X5006 4107 mt 5070 4084 L Xc43 X25 13 64 -23 4981 4094 3 MP XPP X0 sg X4981 4094 mt 5045 4071 L X5045 4071 mt 5070 4084 L Xc52 X24 11 64 -17 4978 3256 3 MP XPP X0 sg X4978 3256 mt 5042 3239 L X5042 3239 mt 5066 3250 L Xc52 X64 -17 24 11 4978 3256 3 MP XPP X0 sg X4978 3256 mt 5002 3267 L X5002 3267 mt 5066 3250 L Xc35 X64 -40 24 48 4977 3674 3 MP XPP X0 sg X4977 3674 mt 5001 3722 L X5001 3722 mt 5065 3682 L Xc35 X24 47 64 -39 4977 3674 3 MP XPP X0 sg X4977 3674 mt 5041 3635 L X5041 3635 mt 5065 3682 L Xc53 X63 -27 25 17 4976 4210 3 MP XPP X0 sg X4976 4210 mt 5001 4227 L X5001 4227 mt 5064 4200 L Xc53 X24 17 64 -27 4976 4210 3 MP XPP X0 sg X4976 4210 mt 5040 4183 L X5040 4183 mt 5064 4200 L Xc52 X64 -17 25 11 4972 3347 3 MP XPP X0 sg X4972 3347 mt 4997 3358 L X4997 3358 mt 5061 3341 L Xc52 X25 11 64 -17 4972 3347 3 MP XPP X0 sg X4972 3347 mt 5036 3330 L X5036 3330 mt 5061 3341 L Xc27 X64 -17 24 29 4972 3941 3 MP XPP X0 sg X4972 3941 mt 4996 3970 L X4996 3970 mt 5060 3953 L Xc27 X24 29 64 -17 4972 3941 3 MP XPP X0 sg X4972 3941 mt 5036 3924 L X5036 3924 mt 5060 3953 L Xc54 X64 -17 25 30 4967 3527 3 MP XPP X0 sg X4967 3527 mt 4992 3557 L X4992 3557 mt 5056 3540 L Xc54 X25 30 64 -17 4967 3527 3 MP XPP X0 sg X4967 3527 mt 5031 3510 L X5031 3510 mt 5056 3540 L Xc47 X64 -17 25 14 4966 4144 3 MP XPP X0 sg X4966 4144 mt 4991 4158 L X4991 4158 mt 5055 4141 L Xc47 X25 14 64 -17 4966 4144 3 MP XPP X0 sg X4966 4144 mt 5030 4127 L X5030 4127 mt 5055 4141 L Xc52 X24 11 64 -17 4963 3296 3 MP XPP X0 sg X4963 3296 mt 5027 3279 L X5027 3279 mt 5051 3290 L Xc52 X64 -17 24 11 4963 3296 3 MP XPP X0 sg X4963 3296 mt 4987 3307 L X4987 3307 mt 5051 3290 L Xc12 X64 -17 24 42 4962 3789 3 MP XPP X0 sg X4962 3789 mt 4986 3831 L X4986 3831 mt 5050 3814 L Xc12 X24 42 64 -17 4962 3789 3 MP XPP X0 sg X4962 3789 mt 5026 3772 L X5026 3772 mt 5050 3814 L Xc61 X64 -44 25 17 4961 4291 3 MP XPP X0 sg X4961 4291 mt 4986 4308 L X4986 4308 mt 5050 4264 L Xc61 X25 17 64 -44 4961 4291 3 MP XPP X0 sg X4961 4291 mt 5025 4247 L X5025 4247 mt 5050 4264 L Xc52 X25 29 63 -18 4958 3387 3 MP XPP X0 sg X4958 3387 mt 5021 3369 L X5021 3369 mt 5046 3398 L Xc52 X64 -17 24 28 4958 3387 3 MP XPP X0 sg X4958 3387 mt 4982 3415 L X4982 3415 mt 5046 3398 L Xc44 X64 -23 24 19 4957 4075 3 MP XPP X0 sg X4957 4075 mt 4981 4094 L X4981 4094 mt 5045 4071 L Xc44 X24 19 64 -23 4957 4075 3 MP XPP X0 sg X4957 4075 mt 5021 4052 L X5021 4052 mt 5045 4071 L Xc16 X25 43 64 -39 4952 3631 3 MP XPP X0 sg X4952 3631 mt 5016 3592 L X5016 3592 mt 5041 3635 L Xc16 X64 -39 25 43 4952 3631 3 MP XPP X0 sg X4952 3631 mt 4977 3674 L X4977 3674 mt 5041 3635 L Xc53 X64 -27 25 12 4951 4198 3 MP XPP X0 sg X4951 4198 mt 4976 4210 L X4976 4210 mt 5040 4183 L Xc53 X25 12 64 -27 4951 4198 3 MP XPP X0 sg X4951 4198 mt 5015 4171 L X5015 4171 mt 5040 4183 L Xc52 X24 12 64 -18 4948 3336 3 MP XPP X0 sg X4948 3336 mt 5012 3318 L X5012 3318 mt 5036 3330 L Xc52 X64 -17 24 11 4948 3336 3 MP XPP X0 sg X4948 3336 mt 4972 3347 L X4972 3347 mt 5036 3330 L Xc14 X64 -17 25 29 4947 3912 3 MP XPP X0 sg X4947 3912 mt 4972 3941 L X4972 3941 mt 5036 3924 L Xc14 X25 29 64 -17 4947 3912 3 MP XPP X0 sg X4947 3912 mt 5011 3895 L X5011 3895 mt 5036 3924 L Xc64 X64 -30 25 19 4946 4353 3 MP XPP X0 sg X4946 4353 mt 4971 4372 L X4971 4372 mt 5035 4342 L Xc64 X25 19 64 -30 4946 4353 3 MP XPP X0 sg X4946 4353 mt 5010 4323 L X5010 4323 mt 5035 4342 L Xc49 X64 -17 24 42 4943 3485 3 MP XPP X0 sg X4943 3485 mt 4967 3527 L X4967 3527 mt 5031 3510 L Xc49 X24 42 64 -17 4943 3485 3 MP XPP X0 sg X4943 3485 mt 5007 3468 L X5007 3468 mt 5031 3510 L Xc43 X64 -17 24 20 4942 4124 3 MP XPP X0 sg X4942 4124 mt 4966 4144 L X4966 4144 mt 5030 4127 L Xc43 X24 20 64 -17 4942 4124 3 MP XPP X0 sg X4942 4124 mt 5006 4107 L X5006 4107 mt 5030 4127 L Xc52 X64 -17 25 11 4938 3285 3 MP XPP X0 sg X4938 3285 mt 4963 3296 L X4963 3296 mt 5027 3279 L Xc52 X25 12 64 -18 4938 3285 3 MP XPP X0 sg X4938 3285 mt 5002 3267 L X5002 3267 mt 5027 3279 L Xc29 X64 -17 25 50 4937 3739 3 MP XPP X0 sg X4937 3739 mt 4962 3789 L X4962 3789 mt 5026 3772 L Xc29 X25 50 64 -17 4937 3739 3 MP XPP X0 sg X4937 3739 mt 5001 3722 L X5001 3722 mt 5026 3772 L Xc56 X64 -44 24 20 4937 4271 3 MP XPP X0 sg X4937 4271 mt 4961 4291 L X4961 4291 mt 5025 4247 L Xc56 X24 20 64 -44 4937 4271 3 MP XPP X0 sg X4937 4271 mt 5001 4227 L X5001 4227 mt 5025 4247 L Xc52 X24 11 64 -18 4933 3376 3 MP XPP X0 sg X4933 3376 mt 4997 3358 L X4997 3358 mt 5021 3369 L Xc52 X63 -18 25 11 4933 3376 3 MP XPP X0 sg X4933 3376 mt 4958 3387 L X4958 3387 mt 5021 3369 L Xc42 X64 -23 25 82 4932 3993 3 MP XPP X0 sg X4932 3993 mt 4957 4075 L X4957 4075 mt 5021 4052 L Xc42 X25 82 64 -23 4932 3993 3 MP XPP X0 sg X4932 3993 mt 4996 3970 L X4996 3970 mt 5021 4052 L Xc20 X64 -39 24 34 4928 3597 3 MP XPP X0 sg X4928 3597 mt 4952 3631 L X4952 3631 mt 5016 3592 L Xc20 X24 35 64 -40 4928 3597 3 MP XPP X0 sg X4928 3597 mt 4992 3557 L X4992 3557 mt 5016 3592 L Xc53 X64 -27 24 12 4927 4186 3 MP XPP X0 sg X4927 4186 mt 4951 4198 L X4951 4198 mt 5015 4171 L Xc53 X24 13 64 -28 4927 4186 3 MP XPP X0 sg X4927 4186 mt 4991 4158 L X4991 4158 mt 5015 4171 L Xc52 X25 11 64 -18 4923 3325 3 MP XPP X0 sg X4923 3325 mt 4987 3307 L X4987 3307 mt 5012 3318 L Xc52 X64 -18 25 11 4923 3325 3 MP XPP X0 sg X4923 3325 mt 4948 3336 L X4948 3336 mt 5012 3318 L Xc34 X64 -17 24 64 4923 3848 3 MP XPP X0 sg X4923 3848 mt 4947 3912 L X4947 3912 mt 5011 3895 L Xc34 X25 64 63 -17 4923 3848 3 MP XPP X0 sg X4923 3848 mt 4986 3831 L X4986 3831 mt 5011 3895 L Xc65 X64 -30 24 15 4922 4338 3 MP XPP X0 sg X4922 4338 mt 4946 4353 L X4946 4353 mt 5010 4323 L Xc65 X24 15 64 -30 4922 4338 3 MP XPP X0 sg X4922 4338 mt 4986 4308 L X4986 4308 mt 5010 4323 L Xc57 X64 -17 25 53 4918 3432 3 MP XPP X0 sg X4918 3432 mt 4943 3485 L X4943 3485 mt 5007 3468 L Xc57 X25 53 64 -17 4918 3432 3 MP XPP X0 sg X4918 3432 mt 4982 3415 L X4982 3415 mt 5007 3468 L Xc43 X25 13 64 -17 4917 4111 3 MP XPP X0 sg X4917 4111 mt 4981 4094 L X4981 4094 mt 5006 4107 L Xc43 X64 -17 25 13 4917 4111 3 MP XPP X0 sg X4917 4111 mt 4942 4124 L X4942 4124 mt 5006 4107 L Xc52 X24 11 64 -17 4914 3273 3 MP XPP X0 sg X4914 3273 mt 4978 3256 L X4978 3256 mt 5002 3267 L Xc52 X64 -18 24 12 4914 3273 3 MP XPP X0 sg X4914 3273 mt 4938 3285 L X4938 3285 mt 5002 3267 L Xc35 X24 48 64 -17 4913 3691 3 MP XPP X0 sg X4913 3691 mt 4977 3674 L X4977 3674 mt 5001 3722 L Xc35 X64 -17 24 48 4913 3691 3 MP XPP X0 sg X4913 3691 mt 4937 3739 L X4937 3739 mt 5001 3722 L Xc56 X25 17 64 -44 4912 4254 3 MP XPP X0 sg X4912 4254 mt 4976 4210 L X4976 4210 mt 5001 4227 L Xc56 X64 -44 25 17 4912 4254 3 MP XPP X0 sg X4912 4254 mt 4937 4271 L X4937 4271 mt 5001 4227 L Xc52 X25 11 64 -17 4908 3364 3 MP XPP X0 sg X4908 3364 mt 4972 3347 L X4972 3347 mt 4997 3358 L Xc52 X64 -18 25 12 4908 3364 3 MP XPP X0 sg X4908 3364 mt 4933 3376 L X4933 3376 mt 4997 3358 L Xc27 X24 29 64 -23 4908 3964 3 MP XPP X0 sg X4908 3964 mt 4972 3941 L X4972 3941 mt 4996 3970 L Xc27 X64 -23 24 29 4908 3964 3 MP XPP X0 sg X4908 3964 mt 4932 3993 L X4932 3993 mt 4996 3970 L Xc46 X25 30 64 -39 4903 3566 3 MP XPP X0 sg X4903 3566 mt 4967 3527 L X4967 3527 mt 4992 3557 L Xc46 X64 -40 25 31 4903 3566 3 MP XPP X0 sg X4903 3566 mt 4928 3597 L X4928 3597 mt 4992 3557 L Xc45 X25 14 64 -27 4902 4171 3 MP XPP X0 sg X4902 4171 mt 4966 4144 L X4966 4144 mt 4991 4158 L Xc45 X64 -28 25 15 4902 4171 3 MP XPP X0 sg X4902 4171 mt 4927 4186 L X4927 4186 mt 4991 4158 L Xc52 X24 11 64 -17 4899 3313 3 MP XPP X0 sg X4899 3313 mt 4963 3296 L X4963 3296 mt 4987 3307 L Xc52 X64 -18 24 12 4899 3313 3 MP XPP X0 sg X4899 3313 mt 4923 3325 L X4923 3325 mt 4987 3307 L Xc12 X63 -17 25 42 4898 3806 3 MP XPP X0 sg X4898 3806 mt 4923 3848 L X4923 3848 mt 4986 3831 L Xc12 X24 42 64 -17 4898 3806 3 MP XPP X0 sg X4898 3806 mt 4962 3789 L X4962 3789 mt 4986 3831 L Xc65 X64 -30 25 17 4897 4321 3 MP XPP X0 sg X4897 4321 mt 4922 4338 L X4922 4338 mt 4986 4308 L Xc65 X25 17 64 -30 4897 4321 3 MP XPP X0 sg X4897 4321 mt 4961 4291 L X4961 4291 mt 4986 4308 L Xc52 X24 28 64 -17 4894 3404 3 MP XPP X0 sg X4894 3404 mt 4958 3387 L X4958 3387 mt 4982 3415 L Xc52 X64 -17 24 28 4894 3404 3 MP XPP X0 sg X4894 3404 mt 4918 3432 L X4918 3432 mt 4982 3415 L Xc44 X24 19 64 -17 4893 4092 3 MP XPP X0 sg X4893 4092 mt 4957 4075 L X4957 4075 mt 4981 4094 L Xc44 X64 -17 24 19 4893 4092 3 MP XPP X0 sg X4893 4092 mt 4917 4111 L X4917 4111 mt 4981 4094 L Xc16 X25 43 64 -17 4888 3648 3 MP XPP X0 sg X4888 3648 mt 4952 3631 L X4952 3631 mt 4977 3674 L Xc16 X64 -17 25 43 4888 3648 3 MP XPP X0 sg X4888 3648 mt 4913 3691 L X4913 3691 mt 4977 3674 L Xc56 X25 12 63 -44 4888 4242 3 MP XPP X0 sg X4888 4242 mt 4951 4198 L X4951 4198 mt 4976 4210 L Xc56 X64 -44 24 12 4888 4242 3 MP XPP X0 sg X4888 4242 mt 4912 4254 L X4912 4254 mt 4976 4210 L Xc52 X24 11 64 -17 4884 3353 3 MP XPP X0 sg X4884 3353 mt 4948 3336 L X4948 3336 mt 4972 3347 L Xc52 X64 -17 24 11 4884 3353 3 MP XPP X0 sg X4884 3353 mt 4908 3364 L X4908 3364 mt 4972 3347 L Xc14 X25 29 64 -23 4883 3935 3 MP XPP X0 sg X4883 3935 mt 4947 3912 L X4947 3912 mt 4972 3941 L Xc14 X64 -23 25 29 4883 3935 3 MP XPP X0 sg X4883 3935 mt 4908 3964 L X4908 3964 mt 4972 3941 L Xc64 X64 -22 25 18 4882 4376 3 MP XPP X0 sg X4882 4376 mt 4907 4394 L X4907 4394 mt 4971 4372 L Xc64 X25 19 64 -23 4882 4376 3 MP XPP X0 sg X4882 4376 mt 4946 4353 L X4946 4353 mt 4971 4372 L Xc63 X64 -39 24 42 4879 3524 3 MP XPP X0 sg X4879 3524 mt 4903 3566 L X4903 3566 mt 4967 3527 L Xc63 X24 42 64 -39 4879 3524 3 MP XPP X0 sg X4879 3524 mt 4943 3485 L X4943 3485 mt 4967 3527 L Xc47 X64 -27 24 20 4878 4151 3 MP XPP X0 sg X4878 4151 mt 4902 4171 L X4902 4171 mt 4966 4144 L Xc47 X24 20 64 -27 4878 4151 3 MP XPP X0 sg X4878 4151 mt 4942 4124 L X4942 4124 mt 4966 4144 L Xc52 X25 11 64 -17 4874 3302 3 MP XPP X0 sg X4874 3302 mt 4938 3285 L X4938 3285 mt 4963 3296 L Xc52 X64 -17 25 11 4874 3302 3 MP XPP X0 sg X4874 3302 mt 4899 3313 L X4899 3313 mt 4963 3296 L Xc29 X64 -17 25 50 4873 3756 3 MP XPP X0 sg X4873 3756 mt 4898 3806 L X4898 3806 mt 4962 3789 L Xc29 X25 50 64 -17 4873 3756 3 MP XPP X0 sg X4873 3756 mt 4937 3739 L X4937 3739 mt 4962 3789 L Xc60 X64 -30 24 20 4873 4301 3 MP XPP X0 sg X4873 4301 mt 4897 4321 L X4897 4321 mt 4961 4291 L Xc60 X24 20 64 -30 4873 4301 3 MP XPP X0 sg X4873 4301 mt 4937 4271 L X4937 4271 mt 4961 4291 L Xc52 X25 11 64 -17 4869 3393 3 MP XPP X0 sg X4869 3393 mt 4933 3376 L X4933 3376 mt 4958 3387 L Xc52 X64 -17 25 11 4869 3393 3 MP XPP X0 sg X4869 3393 mt 4894 3404 L X4894 3404 mt 4958 3387 L Xc42 X25 82 64 -17 4868 4010 3 MP XPP X0 sg X4868 4010 mt 4932 3993 L X4932 3993 mt 4957 4075 L Xc42 X64 -17 25 82 4868 4010 3 MP XPP X0 sg X4868 4010 mt 4893 4092 L X4893 4092 mt 4957 4075 L Xc20 X64 -17 24 34 4864 3614 3 MP XPP X0 sg X4864 3614 mt 4888 3648 L X4888 3648 mt 4952 3631 L Xc20 X24 34 64 -17 4864 3614 3 MP XPP X0 sg X4864 3614 mt 4928 3597 L X4928 3597 mt 4952 3631 L Xc58 X63 -44 25 13 4863 4229 3 MP XPP X0 sg X4863 4229 mt 4888 4242 L X4888 4242 mt 4951 4198 L Xc58 X24 12 64 -43 4863 4229 3 MP XPP X0 sg X4863 4229 mt 4927 4186 L X4927 4186 mt 4951 4198 L Xc52 X25 11 64 -17 4859 3342 3 MP XPP X0 sg X4859 3342 mt 4923 3325 L X4923 3325 mt 4948 3336 L Xc52 X64 -17 25 11 4859 3342 3 MP XPP X0 sg X4859 3342 mt 4884 3353 L X4884 3353 mt 4948 3336 L Xc13 X24 64 64 -23 4859 3871 3 MP XPP X0 sg X4859 3871 mt 4923 3848 L X4923 3848 mt 4947 3912 L Xc13 X64 -23 24 64 4859 3871 3 MP XPP X0 sg X4859 3871 mt 4883 3935 L X4883 3935 mt 4947 3912 L Xc64 X64 -23 24 15 4858 4361 3 MP XPP X0 sg X4858 4361 mt 4882 4376 L X4882 4376 mt 4946 4353 L Xc64 X24 15 64 -23 4858 4361 3 MP XPP X0 sg X4858 4361 mt 4922 4338 L X4922 4338 mt 4946 4353 L Xc50 X25 53 64 -40 4854 3472 3 MP XPP X0 sg X4854 3472 mt 4918 3432 L X4918 3432 mt 4943 3485 L Xc50 X64 -39 25 52 4854 3472 3 MP XPP X0 sg X4854 3472 mt 4879 3524 L X4879 3524 mt 4943 3485 L Xc47 X25 13 64 -27 4853 4138 3 MP XPP X0 sg X4853 4138 mt 4917 4111 L X4917 4111 mt 4942 4124 L Xc47 X64 -27 25 13 4853 4138 3 MP XPP X0 sg X4853 4138 mt 4878 4151 L X4878 4151 mt 4942 4124 L Xc52 X64 -17 24 11 4850 3291 3 MP XPP X0 sg X4850 3291 mt 4874 3302 L X4874 3302 mt 4938 3285 L Xc52 X24 12 64 -18 4850 3291 3 MP XPP X0 sg X4850 3291 mt 4914 3273 L X4914 3273 mt 4938 3285 L Xc35 X64 -17 24 48 4849 3708 3 MP XPP X0 sg X4849 3708 mt 4873 3756 L X4873 3756 mt 4937 3739 L Xc35 X24 48 64 -17 4849 3708 3 MP XPP X0 sg X4849 3708 mt 4913 3691 L X4913 3691 mt 4937 3739 L Xc61 X25 17 64 -30 4848 4284 3 MP XPP X0 sg X4848 4284 mt 4912 4254 L X4912 4254 mt 4937 4271 L Xc61 X64 -30 25 17 4848 4284 3 MP XPP X0 sg X4848 4284 mt 4873 4301 L X4873 4301 mt 4937 4271 L Xc52 X25 12 63 -18 4845 3382 3 MP XPP X0 sg X4845 3382 mt 4908 3364 L X4908 3364 mt 4933 3376 L Xc52 X64 -17 24 11 4845 3382 3 MP XPP X0 sg X4845 3382 mt 4869 3393 L X4869 3393 mt 4933 3376 L Xc27 X24 29 64 -17 4844 3981 3 MP XPP X0 sg X4844 3981 mt 4908 3964 L X4908 3964 mt 4932 3993 L Xc27 X64 -17 24 29 4844 3981 3 MP XPP X0 sg X4844 3981 mt 4868 4010 L X4868 4010 mt 4932 3993 L Xc46 X25 31 64 -17 4839 3583 3 MP XPP X0 sg X4839 3583 mt 4903 3566 L X4903 3566 mt 4928 3597 L Xc46 X64 -17 25 31 4839 3583 3 MP XPP X0 sg X4839 3583 mt 4864 3614 L X4864 3614 mt 4928 3597 L Xc58 X25 15 64 -44 4838 4215 3 MP XPP X0 sg X4838 4215 mt 4902 4171 L X4902 4171 mt 4927 4186 L Xc58 X64 -43 25 14 4838 4215 3 MP XPP X0 sg X4838 4215 mt 4863 4229 L X4863 4229 mt 4927 4186 L Xc52 X24 12 64 -18 4835 3331 3 MP XPP X0 sg X4835 3331 mt 4899 3313 L X4899 3313 mt 4923 3325 L Xc52 X64 -17 24 11 4835 3331 3 MP XPP X0 sg X4835 3331 mt 4859 3342 L X4859 3342 mt 4923 3325 L Xc12 X25 42 64 -23 4834 3829 3 MP XPP X0 sg X4834 3829 mt 4898 3806 L X4898 3806 mt 4923 3848 L Xc12 X64 -23 25 42 4834 3829 3 MP XPP X0 sg X4834 3829 mt 4859 3871 L X4859 3871 mt 4923 3848 L Xc65 X64 -23 25 18 4833 4343 3 MP XPP X0 sg X4833 4343 mt 4858 4361 L X4858 4361 mt 4922 4338 L Xc65 X25 17 64 -22 4833 4343 3 MP XPP X0 sg X4833 4343 mt 4897 4321 L X4897 4321 mt 4922 4338 L Xc57 X24 28 64 -39 4830 3443 3 MP XPP X0 sg X4830 3443 mt 4894 3404 L X4894 3404 mt 4918 3432 L Xc57 X64 -40 24 29 4830 3443 3 MP XPP X0 sg X4830 3443 mt 4854 3472 L X4854 3472 mt 4918 3432 L Xc43 X24 19 64 -27 4829 4119 3 MP XPP X0 sg X4829 4119 mt 4893 4092 L X4893 4092 mt 4917 4111 L Xc43 X64 -27 24 19 4829 4119 3 MP XPP X0 sg X4829 4119 mt 4853 4138 L X4853 4138 mt 4917 4111 L Xc16 X25 43 64 -18 4824 3666 3 MP XPP X0 sg X4824 3666 mt 4888 3648 L X4888 3648 mt 4913 3691 L Xc16 X64 -17 25 42 4824 3666 3 MP XPP X0 sg X4824 3666 mt 4849 3708 L X4849 3708 mt 4913 3691 L Xc61 X64 -30 24 12 4824 4272 3 MP XPP X0 sg X4824 4272 mt 4848 4284 L X4848 4284 mt 4912 4254 L Xc61 X24 12 64 -30 4824 4272 3 MP XPP X0 sg X4824 4272 mt 4888 4242 L X4888 4242 mt 4912 4254 L Xc52 X24 11 64 -17 4820 3370 3 MP XPP X0 sg X4820 3370 mt 4884 3353 L X4884 3353 mt 4908 3364 L Xc52 X63 -18 25 12 4820 3370 3 MP XPP X0 sg X4820 3370 mt 4845 3382 L X4845 3382 mt 4908 3364 L Xc14 X25 29 64 -17 4819 3952 3 MP XPP X0 sg X4819 3952 mt 4883 3935 L X4883 3935 mt 4908 3964 L Xc14 X64 -17 25 29 4819 3952 3 MP XPP X0 sg X4819 3952 mt 4844 3981 L X4844 3981 mt 4908 3964 L Xc69 X64 -30 25 19 4818 4405 3 MP XPP X0 sg X4818 4405 mt 4843 4424 L X4843 4424 mt 4907 4394 L Xc69 X25 18 64 -29 4818 4405 3 MP XPP X0 sg X4818 4405 mt 4882 4376 L X4882 4376 mt 4907 4394 L Xc63 X64 -17 24 42 4815 3541 3 MP XPP X0 sg X4815 3541 mt 4839 3583 L X4839 3583 mt 4903 3566 L Xc63 X24 42 64 -17 4815 3541 3 MP XPP X0 sg X4815 3541 mt 4879 3524 L X4879 3524 mt 4903 3566 L Xc51 X64 -44 24 20 4814 4195 3 MP XPP X0 sg X4814 4195 mt 4838 4215 L X4838 4215 mt 4902 4171 L Xc51 X24 20 64 -44 4814 4195 3 MP XPP X0 sg X4814 4195 mt 4878 4151 L X4878 4151 mt 4902 4171 L Xc52 X25 11 64 -17 4810 3319 3 MP XPP X0 sg X4810 3319 mt 4874 3302 L X4874 3302 mt 4899 3313 L Xc52 X64 -18 25 12 4810 3319 3 MP XPP X0 sg X4810 3319 mt 4835 3331 L X4835 3331 mt 4899 3313 L Xc18 X25 50 63 -23 4810 3779 3 MP XPP X0 sg X4810 3779 mt 4873 3756 L X4873 3756 mt 4898 3806 L Xc18 X64 -23 24 50 4810 3779 3 MP XPP X0 sg X4810 3779 mt 4834 3829 L X4834 3829 mt 4898 3806 L Xc60 X24 20 64 -23 4809 4324 3 MP XPP X0 sg X4809 4324 mt 4873 4301 L X4873 4301 mt 4897 4321 L Xc60 X64 -22 24 19 4809 4324 3 MP XPP X0 sg X4809 4324 mt 4833 4343 L X4833 4343 mt 4897 4321 L Xc52 X25 11 64 -17 4805 3410 3 MP XPP X0 sg X4805 3410 mt 4869 3393 L X4869 3393 mt 4894 3404 L Xc52 X64 -39 25 33 4805 3410 3 MP XPP X0 sg X4805 3410 mt 4830 3443 L X4830 3443 mt 4894 3404 L Xc10 X25 82 64 -27 4804 4037 3 MP XPP X0 sg X4804 4037 mt 4868 4010 L X4868 4010 mt 4893 4092 L Xc10 X64 -27 25 82 4804 4037 3 MP XPP X0 sg X4804 4037 mt 4829 4119 L X4829 4119 mt 4893 4092 L Xc20 X24 34 64 -17 4800 3631 3 MP XPP X0 sg X4800 3631 mt 4864 3614 L X4864 3614 mt 4888 3648 L Xc20 X64 -18 24 35 4800 3631 3 MP XPP X0 sg X4800 3631 mt 4824 3666 L X4824 3666 mt 4888 3648 L Xc61 X25 13 64 -30 4799 4259 3 MP XPP X0 sg X4799 4259 mt 4863 4229 L X4863 4229 mt 4888 4242 L Xc61 X64 -30 25 13 4799 4259 3 MP XPP X0 sg X4799 4259 mt 4824 4272 L X4824 4272 mt 4888 4242 L Xc52 X64 -17 25 11 4795 3359 3 MP XPP X0 sg X4795 3359 mt 4820 3370 L X4820 3370 mt 4884 3353 L Xc52 X25 11 64 -17 4795 3359 3 MP XPP X0 sg X4795 3359 mt 4859 3342 L X4859 3342 mt 4884 3353 L Xc13 X24 64 64 -17 4795 3888 3 MP XPP X0 sg X4795 3888 mt 4859 3871 L X4859 3871 mt 4883 3935 L Xc13 X64 -17 24 64 4795 3888 3 MP XPP X0 sg X4795 3888 mt 4819 3952 L X4819 3952 mt 4883 3935 L Xc70 X64 -29 24 15 4794 4390 3 MP XPP X0 sg X4794 4390 mt 4818 4405 L X4818 4405 mt 4882 4376 L Xc70 X24 15 64 -29 4794 4390 3 MP XPP X0 sg X4794 4390 mt 4858 4361 L X4858 4361 mt 4882 4376 L Xc50 X25 52 64 -17 4790 3489 3 MP XPP X0 sg X4790 3489 mt 4854 3472 L X4854 3472 mt 4879 3524 L Xc50 X64 -17 25 52 4790 3489 3 MP XPP X0 sg X4790 3489 mt 4815 3541 L X4815 3541 mt 4879 3524 L Xc51 X64 -44 25 13 4789 4182 3 MP XPP X0 sg X4789 4182 mt 4814 4195 L X4814 4195 mt 4878 4151 L Xc51 X25 13 64 -44 4789 4182 3 MP XPP X0 sg X4789 4182 mt 4853 4138 L X4853 4138 mt 4878 4151 L Xc52 X24 11 64 -17 4786 3308 3 MP XPP X0 sg X4786 3308 mt 4850 3291 L X4850 3291 mt 4874 3302 L Xc52 X64 -17 24 11 4786 3308 3 MP XPP X0 sg X4786 3308 mt 4810 3319 L X4810 3319 mt 4874 3302 L Xc30 X24 48 64 -23 4785 3731 3 MP XPP X0 sg X4785 3731 mt 4849 3708 L X4849 3708 mt 4873 3756 L Xc30 X63 -23 25 48 4785 3731 3 MP XPP X0 sg X4785 3731 mt 4810 3779 L X4810 3779 mt 4873 3756 L Xc60 X25 17 64 -22 4784 4306 3 MP XPP X0 sg X4784 4306 mt 4848 4284 L X4848 4284 mt 4873 4301 L Xc60 X64 -23 25 18 4784 4306 3 MP XPP X0 sg X4784 4306 mt 4809 4324 L X4809 4324 mt 4873 4301 L Xc52 X24 11 64 -17 4781 3399 3 MP XPP X0 sg X4781 3399 mt 4845 3382 L X4845 3382 mt 4869 3393 L Xc52 X64 -17 24 11 4781 3399 3 MP XPP X0 sg X4781 3399 mt 4805 3410 L X4805 3410 mt 4869 3393 L Xc67 X24 29 64 -27 4780 4008 3 MP XPP X0 sg X4780 4008 mt 4844 3981 L X4844 3981 mt 4868 4010 L Xc67 X64 -27 24 29 4780 4008 3 MP XPP X0 sg X4780 4008 mt 4804 4037 L X4804 4037 mt 4868 4010 L Xc46 X25 31 64 -18 4775 3601 3 MP XPP X0 sg X4775 3601 mt 4839 3583 L X4839 3583 mt 4864 3614 L Xc46 X64 -17 25 30 4775 3601 3 MP XPP X0 sg X4775 3601 mt 4800 3631 L X4800 3631 mt 4864 3614 L Xc61 X64 -30 24 14 4775 4245 3 MP XPP X0 sg X4775 4245 mt 4799 4259 L X4799 4259 mt 4863 4229 L Xc61 X25 14 63 -30 4775 4245 3 MP XPP X0 sg X4775 4245 mt 4838 4215 L X4838 4215 mt 4863 4229 L Xc52 X24 11 64 -17 4771 3348 3 MP XPP X0 sg X4771 3348 mt 4835 3331 L X4835 3331 mt 4859 3342 L Xc52 X64 -17 24 11 4771 3348 3 MP XPP X0 sg X4771 3348 mt 4795 3359 L X4795 3359 mt 4859 3342 L Xc12 X25 42 64 -17 4770 3846 3 MP XPP X0 sg X4770 3846 mt 4834 3829 L X4834 3829 mt 4859 3871 L Xc12 X64 -17 25 42 4770 3846 3 MP XPP X0 sg X4770 3846 mt 4795 3888 L X4795 3888 mt 4859 3871 L Xc70 X25 18 64 -30 4769 4373 3 MP XPP X0 sg X4769 4373 mt 4833 4343 L X4833 4343 mt 4858 4361 L Xc70 X64 -29 25 17 4769 4373 3 MP XPP X0 sg X4769 4373 mt 4794 4390 L X4794 4390 mt 4858 4361 L Xc57 X64 -17 24 29 4766 3460 3 MP XPP X0 sg X4766 3460 mt 4790 3489 L X4790 3489 mt 4854 3472 L Xc57 X24 29 64 -17 4766 3460 3 MP XPP X0 sg X4766 3460 mt 4830 3443 L X4830 3443 mt 4854 3472 L Xc53 X24 19 64 -44 4765 4163 3 MP XPP X0 sg X4765 4163 mt 4829 4119 L X4829 4119 mt 4853 4138 L Xc53 X64 -44 24 19 4765 4163 3 MP XPP X0 sg X4765 4163 mt 4789 4182 L X4789 4182 mt 4853 4138 L Xc16 X25 42 64 -23 4760 3689 3 MP XPP X0 sg X4760 3689 mt 4824 3666 L X4824 3666 mt 4849 3708 L Xc16 X64 -23 25 42 4760 3689 3 MP XPP X0 sg X4760 3689 mt 4785 3731 L X4785 3731 mt 4849 3708 L Xc60 X64 -22 24 11 4760 4295 3 MP XPP X0 sg X4760 4295 mt 4784 4306 L X4784 4306 mt 4848 4284 L Xc60 X24 12 64 -23 4760 4295 3 MP XPP X0 sg X4760 4295 mt 4824 4272 L X4824 4272 mt 4848 4284 L Xc52 X25 12 64 -18 4756 3388 3 MP XPP X0 sg X4756 3388 mt 4820 3370 L X4820 3370 mt 4845 3382 L Xc52 X64 -17 25 11 4756 3388 3 MP XPP X0 sg X4756 3388 mt 4781 3399 L X4781 3399 mt 4845 3382 L Xc28 X64 -27 25 28 4755 3980 3 MP XPP X0 sg X4755 3980 mt 4780 4008 L X4780 4008 mt 4844 3981 L Xc28 X25 29 64 -28 4755 3980 3 MP XPP X0 sg X4755 3980 mt 4819 3952 L X4819 3952 mt 4844 3981 L Xc63 X24 42 64 -18 4751 3559 3 MP XPP X0 sg X4751 3559 mt 4815 3541 L X4815 3541 mt 4839 3583 L Xc63 X64 -18 24 42 4751 3559 3 MP XPP X0 sg X4751 3559 mt 4775 3601 L X4775 3601 mt 4839 3583 L Xc56 X63 -30 25 20 4750 4225 3 MP XPP X0 sg X4750 4225 mt 4775 4245 L X4775 4245 mt 4838 4215 L Xc56 X24 20 64 -30 4750 4225 3 MP XPP X0 sg X4750 4225 mt 4814 4195 L X4814 4195 mt 4838 4215 L Xc52 X25 12 64 -18 4746 3337 3 MP XPP X0 sg X4746 3337 mt 4810 3319 L X4810 3319 mt 4835 3331 L Xc52 X64 -17 25 11 4746 3337 3 MP XPP X0 sg X4746 3337 mt 4771 3348 L X4771 3348 mt 4835 3331 L Xc18 X24 50 64 -17 4746 3796 3 MP XPP X0 sg X4746 3796 mt 4810 3779 L X4810 3779 mt 4834 3829 L Xc18 X64 -17 24 50 4746 3796 3 MP XPP X0 sg X4746 3796 mt 4770 3846 L X4770 3846 mt 4834 3829 L Xc64 X24 19 64 -29 4745 4353 3 MP XPP X0 sg X4745 4353 mt 4809 4324 L X4809 4324 mt 4833 4343 L Xc64 X64 -30 24 20 4745 4353 3 MP XPP X0 sg X4745 4353 mt 4769 4373 L X4769 4373 mt 4833 4343 L Xc52 X25 33 64 -18 4741 3428 3 MP XPP X0 sg X4741 3428 mt 4805 3410 L X4805 3410 mt 4830 3443 L Xc52 X64 -17 25 32 4741 3428 3 MP XPP X0 sg X4741 3428 mt 4766 3460 L X4766 3460 mt 4830 3443 L Xc38 X64 -44 25 82 4740 4081 3 MP XPP X0 sg X4740 4081 mt 4765 4163 L X4765 4163 mt 4829 4119 L Xc38 X25 82 64 -44 4740 4081 3 MP XPP X0 sg X4740 4081 mt 4804 4037 L X4804 4037 mt 4829 4119 L Xc24 X24 35 64 -23 4736 3654 3 MP XPP X0 sg X4736 3654 mt 4800 3631 L X4800 3631 mt 4824 3666 L Xc24 X64 -23 24 35 4736 3654 3 MP XPP X0 sg X4736 3654 mt 4760 3689 L X4760 3689 mt 4824 3666 L Xc61 X64 -23 25 13 4735 4282 3 MP XPP X0 sg X4735 4282 mt 4760 4295 L X4760 4295 mt 4824 4272 L Xc61 X25 13 64 -23 4735 4282 3 MP XPP X0 sg X4735 4282 mt 4799 4259 L X4799 4259 mt 4824 4272 L Xc52 X25 11 63 -17 4732 3376 3 MP XPP X0 sg X4732 3376 mt 4795 3359 L X4795 3359 mt 4820 3370 L Xc52 X64 -18 24 12 4732 3376 3 MP XPP X0 sg X4732 3376 mt 4756 3388 L X4756 3388 mt 4820 3370 L Xc21 X64 -28 24 64 4731 3916 3 MP XPP X0 sg X4731 3916 mt 4755 3980 L X4755 3980 mt 4819 3952 L Xc21 X24 64 64 -28 4731 3916 3 MP XPP X0 sg X4731 3916 mt 4795 3888 L X4795 3888 mt 4819 3952 L Xc50 X25 52 64 -17 4726 3506 3 MP XPP X0 sg X4726 3506 mt 4790 3489 L X4790 3489 mt 4815 3541 L Xc50 X64 -18 25 53 4726 3506 3 MP XPP X0 sg X4726 3506 mt 4751 3559 L X4751 3559 mt 4815 3541 L Xc58 X25 13 64 -30 4725 4212 3 MP XPP X0 sg X4725 4212 mt 4789 4182 L X4789 4182 mt 4814 4195 L Xc58 X64 -30 25 13 4725 4212 3 MP XPP X0 sg X4725 4212 mt 4750 4225 L X4750 4225 mt 4814 4195 L Xc52 X24 11 64 -17 4722 3325 3 MP XPP X0 sg X4722 3325 mt 4786 3308 L X4786 3308 mt 4810 3319 L Xc52 X64 -18 24 12 4722 3325 3 MP XPP X0 sg X4722 3325 mt 4746 3337 L X4746 3337 mt 4810 3319 L Xc30 X25 48 64 -18 4721 3749 3 MP XPP X0 sg X4721 3749 mt 4785 3731 L X4785 3731 mt 4810 3779 L Xc30 X64 -17 25 47 4721 3749 3 MP XPP X0 sg X4721 3749 mt 4746 3796 L X4746 3796 mt 4810 3779 L Xc65 X25 18 64 -30 4720 4336 3 MP XPP X0 sg X4720 4336 mt 4784 4306 L X4784 4306 mt 4809 4324 L Xc65 X64 -29 25 17 4720 4336 3 MP XPP X0 sg X4720 4336 mt 4745 4353 L X4745 4353 mt 4809 4324 L Xc52 X24 11 64 -17 4717 3416 3 MP XPP X0 sg X4717 3416 mt 4781 3399 L X4781 3399 mt 4805 3410 L Xc52 X64 -18 24 12 4717 3416 3 MP XPP X0 sg X4717 3416 mt 4741 3428 L X4741 3428 mt 4805 3410 L Xc41 X64 -44 24 29 4716 4052 3 MP XPP X0 sg X4716 4052 mt 4740 4081 L X4740 4081 mt 4804 4037 L Xc41 X24 29 64 -44 4716 4052 3 MP XPP X0 sg X4716 4052 mt 4780 4008 L X4780 4008 mt 4804 4037 L Xc68 X25 30 64 -23 4711 3624 3 MP XPP X0 sg X4711 3624 mt 4775 3601 L X4775 3601 mt 4800 3631 L Xc68 X64 -23 25 30 4711 3624 3 MP XPP X0 sg X4711 3624 mt 4736 3654 L X4736 3654 mt 4800 3631 L Xc61 X64 -23 24 14 4711 4268 3 MP XPP X0 sg X4711 4268 mt 4735 4282 L X4735 4282 mt 4799 4259 L Xc61 X24 14 64 -23 4711 4268 3 MP XPP X0 sg X4711 4268 mt 4775 4245 L X4775 4245 mt 4799 4259 L Xc52 X24 11 64 -17 4707 3365 3 MP XPP X0 sg X4707 3365 mt 4771 3348 L X4771 3348 mt 4795 3359 L Xc52 X63 -17 25 11 4707 3365 3 MP XPP X0 sg X4707 3365 mt 4732 3376 L X4732 3376 mt 4795 3359 L Xc22 X25 42 64 -27 4706 3873 3 MP XPP X0 sg X4706 3873 mt 4770 3846 L X4770 3846 mt 4795 3888 L Xc22 X64 -28 25 43 4706 3873 3 MP XPP X0 sg X4706 3873 mt 4731 3916 L X4731 3916 mt 4795 3888 L Xc57 X64 -17 24 28 4702 3478 3 MP XPP X0 sg X4702 3478 mt 4726 3506 L X4726 3506 mt 4790 3489 L Xc57 X24 29 64 -18 4702 3478 3 MP XPP X0 sg X4702 3478 mt 4766 3460 L X4766 3460 mt 4790 3489 L Xc58 X64 -30 24 19 4701 4193 3 MP XPP X0 sg X4701 4193 mt 4725 4212 L X4725 4212 mt 4789 4182 L Xc58 X24 19 64 -30 4701 4193 3 MP XPP X0 sg X4701 4193 mt 4765 4163 L X4765 4163 mt 4789 4182 L Xc16 X25 42 63 -17 4697 3706 3 MP XPP X0 sg X4697 3706 mt 4760 3689 L X4760 3689 mt 4785 3731 L Xc16 X64 -18 24 43 4697 3706 3 MP XPP X0 sg X4697 3706 mt 4721 3749 L X4721 3749 mt 4785 3731 L Xc65 X24 11 64 -29 4696 4324 3 MP XPP X0 sg X4696 4324 mt 4760 4295 L X4760 4295 mt 4784 4306 L Xc65 X64 -30 24 12 4696 4324 3 MP XPP X0 sg X4696 4324 mt 4720 4336 L X4720 4336 mt 4784 4306 L Xc52 X25 11 64 -17 4692 3405 3 MP XPP X0 sg X4692 3405 mt 4756 3388 L X4756 3388 mt 4781 3399 L Xc52 X64 -17 25 11 4692 3405 3 MP XPP X0 sg X4692 3405 mt 4717 3416 L X4717 3416 mt 4781 3399 L Xc42 X25 28 64 -44 4691 4024 3 MP XPP X0 sg X4691 4024 mt 4755 3980 L X4755 3980 mt 4780 4008 L Xc42 X64 -44 25 28 4691 4024 3 MP XPP X0 sg X4691 4024 mt 4716 4052 L X4716 4052 mt 4780 4008 L Xc63 X64 -23 24 43 4687 3581 3 MP XPP X0 sg X4687 3581 mt 4711 3624 L X4711 3624 mt 4775 3601 L Xc63 X24 42 64 -22 4687 3581 3 MP XPP X0 sg X4687 3581 mt 4751 3559 L X4751 3559 mt 4775 3601 L Xc56 X25 20 64 -23 4686 4248 3 MP XPP X0 sg X4686 4248 mt 4750 4225 L X4750 4225 mt 4775 4245 L Xc56 X64 -23 25 20 4686 4248 3 MP XPP X0 sg X4686 4248 mt 4711 4268 L X4711 4268 mt 4775 4245 L Xc52 X25 11 64 -17 4682 3354 3 MP XPP X0 sg X4682 3354 mt 4746 3337 L X4746 3337 mt 4771 3348 L Xc52 X64 -17 25 11 4682 3354 3 MP XPP X0 sg X4682 3354 mt 4707 3365 L X4707 3365 mt 4771 3348 L Xc9 X24 50 64 -27 4682 3823 3 MP XPP X0 sg X4682 3823 mt 4746 3796 L X4746 3796 mt 4770 3846 L Xc9 X64 -27 24 50 4682 3823 3 MP XPP X0 sg X4682 3823 mt 4706 3873 L X4706 3873 mt 4770 3846 L Xc52 X64 -18 25 33 4677 3445 3 MP XPP X0 sg X4677 3445 mt 4702 3478 L X4702 3478 mt 4766 3460 L Xc52 X25 32 64 -17 4677 3445 3 MP XPP X0 sg X4677 3445 mt 4741 3428 L X4741 3428 mt 4766 3460 L Xc37 X25 82 64 -30 4676 4111 3 MP XPP X0 sg X4676 4111 mt 4740 4081 L X4740 4081 mt 4765 4163 L Xc37 X64 -30 25 82 4676 4111 3 MP XPP X0 sg X4676 4111 mt 4701 4193 L X4701 4193 mt 4765 4163 L Xc24 X63 -17 25 35 4672 3671 3 MP XPP X0 sg X4672 3671 mt 4697 3706 L X4697 3706 mt 4760 3689 L Xc24 X24 35 64 -17 4672 3671 3 MP XPP X0 sg X4672 3671 mt 4736 3654 L X4736 3654 mt 4760 3689 L Xc65 X25 13 64 -30 4671 4312 3 MP XPP X0 sg X4671 4312 mt 4735 4282 L X4735 4282 mt 4760 4295 L Xc65 X64 -29 25 12 4671 4312 3 MP XPP X0 sg X4671 4312 mt 4696 4324 L X4696 4324 mt 4760 4295 L Xc52 X24 12 64 -18 4668 3394 3 MP XPP X0 sg X4668 3394 mt 4732 3376 L X4732 3376 mt 4756 3388 L Xc52 X64 -17 24 11 4668 3394 3 MP XPP X0 sg X4668 3394 mt 4692 3405 L X4692 3405 mt 4756 3388 L Xc36 X24 64 64 -44 4667 3960 3 MP XPP X0 sg X4667 3960 mt 4731 3916 L X4731 3916 mt 4755 3980 L Xc36 X64 -44 24 64 4667 3960 3 MP XPP X0 sg X4667 3960 mt 4691 4024 L X4691 4024 mt 4755 3980 L Xc55 X64 -22 25 52 4662 3529 3 MP XPP X0 sg X4662 3529 mt 4687 3581 L X4687 3581 mt 4751 3559 L Xc55 X25 53 64 -23 4662 3529 3 MP XPP X0 sg X4662 3529 mt 4726 3506 L X4726 3506 mt 4751 3559 L Xc56 X25 13 63 -23 4662 4235 3 MP XPP X0 sg X4662 4235 mt 4725 4212 L X4725 4212 mt 4750 4225 L Xc56 X64 -23 24 13 4662 4235 3 MP XPP X0 sg X4662 4235 mt 4686 4248 L X4686 4248 mt 4750 4225 L Xc52 X64 -17 24 11 4658 3343 3 MP XPP X0 sg X4658 3343 mt 4682 3354 L X4682 3354 mt 4746 3337 L Xc52 X24 12 64 -18 4658 3343 3 MP XPP X0 sg X4658 3343 mt 4722 3325 L X4722 3325 mt 4746 3337 L Xc17 X64 -27 25 47 4657 3776 3 MP XPP X0 sg X4657 3776 mt 4682 3823 L X4682 3823 mt 4746 3796 L Xc17 X25 47 64 -27 4657 3776 3 MP XPP X0 sg X4657 3776 mt 4721 3749 L X4721 3749 mt 4746 3796 L Xc52 X24 12 64 -18 4653 3434 3 MP XPP X0 sg X4653 3434 mt 4717 3416 L X4717 3416 mt 4741 3428 L Xc52 X64 -17 24 11 4653 3434 3 MP XPP X0 sg X4653 3434 mt 4677 3445 L X4677 3445 mt 4741 3428 L Xc38 X24 29 64 -30 4652 4082 3 MP XPP X0 sg X4652 4082 mt 4716 4052 L X4716 4052 mt 4740 4081 L Xc38 X64 -30 24 29 4652 4082 3 MP XPP X0 sg X4652 4082 mt 4676 4111 L X4676 4111 mt 4740 4081 L Xc68 X64 -17 25 30 4647 3641 3 MP XPP X0 sg X4647 3641 mt 4672 3671 L X4672 3671 mt 4736 3654 L Xc68 X25 30 64 -17 4647 3641 3 MP XPP X0 sg X4647 3641 mt 4711 3624 L X4711 3624 mt 4736 3654 L Xc65 X24 14 64 -29 4647 4297 3 MP XPP X0 sg X4647 4297 mt 4711 4268 L X4711 4268 mt 4735 4282 L Xc65 X64 -30 24 15 4647 4297 3 MP XPP X0 sg X4647 4297 mt 4671 4312 L X4671 4312 mt 4735 4282 L Xc52 X25 11 64 -17 4643 3382 3 MP XPP X0 sg X4643 3382 mt 4707 3365 L X4707 3365 mt 4732 3376 L Xc52 X64 -18 25 12 4643 3382 3 MP XPP X0 sg X4643 3382 mt 4668 3394 L X4668 3394 mt 4732 3376 L Xc13 X25 43 64 -44 4642 3917 3 MP XPP X0 sg X4642 3917 mt 4706 3873 L X4706 3873 mt 4731 3916 L Xc13 X64 -44 25 43 4642 3917 3 MP XPP X0 sg X4642 3917 mt 4667 3960 L X4667 3960 mt 4731 3916 L Xc71 X64 -23 24 29 4638 3500 3 MP XPP X0 sg X4638 3500 mt 4662 3529 L X4662 3529 mt 4726 3506 L Xc71 X24 28 64 -22 4638 3500 3 MP XPP X0 sg X4638 3500 mt 4702 3478 L X4702 3478 mt 4726 3506 L Xc58 X24 19 64 -23 4637 4216 3 MP XPP X0 sg X4637 4216 mt 4701 4193 L X4701 4193 mt 4725 4212 L Xc58 X63 -23 25 19 4637 4216 3 MP XPP X0 sg X4637 4216 mt 4662 4235 L X4662 4235 mt 4725 4212 L Xc31 X64 -27 24 43 4633 3733 3 MP XPP X0 sg X4633 3733 mt 4657 3776 L X4657 3776 mt 4721 3749 L Xc31 X24 43 64 -27 4633 3733 3 MP XPP X0 sg X4633 3733 mt 4697 3706 L X4697 3706 mt 4721 3749 L Xc52 X25 11 64 -17 4628 3422 3 MP XPP X0 sg X4628 3422 mt 4692 3405 L X4692 3405 mt 4717 3416 L Xc52 X64 -18 25 12 4628 3422 3 MP XPP X0 sg X4628 3422 mt 4653 3434 L X4653 3434 mt 4717 3416 L Xc41 X25 28 64 -29 4627 4053 3 MP XPP X0 sg X4627 4053 mt 4691 4024 L X4691 4024 mt 4716 4052 L Xc41 X64 -30 25 29 4627 4053 3 MP XPP X0 sg X4627 4053 mt 4652 4082 L X4652 4082 mt 4716 4052 L Xc63 X24 43 64 -18 4623 3599 3 MP XPP X0 sg X4623 3599 mt 4687 3581 L X4687 3581 mt 4711 3624 L Xc63 X64 -17 24 42 4623 3599 3 MP XPP X0 sg X4623 3599 mt 4647 3641 L X4647 3641 mt 4711 3624 L Xc60 X25 20 64 -29 4622 4277 3 MP XPP X0 sg X4622 4277 mt 4686 4248 L X4686 4248 mt 4711 4268 L Xc60 X64 -29 25 20 4622 4277 3 MP XPP X0 sg X4622 4277 mt 4647 4297 L X4647 4297 mt 4711 4268 L Xc52 X64 -17 24 11 4619 3371 3 MP XPP X0 sg X4619 3371 mt 4643 3382 L X4643 3382 mt 4707 3365 L Xc52 X25 11 63 -17 4619 3371 3 MP XPP X0 sg X4619 3371 mt 4682 3354 L X4682 3354 mt 4707 3365 L Xc12 X24 50 64 -44 4618 3867 3 MP XPP X0 sg X4618 3867 mt 4682 3823 L X4682 3823 mt 4706 3873 L Xc12 X64 -44 24 50 4618 3867 3 MP XPP X0 sg X4618 3867 mt 4642 3917 L X4642 3917 mt 4706 3873 L Xc52 X25 33 64 -20 4613 3465 3 MP XPP X0 sg X4613 3465 mt 4677 3445 L X4677 3445 mt 4702 3478 L Xc52 X64 -22 25 35 4613 3465 3 MP XPP X0 sg X4613 3465 mt 4638 3500 L X4638 3500 mt 4702 3478 L Xc37 X64 -23 25 82 4612 4134 3 MP XPP X0 sg X4612 4134 mt 4637 4216 L X4637 4216 mt 4701 4193 L Xc37 X25 82 64 -23 4612 4134 3 MP XPP X0 sg X4612 4134 mt 4676 4111 L X4676 4111 mt 4701 4193 L Xc32 X25 35 64 -27 4608 3698 3 MP XPP X0 sg X4608 3698 mt 4672 3671 L X4672 3671 mt 4697 3706 L Xc32 X64 -27 25 35 4608 3698 3 MP XPP X0 sg X4608 3698 mt 4633 3733 L X4633 3733 mt 4697 3706 L Xc52 X64 -17 24 11 4604 3411 3 MP XPP X0 sg X4604 3411 mt 4628 3422 L X4628 3422 mt 4692 3405 L Xc52 X24 11 64 -17 4604 3411 3 MP XPP X0 sg X4604 3411 mt 4668 3394 L X4668 3394 mt 4692 3405 L Xc14 X24 64 64 -29 4603 3989 3 MP XPP X0 sg X4603 3989 mt 4667 3960 L X4667 3960 mt 4691 4024 L Xc14 X64 -29 24 64 4603 3989 3 MP XPP X0 sg X4603 3989 mt 4627 4053 L X4627 4053 mt 4691 4024 L Xc55 X64 -18 25 53 4598 3546 3 MP XPP X0 sg X4598 3546 mt 4623 3599 L X4623 3599 mt 4687 3581 L Xc55 X25 52 64 -17 4598 3546 3 MP XPP X0 sg X4598 3546 mt 4662 3529 L X4662 3529 mt 4687 3581 L Xc61 X24 13 64 -29 4598 4264 3 MP XPP X0 sg X4598 4264 mt 4662 4235 L X4662 4235 mt 4686 4248 L Xc61 X64 -29 24 13 4598 4264 3 MP XPP X0 sg X4598 4264 mt 4622 4277 L X4622 4277 mt 4686 4248 L Xc52 X24 11 64 -17 4594 3360 3 MP XPP X0 sg X4594 3360 mt 4658 3343 L X4658 3343 mt 4682 3354 L Xc52 X63 -17 25 11 4594 3360 3 MP XPP X0 sg X4594 3360 mt 4619 3371 L X4619 3371 mt 4682 3354 L Xc18 X64 -44 25 47 4593 3820 3 MP XPP X0 sg X4593 3820 mt 4618 3867 L X4618 3867 mt 4682 3823 L Xc18 X25 47 64 -44 4593 3820 3 MP XPP X0 sg X4593 3820 mt 4657 3776 L X4657 3776 mt 4682 3823 L Xc52 X24 11 64 -16 4589 3450 3 MP XPP X0 sg X4589 3450 mt 4653 3434 L X4653 3434 mt 4677 3445 L Xc52 X64 -20 24 15 4589 3450 3 MP XPP X0 sg X4589 3450 mt 4613 3465 L X4613 3465 mt 4677 3445 L Xc38 X24 29 64 -23 4588 4105 3 MP XPP X0 sg X4588 4105 mt 4652 4082 L X4652 4082 mt 4676 4111 L Xc38 X64 -23 24 29 4588 4105 3 MP XPP X0 sg X4588 4105 mt 4612 4134 L X4612 4134 mt 4676 4111 L Xc20 X64 -27 24 30 4584 3668 3 MP XPP X0 sg X4584 3668 mt 4608 3698 L X4608 3698 mt 4672 3671 L Xc20 X25 30 63 -27 4584 3668 3 MP XPP X0 sg X4584 3668 mt 4647 3641 L X4647 3641 mt 4672 3671 L Xc52 X64 -17 25 11 4579 3400 3 MP XPP X0 sg X4579 3400 mt 4604 3411 L X4604 3411 mt 4668 3394 L Xc52 X25 12 64 -18 4579 3400 3 MP XPP X0 sg X4579 3400 mt 4643 3382 L X4643 3382 mt 4668 3394 L Xc11 X25 43 64 -30 4578 3947 3 MP XPP X0 sg X4578 3947 mt 4642 3917 L X4642 3917 mt 4667 3960 L Xc11 X64 -29 25 42 4578 3947 3 MP XPP X0 sg X4578 3947 mt 4603 3989 L X4603 3989 mt 4667 3960 L Xc71 X64 -17 24 28 4574 3518 3 MP XPP X0 sg X4574 3518 mt 4598 3546 L X4598 3546 mt 4662 3529 L Xc71 X24 29 64 -18 4574 3518 3 MP XPP X0 sg X4574 3518 mt 4638 3500 L X4638 3500 mt 4662 3529 L Xc56 X64 -29 25 19 4573 4245 3 MP XPP X0 sg X4573 4245 mt 4598 4264 L X4598 4264 mt 4662 4235 L Xc56 X25 19 64 -29 4573 4245 3 MP XPP X0 sg X4573 4245 mt 4637 4216 L X4637 4216 mt 4662 4235 L Xc30 X24 43 64 -44 4569 3777 3 MP XPP X0 sg X4569 3777 mt 4633 3733 L X4633 3733 mt 4657 3776 L Xc30 X64 -44 24 43 4569 3777 3 MP XPP X0 sg X4569 3777 mt 4593 3820 L X4593 3820 mt 4657 3776 L Xc52 X64 -16 25 10 4564 3440 3 MP XPP X0 sg X4564 3440 mt 4589 3450 L X4589 3450 mt 4653 3434 L Xc52 X25 12 64 -18 4564 3440 3 MP XPP X0 sg X4564 3440 mt 4628 3422 L X4628 3422 mt 4653 3434 L Xc41 X64 -23 25 29 4563 4076 3 MP XPP X0 sg X4563 4076 mt 4588 4105 L X4588 4105 mt 4652 4082 L Xc41 X25 29 64 -23 4563 4076 3 MP XPP X0 sg X4563 4076 mt 4627 4053 L X4627 4053 mt 4652 4082 L Xc54 X24 42 64 -27 4559 3626 3 MP XPP X0 sg X4559 3626 mt 4623 3599 L X4623 3599 mt 4647 3641 L Xc54 X63 -27 25 42 4559 3626 3 MP XPP X0 sg X4559 3626 mt 4584 3668 L X4584 3668 mt 4647 3641 L Xc52 X64 -18 24 12 4555 3388 3 MP XPP X0 sg X4555 3388 mt 4579 3400 L X4579 3400 mt 4643 3382 L Xc52 X24 11 64 -17 4555 3388 3 MP XPP X0 sg X4555 3388 mt 4619 3371 L X4619 3371 mt 4643 3382 L Xc22 X64 -30 24 50 4554 3897 3 MP XPP X0 sg X4554 3897 mt 4578 3947 L X4578 3947 mt 4642 3917 L Xc22 X24 50 64 -30 4554 3897 3 MP XPP X0 sg X4554 3897 mt 4618 3867 L X4618 3867 mt 4642 3917 L Xc52 X64 -18 25 36 4549 3482 3 MP XPP X0 sg X4549 3482 mt 4574 3518 L X4574 3518 mt 4638 3500 L Xc52 X25 35 64 -17 4549 3482 3 MP XPP X0 sg X4549 3482 mt 4613 3465 L X4613 3465 mt 4638 3500 L Xc44 X25 82 63 -29 4549 4163 3 MP XPP X0 sg X4549 4163 mt 4612 4134 L X4612 4134 mt 4637 4216 L Xc44 X64 -29 24 82 4549 4163 3 MP XPP X0 sg X4549 4163 mt 4573 4245 L X4573 4245 mt 4637 4216 L Xc25 X64 -44 25 35 4544 3742 3 MP XPP X0 sg X4544 3742 mt 4569 3777 L X4569 3777 mt 4633 3733 L Xc25 X25 35 64 -44 4544 3742 3 MP XPP X0 sg X4544 3742 mt 4608 3698 L X4608 3698 mt 4633 3733 L Xc52 X64 -18 24 12 4540 3428 3 MP XPP X0 sg X4540 3428 mt 4564 3440 L X4564 3440 mt 4628 3422 L Xc52 X24 11 64 -17 4540 3428 3 MP XPP X0 sg X4540 3428 mt 4604 3411 L X4604 3411 mt 4628 3422 L Xc28 X24 64 64 -23 4539 4012 3 MP XPP X0 sg X4539 4012 mt 4603 3989 L X4603 3989 mt 4627 4053 L Xc28 X64 -23 24 64 4539 4012 3 MP XPP X0 sg X4539 4012 mt 4563 4076 L X4563 4076 mt 4627 4053 L Xc49 X64 -27 25 53 4534 3573 3 MP XPP X0 sg X4534 3573 mt 4559 3626 L X4559 3626 mt 4623 3599 L Xc49 X25 53 64 -27 4534 3573 3 MP XPP X0 sg X4534 3573 mt 4598 3546 L X4598 3546 mt 4623 3599 L Xc52 X64 -17 25 11 4530 3377 3 MP XPP X0 sg X4530 3377 mt 4555 3388 L X4555 3388 mt 4619 3371 L Xc52 X25 11 64 -17 4530 3377 3 MP XPP X0 sg X4530 3377 mt 4594 3360 L X4594 3360 mt 4619 3371 L Xc9 X64 -30 25 48 4529 3849 3 MP XPP X0 sg X4529 3849 mt 4554 3897 L X4554 3897 mt 4618 3867 L Xc9 X25 47 64 -29 4529 3849 3 MP XPP X0 sg X4529 3849 mt 4593 3820 L X4593 3820 mt 4618 3867 L Xc52 X64 -17 24 15 4525 3467 3 MP XPP X0 sg X4525 3467 mt 4549 3482 L X4549 3482 mt 4613 3465 L Xc52 X24 15 64 -17 4525 3467 3 MP XPP X0 sg X4525 3467 mt 4589 3450 L X4589 3450 mt 4613 3465 L Xc37 X24 29 64 -29 4524 4134 3 MP XPP X0 sg X4524 4134 mt 4588 4105 L X4588 4105 mt 4612 4134 L Xc37 X63 -29 25 29 4524 4134 3 MP XPP X0 sg X4524 4134 mt 4549 4163 L X4549 4163 mt 4612 4134 L Xc16 X64 -44 24 30 4520 3712 3 MP XPP X0 sg X4520 3712 mt 4544 3742 L X4544 3742 mt 4608 3698 L Xc16 X24 30 64 -44 4520 3712 3 MP XPP X0 sg X4520 3712 mt 4584 3668 L X4584 3668 mt 4608 3698 L Xc52 X25 11 64 -17 4515 3417 3 MP XPP X0 sg X4515 3417 mt 4579 3400 L X4579 3400 mt 4604 3411 L Xc52 X64 -17 25 11 4515 3417 3 MP XPP X0 sg X4515 3417 mt 4540 3428 L X4540 3428 mt 4604 3411 L Xc11 X64 -23 25 42 4514 3970 3 MP XPP X0 sg X4514 3970 mt 4539 4012 L X4539 4012 mt 4603 3989 L Xc11 X25 42 64 -23 4514 3970 3 MP XPP X0 sg X4514 3970 mt 4578 3947 L X4578 3947 mt 4603 3989 L Xc50 X24 28 64 -27 4510 3545 3 MP XPP X0 sg X4510 3545 mt 4574 3518 L X4574 3518 mt 4598 3546 L Xc50 X64 -27 24 28 4510 3545 3 MP XPP X0 sg X4510 3545 mt 4534 3573 L X4534 3573 mt 4598 3546 L Xc26 X64 -29 24 42 4505 3807 3 MP XPP X0 sg X4505 3807 mt 4529 3849 L X4529 3849 mt 4593 3820 L Xc26 X24 43 64 -30 4505 3807 3 MP XPP X0 sg X4505 3807 mt 4569 3777 L X4569 3777 mt 4593 3820 L Xc52 X64 -17 25 10 4500 3457 3 MP XPP X0 sg X4500 3457 mt 4525 3467 L X4525 3467 mt 4589 3450 L Xc52 X25 10 64 -17 4500 3457 3 MP XPP X0 sg X4500 3457 mt 4564 3440 L X4564 3440 mt 4589 3450 L Xc38 X25 29 64 -30 4499 4106 3 MP XPP X0 sg X4499 4106 mt 4563 4076 L X4563 4076 mt 4588 4105 L Xc38 X64 -29 25 28 4499 4106 3 MP XPP X0 sg X4499 4106 mt 4524 4134 L X4524 4134 mt 4588 4105 L Xc68 X64 -44 25 42 4495 3670 3 MP XPP X0 sg X4495 3670 mt 4520 3712 L X4520 3712 mt 4584 3668 L Xc68 X25 42 64 -44 4495 3670 3 MP XPP X0 sg X4495 3670 mt 4559 3626 L X4559 3626 mt 4584 3668 L Xc52 X24 12 64 -18 4491 3406 3 MP XPP X0 sg X4491 3406 mt 4555 3388 L X4555 3388 mt 4579 3400 L Xc52 X64 -17 24 11 4491 3406 3 MP XPP X0 sg X4491 3406 mt 4515 3417 L X4515 3417 mt 4579 3400 L Xc15 X24 50 64 -23 4490 3920 3 MP XPP X0 sg X4490 3920 mt 4554 3897 L X4554 3897 mt 4578 3947 L Xc15 X64 -23 24 50 4490 3920 3 MP XPP X0 sg X4490 3920 mt 4514 3970 L X4514 3970 mt 4578 3947 L Xc66 X25 36 64 -26 4485 3508 3 MP XPP X0 sg X4485 3508 mt 4549 3482 L X4549 3482 mt 4574 3518 L Xc66 X64 -27 25 37 4485 3508 3 MP XPP X0 sg X4485 3508 mt 4510 3545 L X4510 3545 mt 4574 3518 L Xc35 X64 -30 25 35 4480 3772 3 MP XPP X0 sg X4480 3772 mt 4505 3807 L X4505 3807 mt 4569 3777 L Xc35 X25 35 64 -30 4480 3772 3 MP XPP X0 sg X4480 3772 mt 4544 3742 L X4544 3742 mt 4569 3777 L Xc52 X24 12 64 -18 4476 3446 3 MP XPP X0 sg X4476 3446 mt 4540 3428 L X4540 3428 mt 4564 3440 L Xc52 X64 -17 24 11 4476 3446 3 MP XPP X0 sg X4476 3446 mt 4500 3457 L X4500 3457 mt 4564 3440 L Xc27 X24 64 64 -30 4475 4042 3 MP XPP X0 sg X4475 4042 mt 4539 4012 L X4539 4012 mt 4563 4076 L Xc27 X64 -30 24 64 4475 4042 3 MP XPP X0 sg X4475 4042 mt 4499 4106 L X4499 4106 mt 4563 4076 L Xc63 X64 -44 24 53 4471 3617 3 MP XPP X0 sg X4471 3617 mt 4495 3670 L X4495 3670 mt 4559 3626 L Xc63 X25 53 63 -44 4471 3617 3 MP XPP X0 sg X4471 3617 mt 4534 3573 L X4534 3573 mt 4559 3626 L Xc52 X25 11 64 -18 4466 3395 3 MP XPP X0 sg X4466 3395 mt 4530 3377 L X4530 3377 mt 4555 3388 L Xc52 X64 -18 25 11 4466 3395 3 MP XPP X0 sg X4466 3395 mt 4491 3406 L X4491 3406 mt 4555 3388 L Xc23 X25 48 64 -23 4465 3872 3 MP XPP X0 sg X4465 3872 mt 4529 3849 L X4529 3849 mt 4554 3897 L Xc23 X64 -23 25 48 4465 3872 3 MP XPP X0 sg X4465 3872 mt 4490 3920 L X4490 3920 mt 4554 3897 L Xc66 X64 -26 24 16 4461 3492 3 MP XPP X0 sg X4461 3492 mt 4485 3508 L X4485 3508 mt 4549 3482 L Xc66 X24 15 64 -25 4461 3492 3 MP XPP X0 sg X4461 3492 mt 4525 3467 L X4525 3467 mt 4549 3482 L Xc31 X24 30 64 -30 4456 3742 3 MP XPP X0 sg X4456 3742 mt 4520 3712 L X4520 3712 mt 4544 3742 L Xc31 X64 -30 24 30 4456 3742 3 MP XPP X0 sg X4456 3742 mt 4480 3772 L X4480 3772 mt 4544 3742 L Xc52 X64 -18 25 12 4451 3434 3 MP XPP X0 sg X4451 3434 mt 4476 3446 L X4476 3446 mt 4540 3428 L Xc52 X25 11 64 -17 4451 3434 3 MP XPP X0 sg X4451 3434 mt 4515 3417 L X4515 3417 mt 4540 3428 L Xc36 X64 -30 25 43 4450 3999 3 MP XPP X0 sg X4450 3999 mt 4475 4042 L X4475 4042 mt 4539 4012 L Xc36 X25 42 64 -29 4450 3999 3 MP XPP X0 sg X4450 3999 mt 4514 3970 L X4514 3970 mt 4539 4012 L Xc59 X24 28 64 -44 4446 3589 3 MP XPP X0 sg X4446 3589 mt 4510 3545 L X4510 3545 mt 4534 3573 L Xc59 X63 -44 25 28 4446 3589 3 MP XPP X0 sg X4446 3589 mt 4471 3617 L X4471 3617 mt 4534 3573 L Xc26 X24 42 64 -22 4441 3829 3 MP XPP X0 sg X4441 3829 mt 4505 3807 L X4505 3807 mt 4529 3849 L Xc26 X64 -23 24 43 4441 3829 3 MP XPP X0 sg X4441 3829 mt 4465 3872 L X4465 3872 mt 4529 3849 L Xc52 X25 10 64 -16 4436 3473 3 MP XPP X0 sg X4436 3473 mt 4500 3457 L X4500 3457 mt 4525 3467 L Xc52 X64 -25 25 19 4436 3473 3 MP XPP X0 sg X4436 3473 mt 4461 3492 L X4461 3492 mt 4525 3467 L Xc24 X25 42 64 -30 4431 3700 3 MP XPP X0 sg X4431 3700 mt 4495 3670 L X4495 3670 mt 4520 3712 L Xc24 X64 -30 25 42 4431 3700 3 MP XPP X0 sg X4431 3700 mt 4456 3742 L X4456 3742 mt 4520 3712 L Xc52 X24 11 64 -17 4427 3423 3 MP XPP X0 sg X4427 3423 mt 4491 3406 L X4491 3406 mt 4515 3417 L Xc52 X64 -17 24 11 4427 3423 3 MP XPP X0 sg X4427 3423 mt 4451 3434 L X4451 3434 mt 4515 3417 L Xc34 X24 50 64 -30 4426 3950 3 MP XPP X0 sg X4426 3950 mt 4490 3920 L X4490 3920 mt 4514 3970 L Xc34 X64 -29 24 49 4426 3950 3 MP XPP X0 sg X4426 3950 mt 4450 3999 L X4450 3999 mt 4514 3970 L Xc50 X64 -44 25 37 4421 3552 3 MP XPP X0 sg X4421 3552 mt 4446 3589 L X4446 3589 mt 4510 3545 L Xc50 X25 37 64 -44 4421 3552 3 MP XPP X0 sg X4421 3552 mt 4485 3508 L X4485 3508 mt 4510 3545 L Xc30 X25 35 64 -23 4416 3795 3 MP XPP X0 sg X4416 3795 mt 4480 3772 L X4480 3772 mt 4505 3807 L Xc30 X64 -22 25 34 4416 3795 3 MP XPP X0 sg X4416 3795 mt 4441 3829 L X4441 3829 mt 4505 3807 L Xc52 X24 11 64 -17 4412 3463 3 MP XPP X0 sg X4412 3463 mt 4476 3446 L X4476 3446 mt 4500 3457 L Xc52 X64 -16 24 10 4412 3463 3 MP XPP X0 sg X4412 3463 mt 4436 3473 L X4436 3473 mt 4500 3457 L Xc54 X64 -30 24 53 4407 3647 3 MP XPP X0 sg X4407 3647 mt 4431 3700 L X4431 3700 mt 4495 3670 L Xc54 X24 53 64 -30 4407 3647 3 MP XPP X0 sg X4407 3647 mt 4471 3617 L X4471 3617 mt 4495 3670 L Xc52 X64 -17 25 11 4402 3412 3 MP XPP X0 sg X4402 3412 mt 4427 3423 L X4427 3423 mt 4491 3406 L Xc52 X25 11 64 -17 4402 3412 3 MP XPP X0 sg X4402 3412 mt 4466 3395 L X4466 3395 mt 4491 3406 L Xc19 X25 48 64 -30 4401 3902 3 MP XPP X0 sg X4401 3902 mt 4465 3872 L X4465 3872 mt 4490 3920 L Xc19 X64 -30 25 48 4401 3902 3 MP XPP X0 sg X4401 3902 mt 4426 3950 L X4426 3950 mt 4490 3920 L Xc71 X24 16 64 -44 4397 3536 3 MP XPP X0 sg X4397 3536 mt 4461 3492 L X4461 3492 mt 4485 3508 L Xc71 X64 -44 24 16 4397 3536 3 MP XPP X0 sg X4397 3536 mt 4421 3552 L X4421 3552 mt 4485 3508 L Xc25 X24 30 64 -22 4392 3764 3 MP XPP X0 sg X4392 3764 mt 4456 3742 L X4456 3742 mt 4480 3772 L Xc25 X64 -23 24 31 4392 3764 3 MP XPP X0 sg X4392 3764 mt 4416 3795 L X4416 3795 mt 4480 3772 L Xc52 X25 12 64 -18 4387 3452 3 MP XPP X0 sg X4387 3452 mt 4451 3434 L X4451 3434 mt 4476 3446 L Xc52 X64 -17 25 11 4387 3452 3 MP XPP X0 sg X4387 3452 mt 4412 3463 L X4412 3463 mt 4476 3446 L Xc48 X64 -30 25 28 4382 3619 3 MP XPP X0 sg X4382 3619 mt 4407 3647 L X4407 3647 mt 4471 3617 L Xc48 X25 28 64 -30 4382 3619 3 MP XPP X0 sg X4382 3619 mt 4446 3589 L X4446 3589 mt 4471 3617 L X Xgr Xgs 3994 2830 2261 1783 MR c np Xc18 X24 43 64 -30 4377 3859 3 MP XPP X0 sg X4377 3859 mt 4441 3829 L X4441 3829 mt 4465 3872 L Xc18 X64 -30 24 43 4377 3859 3 MP XPP X0 sg X4377 3859 mt 4401 3902 L X4401 3902 mt 4465 3872 L Xc71 X25 19 64 -44 4372 3517 3 MP XPP X0 sg X4372 3517 mt 4436 3473 L X4436 3473 mt 4461 3492 L Xc71 X64 -44 25 19 4372 3517 3 MP XPP X0 sg X4372 3517 mt 4397 3536 L X4397 3536 mt 4461 3492 L Xc24 X25 42 64 -22 4367 3722 3 MP XPP X0 sg X4367 3722 mt 4431 3700 L X4431 3700 mt 4456 3742 L Xc24 X64 -22 25 42 4367 3722 3 MP XPP X0 sg X4367 3722 mt 4392 3764 L X4392 3764 mt 4456 3742 L Xc52 X64 -18 24 12 4363 3440 3 MP XPP X0 sg X4363 3440 mt 4387 3452 L X4387 3452 mt 4451 3434 L Xc52 X24 11 64 -17 4363 3440 3 MP XPP X0 sg X4363 3440 mt 4427 3423 L X4427 3423 mt 4451 3434 L Xc55 X25 37 63 -30 4358 3582 3 MP XPP X0 sg X4358 3582 mt 4421 3552 L X4421 3552 mt 4446 3589 L Xc55 X64 -30 24 37 4358 3582 3 MP XPP X0 sg X4358 3582 mt 4382 3619 L X4382 3619 mt 4446 3589 L Xc17 X25 34 64 -30 4352 3825 3 MP XPP X0 sg X4352 3825 mt 4416 3795 L X4416 3795 mt 4441 3829 L Xc17 X64 -30 25 34 4352 3825 3 MP XPP X0 sg X4352 3825 mt 4377 3859 L X4377 3859 mt 4441 3829 L Xc52 X64 -44 24 37 4348 3480 3 MP XPP X0 sg X4348 3480 mt 4372 3517 L X4372 3517 mt 4436 3473 L Xc52 X24 10 64 -17 4348 3480 3 MP XPP X0 sg X4348 3480 mt 4412 3463 L X4412 3463 mt 4436 3473 L Xc62 X24 53 64 -23 4343 3670 3 MP XPP X0 sg X4343 3670 mt 4407 3647 L X4407 3647 mt 4431 3700 L Xc62 X64 -22 24 52 4343 3670 3 MP XPP X0 sg X4343 3670 mt 4367 3722 L X4367 3722 mt 4431 3700 L Xc52 X25 11 64 -17 4338 3429 3 MP XPP X0 sg X4338 3429 mt 4402 3412 L X4402 3412 mt 4427 3423 L Xc52 X64 -17 25 11 4338 3429 3 MP XPP X0 sg X4338 3429 mt 4363 3440 L X4363 3440 mt 4427 3423 L Xc55 X63 -30 25 16 4333 3566 3 MP XPP X0 sg X4333 3566 mt 4358 3582 L X4358 3582 mt 4421 3552 L Xc55 X24 16 64 -30 4333 3566 3 MP XPP X0 sg X4333 3566 mt 4397 3536 L X4397 3536 mt 4421 3552 L Xc35 X64 -30 24 31 4328 3794 3 MP XPP X0 sg X4328 3794 mt 4352 3825 L X4352 3825 mt 4416 3795 L Xc35 X24 31 64 -30 4328 3794 3 MP XPP X0 sg X4328 3794 mt 4392 3764 L X4392 3764 mt 4416 3795 L Xc52 X25 11 64 -17 4323 3469 3 MP XPP X0 sg X4323 3469 mt 4387 3452 L X4387 3452 mt 4412 3463 L Xc52 X64 -17 25 11 4323 3469 3 MP XPP X0 sg X4323 3469 mt 4348 3480 L X4348 3480 mt 4412 3463 L Xc63 X25 28 64 -22 4318 3641 3 MP XPP X0 sg X4318 3641 mt 4382 3619 L X4382 3619 mt 4407 3647 L Xc63 X64 -23 25 29 4318 3641 3 MP XPP X0 sg X4318 3641 mt 4343 3670 L X4343 3670 mt 4407 3647 L Xc50 X64 -30 25 19 4308 3547 3 MP XPP X0 sg X4308 3547 mt 4333 3566 L X4333 3566 mt 4397 3536 L Xc50 X25 19 64 -30 4308 3547 3 MP XPP X0 sg X4308 3547 mt 4372 3517 L X4372 3517 mt 4397 3536 L Xc16 X64 -30 25 42 4303 3752 3 MP XPP X0 sg X4303 3752 mt 4328 3794 L X4328 3794 mt 4392 3764 L Xc16 X25 42 64 -30 4303 3752 3 MP XPP X0 sg X4303 3752 mt 4367 3722 L X4367 3722 mt 4392 3764 L Xc52 X64 -17 24 11 4299 3458 3 MP XPP X0 sg X4299 3458 mt 4323 3469 L X4323 3469 mt 4387 3452 L Xc52 X24 12 64 -18 4299 3458 3 MP XPP X0 sg X4299 3458 mt 4363 3440 L X4363 3440 mt 4387 3452 L Xc49 X64 -22 24 36 4294 3605 3 MP XPP X0 sg X4294 3605 mt 4318 3641 L X4318 3641 mt 4382 3619 L Xc49 X24 37 64 -23 4294 3605 3 MP XPP X0 sg X4294 3605 mt 4358 3582 L X4358 3582 mt 4382 3619 L Xc66 X64 -30 24 38 4284 3509 3 MP XPP X0 sg X4284 3509 mt 4308 3547 L X4308 3547 mt 4372 3517 L Xc66 X24 37 64 -29 4284 3509 3 MP XPP X0 sg X4284 3509 mt 4348 3480 L X4348 3480 mt 4372 3517 L Xc46 X64 -30 24 52 4279 3700 3 MP XPP X0 sg X4279 3700 mt 4303 3752 L X4303 3752 mt 4367 3722 L Xc46 X24 52 64 -30 4279 3700 3 MP XPP X0 sg X4279 3700 mt 4343 3670 L X4343 3670 mt 4367 3722 L Xc52 X64 -18 25 12 4274 3446 3 MP XPP X0 sg X4274 3446 mt 4299 3458 L X4299 3458 mt 4363 3440 L Xc52 X25 11 64 -17 4274 3446 3 MP XPP X0 sg X4274 3446 mt 4338 3429 L X4338 3429 mt 4363 3440 L Xc55 X25 16 64 -23 4269 3589 3 MP XPP X0 sg X4269 3589 mt 4333 3566 L X4333 3566 mt 4358 3582 L Xc55 X64 -23 25 16 4269 3589 3 MP XPP X0 sg X4269 3589 mt 4294 3605 L X4294 3605 mt 4358 3582 L Xc52 X64 -29 25 23 4259 3486 3 MP XPP X0 sg X4259 3486 mt 4284 3509 L X4284 3509 mt 4348 3480 L Xc52 X25 11 64 -17 4259 3486 3 MP XPP X0 sg X4259 3486 mt 4323 3469 L X4323 3469 mt 4348 3480 L Xc54 X64 -30 25 29 4254 3671 3 MP XPP X0 sg X4254 3671 mt 4279 3700 L X4279 3700 mt 4343 3670 L Xc54 X25 29 64 -30 4254 3671 3 MP XPP X0 sg X4254 3671 mt 4318 3641 L X4318 3641 mt 4343 3670 L Xc55 X64 -23 24 19 4245 3570 3 MP XPP X0 sg X4245 3570 mt 4269 3589 L X4269 3589 mt 4333 3566 L Xc55 X25 19 63 -23 4245 3570 3 MP XPP X0 sg X4245 3570 mt 4308 3547 L X4308 3547 mt 4333 3566 L Xc52 X64 -17 24 11 4235 3475 3 MP XPP X0 sg X4235 3475 mt 4259 3486 L X4259 3486 mt 4323 3469 L Xc52 X24 11 64 -17 4235 3475 3 MP XPP X0 sg X4235 3475 mt 4299 3458 L X4299 3458 mt 4323 3469 L Xc59 X24 36 64 -29 4230 3634 3 MP XPP X0 sg X4230 3634 mt 4294 3605 L X4294 3605 mt 4318 3641 L Xc59 X64 -30 24 37 4230 3634 3 MP XPP X0 sg X4230 3634 mt 4254 3671 L X4254 3671 mt 4318 3641 L Xc57 X63 -23 25 38 4220 3532 3 MP XPP X0 sg X4220 3532 mt 4245 3570 L X4245 3570 mt 4308 3547 L Xc57 X24 38 64 -23 4220 3532 3 MP XPP X0 sg X4220 3532 mt 4284 3509 L X4284 3509 mt 4308 3547 L Xc52 X25 12 64 -18 4210 3464 3 MP XPP X0 sg X4210 3464 mt 4274 3446 L X4274 3446 mt 4299 3458 L Xc52 X64 -17 25 11 4210 3464 3 MP XPP X0 sg X4210 3464 mt 4235 3475 L X4235 3475 mt 4299 3458 L Xc59 X25 16 64 -29 4205 3618 3 MP XPP X0 sg X4205 3618 mt 4269 3589 L X4269 3589 mt 4294 3605 L Xc59 X64 -29 25 16 4205 3618 3 MP XPP X0 sg X4205 3618 mt 4230 3634 L X4230 3634 mt 4294 3605 L Xc52 X64 -23 25 25 4195 3507 3 MP XPP X0 sg X4195 3507 mt 4220 3532 L X4220 3532 mt 4284 3509 L Xc52 X25 23 64 -21 4195 3507 3 MP XPP X0 sg X4195 3507 mt 4259 3486 L X4259 3486 mt 4284 3509 L Xc49 X64 -29 24 19 4181 3599 3 MP XPP X0 sg X4181 3599 mt 4205 3618 L X4205 3618 mt 4269 3589 L Xc49 X24 19 64 -29 4181 3599 3 MP XPP X0 sg X4181 3599 mt 4245 3570 L X4245 3570 mt 4269 3589 L Xc52 X24 11 64 -15 4171 3490 3 MP XPP X0 sg X4171 3490 mt 4235 3475 L X4235 3475 mt 4259 3486 L Xc52 X64 -21 24 17 4171 3490 3 MP XPP X0 sg X4171 3490 mt 4195 3507 L X4195 3507 mt 4259 3486 L Xc71 X64 -29 25 38 4156 3561 3 MP XPP X0 sg X4156 3561 mt 4181 3599 L X4181 3599 mt 4245 3570 L Xc71 X25 38 64 -29 4156 3561 3 MP XPP X0 sg X4156 3561 mt 4220 3532 L X4220 3532 mt 4245 3570 L Xc52 X25 11 64 -17 4146 3481 3 MP XPP X0 sg X4146 3481 mt 4210 3464 L X4210 3464 mt 4235 3475 L Xc52 X64 -15 25 9 4146 3481 3 MP XPP X0 sg X4146 3481 mt 4171 3490 L X4171 3490 mt 4235 3475 L Xc66 X64 -29 24 25 4132 3536 3 MP XPP X0 sg X4132 3536 mt 4156 3561 L X4156 3561 mt 4220 3532 L Xc66 X25 25 63 -29 4132 3536 3 MP XPP X0 sg X4132 3536 mt 4195 3507 L X4195 3507 mt 4220 3532 L Xc66 X24 17 64 -26 4107 3516 3 MP XPP X0 sg X4107 3516 mt 4171 3490 L X4171 3490 mt 4195 3507 L Xc66 X63 -29 25 20 4107 3516 3 MP XPP X0 sg X4107 3516 mt 4132 3536 L X4132 3536 mt 4195 3507 L Xc52 X25 9 64 -17 4082 3498 3 MP XPP X0 sg X4082 3498 mt 4146 3481 L X4146 3481 mt 4171 3490 L Xc52 X64 -26 25 18 4082 3498 3 MP XPP X0 sg X4082 3498 mt 4107 3516 L X4107 3516 mt 4171 3490 L X Xgr X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 149 1538 a Fo(Figure)15 b(3.2:)k(Regularized)f(solutions)e(and)f X(\014lter)h(factors)e(for)g(the)i(\\noisy")f(test)f(problem.)130 X1675 y(W)l(e)j(use)h(the)g(command)f Fl(mesh)h Fo(to)f(plot)h(all)g X(the)g(regularized)h(solutions,)f(cf.)g(Fig.)f(3.2.)26 Xb(This)18 b(is)59 1732 y(a)g(v)o(ery)h(con)o(v)o(enien)o(t)g(to)f(sho)o X(w)g(the)h(dep)q(endence)i(of)e(the)g(solution)g(on)g(the)g X(regularization)g(param-)59 1788 y(eter.)38 b(The)22 Xb(same)f(tec)o(hnique)i(is)f(used)g(to)e(displa)o(y)j(the)e(the)h X(corresp)q(onding)g(\014lter)g(factors.)38 b(W)l(e)59 X1845 y(see)18 b(the)f(t)o(ypical)i(situation)f(for)e(regularization)j X(metho)q(ds:)24 b(\014rst,)18 b(when)f(w)o(e)h(apply)g(m)o(uc)o(h)f X(regular-)59 1901 y(ization,)k(the)f(solution)h(is)f(o)o(v)o X(erregularized,)h(i.e.,)f(it)g(is)h(to)q(o)e(smo)q(oth;)i(then)f(it)g X(b)q(ecomes)g(a)g(b)q(etter)59 1958 y(appro)o(ximation)e(to)f(the)i X(underlying,)h(unp)q(erturb)q(ed)g(solution;)g(and)e(ev)o(en)o(tually)h X(the)f(solution)h(b)q(e-)59 2014 y(comes)g(underregularized)i(and)e X(starts)f(to)h(b)q(e)g(dominated)h(b)o(y)f(the)g(p)q(erturbation)g X(errors,)g(and)g(its)59 2070 y(\(semi\)norm)c(\\explo)q(des".)59 X2197 y Fr(3.3.)j(The)g(L-Curv)n(e)59 2299 y Fo(The)c(L-curv)o(e)h X(analysis)g(pla)o(ys)f(an)g(imp)q(ortan)o(t)g(role)g(in)h(the)f X(analysis)h(phase)f(of)g(regularization)h(prob-)59 2355 Xy(lems.)36 b(The)21 b(L-curv)o(e)g(displa)o(ys)g(the)g(tradeo\013)e(b)q X(et)o(w)o(een)i(minimizing)i(the)d(t)o(w)o(o)f(quan)o(tities)i(in)h X(the)59 2411 y(regularization)e(problem,)h(namely)l(,)g(the)e(residual) Xi(norm)e(and)g(the)g(solution)h(\(semi\)norm,)g(and)f(it)59 X2468 y(sho)o(ws)i(ho)o(w)g(these)h(quan)o(tities)g(dep)q(end)i(on)d X(the)h(regularization)h(parameter.)38 b(In)23 b(addition,)h(the)59 X2524 y(L-curv)o(e)18 b(can)f(b)q(e)h(used)g(to)f(compute)g(the)h X(\\optimal")f(regularization)h(parameter)f(as)f(explained)k(in)59 X2581 y(Section)c(2.9)e(\(w)o(e)h(return)g(to)g(this)h(asp)q(ect)f(in)h X(the)f(next)h(example\).)k(The)c(L-curv)o(e)g(can)f(also)g(b)q(e)h X(used)59 2637 y(to)i(in)o(v)o(estigate)i(the)f(similarit)o(y)h(b)q(et)o X(w)o(een)f(di\013eren)o(t)g(regularization)h(metho)q(ds|if)g(their)g X(L-curv)o(es)59 2694 y(are)15 b(close,)g(then)h(the)f(regularized)i X(solutions)f(are)f(similar,)h(cf.)e([45].)p eop X%%Page: 36 38 X36 37 bop 64 159 a Fo(36)1473 b(TUTORIAL)p 64 178 1767 X2 v 177 259 a X 22935557 18646798 3881123 12695879 38153420 40521564 startTexFig X 177 259 a X%%BeginDocument: tutorial/fig3.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 515 -48 6246 5069 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 4224 2259 0 0 -4224 898 4612 4 MP XPP X-2259 0 0 4224 2259 0 0 -4224 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 3157 4612 L X 898 388 mt 3157 388 L X 898 4612 mt 898 388 L X3157 4612 mt 3157 388 L X 898 4612 mt 3157 4612 L X 898 4612 mt 898 388 L X 898 4612 mt 898 4591 L X 898 388 mt 898 409 L X 898 4612 mt 898 4570 L X 898 388 mt 898 430 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 786 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 919 4721 mt X(-3) s X1125 4612 mt 1125 4591 L X1125 388 mt 1125 409 L X1257 4612 mt 1257 4591 L X1257 388 mt 1257 409 L X1351 4612 mt 1351 4591 L X1351 388 mt 1351 409 L X1424 4612 mt 1424 4591 L X1424 388 mt 1424 409 L X1484 4612 mt 1484 4591 L X1484 388 mt 1484 409 L X1534 4612 mt 1534 4591 L X1534 388 mt 1534 409 L X1578 4612 mt 1578 4591 L X1578 388 mt 1578 409 L X1617 4612 mt 1617 4591 L X1617 388 mt 1617 409 L X1651 4612 mt 1651 4591 L X1651 388 mt 1651 409 L X1651 4612 mt 1651 4570 L X1651 388 mt 1651 430 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X1539 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X1672 4721 mt X(-2) s X1878 4612 mt 1878 4591 L X1878 388 mt 1878 409 L X2010 4612 mt 2010 4591 L X2010 388 mt 2010 409 L X2104 4612 mt 2104 4591 L X2104 388 mt 2104 409 L X2177 4612 mt 2177 4591 L X2177 388 mt 2177 409 L X2237 4612 mt 2237 4591 L X2237 388 mt 2237 409 L X2287 4612 mt 2287 4591 L X2287 388 mt 2287 409 L X2331 4612 mt 2331 4591 L X2331 388 mt 2331 409 L X2370 4612 mt 2370 4591 L X2370 388 mt 2370 409 L X2404 4612 mt 2404 4591 L X2404 388 mt 2404 409 L X2404 4612 mt 2404 4570 L X2404 388 mt 2404 430 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X2292 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X2425 4721 mt X(-1) s X2631 4612 mt 2631 4591 L X2631 388 mt 2631 409 L X2763 4612 mt 2763 4591 L X2763 388 mt 2763 409 L X2857 4612 mt 2857 4591 L X2857 388 mt 2857 409 L X2930 4612 mt 2930 4591 L X2930 388 mt 2930 409 L X2990 4612 mt 2990 4591 L X2990 388 mt 2990 409 L X3040 4612 mt 3040 4591 L X3040 388 mt 3040 409 L X3084 4612 mt 3084 4591 L X3084 388 mt 3084 409 L X3123 4612 mt 3123 4591 L X3123 388 mt 3123 409 L X3157 4612 mt 3157 4591 L X3157 388 mt 3157 409 L X3157 4612 mt 3157 4570 L X3157 388 mt 3157 430 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3069 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X3202 4721 mt X(0) s X 898 4612 mt 919 4612 L X3157 4612 mt 3136 4612 L X 898 4612 mt 940 4612 L X3157 4612 mt 3115 4612 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 4656 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 4582 mt X(0) s X 898 4188 mt 919 4188 L X3157 4188 mt 3136 4188 L X 898 3940 mt 919 3940 L X3157 3940 mt 3136 3940 L X 898 3764 mt 919 3764 L X3157 3764 mt 3136 3764 L X 898 3628 mt 919 3628 L X3157 3628 mt 3136 3628 L X 898 3516 mt 919 3516 L X3157 3516 mt 3136 3516 L X 898 3422 mt 919 3422 L X3157 3422 mt 3136 3422 L X 898 3340 mt 919 3340 L X3157 3340 mt 3136 3340 L X 898 3268 mt 919 3268 L X3157 3268 mt 3136 3268 L X 898 3204 mt 919 3204 L X3157 3204 mt 3136 3204 L X 898 3204 mt 940 3204 L X3157 3204 mt 3115 3204 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 3248 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 3174 mt X(1) s X 898 2780 mt 919 2780 L X3157 2780 mt 3136 2780 L X 898 2532 mt 919 2532 L X3157 2532 mt 3136 2532 L X 898 2356 mt 919 2356 L X3157 2356 mt 3136 2356 L X 898 2220 mt 919 2220 L X3157 2220 mt 3136 2220 L X 898 2108 mt 919 2108 L X3157 2108 mt 3136 2108 L X 898 2014 mt 919 2014 L X3157 2014 mt 3136 2014 L X 898 1932 mt 919 1932 L X3157 1932 mt 3136 1932 L X 898 1860 mt 919 1860 L X3157 1860 mt 3136 1860 L X 898 1796 mt 919 1796 L X3157 1796 mt 3136 1796 L X 898 1796 mt 940 1796 L X3157 1796 mt 3115 1796 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 1840 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 1766 mt X(2) s X 898 1372 mt 919 1372 L X3157 1372 mt 3136 1372 L X 898 1124 mt 919 1124 L X3157 1124 mt 3136 1124 L X 898 948 mt 919 948 L X3157 948 mt 3136 948 L X 898 812 mt 919 812 L X3157 812 mt 3136 812 L X 898 700 mt 919 700 L X3157 700 mt 3136 700 L X 898 606 mt 919 606 L X3157 606 mt 3136 606 L X 898 524 mt 919 524 L X3157 524 mt 3136 524 L X 898 452 mt 919 452 L X3157 452 mt 3136 452 L X 898 388 mt 919 388 L X3157 388 mt 3136 388 L X 898 388 mt 940 388 L X3157 388 mt 3115 388 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 432 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 358 mt X(3) s X 898 4612 mt 3157 4612 L X 898 388 mt 3157 388 L X 898 4612 mt 898 388 L X3157 4612 mt 3157 388 L Xgs 898 388 2260 4225 MR c np X0 -15 -1 -62 0 -50 0 -42 0 -35 0 -32 0 -35 0 -39 X0 -46 0 -55 0 -63 0 -69 -1 -71 0 -71 0 -67 -1 -63 X0 -62 0 -64 -1 -70 -1 -82 -1 -94 0 -110 -1 -124 -1 -138 X-1 -149 -1 -158 -1 -163 -1 -166 0 -167 0 -165 -1 -160 0 -152 X0 -138 0 -118 -1 -95 0 -72 0 -55 0 -45 0 -39 0 -38 X0 -39 0 -38 0 -35 -1 -31 0 -25 0 -17 0 -12 0 -7 X0 -5 -1 -2 0 -2 0 -1 -1 -1 -2 0 -1 0 -4 0 X-6 -1 -10 0 -17 0 -26 -1 -37 0 -46 -1 -52 -1 -57 -1 X-58 0 -56 -1 -56 -1 -54 -1 -54 -1 -57 0 -62 -1 -68 -2 X-77 -1 -84 -2 -90 -2 -94 -3 -94 -5 -95 -5 -94 -7 -91 -9 X-90 -11 -87 -13 -85 -17 -81 -21 -78 -25 -74 -29 -71 -35 -67 -40 X-64 -48 -62 -57 -58 -68 -54 -82 -49 -97 3800 4143 94 MP stroke X Xgr Xgs 1349 0 1047 3816 MR c np X2297 3544 mt 2347 3594 L X2347 3544 mt 2297 3594 L X1415 3529 mt 1465 3579 L X1465 3529 mt 1415 3579 L X1411 3511 mt 1461 3561 L X1461 3511 mt 1411 3561 L X1407 1904 mt 1457 1954 L X1457 1904 mt 1407 1954 L X Xgr Xgs 898 388 2260 4225 MR c np X Xgr Xgs 1349 0 1047 3816 MR c np X Xgr Xgs 898 388 2260 4225 MR c np X Xgr Xgs 1349 0 1047 3816 MR c np X Xgr Xgs 898 388 2260 4225 MR c np X Xgr Xgs 1349 0 1047 3816 MR c np X Xgr Xgs 898 388 2260 4225 MR c np X Xgr Xgs 1349 0 1047 3816 MR c np X Xgr Xgs 898 388 2260 4225 MR c np X Xgr Xgs 1349 0 1047 3816 MR c np X Xgr Xgs 898 388 2260 4225 MR c np X Xgr X/Helvetica /WindowsLatin1Encoding 120 FMSR X X2322 3611 mt X(0.1249) s X1440 3596 mt X(0.0044091) s X1436 3578 mt X(0.00015565) s X1432 1971 mt X(5.4947e-006) s X1422 213 mt X( ) s X1342 4938 mt X(residual norm || A x - b ||) s X/Helvetica /WindowsLatin1Encoding 96 FMSR X X2673 4998 mt X(2) s X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 631 3025 mt -90 rotate X(solution norm || x ||) s X90 rotate X/Helvetica /WindowsLatin1Encoding 96 FMSR X X 691 2017 mt -90 rotate X(2) s X90 rotate X/Helvetica /WindowsLatin1Encoding 120 FMSR X X1813 293 mt X(L-curve) s X1 sg X0 4224 2260 0 0 -4224 3994 4612 4 MP XPP X-2260 0 0 4224 2260 0 0 -4224 3994 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X3994 4612 mt 6254 4612 L X3994 388 mt 6254 388 L X3994 4612 mt 3994 388 L X6254 4612 mt 6254 388 L X3994 4612 mt 6254 4612 L X3994 4612 mt 3994 388 L X3994 4612 mt 3994 4591 L X3994 388 mt 3994 409 L X3994 4612 mt 3994 4570 L X3994 388 mt 3994 430 L X3882 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X4015 4721 mt X(-3) s X4221 4612 mt 4221 4591 L X4221 388 mt 4221 409 L X4353 4612 mt 4353 4591 L X4353 388 mt 4353 409 L X4448 4612 mt 4448 4591 L X4448 388 mt 4448 409 L X4521 4612 mt 4521 4591 L X4521 388 mt 4521 409 L X4580 4612 mt 4580 4591 L X4580 388 mt 4580 409 L X4631 4612 mt 4631 4591 L X4631 388 mt 4631 409 L X4674 4612 mt 4674 4591 L X4674 388 mt 4674 409 L X4713 4612 mt 4713 4591 L X4713 388 mt 4713 409 L X4747 4612 mt 4747 4591 L X4747 388 mt 4747 409 L X4747 4612 mt 4747 4570 L X4747 388 mt 4747 430 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X4635 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X4768 4721 mt X(-2) s X4974 4612 mt 4974 4591 L X4974 388 mt 4974 409 L X5107 4612 mt 5107 4591 L X5107 388 mt 5107 409 L X5201 4612 mt 5201 4591 L X5201 388 mt 5201 409 L X5274 4612 mt 5274 4591 L X5274 388 mt 5274 409 L X5334 4612 mt 5334 4591 L X5334 388 mt 5334 409 L X5384 4612 mt 5384 4591 L X5384 388 mt 5384 409 L X5428 4612 mt 5428 4591 L X5428 388 mt 5428 409 L X5466 4612 mt 5466 4591 L X5466 388 mt 5466 409 L X5501 4612 mt 5501 4591 L X5501 388 mt 5501 409 L X5501 4612 mt 5501 4570 L X5501 388 mt 5501 430 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X5389 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X5522 4721 mt X(-1) s X5727 4612 mt 5727 4591 L X5727 388 mt 5727 409 L X5860 4612 mt 5860 4591 L X5860 388 mt 5860 409 L X5954 4612 mt 5954 4591 L X5954 388 mt 5954 409 L X6027 4612 mt 6027 4591 L X6027 388 mt 6027 409 L X6087 4612 mt 6087 4591 L X6087 388 mt 6087 409 L X6137 4612 mt 6137 4591 L X6137 388 mt 6137 409 L X6181 4612 mt 6181 4591 L X6181 388 mt 6181 409 L X6220 4612 mt 6220 4591 L X6220 388 mt 6220 409 L X6254 4612 mt 6254 4591 L X6254 388 mt 6254 409 L X6254 4612 mt 6254 4570 L X6254 388 mt 6254 430 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X6166 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X6299 4721 mt X(0) s X3994 4612 mt 4015 4612 L X6254 4612 mt 6233 4612 L X3994 4612 mt 4036 4612 L X6254 4612 mt 6212 4612 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3782 4656 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X3915 4582 mt X(0) s X3994 4188 mt 4015 4188 L X6254 4188 mt 6233 4188 L X3994 3940 mt 4015 3940 L X6254 3940 mt 6233 3940 L X3994 3764 mt 4015 3764 L X6254 3764 mt 6233 3764 L X3994 3628 mt 4015 3628 L X6254 3628 mt 6233 3628 L X3994 3516 mt 4015 3516 L X6254 3516 mt 6233 3516 L X3994 3422 mt 4015 3422 L X6254 3422 mt 6233 3422 L X3994 3340 mt 4015 3340 L X6254 3340 mt 6233 3340 L X3994 3268 mt 4015 3268 L X6254 3268 mt 6233 3268 L X3994 3204 mt 4015 3204 L X6254 3204 mt 6233 3204 L X3994 3204 mt 4036 3204 L X6254 3204 mt 6212 3204 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3782 3248 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X3915 3174 mt X(1) s X3994 2780 mt 4015 2780 L X6254 2780 mt 6233 2780 L X3994 2532 mt 4015 2532 L X6254 2532 mt 6233 2532 L X3994 2356 mt 4015 2356 L X6254 2356 mt 6233 2356 L X3994 2220 mt 4015 2220 L X6254 2220 mt 6233 2220 L X3994 2108 mt 4015 2108 L X6254 2108 mt 6233 2108 L X3994 2014 mt 4015 2014 L X6254 2014 mt 6233 2014 L X3994 1932 mt 4015 1932 L X6254 1932 mt 6233 1932 L X3994 1860 mt 4015 1860 L X6254 1860 mt 6233 1860 L X3994 1796 mt 4015 1796 L X6254 1796 mt 6233 1796 L X3994 1796 mt 4036 1796 L X6254 1796 mt 6212 1796 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3782 1840 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X3915 1766 mt X(2) s X3994 1372 mt 4015 1372 L X6254 1372 mt 6233 1372 L X3994 1124 mt 4015 1124 L X6254 1124 mt 6233 1124 L X3994 948 mt 4015 948 L X6254 948 mt 6233 948 L X3994 812 mt 4015 812 L X6254 812 mt 6233 812 L X3994 700 mt 4015 700 L X6254 700 mt 6233 700 L X3994 606 mt 4015 606 L X6254 606 mt 6233 606 L X3994 524 mt 4015 524 L X6254 524 mt 6233 524 L X3994 452 mt 4015 452 L X6254 452 mt 6233 452 L X3994 388 mt 4015 388 L X6254 388 mt 6233 388 L X3994 388 mt 4036 388 L X6254 388 mt 6212 388 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3782 432 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X3915 358 mt X(3) s X3994 4612 mt 6254 4612 L X3994 388 mt 6254 388 L X3994 4612 mt 3994 388 L X6254 4612 mt 6254 388 L Xgs 3994 388 2261 4225 MR c np Xgs 4456 1650 2257 2144 MR c np X 36 36 5952 3577 FO X 36 36 5184 3562 FO X 36 36 4926 3559 FO X 36 36 4648 3555 FO X 36 36 4648 3555 FO X 36 36 4535 3554 FO X 36 36 4535 3554 FO X 36 36 4535 3554 FO X 36 36 4533 3554 FO X 36 36 4533 3554 FO X 36 36 4533 3554 FO X 36 36 4533 3553 FO X 36 36 4533 3553 FO X 36 36 4533 3553 FO X 36 36 4531 3209 FO X 36 36 4531 3208 FO X 36 36 4531 3204 FO X 36 36 4531 3204 FO X 36 36 4531 3204 FO X 36 36 4531 3204 FO X 36 36 4531 3204 FO X 36 36 4531 3204 FO X 36 36 4531 3204 FO X 36 36 4529 1725 FO X 36 36 4529 1723 FO X 36 36 4529 1723 FO X 36 36 4529 1723 FO X 36 36 4529 1723 FO X Xgr X Xgr X/Helvetica /WindowsLatin1Encoding 120 FMSR X X4438 4938 mt X(residual norm || A x - b ||) s X/Helvetica /WindowsLatin1Encoding 96 FMSR X X5769 4998 mt X(2) s X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3727 3025 mt -90 rotate X(solution norm || x ||) s X90 rotate X/Helvetica /WindowsLatin1Encoding 96 FMSR X X3787 2017 mt -90 rotate X(2) s X90 rotate X/Helvetica /WindowsLatin1Encoding 120 FMSR X X4909 293 mt X(L-curve) s X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 263 1538 a Fo(Figure)15 b(3.3:)k(The)c(L-curv)o(es)h(for)f(Tikhono)o X(v)g(regularization)h(and)g(for)e(LSQR.)130 1675 y Fl(subplot)8 Xb(\(1,2,1\);)14 b(l)p 446 1675 14 2 v 16 w(curve)8 b(\(U,s,b\);)14 Xb(axis)8 b(\([1e-3,1,1,1e3]\))130 1744 y(subplot)g(\(1,2,2\);)14 Xb(plot)p 508 1744 V 16 w(lc)8 b(\(rho,eta,'o'\),)13 b(axis)8 Xb(\([1e-3,1,1,1e3])130 1872 y Fo(F)l(or)17 b(the)h(particular)h X(problem)g(considered)g(here,)g(the)f(\\noisy")g(test)g(problem)h(from) Xe(Example)59 1929 y(3.1,)c(the)i(L-curv)o(es)g(for)f(b)q(oth)g(Tikhono) Xo(v)g(regularization)i(and)e(for)g(LSQR,)i(sho)o(wn)e(in)h(Fig.)f(3.3,) Xf(ha)o(v)o(e)59 1985 y(a)j(particularly)i(sharp)f(corner.)25 Xb(This)17 b(corner)f(corresp)q(onds)i(to)e(a)g(regularized)i(solution)g X(where)f(the)59 2042 y(p)q(erturbation)11 b(error)g(and)g(the)f X(regularization)i(error)e(are)h(balanced.)20 b(The)11 Xb(similarit)o(y)h(of)e(the)h(L-curv)o(es)59 2098 y(for)k(the)g(t)o(w)o X(o)f(metho)q(ds)h(indicate)i(the)e(similarit)o(y)i(b)q(et)o(w)o(een)e X(the)g(metho)q(ds.)59 2225 y Fr(3.4.)j(Regularization)f(P)n(arameters) X59 2326 y Fo(W)l(e)d(shall)i(no)o(w)d(use)i(the)f(L-curv)o(e)h X(criterion)g(and)f(the)h(GCV)e(metho)q(d)i(to)e(compute)h(\\optimal")h X(regu-)59 2383 y(larization)e(parameters)f(for)g(t)o(w)o(o)f(metho)q X(ds:)18 b(Tikhono)o(v)13 b(regularization)g(and)g(truncated)f(SVD.)19 Xb(This)59 2439 y(is)e(v)o(ery)f(easy)h(to)f(do)g(b)o(y)h(means)f(of)h X(the)f(routines)h Fl(l)p 958 2439 V 17 w(curve)g Fo(and)f XFl(gcv)p Fo(.)24 b(W)l(e)17 b(then)g(use)g(our)f(kno)o(wledge)59 X2495 y(ab)q(out)g(the)h(exact)f(solution)h(to)f(compute)h(the)f X(relativ)o(e)h(errors)f(in)h(the)f(four)h(regularized)g(solutions.)59 X2552 y(The)h(b)q(est)g(result)g(ma)o(y)f(dep)q(end)i(on)e(the)h X(particular)g(computer's)g(\015oating)f(p)q(oin)o(t)h(arithmetic|for)59 X2608 y(the)f(T)l(oshiba)h(PC)f(used)g(here,)h(the)f(com)o(bination)h X(of)e(truncated)h(SVD)h(and)f(the)g(L-curv)o(e)h(criterion)59 X2665 y(giv)o(es)d(the)h(b)q(est)f(result.)130 2721 y(If)g(the)g(Spline) Xj(T)l(o)q(olb)q(o)o(x)d(is)h(not)f(a)o(v)m(ailable,)h(then)g XFl(k)p 1020 2721 V 16 w(l)f Fo(=)h Fl(NaN)f Fo(and)h XFl(x)p 1324 2721 V 16 w(tsvd)p 1417 2721 V 18 w(l)f Fo(is)g(set)g(to)g XFp(0)p Fo(.)p eop X%%Page: 37 39 X37 38 bop 59 159 a Fo(3.4.)14 b(Regularization)j(P)o(arameters)1105 Xb(37)p 59 178 1767 2 v 107 259 a X 13938479 12120418 3881123 12695879 36114186 40521564 startTexFig X 107 259 a X%%BeginDocument: tutorial/fig4a.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 515 -48 5877 5069 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 4224 5356 0 0 -4224 898 4612 4 MP XPP X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L X 898 4612 mt 6254 4612 L X 898 4612 mt 898 388 L X 898 4612 mt 898 4585 L X 898 388 mt 898 415 L X 898 4612 mt 898 4558 L X 898 388 mt 898 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 786 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 919 4721 mt X(-3) s X1435 4612 mt 1435 4585 L X1435 388 mt 1435 415 L X1750 4612 mt 1750 4585 L X1750 388 mt 1750 415 L X1973 4612 mt 1973 4585 L X1973 388 mt 1973 415 L X2146 4612 mt 2146 4585 L X2146 388 mt 2146 415 L X2287 4612 mt 2287 4585 L X2287 388 mt 2287 415 L X2407 4612 mt 2407 4585 L X2407 388 mt 2407 415 L X2510 4612 mt 2510 4585 L X2510 388 mt 2510 415 L X2602 4612 mt 2602 4585 L X2602 388 mt 2602 415 L X2683 4612 mt 2683 4585 L X2683 388 mt 2683 415 L X2683 4612 mt 2683 4558 L X2683 388 mt 2683 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X2571 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X2704 4721 mt X(-2) s X3221 4612 mt 3221 4585 L X3221 388 mt 3221 415 L X3535 4612 mt 3535 4585 L X3535 388 mt 3535 415 L X3758 4612 mt 3758 4585 L X3758 388 mt 3758 415 L X3931 4612 mt 3931 4585 L X3931 388 mt 3931 415 L X4073 4612 mt 4073 4585 L X4073 388 mt 4073 415 L X4192 4612 mt 4192 4585 L X4192 388 mt 4192 415 L X4296 4612 mt 4296 4585 L X4296 388 mt 4296 415 L X4387 4612 mt 4387 4585 L X4387 388 mt 4387 415 L X4469 4612 mt 4469 4585 L X4469 388 mt 4469 415 L X4469 4612 mt 4469 4558 L X4469 388 mt 4469 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X4357 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X4490 4721 mt X(-1) s X5006 4612 mt 5006 4585 L X5006 388 mt 5006 415 L X5320 4612 mt 5320 4585 L X5320 388 mt 5320 415 L X5544 4612 mt 5544 4585 L X5544 388 mt 5544 415 L X5717 4612 mt 5717 4585 L X5717 388 mt 5717 415 L X5858 4612 mt 5858 4585 L X5858 388 mt 5858 415 L X5977 4612 mt 5977 4585 L X5977 388 mt 5977 415 L X6081 4612 mt 6081 4585 L X6081 388 mt 6081 415 L X6172 4612 mt 6172 4585 L X6172 388 mt 6172 415 L X6254 4612 mt 6254 4585 L X6254 388 mt 6254 415 L X6254 4612 mt 6254 4558 L X6254 388 mt 6254 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X6166 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X6299 4721 mt X(0) s X 898 4612 mt 925 4612 L X6254 4612 mt 6227 4612 L X 898 4612 mt 952 4612 L X6254 4612 mt 6200 4612 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 4656 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 4582 mt X(0) s X 898 4188 mt 925 4188 L X6254 4188 mt 6227 4188 L X 898 3940 mt 925 3940 L X6254 3940 mt 6227 3940 L X 898 3764 mt 925 3764 L X6254 3764 mt 6227 3764 L X 898 3628 mt 925 3628 L X6254 3628 mt 6227 3628 L X 898 3516 mt 925 3516 L X6254 3516 mt 6227 3516 L X 898 3422 mt 925 3422 L X6254 3422 mt 6227 3422 L X 898 3340 mt 925 3340 L X6254 3340 mt 6227 3340 L X 898 3268 mt 925 3268 L X6254 3268 mt 6227 3268 L X 898 3204 mt 925 3204 L X6254 3204 mt 6227 3204 L X 898 3204 mt 952 3204 L X6254 3204 mt 6200 3204 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 3248 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 3174 mt X(1) s X 898 2780 mt 925 2780 L X6254 2780 mt 6227 2780 L X 898 2532 mt 925 2532 L X6254 2532 mt 6227 2532 L X 898 2356 mt 925 2356 L X6254 2356 mt 6227 2356 L X 898 2220 mt 925 2220 L X6254 2220 mt 6227 2220 L X 898 2108 mt 925 2108 L X6254 2108 mt 6227 2108 L X 898 2014 mt 925 2014 L X6254 2014 mt 6227 2014 L X 898 1932 mt 925 1932 L X6254 1932 mt 6227 1932 L X 898 1860 mt 925 1860 L X6254 1860 mt 6227 1860 L X 898 1796 mt 925 1796 L X6254 1796 mt 6227 1796 L X 898 1796 mt 952 1796 L X6254 1796 mt 6200 1796 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 1840 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 1766 mt X(2) s X 898 1372 mt 925 1372 L X6254 1372 mt 6227 1372 L X 898 1124 mt 925 1124 L X6254 1124 mt 6227 1124 L X 898 948 mt 925 948 L X6254 948 mt 6227 948 L X 898 812 mt 925 812 L X6254 812 mt 6227 812 L X 898 700 mt 925 700 L X6254 700 mt 6227 700 L X 898 606 mt 925 606 L X6254 606 mt 6227 606 L X 898 524 mt 925 524 L X6254 524 mt 6227 524 L X 898 452 mt 925 452 L X6254 452 mt 6227 452 L X 898 388 mt 925 388 L X6254 388 mt 6227 388 L X 898 388 mt 952 388 L X6254 388 mt 6200 388 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 432 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 358 mt X(3) s X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L Xgs 898 388 5357 4225 MR c np X0 -15 0 -62 0 -50 0 -42 -1 -35 0 -32 0 -35 0 -39 X0 -46 0 -55 -1 -63 0 -69 -1 -71 -1 -71 -1 -67 0 -63 X-1 -62 -1 -64 -2 -70 -1 -82 -2 -94 -2 -110 -3 -124 -2 -138 X-2 -149 -2 -158 -2 -163 -2 -166 -1 -167 -1 -165 0 -160 -1 -152 X0 -138 -1 -118 0 -95 0 -72 0 -55 -1 -45 0 -39 0 -38 X0 -39 -1 -38 0 -35 -1 -31 0 -25 -1 -17 0 -12 0 -7 X-1 -5 0 -2 0 -2 -1 -1 -1 -1 -1 0 -1 0 -3 0 X-5 0 -8 0 -14 -1 -25 0 -40 0 -62 -1 -86 0 -109 -1 X-125 -1 -134 -1 -137 0 -134 -1 -131 -1 -129 -1 -129 -1 -135 0 X-146 -1 -162 -2 -182 -1 -199 -2 -214 -2 -221 -3 -225 -5 -225 -5 X-221 -7 -218 -9 -212 -11 -207 -13 -201 -17 -193 -21 -185 -25 -176 -29 X-167 -35 -159 -40 -14 -4 7112 3795 92 MP stroke X Xgr Xgs 2066 0 2282 3816 MR c np X4249 3544 mt 4299 3594 L X4299 3544 mt 4249 3594 L X2157 3529 mt 2207 3579 L X2207 3529 mt 2157 3579 L X2149 3511 mt 2199 3561 L X2199 3511 mt 2149 3561 L X2139 1904 mt 2189 1954 L X2189 1904 mt 2139 1954 L X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 2282 3816 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 2282 3816 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 2282 3816 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 2282 3816 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 2282 3816 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr X/Helvetica /WindowsLatin1Encoding 120 FMSR X X4274 3611 mt X(0.1249) s X2182 3596 mt X(0.0044091) s X2174 3578 mt X(0.00015565) s X2164 1971 mt X(5.4947e-006) s X2140 213 mt X( ) s X2890 4938 mt X(residual norm || A x - b ||) s X/Helvetica /WindowsLatin1Encoding 96 FMSR X X4221 4998 mt X(2) s X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 631 3025 mt -90 rotate X(solution norm || x ||) s X90 rotate X/Helvetica /WindowsLatin1Encoding 96 FMSR X X 691 2017 mt -90 rotate X(2) s X90 rotate X/Helvetica /WindowsLatin1Encoding 120 FMSR X X2619 293 mt X(L-curve, Tikh. corner at 0.00087288) s Xgs 898 388 5357 4225 MR c np XDA X2275 0 -100 3553 2 MP stroke X0 -1831 2175 5384 2 MP stroke X Xgr XDA XSO X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 1093 259 a X 15392928 12120418 3881123 12695879 39271710 40521564 startTexFig X 1093 259 a X%%BeginDocument: tutorial/fig4b.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 515 -48 6445 5069 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 4224 5356 0 0 -4224 898 4612 4 MP XPP X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L X 898 4612 mt 6254 4612 L X 898 4612 mt 898 388 L X 898 4612 mt 898 4585 L X 898 388 mt 898 415 L X 898 4612 mt 898 4558 L X 898 388 mt 898 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 786 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 919 4721 mt X(-3) s X1435 4612 mt 1435 4585 L X1435 388 mt 1435 415 L X1750 4612 mt 1750 4585 L X1750 388 mt 1750 415 L X1973 4612 mt 1973 4585 L X1973 388 mt 1973 415 L X2146 4612 mt 2146 4585 L X2146 388 mt 2146 415 L X2287 4612 mt 2287 4585 L X2287 388 mt 2287 415 L X2407 4612 mt 2407 4585 L X2407 388 mt 2407 415 L X2510 4612 mt 2510 4585 L X2510 388 mt 2510 415 L X2602 4612 mt 2602 4585 L X2602 388 mt 2602 415 L X2683 4612 mt 2683 4585 L X2683 388 mt 2683 415 L X2683 4612 mt 2683 4558 L X2683 388 mt 2683 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X2571 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X2704 4721 mt X(-2) s X3221 4612 mt 3221 4585 L X3221 388 mt 3221 415 L X3535 4612 mt 3535 4585 L X3535 388 mt 3535 415 L X3758 4612 mt 3758 4585 L X3758 388 mt 3758 415 L X3931 4612 mt 3931 4585 L X3931 388 mt 3931 415 L X4073 4612 mt 4073 4585 L X4073 388 mt 4073 415 L X4192 4612 mt 4192 4585 L X4192 388 mt 4192 415 L X4296 4612 mt 4296 4585 L X4296 388 mt 4296 415 L X4387 4612 mt 4387 4585 L X4387 388 mt 4387 415 L X4469 4612 mt 4469 4585 L X4469 388 mt 4469 415 L X4469 4612 mt 4469 4558 L X4469 388 mt 4469 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X4357 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X4490 4721 mt X(-1) s X5006 4612 mt 5006 4585 L X5006 388 mt 5006 415 L X5320 4612 mt 5320 4585 L X5320 388 mt 5320 415 L X5544 4612 mt 5544 4585 L X5544 388 mt 5544 415 L X5717 4612 mt 5717 4585 L X5717 388 mt 5717 415 L X5858 4612 mt 5858 4585 L X5858 388 mt 5858 415 L X5977 4612 mt 5977 4585 L X5977 388 mt 5977 415 L X6081 4612 mt 6081 4585 L X6081 388 mt 6081 415 L X6172 4612 mt 6172 4585 L X6172 388 mt 6172 415 L X6254 4612 mt 6254 4585 L X6254 388 mt 6254 415 L X6254 4612 mt 6254 4558 L X6254 388 mt 6254 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X6166 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X6299 4721 mt X(0) s X 898 4612 mt 925 4612 L X6254 4612 mt 6227 4612 L X 898 4612 mt 952 4612 L X6254 4612 mt 6200 4612 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 4656 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 4582 mt X(0) s X 898 4188 mt 925 4188 L X6254 4188 mt 6227 4188 L X 898 3940 mt 925 3940 L X6254 3940 mt 6227 3940 L X 898 3764 mt 925 3764 L X6254 3764 mt 6227 3764 L X 898 3628 mt 925 3628 L X6254 3628 mt 6227 3628 L X 898 3516 mt 925 3516 L X6254 3516 mt 6227 3516 L X 898 3422 mt 925 3422 L X6254 3422 mt 6227 3422 L X 898 3340 mt 925 3340 L X6254 3340 mt 6227 3340 L X 898 3268 mt 925 3268 L X6254 3268 mt 6227 3268 L X 898 3204 mt 925 3204 L X6254 3204 mt 6227 3204 L X 898 3204 mt 952 3204 L X6254 3204 mt 6200 3204 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 3248 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 3174 mt X(1) s X 898 2780 mt 925 2780 L X6254 2780 mt 6227 2780 L X 898 2532 mt 925 2532 L X6254 2532 mt 6227 2532 L X 898 2356 mt 925 2356 L X6254 2356 mt 6227 2356 L X 898 2220 mt 925 2220 L X6254 2220 mt 6227 2220 L X 898 2108 mt 925 2108 L X6254 2108 mt 6227 2108 L X 898 2014 mt 925 2014 L X6254 2014 mt 6227 2014 L X 898 1932 mt 925 1932 L X6254 1932 mt 6227 1932 L X 898 1860 mt 925 1860 L X6254 1860 mt 6227 1860 L X 898 1796 mt 925 1796 L X6254 1796 mt 6227 1796 L X 898 1796 mt 952 1796 L X6254 1796 mt 6200 1796 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 1840 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 1766 mt X(2) s X 898 1372 mt 925 1372 L X6254 1372 mt 6227 1372 L X 898 1124 mt 925 1124 L X6254 1124 mt 6227 1124 L X 898 948 mt 925 948 L X6254 948 mt 6227 948 L X 898 812 mt 925 812 L X6254 812 mt 6227 812 L X 898 700 mt 925 700 L X6254 700 mt 6227 700 L X 898 606 mt 925 606 L X6254 606 mt 6227 606 L X 898 524 mt 925 524 L X6254 524 mt 6227 524 L X 898 452 mt 925 452 L X6254 452 mt 6227 452 L X 898 388 mt 925 388 L X6254 388 mt 6227 388 L X 898 388 mt 952 388 L X6254 388 mt 6200 388 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 686 432 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 819 358 mt X(3) s X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X 36 36 5708 3578 FO X 36 36 3734 3562 FO X 36 36 3362 3560 FO X 36 36 3004 3557 FO X 36 36 2180 3554 FO X 36 36 2177 3554 FO X 36 36 2175 3553 FO X 36 36 2171 3209 FO X 36 36 2169 2379 FO X 36 36 2146 694 FO X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2066 0 5120 3953 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2071 0 3711 3825 MR c np X5683 3553 mt 5733 3603 L X5733 3553 mt 5683 3603 L X2979 3532 mt 3029 3582 L X3029 3532 mt 2979 3582 L X2150 3528 mt 2200 3578 L X2200 3528 mt 2150 3578 L X2121 669 mt 2171 719 L X2171 669 mt 2121 719 L X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2071 0 3711 3825 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2071 0 3711 3825 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2071 0 3711 3825 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2071 0 3711 3825 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2071 0 3711 3825 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 2071 0 3711 3825 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr X/Helvetica /WindowsLatin1Encoding 120 FMSR X X5708 3620 mt X(3) s X3004 3599 mt X(6) s X2175 3595 mt X(9) s X2146 736 mt X(12) s X2890 4938 mt X(residual norm || A x - b ||) s X/Helvetica /WindowsLatin1Encoding 96 FMSR X X4221 4998 mt X(2) s X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 631 3025 mt -90 rotate X(solution norm || x ||) s X90 rotate X/Helvetica /WindowsLatin1Encoding 96 FMSR X X 691 2017 mt -90 rotate X(2) s X90 rotate X/Helvetica /WindowsLatin1Encoding 120 FMSR X X2869 293 mt X(L-curve, TSVD corner at 9) s Xgs 898 388 5357 4225 MR c np XDA X2275 0 -100 3553 2 MP stroke X0 -1831 2175 5384 2 MP stroke X Xgr XDA XSO X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 84 1043 a X 14665704 12120418 3617996 12959006 36114186 39600619 startTexFig X 84 1043 a X%%BeginDocument: tutorial/fig4c.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 458 116 5934 4853 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 4224 5356 0 0 -4224 898 4612 4 MP XPP X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L X 898 4612 mt 6254 4612 L X 898 4612 mt 898 388 L X 898 4612 mt 898 4585 L X 898 388 mt 898 415 L X 898 4612 mt 898 4558 L X 898 388 mt 898 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 786 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 919 4721 mt X(-6) s X1167 4612 mt 1167 4585 L X1167 388 mt 1167 415 L X1324 4612 mt 1324 4585 L X1324 388 mt 1324 415 L X1435 4612 mt 1435 4585 L X1435 388 mt 1435 415 L X1522 4612 mt 1522 4585 L X1522 388 mt 1522 415 L X1593 4612 mt 1593 4585 L X1593 388 mt 1593 415 L X1652 4612 mt 1652 4585 L X1652 388 mt 1652 415 L X1704 4612 mt 1704 4585 L X1704 388 mt 1704 415 L X1750 4612 mt 1750 4585 L X1750 388 mt 1750 415 L X1791 4612 mt 1791 4585 L X1791 388 mt 1791 415 L X1791 4612 mt 1791 4558 L X1791 388 mt 1791 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X1679 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X1812 4721 mt X(-5) s X2059 4612 mt 2059 4585 L X2059 388 mt 2059 415 L X2217 4612 mt 2217 4585 L X2217 388 mt 2217 415 L X2328 4612 mt 2328 4585 L X2328 388 mt 2328 415 L X2415 4612 mt 2415 4585 L X2415 388 mt 2415 415 L X2485 4612 mt 2485 4585 L X2485 388 mt 2485 415 L X2545 4612 mt 2545 4585 L X2545 388 mt 2545 415 L X2597 4612 mt 2597 4585 L X2597 388 mt 2597 415 L X2642 4612 mt 2642 4585 L X2642 388 mt 2642 415 L X2683 4612 mt 2683 4585 L X2683 388 mt 2683 415 L X2683 4612 mt 2683 4558 L X2683 388 mt 2683 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X2571 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X2704 4721 mt X(-4) s X2952 4612 mt 2952 4585 L X2952 388 mt 2952 415 L X3109 4612 mt 3109 4585 L X3109 388 mt 3109 415 L X3221 4612 mt 3221 4585 L X3221 388 mt 3221 415 L X3307 4612 mt 3307 4585 L X3307 388 mt 3307 415 L X3378 4612 mt 3378 4585 L X3378 388 mt 3378 415 L X3438 4612 mt 3438 4585 L X3438 388 mt 3438 415 L X3489 4612 mt 3489 4585 L X3489 388 mt 3489 415 L X3535 4612 mt 3535 4585 L X3535 388 mt 3535 415 L X3576 4612 mt 3576 4585 L X3576 388 mt 3576 415 L X3576 4612 mt 3576 4558 L X3576 388 mt 3576 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3464 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X3597 4721 mt X(-3) s X3845 4612 mt 3845 4585 L X3845 388 mt 3845 415 L X4002 4612 mt 4002 4585 L X4002 388 mt 4002 415 L X4113 4612 mt 4113 4585 L X4113 388 mt 4113 415 L X4200 4612 mt 4200 4585 L X4200 388 mt 4200 415 L X4271 4612 mt 4271 4585 L X4271 388 mt 4271 415 L X4330 4612 mt 4330 4585 L X4330 388 mt 4330 415 L X4382 4612 mt 4382 4585 L X4382 388 mt 4382 415 L X4428 4612 mt 4428 4585 L X4428 388 mt 4428 415 L X4469 4612 mt 4469 4585 L X4469 388 mt 4469 415 L X4469 4612 mt 4469 4558 L X4469 388 mt 4469 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X4357 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X4490 4721 mt X(-2) s X4737 4612 mt 4737 4585 L X4737 388 mt 4737 415 L X4895 4612 mt 4895 4585 L X4895 388 mt 4895 415 L X5006 4612 mt 5006 4585 L X5006 388 mt 5006 415 L X5093 4612 mt 5093 4585 L X5093 388 mt 5093 415 L X5163 4612 mt 5163 4585 L X5163 388 mt 5163 415 L X5223 4612 mt 5223 4585 L X5223 388 mt 5223 415 L X5275 4612 mt 5275 4585 L X5275 388 mt 5275 415 L X5320 4612 mt 5320 4585 L X5320 388 mt 5320 415 L X5361 4612 mt 5361 4585 L X5361 388 mt 5361 415 L X5361 4612 mt 5361 4558 L X5361 388 mt 5361 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X5249 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X5382 4721 mt X(-1) s X5630 4612 mt 5630 4585 L X5630 388 mt 5630 415 L X5787 4612 mt 5787 4585 L X5787 388 mt 5787 415 L X5899 4612 mt 5899 4585 L X5899 388 mt 5899 415 L X5985 4612 mt 5985 4585 L X5985 388 mt 5985 415 L X6056 4612 mt 6056 4585 L X6056 388 mt 6056 415 L X6116 4612 mt 6116 4585 L X6116 388 mt 6116 415 L X6167 4612 mt 6167 4585 L X6167 388 mt 6167 415 L X6213 4612 mt 6213 4585 L X6213 388 mt 6213 415 L X6254 4612 mt 6254 4585 L X6254 388 mt 6254 415 L X6254 4612 mt 6254 4558 L X6254 388 mt 6254 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X6166 4795 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X6299 4721 mt X(0) s X 898 4612 mt 925 4612 L X6254 4612 mt 6227 4612 L X 898 4612 mt 952 4612 L X6254 4612 mt 6200 4612 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 4656 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 4582 mt X(-9) s X 898 4453 mt 925 4453 L X6254 4453 mt 6227 4453 L X 898 4360 mt 925 4360 L X6254 4360 mt 6227 4360 L X 898 4294 mt 925 4294 L X6254 4294 mt 6227 4294 L X 898 4243 mt 925 4243 L X6254 4243 mt 6227 4243 L X 898 4201 mt 925 4201 L X6254 4201 mt 6227 4201 L X 898 4166 mt 925 4166 L X6254 4166 mt 6227 4166 L X 898 4135 mt 925 4135 L X6254 4135 mt 6227 4135 L X 898 4108 mt 925 4108 L X6254 4108 mt 6227 4108 L X 898 4084 mt 925 4084 L X6254 4084 mt 6227 4084 L X 898 4084 mt 952 4084 L X6254 4084 mt 6200 4084 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 4128 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 4054 mt X(-8) s X 898 3925 mt 925 3925 L X6254 3925 mt 6227 3925 L X 898 3832 mt 925 3832 L X6254 3832 mt 6227 3832 L X 898 3766 mt 925 3766 L X6254 3766 mt 6227 3766 L X 898 3715 mt 925 3715 L X6254 3715 mt 6227 3715 L X 898 3673 mt 925 3673 L X6254 3673 mt 6227 3673 L X 898 3638 mt 925 3638 L X6254 3638 mt 6227 3638 L X 898 3607 mt 925 3607 L X6254 3607 mt 6227 3607 L X 898 3580 mt 925 3580 L X6254 3580 mt 6227 3580 L X 898 3556 mt 925 3556 L X6254 3556 mt 6227 3556 L X 898 3556 mt 952 3556 L X6254 3556 mt 6200 3556 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 3600 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 3526 mt X(-7) s X 898 3397 mt 925 3397 L X6254 3397 mt 6227 3397 L X 898 3304 mt 925 3304 L X6254 3304 mt 6227 3304 L X 898 3238 mt 925 3238 L X6254 3238 mt 6227 3238 L X 898 3187 mt 925 3187 L X6254 3187 mt 6227 3187 L X 898 3145 mt 925 3145 L X6254 3145 mt 6227 3145 L X 898 3110 mt 925 3110 L X6254 3110 mt 6227 3110 L X 898 3079 mt 925 3079 L X6254 3079 mt 6227 3079 L X 898 3052 mt 925 3052 L X6254 3052 mt 6227 3052 L X 898 3028 mt 925 3028 L X6254 3028 mt 6227 3028 L X 898 3028 mt 952 3028 L X6254 3028 mt 6200 3028 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 3072 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 2998 mt X(-6) s X 898 2869 mt 925 2869 L X6254 2869 mt 6227 2869 L X 898 2776 mt 925 2776 L X6254 2776 mt 6227 2776 L X 898 2710 mt 925 2710 L X6254 2710 mt 6227 2710 L X 898 2659 mt 925 2659 L X6254 2659 mt 6227 2659 L X 898 2617 mt 925 2617 L X6254 2617 mt 6227 2617 L X 898 2582 mt 925 2582 L X6254 2582 mt 6227 2582 L X 898 2551 mt 925 2551 L X6254 2551 mt 6227 2551 L X 898 2524 mt 925 2524 L X6254 2524 mt 6227 2524 L X 898 2500 mt 925 2500 L X6254 2500 mt 6227 2500 L X 898 2500 mt 952 2500 L X6254 2500 mt 6200 2500 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 2544 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 2470 mt X(-5) s X 898 2341 mt 925 2341 L X6254 2341 mt 6227 2341 L X 898 2248 mt 925 2248 L X6254 2248 mt 6227 2248 L X 898 2182 mt 925 2182 L X6254 2182 mt 6227 2182 L X 898 2131 mt 925 2131 L X6254 2131 mt 6227 2131 L X 898 2089 mt 925 2089 L X6254 2089 mt 6227 2089 L X 898 2054 mt 925 2054 L X6254 2054 mt 6227 2054 L X 898 2023 mt 925 2023 L X6254 2023 mt 6227 2023 L X 898 1996 mt 925 1996 L X6254 1996 mt 6227 1996 L X 898 1972 mt 925 1972 L X6254 1972 mt 6227 1972 L X 898 1972 mt 952 1972 L X6254 1972 mt 6200 1972 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 2016 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 1942 mt X(-4) s X 898 1813 mt 925 1813 L X6254 1813 mt 6227 1813 L X 898 1720 mt 925 1720 L X6254 1720 mt 6227 1720 L X 898 1654 mt 925 1654 L X6254 1654 mt 6227 1654 L X 898 1603 mt 925 1603 L X6254 1603 mt 6227 1603 L X 898 1561 mt 925 1561 L X6254 1561 mt 6227 1561 L X 898 1526 mt 925 1526 L X6254 1526 mt 6227 1526 L X 898 1495 mt 925 1495 L X6254 1495 mt 6227 1495 L X 898 1468 mt 925 1468 L X6254 1468 mt 6227 1468 L X 898 1444 mt 925 1444 L X6254 1444 mt 6227 1444 L X 898 1444 mt 952 1444 L X6254 1444 mt 6200 1444 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 1488 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 1414 mt X(-3) s X 898 1285 mt 925 1285 L X6254 1285 mt 6227 1285 L X 898 1192 mt 925 1192 L X6254 1192 mt 6227 1192 L X 898 1126 mt 925 1126 L X6254 1126 mt 6227 1126 L X 898 1075 mt 925 1075 L X6254 1075 mt 6227 1075 L X 898 1033 mt 925 1033 L X6254 1033 mt 6227 1033 L X 898 998 mt 925 998 L X6254 998 mt 6227 998 L X 898 967 mt 925 967 L X6254 967 mt 6227 967 L X 898 940 mt 925 940 L X6254 940 mt 6227 940 L X 898 916 mt 925 916 L X6254 916 mt 6227 916 L X 898 916 mt 952 916 L X6254 916 mt 6200 916 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 960 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 886 mt X(-2) s X 898 757 mt 925 757 L X6254 757 mt 6227 757 L X 898 664 mt 925 664 L X6254 664 mt 6227 664 L X 898 598 mt 925 598 L X6254 598 mt 6227 598 L X 898 547 mt 925 547 L X6254 547 mt 6227 547 L X 898 505 mt 925 505 L X6254 505 mt 6227 505 L X 898 470 mt 925 470 L X6254 470 mt 6227 470 L X 898 439 mt 925 439 L X6254 439 mt 6227 439 L X 898 412 mt 925 412 L X6254 412 mt 6227 412 L X 898 388 mt 925 388 L X6254 388 mt 6227 388 L X 898 388 mt 952 388 L X6254 388 mt 6200 388 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 432 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 358 mt X(-1) s X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L Xgs 898 388 5357 4225 MR c np X-113 -3 -136 -3 -135 -3 -136 -4 -135 -4 -136 -4 -135 -4 -136 -3 X-135 -4 -136 -2 -135 -3 -136 -2 -135 -4 -136 -3 -135 -4 -136 -2 X-135 -3 -136 -3 -135 -3 -136 -3 -135 -3 -136 -2 -135 -2 -136 -1 X-135 -2 -136 -2 -135 -3 -136 -4 -135 -5 -136 -4 -135 -4 -136 0 X-135 9 -136 38 -135 92 -136 144 -135 160 -136 154 -135 153 -136 178 X-135 225 -136 263 -135 274 -136 267 -135 253 -136 236 -135 214 -136 191 X-135 173 -136 151 -135 116 -136 78 -135 47 -53 10 7112 309 55 MP stroke X Xgr X/Symbol /WindowsLatin1Encoding 120 FMSR X X3542 4932 mt X(l) s X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 584 2619 mt -90 rotate X(G\() s X90 rotate X/Symbol /WindowsLatin1Encoding 120 FMSR X X 584 2486 mt -90 rotate X(l) s X90 rotate X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 584 2421 mt -90 rotate X(\)) s X90 rotate X2517 285 mt X(GCV function, minimum at ) s X/Symbol /WindowsLatin1Encoding 120 FMSR X X3949 285 mt X(l) s X/Helvetica /WindowsLatin1Encoding 120 FMSR X X4014 285 mt X( = 0.004616) s Xgs 898 388 5357 4225 MR c np Xgs 4096 3663 147 147 MR c np X4133 3736 mt 4205 3736 L X4169 3700 mt 4169 3772 L X4144 3711 mt 4194 3761 L X4194 3711 mt 4144 3761 L X Xgr XDO X0 -1584 4169 5320 2 MP stroke X Xgr XDO XSO X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 1063 1043 a X 16362561 12120418 3683778 13222133 39271710 39469056 startTexFig X 1063 1043 a X%%BeginDocument: tutorial/fig4d.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 468 134 6492 4796 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 4224 5356 0 0 -4224 898 4612 4 MP XPP X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L X 898 4612 mt 6254 4612 L X 898 4612 mt 898 388 L X 898 4612 mt 898 4558 L X 898 388 mt 898 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 865 4758 mt X(0) s X1434 4612 mt 1434 4558 L X1434 388 mt 1434 442 L X1401 4758 mt X(2) s X1969 4612 mt 1969 4558 L X1969 388 mt 1969 442 L X1936 4758 mt X(4) s X2505 4612 mt 2505 4558 L X2505 388 mt 2505 442 L X2472 4758 mt X(6) s X3040 4612 mt 3040 4558 L X3040 388 mt 3040 442 L X3007 4758 mt X(8) s X3576 4612 mt 3576 4558 L X3576 388 mt 3576 442 L X3510 4758 mt X(10) s X4112 4612 mt 4112 4558 L X4112 388 mt 4112 442 L X4046 4758 mt X(12) s X4647 4612 mt 4647 4558 L X4647 388 mt 4647 442 L X4581 4758 mt X(14) s X5183 4612 mt 5183 4558 L X5183 388 mt 5183 442 L X5117 4758 mt X(16) s X5718 4612 mt 5718 4558 L X5718 388 mt 5718 442 L X5652 4758 mt X(18) s X6254 4612 mt 6254 4558 L X6254 388 mt 6254 442 L X6188 4758 mt X(20) s X 898 4612 mt 925 4612 L X6254 4612 mt 6227 4612 L X 898 4612 mt 952 4612 L X6254 4612 mt 6200 4612 L X 639 4656 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 4582 mt X(-9) s X 898 4453 mt 925 4453 L X6254 4453 mt 6227 4453 L X 898 4360 mt 925 4360 L X6254 4360 mt 6227 4360 L X 898 4294 mt 925 4294 L X6254 4294 mt 6227 4294 L X 898 4243 mt 925 4243 L X6254 4243 mt 6227 4243 L X 898 4201 mt 925 4201 L X6254 4201 mt 6227 4201 L X 898 4166 mt 925 4166 L X6254 4166 mt 6227 4166 L X 898 4135 mt 925 4135 L X6254 4135 mt 6227 4135 L X 898 4108 mt 925 4108 L X6254 4108 mt 6227 4108 L X 898 4084 mt 925 4084 L X6254 4084 mt 6227 4084 L X 898 4084 mt 952 4084 L X6254 4084 mt 6200 4084 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 4128 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 4054 mt X(-8) s X 898 3925 mt 925 3925 L X6254 3925 mt 6227 3925 L X 898 3832 mt 925 3832 L X6254 3832 mt 6227 3832 L X 898 3766 mt 925 3766 L X6254 3766 mt 6227 3766 L X 898 3715 mt 925 3715 L X6254 3715 mt 6227 3715 L X 898 3673 mt 925 3673 L X6254 3673 mt 6227 3673 L X 898 3638 mt 925 3638 L X6254 3638 mt 6227 3638 L X 898 3607 mt 925 3607 L X6254 3607 mt 6227 3607 L X 898 3580 mt 925 3580 L X6254 3580 mt 6227 3580 L X 898 3556 mt 925 3556 L X6254 3556 mt 6227 3556 L X 898 3556 mt 952 3556 L X6254 3556 mt 6200 3556 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 3600 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 3526 mt X(-7) s X 898 3397 mt 925 3397 L X6254 3397 mt 6227 3397 L X 898 3304 mt 925 3304 L X6254 3304 mt 6227 3304 L X 898 3238 mt 925 3238 L X6254 3238 mt 6227 3238 L X 898 3187 mt 925 3187 L X6254 3187 mt 6227 3187 L X 898 3145 mt 925 3145 L X6254 3145 mt 6227 3145 L X 898 3110 mt 925 3110 L X6254 3110 mt 6227 3110 L X 898 3079 mt 925 3079 L X6254 3079 mt 6227 3079 L X 898 3052 mt 925 3052 L X6254 3052 mt 6227 3052 L X 898 3028 mt 925 3028 L X6254 3028 mt 6227 3028 L X 898 3028 mt 952 3028 L X6254 3028 mt 6200 3028 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 3072 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 2998 mt X(-6) s X 898 2869 mt 925 2869 L X6254 2869 mt 6227 2869 L X 898 2776 mt 925 2776 L X6254 2776 mt 6227 2776 L X 898 2710 mt 925 2710 L X6254 2710 mt 6227 2710 L X 898 2659 mt 925 2659 L X6254 2659 mt 6227 2659 L X 898 2617 mt 925 2617 L X6254 2617 mt 6227 2617 L X 898 2582 mt 925 2582 L X6254 2582 mt 6227 2582 L X 898 2551 mt 925 2551 L X6254 2551 mt 6227 2551 L X 898 2524 mt 925 2524 L X6254 2524 mt 6227 2524 L X 898 2500 mt 925 2500 L X6254 2500 mt 6227 2500 L X 898 2500 mt 952 2500 L X6254 2500 mt 6200 2500 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 2544 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 2470 mt X(-5) s X 898 2341 mt 925 2341 L X6254 2341 mt 6227 2341 L X 898 2248 mt 925 2248 L X6254 2248 mt 6227 2248 L X 898 2182 mt 925 2182 L X6254 2182 mt 6227 2182 L X 898 2131 mt 925 2131 L X6254 2131 mt 6227 2131 L X 898 2089 mt 925 2089 L X6254 2089 mt 6227 2089 L X 898 2054 mt 925 2054 L X6254 2054 mt 6227 2054 L X 898 2023 mt 925 2023 L X6254 2023 mt 6227 2023 L X 898 1996 mt 925 1996 L X6254 1996 mt 6227 1996 L X 898 1972 mt 925 1972 L X6254 1972 mt 6227 1972 L X 898 1972 mt 952 1972 L X6254 1972 mt 6200 1972 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 2016 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 1942 mt X(-4) s X 898 1813 mt 925 1813 L X6254 1813 mt 6227 1813 L X 898 1720 mt 925 1720 L X6254 1720 mt 6227 1720 L X 898 1654 mt 925 1654 L X6254 1654 mt 6227 1654 L X 898 1603 mt 925 1603 L X6254 1603 mt 6227 1603 L X 898 1561 mt 925 1561 L X6254 1561 mt 6227 1561 L X 898 1526 mt 925 1526 L X6254 1526 mt 6227 1526 L X 898 1495 mt 925 1495 L X6254 1495 mt 6227 1495 L X 898 1468 mt 925 1468 L X6254 1468 mt 6227 1468 L X 898 1444 mt 925 1444 L X6254 1444 mt 6227 1444 L X 898 1444 mt 952 1444 L X6254 1444 mt 6200 1444 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 1488 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 1414 mt X(-3) s X 898 1285 mt 925 1285 L X6254 1285 mt 6227 1285 L X 898 1192 mt 925 1192 L X6254 1192 mt 6227 1192 L X 898 1126 mt 925 1126 L X6254 1126 mt 6227 1126 L X 898 1075 mt 925 1075 L X6254 1075 mt 6227 1075 L X 898 1033 mt 925 1033 L X6254 1033 mt 6227 1033 L X 898 998 mt 925 998 L X6254 998 mt 6227 998 L X 898 967 mt 925 967 L X6254 967 mt 6227 967 L X 898 940 mt 925 940 L X6254 940 mt 6227 940 L X 898 916 mt 925 916 L X6254 916 mt 6227 916 L X 898 916 mt 952 916 L X6254 916 mt 6200 916 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 960 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 886 mt X(-2) s X 898 757 mt 925 757 L X6254 757 mt 6227 757 L X 898 664 mt 925 664 L X6254 664 mt 6227 664 L X 898 598 mt 925 598 L X6254 598 mt 6227 598 L X 898 547 mt 925 547 L X6254 547 mt 6227 547 L X 898 505 mt 925 505 L X6254 505 mt 6227 505 L X 898 470 mt 925 470 L X6254 470 mt 6227 470 L X 898 439 mt 925 439 L X6254 439 mt 6227 439 L X 898 412 mt 925 412 L X6254 412 mt 6227 412 L X 898 388 mt 925 388 L X6254 388 mt 6227 388 L X 898 388 mt 952 388 L X6254 388 mt 6200 388 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 639 432 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 772 358 mt X(-1) s X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L Xgs 898 388 5357 4225 MR c np X Xgr Xgs 1093 731 6093 3089 MR c np X 36 36 1166 804 FO X 36 36 1434 860 FO X 36 36 1701 1727 FO X 36 36 1969 2879 FO X 36 36 2237 3082 FO X 36 36 2505 3277 FO X 36 36 2773 3746 FO X 36 36 3040 3729 FO X 36 36 3308 3710 FO X 36 36 3576 3693 FO X 36 36 3844 3672 FO X 36 36 4112 3664 FO X 36 36 4379 3644 FO X 36 36 4647 3620 FO X 36 36 4915 3594 FO X 36 36 5183 3571 FO X 36 36 5451 3554 FO X 36 36 5718 3523 FO X 36 36 5986 3496 FO X 36 36 6254 3461 FO X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 1093 731 6093 3089 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 1093 731 6093 3089 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 1093 731 6093 3089 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 1093 731 6093 3089 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 1093 731 6093 3089 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 1093 731 6093 3089 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 1093 731 6093 3089 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr Xgs 1093 731 6093 3089 MR c np X Xgr Xgs 898 388 5357 4225 MR c np X Xgr X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3545 4901 mt X(k) s X 584 2617 mt -90 rotate X(G\(k\)) s X90 rotate X2734 293 mt X(GCV function, minimum at k = 7) s Xgs 898 388 5357 4225 MR c np Xgs 2700 3673 147 147 MR c np X2737 3746 mt 2809 3746 L X2773 3710 mt 2773 3782 L X2748 3721 mt 2798 3771 L X2798 3721 mt 2748 3771 L X Xgr XDA X0 -1584 2773 5330 2 MP stroke X Xgr XDA XSO X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 59 1905 a Fo(Figure)15 b(3.4:)k(Comparison)c(of)g(the)g(L-curv)o(e)h X(criterion)g(and)g(the)f(GCV)g(metho)q(d)g(for)g(computing)h(the)59 X1962 y(\\optimal")f(regularization)h(parameter)f(for)f(Tikhono)o(v's)h X(metho)q(d)h(and)f(for)g(truncated)g(SVD.)130 2099 y XFl(lamb)q(da)p 272 2099 14 2 v 16 w(l)g(=)g(l)p 375 2099 XV 17 w(curve)8 b(\(U,s,b\);)14 b(axis)8 b(\([1e-3,1,1,1e3]\))130 X2168 y(k)p 155 2168 V 16 w(l)15 b(=)h(l)p 259 2168 V X16 w(curve)8 b(\(U,s,b,'tsvd'\);)15 b(axis)8 b(\([1e-3,1,1,1e3]\))130 X2237 y(lamb)q(da)p 272 2237 V 16 w(gcv)15 b(=)g(gcv)8 Xb(\(U,s,b\);)14 b(axis)8 b(\([-6,0,-9,-1]\))130 2306 Xy(k)p 155 2306 V 16 w(gcv)15 b(=)h(gcv)8 b(\(U,s,b,'tsvd'\);)14 Xb(axis)8 b(\([0,20,1e-9,1e-1]\))130 2412 y(x)p 154 2412 XV 16 w(tikh)p 242 2412 V 17 w(l)15 b(=)h(tikhonov)8 b(\(U,s,V,b,lamb)q X(da)p 816 2412 V 16 w(l\);)130 2481 y(x)p 154 2481 V X16 w(tikh)p 242 2481 V 17 w(gcv)15 b(=)h(tikhonov)8 b(\(U,s,V,b,lamb)q X(da)p 869 2481 V 16 w(gcv\);)130 2550 y(x)p 154 2550 XV 16 w(tsvd)p 247 2550 V 18 w(l)15 b(=)g(tsvd)8 b(\(U,s,V,b,k)p X619 2550 V 17 w(l\);)130 2619 y(x)p 154 2619 V 16 w(tsvd)p X247 2619 V 18 w(gcv)15 b(=)g(tsvd)8 b(\(U,s,V,b,k)p 672 X2619 V 17 w(gcv\);)130 2688 y([no)o(rm)g(\(x)p Fm(\000)p XFl(x)p 347 2688 V 14 w(tikh)p 433 2688 V 18 w(l\),no)o(rm)g(\(x)p XFm(\000)p Fl(x)p 694 2688 V 13 w(tikh)p 779 2688 V 18 Xw(gcv\),)p Fn(:)g(:)g(:)221 2757 y Fl(no)o(rm)g(\(x)p XFm(\000)p Fl(x)p 425 2757 V 14 w(tsvd)p 516 2757 V 18 Xw(l\),no)o(rm)g(\(x)p Fm(\000)p Fl(x)p 777 2757 V 13 Xw(tsvd)p 867 2757 V 18 w(gcv\)]/no)o(rm)g(\(x\))p eop X%%Page: 38 40 X38 39 bop 64 159 a Fo(38)1473 b(TUTORIAL)p 64 178 1767 X2 v 59 304 a Fr(3.5.)18 b(Standard)h(F)-5 b(orm)18 b(V)-5 Xb(ersus)19 b(General)f(F)-5 b(orm)59 406 y Fo(In)13 b(this)h(example)f X(w)o(e)g(illustrate)h(the)e(di\013erence)i(b)q(et)o(w)o(een)g X(regularization)f(in)h(standard)e(and)h(general)59 462 Xy(form.)19 b(In)13 b(particular,)h(w)o(e)f(sho)o(w)g(that)g X(regularization)h(in)g(general)g(form)f(is)g(sometimes)h XFk(ne)n(c)n(essary)d Fo(to)59 519 y(ensure)17 b(the)g(computation)f(of) Xg(a)h(satisfactory)e(solution.)25 b(Unfortunately)l(,)16 Xb(this)h(judgemen)o(t)g(cannot)59 575 y(b)q(e)f(automated,)e(but)h X(requires)h(insigh)o(t)g(from)f(the)g(user)g(ab)q(out)g(the)h(desired)g X(solution.)130 632 y(The)g(test)g(problem)h(used)g(here)g(is)g(the)f X(in)o(v)o(erse)h(Laplace)g(transformation,)e(and)i(w)o(e)f(generate)g X(a)59 688 y(problem)i(whose)f(exact)g(solution)i(is)e XFn(f)5 b Fo(\()p Fn(t)p Fo(\))17 b(=)f(1)11 b Fm(\000)h XFo(exp)c(\()p Fm(\000)p Fn(t=)p Fo(2\).)26 b(This)18 Xb(solution)g(ob)o(viously)g(satis\014es)59 745 y Fn(f)g XFm(!)13 b Fo(1)f(for)f Fn(t)i Fm(!)h(1)p Fo(,)e(and)h(the)f(horizon)o X(tal)h(asymptotic)f(part)f(in)i(the)g(discretized)h(solution)f(for)e XFn(n)i Fo(=)g(16)59 801 y(is)j(visible)h(for)e(indices)i XFn(i)12 b(>)h Fo(8.)130 917 y Fl(n)i(=)h(16;)e([A,b,x])h(=)h(ilaplace)8 Xb(\(n,2\);)130 985 y(b)15 b(=)h(b)f(+)h(1e-4)p Fm(\003)p XFl(randn)8 b(\(b\);)130 1053 y(L)14 b(=)i(get)p 282 1053 X14 2 v 17 w(l)8 b(\(n,1\);)130 1121 y([U,s,V])15 b(=)h(csvd)8 Xb(\(A\);)15 b([UU,sm,XX])g(=)h(cgsvd)8 b(\(A,L\);)130 X1189 y(I)14 b(=)i(1;)e(fo)o(r)g(i=[3,6,9,12])221 1257 Xy(subplot)8 b(\(2,2,I\);)13 b(plot)8 b(\(1:n,V\(:,i\)\);)13 Xb(axis)8 b(\([1,n,-1,1]\))221 1325 y(xlab)q(el)g(\(['i)14 Xb(=)i(',num2str\(i\)]\),)d(I)i(=)g(I)g(+)g(1;)130 1393 Xy(end)130 1461 y(subplot)8 b(\(2,2,1\),)14 b(text)8 b(\(12,1.2,'Right) X13 b(singula)o(r)i(vecto)o(rs)h(V\(:,i\)'\))130 1529 Xy(I)e(=)i(1;)e(fo)o(r)g(i=[n-2,n-5,n-8,n-11])221 1597 Xy(subplot)8 b(\(2,2,I\);)13 b(plot)8 b(\(1:n,XX\(:,i\)\);)13 Xb(axis)8 b(\([1,n,-1,1]\))221 1666 y(xlab)q(el)g(\(['i)14 Xb(=)i(',num2str\(i\)]\),)d(I)i(=)g(I)g(+)g(1;)130 1734 Xy(end)130 1802 y(subplot)8 b(\(2,2,1\),)14 b(text)8 b(\(10,1.2,'Right) X13 b(generalized)j(singula)o(r)f(vecto)o(rs)g(XX\(:,i\)'\))130 X1905 y(k)p 155 1905 V 16 w(tsvd)i(=)e(7;)g(k)p 388 1905 XV 16 w(tgsvd)h(=)g(6;)130 1973 y(X)p 163 1973 V 16 w(I)f(=)h(tsvd)8 Xb(\(U,s,V,b,1:k)p 572 1973 V 16 w(tsvd\);)130 2041 y(X)p X163 2041 V 16 w(L)15 b(=)h(tgsvd)8 b(\(UU,sm,XX,b,1:k)p X705 2041 V 15 w(tgsvd\);)130 2109 y(subplot)g(\(2,1,1\);)14 Xb(plot)8 b(\(1:n,X)p 636 2109 V 16 w(I,1:n,x,'x'\),)j(axis)d X(\([1,n,0,1.2]\),)k(xlab)q(el)c(\('L)15 b(=)g(I'\))130 X2177 y(subplot)8 b(\(2,2,2\),)14 b(plot)8 b(\(1:n,X)p X636 2177 V 16 w(L,1:n,x,'x'\),)j(axis)d(\([1,n,0,1.2]\),)k(xlab)q(el)c X(\('L)15 b Fc(\\)p Fl(neq)h(I'\))130 2293 y Fo(In)e(this)h(example)f(w) Xo(e)g(c)o(ho)q(ose)g(minimization)i(of)d(the)h(\014rst)g(deriv)m(ativ)o X(e)h(as)e(side)i(constrain)o(t)f(in)h(the)59 2349 y(general-form)i X(regularization,)h(i.e.,)f(w)o(e)f(use)i Fn(L)d Fo(=)h(tridiag)q(\()p XFm(\000)p Fo(1)p Fn(;)8 b Fo(1\).)23 b(It)17 b(is)g(v)o(ery)g X(instructiv)o(e)h(to)e(\014rst)59 2406 y(insp)q(ect)f(the)f(righ)o(t)f X(singular)i(v)o(ectors)e Fp(v)750 2413 y Fg(i)777 2406 Xy Fo(and)h Fp(x)892 2413 y Fg(i)919 2406 y Fo(from)f(the)g(SVD)h(and)g X(the)g(GSVD,)f(resp)q(ectiv)o(ely)l(,)i(cf.)59 2462 y(Fig.)g(3.5.)k X(Notice)c(that)g(none)g(of)g(the)g(SVD)h(v)o(ectors)e XFp(v)1014 2469 y Fg(i)1043 2462 y Fo(include)j(the)e(ab)q(o)o(v)o(emen) Xo(tioned)h(asymptotic)59 2518 y(part;)h(hence,)h(these)f(v)o(ectors)g X(are)f(not)h(suited)h(as)e(basis)i(v)o(ectors)e(for)g(a)h(regularized)h X(solution.)26 b(The)59 2575 y(GSVD)18 b(v)o(ectors)f XFp(x)392 2582 y Fg(i)405 2575 y Fo(,)h(on)g(the)g(other)f(hand,)i(do)f X(p)q(osess)g(the)g(the)g(necessary)g(asymptotic)f(part,)g(and)59 X2631 y(they)e(are)f(therefore)g(m)o(uc)o(h)h(b)q(etter)g(suited)g(as)g X(basis)g(v)o(ectors.)k(F)l(or)14 b(a)g(thorough)g(discussion)i(of)e X(these)59 2688 y(asp)q(ects,)h(cf.)g([74)o(].)130 2744 Xy(Let)h(us)h(no)o(w)f(use)h(the)g(truncated)f(SVD)h(and)f(the)h X(truncated)g(GSVD)f(to)g(compute)g(regularized)59 2801 Xy(solutions)i(to)f(this)h(problem.)27 b(The)18 b(\014rst)f(7)g(TSVD)g X(solutions)h(and)f(the)h(\014rst)f(6)g(TGSVD)g(solutions)59 X2857 y(are)c(sho)o(wn)f(in)i(Fig.)f(3.6.)18 b(F)l(rom)12 Xb(our)h(in)o(v)o(estigation)g(of)g(the)g(righ)o(t)f(singular)i(v)o X(ectors,)e(it)i(is)f(no)g(surprise)p eop X%%Page: 39 41 X39 40 bop 59 159 a Fo(3.5.)14 b(Standard)h(F)l(orm)f(V)l(ersus)i X(General)g(F)l(orm)899 b(39)p 59 178 1767 2 v 177 293 Xa X 21816746 18646798 4538941 13222133 35653713 39732183 startTexFig X 177 293 a X%%BeginDocument: tutorial/fig5a.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 627 93 5677 4837 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 1782 2259 0 0 -1782 898 2170 4 MP XPP X-2259 0 0 1782 2259 0 0 -1782 898 2170 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 2170 mt 3157 2170 L X 898 388 mt 3157 388 L X 898 2170 mt 898 388 L X3157 2170 mt 3157 388 L X 898 2170 mt 3157 2170 L X 898 2170 mt 898 388 L X1500 2170 mt 1500 2147 L X1500 388 mt 1500 411 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X1467 2316 mt X(5) s X2253 2170 mt 2253 2147 L X2253 388 mt 2253 411 L X2187 2316 mt X(10) s X3006 2170 mt 3006 2147 L X3006 388 mt 3006 411 L X2940 2316 mt X(15) s X 898 2170 mt 921 2170 L X3157 2170 mt 3134 2170 L X 727 2214 mt X(-1) s X 898 1725 mt 921 1725 L X3157 1725 mt 3134 1725 L X 627 1769 mt X(-0.5) s X 898 1279 mt 921 1279 L X3157 1279 mt 3134 1279 L X 797 1323 mt X(0) s X 898 834 mt 921 834 L X3157 834 mt 3134 834 L X 697 878 mt X(0.5) s X 898 388 mt 921 388 L X3157 388 mt 3134 388 L X 797 432 mt X(1) s X 898 2170 mt 3157 2170 L X 898 388 mt 3157 388 L X 898 2170 mt 898 388 L X3157 2170 mt 3157 388 L Xgs 898 388 2260 1783 MR c np X151 0 150 0 151 0 150 0 151 0 151 1 150 2 151 13 X150 44 151 107 151 169 150 79 151 -366 150 -653 151 936 898 947 16 MP stroke X Xgr X1913 2459 mt X(i = 3) s X2555 252 mt X(Right singular vectors V\(:,i\)) s X1 sg X0 1782 2260 0 0 -1782 3994 2170 4 MP XPP X-2260 0 0 1782 2260 0 0 -1782 3994 2170 5 MP stroke X4 w XDO XSO X6 w X0 sg X3994 2170 mt 6254 2170 L X3994 388 mt 6254 388 L X3994 2170 mt 3994 388 L X6254 2170 mt 6254 388 L X3994 2170 mt 6254 2170 L X3994 2170 mt 3994 388 L X4597 2170 mt 4597 2147 L X4597 388 mt 4597 411 L X4564 2316 mt X(5) s X5350 2170 mt 5350 2147 L X5350 388 mt 5350 411 L X5284 2316 mt X(10) s X6103 2170 mt 6103 2147 L X6103 388 mt 6103 411 L X6037 2316 mt X(15) s X3994 2170 mt 4017 2170 L X6254 2170 mt 6231 2170 L X3823 2214 mt X(-1) s X3994 1725 mt 4017 1725 L X6254 1725 mt 6231 1725 L X3723 1769 mt X(-0.5) s X3994 1279 mt 4017 1279 L X6254 1279 mt 6231 1279 L X3893 1323 mt X(0) s X3994 834 mt 4017 834 L X6254 834 mt 6231 834 L X3793 878 mt X(0.5) s X3994 388 mt 4017 388 L X6254 388 mt 6231 388 L X3893 432 mt X(1) s X3994 2170 mt 6254 2170 L X3994 388 mt 6254 388 L X3994 2170 mt 3994 388 L X6254 2170 mt 6254 388 L Xgs 3994 388 2261 1783 MR c np X151 0 150 0 151 0 151 0 150 0 151 4 151 23 150 97 X151 260 151 137 150 -1084 151 764 151 -242 150 47 151 -7 3994 1280 16 MP stroke X Xgr X5009 2459 mt X(i = 6) s X1 sg X0 1782 2259 0 0 -1782 898 4612 4 MP XPP X-2259 0 0 1782 2259 0 0 -1782 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 3157 4612 L X 898 2830 mt 3157 2830 L X 898 4612 mt 898 2830 L X3157 4612 mt 3157 2830 L X 898 4612 mt 3157 4612 L X 898 4612 mt 898 2830 L X1500 4612 mt 1500 4589 L X1500 2830 mt 1500 2853 L X1467 4758 mt X(5) s X2253 4612 mt 2253 4589 L X2253 2830 mt 2253 2853 L X2187 4758 mt X(10) s X3006 4612 mt 3006 4589 L X3006 2830 mt 3006 2853 L X2940 4758 mt X(15) s X 898 4612 mt 921 4612 L X3157 4612 mt 3134 4612 L X 727 4656 mt X(-1) s X 898 4167 mt 921 4167 L X3157 4167 mt 3134 4167 L X 627 4211 mt X(-0.5) s X 898 3721 mt 921 3721 L X3157 3721 mt 3134 3721 L X 797 3765 mt X(0) s X 898 3276 mt 921 3276 L X3157 3276 mt 3134 3276 L X 697 3320 mt X(0.5) s X 898 2830 mt 921 2830 L X3157 2830 mt 3134 2830 L X 797 2874 mt X(1) s X 898 4612 mt 3157 4612 L X 898 2830 mt 3157 2830 L X 898 4612 mt 898 2830 L X3157 4612 mt 3157 2830 L Xgs 898 2830 2260 1783 MR c np X151 0 150 0 151 0 150 1 151 18 151 145 150 677 151 -1084 X150 262 151 -20 151 1 150 0 151 0 150 0 151 0 898 3721 16 MP stroke X Xgr X1913 4901 mt X(i = 9) s X1 sg X0 1782 2260 0 0 -1782 3994 4612 4 MP XPP X-2260 0 0 1782 2260 0 0 -1782 3994 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X3994 4612 mt 6254 4612 L X3994 2830 mt 6254 2830 L X3994 4612 mt 3994 2830 L X6254 4612 mt 6254 2830 L X3994 4612 mt 6254 4612 L X3994 4612 mt 3994 2830 L X4597 4612 mt 4597 4589 L X4597 2830 mt 4597 2853 L X4564 4758 mt X(5) s X5350 4612 mt 5350 4589 L X5350 2830 mt 5350 2853 L X5284 4758 mt X(10) s X6103 4612 mt 6103 4589 L X6103 2830 mt 6103 2853 L X6037 4758 mt X(15) s X3994 4612 mt 4017 4612 L X6254 4612 mt 6231 4612 L X3823 4656 mt X(-1) s X3994 4167 mt 4017 4167 L X6254 4167 mt 6231 4167 L X3723 4211 mt X(-0.5) s X3994 3721 mt 4017 3721 L X6254 3721 mt 6231 3721 L X3893 3765 mt X(0) s X3994 3276 mt 4017 3276 L X6254 3276 mt 6231 3276 L X3793 3320 mt X(0.5) s X3994 2830 mt 4017 2830 L X6254 2830 mt 6231 2830 L X3893 2874 mt X(1) s X3994 4612 mt 6254 4612 L X3994 2830 mt 6254 2830 L X3994 4612 mt 3994 2830 L X6254 4612 mt 6254 2830 L Xgs 3994 2830 2261 1783 MR c np X151 0 150 1 151 27 151 859 150 -964 151 78 151 -1 150 0 X151 0 151 0 150 0 151 0 151 0 150 0 151 0 3994 3721 16 MP stroke X Xgr X4976 4901 mt X(i = 12) s X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 177 1478 a X 21816746 18646798 4538941 13222133 35653713 39732183 startTexFig X 177 1478 a X%%BeginDocument: tutorial/fig5b.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 627 93 5677 4837 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 1782 2259 0 0 -1782 898 2170 4 MP XPP X-2259 0 0 1782 2259 0 0 -1782 898 2170 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 2170 mt 3157 2170 L X 898 388 mt 3157 388 L X 898 2170 mt 898 388 L X3157 2170 mt 3157 388 L X 898 2170 mt 3157 2170 L X 898 2170 mt 898 388 L X1500 2170 mt 1500 2147 L X1500 388 mt 1500 411 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X1467 2316 mt X(5) s X2253 2170 mt 2253 2147 L X2253 388 mt 2253 411 L X2187 2316 mt X(10) s X3006 2170 mt 3006 2147 L X3006 388 mt 3006 411 L X2940 2316 mt X(15) s X 898 2170 mt 921 2170 L X3157 2170 mt 3134 2170 L X 727 2214 mt X(-1) s X 898 1725 mt 921 1725 L X3157 1725 mt 3134 1725 L X 627 1769 mt X(-0.5) s X 898 1279 mt 921 1279 L X3157 1279 mt 3134 1279 L X 797 1323 mt X(0) s X 898 834 mt 921 834 L X3157 834 mt 3134 834 L X 697 878 mt X(0.5) s X 898 388 mt 921 388 L X3157 388 mt 3134 388 L X 797 432 mt X(1) s X 898 2170 mt 3157 2170 L X 898 388 mt 3157 388 L X 898 2170 mt 898 388 L X3157 2170 mt 3157 388 L Xgs 898 388 2260 1783 MR c np X151 0 150 0 151 0 150 0 151 0 151 0 150 1 151 2 X150 14 151 51 151 154 150 334 151 448 150 93 151 -657 898 1575 16 MP stroke X Xgr X1880 2459 mt X(i = 14) s X2253 252 mt X(Right generalized singular vectors XX\(:,i\)) s X1 sg X0 1782 2260 0 0 -1782 3994 2170 4 MP XPP X-2260 0 0 1782 2260 0 0 -1782 3994 2170 5 MP stroke X4 w XDO XSO X6 w X0 sg X3994 2170 mt 6254 2170 L X3994 388 mt 6254 388 L X3994 2170 mt 3994 388 L X6254 2170 mt 6254 388 L X3994 2170 mt 6254 2170 L X3994 2170 mt 3994 388 L X4597 2170 mt 4597 2147 L X4597 388 mt 4597 411 L X4564 2316 mt X(5) s X5350 2170 mt 5350 2147 L X5350 388 mt 5350 411 L X5284 2316 mt X(10) s X6103 2170 mt 6103 2147 L X6103 388 mt 6103 411 L X6037 2316 mt X(15) s X3994 2170 mt 4017 2170 L X6254 2170 mt 6231 2170 L X3823 2214 mt X(-1) s X3994 1725 mt 4017 1725 L X6254 1725 mt 6231 1725 L X3723 1769 mt X(-0.5) s X3994 1279 mt 4017 1279 L X6254 1279 mt 6231 1279 L X3893 1323 mt X(0) s X3994 834 mt 4017 834 L X6254 834 mt 6231 834 L X3793 878 mt X(0.5) s X3994 388 mt 4017 388 L X6254 388 mt 6231 388 L X3893 432 mt X(1) s X3994 2170 mt 6254 2170 L X3994 388 mt 6254 388 L X3994 2170 mt 3994 388 L X6254 2170 mt 6254 388 L Xgs 3994 388 2261 1783 MR c np X151 0 150 0 151 0 151 0 150 0 151 1 151 3 150 24 X151 115 151 378 150 550 151 -546 151 188 150 -38 151 6 3994 1278 16 MP stroke X Xgr X4976 2459 mt X(i = 11) s X1 sg X0 1782 2259 0 0 -1782 898 4612 4 MP XPP X-2259 0 0 1782 2259 0 0 -1782 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 3157 4612 L X 898 2830 mt 3157 2830 L X 898 4612 mt 898 2830 L X3157 4612 mt 3157 2830 L X 898 4612 mt 3157 4612 L X 898 4612 mt 898 2830 L X1500 4612 mt 1500 4589 L X1500 2830 mt 1500 2853 L X1467 4758 mt X(5) s X2253 4612 mt 2253 4589 L X2253 2830 mt 2253 2853 L X2187 4758 mt X(10) s X3006 4612 mt 3006 4589 L X3006 2830 mt 3006 2853 L X2940 4758 mt X(15) s X 898 4612 mt 921 4612 L X3157 4612 mt 3134 4612 L X 727 4656 mt X(-1) s X 898 4167 mt 921 4167 L X3157 4167 mt 3134 4167 L X 627 4211 mt X(-0.5) s X 898 3721 mt 921 3721 L X3157 3721 mt 3134 3721 L X 797 3765 mt X(0) s X 898 3276 mt 921 3276 L X3157 3276 mt 3134 3276 L X 697 3320 mt X(0.5) s X 898 2830 mt 921 2830 L X3157 2830 mt 3134 2830 L X 797 2874 mt X(1) s X 898 4612 mt 3157 4612 L X 898 2830 mt 3157 2830 L X 898 4612 mt 898 2830 L X3157 4612 mt 3157 2830 L Xgs 898 2830 2260 1783 MR c np X151 0 150 0 151 0 150 0 151 2 151 17 150 159 151 845 X150 -234 151 19 151 -1 150 0 151 0 150 0 151 0 898 3721 16 MP stroke X Xgr X1913 4901 mt X(i = 8) s X1 sg X0 1782 2260 0 0 -1782 3994 4612 4 MP XPP X-2260 0 0 1782 2260 0 0 -1782 3994 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X3994 4612 mt 6254 4612 L X3994 2830 mt 6254 2830 L X3994 4612 mt 3994 2830 L X6254 4612 mt 6254 2830 L X3994 4612 mt 6254 4612 L X3994 4612 mt 3994 2830 L X4597 4612 mt 4597 4589 L X4597 2830 mt 4597 2853 L X4564 4758 mt X(5) s X5350 4612 mt 5350 4589 L X5350 2830 mt 5350 2853 L X5284 4758 mt X(10) s X6103 4612 mt 6103 4589 L X6103 2830 mt 6103 2853 L X6037 4758 mt X(15) s X3994 4612 mt 4017 4612 L X6254 4612 mt 6231 4612 L X3823 4656 mt X(-1) s X3994 4167 mt 4017 4167 L X6254 4167 mt 6231 4167 L X3723 4211 mt X(-0.5) s X3994 3721 mt 4017 3721 L X6254 3721 mt 6231 3721 L X3893 3765 mt X(0) s X3994 3276 mt 4017 3276 L X6254 3276 mt 6231 3276 L X3793 3320 mt X(0.5) s X3994 2830 mt 4017 2830 L X6254 2830 mt 6231 2830 L X3893 2874 mt X(1) s X3994 4612 mt 6254 4612 L X3994 2830 mt 6254 2830 L X3994 4612 mt 3994 2830 L X6254 4612 mt 6254 2830 L Xgs 3994 2830 2261 1783 MR c np X151 -529 150 -290 151 -351 151 -176 150 284 151 442 151 -2 150 -9 X151 0 151 0 150 0 151 0 151 0 150 0 151 0 3994 3721 16 MP stroke X Xgr X5009 4901 mt X(i = 5) s X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 59 2757 a Fo(Figure)17 b(3.5:)22 b(Comparison)16 b(of)h(the)f(righ)o X(t)h(singular)g(v)o(ectors)f(for)g(SVD)h(and)g(GSVD)f(for)g(the)h(in)o X(v)o(erse)59 2814 y(Laplace)f(transformation)e(test-problem.)p Xeop X%%Page: 40 42 X40 41 bop 64 159 a Fo(40)1473 b(TUTORIAL)p 64 178 1767 X2 v 177 259 a X 22935557 18646798 4933632 13156352 36048404 38350766 startTexFig X 177 259 a X%%BeginDocument: tutorial/fig6.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 697 340 5679 4598 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 1782 5356 0 0 -1782 898 2170 4 MP XPP X-5356 0 0 1782 5356 0 0 -1782 898 2170 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 2170 mt 6254 2170 L X 898 388 mt 6254 388 L X 898 2170 mt 898 388 L X6254 2170 mt 6254 388 L X 898 2170 mt 6254 2170 L X 898 2170 mt 898 388 L X1255 2170 mt 1255 2116 L X1255 388 mt 1255 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X1222 2316 mt X(2) s X1969 2170 mt 1969 2116 L X1969 388 mt 1969 442 L X1936 2316 mt X(4) s X2683 2170 mt 2683 2116 L X2683 388 mt 2683 442 L X2650 2316 mt X(6) s X3397 2170 mt 3397 2116 L X3397 388 mt 3397 442 L X3364 2316 mt X(8) s X4112 2170 mt 4112 2116 L X4112 388 mt 4112 442 L X4046 2316 mt X(10) s X4826 2170 mt 4826 2116 L X4826 388 mt 4826 442 L X4760 2316 mt X(12) s X5540 2170 mt 5540 2116 L X5540 388 mt 5540 442 L X5474 2316 mt X(14) s X6254 2170 mt 6254 2116 L X6254 388 mt 6254 442 L X6188 2316 mt X(16) s X 898 2170 mt 952 2170 L X6254 2170 mt 6200 2170 L X 797 2214 mt X(0) s X 898 1873 mt 952 1873 L X6254 1873 mt 6200 1873 L X 697 1917 mt X(0.2) s X 898 1576 mt 952 1576 L X6254 1576 mt 6200 1576 L X 697 1620 mt X(0.4) s X 898 1279 mt 952 1279 L X6254 1279 mt 6200 1279 L X 697 1323 mt X(0.6) s X 898 982 mt 952 982 L X6254 982 mt 6200 982 L X 697 1026 mt X(0.8) s X 898 685 mt 952 685 L X6254 685 mt 6200 685 L X 797 729 mt X(1) s X 898 2170 mt 6254 2170 L X 898 388 mt 6254 388 L X 898 2170 mt 898 388 L X6254 2170 mt 6254 388 L Xgs 898 388 5357 1783 MR c np X357 0 357 0 357 0 357 0 357 0 357 0 357 1 358 5 X357 15 357 42 357 88 357 145 357 194 357 183 357 -79 898 1576 16 MP stroke X357 0 357 0 357 0 357 0 357 0 357 1 357 2 358 14 X357 46 357 122 357 240 357 343 357 266 357 -277 357 -1027 898 2440 16 MP stroke X357 0 357 0 357 0 357 0 357 0 357 1 357 7 358 30 X357 103 357 259 357 458 357 444 357 -206 357 -1116 357 177 898 2013 16 MP stroke X357 0 357 0 357 0 357 0 357 0 357 2 357 14 358 60 X357 201 357 473 357 654 357 71 357 -1134 357 51 357 -346 898 2124 16 MP stroke X357 0 357 0 357 0 357 0 357 1 357 4 357 25 358 113 X357 366 357 746 357 512 357 -998 357 -94 357 -366 357 -248 898 2109 16 MP stroke X328 -1775 357 728 357 -641 357 -259 357 -264 898 2111 6 MP stroke X357 0 357 0 357 0 357 0 357 2 357 12 357 76 358 333 X357 953 303 894 2737 -100 11 MP stroke X295 -1840 357 -93 357 -279 898 2112 4 MP stroke X158 5484 1980 -100 2 MP stroke X-35 5484 2403 -100 2 MP stroke X17 5484 2826 -100 2 MP stroke X357 0 357 0 357 0 357 -9 357 -106 357 -909 143 -2190 3969 5384 8 MP stroke X Xgr Xgs 825 612 5503 1568 MR c np X 873 2081 mt 923 2131 L X 923 2081 mt 873 2131 L X1230 1838 mt 1280 1888 L X1280 1838 mt 1230 1888 L X1587 1499 mt 1637 1549 L X1637 1499 mt 1587 1549 L X1944 1172 mt 1994 1222 L X1994 1172 mt 1944 1222 L X2301 926 mt 2351 976 L X2351 926 mt 2301 976 L X2658 777 mt 2708 827 L X2708 777 mt 2658 827 L X3015 703 mt 3065 753 L X3065 703 mt 3015 753 L X3372 673 mt 3422 723 L X3422 673 mt 3372 723 L X3730 663 mt 3780 713 L X3780 663 mt 3730 713 L X4087 661 mt 4137 711 L X4137 661 mt 4087 711 L X4444 660 mt 4494 710 L X4494 660 mt 4444 710 L X4801 660 mt 4851 710 L X4851 660 mt 4801 710 L X5158 660 mt 5208 710 L X5208 660 mt 5158 710 L X5515 660 mt 5565 710 L X5565 660 mt 5515 710 L X5872 660 mt 5922 710 L X5922 660 mt 5872 710 L X6229 660 mt 6279 710 L X6279 660 mt 6229 710 L X Xgr Xgs 898 388 5357 1783 MR c np X Xgr X3457 2459 mt X(L = I) s X1 sg X0 1782 5356 0 0 -1782 898 4612 4 MP XPP X-5356 0 0 1782 5356 0 0 -1782 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 6254 4612 L X 898 2830 mt 6254 2830 L X 898 4612 mt 898 2830 L X6254 4612 mt 6254 2830 L X 898 4612 mt 6254 4612 L X 898 4612 mt 898 2830 L X1255 4612 mt 1255 4558 L X1255 2830 mt 1255 2884 L X1222 4758 mt X(2) s X1969 4612 mt 1969 4558 L X1969 2830 mt 1969 2884 L X1936 4758 mt X(4) s X2683 4612 mt 2683 4558 L X2683 2830 mt 2683 2884 L X2650 4758 mt X(6) s X3397 4612 mt 3397 4558 L X3397 2830 mt 3397 2884 L X3364 4758 mt X(8) s X4112 4612 mt 4112 4558 L X4112 2830 mt 4112 2884 L X4046 4758 mt X(10) s X4826 4612 mt 4826 4558 L X4826 2830 mt 4826 2884 L X4760 4758 mt X(12) s X5540 4612 mt 5540 4558 L X5540 2830 mt 5540 2884 L X5474 4758 mt X(14) s X6254 4612 mt 6254 4558 L X6254 2830 mt 6254 2884 L X6188 4758 mt X(16) s X 898 4612 mt 952 4612 L X6254 4612 mt 6200 4612 L X 797 4656 mt X(0) s X 898 4315 mt 952 4315 L X6254 4315 mt 6200 4315 L X 697 4359 mt X(0.2) s X 898 4018 mt 952 4018 L X6254 4018 mt 6200 4018 L X 697 4062 mt X(0.4) s X 898 3721 mt 952 3721 L X6254 3721 mt 6200 3721 L X 697 3765 mt X(0.6) s X 898 3424 mt 952 3424 L X6254 3424 mt 6200 3424 L X 697 3468 mt X(0.8) s X 898 3127 mt 952 3127 L X6254 3127 mt 6200 3127 L X 797 3171 mt X(1) s X 898 4612 mt 6254 4612 L X 898 2830 mt 6254 2830 L X 898 4612 mt 898 2830 L X6254 4612 mt 6254 2830 L Xgs 898 2830 5357 1783 MR c np X357 0 357 0 357 0 357 0 357 0 357 0 357 -1 358 0 X357 -5 357 -17 357 -54 357 -135 357 -263 357 -379 357 -316 898 4589 16 MP stroke X357 0 357 0 357 0 357 0 357 0 357 0 357 0 358 -2 X357 -6 357 -25 357 -79 357 -189 357 -335 357 -394 357 -210 898 4541 16 MP stroke X357 0 357 0 357 0 357 0 357 0 357 0 357 0 358 -2 X357 -10 357 -38 357 -116 357 -249 357 -359 357 -312 357 -256 898 4552 16 MP stroke X357 0 357 0 357 0 357 0 357 0 357 0 357 -1 358 -2 X357 -10 357 -39 357 -118 357 -251 357 -356 357 -313 357 -256 898 4552 16 MP stroke X357 0 357 0 357 0 357 0 357 0 357 -1 357 -5 358 -32 X357 -160 357 -532 357 -834 357 460 357 -601 357 -264 357 -263 898 4553 16 MP stroke X101 3413 357 -2211 357 -93 357 -279 898 4554 5 MP stroke X-38 5484 2424 -100 2 MP stroke X24 5484 2850 -100 2 MP stroke X Xgr Xgs 825 3054 5503 1568 MR c np X 873 4523 mt 923 4573 L X 923 4523 mt 873 4573 L X1230 4280 mt 1280 4330 L X1280 4280 mt 1230 4330 L X1587 3941 mt 1637 3991 L X1637 3941 mt 1587 3991 L X1944 3614 mt 1994 3664 L X1994 3614 mt 1944 3664 L X2301 3368 mt 2351 3418 L X2351 3368 mt 2301 3418 L X2658 3219 mt 2708 3269 L X2708 3219 mt 2658 3269 L X3015 3145 mt 3065 3195 L X3065 3145 mt 3015 3195 L X3372 3115 mt 3422 3165 L X3422 3115 mt 3372 3165 L X3730 3105 mt 3780 3155 L X3780 3105 mt 3730 3155 L X4087 3103 mt 4137 3153 L X4137 3103 mt 4087 3153 L X4444 3102 mt 4494 3152 L X4494 3102 mt 4444 3152 L X4801 3102 mt 4851 3152 L X4851 3102 mt 4801 3152 L X5158 3102 mt 5208 3152 L X5208 3102 mt 5158 3152 L X5515 3102 mt 5565 3152 L X5565 3102 mt 5515 3152 L X5872 3102 mt 5922 3152 L X5922 3102 mt 5872 3152 L X6229 3102 mt 6279 3152 L X6279 3102 mt 6229 3152 L X Xgr Xgs 898 2830 5357 1783 MR c np X Xgr X3460 4901 mt X(L ) s X/Symbol /WindowsLatin1Encoding 120 FMSR X X3560 4901 mt X(\271) s X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3625 4901 mt X( I) s X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 59 1538 a Fo(Figure)14 b(3.6:)k(The)c(\014rst)g(7)f(TSVD)h(solutions)h X(and)f(the)g(\014rst)f(6)h(TGSVD)f(solutions)i(for)e(the)h(same)f(test) X59 1594 y(problem)j(as)f(in)h(Fig.)f(3.5.)j(The)e(exact)f(solution)h X(is)g(sho)o(wn)e(with)i Fm(\002)p Fo(-mark)o(ers.)59 X1723 y(that)c(TSVD)g(cannot)h(repro)q(duce)g(the)g(desired)h(solution,) Xf(while)h(TGSVD)f(indeed)h(succeeds)g(in)f(doing)59 1780 Xy(so.)20 b(The)15 b(optimal)h(regularization)g(parameter)e(for)h(TGSVD) Xf(is)i Fn(k)e Fo(=)f(5.)130 1836 y(W)l(e)21 b(notice)i(that)e(without)g X(our)h(a)f(priori)h(kno)o(wledge)g(part)f(of)h(the)f(solution,)j(w)o(e) Xd(could)i(not)59 1892 y(immediately)17 b(discard)f(the)f(TSVD)g X(solutions!)59 2017 y Fr(3.6.)j(No)g(Square)h(In)n(tegrable)f(Solution) X59 2118 y Fo(In)g(this)g(tutorial's)f(\014nal)h(example)g(w)o(e)f(use)g X(the)h(routine)g Fl(ursell)f Fo(to)g(generate)g(a)g(test)f(problem)i X(aris-)59 2175 y(ing)j(from)f(discretization)j(of)d(a)g(F)l(redholm)i X(in)o(tegral)f(equation)g(of)f(the)h(\014rst)g(kind)g(\(2.1\))f(with)h X(no)59 2231 y(square)15 b(in)o(tegrable)g(solution)h([18)o(,)f(p.)f X(6],)g(i.e.,)h(the)g(in)o(tegral)g(equation)g(do)q(es)g(not)g(satisfy)f X(the)h(Picard)59 2288 y(condition.)21 b(The)16 b(in)o(tegral)f X(equation)h(is)540 2342 y Fh(Z)581 2355 y Fj(1)563 2436 Xy(0)688 2368 y Fo(1)p 614 2389 172 2 v 614 2430 a Fn(s)10 Xb Fo(+)h Fn(t)f Fo(+)h(1)798 2399 y Fn(f)5 b Fo(\()p XFn(t)p Fo(\))j Fn(dt)k Fo(=)h(1)i Fn(;)98 b Fo(0)12 b XFm(\024)h Fn(s)g Fm(\024)g Fo(1)i Fn(:)59 2504 y Fo(When)f(w)o(e)f(use) Xh Fl(pica)o(rd)g Fo(to)f(plot)h(the)f(singular)i(v)m(alues)g(and)e(the) Xh(F)l(ourier)g(co)q(e\016cien)o(ts)g(for)f(the)h(discrete)59 X2561 y(problem,)h(see)h(Fig.)e(3.7,)g(w)o(e)h(immediately)h(see)g(that) Xe(discrete)i(ill-p)q(osed)h(problem)f(do)q(es)f(not)g(satisfy)59 X2617 y(the)i(discrete)h(Picard)f(condition,)h(whic)o(h)g(indicates)g X(trouble!)25 b(W)l(e)17 b(stress,)f(ho)o(w)o(ev)o(er,)g(that)h(suc)o(h) Xg(an)59 2674 y(analysis)j(cannot)e(sho)o(w)g(whether)h(the)g(trouble)g X(comes)g(from)f(the)h(in)o(tegral)g(equation)g(itself,)h(from)59 X2730 y(the)15 b(discretization,)i(or)d(p)q(ossibly)j(from)e(other)f X(sources.)130 2846 y Fl([A,b])h(=)h(ursell)8 b(\(32\);)13 Xb([U,s,V])j(=)g(csvd)8 b(\(A\);)15 b(pica)o(rd)8 b(\(U,s,b\);)p Xeop X%%Page: 41 43 X41 42 bop 59 159 a Fo(3.6.)14 b(No)h(Square)g(In)o(tegrable)h(Solution) X1035 b(41)p 59 178 1767 2 v 177 890 a X 22376156 18646798 4341596 13222133 35982622 39469056 startTexFig X 177 890 a X%%BeginDocument: tutorial/fig7.eps X X X% MathWorks dictionary X/MathWorks 160 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/ISOLatin1Encoding where X{pop X/WindowsLatin1Encoding 256 array bdef XISOLatin1Encoding WindowsLatin1Encoding copy pop X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis XWindowsLatin1Encoding 128 32 getinterval astore pop} X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X/MRR { X /vradius xdef X /hradius xdef X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X newpath X tMatrix currentmatrix pop X ulx hradius add uly vradius add translate X hradius vradius scale X 0 0 1 180 270 arc X tMatrix setmatrix X lrx hradius sub uly vradius add translate X hradius vradius scale X 0 0 1 270 360 arc X tMatrix setmatrix X lrx hradius sub lry vradius sub translate X hradius vradius scale X 0 0 1 0 90 arc X tMatrix setmatrix X ulx hradius add lry vradius sub translate X hradius vradius scale X 0 0 1 90 180 arc X tMatrix setmatrix X closepath X } bdef X/FRR { X MRR stroke } bdef X/PRR { X MRR fill } bdef X X/MlrRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lry uly sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 90 270 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 270 90 arc X tMatrix setmatrix X closepath X } bdef X/FlrRR { X MlrRR stroke } bdef X/PlrRR { X MlrRR fill } bdef X X/MtbRR { X /lry xdef X /lrx xdef X /uly xdef X /ulx xdef X /rad lrx ulx sub 2 div def X newpath X tMatrix currentmatrix pop X ulx rad add uly rad add translate X rad rad scale X 0 0 1 180 360 arc X tMatrix setmatrix X lrx rad sub lry rad sub translate X rad rad scale X 0 0 1 0 180 arc X tMatrix setmatrix X closepath X } bdef X/FtbRR { X MtbRR stroke } bdef X/PtbRR { X MtbRR fill } bdef X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0204 7344 csm X X 595 134 5775 4796 MR c np X85 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6913 5185 PR X6 w X0 4224 5356 0 0 -4224 898 4612 4 MP XPP X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke X4 w XDO XSO X6 w X0 sg X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L X 898 4612 mt 6254 4612 L X 898 4612 mt 898 388 L X 898 4612 mt 898 4558 L X 898 388 mt 898 442 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 865 4758 mt X(0) s X1663 4612 mt 1663 4558 L X1663 388 mt 1663 442 L X1630 4758 mt X(5) s X2428 4612 mt 2428 4558 L X2428 388 mt 2428 442 L X2362 4758 mt X(10) s X3193 4612 mt 3193 4558 L X3193 388 mt 3193 442 L X3127 4758 mt X(15) s X3959 4612 mt 3959 4558 L X3959 388 mt 3959 442 L X3893 4758 mt X(20) s X4724 4612 mt 4724 4558 L X4724 388 mt 4724 442 L X4658 4758 mt X(25) s X5489 4612 mt 5489 4558 L X5489 388 mt 5489 442 L X5423 4758 mt X(30) s X6254 4612 mt 6254 4558 L X6254 388 mt 6254 442 L X6188 4758 mt X(35) s X 898 4612 mt 952 4612 L X6254 4612 mt 6200 4612 L X 595 4656 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 4582 mt X(-15) s X 898 4443 mt 925 4443 L X6254 4443 mt 6227 4443 L X 898 4274 mt 925 4274 L X6254 4274 mt 6227 4274 L X 898 4105 mt 925 4105 L X6254 4105 mt 6227 4105 L X 898 3936 mt 925 3936 L X6254 3936 mt 6227 3936 L X 898 3767 mt 925 3767 L X6254 3767 mt 6227 3767 L X 898 3598 mt 925 3598 L X6254 3598 mt 6227 3598 L X 898 3429 mt 925 3429 L X6254 3429 mt 6227 3429 L X 898 3260 mt 925 3260 L X6254 3260 mt 6227 3260 L X 898 3091 mt 925 3091 L X6254 3091 mt 6227 3091 L X 898 3767 mt 952 3767 L X6254 3767 mt 6200 3767 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 3811 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 3737 mt X(-10) s X 898 3598 mt 925 3598 L X6254 3598 mt 6227 3598 L X 898 3429 mt 925 3429 L X6254 3429 mt 6227 3429 L X 898 3260 mt 925 3260 L X6254 3260 mt 6227 3260 L X 898 3091 mt 925 3091 L X6254 3091 mt 6227 3091 L X 898 2922 mt 925 2922 L X6254 2922 mt 6227 2922 L X 898 2753 mt 925 2753 L X6254 2753 mt 6227 2753 L X 898 2584 mt 925 2584 L X6254 2584 mt 6227 2584 L X 898 2416 mt 925 2416 L X6254 2416 mt 6227 2416 L X 898 2247 mt 925 2247 L X6254 2247 mt 6227 2247 L X 898 2922 mt 952 2922 L X6254 2922 mt 6200 2922 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 2966 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 2892 mt X(-5) s X 898 2753 mt 925 2753 L X6254 2753 mt 6227 2753 L X 898 2584 mt 925 2584 L X6254 2584 mt 6227 2584 L X 898 2416 mt 925 2416 L X6254 2416 mt 6227 2416 L X 898 2247 mt 925 2247 L X6254 2247 mt 6227 2247 L X 898 2078 mt 925 2078 L X6254 2078 mt 6227 2078 L X 898 1909 mt 925 1909 L X6254 1909 mt 6227 1909 L X 898 1740 mt 925 1740 L X6254 1740 mt 6227 1740 L X 898 1571 mt 925 1571 L X6254 1571 mt 6227 1571 L X 898 1402 mt 925 1402 L X6254 1402 mt 6227 1402 L X 898 2078 mt 952 2078 L X6254 2078 mt 6200 2078 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 2122 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 2048 mt X(0) s X 898 1909 mt 925 1909 L X6254 1909 mt 6227 1909 L X 898 1740 mt 925 1740 L X6254 1740 mt 6227 1740 L X 898 1571 mt 925 1571 L X6254 1571 mt 6227 1571 L X 898 1402 mt 925 1402 L X6254 1402 mt 6227 1402 L X 898 1233 mt 925 1233 L X6254 1233 mt 6227 1233 L X 898 1064 mt 925 1064 L X6254 1064 mt 6227 1064 L X 898 895 mt 925 895 L X6254 895 mt 6227 895 L X 898 726 mt 925 726 L X6254 726 mt 6227 726 L X 898 557 mt 925 557 L X6254 557 mt 6227 557 L X 898 1233 mt 952 1233 L X6254 1233 mt 6200 1233 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 1277 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 1203 mt X(5) s X 898 1064 mt 925 1064 L X6254 1064 mt 6227 1064 L X 898 895 mt 925 895 L X6254 895 mt 6227 895 L X 898 726 mt 925 726 L X6254 726 mt 6227 726 L X 898 557 mt 925 557 L X6254 557 mt 6227 557 L X 898 388 mt 925 388 L X6254 388 mt 6227 388 L X 898 388 mt 952 388 L X6254 388 mt 6200 388 L X/Helvetica /WindowsLatin1Encoding 120 FMSR X X 595 432 mt X(10) s X/Helvetica /WindowsLatin1Encoding 80 FMSR X X 728 358 mt X(10) s X 898 4612 mt 6254 4612 L X 898 388 mt 6254 388 L X 898 4612 mt 898 388 L X6254 4612 mt 6254 388 L Xgs 898 388 5357 4225 MR c np X153 185 153 3 153 13 153 1 153 4 153 4 153 19 153 6 X153 21 153 1 153 1 153 4 153 15 153 7 154 1 153 9 X153 1 153 4 153 0 153 17 153 2 153 33 153 9 153 74 X153 299 153 299 153 297 153 295 153 294 153 291 153 274 1051 2123 32 MP stroke Xgs 978 2050 4891 2630 MR c np X24 w X1051 2123 PD X1204 2397 PD X1357 2688 PD X1510 2982 PD X1663 3277 PD X1816 3574 PD X1969 3873 PD X2122 4172 PD X2275 4246 PD X2428 4255 PD X2581 4288 PD X2734 4290 PD X2887 4307 PD X3040 4307 PD X3193 4311 PD X3346 4312 PD X3499 4321 PD X3653 4322 PD X3806 4329 PD X3959 4344 PD X4112 4348 PD X4265 4349 PD X4418 4350 PD X4571 4371 PD X4724 4377 PD X4877 4396 PD X5030 4400 PD X5183 4404 PD X5336 4405 PD X5489 4418 PD X5642 4421 PD X5795 4606 PD X Xgr X24 w X6 w Xgs 978 2006 4891 1664 MR c np X1026 2054 mt 1076 2104 L X1076 2054 mt 1026 2104 L X1179 2189 mt 1229 2239 L X1229 2189 mt 1179 2239 L X1332 2335 mt 1382 2385 L X1382 2335 mt 1332 2385 L X1485 2482 mt 1535 2532 L X1535 2482 mt 1485 2532 L X1638 2629 mt 1688 2679 L X1688 2629 mt 1638 2679 L X1791 2778 mt 1841 2828 L X1841 2778 mt 1791 2828 L X1944 2927 mt 1994 2977 L X1994 2927 mt 1944 2977 L X2097 3077 mt 2147 3127 L X2147 3077 mt 2097 3127 L X2250 3399 mt 2300 3449 L X2300 3399 mt 2250 3449 L X2403 3344 mt 2453 3394 L X2453 3344 mt 2403 3394 L X2556 3369 mt 2606 3419 L X2606 3369 mt 2556 3419 L X2709 3494 mt 2759 3544 L X2759 3494 mt 2709 3544 L X2862 3571 mt 2912 3621 L X2912 3571 mt 2862 3621 L X3015 3517 mt 3065 3567 L X3065 3517 mt 3015 3567 L X3168 3250 mt 3218 3300 L X3218 3250 mt 3168 3300 L X3321 3318 mt 3371 3368 L X3371 3318 mt 3321 3368 L X3474 3316 mt 3524 3366 L X3524 3316 mt 3474 3366 L X3628 3353 mt 3678 3403 L X3678 3353 mt 3628 3403 L X3781 3324 mt 3831 3374 L X3831 3324 mt 3781 3374 L X3934 3409 mt 3984 3459 L X3984 3409 mt 3934 3459 L X4087 3479 mt 4137 3529 L X4137 3479 mt 4087 3529 L X4240 3401 mt 4290 3451 L X4290 3401 mt 4240 3451 L X4393 3414 mt 4443 3464 L X4443 3414 mt 4393 3464 L X4546 3352 mt 4596 3402 L X4596 3352 mt 4546 3402 L X4699 3515 mt 4749 3565 L X4749 3515 mt 4699 3565 L X4852 3423 mt 4902 3473 L X4902 3423 mt 4852 3473 L X5005 3309 mt 5055 3359 L X5055 3309 mt 5005 3359 L X5158 3364 mt 5208 3414 L X5208 3364 mt 5158 3414 L X5311 3346 mt 5361 3396 L X5361 3346 mt 5311 3396 L X5464 3348 mt 5514 3398 L X5514 3348 mt 5464 3398 L X5617 3368 mt 5667 3418 L X5667 3368 mt 5617 3418 L X5770 3318 mt 5820 3368 L X5820 3318 mt 5770 3368 L X Xgr Xgs 978 742 4891 1365 MR c np X 36 36 1051 2033 FO X 36 36 1204 1894 FO X 36 36 1357 1749 FO X 36 36 1510 1603 FO X 36 36 1663 1455 FO X 36 36 1816 1306 FO X 36 36 1969 1157 FO X 36 36 2122 1008 FO X 36 36 2275 1255 FO X 36 36 2428 1191 FO X 36 36 2581 1184 FO X 36 36 2734 1306 FO X 36 36 2887 1367 FO X 36 36 3040 1312 FO X 36 36 3193 1042 FO X 36 36 3346 1109 FO X 36 36 3499 1097 FO X 36 36 3653 1133 FO X 36 36 3806 1098 FO X 36 36 3959 1169 FO X 36 36 4112 1233 FO X 36 36 4265 1154 FO X 36 36 4418 1167 FO X 36 36 4571 1083 FO X 36 36 4724 1240 FO X 36 36 4877 1130 FO X 36 36 5030 1011 FO X 36 36 5183 1063 FO X 36 36 5336 1044 FO X 36 36 5489 1033 FO X 36 36 5642 1049 FO X 36 36 5795 815 FO X Xgr X Xgr X/Helvetica /WindowsLatin1Encoding 120 FMSR X X3562 4901 mt X(i) s X3294 293 mt X(Picard plot) s X1 sg X0 922 1646 0 0 -922 4470 1414 4 MP XPP X-1646 0 0 922 1646 0 0 -922 4470 1414 5 MP stroke X4 w XDO XSO X6 w X0 sg X4470 1414 mt 6116 1414 L X4470 492 mt 6116 492 L X4470 1414 mt 4470 492 L X6116 1414 mt 6116 492 L X4470 1414 mt 6116 1414 L X4470 1414 mt 4470 492 L X4470 1414 mt 6116 1414 L X4470 492 mt 6116 492 L X4470 1414 mt 4470 492 L X6116 1414 mt 6116 492 L X/Symbol /WindowsLatin1Encoding 168 FMSR X X5273 751 mt X(s) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5374 835 mt X(i) s X/Helvetica /WindowsLatin1Encoding 168 FMSR X X5403 751 mt X( ) s Xgs 4470 492 1647 923 MR c np X428 0 4577 723 2 MP stroke Xgs 4504 650 575 147 MR c np X24 w X4577 723 PD X5005 723 PD X Xgr X24 w X Xgr X24 w X5273 1000 mt X(|u) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5410 1084 mt X(i) s X5410 916 mt X(T) s X/Helvetica /WindowsLatin1Encoding 168 FMSR X X5490 1000 mt X(b| ) s Xgs 4470 492 1647 923 MR c np X6 w Xgs 4504 880 575 147 MR c np X4552 928 mt 4602 978 L X4602 928 mt 4552 978 L X4980 928 mt 5030 978 L X5030 928 mt 4980 978 L X Xgr X Xgr X6 w X5273 1231 mt X(|u) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5410 1315 mt X(i) s X5410 1147 mt X(T) s X/Helvetica /WindowsLatin1Encoding 168 FMSR X X5490 1231 mt X(b|/) s X/Symbol /WindowsLatin1Encoding 168 FMSR X X5673 1231 mt X(s) s X/Helvetica /WindowsLatin1Encoding 132 FMSR X X5774 1315 mt X(i) s Xgs 4470 492 1647 923 MR c np Xgs 4504 1111 575 147 MR c np X 36 36 4577 1184 FO X 36 36 5005 1184 FO X Xgr X Xgr X Xend X Xeplot X Xepage Xend X Xshowpage X X%%EndDocument X X endTexFig X 59 2169 a Fo(Figure)15 b(3.7:)j(The)d(output)g(from)e XFl(pica)o(rd)i Fo(for)f(the)h(test)f(problem)h(that)f(do)q(es)h(not)f X(satisfy)g(the)h(discrete)59 2226 y(Picard)h(condition.)p Xeop X%%Page: 42 44 X42 43 bop 64 159 a Fo(42)1473 b(TUTORIAL)p 64 178 1767 X2 v eop X%%Page: 43 45 X43 44 bop 59 546 a Fq(4.)35 b(Regulariza)-5 b(tion)27 Xb(Tools)f(Reference)59 752 y Fo(This)20 b(section)g(con)o(tains)f X(detailed)i(descriptions)f(of)f(all)h Ff(Regulariza)m(tion)i(Tools)c XFo(routines.)33 b(It)59 809 y(b)q(egins)14 b(with)g(a)e(list)i(of)f X(the)g(routines)h(group)q(ed)f(b)o(y)g(sub)s(ject)g(area)g(and)g(con)o X(tin)o(ues)g(with)h(the)f(reference)59 865 y(en)o(tries)f(en)g(alphab)q X(etical)h(order.)19 b(Information)11 b(is)h(also)f(a)o(v)m(ailable)i X(through)e(the)h(on-line)h(help)g(facilit)o(y)l(.)p 256 X951 1378 2 v 255 1007 2 57 v 605 991 a(REGULARIZA)l(TION)18 Xb(R)o(OUTINES)p 1633 1007 V 256 1009 1378 2 v 255 1066 X2 57 v 281 1049 a Fl(cgls)142 b Fo(Computes)15 b(the)g(least)g(squares) Xg(solution)h(based)g(on)f Fn(k)h Fo(steps)p 1633 1066 XV 255 1122 V 494 1105 a(of)f(the)g(conjugate)g(gradien)o(t)g(algorithm) Xp 1633 1122 V 255 1179 V 281 1162 a Fl(discrep)83 b Fo(Minimizes)17 Xb(the)e(solution)h(\(semi\)norm)f(sub)s(ject)g(to)g(an)g(upp)q(er)p X1633 1179 V 255 1235 V 494 1218 a(b)q(ound)h(on)f(the)g(residual)i X(norm)e(\(discrepancy)h(principle\))p 1633 1235 V 255 X1291 V 281 1274 a Fl(dsvd)129 b Fo(Computes)15 b(a)g(damp)q(ed)h XFk(SVD)t Fo(/)p Fk(GSVD)e Fo(solution)p 1633 1291 V 255 X1348 V 281 1331 a Fl(lsqi)151 b Fo(Minimizes)17 b(the)e(residual)i X(norm)e(sub)s(ject)g(to)f(an)h(upp)q(er)i(b)q(ound)p X1633 1348 V 255 1404 V 494 1387 a(on)e(the)g(\(semi\)norm)g(of)g(the)g X(solution)p 1633 1404 V 255 1461 V 281 1444 a Fl(lsqr)146 Xb Fo(Computes)15 b(the)g(least)g(squares)g(solution)h(based)g(on)f XFn(k)h Fo(steps)p 1633 1461 V 255 1517 V 494 1500 a(of)f(the)g XFk(LSQR)f Fo(algorithm)p 1633 1517 V 255 1574 V 281 1557 Xa Fl(maxent)74 b Fo(Computes)15 b(the)g(maxim)o(um)g(en)o(trop)o(y)g X(regularized)h(solution)p 1633 1574 V 255 1630 V 281 X1613 a Fl(mtsvd)99 b Fo(Computes)15 b(the)g(mo)q(di\014ed)i XFk(TSVD)d Fo(solution)p 1633 1630 V 255 1687 V 281 1670 Xa Fl(nu)167 b Fo(Computes)15 b(the)g(solution)h(based)g(on)f XFn(k)h Fo(steps)f(of)g(Brakhage's)p 1633 1687 V 255 1743 XV 494 1726 a(iterativ)o(e)g Fn(\027)s Fo(-metho)q(d)p X1633 1743 V 255 1800 V 281 1783 a Fl(p)q(cgls)118 b Fo(Same)15 Xb(as)g Fl(cgls)p Fo(,)g(but)g(for)g(general-form)g(regularization)p X1633 1800 V 255 1856 V 281 1839 a Fl(plsqr)123 b Fo(Same)15 Xb(as)g Fl(lsqr)p Fo(,)g(but)g(for)g(general-form)g(regularization)p X1633 1856 V 255 1912 V 281 1896 a Fl(pnu)144 b Fo(Same)15 Xb(as)g Fl(nu)p Fo(,)h(but)f(for)g(general-form)g(regularization)p X1633 1912 V 255 1969 V 281 1952 a Fl(tgsvd)113 b Fo(Computes)15 Xb(the)g(truncated)g Fk(GSVD)g Fo(solution)p 1633 1969 XV 255 2025 V 281 2008 a Fl(tikhonov)51 b Fo(Computes)15 Xb(the)g(Tikhono)o(v)g(regularized)i(solution)p 1633 2025 XV 255 2082 V 281 2065 a Fl(tsvd)136 b Fo(Computes)15 Xb(the)g(truncated)g Fk(SVD)g Fo(solution)p 1633 2082 XV 255 2138 V 281 2121 a Fl(ttls)153 b Fo(Computes)15 Xb(the)g(truncated)g Fk(TLS)f Fo(solution)p 1633 2138 XV 256 2140 1378 2 v 189 2193 1513 2 v 188 2249 2 57 v X703 2232 a(ANAL)l(YSIS)j(R)o(OUTINES)p 1700 2249 V 189 X2251 1513 2 v 188 2308 2 57 v 214 2291 a Fl(\014l)p 252 X2291 14 2 v 16 w(fac)102 b Fo(Computes)15 b(\014lter)h(factors)e(for)g X(some)h(regularization)i(metho)q(ds)p 1700 2308 2 57 Xv 188 2364 V 214 2347 a Fl(gcv)145 b Fo(Plots)15 b(the)h XFk(GCV)e Fo(function)i(and)g(computes)f(its)g(minim)o(um)p X1700 2364 V 188 2420 V 214 2404 a Fl(lagrange)49 b Fo(Plots)15 Xb(the)h(Lagrange)e(function)i Fm(k)p Fn(A)8 b Fp(x)h XFm(\000)i Fp(b)p Fm(k)1194 2387 y Fj(2)1194 2415 y(2)1223 X2404 y Fo(+)g Fn(\025)1296 2387 y Fj(2)1323 2404 y Fm(k)p XFn(L)d Fp(x)p Fm(k)1436 2387 y Fj(2)1436 2415 y(2)1469 X2404 y Fo(and)15 b(its)p 1700 2420 V 188 2477 V 423 2460 Xa(deriv)m(ativ)o(e)p 1700 2477 V 188 2533 V 214 2516 Xa Fl(l)p 228 2516 14 2 v 16 w(co)o(rner)65 b Fo(Lo)q(cates)15 Xb(the)h(L-shap)q(ed)g(corner)g(of)e(the)i(L-curv)o(e)p X1700 2533 2 57 v 188 2590 V 214 2573 a Fl(l)p 228 2573 X14 2 v 16 w(curve)82 b Fo(Computes)15 b(the)g(L-curv)o(e,)h(plots)f X(it,)g(and)h(computes)f(its)g(corner)p 1700 2590 2 57 Xv 188 2646 V 214 2629 a Fl(pica)o(rd)95 b Fo(Plots)15 Xb(the)h(\(generalized\))g(singular)g(v)m(alues,)g(the)f(F)l(ourier)h X(co)q(e\016cien)o(ts)p 1700 2646 V 188 2703 V 423 2686 Xa(for)f(the)g(righ)o(t-hand)h(side,)f(and)h(a)f(p)q(ossibly)h(smo)q X(othed)g(curv)o(e)f(of)g(the)p 1700 2703 V 188 2759 V X423 2742 a(solution's)h(F)l(ourier-co)q(e\016cien)o(ts)p X1700 2759 V 188 2816 V 214 2799 a Fl(plot)p 290 2799 X14 2 v 17 w(lc)88 b Fo(Plots)15 b(an)g(L-curv)o(e)p 1700 X2816 2 57 v 188 2872 V 214 2855 a Fl(quasiopt)51 b Fo(Plots)15 Xb(the)h(quasi-optimalit)o(y)g(function)g(and)f(computes)h(its)f(minim)o X(um)p 1700 2872 V 189 2874 1513 2 v eop X%%Page: 44 46 X44 45 bop 64 159 a Fo(44)877 b(Chapter)15 b(4.)f(Regularization)j(T)l X(o)q(ols)e(Reference)p 64 178 1767 2 v 304 260 1283 2 Xv 303 317 2 57 v 748 300 a(TEST)g(PR)o(OBLEMS)p 1585 X317 V 304 318 1283 2 v 303 375 2 57 v 328 358 a Fl(baa)o(rt)103 Xb Fo(First)15 b(kind)h(F)l(redholm)g(in)o(tegral)f(equation)p X1585 375 V 303 431 V 328 414 a Fl(blur)128 b Fo(Image)15 Xb(deblurring)i(test)e(problem)p 1585 431 V 303 488 V X328 471 a Fl(deriv2)87 b Fo(Computation)15 b(of)f(second)i(deriv)m X(ativ)o(e)p 1585 488 V 303 544 V 328 527 a Fl(fo)o(xgo)q(o)q(d)50 Xb Fo(Sev)o(erely)16 b(ill-p)q(osed)i(test)c(problem)p X1585 544 V 303 601 V 328 584 a Fl(heat)120 b Fo(In)o(v)o(erse)15 Xb(heat)g(equation)p 1585 601 V 303 657 V 328 640 a Fl(ilaplace)61 Xb Fo(In)o(v)o(erse)15 b(Laplace)i(transformation)p 1585 X657 V 303 714 V 328 697 a Fl(pa)o(rallax)54 b Fo(Stellar)16 Xb(parallax)g(problem)f(with)h(real)f(observ)m(ations)p X1585 714 V 303 770 V 328 753 a Fl(phillips)71 b Fo(Phillips')17 Xb(\\famous")d(test)h(problem)p 1585 770 V 303 827 V 328 X810 a Fl(sha)o(w)109 b Fo(One-dimensional)18 b(image)d(restoration)g X(mo)q(del)p 1585 827 V 303 883 V 328 866 a Fl(spik)o(es)92 Xb Fo(T)l(est)15 b(problem)h(with)f(a)g(\\spiky")h(solution)p X1585 883 V 303 940 V 328 923 a Fl(ursell)103 b Fo(In)o(tegral)15 Xb(equation)h(with)f(no)g(square)g(in)o(tegrable)h(solution)p X1585 940 V 303 996 V 328 979 a Fl(wing)113 b Fo(T)l(est)15 Xb(problem)h(with)f(a)g(discon)o(tin)o(uous)h(solution)p X1585 996 V 304 998 1283 2 v 307 1062 1276 2 v 306 1119 X2 57 v 507 1102 a(ST)l(AND)o(ARD-F)o(ORM)g(TRANSF)o(ORMA)l(TION)p X1582 1119 V 307 1121 1276 2 v 306 1177 2 57 v 332 1160 Xa Fl(gen)p 401 1160 14 2 v 17 w(fo)o(rm)47 b Fo(T)l(ransforms)15 Xb(a)f(standard-form)h(solution)h(bac)o(k)f(in)o(to)g(the)p X1582 1177 2 57 v 306 1234 V 551 1217 a(general-form)h(setting)p X1582 1234 V 306 1290 V 332 1273 a Fl(std)p 391 1273 14 X2 v 17 w(fo)o(rm)57 b Fo(T)l(ransforms)15 b(a)f(general-form)i(problem) Xf(in)o(to)h(one)f(in)p 1582 1290 2 57 v 306 1346 V 551 X1329 a(standard)g(form)p 1582 1346 V 307 1348 1276 2 Xv 211 1413 1468 2 v 210 1469 2 57 v 719 1452 a(UTILITY)h(R)o(OUTINES)p X1678 1469 V 211 1471 1468 2 v 210 1528 2 57 v 236 1511 Xa Fl(bidiag)72 b Fo(Bidiagonalization)17 b(of)e(a)g(matrix)g(b)o(y)g X(Householder)h(transformations)p 1678 1528 V 210 1584 XV 236 1567 a Fl(cgsvd)81 b Fo(Computes)14 b(the)i(compact)f X(generalized)i Fk(SVD)d Fo(of)h(a)g(matrix)g(pair)p 1678 X1584 V 210 1640 V 236 1623 a Fl(csvd)104 b Fo(Computes)14 Xb(the)i(compact)f Fk(SVD)f Fo(of)h(an)g Fn(m)10 b Fm(\002)h XFn(n)k Fo(matrix)p 1678 1640 V 210 1697 V 236 1680 a XFl(get)p 298 1680 14 2 v 17 w(l)98 b Fo(Pro)q(duces)15 Xb(a)g(\()p Fn(n)10 b Fm(\000)h Fn(d)p Fo(\))e Fm(\002)i XFn(n)k Fo(matrix)g(whic)o(h)h(is)g(the)f(discrete)p 1678 X1697 2 57 v 210 1753 V 421 1736 a(appro)o(ximation)g(to)f(the)i XFn(d)p Fo(th)e(order)h(deriv)m(ativ)o(e)i(op)q(erator)p X1678 1753 V 210 1810 V 236 1793 a Fl(lanc)p 315 1793 X14 2 v 17 w(b)69 b Fo(P)o(erforms)14 b Fn(k)i Fo(steps)f(of)g(the)g X(Lanczos)h(bidiagonalization)p 1678 1810 2 57 v 210 1866 XV 421 1849 a(pro)q(cess)f(with/without)g(reorthogonalization)p X1678 1866 V 210 1923 V 236 1906 a Fl(regutm)50 b Fo(Generates)14 Xb(random)h(test)g(matrices)g(for)g(regularization)h(metho)q(ds)p X1678 1923 V 211 1924 1468 2 v 186 1989 1519 2 v 185 2046 X2 57 v 687 2029 a(A)o(UXILIAR)l(Y)h(R)o(OUTINES)p 1703 X2046 V 186 2047 1519 2 v 185 2104 2 57 v 211 2087 a Fl(app)p X282 2087 14 2 v 17 w(hh)p 345 2087 V 17 w(l)75 b Fo(Applies)17 Xb(a)e(Householder)h(transformation)e(from)g(the)i(left)p X1703 2104 2 57 v 185 2160 V 211 2143 a Fl(gen)p 280 2143 X14 2 v 16 w(hh)106 b Fo(Generates)15 b(a)f(Householder)j X(transformation)p 1703 2160 2 57 v 185 2217 V 211 2200 Xa Fl(heb)p 280 2200 14 2 v 17 w(new)77 b Fo(Newton-Raphson)15 Xb(iteration)h(with)f(Heb)q(den's)i(rational)p 1703 2217 X2 57 v 185 2273 V 445 2256 a(appro)o(ximation,)e(used)g(in)h XFl(lsqi)p 1703 2273 V 185 2330 V 211 2313 a(lsolve)131 Xb Fo(In)o(v)o(ersion)16 b(with)f Fn(A)p Fo(-w)o(eigh)o(ted)h X(generalized)h(in)o(v)o(erse)e(of)g Fn(L)p 1703 2330 XV 185 2386 V 211 2369 a Fl(ltsolve)115 b Fo(In)o(v)o(ersion)16 Xb(with)f(transp)q(osed)g Fn(A)p Fo(-w)o(eigh)o(ted)h(generalized)h(in)o X(v)o(erse)f(of)e Fn(L)p 1703 2386 V 185 2443 V 211 2426 Xa Fl(newton)98 b Fo(Newton-Raphson)15 b(iteration,)h(used)f(in)h XFl(discrep)p 1703 2443 V 185 2499 V 211 2482 a(pinit)150 Xb Fo(Initialization)18 b(for)c(treating)h(general-form)g(problems)p X1703 2499 V 185 2558 2 59 v 211 2541 a Fl(p)o(ythag)107 Xb Fo(Computes)660 2503 y Fm(p)p 698 2503 139 2 v 38 x XFn(a)722 2528 y Fj(2)751 2541 y Fo(+)11 b Fn(b)817 2528 Xy Fj(2)p 1703 2558 2 59 v 185 2614 2 57 v 211 2597 a XFl(regudemo)49 b Fo(T)l(utorial)15 b(in)o(tro)q(duction)i(to)d XFf(Regulariza)m(tion)j(Tools)p 1703 2614 V 185 2671 V X211 2654 a Fl(spleval)109 b Fo(Computes)15 b(p)q(oin)o(ts)g(on)g(a)g X(spline)i(or)e(spline)i(curv)o(e)p 1703 2671 V 186 2672 X1519 2 v eop X%%Page: 45 47 X45 46 bop 59 159 a Fo(Regularization)17 b(T)l(o)q(ols)e(Reference)1106 Xb(45)p 59 178 1767 2 v 59 304 a Fr(The)18 b(T)-5 b(est)19 Xb(Problems)59 406 y Fo(There)e(are)f(12)g(built-in)j(test)d(problems)h X(in)g Ff(Regulariza)m(tion)i(Tools)p Fo(.)k(T)l(en)17 Xb(of)f(them)h(are)f(tak)o(en)59 462 y(from)j(the)g(literature)h(\(cf.)f X(the)g(follo)o(wing)h(man)o(ual)f(pages)g(for)g(references\))h(while)h X(the)e(remaining,)59 519 y Fl(spik)o(es)p Fo(,)g(is)f(\\co)q(ok)o(ed)f X(up")g(for)g(this)g(pac)o(k)m(age.)26 b(All)19 b(of)e(them)g(ha)o(v)o X(e)g(in)h(common)f(that)g(they)g(are)g(easy)59 575 y(to)d(generate,)g X(and)g(they)h(share)f(the)g(c)o(haracteristic)h(features)f(of)g X(discrete)h(ill-p)q(osed)i(problems)e(men-)59 632 y(tioned)h(in)g X(Section)g(2.3.)130 688 y(All)g(the)f(test)f(problems)h(are)g(deriv)o X(ed)h(from)e(discretizations)i(of)e(a)h(F)l(redholm)g(in)o(tegral)g X(equation)59 745 y(of)e(the)h(\014rst)f(kind.)21 b(Tw)o(o)12 Xb(di\013eren)o(t)i(discretization)h(tec)o(hniques)g(are)f(used:)19 Xb(the)14 b(quadrature)f(metho)q(d)59 801 y(and)g(the)h(Galerkin)g X(metho)q(d)f(with)h(orthonormal)e(basis)i(functions.)20 Xb(In)13 b(the)h Fk(quadr)n(atur)n(e)h(metho)n(d)f Fo([18)o(,)59 X857 y(Chapter)h(6],)f(the)h(in)o(tegral)h(is)g(appro)o(ximated)f(b)o(y) Xg(a)g(w)o(eigh)o(ted)g(sum,)g(i.e.,)455 927 y Fh(Z)497 X940 y Fg(b)479 1021 y(a)522 984 y Fn(K)s Fo(\()p Fn(s;)8 Xb(t)p Fo(\))g Fn(f)d Fo(\()p Fn(t)p Fo(\))j Fn(dt)j Fm(\031)i XFn(I)872 991 y Fg(n)895 984 y Fo(\()p Fn(s)p Fo(\))f(=)1032 X931 y Fg(n)1012 944 y Fh(X)1014 1035 y Fg(i)p Fj(=1)1080 X984 y Fn(w)1113 991 y Fg(j)1138 984 y Fn(K)s Fo(\()p XFn(s;)c(t)1256 991 y Fg(j)1274 984 y Fo(\))g Fn(f)d Fo(\()p XFn(T)1372 991 y Fg(j)1389 984 y Fo(\))15 b Fn(:)59 1122 Xy Fo(In)20 b(particular,)g(for)f(the)g(midp)q(oin)o(t)h(rule)g(w)o(e)f X(use)g Fn(w)982 1129 y Fg(j)1019 1122 y Fo(=)h(\()p Fn(b)12 Xb Fm(\000)h Fn(a)p Fo(\))p Fn(=n)19 b Fo(and)g Fn(t)1391 X1129 y Fg(j)1429 1122 y Fo(=)g(\()p Fn(j)c Fm(\000)1588 X1105 y Fj(1)p 1588 1112 18 2 v 1588 1138 a(2)1611 1122 Xy Fo(\)\()p Fn(b)c Fm(\000)i Fn(a)p Fo(\))p Fn(=n)p Fo(,)59 X1179 y Fn(j)i Fo(=)e(1)p Fn(;)8 b(:)g(:)g(:)d(;)j(n)p XFo(.)18 b(Collo)q(cation)13 b(in)g(the)g Fn(n)g Fo(p)q(oin)o(ts)f XFn(s)882 1186 y Fj(1)902 1179 y Fn(;)c(:)g(:)g(:)d(;)j(s)1025 X1186 y Fg(n)1061 1179 y Fo(then)k(leads)h(to)f(the)h(requiremen)o(ts)g XFn(I)1689 1186 y Fg(n)1712 1179 y Fo(\()p Fn(s)1751 1186 Xy Fg(i)1765 1179 y Fo(\))f(=)59 1235 y Fn(g)r Fo(\()p XFn(s)122 1242 y Fg(i)135 1235 y Fo(\),)j Fn(i)e Fo(=)h(1)p XFn(;)8 b(:)g(:)g(:)d(;)j(n)p Fo(.)20 b(Hence,)c(w)o(e)g(obtain)g(a)f X(system)g(of)g(linear)i(algebraic)g(equations)e Fn(A)8 Xb Fp(x)13 b Fo(=)h Fp(b)h Fo(with)59 1292 y(elemen)o(ts)i(giv)o(en)f(b) Xo(y)g Fn(a)453 1299 y Fg(ij)497 1292 y Fo(=)e Fn(w)579 X1299 y Fg(j)604 1292 y Fn(K)s Fo(\()p Fn(s)685 1299 y XFg(i)699 1292 y Fn(;)8 b(t)736 1299 y Fg(j)754 1292 y XFo(\))16 b(and)g Fn(b)897 1299 y Fg(i)924 1292 y Fo(=)e XFn(g)r Fo(\()p Fn(s)1036 1299 y Fg(i)1050 1292 y Fo(\))h(for)g XFn(i;)8 b(j)15 b Fo(=)f(1)p Fn(;)8 b(:)g(:)g(:)d(;)j(n)p XFo(.)21 b(If)c(the)f(solution)g Fn(f)21 b Fo(is)59 1348 Xy(kno)o(wn)16 b(then)g(w)o(e)g(represen)o(t)g(it)g(b)o(y)g XFp(x)g Fo(with)h(elemen)o(ts)f Fn(x)1044 1355 y Fg(j)1077 X1348 y Fo(=)e Fn(f)5 b Fo(\()p Fn(t)1187 1355 y Fg(j)1206 X1348 y Fo(\),)15 b Fn(j)h Fo(=)f(1)p Fn(;)8 b(:)g(:)g(:)t(;)g(n)p XFo(.)22 b(In)17 b(the)f Fk(Galerkin)59 1405 y(metho)n(d)p XFo(,)f(w)o(e)g(c)o(ho)q(ose)g(the)h(follo)o(wing)g(orthonormal)e(b)q(o) Xo(x)h(functions)h(as)f(basis)h(functions:)229 1535 y XFn( )259 1542 y Fg(i)273 1535 y Fo(\()p Fn(s)p Fo(\))c(=)390 X1463 y Fh(\()445 1516 y Fn(h)471 1487 y Fe(\000)503 1474 Xy Fd(1)p 503 1480 16 2 v 503 1500 a(2)471 1521 y Fg(s)567 X1516 y Fn(;)53 b(s)13 b Fm(2)g Fo([)p Fn(s)744 1523 y XFg(i)p Fe(\000)p Fj(1)803 1516 y Fn(;)8 b(s)845 1523 Xy Fg(i)858 1516 y Fo(])445 1572 y(0)99 b Fn(;)53 b Fo(elsewhere)950 X1535 y Fn(;)f(\036)1042 1542 y Fg(i)1056 1535 y Fo(\()p XFn(t)p Fo(\))13 b(=)1169 1463 y Fh(\()1223 1516 y Fn(h)1249 X1487 y Fe(\000)1281 1474 y Fd(1)p 1282 1480 V 1282 1500 Xa(2)1249 1527 y Fg(t)1345 1516 y Fn(;)53 b(t)13 b Fm(2)g XFo([)p Fn(t)1512 1523 y Fg(i)p Fe(\000)p Fj(1)1571 1516 Xy Fn(;)8 b(t)1608 1523 y Fg(i)1622 1516 y Fo(])1223 1572 Xy(0)99 b Fn(;)53 b Fo(elsewhere)59 1668 y(in)21 b(whic)o(h)g XFn(h)278 1675 y Fg(s)317 1668 y Fo(=)g(\()p Fn(d)13 b XFm(\000)g Fn(c)p Fo(\))p Fn(=n)p Fo(,)20 b Fn(h)623 1675 Xy Fg(t)659 1668 y Fo(=)h(\()p Fn(b)13 b Fm(\000)g Fn(a)p XFo(\))p Fn(=n)p Fo(,)21 b(and)f Fn(s)1054 1675 y Fg(i)1089 X1668 y Fo(=)h Fn(ih)1187 1675 y Fg(s)1205 1668 y Fo(,)g XFn(t)1255 1675 y Fg(i)1290 1668 y Fo(=)g Fn(ih)1388 1675 Xy Fg(t)1403 1668 y Fo(,)g Fn(i)f Fo(=)h(0)p Fn(;)8 b(:)g(:)g(:)t(;)g(n) Xp Fo(.)34 b(Then)59 1724 y(the)21 b(Galerkin)g(metho)q(d)g([3])f(leads) Xi(to)e(a)g(linear)i(system)e(of)h(equations)g Fn(A)8 Xb Fp(x)21 b Fo(=)h Fp(b)f Fo(with)g(elemen)o(ts)59 1780 Xy(giv)o(en)c(b)o(y)g(Eq.)f(\(2.4\).)24 b(Similarly)l(,)19 Xb(w)o(e)d(represen)o(t)h(the)g(solution)h Fn(f)k Fo(b)o(y)16 Xb(the)h(v)o(ector)f Fp(x)h Fo(with)g(elemen)o(ts)59 1837 Xy Fn(x)85 1844 y Fg(j)120 1837 y Fo(=)173 1802 y Fh(R)200 X1816 y Fg(b)192 1851 y(a)225 1837 y Fn(\036)252 1844 Xy Fg(j)270 1837 y Fo(\()p Fn(t)p Fo(\))8 b Fn(f)d Fo(\()p XFn(t)p Fo(\))j Fn(dt)p Fo(,)17 b Fn(j)i Fo(=)f(1)p Fn(;)8 Xb(:)g(:)g(:)t(;)g(n)p Fo(.)27 b(W)l(e)18 b(stress)f(that)h(for)f(b)q X(oth)h(metho)q(ds)f(the)h(pro)q(duct)h Fn(A)8 b Fp(x)17 Xb Fo(is,)59 1893 y(in)h(general,)g Fk(di\013er)n(ent)e XFo(from)g Fp(b)p Fo(.)25 b(The)18 b(table)f(b)q(elo)o(w)h(giv)o(es)f X(an)g(o)o(v)o(erview)g(of)f(the)i(12)e(test)g(problems,)59 X1950 y(while)h(graphs)e(of)f Fp(x)h Fo(for)g Fn(n)e Fo(=)g(100)h(are)h X(giv)o(en)g(in)h(the)g(individual)i(man)o(ual)e(pages.)p X486 2068 918 2 v 485 2124 2 57 v 511 2107 a(test)f(problem)p X785 2124 V 50 w(discretization)p 1101 2124 V 51 w Fn(A)8 Xb Fp(x)k Fo(=)h Fp(b)p 1403 2124 V 486 2126 918 2 v 486 X2134 V 485 2190 2 57 v 511 2173 a Fl(baa)o(rt)p 785 2190 XV 202 w Fo(Galerkin)p 1101 2190 V 145 w(no)p 1403 2190 XV 485 2247 V 511 2230 a Fl(blur)p 785 2247 V 227 w Fo({)p X1101 2247 V 292 w(y)o(es)p 1403 2247 V 485 2303 V 511 X2286 a Fl(deriv2)p 785 2303 V 186 w Fo(Galerkin)p 1101 X2303 V 145 w(y)o(es)p 1403 2303 V 485 2360 V 511 2343 Xa Fl(fo)o(xgo)q(o)q(d)p 785 2360 V 149 w Fo(quadrature)p X1101 2360 V 96 w(no)p 1403 2360 V 485 2416 V 511 2399 Xa Fl(heat)p 785 2416 V 219 w Fo(quadrature)p 1101 2416 XV 96 w(y)o(es)p 1403 2416 V 485 2473 V 511 2456 a Fl(ilaplace)p X785 2473 V 160 w Fo(quadrature)p 1101 2473 V 96 w(y)o(es)p X1403 2473 V 485 2529 V 511 2512 a Fl(pa)o(rallax)p 785 X2529 V 153 w Fo(Galerkin)p 1101 2529 V 145 w Fp(x)i Fo(not)g(kno)o(wn)p X1403 2529 V 485 2586 V 511 2569 a Fl(phillips)p 785 2586 XV 170 w Fo(Galerkin)p 1101 2586 V 145 w(no)p 1403 2586 XV 485 2642 V 511 2625 a Fl(sha)o(w)p 785 2642 V 208 w XFo(quadrature)p 1101 2642 V 96 w(y)o(es)p 1403 2642 V X485 2699 V 511 2682 a Fl(spik)o(es)p 785 2699 V 191 w XFo(\\co)q(ok)o(ed)g(up")p 1101 2699 V 69 w(y)o(es)p 1403 X2699 V 485 2755 V 511 2738 a Fl(ursell)p 785 2755 V 202 Xw Fo(Galerkin)p 1101 2755 V 145 w(no)h Fp(x)e Fo(exists)p X1403 2755 V 485 2811 V 511 2794 a Fl(wing)p 785 2811 XV 212 w Fo(Galerkin)p 1101 2811 V 145 w(no)p 1403 2811 XV 486 2813 918 2 v eop X%%Page: 46 48 X46 47 bop 64 159 a Fo(46)1589 b Fl(app)p 1770 159 14 X2 v 17 w(hh)p 64 178 1767 2 v 59 304 a Fb(app)p 151 304 X18 2 v 21 w(hh)59 406 y Fp(Purp)q(ose:)130 475 y Fo(Apply)16 Xb(a)f(Householder)h(transformation.)59 581 y Fp(Synopsis:)130 X650 y Fl(A)f(=)h(app)p 297 650 14 2 v 17 w(hh)8 b(\(A,b)q(eta,v\))59 X756 y Fp(Description)130 825 y Fl(app)p 201 825 V 17 Xw(hh)15 b Fo(applies)i(the)d(Householder)i(transformation,)d(de\014ned) Xj(b)o(y)f(the)f(v)o(ector)g Fl(v)h Fo(and)g(the)f(scaler)59 X882 y Fl(b)q(eta)p Fo(,)i(to)f(the)g(matrix)g Fl(A)p XFo(;)g(i.e.,)710 938 y Fl(A)e Fm( )g Fo(\()p Fn(I)849 X945 y Fg(n)882 938 y Fm(\000)e Fl(b)q(eta)d(v)g(v)1069 X919 y Fg(T)1097 938 y Fo(\))g Fl(A)14 b Fn(:)59 1071 Xy Fp(See)j(also:)130 1140 y Fl(gen)p 199 1140 V 16 w(hh)p Xeop X%%Page: 47 49 X47 48 bop 59 159 a Fl(baa)o(rt)1623 b Fo(47)p 59 178 X1767 2 v 59 304 a Fb(baa)n(rt)59 406 y Fp(Purp)q(ose:)130 X475 y Fo(T)l(est)15 b(problem:)20 b(F)l(redholm)c(in)o(tegral)g X(equation)f(of)g(the)g(\014rst)g(kind.)59 581 y Fp(Synopsis:)130 X650 y Fl([A,b,x])g(=)h(baa)o(rt)8 b(\(n\))59 756 y Fp(Description:)130 X825 y Fo(Discretization)19 b(of)f(an)h(arti\014cial)g(F)l(redholm)g(in) Xo(tegral)g(equation)g(of)f(the)h(\014rst)f(kind)h(\(2.1\))e(with)59 X882 y(k)o(ernel)f Fn(K)i Fo(and)d(righ)o(t-hand)h(side)g XFn(g)h Fo(giv)o(en)e(b)o(y)528 1001 y Fn(K)s Fo(\()p XFn(s;)8 b(t)p Fo(\))k(=)h(exp\()p Fn(s)8 b Fo(cos)f Fn(t)p XFo(\))15 b Fn(;)98 b(g)r Fo(\()p Fn(s)p Fo(\))12 b(=)h(2)1244 X971 y(sin)c Fn(s)p 1244 991 85 2 v 1276 1033 a(s)1349 X1001 y(;)59 1116 y Fo(and)15 b(with)h(in)o(tegration)f(in)o(terv)m(als) Xh Fn(s)d Fm(2)g Fo([0)p Fn(;)802 1099 y Fg(\031)p 802 X1106 22 2 v 804 1132 a Fj(2)828 1116 y Fo(])i(and)g Fn(t)e XFm(2)g Fo([0)p Fn(;)8 b(\031)r Fo(].)18 b(The)d(solution)h(is)g(giv)o X(en)g(b)o(y)821 1219 y Fn(f)5 b Fo(\()p Fn(t)p Fo(\))13 Xb(=)g(sin)8 b Fn(t)16 b(:)59 1321 y Fo(The)f(size)i(of)d(the)i(matrix)f XFl(A)g Fo(is)h Fl(n)10 b Fm(\002)h Fl(n)p Fo(.)59 1427 Xy Fp(Examples:)130 1496 y Fo(Generate)k(a)f(\\noisy")i(problem)f(of)g X(size)h Fl(n)g(=)f(32)p Fo(:)130 1565 y Fl([A,b,x])g(=)h(baa)o(rt)8 Xb(\(32\);)13 b(b)i(=)h(b)f(+)h(1e-3)p Fm(\003)p Fl(randn)8 Xb(\(size\(b\)\);)59 1671 y Fp(Limitations:)130 1740 y XFo(The)15 b(order)g Fl(n)h Fo(m)o(ust)e(b)q(e)i(ev)o(en.)59 X1846 y Fp(References:)115 1917 y Fo(1.)22 b(M.)13 b(L.)h(Baart,)f XFk(The)h(use)h(of)g(auto-c)n(orr)n(elation)h(for)f(pseudo-r)n(ank)h X(determination)f(in)g(noisy)f(il)r(l-)173 1973 y(c)n(onditione)n(d)h X(line)n(ar)h(le)n(ast-squar)n(es)f(pr)n(oblems)p Fo(,)f(IMA)h(J.)g X(Numer.)g(Anal.)h Fp(2)f Fo(\(1982\),)e(241{247.)531 X2084 y X 14432612 11188078 5262540 26773176 34995896 49731010 startTexFig X 531 2084 a X%%BeginDocument: testfigs/baart.eps X X% MathWorks dictionary X/mathworks 50 dict begin X X% definition operators X/bdef {bind def} bind def X/xdef {exch def} bdef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot {gsave} bdef X/eplot {grestore} bdef X X% bounding box in default coordinates X/dx 0 def X/dy 0 def X/sides {/dx urx llx sub def /dy ury lly sub def} bdef X/llx 0 def X/lly 0 def X/urx 0 def X/ury 0 def X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef X X% orientation switch X/por true def X/portrait {/por true def} bdef X/landscape {/por false def} bdef X X% coordinate system mappings X/px 8.5 72 mul def X/py 11.0 72 mul def X/port {dx py div dy px div scale} bdef X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef X/csm {llx lly translate por {port} {land} ifelse} bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [0 4] 0 setdash } bdef X/DA { [4] 0 setdash } bdef X/DD { [0 4 3 4] 0 setdash } bdef X X% macros for moveto and polyline X/M {moveto} bdef X/L {{lineto} repeat stroke} bdef X X% font control X/font_spec () def X/lfont currentfont def X/sfont currentfont def X/selfont {/font_spec xdef} bdef X/savefont {font_spec findfont exch scalefont def} bdef X/LF {lfont setfont} bdef X/SF {sfont setfont} bdef X X% text display X/sh {show} bdef X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef X Xcurrentdict end def %dictionary X Xmathworks begin X X% fonts for text, standard numbers and exponents X/Times-Roman selfont X/lfont 30 savefont X/sfont 21 savefont X X%line width, line cap, and joint spec X.5 setlinewidth 1 setlinecap 1 setlinejoin X Xend X Xmathworks begin Xbpage X Xbplot X80 407 532 756 bbox portrait csm X XSO X 78.09 77.33 757.00 77.33 757.00 570.67 78.09 570.67 78.09 77.33 M 4 L XLF X 73.09 71.33 M (0) rsh X 78.09 132.15 84.83 132.15 M 1 L X750.27 132.15 757.00 132.15 M 1 L X 73.09 126.15 M (0.02) rsh X 78.09 186.96 84.83 186.96 M 1 L X750.27 186.96 757.00 186.96 M 1 L X 73.09 180.96 M (0.04) rsh X 78.09 241.78 84.83 241.78 M 1 L X750.27 241.78 757.00 241.78 M 1 L X 73.09 235.78 M (0.06) rsh X 78.09 296.59 84.83 296.59 M 1 L X750.27 296.59 757.00 296.59 M 1 L X 73.09 290.59 M (0.08) rsh X 78.09 351.41 84.83 351.41 M 1 L X750.27 351.41 757.00 351.41 M 1 L X 73.09 345.41 M (0.1) rsh X 78.09 406.22 84.83 406.22 M 1 L X750.27 406.22 757.00 406.22 M 1 L X 73.09 400.22 M (0.12) rsh X 78.09 461.04 84.83 461.04 M 1 L X750.27 461.04 757.00 461.04 M 1 L X 73.09 455.04 M (0.14) rsh X 78.09 515.85 84.83 515.85 M 1 L X750.27 515.85 757.00 515.85 M 1 L X 73.09 509.85 M (0.16) rsh X 73.09 564.67 M (0.18) rsh X 78.09 55.33 M (0) csh X145.98 77.33 145.98 82.53 M 1 L X145.98 565.47 145.98 570.67 M 1 L X145.98 55.33 M (10) csh X213.87 77.33 213.87 82.53 M 1 L X213.87 565.47 213.87 570.67 M 1 L X213.87 55.33 M (20) csh X281.77 77.33 281.77 82.53 M 1 L X281.77 565.47 281.77 570.67 M 1 L X281.77 55.33 M (30) csh X349.66 77.33 349.66 82.53 M 1 L X349.66 565.47 349.66 570.67 M 1 L X349.66 55.33 M (40) csh X417.55 77.33 417.55 82.53 M 1 L X417.55 565.47 417.55 570.67 M 1 L X417.55 55.33 M (50) csh X485.44 77.33 485.44 82.53 M 1 L X485.44 565.47 485.44 570.67 M 1 L X485.44 55.33 M (60) csh X553.33 77.33 553.33 82.53 M 1 L X553.33 565.47 553.33 570.67 M 1 L X553.33 55.33 M (70) csh X621.22 77.33 621.22 82.53 M 1 L X621.22 565.47 621.22 570.67 M 1 L X621.22 55.33 M (80) csh X689.11 77.33 689.11 82.53 M 1 L X689.11 565.47 689.11 570.67 M 1 L X689.11 55.33 M (90) csh X757.00 55.33 M (100) csh X 84.88 84.96 91.67 100.21 98.46 115.44 105.25 130.64 112.04 145.78 X118.83 160.85 125.62 175.84 132.41 190.73 139.20 205.51 145.98 220.17 X152.77 234.68 159.56 249.04 166.35 263.23 173.14 277.23 179.93 291.04 X186.72 304.64 193.51 318.01 200.30 331.14 207.09 344.03 213.87 356.65 X220.66 369.00 227.45 381.05 234.24 392.81 241.03 404.26 247.82 415.38 X254.61 426.17 261.40 436.62 268.19 446.71 274.98 456.44 281.77 465.79 X288.55 474.76 295.34 483.34 302.13 491.52 308.92 499.28 315.71 506.64 X322.50 513.56 329.29 520.06 336.08 526.12 342.87 531.74 349.66 536.91 X356.45 541.62 363.23 545.88 370.02 549.68 376.81 553.01 383.60 555.87 X390.39 558.25 397.18 560.17 403.97 561.60 410.76 562.56 417.55 563.04 X424.34 563.04 431.12 562.56 437.91 561.60 444.70 560.17 451.49 558.25 X458.28 555.87 465.07 553.01 471.86 549.68 478.65 545.88 485.44 541.62 X492.23 536.91 499.02 531.74 505.80 526.12 512.59 520.06 519.38 513.56 X526.17 506.64 532.96 499.28 539.75 491.52 546.54 483.34 553.33 474.76 X560.12 465.79 566.91 456.44 573.70 446.71 580.48 436.62 587.27 426.17 X594.06 415.38 600.85 404.26 607.64 392.81 614.43 381.05 621.22 369.00 X628.01 356.65 634.80 344.03 641.59 331.14 648.37 318.01 655.16 304.64 X661.95 291.04 668.74 277.23 675.53 263.23 682.32 249.04 689.11 234.68 X695.90 220.17 702.69 205.51 709.48 190.73 716.27 175.84 723.05 160.85 X729.84 145.78 736.63 130.64 743.42 115.44 750.21 100.21 757.00 84.96 XM 99 L Xeplot X Xepage Xend X X%%EndDocument X X endTexFig X eop X%%Page: 48 50 X48 49 bop 64 159 a Fo(48)1607 b Fl(bidiag)p 64 178 1767 X2 v 59 304 a Fb(bidiag)59 406 y Fp(Purp)q(ose:)130 475 Xy Fo(Bidiagonalization)17 b(of)e(an)g Fn(m)10 b Fm(\002)g XFn(n)16 b Fo(matrix)f(with)g Fn(m)e Fm(\025)g Fn(n)p XFo(.)59 581 y Fp(Synopsis:)130 650 y Fl(B)i(=)h(bidiag)8 Xb(\(A\))130 719 y([U,B,V])15 b(=)h(bidiag)8 b(\(A\))59 X825 y Fp(Description:)130 894 y Fo(If)16 b Fl(A)g Fo(is)h(an)f XFn(m)11 b Fm(\002)g Fn(n)16 b Fo(matriz)g(with)h Fn(m)d XFm(\025)h Fn(n)h Fo(then)h Fl(bidiag)f Fo(uses)g(Householder)i X(transformations)c(to)59 950 y(compute)h(a)g(bidiagonalization)j(of)d XFl(A)p Fo(:)826 1007 y Fl(A)d Fo(=)h Fl(U)8 b(B)g(V)1024 X988 y Fg(T)1052 1007 y Fn(;)59 1090 y Fo(where)15 b Fl(B)e XFm(2)g Fp(I)-8 b(R)328 1072 y Fg(n)p Fe(\002)p Fg(n)415 X1090 y Fo(is)16 b(upp)q(er)g(bidiagonal,)660 1277 y Fl(B)d XFo(=)751 1155 y Fh(0)751 1228 y(B)751 1253 y(B)751 1278 Xy(B)751 1304 y(@)795 1183 y Fn(b)815 1190 y Fj(11)897 X1183 y Fn(b)917 1190 y Fj(12)897 1240 y Fn(b)917 1247 Xy Fj(22)999 1240 y Fn(b)1019 1247 y Fj(23)1004 1284 y XFo(.)1021 1297 y(.)1039 1309 y(.)1110 1284 y(.)1127 1297 Xy(.)1145 1309 y(.)1102 1370 y Fn(b)1122 1377 y Fg(nn)1173 X1155 y Fh(1)1173 1228 y(C)1173 1253 y(C)1173 1278 y(C)1173 X1304 y(A)1217 1277 y Fn(;)59 1469 y Fo(and)j(the)g(matrices)g XFl(U)f Fm(2)f Fp(I)-8 b(R)551 1451 y Fg(m)p Fe(\002)p XFg(n)650 1469 y Fo(and)16 b Fl(V)f Fm(2)f Fp(I)-8 b(R)880 X1451 y Fg(n)p Fe(\002)p Fg(n)968 1469 y Fo(ha)o(v)o(e)15 Xb(orthonormal)h(columns.)23 b(The)16 b(bidiagonal)59 X1526 y(matrix)f Fl(B)g Fo(is)h(stored)f(as)g(a)f(sparse)h(matrix.)59 X1632 y Fp(Examples:)130 1701 y Fo(Compute)e(the)h(bidiagonalization)i X(of)e Fl(A)g Fo(and)g(compare)f(the)h(singular)h(v)m(alue)g(of)e XFl(A)h Fo(with)h(those)e(of)59 1757 y Fl(B)j Fo(\(they)e(should)j(b)q X(e)f(iden)o(tical)h(to)d(ab)q(out)h(mac)o(hine)h(precision\):)130 X1826 y Fl(B)f(=)h(bidiag)8 b(\(A\);)14 b([svd)8 b(\(A\),csvd)g(\(B\)]) X59 1932 y Fp(Algorithm:)130 2001 y Fo(Alternating)17 Xb(left)g(and)g(righ)o(t)g(Householder)h(transformations)d(are)i(used)g X(to)f(bidiagonalized)k Fl(A)p Fo(.)59 2058 y(If)c Fl(U)f XFo(and)g Fl(V)h Fo(are)f(also)g(required,)h(then)f(the)h(Householder)g X(transformations)e(are)g(accum)o(ulated.)59 2164 y Fp(Limitations:)130 X2233 y Fo(The)h(case)g Fn(m)e(<)g(n)i Fo(is)h(not)f(allo)o(w)o(ed.)59 X2339 y Fp(See)i(also:)130 2408 y Fl(bsvd)p Fo(,)f Fl(lanc)p X322 2408 14 2 v 17 w(b)59 2514 y Fp(References:)115 2585 Xy Fo(1.)22 b(L.)12 b(Eld)o(\023)-21 b(en,)13 b Fk(A)o(lgorithms)g(for)h X(r)n(e)n(gularization)f(of)g(il)r(l-c)n(onditione)n(d)g(le)n(ast-squar) Xn(es)f(pr)n(oblems)p Fo(,)g(BIT)173 2642 y Fp(17)j Fo(\(1977\),)e X(134-145.)p eop X%%Page: 49 51 X49 50 bop 59 159 a Fl(blur)1648 b Fo(49)p 59 178 1767 X2 v 59 304 a Fb(blur)59 406 y Fp(Purp)q(ose:)130 474 Xy Fo(T)l(est)15 b(problem:)20 b(deblurring)d(of)e(images)g(degraded)h X(b)o(y)f(atmospheric)g(turbulence)i(blur.)59 580 y Fp(Synopsis:)130 X648 y Fl([A,b,x])e(=)h(blur)8 b(\(N,band,sigma\))59 753 Xy Fp(Description:)130 822 y Fo(This)20 b(image)h(deblurring)h(problem)e X(arises)h(in)g(connection)g(with)f(the)h(degradation)f(of)f(digital)59 X879 y(images)c(b)o(y)g(atmospheric)h(turbulence)h(blur,)e(mo)q(delled)j X(b)o(y)d(a)g(Gaussian)g(p)q(oin)o(t-spread)h(function:)556 X1009 y Fn(h)p Fo(\()p Fn(x;)8 b(y)r Fo(\))j(=)838 978 Xy(1)p 753 999 195 2 v 753 1043 a(2)d Fn(\031)g Fl(sigma)927 X1025 y Fj(2)967 1009 y Fo(exp)1044 937 y Fh( )1077 1009 Xy Fm(\000)1124 978 y Fn(x)1150 962 y Fj(2)1180 978 y XFo(+)j Fn(y)1250 962 y Fj(2)p 1117 999 159 2 v 1117 1043 Xa Fo(2)d Fl(sigma)1256 1025 y Fj(2)1281 937 y Fh(!)1322 X1009 y Fn(:)59 1146 y Fo(The)19 b(matrix)f Fl(A)g Fo(is)h(a)f X(symmetric)h Fl(N)702 1130 y Fj(2)734 1146 y Fm(\002)12 Xb Fl(N)813 1130 y Fj(2)851 1146 y Fo(doubly)20 b(T)l(o)q(eplitz)g X(matrix,)e(stored)g(in)h(sparse)f(format,)59 1203 y(and)d(giv)o(en)h(b) Xo(y)692 1259 y Fl(A)d Fo(=)g(\(2)8 b Fn(\031)g Fl(sigma)975 X1240 y Fj(2)994 1259 y Fo(\))1012 1240 y Fe(\000)p Fj(1)1067 X1259 y Fn(T)16 b Fm(\012)10 b Fn(T)t(;)59 1342 y Fo(where)15 Xb Fn(T)22 b Fo(is)15 b(an)g Fl(N)c Fm(\002)f Fl(N)15 Xb Fo(symmetric)h(banded)g(T)l(o)q(eplitz)h(matrix)e(whose)g(\014rst)f X(ro)o(w)h(is)g(giv)o(en)h(b)o(y)316 1442 y Fl(z)c Fo(=)h([)p XFl(exp)p Fo(\()p Fm(\000)p Fo(\([)p Fl(0)f Fo(:)g Fl(band)g XFm(\000)e Fl(1)p Fo(])p Fn(:)p Fc(^)o Fl(2)p Fo(\))p XFn(=)p Fo(\()p Fl(2)f Fm(\003)h Fl(sigma)p Fc(^)n Fl(2)p XFo(\)\);)e Fl(zeros)p Fo(\()p Fl(1)p Fn(;)g Fl(N)f Fm(\000)k XFl(band)p Fo(\)])p Fn(:)59 1542 y Fo(Only)19 b(elemen)o(ts)f(within)g X(a)g(distance)g Fl(band)13 b Fm(\000)f Fo(1)17 b(from)g(the)g(diagonal) Xh(are)f(stored;)h(i.e.,)g Fl(band)h Fo(is)f(the)59 1599 Xy(half-bandwidth)f(of)e(the)g(matrix)g Fn(T)6 b Fo(.)20 Xb(If)15 b Fl(band)h Fo(is)g(not)f(sp)q(eci\014ed,)i(then)e XFl(band)i Fo(=)e(3)g(is)h(used.)130 1655 y(The)j(parameter)g XFl(sigma)f Fo(con)o(trols)h(the)g(shap)q(e)h(of)f(the)h(Gaussian)f(p)q X(oin)o(t)h(spread)f(function)h(and)59 1712 y(th)o(us)c(the)f(amoun)o(t) Xg(of)h(smo)q(othing)f(\(the)h(larger)g(the)f Fl(sigma)p XFo(,)g(the)h(wider)g(the)g(function,)g(and)g(the)g(less)59 X1768 y(ill)h(p)q(osed)f(the)f(problem\).)20 b(If)c Fl(sigma)e XFo(is)i(not)e(sp)q(eci\014ed,)j(then)f Fl(sigma)e Fo(=)i(0.7)e(is)i X(used.)130 1825 y(The)h(v)o(ector)g Fl(x)g Fo(is)g(a)g(column)o(wise)i X(stac)o(k)o(ed)d(v)o(ersion)i(of)e(a)h(simple)i(test)d(image,)i(while)g XFl(b)g Fo(holds)g(a)59 1881 y(column)o(wise)e(stac)o(k)o(ed)f(v)o X(ersion)g(of)g(the)h(blurrred)g(image;)f(i.e,)g Fl(b)h(=)f(A*x)p XFo(.)59 1986 y Fp(Limitations:)130 2055 y Fo(The)g(in)o(teger)g XFl(N)h Fo(should)g(not)f(b)q(e)h(to)q(o)e(small;)i(w)o(e)f(recommend)g XFl(N)e Fm(\025)g Fo(16.)59 2160 y Fp(Reference:)115 2229 Xy Fo(1.)22 b(M.)c(Hank)o(e)g(&)h(P)l(.)f(C.)g(Hansen,)i XFk(R)n(e)n(gularization)f(metho)n(ds)g(for)h(lar)n(ge-sc)n(ale)e(pr)n X(oblems)p Fo(,)h(Surv.)173 2286 y(Math.)14 b(Ind.)h Fp(3)h XFo(\(1993\),)d(253{315.)354 2395 y X 16772784 6526379 6051921 27233648 35719495 38745456 startTexFig X 354 2395 a X%%BeginDocument: testfigs/blur.eps X X X% MathWorks dictionary X/MathWorks 150 dict begin X X% definition operators X/bdef {bind def} bind def X/ldef {load def} bind def X/xdef {exch def} bdef X/xstore {exch store} bdef X X% operator abbreviations X/c /clip ldef X/cc /concat ldef X/cp /closepath ldef X/gr /grestore ldef X/gs /gsave ldef X/mt /moveto ldef X/np /newpath ldef X/cm /currentmatrix ldef X/sm /setmatrix ldef X/rc {rectclip} bdef X/rf {rectfill} bdef X/rm /rmoveto ldef X/rl /rlineto ldef X/s /show ldef X/sc {setcmykcolor} bdef X/sr /setrgbcolor ldef X/sg /setgray ldef X/w /setlinewidth ldef X/j /setlinejoin ldef X/cap /setlinecap ldef X X% page state control X/pgsv () def X/bpage {/pgsv save def} bdef X/epage {pgsv restore} bdef X/bplot /gsave ldef X/eplot {stroke grestore} bdef X X% orientation switch X/portraitMode 0 def X/landscapeMode 1 def X X% coordinate system mappings X/dpi2point 0 def X X% font control X/FontSize 0 def X/FMS { X /FontSize xstore %save size off stack X findfont X [FontSize 0 0 FontSize neg 0 0] X makefont X setfont X }bdef X X/reencode { Xexch dup where X{pop load} {pop StandardEncoding} ifelse Xexch Xdup 3 1 roll Xfindfont dup length dict begin X { 1 index /FID ne {def}{pop pop} ifelse } forall X /Encoding exch def X currentdict Xend Xdefinefont pop X} bdef X X/isroman { Xfindfont /CharStrings get X/Agrave known X} bdef X X/FMSR { X3 1 roll 1 index Xdup isroman X{reencode} {pop pop} ifelse Xexch FMS X} bdef X X/csm { X 1 dpi2point div -1 dpi2point div scale X neg translate X landscapeMode eq {90 rotate} if X } bdef X X% line types: solid, dotted, dashed, dotdash X/SO { [] 0 setdash } bdef X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X/DA { [6 dpi2point mul] 0 setdash } bdef X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef X X% macros for lines and objects X/L { X lineto X stroke X } bdef X/MP { X 3 1 roll moveto X 1 sub {rlineto} repeat X } bdef X/AP { X {rlineto} repeat X } bdef X/PP { X closepath eofill X } bdef X/DP { X closepath stroke X } bdef X/MR { X 4 -2 roll moveto X dup 0 exch rlineto X exch 0 rlineto X neg 0 exch rlineto X closepath X } bdef X/FR { X MR stroke X } bdef X/PR { X MR fill X } bdef X/L1i { X { currentfile picstr readhexstring pop } image X } bdef X X/tMatrix matrix def X/MakeOval { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 0 360 arc X tMatrix setmatrix X } bdef X/FO { X MakeOval X stroke X } bdef X/PO { X MakeOval X fill X } bdef X X/PD { X currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap X } bdef X X/FA { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arc X tMatrix setmatrix X stroke X } bdef X/PA { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arc X closepath X tMatrix setmatrix X fill X } bdef X X X/FAn { X newpath X tMatrix currentmatrix pop X translate scale X 0 0 1 5 -2 roll arcn X tMatrix setmatrix X stroke X } bdef X/PAn { X newpath X tMatrix currentmatrix pop X translate 0 0 moveto scale X 0 0 1 5 -2 roll arcn X closepath X tMatrix setmatrix X fill X } bdef X X X Xcurrentdict end def X XMathWorks begin X X0 cap X Xend X XMathWorks begin Xbpage X Xbplot X X/dpi2point 12 def XportraitMode 0216 7344 csm X X 898 271 5404 2102 MR c np X88 dict begin %Colortable dictionary X/c0 { 0 0 0 sr} bdef X/c1 { 1 1 1 sr} bdef X/c2 { 1 0 0 sr} bdef X/c3 { 0 1 0 sr} bdef X/c4 { 0 0 1 sr} bdef X/c5 { 1 1 0 sr} bdef X/c6 { 1 0 1 sr} bdef X/c7 { 0 1 1 sr} bdef X1 j X1 sg X 0 0 6912 5185 PR X6 w X0 -1783 1783 0 0 1783 1136 388 4 MP XPP X-1783 0 0 -1783 1783 0 0 1783 1136 388 5 MP stroke XDO X4 w XSO X6 w X0 sg X1136 388 mt 2919 388 L X1136 2171 mt 2919 2171 L X2919 388 mt 2919 2171 L X1136 388 mt 1136 2171 L X1136 2171 mt 2919 2171 L X1136 388 mt 1136 2171 L X1475 2171 mt 1475 2153 L X1475 388 mt 1475 406 L X/Helvetica /ISOLatin1Encoding 120 FMSR X X1459 2317 mt X( ) s X1831 2171 mt 1831 2153 L X1831 388 mt 1831 406 L X1815 2317 mt X( ) s X2188 2171 mt 2188 2153 L X2188 388 mt 2188 406 L X2172 2317 mt X( ) s X2545 2171 mt 2545 2153 L X2545 388 mt 2545 406 L X2529 2317 mt X( ) s X2901 2171 mt 2901 2153 L X2901 388 mt 2901 406 L X2885 2317 mt X( ) s X1136 727 mt 1154 727 L X2919 727 mt 2901 727 L X1068 771 mt X( ) s X1136 1083 mt 1154 1083 L X2919 1083 mt 2901 1083 L X1068 1127 mt X( ) s X1136 1440 mt 1154 1440 L X2919 1440 mt 2901 1440 L X1068 1484 mt X( ) s X1136 1797 mt 1154 1797 L X2919 1797 mt 2901 1797 L X1068 1841 mt X( ) s X1136 2153 mt 1154 2153 L X2919 2153 mt 2901 2153 L X1068 2197 mt X( ) s X1136 2171 mt 2919 2171 L X1136 388 mt 2919 388 L X1136 388 mt 1136 2171 L X2919 388 mt 2919 2171 L Xgs 1136 388 1784 1784 MR c np X1 sg X0 18 18 0 1136 388 3 MP XPP X18 0 0 18 1136 388 3 MP XPP X0 18 18 0 1136 406 3 MP XPP X18 0 0 18 1136 406 3 MP XPP X0 17 18 0 1136 424 3 MP XPP X18 0 0 17 1136 424 3 MP XPP X0 18 18 0 1136 441 3 MP XPP X18 0 0 18 1136 441 3 MP XPP X0 18 18 0 1136 459 3 MP XPP X18 0 0 18 1136 459 3 MP XPP X0 18 18 0 1136 477 3 MP XPP X18 0 0 18 1136 477 3 MP XPP X0 18 18 0 1136 495 3 MP XPP X18 0 0 18 1136 495 3 MP XPP X0 18 18 0 1136 513 3 MP XPP X18 0 0 18 1136 513 3 MP XPP X0 17 18 0 1136 531 3 MP XPP X18 0 0 17 1136 531 3 MP XPP X0 18 18 0 1136 548 3 MP XPP X18 0 0 18 1136 548 3 MP XPP X0 18 18 0 1136 566 3 MP XPP X18 0 0 18 1136 566 3 MP XPP X0 18 18 0 1136 584 3 MP XPP X18 0 0 18 1136 584 3 MP XPP X0 18 18 0 1136 602 3 MP XPP X18 0 0 18 1136 602 3 MP XPP X0 18 18 0 1136 620 3 MP XPP X18 0 0 18 1136 620 3 MP XPP X0 17 18 0 1136 638 3 MP XPP X18 0 0 17 1136 638 3 MP XPP X0 18 18 0 1136 655 3 MP XPP X18 0 0 18 1136 655 3 MP XPP X0 18 18 0 1136 673 3 MP XPP X18 0 0 18 1136 673 3 MP XPP X0 18 18 0 1136 691 3 MP XPP X18 0 0 18 1136 691 3 MP XPP X0 18 18 0 1136 709 3 MP XPP X18 0 0 18 1136 709 3 MP XPP X0 18 18 0 1136 727 3 MP XPP X18 0 0 18 1136 727 3 MP XPP X0 17 18 0 1136 745 3 MP XPP X18 0 0 17 1136 745 3 MP XPP X0 18 18 0 1136 762 3 MP XPP X18 0 0 18 1136 762 3 MP XPP X0 18 18 0 1136 780 3 MP XPP X18 0 0 18 1136 780 3 MP XPP X0 18 18 0 1136 798 3 MP XPP X18 0 0 18 1136 798 3 MP XPP X0 18 18 0 1136 816 3 MP XPP X18 0 0 18 1136 816 3 MP XPP X0 18 18 0 1136 834 3 MP XPP X18 0 0 18 1136 834 3 MP XPP X0 17 18 0 1136 852 3 MP XPP X18 0 0 17 1136 852 3 MP XPP X0 18 18 0 1136 869 3 MP XPP X18 0 0 18 1136 869 3 MP XPP X0 18 18 0 1136 887 3 MP XPP X18 0 0 18 1136 887 3 MP XPP X0 18 18 0 1136 905 3 MP XPP X18 0 0 18 1136 905 3 MP XPP X0 18 18 0 1136 923 3 MP XPP X18 0 0 18 1136 923 3 MP XPP X0 18 18 0 1136 941 3 MP XPP X18 0 0 18 1136 941 3 MP XPP X0 17 18 0 1136 959 3 MP XPP X18 0 0 17 1136 959 3 MP XPP X0 18 18 0 1136 976 3 MP XPP X18 0 0 18 1136 976 3 MP XPP X0 18 18 0 1136 994 3 MP XPP X18 0 0 18 1136 994 3 MP XPP X0 18 18 0 1136 1012 3 MP XPP X18 0 0 18 1136 1012 3 MP XPP X0 18 18 0 1136 1030 3 MP XPP X18 0 0 18 1136 1030 3 MP XPP X0 18 18 0 1136 1048 3 MP XPP X18 0 0 18 1136 1048 3 MP XPP X0 17 18 0 1136 1066 3 MP XPP X18 0 0 17 1136 1066 3 MP XPP X0 18 18 0 1136 1083 3 MP XPP X18 0 0 18 1136 1083 3 MP XPP X0 18 18 0 1136 1101 3 MP XPP X18 0 0 18 1136 1101 3 MP XPP X0 18 18 0 1136 1119 3 MP XPP X18 0 0 18 1136 1119 3 MP XPP X0 18 18 0 1136 1137 3 MP XPP X18 0 0 18 1136 1137 3 MP XPP X0 18 18 0 1136 1155 3 MP XPP X18 0 0 18 1136 1155 3 MP XPP X0 17 18 0 1136 1173 3 MP XPP X18 0 0 17 1136 1173 3 MP XPP X0 18 18 0 1136 1190 3 MP XPP X18 0 0 18 1136 1190 3 MP XPP X0 18 18 0 1136 1208 3 MP XPP X18 0 0 18 1136 1208 3 MP XPP X0 18 18 0 1136 1226 3 MP XPP X18 0 0 18 1136 1226 3 MP XPP X0 18 18 0 1136 1244 3 MP XPP X18 0 0 18 1136 1244 3 MP XPP X0 17 18 0 1136 1262 3 MP XPP X18 0 0 17 1136 1262 3 MP XPP X0 18 18 0 1136 1279 3 MP XPP X18 0 0 18 1136 1279 3 MP XPP X0 18 18 0 1136 1297 3 MP XPP X18 0 0 18 1136 1297 3 MP XPP X0 18 18 0 1136 1315 3 MP XPP X18 0 0 18 1136 1315 3 MP XPP X0 18 18 0 1136 1333 3 MP XPP X18 0 0 18 1136 1333 3 MP XPP X0 18 18 0 1136 1351 3 MP XPP X18 0 0 18 1136 1351 3 MP XPP X0 17 18 0 1136 1369 3 MP XPP X18 0 0 17 1136 1369 3 MP XPP X0 18 18 0 1136 1386 3 MP XPP X18 0 0 18 1136 1386 3 MP XPP X0 18 18 0 1136 1404 3 MP XPP X18 0 0 18 1136 1404 3 MP XPP X0 18 18 0 1136 1422 3 MP XPP X18 0 0 18 1136 1422 3 MP XPP X0 18 18 0 1136 1440 3 MP XPP X18 0 0 18 1136 1440 3 MP XPP X0 18 18 0 1136 1458 3 MP XPP X18 0 0 18 1136 1458 3 MP XPP X0 17 18 0 1136 1476 3 MP XPP X18 0 0 17 1136 1476 3 MP XPP X0 18 18 0 1136 1493 3 MP XPP X18 0 0 18 1136 1493 3 MP XPP X0 18 18 0 1136 1511 3 MP XPP X18 0 0 18 1136 1511 3 MP XPP X0 18 18 0 1136 1529 3 MP XPP X18 0 0 18 1136 1529 3 MP XPP X0 18 18 0 1136 1547 3 MP XPP X18 0 0 18 1136 1547 3 MP XPP X0 18 18 0 1136 1565 3 MP XPP X18 0 0 18 1136 1565 3 MP XPP X0 17 18 0 1136 1583 3 MP XPP X18 0 0 17 1136 1583 3 MP XPP X0 18 18 0 1136 1600 3 MP XPP X18 0 0 18 1136 1600 3 MP XPP X0 18 18 0 1136 1618 3 MP XPP X18 0 0 18 1136 1618 3 MP XPP X0 18 18 0 1136 1636 3 MP XPP X18 0 0 18 1136 1636 3 MP XPP X0 18 18 0 1136 1654 3 MP XPP X18 0 0 18 1136 1654 3 MP XPP X0 18 18 0 1136 1672 3 MP XPP X18 0 0 18 1136 1672 3 MP XPP X0 17 18 0 1136 1690 3 MP XPP X18 0 0 17 1136 1690 3 MP XPP X0 18 18 0 1136 1707 3 MP XPP X18 0 0 18 1136 1707 3 MP XPP X0 18 18 0 1136 1725 3 MP XPP X18 0 0 18 1136 1725 3 MP XPP X0 18 18 0 1136 1743 3 MP XPP X18 0 0 18 1136 1743 3 MP XPP X0 18 18 0 1136 1761 3 MP XPP X18 0 0 18 1136 1761 3 MP XPP X0 18 18 0 1136 1779 3 MP XPP X18 0 0 18 1136 1779 3 MP XPP X0 17 18 0 1136 1797 3 MP XPP X18 0 0 17 1136 1797 3 MP XPP X0 18 18 0 1136 1814 3 MP XPP X18 0 0 18 1136 1814 3 MP XPP X0 18 18 0 1136 1832 3 MP XPP X18 0 0 18 1136 1832 3 MP XPP X0 18 18 0 1136 1850 3 MP XPP X18 0 0 18 1136 1850 3 MP XPP X0 18 18 0 1136 1868 3 MP XPP X18 0 0 18 1136 1868 3 MP XPP X0 18 18 0 1136 1886 3 MP XPP X18 0 0 18 1136 1886 3 MP XPP X0 17 18 0 1136 1904 3 MP XPP X18 0 0 17 1136 1904 3 MP XPP X0 18 18 0 1136 1921 3 MP XPP X18 0 0 18 1136 1921 3 MP XPP X0 18 18 0 1136 1939 3 MP XPP X18 0 0 18 1136 1939 3 MP XPP X0 18 18 0 1136 1957 3 MP XPP X18 0 0 18 1136 1957 3 MP XPP X0 18 18 0 1136 1975 3 MP XPP X18 0 0 18 1136 1975 3 MP XPP X0 18 18 0 1136 1993 3 MP XPP X18 0 0 18 1136 1993 3 MP XPP X0 17 18 0 1136 2011 3 MP XPP X18 0 0 17 1136 2011 3 MP XPP X0 18 18 0 1136 2028 3 MP XPP X18 0 0 18 1136 2028 3 MP XPP X0 18 18 0 1136 2046 3 MP XPP X18 0 0 18 1136 2046 3 MP XPP X0 18 18 0 1136 2064 3 MP XPP X18 0 0 18 1136 2064 3 MP XPP X0 18 18 0 1136 2082 3 MP XPP X18 0 0 18 1136 2082 3 MP XPP X0 18 18 0 1136 2100 3 MP XPP X18 0 0 18 1136 2100 3 MP XPP X0 17 18 0 1136 2118 3 MP XPP X18 0 0 17 1136 2118 3 MP XPP X0 18 18 0 1136 2135 3 MP XPP X18 0 0 18 1136 2135 3 MP XPP X0 18 18 0 1136 2153 3 MP XPP X18 0 0 18 1136 2153 3 MP XPP X0 18 18 0 1154 388 3 MP XPP X18 0 0 18 1154 388 3 MP XPP X0 18 18 0 1154 406 3 MP XPP X18 0 0 18 1154 406 3 MP XPP X0 17 18 0 1154 424 3 MP XPP X18 0 0 17 1154 424 3 MP XPP X0 18 18 0 1154 441 3 MP XPP X18 0 0 18 1154 441 3 MP XPP X0 18 18 0 1154 459 3 MP XPP X18 0 0 18 1154 459 3 MP XPP X0 18 18 0 1154 477 3 MP XPP X18 0 0 18 1154 477 3 MP XPP X0 18 18 0 1154 495 3 MP XPP X18 0 0 18 1154 495 3 MP XPP X0 18 18 0 1154 513 3 MP XPP X18 0 0 18 1154 513 3 MP XPP X0 17 18 0 1154 531 3 MP XPP X18 0 0 17 1154 531 3 MP XPP X0 18 18 0 1154 548 3 MP XPP X18 0 0 18 1154 548 3 MP XPP X0 18 18 0 1154 566 3 MP XPP X18 0 0 18 1154 566 3 MP XPP X0 18 18 0 1154 584 3 MP XPP X18 0 0 18 1154 584 3 MP XPP X0 18 18 0 1154 602 3 MP XPP X18 0 0 18 1154 602 3 MP XPP X0 18 18 0 1154 620 3 MP XPP X18 0 0 18 1154 620 3 MP XPP X0 17 18 0 1154 638 3 MP XPP X18 0 0 17 1154 638 3 MP XPP X0 18 18 0 1154 655 3 MP XPP X18 0 0 18 1154 655 3 MP XPP X0 18 18 0 1154 673 3 MP XPP X18 0 0 18 1154 673 3 MP XPP X0 18 18 0 1154 691 3 MP XPP X18 0 0 18 1154 691 3 MP XPP X0 18 18 0 1154 709 3 MP XPP X18 0 0 18 1154 709 3 MP XPP X0 18 18 0 1154 727 3 MP XPP X18 0 0 18 1154 727 3 MP XPP X0 17 18 0 1154 745 3 MP XPP X18 0 0 17 1154 745 3 MP XPP X0 18 18 0 1154 762 3 MP XPP X18 0 0 18 1154 762 3 MP XPP X0 18 18 0 1154 780 3 MP XPP X18 0 0 18 1154 780 3 MP XPP X0 18 18 0 1154 798 3 MP XPP X18 0 0 18 1154 798 3 MP XPP X0 18 18 0 1154 816 3 MP XPP X18 0 0 18 1154 816 3 MP XPP X0 18 18 0 1154 834 3 MP XPP X18 0 0 18 1154 834 3 MP XPP X0 17 18 0 1154 852 3 MP XPP X18 0 0 17 1154 852 3 MP XPP X0 18 18 0 1154 869 3 MP XPP X18 0 0 18 1154 869 3 MP XPP X0 18 18 0 1154 887 3 MP XPP X18 0 0 18 1154 887 3 MP XPP X0 18 18 0 1154 905 3 MP XPP X18 0 0 18 1154 905 3 MP XPP X0 18 18 0 1154 923 3 MP XPP X18 0 0 18 1154 923 3 MP XPP X0 18 18 0 1154 941 3 MP XPP X18 0 0 18 1154 941 3 MP XPP X0 17 18 0 1154 959 3 MP XPP X18 0 0 17 1154 959 3 MP XPP X0 18 18 0 1154 976 3 MP XPP X18 0 0 18 1154 976 3 MP XPP X0 18 18 0 1154 994 3 MP XPP X18 0 0 18 1154 994 3 MP XPP X0 18 18 0 1154 1012 3 MP XPP X18 0 0 18 1154 1012 3 MP XPP X0 18 18 0 1154 1030 3 MP XPP X18 0 0 18 1154 1030 3 MP XPP X0 18 18 0 1154 1048 3 MP XPP X18 0 0 18 1154 1048 3 MP XPP X0 17 18 0 1154 1066 3 MP XPP X18 0 0 17 1154 1066 3 MP XPP X0 18 18 0 1154 1083 3 MP XPP X18 0 0 18 1154 1083 3 MP XPP X0 18 18 0 1154 1101 3 MP XPP X18 0 0 18 1154 1101 3 MP XPP X0.238095 sg X0 18 18 0 1154 1119 3 MP XPP X18 0 0 18 1154 1119 3 MP XPP X1 sg X0 18 18 0 1154 1137 3 MP XPP X18 0 0 18 1154 1137 3 MP XPP X0 18 18 0 1154 1155 3 MP XPP X18 0 0 18 1154 1155 3 MP XPP X0 17 18 0 1154 1173 3 MP XPP X18 0 0 17 1154 1173 3 MP XPP X0 18 18 0 1154 1190 3 MP XPP X18 0 0 18 1154 1190 3 MP XPP X0 18 18 0 1154 1208 3 MP XPP X18 0 0 18 1154 1208 3 MP XPP X0 18 18 0 1154 1226 3 MP XPP X18 0 0 18 1154 1226 3 MP XPP X0 18 18 0 1154 1244 3 MP XPP X18 0 0 18 1154 1244 3 MP XPP X0 17 18 0 1154 1262 3 MP XPP X18 0 0 17 1154 1262 3 MP XPP X0 18 18 0 1154 1279 3 MP XPP X18 0 0 18 1154 1279 3 MP XPP X0 18 18 0 1154 1297 3 MP XPP X18 0 0 18 1154 1297 3 MP XPP X0 18 18 0 1154 1315 3 MP XPP X18 0 0 18 1154 1315 3 MP XPP X0 18 18 0 1154 1333 3 MP XPP X18 0 0 18 1154 1333 3 MP XPP X0 18 18 0 1154 1351 3 MP XPP X18 0 0 18 1154 1351 3 MP XPP X0 17 18 0 1154 1369 3 MP XPP X18 0 0 17 1154 1369 3 MP XPP X0 18 18 0 1154 1386 3 MP XPP X18 0 0 18 1154 1386 3 MP XPP X0 18 18 0 1154 1404 3 MP XPP X18 0 0 18 1154 1404 3 MP XPP X0 18 18 0 1154 1422 3 MP XPP X18 0 0 18 1154 1422 3 MP XPP X0 18 18 0 1154 1440 3 MP XPP X18 0 0 18 1154 1440 3 MP XPP X0 18 18 0 1154 1458 3 MP XPP X18 0 0 18 1154 1458 3 MP XPP X0 17 18 0 1154 1476 3 MP XPP X18 0 0 17 1154 1476 3 MP XPP X0 18 18 0 1154 1493 3 MP XPP X18 0 0 18 1154 1493 3 MP XPP X0 18 18 0 1154 1511 3 MP XPP X18 0 0 18 1154 1511 3 MP XPP X0 18 18 0 1154 1529 3 MP XPP X18 0 0 18 1154 1529 3 MP XPP X0 18 18 0 1154 1547 3 MP XPP X18 0 0 18 1154 1547 3 MP XPP X0 18 18 0 1154 1565 3 MP XPP X18 0 0 18 1154 1565 3 MP XPP X0 17 18 0 1154 1583 3 MP XPP X18 0 0 17 1154 1583 3 MP XPP X0 18 18 0 1154 1600 3 MP XPP X18 0 0 18 1154 1600 3 MP XPP X0 18 18 0 1154 1618 3 MP XPP X18 0 0 18 1154 1618 3 MP XPP X0 18 18 0 1154 1636 3 MP XPP X18 0 0 18 1154 1636 3 MP XPP X0 18 18 0 1154 1654 3 MP XPP X18 0 0 18 1154 1654 3 MP XPP X0 18 18 0 1154 1672 3 MP XPP X18 0 0 18 1154 1672 3 MP XPP X0 17 18 0 1154 1690 3 MP XPP X18 0 0 17 1154 1690 3 MP XPP X0 18 18 0 1154 1707 3 MP XPP X18 0 0 18 1154 1707 3 MP XPP X0 18 18 0 1154 1725 3 MP XPP X18 0 0 18 1154 1725 3 MP XPP X0 18 18 0 1154 1743 3 MP XPP X18 0 0 18 1154 1743 3 MP XPP X0 18 18 0 1154 1761 3 MP XPP X18 0 0 18 1154 1761 3 MP XPP X0 18 18 0 1154 1779 3 MP XPP X18 0 0 18 1154 1779 3 MP XPP X0 17 18 0 1154 1797 3 MP XPP X18 0 0 17 1154 1797 3 MP XPP X0 18 18 0 1154 1814 3 MP XPP X18 0 0 18 1154 1814 3 MP XPP X0 18 18 0 1154 1832 3 MP XPP X18 0 0 18 1154 1832 3 MP XPP X0 18 18 0 1154 1850 3 MP XPP X18 0 0 18 1154 1850 3 MP XPP X0 18 18 0 1154 1868 3 MP XPP X18 0 0 18 1154 1868 3 MP XPP X0 18 18 0 1154 1886 3 MP XPP X18 0 0 18 1154 1886 3 MP XPP X0 17 18 0 1154 1904 3 MP XPP X18 0 0 17 1154 1904 3 MP XPP X0 18 18 0 1154 1921 3 MP XPP X18 0 0 18 1154 1921 3 MP XPP X0 18 18 0 1154 1939 3 MP XPP X18 0 0 18 1154 1939 3 MP XPP X0 18 18 0 1154 1957 3 MP XPP X18 0 0 18 1154 1957 3 MP XPP X0 18 18 0 1154 1975 3 MP XPP X18 0 0 18 1154 1975 3 MP XPP X0 18 18 0 1154 1993 3 MP XPP X18 0 0 18 1154 1993 3 MP XPP X0 17 18 0 1154 2011 3 MP XPP X18 0 0 17 1154 2011 3 MP XPP X0 18 18 0 1154 2028 3 MP XPP X18 0 0 18 1154 2028 3 MP XPP X0 18 18 0 1154 2046 3 MP XPP X18 0 0 18 1154 2046 3 MP XPP X0 18 18 0 1154 2064 3 MP XPP X18 0 0 18 1154 2064 3 MP XPP X0 18 18 0 1154 2082 3 MP XPP X18 0 0 18 1154 2082 3 MP XPP X0 18 18 0 1154 2100 3 MP XPP X18 0 0 18 1154 2100 3 MP XPP X0 17 18 0 1154 2118 3 MP XPP X18 0 0 17 1154 2118 3 MP XPP X0 18 18 0 1154 2135 3 MP XPP X18 0 0 18 1154 2135 3 MP XPP X0 18 18 0 1154 2153 3 MP XPP X18 0 0 18 1154 2153 3 MP XPP X0 18 17 0 1172 388 3 MP XPP X17 0 0 18 1172 388 3 MP XPP X0 18 17 0 1172 406 3 MP XPP X17 0 0 18 1172 406 3 MP XPP X0 17 17 0 1172 424 3 MP XPP X17 0 0 17 1172 424 3 MP XPP X0 18 17 0 1172 441 3 MP XPP X17 0 0 18 1172 441 3 MP XPP X0 18 17 0 1172 459 3 MP XPP X17 0 0 18 1172 459 3 MP XPP X0 18 17 0 1172 477 3 MP XPP X17 0 0 18 1172 477 3 MP XPP X0 18 17 0 1172 495 3 MP XPP X17 0 0 18 1172 495 3 MP XPP X0 18 17 0 1172 513 3 MP XPP X17 0 0 18 1172 513 3 MP XPP X0 17 17 0 1172 531 3 MP XPP X17 0 0 17 1172 531 3 MP XPP X0 18 17 0 1172 548 3 MP XPP X17 0 0 18 1172 548 3 MP XPP X0 18 17 0 1172 566 3 MP XPP X17 0 0 18 1172 566 3 MP XPP X0 18 17 0 1172 584 3 MP XPP X17 0 0 18 1172 584 3 MP XPP X0 18 17 0 1172 602 3 MP XPP X17 0 0 18 1172 602 3 MP XPP X0 18 17 0 1172 620 3 MP XPP X17 0 0 18 1172 620 3 MP XPP X0 17 17 0 1172 638 3 MP XPP X17 0 0 17 1172 638 3 MP XPP X0 18 17 0 1172 655 3 MP XPP X17 0 0 18 1172 655 3 MP XPP X0 18 17 0 1172 673 3 MP XPP X17 0 0 18 1172 673 3 MP XPP X0 18 17 0 1172 691 3 MP XPP X17 0 0 18 1172 691 3 MP XPP X0 18 17 0 1172 709 3 MP XPP X17 0 0 18 1172 709 3 MP XPP X0 18 17 0 1172 727 3 MP XPP X17 0 0 18 1172 727 3 MP XPP X0 17 17 0 1172 745 3 MP XPP X17 0 0 17 1172 745 3 MP XPP X0 18 17 0 1172 762 3 MP XPP X17 0 0 18 1172 762 3 MP XPP X0 18 17 0 1172 780 3 MP XPP X17 0 0 18 1172 780 3 MP XPP X0 18 17 0 1172 798 3 MP XPP X17 0 0 18 1172 798 3 MP XPP X0 18 17 0 1172 816 3 MP XPP X17 0 0 18 1172 816 3 MP XPP X0 18 17 0 1172 834 3 MP XPP X17 0 0 18 1172 834 3 MP XPP X0 17 17 0 1172 852 3 MP XPP X17 0 0 17 1172 852 3 MP XPP X0 18 17 0 1172 869 3 MP XPP X17 0 0 18 1172 869 3 MP XPP X0 18 17 0 1172 887 3 MP XPP X17 0 0 18 1172 887 3 MP XPP X0 18 17 0 1172 905 3 MP XPP X17 0 0 18 1172 905 3 MP XPP X0 18 17 0 1172 923 3 MP XPP X17 0 0 18 1172 923 3 MP XPP X0 18 17 0 1172 941 3 MP XPP X17 0 0 18 1172 941 3 MP XPP X0 17 17 0 1172 959 3 MP XPP X17 0 0 17 1172 959 3 MP XPP X0 18 17 0 1172 976 3 MP XPP X17 0 0 18 1172 976 3 MP XPP X0 18 17 0 1172 994 3 MP XPP X17 0 0 18 1172 994 3 MP XPP X0 18 17 0 1172 1012 3 MP XPP X17 0 0 18 1172 1012 3 MP XPP X0 18 17 0 1172 1030 3 MP XPP X17 0 0 18 1172 1030 3 MP XPP X0 18 17 0 1172 1048 3 MP XPP X17 0 0 18 1172 1048 3 MP XPP X0 17 17 0 1172 1066 3 MP XPP X17 0 0 17 1172 1066 3 MP XPP X0 18 17 0 1172 1083 3 MP XPP X17 0 0 18 1172 1083 3 MP XPP X0 18 17 0 1172 1101 3 MP XPP X17 0 0 18 1172 1101 3 MP XPP X0.238095 sg X0 18 17 0 1172 1119 3 MP XPP X17 0 0 18 1172 1119 3 MP XPP X0 18 17 0 1172 1137 3 MP XPP X17 0 0 18 1172 1137 3 MP XPP X1 sg X0 18 17 0 1172 1155 3 MP XPP X17 0 0 18 1172 1155 3 MP XPP X0 17 17 0 1172 1173 3 MP XPP X17 0 0 17 1172 1173 3 MP XPP X0 18 17 0 1172 1190 3 MP XPP X17 0 0 18 1172 1190 3 MP XPP X0 18 17 0 1172 1208 3 MP XPP X17 0 0 18 1172 1208 3 MP XPP X0 18 17 0 1172 1226 3 MP XPP X17 0 0 18 1172 1226 3 MP XPP X0 18 17 0 1172 1244 3 MP XPP X17 0 0 18 1172 1244 3 MP XPP X0 17 17 0 1172 1262 3 MP XPP X17 0 0 17 1172 1262 3 MP XPP X0 18 17 0 1172 1279 3 MP XPP X17 0 0 18 1172 1279 3 MP XPP X0 18 17 0 1172 1297 3 MP XPP X17 0 0 18 1172 1297 3 MP XPP X0 18 17 0 1172 1315 3 MP XPP X17 0 0 18 1172 1315 3 MP XPP X0 18 17 0 1172 1333 3 MP XPP X17 0 0 18 1172 1333 3 MP XPP X0 18 17 0 1172 1351 3 MP XPP X17 0 0 18 1172 1351 3 MP XPP X0 17 17 0 1172 1369 3 MP XPP X17 0 0 17 1172 1369 3 MP XPP X0 18 17 0 1172 1386 3 MP XPP X17 0 0 18 1172 1386 3 MP XPP X0 18 17 0 1172 1404 3 MP XPP X17 0 0 18 1172 1404 3 MP XPP X0 18 17 0 1172 1422 3 MP XPP X17 0 0 18 1172 1422 3 MP XPP X0 18 17 0 1172 1440 3 MP XPP X17 0 0 18 1172 1440 3 MP XPP X0 18 17 0 1172 1458 3 MP XPP X17 0 0 18 1172 1458 3 MP XPP X0 17 17 0 1172 1476 3 MP XPP X17 0 0 17 1172 1476 3 MP XPP X0 18 17 0 1172 1493 3 MP XPP X17 0 0 18 1172 1493 3 MP XPP X0 18 17 0 1172 1511 3 MP XPP X17 0 0 18 1172 1511 3 MP XPP X0 18 17 0 1172 1529 3 MP XPP X17 0 0 18 1172 1529 3 MP XPP X0 18 17 0 1172 1547 3 MP XPP X17 0 0 18 1172 1547 3 MP XPP X0 18 17 0 1172 1565 3 MP XPP X17 0 0 18 1172 1565 3 MP XPP X0 17 17 0 1172 1583 3 MP XPP X17 0 0 17 1172 1583 3 MP XPP X0 18 17 0 1172 1600 3 MP XPP X17 0 0 18 1172 1600 3 MP XPP X0 18 17 0 1172 1618 3 MP XPP X17 0 0 18 1172 1618 3 MP XPP X0 18 17 0 1172 1636 3 MP XPP X17 0 0 18 1172 1636 3 MP XPP X0 18 17 0 1172 1654 3 MP XPP X17 0 0 18 1172 1654 3 MP XPP X0 18 17 0 1172 1672 3 MP XPP X17 0 0 18 1172 1672 3 MP XPP X0 17 17 0 1172 1690 3 MP XPP X17 0 0 17 1172 1690 3 MP XPP X0 18 17 0 1172 1707 3 MP XPP X17 0 0 18 1172 1707 3 MP XPP X0 18 17 0 1172 1725 3 MP XPP X17 0 0 18 1172 1725 3 MP XPP X0 18 17 0 1172 1743 3 MP XPP X17 0 0 18 1172 1743 3 MP XPP X0 18 17 0 1172 1761 3 MP XPP X17 0 0 18 1172 1761 3 MP XPP X0 18 17 0 1172 1779 3 MP XPP X17 0 0 18 1172 1779 3 MP XPP X0 17 17 0 1172 1797 3 MP XPP X17 0 0 17 1172 1797 3 MP XPP X0 18 17 0 1172 1814 3 MP XPP X17 0 0 18 1172 1814 3 MP XPP X0 18 17 0 1172 1832 3 MP XPP X17 0 0 18 1172 1832 3 MP XPP X0 18 17 0 1172 1850 3 MP XPP X17 0 0 18 1172 1850 3 MP XPP X0 18 17 0 1172 1868 3 MP XPP X17 0 0 18 1172 1868 3 MP XPP X0 18 17 0 1172 1886 3 MP XPP X17 0 0 18 1172 1886 3 MP XPP X0 17 17 0 1172 1904 3 MP XPP X17 0 0 17 1172 1904 3 MP XPP X0 18 17 0 1172 1921 3 MP XPP X17 0 0 18 1172 1921 3 MP XPP X0 18 17 0 1172 1939 3 MP XPP X17 0 0 18 1172 1939 3 MP XPP X0 18 17 0 1172 1957 3 MP XPP X17 0 0 18 1172 1957 3 MP XPP X0 18 17 0 1172 1975 3 MP XPP X17 0 0 18 1172 1975 3 MP XPP X0 18 17 0 1172 1993 3 MP XPP X17 0 0 18 1172 1993 3 MP XPP X0 17 17 0 1172 2011 3 MP XPP X17 0 0 17 1172 2011 3 MP XPP X0 18 17 0 1172 2028 3 MP XPP X17 0 0 18 1172 2028 3 MP XPP X0 18 17 0 1172 2046 3 MP XPP X17 0 0 18 1172 2046 3 MP XPP X0 18 17 0 1172 2064 3 MP XPP X17 0 0 18 1172 2064 3 MP XPP X0 18 17 0 1172 2082 3 MP XPP X17 0 0 18 1172 2082 3 MP XPP X0 18 17 0 1172 2100 3 MP XPP X17 0 0 18 1172 2100 3 MP XPP X0 17 17 0 1172 2118 3 MP XPP X17 0 0 17 1172 2118 3 MP XPP X0 18 17 0 1172 2135 3 MP XPP X17 0 0 18 1172 2135 3 MP XPP X0 18 17 0 1172 2153 3 MP XPP X17 0 0 18 1172 2153 3 MP XPP X0 18 18 0 1189 388 3 MP XPP X18 0 0 18 1189 388 3 MP XPP X0 18 18 0 1189 406 3 MP XPP X18 0 0 18 1189 406 3 MP XPP X0 17 18 0 1189 424 3 MP XPP X18 0 0 17 1189 424 3 MP XPP X0 18 18 0 1189 441 3 MP XPP X18 0 0 18 1189 441 3 MP XPP X0 18 18 0 1189 459 3 MP XPP X18 0 0 18 1189 459 3 MP XPP X0 18 18 0 1189 477 3 MP XPP X18 0 0 18 1189 477 3 MP XPP X0 18 18 0 1189 495 3 MP XPP X18 0 0 18 1189 495 3 MP XPP X0 18 18 0 1189 513 3 MP XPP X18 0 0 18 1189 513 3 MP XPP X0 17 18 0 1189 531 3 MP XPP X18 0 0 17 1189 531 3 MP XPP X0 18 18 0 1189 548 3 MP XPP X18 0 0 18 1189 548 3 MP XPP X0 18 18 0 1189 566 3 MP XPP X18 0 0 18 1189 566 3 MP XPP X0 18 18 0 1189 584 3 MP XPP X18 0 0 18 1189 584 3 MP XPP X0 18 18 0 1189 602 3 MP XPP X18 0 0 18 1189 602 3 MP XPP X0 18 18 0 1189 620 3 MP XPP X18 0 0 18 1189 620 3 MP XPP X0 17 18 0 1189 638 3 MP XPP X18 0 0 17 1189 638 3 MP XPP X0 18 18 0 1189 655 3 MP XPP X18 0 0 18 1189 655 3 MP XPP X0 18 18 0 1189 673 3 MP XPP X18 0 0 18 1189 673 3 MP XPP X0 18 18 0 1189 691 3 MP XPP X18 0 0 18 1189 691 3 MP XPP X0 18 18 0 1189 709 3 MP XPP X18 0 0 18 1189 709 3 MP XPP X0 18 18 0 1189 727 3 MP XPP X18 0 0 18 1189 727 3 MP XPP X0 17 18 0 1189 745 3 MP XPP X18 0 0 17 1189 745 3 MP XPP X0 18 18 0 1189 762 3 MP XPP X18 0 0 18 1189 762 3 MP XPP X0 18 18 0 1189 780 3 MP XPP X18 0 0 18 1189 780 3 MP XPP X0 18 18 0 1189 798 3 MP XPP X18 0 0 18 1189 798 3 MP XPP X0 18 18 0 1189 816 3 MP XPP X18 0 0 18 1189 816 3 MP XPP X0 18 18 0 1189 834 3 MP XPP X18 0 0 18 1189 834 3 MP XPP X0 17 18 0 1189 852 3 MP XPP X18 0 0 17 1189 852 3 MP XPP X0 18 18 0 1189 869 3 MP XPP X18 0 0 18 1189 869 3 MP XPP X0 18 18 0 1189 887 3 MP XPP X18 0 0 18 1189 887 3 MP XPP X0 18 18 0 1189 905 3 MP XPP X18 0 0 18 1189 905 3 MP XPP X0 18 18 0 1189 923 3 MP XPP X18 0 0 18 1189 923 3 MP XPP X0 18 18 0 1189 941 3 MP XPP X18 0 0 18 1189 941 3 MP XPP X0 17 18 0 1189 959 3 MP XPP X18 0 0 17 1189 959 3 MP XPP X0 18 18 0 1189 976 3 MP XPP X18 0 0 18 1189 976 3 MP XPP X0 18 18 0 1189 994 3 MP XPP X18 0 0 18 1189 994 3 MP XPP X0 18 18 0 1189 1012 3 MP XPP X18 0 0 18 1189 1012 3 MP XPP X0 18 18 0 1189 1030 3 MP XPP X18 0 0 18 1189 1030 3 MP XPP X0 18 18 0 1189 1048 3 MP XPP X18 0 0 18 1189 1048 3 MP XPP X0 17 18 0 1189 1066 3 MP XPP X18 0 0 17 1189 1066 3 MP XPP X0 18 18 0 1189 1083 3 MP XPP X18 0 0 18 1189 1083 3 MP XPP X0 18 18 0 1189 1101 3 MP XPP X18 0 0 18 1189 1101 3 MP XPP X0.238095 sg X0 18 18 0 1189 1119 3 MP XPP X18 0 0 18 1189 1119 3 MP XPP X0 18 18 0 1189 1137 3 MP XPP X18 0 0 18 1189 1137 3 MP XPP X0 18 18 0 1189 1155 3 MP XPP X18 0 0 18 1189 1155 3 MP XPP X1 sg X0 17 18 0 1189 1173 3 MP XPP X18 0 0 17 1189 1173 3 MP XPP X0 18 18 0 1189 1190 3 MP XPP X18 0 0 18 1189 1190 3 MP XPP X0 18 18 0 1189 1208 3 MP XPP X18 0 0 18 1189 1208 3 MP XPP X0 18 18 0 1189 1226 3 MP XPP X18 0 0 18 1189 1226 3 MP XPP X0 18 18 0 1189 1244 3 MP XPP X18 0 0 18 1189 1244 3 MP XPP X0 17 18 0 1189 1262 3 MP XPP X18 0 0 17 1189 1262 3 MP XPP X0 18 18 0 1189 1279 3 MP XPP X18 0 0 18 1189 1279 3 MP XPP X0 18 18 0 1189 1297 3 MP XPP X18 0 0 18 1189 1297 3 MP XPP X0 18 18 0 1189 1315 3 MP XPP X18 0 0 18 1189 1315 3 MP XPP X0 18 18 0 1189 1333 3 MP XPP X18 0 0 18 1189 1333 3 MP XPP X0 18 18 0 1189 1351 3 MP XPP X18 0 0 18 1189 1351 3 MP XPP X0 17 18 0 1189 1369 3 MP XPP X18 0 0 17 1189 1369 3 MP XPP X0 18 18 0 1189 1386 3 MP XPP X18 0 0 18 1189 1386 3 MP XPP X0 18 18 0 1189 1404 3 MP XPP X18 0 0 18 1189 1404 3 MP XPP X0 18 18 0 1189 1422 3 MP XPP X18 0 0 18 1189 1422 3 MP XPP X0 18 18 0 1189 1440 3 MP XPP X18 0 0 18 1189 1440 3 MP XPP X0 18 18 0 1189 1458 3 MP XPP X18 0 0 18 1189 1458 3 MP XPP X0 17 18 0 1189 1476 3 MP XPP X18 0 0 17 1189 1476 3 MP XPP X0 18 18 0 1189 1493 3 MP XPP X18 0 0 18 1189 1493 3 MP XPP X0 18 18 0 1189 1511 3 MP XPP X18 0 0 18 1189 1511 3 MP XPP X0 18 18 0 1189 1529 3 MP XPP X18 0 0 18 1189 1529 3 MP XPP X0 18 18 0 1189 1547 3 MP XPP X18 0 0 18 1189 1547 3 MP XPP X0 18 18 0 1189 1565 3 MP XPP X18 0 0 18 1189 1565 3 MP XPP X0 17 18 0 1189 1583 3 MP XPP X18 0 0 17 1189 1583 3 MP XPP X0 18 18 0 1189 1600 3 MP XPP X18 0 0 18 1189 1600 3 MP XPP X0 18 18 0 1189 1618 3 MP XPP X18 0 0 18 1189 1618 3 MP XPP X0 18 18 0 1189 1636 3 MP XPP X18 0 0 18 1189 1636 3 MP XPP X0 18 18 0 1189 1654 3 MP XPP X18 0 0 18 1189 1654 3 MP XPP X0 18 18 0 1189 1672 3 MP XPP X18 0 0 18 1189 1672 3 MP XPP X0 17 18 0 1189 1690 3 MP XPP X18 0 0 17 1189 1690 3 MP XPP X0 18 18 0 1189 1707 3 MP XPP X18 0 0 18 1189 1707 3 MP XPP X0 18 18 0 1189 1725 3 MP XPP X18 0 0 18 1189 1725 3 MP XPP X0 18 18 0 1189 1743 3 MP XPP X18 0 0 18 1189 1743 3 MP XPP X0 18 18 0 1189 1761 3 MP XPP X18 0 0 18 1189 1761 3 MP XPP X0 18 18 0 1189 1779 3 MP XPP X18 0 0 18 1189 1779 3 MP XPP X0 17 18 0 1189 1797 3 MP XPP X18 0 0 17 1189 1797 3 MP XPP X0 18 18 0 1189 1814 3 MP XPP X18 0 0 18 1189 1814 3 MP XPP X0 18 18 0 1189 1832 3 MP XPP X18 0 0 18 1189 1832 3 MP XPP X0 18 18 0 1189 1850 3 MP XPP X18 0 0 18 1189 1850 3 MP XPP X0 18 18 0 1189 1868 3 MP XPP X18 0 0 18 1189 1868 3 MP XPP X0 18 18 0 1189 1886 3 MP XPP X18 0 0 18 1189 1886 3 MP XPP X0 17 18 0 1189 1904 3 MP XPP X18 0 0 17 1189 1904 3 MP XPP X0 18 18 0 1189 1921 3 MP XPP X18 0 0 18 1189 1921 3 MP XPP X0 18 18 0 1189 1939 3 MP XPP X18 0 0 18 1189 1939 3 MP XPP X0 18 18 0 1189 1957 3 MP XPP X18 0 0 18 1189 1957 3 MP XPP X0 18 18 0 1189 1975 3 MP XPP X18 0 0 18 1189 1975 3 MP XPP X0 18 18 0 1189 1993 3 MP XPP X18 0 0 18 1189 1993 3 MP XPP X0 17 18 0 1189 2011 3 MP XPP X18 0 0 17 1189 2011 3 MP XPP X0 18 18 0 1189 2028 3 MP XPP X18 0 0 18 1189 2028 3 MP XPP X0 18 18 0 1189 2046 3 MP XPP X18 0 0 18 1189 2046 3 MP XPP X0 18 18 0 1189 2064 3 MP XPP X18 0 0 18 1189 2064 3 MP XPP X0 18 18 0 1189 2082 3 MP XPP X18 0 0 18 1189 2082 3 MP XPP X0 18 18 0 1189 2100 3 MP XPP X18 0 0 18 1189 2100 3 MP XPP X0 17 18 0 1189 2118 3 MP XPP X18 0 0 17 1189 2118 3 MP XPP X0 18 18 0 1189 2135 3 MP XPP X18 0 0 18 1189 2135 3 MP XPP X0 18 18 0 1189 2153 3 MP XPP X18 0 0 18 1189 2153 3 MP XPP X0 18 18 0 1207 388 3 MP XPP X18 0 0 18 1207 388 3 MP XPP X0 18 18 0 1207 406 3 MP XPP X18 0 0 18 1207 406 3 MP XPP X0 17 18 0 1207 424 3 MP XPP X18 0 0 17 1207 424 3 MP XPP X0 18 18 0 1207 441 3 MP XPP X18 0 0 18 1207 441 3 MP XPP X0 18 18 0 1207 459 3 MP XPP X18 0 0 18 1207 459 3 MP XPP X0 18 18 0 1207 477 3 MP XPP X18 0 0 18 1207 477 3 MP XPP X0 18 18 0 1207 495 3 MP XPP X18 0 0 18 1207 495 3 MP XPP X0 18 18 0 1207 513 3 MP XPP X18 0 0 18 1207 513 3 MP XPP X0 17 18 0 1207 531 3 MP XPP X18 0 0 17 1207 531 3 MP XPP X0 18 18 0 1207 548 3 MP XPP X18 0 0 18 1207 548 3 MP XPP X0 18 18 0 1207 566 3 MP XPP X18 0 0 18 1207 566 3 MP XPP X0 18 18 0 1207 584 3 MP XPP X18 0 0 18 1207 584 3 MP XPP X0 18 18 0 1207 602 3 MP XPP X18 0 0 18 1207 602 3 MP XPP X0 18 18 0 1207 620 3 MP XPP X18 0 0 18 1207 620 3 MP XPP X0 17 18 0 1207 638 3 MP XPP X18 0 0 17 1207 638 3 MP XPP X0 18 18 0 1207 655 3 MP XPP X18 0 0 18 1207 655 3 MP XPP X0 18 18 0 1207 673 3 MP XPP X18 0 0 18 1207 673 3 MP XPP X0 18 18 0 1207 691 3 MP XPP X18 0 0 18 1207 691 3 MP XPP X0 18 18 0 1207 709 3 MP XPP X18 0 0 18 1207 709 3 MP XPP X0 18 18 0 1207 727 3 MP XPP X18 0 0 18 1207 727 3 MP XPP X0 17 18 0 1207 745 3 MP XPP X18 0 0 17 1207 745 3 MP XPP X0 18 18 0 1207 762 3 MP XPP X18 0 0 18 1207 762 3 MP XPP X0 18 18 0 1207 780 3 MP XPP X18 0 0 18 1207 780 3 MP XPP X0 18 18 0 1207 798 3 MP XPP X18 0 0 18 1207 798 3 MP XPP X0 18 18 0 1207 816 3 MP XPP X18 0 0 18 1207 816 3 MP XPP X0 18 18 0 1207 834 3 MP XPP X18 0 0 18 1207 834 3 MP XPP X0 17 18 0 1207 852 3 MP XPP X18 0 0 17 1207 852 3 MP XPP X0 18 18 0 1207 869 3 MP XPP X18 0 0 18 1207 869 3 MP XPP X0 18 18 0 1207 887 3 MP XPP X18 0 0 18 1207 887 3 MP XPP X0 18 18 0 1207 905 3 MP XPP X18 0 0 18 1207 905 3 MP XPP X0 18 18 0 1207 923 3 MP XPP X18 0 0 18 1207 923 3 MP XPP X0 18 18 0 1207 941 3 MP XPP X18 0 0 18 1207 941 3 MP XPP X0 17 18 0 1207 959 3 MP XPP X18 0 0 17 1207 959 3 MP XPP X0 18 18 0 1207 976 3 MP XPP X18 0 0 18 1207 976 3 MP XPP X0 18 18 0 1207 994 3 MP XPP X18 0 0 18 1207 994 3 MP XPP X0 18 18 0 1207 1012 3 MP XPP X18 0 0 18 1207 1012 3 MP XPP X0 18 18 0 1207 1030 3 MP XPP X18 0 0 18 1207 1030 3 MP XPP X0 18 18 0 1207 1048 3 MP XPP X18 0 0 18 1207 1048 3 MP XPP X0 17 18 0 1207 1066 3 MP XPP X18 0 0 17 1207 1066 3 MP XPP X0 18 18 0 1207 1083 3 MP XPP X18 0 0 18 1207 1083 3 MP XPP X0 18 18 0 1207 1101 3 MP XPP X18 0 0 18 1207 1101 3 MP XPP X0.238095 sg X0 18 18 0 1207 1119 3 MP XPP X18 0 0 18 1207 1119 3 MP XPP X0 18 18 0 1207 1137 3 MP XPP X18 0 0 18 1207 1137 3 MP XPP X0 18 18 0 1207 1155 3 MP XPP X18 0 0 18 1207 1155 3 MP XPP X0 17 18 0 1207 1173 3 MP XPP X18 0 0 17 1207 1173 3 MP XPP X1 sg X0 18 18 0 1207 1190 3 MP XPP X18 0 0 18 1207 1190 3 MP XPP X0 18 18 0 1207 1208 3 MP XPP X18 0 0 18 1207 1208 3 MP XPP X0 18 18 0 1207 1226 3 MP XPP X18 0 0 18 1207 1226 3 MP XPP X0 18 18 0 1207 1244 3 MP XPP X18 0 0 18 1207 1244 3 MP XPP X0 17 18 0 1207 1262 3 MP XPP X18 0 0 17 1207 1262 3 MP XPP X0 18 18 0 1207 1279 3 MP XPP X18 0 0 18 1207 1279 3 MP XPP X0 18 18 0 1207 1297 3 MP XPP X18 0 0 18 1207 1297 3 MP XPP X0 18 18 0 1207 1315 3 MP XPP X18 0 0 18 1207 1315 3 MP XPP X0 18 18 0 1207 1333 3 MP XPP X18 0 0 18 1207 1333 3 MP XPP X0 18 18 0 1207 1351 3 MP XPP X18 0 0 18 1207 1351 3 MP XPP X0 17 18 0 1207 1369 3 MP XPP X18 0 0 17 1207 1369 3 MP XPP X0 18 18 0 1207 1386 3 MP XPP X18 0 0 18 1207 1386 3 MP XPP X0 18 18 0 1207 1404 3 MP XPP X18 0 0 18 1207 1404 3 MP XPP X0 18 18 0 1207 1422 3 MP XPP X18 0 0 18 1207 1422 3 MP XPP X0 18 18 0 1207 1440 3 MP XPP X18 0 0 18 1207 1440 3 MP XPP X0 18 18 0 1207 1458 3 MP XPP X18 0 0 18 1207 1458 3 MP XPP X0 17 18 0 1207 1476 3 MP XPP X18 0 0 17 1207 1476 3 MP XPP X0 18 18 0 1207 1493 3 MP XPP X18 0 0 18 1207 1493 3 MP XPP X0 18 18 0 1207 1511 3 MP XPP X18 0 0 18 1207 1511 3 MP XPP X0 18 18 0 1207 1529 3 MP XPP X18 0 0 18 1207 1529 3 MP XPP X0 18 18 0 1207 1547 3 MP XPP X18 0 0 18 1207 1547 3 MP XPP X0 18 18 0 1207 1565 3 MP XPP X18 0 0 18 1207 1565 3 MP XPP X0 17 18 0 1207 1583 3 MP XPP X18 0 0 17 1207 1583 3 MP XPP X0 18 18 0 1207 1600 3 MP XPP X18 0 0 18 1207 1600 3 MP XPP X0 18 18 0 1207 1618 3 MP XPP X18 0 0 18 1207 1618 3 MP XPP X0 18 18 0 1207 1636 3 MP XPP X18 0 0 18 1207 1636 3 MP XPP X0 18 18 0 1207 1654 3 MP XPP X18 0 0 18 1207 1654 3 MP XPP X0 18 18 0 1207 1672 3 MP XPP X18 0 0 18 1207 1672 3 MP XPP X0 17 18 0 1207 1690 3 MP XPP X18 0 0 17 1207 1690 3 MP XPP X0 18 18 0 1207 1707 3 MP XPP X18 0 0 18 1207 1707 3 MP XPP X0 18 18 0 1207 1725 3 MP XPP X18 0 0 18 1207 1725 3 MP XPP X0 18 18 0 1207 1743 3 MP XPP X18 0 0 18 1207 1743 3 MP XPP X0 18 18 0 1207 1761 3 MP XPP X18 0 0 18 1207 1761 3 MP XPP X0 18 18 0 1207 1779 3 MP XPP X18 0 0 18 1207 1779 3 MP XPP X0 17 18 0 1207 1797 3 MP XPP X18 0 0 17 1207 1797 3 MP XPP X0 18 18 0 1207 1814 3 MP XPP X18 0 0 18 1207 1814 3 MP XPP X0 18 18 0 1207 1832 3 MP XPP X18 0 0 18 1207 1832 3 MP XPP X0 18 18 0 1207 1850 3 MP XPP X18 0 0 18 1207 1850 3 MP XPP X0 18 18 0 1207 1868 3 MP XPP X18 0 0 18 1207 1868 3 MP XPP X0 18 18 0 1207 1886 3 MP XPP X18 0 0 18 1207 1886 3 MP XPP X0 17 18 0 1207 1904 3 MP XPP X18 0 0 17 1207 1904 3 MP XPP X0 18 18 0 1207 1921 3 MP XPP X18 0 0 18 1207 1921 3 MP XPP X0 18 18 0 1207 1939 3 MP XPP X18 0 0 18 1207 1939 3 MP XPP X0 18 18 0 1207 1957 3 MP XPP X18 0 0 18 1207 1957 3 MP XPP X0 18 18 0 1207 1975 3 MP XPP X18 0 0 18 1207 1975 3 MP XPP X0 18 18 0 1207 1993 3 MP XPP X18 0 0 18 1207 1993 3 MP XPP X0 17 18 0 1207 2011 3 MP XPP X18 0 0 17 1207 2011 3 MP XPP X0 18 18 0 1207 2028 3 MP XPP X18 0 0 18 1207 2028 3 MP XPP X0 18 18 0 1207 2046 3 MP XPP X18 0 0 18 1207 2046 3 MP XPP X0 18 18 0 1207 2064 3 MP XPP X18 0 0 18 1207 2064 3 MP XPP X0 18 18 0 1207 2082 3 MP XPP X18 0 0 18 1207 2082 3 MP XPP X0 18 18 0 1207 2100 3 MP XPP X18 0 0 18 1207 2100 3 MP XPP X0 17 18 0 1207 2118 3 MP XPP X18 0 0 17 1207 2118 3 MP XPP X0 18 18 0 1207 2135 3 MP XPP X18 0 0 18 1207 2135 3 MP XPP X0 18 18 0 1207 2153 3 MP XPP X18 0 0 18 1207 2153 3 MP XPP X0 18 18 0 1225 388 3 MP XPP X18 0 0 18 1225 388 3 MP XPP X0 18 18 0 1225 406 3 MP XPP X18 0 0 18 1225 406 3 MP XPP X0 17 18 0 1225 424 3 MP XPP X18 0 0 17 1225 424 3 MP XPP X0 18 18 0 1225 441 3 MP XPP X18 0 0 18 1225 441 3 MP XPP X0 18 18 0 1225 459 3 MP XPP X18 0 0 18 1225 459 3 MP XPP X0 18 18 0 1225 477 3 MP XPP X18 0 0 18 1225 477 3 MP XPP X0 18 18 0 1225 495 3 MP XPP X18 0 0 18 1225 495 3 MP XPP X0 18 18 0 1225 513 3 MP XPP X18 0 0 18 1225 513 3 MP XPP X0 17 18 0 1225 531 3 MP XPP X18 0 0 17 1225 531 3 MP XPP X0 18 18 0 1225 548 3 MP XPP X18 0 0 18 1225 548 3 MP XPP X0 18 18 0 1225 566 3 MP XPP X18 0 0 18 1225 566 3 MP XPP X0 18 18 0 1225 584 3 MP XPP X18 0 0 18 1225 584 3 MP XPP X0 18 18 0 1225 602 3 MP XPP X18 0 0 18 1225 602 3 MP XPP X0 18 18 0 1225 620 3 MP XPP X18 0 0 18 1225 620 3 MP XPP X0 17 18 0 1225 638 3 MP XPP X18 0 0 17 1225 638 3 MP XPP X0 18 18 0 1225 655 3 MP XPP X18 0 0 18 1225 655 3 MP XPP X0 18 18 0 1225 673 3 MP XPP X18 0 0 18 1225 673 3 MP XPP X0 18 18 0 1225 691 3 MP XPP X18 0 0 18 1225 691 3 MP XPP X0 18 18 0 1225 709 3 MP XPP X18 0 0 18 1225 709 3 MP XPP X0 18 18 0 1225 727 3 MP XPP X18 0 0 18 1225 727 3 MP XPP X0 17 18 0 1225 745 3 MP XPP X18 0 0 17 1225 745 3 MP XPP X0 18 18 0 1225 762 3 MP XPP X18 0 0 18 1225 762 3 MP XPP X0 18 18 0 1225 780 3 MP XPP X18 0 0 18 1225 780 3 MP XPP X0 18 18 0 1225 798 3 MP XPP X18 0 0 18 1225 798 3 MP XPP X0 18 18 0 1225 816 3 MP XPP X18 0 0 18 1225 816 3 MP XPP X0 18 18 0 1225 834 3 MP XPP X18 0 0 18 1225 834 3 MP XPP X0 17 18 0 1225 852 3 MP XPP X18 0 0 17 1225 852 3 MP XPP X0 18 18 0 1225 869 3 MP XPP X18 0 0 18 1225 869 3 MP XPP X0 18 18 0 1225 887 3 MP XPP X18 0 0 18 1225 887 3 MP XPP X0 18 18 0 1225 905 3 MP XPP X18 0 0 18 1225 905 3 MP XPP X0 18 18 0 1225 923 3 MP XPP X18 0 0 18 1225 923 3 MP XPP X0 18 18 0 1225 941 3 MP XPP X18 0 0 18 1225 941 3 MP XPP X0 17 18 0 1225 959 3 MP XPP X18 0 0 17 1225 959 3 MP XPP X0 18 18 0 1225 976 3 MP XPP X18 0 0 18 1225 976 3 MP XPP X0 18 18 0 1225 994 3 MP XPP X18 0 0 18 1225 994 3 MP XPP X0 18 18 0 1225 1012 3 MP XPP X18 0 0 18 1225 1012 3 MP XPP X0 18 18 0 1225 1030 3 MP XPP X18 0 0 18 1225 1030 3 MP XPP X0 18 18 0 1225 1048 3 MP XPP X18 0 0 18 1225 1048 3 MP XPP X0 17 18 0 1225 1066 3 MP XPP X18 0 0 17 1225 1066 3 MP XPP X0 18 18 0 1225 1083 3 MP XPP X18 0 0 18 1225 1083 3 MP XPP X0 18 18 0 1225 1101 3 MP XPP X18 0 0 18 1225 1101 3 MP XPP X0.238095 sg X0 18 18 0 1225 1119 3 MP XPP X18 0 0 18 1225 1119 3 MP XPP X0 18 18 0 1225 1137 3 MP XPP X18 0 0 18 1225 1137 3 MP XPP X0 18 18 0 1225 1155 3 MP XPP X18 0 0 18 1225 1155 3 MP XPP X0 17 18 0 1225 1173 3 MP XPP X18 0 0 17 1225 1173 3 MP XPP X0 18 18 0 1225 1190 3 MP XPP X18 0 0 18 1225 1190 3 MP XPP X1 sg X0 18 18 0 1225 1208 3 MP XPP X18 0 0 18 1225 1208 3 MP XPP X0 18 18 0 1225 1226 3 MP XPP X18 0 0 18 1225 1226 3 MP XPP X0 18 18 0 1225 1244 3 MP XPP X18 0 0 18 1225 1244 3 MP XPP X0 17 18 0 1225 1262 3 MP XPP X18 0 0 17 1225 1262 3 MP XPP X0 18 18 0 1225 1279 3 MP XPP X18 0 0 18 1225 1279 3 MP XPP X0 18 18 0 1225 1297 3 MP XPP X18 0 0 18 1225 1297 3 MP XPP X0 18 18 0 1225 1315 3 MP XPP X18 0 0 18 1225 1315 3 MP XPP X0 18 18 0 1225 1333 3 MP XPP X18 0 0 18 1225 1333 3 MP XPP X0 18 18 0 1225 1351 3 MP XPP X18 0 0 18 1225 1351 3 MP XPP X0 17 18 0 1225 1369 3 MP XPP X18 0 0 17 1225 1369 3 MP XPP X0 18 18 0 1225 1386 3 MP XPP X18 0 0 18 1225 1386 3 MP XPP X0 18 18 0 1225 1404 3 MP XPP X18 0 0 18 1225 1404 3 MP XPP X0 18 18 0 1225 1422 3 MP XPP X18 0 0 18 1225 1422 3 MP XPP X0 18 18 0 1225 1440 3 MP XPP X18 0 0 18 1225 1440 3 MP XPP X0 18 18 0 1225 1458 3 MP XPP X18 0 0 18 1225 1458 3 MP XPP X0 17 18 0 1225 1476 3 MP XPP X18 0 0 17 1225 1476 3 MP XPP X0 18 18 0 1225 1493 3 MP XPP X18 0 0 18 1225 1493 3 MP XPP X0 18 18 0 1225 1511 3 MP XPP X18 0 0 18 1225 1511 3 MP XPP X0 18 18 0 1225 1529 3 MP XPP X18 0 0 18 1225 1529 3 MP XPP X0 18 18 0 1225 1547 3 MP XPP X18 0 0 18 1225 1547 3 MP XPP X0 18 18 0 1225 1565 3 MP XPP X18 0 0 18 1225 1565 3 MP XPP X0 17 18 0 1225 1583 3 MP XPP X18 0 0 17 1225 1583 3 MP XPP X0 18 18 0 1225 1600 3 MP XPP X18 0 0 18 1225 1600 3 MP XPP X0 18 18 0 1225 1618 3 MP XPP X18 0 0 18 1225 1618 3 MP XPP X0 18 18 0 1225 1636 3 MP XPP X18 0 0 18 1225 1636 3 MP XPP X0 18 18 0 1225 1654 3 MP XPP X18 0 0 18 1225 1654 3 MP XPP X0 18 18 0 1225 1672 3 MP XPP X18 0 0 18 1225 1672 3 MP XPP X0 17 18 0 1225 1690 3 MP XPP X18 0 0 17 1225 1690 3 MP XPP X0 18 18 0 1225 1707 3 MP XPP X18 0 0 18 1225 1707 3 MP XPP X0 18 18 0 1225 1725 3 MP XPP X18 0 0 18 1225 1725 3 MP XPP X0 18 18 0 1225 1743 3 MP XPP X18 0 0 18 1225 1743 3 MP XPP X0 18 18 0 1225 1761 3 MP XPP X18 0 0 18 1225 1761 3 MP XPP X0 18 18 0 1225 1779 3 MP XPP X18 0 0 18 1225 1779 3 MP XPP X0 17 18 0 1225 1797 3 MP XPP X18 0 0 17 1225 1797 3 MP XPP X0 18 18 0 1225 1814 3 MP XPP X18 0 0 18 1225 1814 3 MP XPP X0 18 18 0 1225 1832 3 MP XPP X18 0 0 18 1225 1832 3 MP XPP X0 18 18 0 1225 1850 3 MP XPP X18 0 0 18 1225 1850 3 MP XPP X0 18 18 0 1225 1868 3 MP XPP X18 0 0 18 1225 1868 3 MP XPP X0 18 18 0 1225 1886 3 MP XPP X18 0 0 18 1225 1886 3 MP XPP X0 17 18 0 1225 1904 3 MP XPP X18 0 0 17 1225 1904 3 MP XPP X0 18 18 0 1225 1921 3 MP XPP X18 0 0 18 1225 1921 3 MP XPP X0 18 18 0 1225 1939 3 MP XPP X18 0 0 18 1225 1939 3 MP XPP X0 18 18 0 1225 1957 3 MP XPP X18 0 0 18 1225 1957 3 MP XPP X0 18 18 0 1225 1975 3 MP XPP X18 0 0 18 1225 1975 3 MP XPP X0 18 18 0 1225 1993 3 MP XPP X18 0 0 18 1225 1993 3 MP XPP X0 17 18 0 1225 2011 3 MP XPP X18 0 0 17 1225 2011 3 MP XPP X0 18 18 0 1225 2028 3 MP XPP X18 0 0 18 1225 2028 3 MP XPP X0 18 18 0 1225 2046 3 MP XPP X18 0 0 18 1225 2046 3 MP XPP X0 18 18 0 1225 2064 3 MP XPP X18 0 0 18 1225 2064 3 MP XPP X0 18 18 0 1225 2082 3 MP XPP X18 0 0 18 1225 2082 3 MP XPP X0 18 18 0 1225 2100 3 MP XPP X18 0 0 18 1225 2100 3 MP XPP X0 17 18 0 1225 2118 3 MP XPP X18 0 0 17 1225 2118 3 MP XPP X0 18 18 0 1225 2135 3 MP XPP X18 0 0 18 1225 2135 3 MP XPP X0 18 18 0 1225 2153 3 MP XPP X18 0 0 18 1225 2153 3 MP XPP X0 18 18 0 1243 388 3 MP XPP X18 0 0 18 1243 388 3 MP XPP X0 18 18 0 1243 406 3 MP XPP X18 0 0 18 1243 406 3 MP XPP X0 17 18 0 1243 424 3 MP XPP X18 0 0 17 1243 424 3 MP XPP X0 18 18 0 1243 441 3 MP XPP X18 0 0 18 1243 441 3 MP XPP X0 18 18 0 1243 459 3 MP XPP X18 0 0 18 1243 459 3 MP XPP X0 18 18 0 1243 477 3 MP XPP X18 0 0 18 1243 477 3 MP XPP X0 18 18 0 1243 495 3 MP XPP X18 0 0 18 1243 495 3 MP XPP X0 18 18 0 1243 513 3 MP XPP X18 0 0 18 1243 513 3 MP XPP X0 17 18 0 1243 531 3 MP XPP X18 0 0 17 1243 531 3 MP XPP X0 18 18 0 1243 548 3 MP XPP X18 0 0 18 1243 548 3 MP XPP X0 18 18 0 1243 566 3 MP XPP X18 0 0 18 1243 566 3 MP XPP X0 18 18 0 1243 584 3 MP XPP X18 0 0 18 1243 584 3 MP XPP X0 18 18 0 1243 602 3 MP XPP X18 0 0 18 1243 602 3 MP XPP X0 18 18 0 1243 620 3 MP XPP X18 0 0 18 1243 620 3 MP XPP X0 17 18 0 1243 638 3 MP XPP X18 0 0 17 1243 638 3 MP XPP X0 18 18 0 1243 655 3 MP XPP X18 0 0 18 1243 655 3 MP XPP X0 18 18 0 1243 673 3 MP XPP X18 0 0 18 1243 673 3 MP XPP X0 18 18 0 1243 691 3 MP XPP X18 0 0 18 1243 691 3 MP XPP X0 18 18 0 1243 709 3 MP XPP X18 0 0 18 1243 709 3 MP XPP X0 18 18 0 1243 727 3 MP XPP X18 0 0 18 1243 727 3 MP XPP X0 17 18 0 1243 745 3 MP XPP X18 0 0 17 1243 745 3 MP XPP X0 18 18 0 1243 762 3 MP XPP X18 0 0 18 1243 762 3 MP XPP X0 18 18 0 1243 780 3 MP XPP X18 0 0 18 1243 780 3 MP XPP X0 18 18 0 1243 798 3 MP XPP X18 0 0 18 1243 798 3 MP XPP X0 18 18 0 1243 816 3 MP XPP X18 0 0 18 1243 816 3 MP XPP X0 18 18 0 1243 834 3 MP XPP X18 0 0 18 1243 834 3 MP XPP X0 17 18 0 1243 852 3 MP XPP X18 0 0 17 1243 852 3 MP XPP X0 18 18 0 1243 869 3 MP XPP X18 0 0 18 1243 869 3 MP XPP X0 18 18 0 1243 887 3 MP XPP X18 0 0 18 1243 887 3 MP XPP X0 18 18 0 1243 905 3 MP XPP X18 0 0 18 1243 905 3 MP XPP X0 18 18 0 1243 923 3 MP XPP X18 0 0 18 1243 923 3 MP XPP X0 18 18 0 1243 941 3 MP XPP X18 0 0 18 1243 941 3 MP XPP X0 17 18 0 1243 959 3 MP XPP X18 0 0 17 1243 959 3 MP XPP X0 18 18 0 1243 976 3 MP XPP X18 0 0 18 1243 976 3 MP XPP X0 18 18 0 1243 994 3 MP XPP X18 0 0 18 1243 994 3 MP XPP X0 18 18 0 1243 1012 3 MP XPP X18 0 0 18 1243 1012 3 MP XPP X0 18 18 0 1243 1030 3 MP XPP X18 0 0 18 1243 1030 3 MP XPP X0 18 18 0 1243 1048 3 MP XPP X18 0 0 18 1243 1048 3 MP XPP X0 17 18 0 1243 1066 3 MP XPP X18 0 0 17 1243 1066 3 MP XPP X0 18 18 0 1243 1083 3 MP XPP X18 0 0 18 1243 1083 3 MP XPP X0 18 18 0 1243 1101 3 MP XPP X18 0 0 18 1243 1101 3 MP XPP X0.238095 sg X0 18 18 0 1243 1119 3 MP XPP X18 0 0 18 1243 1119 3 MP XPP X0 18 18 0 1243 1137 3 MP XPP X18 0 0 18 1243 1137 3 MP XPP X0 18 18 0 1243 1155 3 MP XPP X18 0 0 18 1243 1155 3 MP XPP X0 17 18 0 1243 1173 3 MP XPP X18 0 0 17 1243 1173 3 MP XPP X0 18 18 0 1243 1190 3 MP XPP X18 0 0 18 1243 1190 3 MP XPP X0 18 18 0 1243 1208 3 MP XPP X18 0 0 18 1243 1208 3 MP XPP X1 sg X0 18 18 0 1243 1226 3 MP XPP X18 0 0 18 1243 1226 3 MP XPP X0 18 18 0 1243 1244 3 MP XPP X18 0 0 18 1243 1244 3 MP XPP X0 17 18 0 1243 1262 3 MP XPP X18 0 0 17 1243 1262 3 MP XPP X0 18 18 0 1243 1279 3 MP XPP X18 0 0 18 1243 1279 3 MP XPP X0 18 18 0 1243 1297 3 MP XPP X18 0 0 18 1243 1297 3 MP XPP X0 18 18 0 1243 1315 3 MP XPP X18 0 0 18 1243 1315 3 MP XPP X0 18 18 0 1243 1333 3 MP XPP X18 0 0 18 1243 1333 3 MP XPP X0 18 18 0 1243 1351 3 MP XPP X18 0 0 18 1243 1351 3 MP XPP X0 17 18 0 1243 1369 3 MP XPP X18 0 0 17 1243 1369 3 MP XPP X0 18 18 0 1243 1386 3 MP XPP X18 0 0 18 1243 1386 3 MP XPP X0 18 18 0 1243 1404 3 MP XPP X18 0 0 18 1243 1404 3 MP XPP X0 18 18 0 1243 1422 3 MP XPP X18 0 0 18 1243 1422 3 MP XPP X0 18 18 0 1243 1440 3 MP XPP X18 0 0 18 1243 1440 3 MP XPP X0 18 18 0 1243 1458 3 MP XPP X18 0 0 18 1243 1458 3 MP XPP X0 17 18 0 1243 1476 3 MP XPP X18 0 0 17 1243 1476 3 MP XPP X0 18 18 0 1243 1493 3 MP XPP X18 0 0 18 1243 1493 3 MP XPP X0 18 18 0 1243 1511 3 MP XPP X18 0 0 18 1243 1511 3 MP XPP X0 18 18 0 1243 1529 3 MP XPP X18 0 0 18 1243 1529 3 MP XPP X0 18 18 0 1243 1547 3 MP XPP X18 0 0 18 1243 1547 3 MP XPP X0 18 18 0 1243 1565 3 MP XPP X18 0 0 18 1243 1565 3 MP XPP X0 17 18 0 1243 1583 3 MP XPP X18 0 0 17 1243 1583 3 MP XPP X0 18 18 0 1243 1600 3 MP XPP X18 0 0 18 1243 1600 3 MP XPP X0 18 18 0 1243 1618 3 MP XPP X18 0 0 18 1243 1618 3 MP XPP X0 18 18 0 1243 1636 3 MP XPP X18 0 0 18 1243 1636 3 MP XPP X0 18 18 0 1243 1654 3 MP XPP X18 0 0 18 1243 1654 3 MP XPP X0 18 18 0 1243 1672 3 MP XPP X18 0 0 18 1243 1672 3 MP XPP X0 17 18 0 1243 1690 3 MP XPP X18 0 0 17 1243 1690 3 MP XPP X0 18 18 0 1243 1707 3 MP XPP X18 0 0 18 1243 1707 3 MP XPP X0 18 18 0 1243 1725 3 MP XPP X18 0 0 18 1243 1725 3 MP XPP X0 18 18 0 1243 1743 3 MP XPP X18 0 0 18 1243 1743 3 MP XPP X0 18 18 0 1243 1761 3 MP XPP X18 0 0 18 1243 1761 3 MP XPP X0 18 18 0 1243 1779 3 MP XPP X18 0 0 18 1243 1779 3 MP XPP X0 17 18 0 1243 1797 3 MP XPP X18 0 0 17 1243 1797 3 MP XPP X0 18 18 0 1243 1814 3 MP XPP X18 0 0 18 1243 1814 3 MP XPP X0 18 18 0 1243 1832 3 MP XPP X18 0 0 18 1243 1832 3 MP XPP X0 18 18 0 1243 1850 3 MP XPP X18 0 0 18 1243 1850 3 MP XPP X0 18 18 0 1243 1868 3 MP XPP X18 0 0 18 1243 1868 3 MP XPP X0 18 18 0 1243 1886 3 MP XPP X18 0 0 18 1243 1886 3 MP XPP X0 17 18 0 1243 1904 3 MP XPP X18 0 0 17 1243 1904 3 MP XPP X0 18 18 0 1243 1921 3 MP XPP X18 0 0 18 1243 1921 3 MP XPP X0 18 18 0 1243 1939 3 MP XPP X18 0 0 18 1243 1939 3 MP XPP X0 18 18 0 1243 1957 3 MP XPP X18 0 0 18 1243 1957 3 MP XPP X0 18 18 0 1243 1975 3 MP XPP X18 0 0 18 1243 1975 3 MP XPP X0 18 18 0 1243 1993 3 MP XPP X18 0 0 18 1243 1993 3 MP XPP X0 17 18 0 1243 2011 3 MP XPP X18 0 0 17 1243 2011 3 MP XPP X0 18 18 0 1243 2028 3 MP XPP X18 0 0 18 1243 2028 3 MP XPP X0 18 18 0 1243 2046 3 MP XPP X18 0 0 18 1243 2046 3 MP XPP X0 18 18 0 1243 2064 3 MP XPP X18 0 0 18 1243 2064 3 MP XPP X0 18 18 0 1243 2082 3 MP XPP X18 0 0 18 1243 2082 3 MP XPP X0 18 18 0 1243 2100 3 MP XPP X18 0 0 18 1243 2100 3 MP XPP X0 17 18 0 1243 2118 3 MP XPP X18 0 0 17 1243 2118 3 MP XPP X0 18 18 0 1243 2135 3 MP XPP X18 0 0 18 1243 2135 3 MP XPP X0 18 18 0 1243 2153 3 MP XPP X18 0 0 18 1243 2153 3 MP XPP X0 18 18 0 1261 388 3 MP XPP X18 0 0 18 1261 388 3 MP XPP X0 18 18 0 1261 406 3 MP XPP X18 0 0 18 1261 406 3 MP XPP X0 17 18 0 1261 424 3 MP XPP X18 0 0 17 1261 424 3 MP XPP X0 18 18 0 1261 441 3 MP XPP X18 0 0 18 1261 441 3 MP XPP X0 18 18 0 1261 459 3 MP XPP X18 0 0 18 1261 459 3 MP XPP X0 18 18 0 1261 477 3 MP XPP X18 0 0 18 1261 477 3 MP XPP X0 18 18 0 1261 495 3 MP XPP X18 0 0 18 1261 495 3 MP XPP X0 18 18 0 1261 513 3 MP XPP X18 0 0 18 1261 513 3 MP XPP X0 17 18 0 1261 531 3 MP XPP X18 0 0 17 1261 531 3 MP XPP X0 18 18 0 1261 548 3 MP XPP X18 0 0 18 1261 548 3 MP XPP X0 18 18 0 1261 566 3 MP XPP X18 0 0 18 1261 566 3 MP XPP X0 18 18 0 1261 584 3 MP XPP X18 0 0 18 1261 584 3 MP XPP X0 18 18 0 1261 602 3 MP XPP X18 0 0 18 1261 602 3 MP XPP X0 18 18 0 1261 620 3 MP XPP X18 0 0 18 1261 620 3 MP XPP X0 17 18 0 1261 638 3 MP XPP X18 0 0 17 1261 638 3 MP XPP X0 18 18 0 1261 655 3 MP XPP X18 0 0 18 1261 655 3 MP XPP X0 18 18 0 1261 673 3 MP XPP X18 0 0 18 1261 673 3 MP XPP X0 18 18 0 1261 691 3 MP XPP X18 0 0 18 1261 691 3 MP XPP X0 18 18 0 1261 709 3 MP XPP X18 0 0 18 1261 709 3 MP XPP X0 18 18 0 1261 727 3 MP XPP X18 0 0 18 1261 727 3 MP XPP X0 17 18 0 1261 745 3 MP XPP X18 0 0 17 1261 745 3 MP XPP X0 18 18 0 1261 762 3 MP XPP X18 0 0 18 1261 762 3 MP XPP X0 18 18 0 1261 780 3 MP XPP X18 0 0 18 1261 780 3 MP XPP X0 18 18 0 1261 798 3 MP XPP X18 0 0 18 1261 798 3 MP XPP X0 18 18 0 1261 816 3 MP XPP X18 0 0 18 1261 816 3 MP XPP X0 18 18 0 1261 834 3 MP XPP X18 0 0 18 1261 834 3 MP XPP X0 17 18 0 1261 852 3 MP XPP X18 0 0 17 1261 852 3 MP XPP X0 18 18 0 1261 869 3 MP XPP X18 0 0 18 1261 869 3 MP XPP X0 18 18 0 1261 887 3 MP XPP X18 0 0 18 1261 887 3 MP XPP X0 18 18 0 1261 905 3 MP XPP X18 0 0 18 1261 905 3 MP XPP X0 18 18 0 1261 923 3 MP XPP X18 0 0 18 1261 923 3 MP XPP X0 18 18 0 1261 941 3 MP XPP X18 0 0 18 1261 941 3 MP XPP X0 17 18 0 1261 959 3 MP XPP X18 0 0 17 1261 959 3 MP XPP X0 18 18 0 1261 976 3 MP XPP X18 0 0 18 1261 976 3 MP XPP X0 18 18 0 1261 994 3 MP XPP X18 0 0 18 1261 994 3 MP XPP X0 18 18 0 1261 1012 3 MP XPP X18 0 0 18 1261 1012 3 MP XPP X0 18 18 0 1261 1030 3 MP XPP X18 0 0 18 1261 1030 3 MP XPP X0 18 18 0 1261 1048 3 MP XPP X18 0 0 18 1261 1048 3 MP XPP X0 17 18 0 1261 1066 3 MP XPP X18 0 0 17 1261 1066 3 MP XPP X0 18 18 0 1261 1083 3 MP XPP X18 0 0 18 1261 1083 3 MP XPP X0 18 18 0 1261 1101 3 MP XPP X18 0 0 18 1261 1101 3 MP XPP X0.238095 sg X0 18 18 0 1261 1119 3 MP XPP X18 0 0 18 1261 1119 3 MP XPP X0 18 18 0 1261 1137 3 MP XPP X18 0 0 18 1261 1137 3 MP XPP X0 18 18 0 1261 1155 3 MP XPP X18 0 0 18 1261 1155 3 MP XPP X0 17 18 0 1261 1173 3 MP XPP X18 0 0 17 1261 1173 3 MP XPP X0 18 18 0 1261 1190 3 MP XPP X18 0 0 18 1261 1190 3 MP XPP X0 18 18 0 1261 1208 3 MP XPP X18 0 0 18 1261 1208 3 MP XPP X0 18 18 0 1261 1226 3 MP XPP X18 0 0 18 1261 1226 3 MP XPP X1 sg X0 18 18 0 1261 1244 3 MP XPP X18 0 0 18 1261 1244 3 MP XPP X0 17 18 0 1261 1262 3 MP XPP X18 0 0 17 1261 1262 3 MP XPP X0 18 18 0 1261 1279 3 MP XPP X18 0 0 18 1261 1279 3 MP XPP X0 18 18 0 1261 1297 3 MP XPP X18 0 0 18 1261 1297 3 MP XPP X0 18 18 0 1261 1315 3 MP XPP X18 0 0 18 1261 1315 3 MP XPP X0 18 18 0 1261 1333 3 MP XPP X18 0 0 18 1261 1333 3 MP XPP X0 18 18 0 1261 1351 3 MP XPP X18 0 0 18 1261 1351 3 MP XPP X0 17 18 0 1261 1369 3 MP XPP X18 0 0 17 1261 1369 3 MP XPP X0 18 18 0 1261 1386 3 MP XPP X18 0 0 18 1261 1386 3 MP XPP X0 18 18 0 1261 1404 3 MP XPP X18 0 0 18 1261 1404 3 MP XPP X0 18 18 0 1261 1422 3 MP XPP X18 0 0 18 1261 1422 3 MP XPP X0 18 18 0 1261 1440 3 MP XPP X18 0 0 18 1261 1440 3 MP XPP X0 18 18 0 1261 1458 3 MP XPP X18 0 0 18 1261 1458 3 MP XPP X0 17 18 0 1261 1476 3 MP XPP X18 0 0 17 1261 1476 3 MP XPP X0 18 18 0 1261 1493 3 MP XPP X18 0 0 18 1261 1493 3 MP XPP X0 18 18 0 1261 1511 3 MP XPP X18 0 0 18 1261 1511 3 MP XPP X0 18 18 0 1261 1529 3 MP XPP X18 0 0 18 1261 1529 3 MP XPP X0 18 18 0 1261 1547 3 MP XPP X18 0 0 18 1261 1547 3 MP XPP X0 18 18 0 1261 1565 3 MP XPP X18 0 0 18 1261 1565 3 MP XPP X0 17 18 0 1261 1583 3 MP XPP X18 0 0 17 1261 1583 3 MP XPP X0 18 18 0 1261 1600 3 MP XPP X18 0 0 18 1261 1600 3 MP XPP X0 18 18 0 1261 1618 3 MP XPP X18 0 0 18 1261 1618 3 MP XPP X0 18 18 0 1261 1636 3 MP XPP X18 0 0 18 1261 1636 3 MP XPP X0 18 18 0 1261 1654 3 MP XPP X18 0 0 18 1261 1654 3 MP XPP X0 18 18 0 1261 1672 3 MP XPP X18 0 0 18 1261 1672 3 MP XPP X0 17 18 0 1261 1690 3 MP XPP X18 0 0 17 1261 1690 3 MP XPP X0 18 18 0 1261 1707 3 MP XPP X18 0 0 18 1261 1707 3 MP XPP X0 18 18 0 1261 1725 3 MP XPP X18 0 0 18 1261 1725 3 MP XPP X0 18 18 0 1261 1743 3 MP XPP X18 0 0 18 1261 1743 3 MP XPP X0 18 18 0 1261 1761 3 MP XPP X18 0 0 18 1261 1761 3 MP XPP X0 18 18 0 1261 1779 3 MP XPP X18 0 0 18 1261 1779 3 MP XPP X0 17 18 0 1261 1797 3 MP XPP X18 0 0 17 1261 1797 3 MP XPP X0 18 18 0 1261 1814 3 MP XPP X18 0 0 18 1261 1814 3 MP XPP X0 18 18 0 1261 1832 3 MP XPP X18 0 0 18 1261 1832 3 MP XPP X0 18 18 0 1261 1850 3 MP XPP X18 0 0 18 1261 1850 3 MP XPP X0 18 18 0 1261 1868 3 MP XPP X18 0 0 18 1261 1868 3 MP XPP X0 18 18 0 1261 1886 3 MP XPP X18 0 0 18 1261 1886 3 MP XPP X0 17 18 0 1261 1904 3 MP XPP X18 0 0 17 1261 1904 3 MP XPP X0 18 18 0 1261 1921 3 MP XPP X18 0 0 18 1261 1921 3 MP XPP X0 18 18 0 1261 1939 3 MP XPP X18 0 0 18 1261 1939 3 MP XPP X0 18 18 0 1261 1957 3 MP XPP X18 0 0 18 1261 1957 3 MP XPP X0 18 18 0 1261 1975 3 MP XPP X18 0 0 18 1261 1975 3 MP XPP X0 18 18 0 1261 1993 3 MP XPP X18 0 0 18 1261 1993 3 MP XPP X0 17 18 0 1261 2011 3 MP XPP X18 0 0 17 1261 2011 3 MP XPP X0 18 18 0 1261 2028 3 MP XPP X18 0 0 18 1261 2028 3 MP XPP X0 18 18 0 1261 2046 3 MP XPP X18 0 0 18 1261 2046 3 MP XPP X0 18 18 0 1261 2064 3 MP XPP X18 0 0 18 1261 2064 3 MP XPP X0 18 18 0 1261 2082 3 MP XPP X18 0 0 18 1261 2082 3 MP XPP X0 18 18 0 1261 2100 3 MP XPP X18 0 0 18 1261 2100 3 MP XPP X0 17 18 0 1261 2118 3 MP XPP X18 0 0 17 1261 2118 3 MP XPP X0 18 18 0 1261 2135 3 MP XPP X18 0 0 18 1261 2135 3 MP XPP X0 18 18 0 1261 2153 3 MP XPP X18 0 0 18 1261 2153 3 MP XPP X0 18 17 0 1279 388 3 MP XPP X17 0 0 18 1279 388 3 MP XPP X0 18 17 0 1279 406 3 MP XPP X17 0 0 18 1279 406 3 MP XPP X0 17 17 0 1279 424 3 MP XPP X17 0 0 17 1279 424 3 MP XPP X0 18 17 0 1279 441 3 MP XPP X17 0 0 18 1279 441 3 MP XPP X0 18 17 0 1279 459 3 MP XPP X17 0 0 18 1279 459 3 MP XPP X0 18 17 0 1279 477 3 MP XPP X17 0 0 18 1279 477 3 MP XPP X0 18 17 0 1279 495 3 MP XPP X17 0 0 18 1279 495 3 MP XPP X0 18 17 0 1279 513 3 MP XPP X17 0 0 18 1279 513 3 MP XPP X0 17 17 0 1279 531 3 MP XPP X17 0 0 17 1279 531 3 MP XPP X0 18 17 0 1279 548 3 MP XPP X17 0 0 18 1279 548 3 MP XPP X0 18 17 0 1279 566 3 MP XPP X17 0 0 18 1279 566 3 MP XPP X0 18 17 0 1279 584 3 MP XPP X17 0 0 18 1279 584 3 MP XPP X0 18 17 0 1279 602 3 MP XPP X17 0 0 18 1279 602 3 MP XPP X0 18 17 0 1279 620 3 MP XPP X17 0 0 18 1279 620 3 MP XPP X0 17 17 0 1279 638 3 MP XPP X17 0 0 17 1279 638 3 MP XPP X0 18 17 0 1279 655 3 MP XPP X17 0 0 18 1279 655 3 MP XPP X0 18 17 0 1279 673 3 MP XPP X17 0 0 18 1279 673 3 MP XPP X0 18 17 0 1279 691 3 MP XPP X17 0 0 18 1279 691 3 MP XPP X0 18 17 0 1279 709 3 MP XPP X17 0 0 18 1279 709 3 MP XPP X0 18 17 0 1279 727 3 MP XPP X17 0 0 18 1279 727 3 MP XPP X0 17 17 0 1279 745 3 MP XPP X17 0 0 17 1279 745 3 MP XPP X0 18 17 0 1279 762 3 MP XPP X17 0 0 18 1279 762 3 MP XPP X0 18 17 0 1279 780 3 MP XPP X17 0 0 18 1279 780 3 MP XPP X0 18 17 0 1279 798 3 MP XPP X17 0 0 18 1279 798 3 MP XPP X0 18 17 0 1279 816 3 MP XPP X17 0 0 18 1279 816 3 MP XPP X0 18 17 0 1279 834 3 MP XPP X17 0 0 18 1279 834 3 MP XPP X0 17 17 0 1279 852 3 MP XPP X17 0 0 17 1279 852 3 MP XPP X0 18 17 0 1279 869 3 MP XPP X17 0 0 18 1279 869 3 MP XPP X0 18 17 0 1279 887 3 MP XPP X17 0 0 18 1279 887 3 MP XPP X0 18 17 0 1279 905 3 MP XPP X17 0 0 18 1279 905 3 MP XPP X0 18 17 0 1279 923 3 MP XPP X17 0 0 18 1279 923 3 MP XPP X0 18 17 0 1279 941 3 MP XPP X17 0 0 18 1279 941 3 MP XPP X0 17 17 0 1279 959 3 MP XPP X17 0 0 17 1279 959 3 MP XPP X0 18 17 0 1279 976 3 MP XPP X17 0 0 18 1279 976 3 MP XPP X0 18 17 0 1279 994 3 MP XPP X17 0 0 18 1279 994 3 MP XPP X0 18 17 0 1279 1012 3 MP XPP X17 0 0 18 1279 1012 3 MP XPP X0 18 17 0 1279 1030 3 MP XPP X17 0 0 18 1279 1030 3 MP XPP X0 18 17 0 1279 1048 3 MP XPP X17 0 0 18 1279 1048 3 MP XPP X0 17 17 0 1279 1066 3 MP XPP X17 0 0 17 1279 1066 3 MP XPP X0 18 17 0 1279 1083 3 MP XPP X17 0 0 18 1279 1083 3 MP XPP X0 18 17 0 1279 1101 3 MP XPP X17 0 0 18 1279 1101 3 MP XPP X0.238095 sg X0 18 17 0 1279 1119 3 MP XPP X17 0 0 18 1279 1119 3 MP XPP X0 18 17 0 1279 1137 3 MP XPP X17 0 0 18 1279 1137 3 MP XPP X0 18 17 0 1279 1155 3 MP XPP X17 0 0 18 1279 1155 3 MP XPP X0 17 17 0 1279 1173 3 MP XPP X17 0 0 17 1279 1173 3 MP XPP X0 18 17 0 1279 1190 3 MP XPP X17 0 0 18 1279 1190 3 MP XPP X0 18 17 0 1279 1208 3 MP XPP X17 0 0 18 1279 1208 3 MP XPP X0 18 17 0 1279 1226 3 MP XPP X17 0 0 18 1279 1226 3 MP XPP X0 18 17 0 1279 1244 3 MP XPP X17 0 0 18 1279 1244 3 MP XPP X1 sg X0 17 17 0 1279 1262 3 MP XPP X17 0 0 17 1279 1262 3 MP XPP X0 18 17 0 1279 1279 3 MP XPP X17 0 0 18 1279 1279 3 MP XPP X0 18 17 0 1279 1297 3 MP XPP X17 0 0 18 1279 1297 3 MP XPP X0 18 17 0 1279 1315 3 MP XPP X17 0 0 18 1279 1315 3 MP XPP X0 18 17 0 1279 1333 3 MP XPP X17 0 0 18 1279 1333 3 MP XPP X0 18 17 0 1279 1351 3 MP XPP X17 0 0 18 1279 1351 3 MP XPP X0 17 17 0 1279 1369 3 MP XPP X17 0 0 17 1279 1369 3 MP XPP X0 18 17 0 1279 1386 3 MP XPP X17 0 0 18 1279 1386 3 MP XPP X0 18 17 0 1279 1404 3 MP XPP X17 0 0 18 1279 1404 3 MP XPP X0 18 17 0 1279 1422 3 MP XPP X17 0 0 18 1279 1422 3 MP XPP X0 18 17 0 1279 1440 3 MP XPP X17 0 0 18 1279 1440 3 MP XPP X0 18 17 0 1279 1458 3 MP XPP X17 0 0 18 1279 1458 3 MP XPP X0 17 17 0 1279 1476 3 MP XPP X17 0 0 17 1279 1476 3 MP XPP X0 18 17 0 1279 1493 3 MP XPP X17 0 0 18 1279 1493 3 MP XPP X0 18 17 0 1279 1511 3 MP XPP X17 0 0 18 1279 1511 3 MP XPP X0 18 17 0 1279 1529 3 MP XPP X17 0 0 18 1279 1529 3 MP XPP X0 18 17 0 1279 1547 3 MP XPP X17 0 0 18 1279 1547 3 MP XPP X0 18 17 0 1279 1565 3 MP XPP X17 0 0 18 1279 1565 3 MP XPP X0 17 17 0 1279 1583 3 MP XPP X17 0 0 17 1279 1583 3 MP XPP X0 18 17 0 1279 1600 3 MP XPP X17 0 0 18 1279 1600 3 MP XPP X0 18 17 0 1279 1618 3 MP XPP X17 0 0 18 1279 1618 3 MP XPP X0 18 17 0 1279 1636 3 MP XPP X17 0 0 18 1279 1636 3 MP XPP X0 18 17 0 1279 1654 3 MP XPP X17 0 0 18 1279 1654 3 MP XPP X0 18 17 0 1279 1672 3 MP XPP X17 0 0 18 1279 1672 3 MP XPP X0 17 17 0 1279 1690 3 MP XPP X17 0 0 17 1279 1690 3 MP XPP X0 18 17 0 1279 1707 3 MP XPP X17 0 0 18 1279 1707 3 MP XPP X0 18 17 0 1279 1725 3 MP XPP X17 0 0 18 1279 1725 3 MP XPP X0 18 17 0 1279 1743 3 MP XPP X17 0 0 18 1279 1743 3 MP XPP X0 18 17 0 1279 1761 3 MP XPP X17 0 0 18 1279 1761 3 MP XPP X0 18 17 0 1279 1779 3 MP XPP X17 0 0 18 1279 1779 3 MP XPP X0 17 17 0 1279 1797 3 MP XPP X17 0 0 17 1279 1797 3 MP XPP X0 18 17 0 1279 1814 3 MP XPP X17 0 0 18 1279 1814 3 MP XPP X0 18 17 0 1279 1832 3 MP XPP X17 0 0 18 1279 1832 3 MP XPP X0 18 17 0 1279 1850 3 MP XPP X17 0 0 18 1279 1850 3 MP XPP X0 18 17 0 1279 1868 3 MP XPP X17 0 0 18 1279 1868 3 MP XPP X0 18 17 0 1279 1886 3 MP XPP X17 0 0 18 1279 1886 3 MP XPP X0 17 17 0 1279 1904 3 MP XPP X17 0 0 17 1279 1904 3 MP XPP X0 18 17 0 1279 1921 3 MP XPP X17 0 0 18 1279 1921 3 MP XPP X0 18 17 0 1279 1939 3 MP XPP X17 0 0 18 1279 1939 3 MP XPP X0 18 17 0 1279 1957 3 MP XPP X17 0 0 18 1279 1957 3 MP XPP X0 18 17 0 1279 1975 3 MP XPP X17 0 0 18 1279 1975 3 MP XPP X0 18 17 0 1279 1993 3 MP XPP X17 0 0 18 1279 1993 3 MP XPP X0 17 17 0 1279 2011 3 MP XPP X17 0 0 17 1279 2011 3 MP XPP X0 18 17 0 1279 2028 3 MP XPP X17 0 0 18 1279 2028 3 MP XPP X0 18 17 0 1279 2046 3 MP XPP X17 0 0 18 1279 2046 3 MP XPP X0 18 17 0 1279 2064 3 MP XPP X17 0 0 18 1279 2064 3 MP XPP X0 18 17 0 1279 2082 3 MP XPP X17 0 0 18 1279 2082 3 MP XPP X0 18 17 0 1279 2100 3 MP XPP X17 0 0 18 1279 2100 3 MP XPP X0 17 17 0 1279 2118 3 MP XPP X17 0 0 17 1279 2118 3 MP XPP X0 18 17 0 1279 2135 3 MP XPP X17 0 0 18 1279 2135 3 MP XPP X0 18 17 0 1279 2153 3 MP XPP X17 0 0 18 1279 2153 3 MP XPP X0 18 18 0 1296 388 3 MP XPP X18 0 0 18 1296 388 3 MP XPP X0 18 18 0 1296 406 3 MP XPP X18 0 0 18 1296 406 3 MP XPP X0 17 18 0 1296 424 3 MP XPP X18 0 0 17 1296 424 3 MP XPP X0 18 18 0 1296 441 3 MP XPP X18 0 0 18 1296 441 3 MP XPP X0 18 18 0 1296 459 3 MP XPP X18 0 0 18 1296 459 3 MP XPP X0 18 18 0 1296 477 3 MP XPP X18 0 0 18 1296 477 3 MP XPP X0 18 18 0 1296 495 3 MP XPP X18 0 0 18 1296 495 3 MP XPP X0 18 18 0 1296 513 3 MP XPP X18 0 0 18 1296 513 3 MP XPP X0 17 18 0 1296 531 3 MP XPP X18 0 0 17 1296 531 3 MP XPP X0 18 18 0 1296 548 3 MP XPP X18 0 0 18 1296 548 3 MP XPP X0 18 18 0 1296 566 3 MP XPP X18 0 0 18 1296 566 3 MP XPP X0 18 18 0 1296 584 3 MP XPP X18 0 0 18 1296 584 3 MP XPP X0 18 18 0 1296 602 3 MP XPP X18 0 0 18 1296 602 3 MP XPP X0 18 18 0 1296 620 3 MP XPP X18 0 0 18 1296 620 3 MP XPP X0 17 18 0 1296 638 3 MP XPP X18 0 0 17 1296 638 3 MP XPP X0 18 18 0 1296 655 3 MP XPP X18 0 0 18 1296 655 3 MP XPP X0 18 18 0 1296 673 3 MP XPP X18 0 0 18 1296 673 3 MP XPP X0 18 18 0 1296 691 3 MP XPP X18 0 0 18 1296 691 3 MP XPP X0 18 18 0 1296 709 3 MP XPP X18 0 0 18 1296 709 3 MP XPP X0 18 18 0 1296 727 3 MP XPP X18 0 0 18 1296 727 3 MP XPP X0 17 18 0 1296 745 3 MP XPP X18 0 0 17 1296 745 3 MP XPP X0 18 18 0 1296 762 3 MP XPP X18 0 0 18 1296 762 3 MP XPP X0 18 18 0 1296 780 3 MP XPP X18 0 0 18 1296 780 3 MP XPP X0 18 18 0 1296 798 3 MP XPP X18 0 0 18 1296 798 3 MP XPP X0 18 18 0 1296 816 3 MP XPP X18 0 0 18 1296 816 3 MP XPP X0 18 18 0 1296 834 3 MP XPP X18 0 0 18 1296 834 3 MP XPP X0 17 18 0 1296 852 3 MP XPP X18 0 0 17 1296 852 3 MP XPP X0 18 18 0 1296 869 3 MP XPP X18 0 0 18 1296 869 3 MP XPP X0 18 18 0 1296 887 3 MP XPP X18 0 0 18 1296 887 3 MP XPP X0 18 18 0 1296 905 3 MP XPP X18 0 0 18 1296 905 3 MP XPP X0 18 18 0 1296 923 3 MP XPP X18 0 0 18 1296 923 3 MP XPP X0 18 18 0 1296 941 3 MP XPP X18 0 0 18 1296 941 3 MP XPP X0 17 18 0 1296 959 3 MP XPP X18 0 0 17 1296 959 3 MP XPP X0 18 18 0 1296 976 3 MP XPP X18 0 0 18 1296 976 3 MP XPP X0 18 18 0 1296 994 3 MP XPP X18 0 0 18 1296 994 3 MP XPP X0 18 18 0 1296 1012 3 MP XPP X18 0 0 18 1296 1012 3 MP XPP X0 18 18 0 1296 1030 3 MP XPP X18 0 0 18 1296 1030 3 MP XPP X0 18 18 0 1296 1048 3 MP XPP X18 0 0 18 1296 1048 3 MP XPP X0 17 18 0 1296 1066 3 MP XPP X18 0 0 17 1296 1066 3 MP XPP X0 18 18 0 1296 1083 3 MP XPP X18 0 0 18 1296 1083 3 MP XPP X0 18 18 0 1296 1101 3 MP XPP X18 0 0 18 1296 1101 3 MP XPP X0.238095 sg X0 18 18 0 1296 1119 3 MP XPP X18 0 0 18 1296 1119 3 MP XPP X0 18 18 0 1296 1137 3 MP XPP X18 0 0 18 1296 1137 3 MP XPP X0 18 18 0 1296 1155 3 MP XPP X18 0 0 18 1296 1155 3 MP XPP X0 17 18 0 1296 1173 3 MP XPP X18 0 0 17 1296 1173 3 MP XPP X0 18 18 0 1296 1190 3 MP XPP X18 0 0 18 1296 1190 3 MP XPP X0 18 18 0 1296 1208 3 MP XPP X18 0 0 18 1296 1208 3 MP XPP X0 18 18 0 1296 1226 3 MP XPP X18 0 0 18 1296 1226 3 MP XPP X0 18 18 0 1296 1244 3 MP XPP X18 0 0 18 1296 1244 3 MP XPP X0 17 18 0 1296 1262 3 MP XPP X18 0 0 17 1296 1262 3 MP XPP X1 sg X0 18 18 0 1296 1279 3 MP XPP X18 0 0 18 1296 1279 3 MP XPP X0 18 18 0 1296 1297 3 MP XPP X18 0 0 18 1296 1297 3 MP XPP X0 18 18 0 1296 1315 3 MP XPP X18 0 0 18 1296 1315 3 MP XPP X0 18 18 0 1296 1333 3 MP XPP X18 0 0 18 1296 1333 3 MP XPP X0 18 18 0 1296 1351 3 MP XPP X18 0 0 18 1296 1351 3 MP XPP X0 17 18 0 1296 1369 3 MP XPP X18 0 0 17 1296 1369 3 MP XPP X0 18 18 0 1296 1386 3 MP XPP X18 0 0 18 1296 1386 3 MP XPP X0 18 18 0 1296 1404 3 MP XPP X18 0 0 18 1296 1404 3 MP XPP X0 18 18 0 1296 1422 3 MP XPP X18 0 0 18 1296 1422 3 MP XPP X0 18 18 0 1296 1440 3 MP XPP X18 0 0 18 1296 1440 3 MP XPP X0 18 18 0 1296 1458 3 MP XPP X18 0 0 18 1296 1458 3 MP XPP X0 17 18 0 1296 1476 3 MP XPP X18 0 0 17 1296 1476 3 MP XPP X0 18 18 0 1296 1493 3 MP XPP X18 0 0 18 1296 1493 3 MP XPP X0 18 18 0 1296 1511 3 MP XPP X18 0 0 18 1296 1511 3 MP XPP X0 18 18 0 1296 1529 3 MP XPP X18 0 0 18 1296 1529 3 MP XPP X0 18 18 0 1296 1547 3 MP XPP X18 0 0 18 1296 1547 3 MP XPP X0 18 18 0 1296 1565 3 MP XPP X18 0 0 18 1296 1565 3 MP XPP X0 17 18 0 1296 1583 3 MP XPP X18 0 0 17 1296 1583 3 MP XPP X0 18 18 0 1296 1600 3 MP XPP X18 0 0 18 1296 1600 3 MP XPP X0 18 18 0 1296 1618 3 MP XPP X18 0 0 18 1296 1618 3 MP XPP X0 18 18 0 1296 1636 3 MP XPP X18 0 0 18 1296 1636 3 MP XPP X0 18 18 0 1296 1654 3 MP XPP X18 0 0 18 1296 1654 3 MP XPP X0 18 18 0 1296 1672 3 MP XPP X18 0 0 18 1296 1672 3 MP XPP X0 17 18 0 1296 1690 3 MP XPP X18 0 0 17 1296 1690 3 MP XPP X0 18 18 0 1296 1707 3 MP XPP X18 0 0 18 1296 1707 3 MP XPP X0 18 18 0 1296 1725 3 MP XPP X18 0 0 18 1296 1725 3 MP XPP X0 18 18 0 1296 1743 3 MP XPP X18 0 0 18 1296 1743 3 MP XPP X0 18 18 0 1296 1761 3 MP XPP X18 0 0 18 1296 1761 3 MP XPP X0 18 18 0 1296 1779 3 MP XPP X18 0 0 18 1296 1779 3 MP XPP X0 17 18 0 1296 1797 3 MP XPP X18 0 0 17 1296 1797 3 MP XPP X0 18 18 0 1296 1814 3 MP XPP X18 0 0 18 1296 1814 3 MP XPP X0 18 18 0 1296 1832 3 MP XPP X18 0 0 18 1296 1832 3 MP XPP X0 18 18 0 1296 1850 3 MP XPP X18 0 0 18 1296 1850 3 MP XPP X0 18 18 0 1296 1868 3 MP XPP X18 0 0 18 1296 1868 3 MP XPP X0 18 18 0 1296 1886 3 MP XPP X18 0 0 18 1296 1886 3 MP XPP X0 17 18 0 1296 1904 3 MP XPP X18 0 0 17 1296 1904 3 MP XPP X0 18 18 0 1296 1921 3 MP XPP X18 0 0 18 1296 1921 3 MP XPP X0 18 18 0 1296 1939 3 MP XPP X18 0 0 18 1296 1939 3 MP XPP X0 18 18 0 1296 1957 3 MP XPP X18 0 0 18 1296 1957 3 MP XPP X0 18 18 0 1296 1975 3 MP XPP X18 0 0 18 1296 1975 3 MP XPP X0 18 18 0 1296 1993 3 MP XPP X18 0 0 18 1296 1993 3 MP XPP X0 17 18 0 1296 2011 3 MP XPP X18 0 0 17 1296 2011 3 MP XPP X0 18 18 0 1296 2028 3 MP XPP X18 0 0 18 1296 2028 3 MP XPP X0 18 18 0 1296 2046 3 MP XPP X18 0 0 18 1296 2046 3 MP XPP X0 18 18 0 1296 2064 3 MP XPP X18 0 0 18 1296 2064 3 MP XPP X0 18 18 0 1296 2082 3 MP XPP X18 0 0 18 1296 2082 3 MP XPP X0 18 18 0 1296 2100 3 MP XPP X18 0 0 18 1296 2100 3 MP XPP X0 17 18 0 1296 2118 3 MP XPP X18 0 0 17 1296 2118 3 MP XPP X0 18 18 0 1296 2135 3 MP XPP X18 0 0 18 1296 2135 3 MP XPP X0 18 18 0 1296 2153 3 MP XPP X18 0 0 18 1296 2153 3 MP XPP X0 18 18 0 1314 388 3 MP XPP X18 0 0 18 1314 388 3 MP XPP X0 18 18 0 1314 406 3 MP XPP X18 0 0 18 1314 406 3 MP XPP X0 17 18 0 1314 424 3 MP XPP X18 0 0 17 1314 424 3 MP XPP X0 18 18 0 1314 441 3 MP XPP X18 0 0 18 1314 441 3 MP XPP X0 18 18 0 1314 459 3 MP XPP X18 0 0 18 1314 459 3 MP XPP X0 18 18 0 1314 477 3 MP XPP X18 0 0 18 1314 477 3 MP XPP X0 18 18 0 1314 495 3 MP XPP X18 0 0 18 1314 495 3 MP XPP X0 18 18 0 1314 513 3 MP XPP X18 0 0 18 1314 513 3 MP XPP X0 17 18 0 1314 531 3 MP XPP X18 0 0 17 1314 531 3 MP XPP X0 18 18 0 1314 548 3 MP XPP X18 0 0 18 1314 548 3 MP XPP X0 18 18 0 1314 566 3 MP XPP X18 0 0 18 1314 566 3 MP XPP X0 18 18 0 1314 584 3 MP XPP X18 0 0 18 1314 584 3 MP XPP X0 18 18 0 1314 602 3 MP XPP X18 0 0 18 1314 602 3 MP XPP X0 18 18 0 1314 620 3 MP XPP X18 0 0 18 1314 620 3 MP XPP X0 17 18 0 1314 638 3 MP XPP X18 0 0 17 1314 638 3 MP XPP X0 18 18 0 1314 655 3 MP XPP X18 0 0 18 1314 655 3 MP XPP X0 18 18 0 1314 673 3 MP XPP X18 0 0 18 1314 673 3 MP XPP X0 18 18 0 1314 691 3 MP XPP X18 0 0 18 1314 691 3 MP XPP X0 18 18 0 1314 709 3 MP XPP X18 0 0 18 1314 709 3 MP XPP X0 18 18 0 1314 727 3 MP XPP X18 0 0 18 1314 727 3 MP XPP X0 17 18 0 1314 745 3 MP XPP X18 0 0 17 1314 745 3 MP XPP X0 18 18 0 1314 762 3 MP XPP X18 0 0 18 1314 762 3 MP XPP X0 18 18 0 1314 780 3 MP XPP X18 0 0 18 1314 780 3 MP XPP X0 18 18 0 1314 798 3 MP XPP X18 0 0 18 1314 798 3 MP XPP X0 18 18 0 1314 816 3 MP XPP X18 0 0 18 1314 816 3 MP XPP X0 18 18 0 1314 834 3 MP XPP X18 0 0 18 1314 834 3 MP XPP X0 17 18 0 1314 852 3 MP XPP X18 0 0 17 1314 852 3 MP XPP X0 18 18 0 1314 869 3 MP XPP X18 0 0 18 1314 869 3 MP XPP X0 18 18 0 1314 887 3 MP XPP X18 0 0 18 1314 887 3 MP XPP X0 18 18 0 1314 905 3 MP XPP X18 0 0 18 1314 905 3 MP XPP X0 18 18 0 1314 923 3 MP XPP X18 0 0 18 1314 923 3 MP XPP X0 18 18 0 1314 941 3 MP XPP X18 0 0 18 1314 941 3 MP XPP X0 17 18 0 1314 959 3 MP XPP X18 0 0 17 1314 959 3 MP XPP X0 18 18 0 1314 976 3 MP XPP X18 0 0 18 1314 976 3 MP XPP X0 18 18 0 1314 994 3 MP XPP X18 0 0 18 1314 994 3 MP XPP X0 18 18 0 1314 1012 3 MP XPP X18 0 0 18 1314 1012 3 MP XPP X0 18 18 0 1314 1030 3 MP XPP X18 0 0 18 1314 1030 3 MP XPP X0 18 18 0 1314 1048 3 MP XPP X18 0 0 18 1314 1048 3 MP XPP X0 17 18 0 1314 1066 3 MP XPP X18 0 0 17 1314 1066 3 MP XPP X0 18 18 0 1314 1083 3 MP XPP X18 0 0 18 1314 1083 3 MP XPP X0 18 18 0 1314 1101 3 MP XPP X18 0 0 18 1314 1101 3 MP XPP X0.238095 sg X0 18 18 0 1314 1119 3 MP XPP X18 0 0 18 1314 1119 3 MP XPP X0 18 18 0 1314 1137 3 MP XPP X18 0 0 18 1314 1137 3 MP XPP X0 18 18 0 1314 1155 3 MP XPP X18 0 0 18 1314 1155 3 MP XPP X0 17 18 0 1314 1173 3 MP XPP X18 0 0 17 1314 1173 3 MP XPP X0 18 18 0 1314 1190 3 MP XPP X18 0 0 18 1314 1190 3 MP XPP X0 18 18 0 1314 1208 3 MP XPP X18 0 0 18 1314 1208 3 MP XPP X0 18 18 0 1314 1226 3 MP XPP X18 0 0 18 1314 1226 3 MP XPP X0 18 18 0 1314 1244 3 MP XPP X18 0 0 18 1314 1244 3 MP XPP X0 17 18 0 1314 1262 3 MP XPP X18 0 0 17 1314 1262 3 MP XPP X0 18 18 0 1314 1279 3 MP XPP X18 0 0 18 1314 1279 3 MP XPP X1 sg X0 18 18 0 1314 1297 3 MP XPP X18 0 0 18 1314 1297 3 MP XPP X0 18 18 0 1314 1315 3 MP XPP X18 0 0 18 1314 1315 3 MP XPP X0 18 18 0 1314 1333 3 MP XPP X18 0 0 18 1314 1333 3 MP XPP X0 18 18 0 1314 1351 3 MP XPP X18 0 0 18 1314 1351 3 MP XPP X0 17 18 0 1314 1369 3 MP XPP X18 0 0 17 1314 1369 3 MP XPP X0 18 18 0 1314 1386 3 MP XPP X18 0 0 18 1314 1386 3 MP XPP X0 18 18 0 1314 1404 3 MP XPP X18 0 0 18 1314 1404 3 MP XPP X0 18 18 0 1314 1422 3 MP XPP X18 0 0 18 1314 1422 3 MP XPP X0 18 18 0 1314 1440 3 MP XPP X18 0 0 18 1314 1440 3 MP XPP X0 18 18 0 1314 1458 3 MP XPP X18 0 0 18 1314 1458 3 MP XPP X0 17 18 0 1314 1476 3 MP XPP X18 0 0 17 1314 1476 3 MP XPP X0 18 18 0 1314 1493 3 MP XPP X18 0 0 18 1314 1493 3 MP XPP X0 18 18 0 1314 1511 3 MP XPP X18 0 0 18 1314 1511 3 MP XPP X0 18 18 0 1314 1529 3 MP XPP X18 0 0 18 1314 1529 3 MP XPP X0 18 18 0 1314 1547 3 MP XPP X18 0 0 18 1314 1547 3 MP XPP X0 18 18 0 1314 1565 3 MP XPP X18 0 0 18 1314 1565 3 MP XPP X0 17 18 0 1314 1583 3 MP XPP X18 0 0 17 1314 1583 3 MP XPP X0 18 18 0 1314 1600 3 MP XPP X18 0 0 18 1314 1600 3 MP XPP X0 18 18 0 1314 1618 3 MP XPP X18 0 0 18 1314 1618 3 MP XPP X0 18 18 0 1314 1636 3 MP XPP X18 0 0 18 1314 1636 3 MP XPP X0 18 18 0 1314 1654 3 MP XPP X18 0 0 18 1314 1654 3 MP XPP X0 18 18 0 1314 1672 3 MP XPP X18 0 0 18 1314 1672 3 MP XPP X0 17 18 0 1314 1690 3 MP XPP X18 0 0 17 1314 1690 3 MP XPP X0 18 18 0 1314 1707 3 MP XPP X18 0 0 18 1314 1707 3 MP XPP X0 18 18 0 1314 1725 3 MP XPP X18 0 0 18 1314 1725 3 MP XPP X0 18 18 0 1314 1743 3 MP XPP X18 0 0 18 1314 1743 3 MP XPP X0 18 18 0 1314 1761 3 MP XPP X18 0 0 18 1314 1761 3 MP XPP X0 18 18 0 1314 1779 3 MP XPP X18 0 0 18 1314 1779 3 MP XPP X0 17 18 0 1314 1797 3 MP XPP X18 0 0 17 1314 1797 3 MP XPP X0 18 18 0 1314 1814 3 MP XPP X18 0 0 18 1314 1814 3 MP XPP X0 18 18 0 1314 1832 3 MP XPP X18 0 0 18 1314 1832 3 MP XPP X0 18 18 0 1314 1850 3 MP XPP X18 0 0 18 1314 1850 3 MP XPP X0 18 18 0 1314 1868 3 MP XPP X18 0 0 18 1314 1868 3 MP XPP X0 18 18 0 1314 1886 3 MP XPP X18 0 0 18 1314 1886 3 MP XPP X0 17 18 0 1314 1904 3 MP XPP X18 0 0 17 1314 1904 3 MP XPP X0 18 18 0 1314 1921 3 MP XPP X18 0 0 18 1314 1921 3 MP XPP X0 18 18 0 1314 1939 3 MP XPP X18 0 0 18 1314 1939 3 MP XPP X0 18 18 0 1314 1957 3 MP XPP X18 0 0 18 1314 1957 3 MP XPP X0 18 18 0 1314 1975 3 MP XPP X18 0 0 18 1314 1975 3 MP XPP X0 18 18 0 1314 1993 3 MP XPP X18 0 0 18 1314 1993 3 MP XPP X0 17 18 0 1314 2011 3 MP XPP X18 0 0 17 1314 2011 3 MP XPP X0 18 18 0 1314 2028 3 MP XPP X18 0 0 18 1314 2028 3 MP XPP X0 18 18 0 1314 2046 3 MP XPP X18 0 0 18 1314 2046 3 MP XPP X0 18 18 0 1314 2064 3 MP XPP X18 0 0 18 1314 2064 3 MP XPP X0 18 18 0 1314 2082 3 MP XPP X18 0 0 18 1314 2082 3 MP XPP X0 18 18 0 1314 2100 3 MP XPP X18 0 0 18 1314 2100 3 MP XPP X0 17 18 0 1314 2118 3 MP XPP X18 0 0 17 1314 2118 3 MP XPP X0 18 18 0 1314 2135 3 MP XPP X18 0 0 18 1314 2135 3 MP XPP X0 18 18 0 1314 2153 3 MP XPP X18 0 0 18 1314 2153 3 MP XPP X0 18 18 0 1332 388 3 MP XPP X18 0 0 18 1332 388 3 MP XPP X0 18 18 0 1332 406 3 MP XPP X18 0 0 18 1332 406 3 MP XPP X0 17 18 0 1332 424 3 MP XPP X18 0 0 17 1332 424 3 MP XPP X0 18 18 0 1332 441 3 MP XPP X18 0 0 18 1332 441 3 MP XPP X0 18 18 0 1332 459 3 MP XPP X18 0 0 18 1332 459 3 MP XPP X0 18 18 0 1332 477 3 MP XPP X18 0 0 18 1332 477 3 MP XPP X0 18 18 0 1332 495 3 MP XPP X18 0 0 18 1332 495 3 MP XPP X0 18 18 0 1332 513 3 MP XPP X18 0 0 18 1332 513 3 MP XPP X0 17 18 0 1332 531 3 MP XPP X18 0 0 17 1332 531 3 MP XPP X0 18 18 0 1332 548 3 MP XPP X18 0 0 18 1332 548 3 MP XPP X0 18 18 0 1332 566 3 MP XPP X18 0 0 18 1332 566 3 MP XPP X0 18 18 0 1332 584 3 MP XPP X18 0 0 18 1332 584 3 MP XPP X0 18 18 0 1332 602 3 MP XPP X18 0 0 18 1332 602 3 MP XPP X0 18 18 0 1332 620 3 MP XPP X18 0 0 18 1332 620 3 MP XPP X0 17 18 0 1332 638 3 MP XPP X18 0 0 17 1332 638 3 MP XPP X0 18 18 0 1332 655 3 MP XPP X18 0 0 18 1332 655 3 MP XPP X0 18 18 0 1332 673 3 MP XPP X18 0 0 18 1332 673 3 MP XPP X0 18 18 0 1332 691 3 MP XPP X18 0 0 18 1332 691 3 MP XPP X0 18 18 0 1332 709 3 MP XPP X18 0 0 18 1332 709 3 MP XPP X0 18 18 0 1332 727 3 MP XPP X18 0 0 18 1332 727 3 MP XPP X0 17 18 0 1332 745 3 MP XPP X18 0 0 17 1332 745 3 MP XPP X0 18 18 0 1332 762 3 MP XPP X18 0 0 18 1332 762 3 MP XPP X0 18 18 0 1332 780 3 MP XPP X18 0 0 18 1332 780 3 MP XPP X0 18 18 0 1332 798 3 MP XPP X18 0 0 18 1332 798 3 MP XPP X0 18 18 0 1332 816 3 MP XPP X18 0 0 18 1332 816 3 MP XPP X0 18 18 0 1332 834 3 MP XPP X18 0 0 18 1332 834 3 MP XPP X0 17 18 0 1332 852 3 MP XPP X18 0 0 17 1332 852 3 MP XPP X0 18 18 0 1332 869 3 MP XPP X18 0 0 18 1332 869 3 MP XPP X0 18 18 0 1332 887 3 MP XPP X18 0 0 18 1332 887 3 MP XPP X0 18 18 0 1332 905 3 MP XPP X18 0 0 18 1332 905 3 MP XPP X0 18 18 0 1332 923 3 MP XPP X18 0 0 18 1332 923 3 MP XPP X0 18 18 0 1332 941 3 MP XPP X18 0 0 18 1332 941 3 MP XPP X0 17 18 0 1332 959 3 MP XPP X18 0 0 17 1332 959 3 MP XPP X0 18 18 0 1332 976 3 MP XPP X18 0 0 18 1332 976 3 MP XPP X0 18 18 0 1332 994 3 MP XPP X18 0 0 18 1332 994 3 MP XPP X0 18 18 0 1332 1012 3 MP XPP X18 0 0 18 1332 1012 3 MP XPP X0 18 18 0 1332 1030 3 MP XPP X18 0 0 18 1332 1030 3 MP XPP X0 18 18 0 1332 1048 3 MP XPP X18 0 0 18 1332 1048 3 MP XPP X0 17 18 0 1332 1066 3 MP XPP X18 0 0 17 1332 1066 3 MP XPP X0 18 18 0 1332 1083 3 MP XPP X18 0 0 18 1332 1083 3 MP XPP X0 18 18 0 1332 1101 3 MP XPP X18 0 0 18 1332 1101 3 MP XPP X0.238095 sg X0 18 18 0 1332 1119 3 MP XPP X18 0 0 18 1332 1119 3 MP XPP X0 18 18 0 1332 1137 3 MP XPP X18 0 0 18 1332 1137 3 MP XPP X0 18 18 0 1332 1155 3 MP XPP X18 0 0 18 1332 1155 3 MP XPP X0 17 18 0 1332 1173 3 MP XPP X18 0 0 17 1332 1173 3 MP XPP X0 18 18 0 1332 1190 3 MP XPP X18 0 0 18 1332 1190 3 MP XPP X0 18 18 0 1332 1208 3 MP XPP X18 0 0 18 1332 1208 3 MP XPP X0 18 18 0 1332 1226 3 MP XPP X18 0 0 18 1332 1226 3 MP XPP X0 18 18 0 1332 1244 3 MP XPP X18 0 0 18 1332 1244 3 MP XPP X0 17 18 0 1332 1262 3 MP XPP X18 0 0 17 1332 1262 3 MP XPP X0 18 18 0 1332 1279 3 MP XPP X18 0 0 18 1332 1279 3 MP XPP X0 18 18 0 1332 1297 3 MP XPP X18 0 0 18 1332 1297 3 MP XPP X1 sg X0 18 18 0 1332 1315 3 MP XPP X18 0 0 18 1332 1315 3 MP XPP X0 18 18 0 1332 1333 3 MP XPP X18 0 0 18 1332 1333 3 MP XPP X0 18 18 0 1332 1351 3 MP XPP X18 0 0 18 1332 1351 3 MP XPP X0 17 18 0 1332 1369 3 MP XPP X18 0 0 17 1332 1369 3 MP XPP X0 18 18 0 1332 1386 3 MP XPP X18 0 0 18 1332 1386 3 MP XPP X0 18 18 0 1332 1404 3 MP XPP X18 0 0 18 1332 1404 3 MP XPP X0 18 18 0 1332 1422 3 MP XPP X18 0 0 18 1332 1422 3 MP XPP X0 18 18 0 1332 1440 3 MP XPP X18 0 0 18 1332 1440 3 MP XPP X0 18 18 0 1332 1458 3 MP XPP X18 0 0 18 1332 1458 3 MP XPP X0 17 18 0 1332 1476 3 MP XPP X18 0 0 17 1332 1476 3 MP XPP X0 18 18 0 1332 1493 3 MP XPP X18 0 0 18 1332 1493 3 MP XPP X0 18 18 0 1332 1511 3 MP XPP X18 0 0 18 1332 1511 3 MP XPP X0 18 18 0 1332 1529 3 MP XPP X18 0 0 18 1332 1529 3 MP XPP X0 18 18 0 1332 1547 3 MP XPP X18 0 0 18 1332 1547 3 MP XPP X0 18 18 0 1332 1565 3 MP XPP X18 0 0 18 1332 1565 3 MP XPP X0 17 18 0 1332 1583 3 MP XPP X18 0 0 17 1332 1583 3 MP XPP X0 18 18 0 1332 1600 3 MP XPP X18 0 0 18 1332 1600 3 MP XPP X0 18 18 0 1332 1618 3 MP XPP X18 0 0 18 1332 1618 3 MP XPP X0 18 18 0 1332 1636 3 MP XPP X18 0 0 18 1332 1636 3 MP XPP X0 18 18 0 1332 1654 3 MP XPP X18 0 0 18 1332 1654 3 MP XPP X0 18 18 0 1332 1672 3 MP XPP X18 0 0 18 1332 1672 3 MP XPP X0 17 18 0 1332 1690 3 MP XPP X18 0 0 17 1332 1690 3 MP XPP X0 18 18 0 1332 1707 3 MP XPP X18 0 0 18 1332 1707 3 MP XPP X0 18 18 0 1332 1725 3 MP XPP X18 0 0 18 1332 1725 3 MP XPP X0 18 18 0 1332 1743 3 MP XPP X18 0 0 18 1332 1743 3 MP XPP X0 18 18 0 1332 1761 3 MP XPP X18 0 0 18 1332 1761 3 MP XPP X0 18 18 0 1332 1779 3 MP XPP X18 0 0 18 1332 1779 3 MP XPP X0 17 18 0 1332 1797 3 MP XPP X18 0 0 17 1332 1797 3 MP XPP X0 18 18 0 1332 1814 3 MP XPP X18 0 0 18 1332 1814 3 MP XPP X0 18 18 0 1332 1832 3 MP XPP X18 0 0 18 1332 1832 3 MP XPP X0 18 18 0 1332 1850 3 MP XPP X18 0 0 18 1332 1850 3 MP XPP X0 18 18 0 1332 1868 3 MP XPP X18 0 0 18 1332 1868 3 MP XPP X0 18 18 0 1332 1886 3 MP XPP X18 0 0 18 1332 1886 3 MP XPP X0 17 18 0 1332 1904 3 MP XPP X18 0 0 17 1332 1904 3 MP XPP X0 18 18 0 1332 1921 3 MP XPP X18 0 0 18 1332 1921 3 MP XPP X0 18 18 0 1332 1939 3 MP XPP X18 0 0 18 1332 1939 3 MP XPP X0 18 18 0 1332 1957 3 MP XPP X18 0 0 18 1332 1957 3 MP XPP X0 18 18 0 1332 1975 3 MP XPP X18 0 0 18 1332 1975 3 MP XPP X0 18 18 0 1332 1993 3 MP XPP X18 0 0 18 1332 1993 3 MP XPP X0 17 18 0 1332 2011 3 MP XPP X18 0 0 17 1332 2011 3 MP XPP X0 18 18 0 1332 2028 3 MP XPP X18 0 0 18 1332 2028 3 MP XPP X0 18 18 0 1332 2046 3 MP XPP X18 0 0 18 1332 2046 3 MP XPP X0 18 18 0 1332 2064 3 MP XPP X18 0 0 18 1332 2064 3 MP XPP X0 18 18 0 1332 2082 3 MP XPP X18 0 0 18 1332 2082 3 MP XPP X0 18 18 0 1332 2100 3 MP XPP X18 0 0 18 1332 2100 3 MP XPP X0 17 18 0 1332 2118 3 MP XPP X18 0 0 17 1332 2118 3 MP XPP X0 18 18 0 1332 2135 3 MP XPP X18 0 0 18 1332 2135 3 MP XPP X0 18 18 0 1332 2153 3 MP XPP X18 0 0 18 1332 2153 3 MP XPP X0 18 18 0 1350 388 3 MP XPP X18 0 0 18 1350 388 3 MP XPP X0 18 18 0 1350 406 3 MP XPP X18 0 0 18 1350 406 3 MP XPP X0 17 18 0 1350 424 3 MP XPP X18 0 0 17 1350 424 3 MP XPP X0 18 18 0 1350 441 3 MP XPP X18 0 0 18 1350 441 3 MP XPP X0 18 18 0 1350 459 3 MP XPP X18 0 0 18 1350 459 3 MP XPP X0 18 18 0 1350 477 3 MP XPP X18 0 0 18 1350 477 3 MP XPP X0 18 18 0 1350 495 3 MP XPP X18 0 0 18 1350 495 3 MP XPP X0 18 18 0 1350 513 3 MP XPP X18 0 0 18 1350 513 3 MP XPP X0 17 18 0 1350 531 3 MP XPP X18 0 0 17 1350 531 3 MP XPP X0 18 18 0 1350 548 3 MP XPP X18 0 0 18 1350 548 3 MP XPP X0 18 18 0 1350 566 3 MP XPP X18 0 0 18 1350 566 3 MP XPP X0 18 18 0 1350 584 3 MP XPP X18 0 0 18 1350 584 3 MP XPP X0 18 18 0 1350 602 3 MP XPP X18 0 0 18 1350 602 3 MP XPP X0 18 18 0 1350 620 3 MP XPP X18 0 0 18 1350 620 3 MP XPP X0 17 18 0 1350 638 3 MP XPP X18 0 0 17 1350 638 3 MP XPP X0 18 18 0 1350 655 3 MP XPP X18 0 0 18 1350 655 3 MP XPP X0 18 18 0 1350 673 3 MP XPP X18 0 0 18 1350 673 3 MP XPP X0 18 18 0 1350 691 3 MP XPP X18 0 0 18 1350 691 3 MP XPP X0 18 18 0 1350 709 3 MP XPP X18 0 0 18 1350 709 3 MP XPP X0 18 18 0 1350 727 3 MP XPP X18 0 0 18 1350 727 3 MP XPP X0 17 18 0 1350 745 3 MP XPP X18 0 0 17 1350 745 3 MP XPP X0 18 18 0 1350 762 3 MP XPP X18 0 0 18 1350 762 3 MP XPP X0 18 18 0 1350 780 3 MP XPP X18 0 0 18 1350 780 3 MP XPP X0 18 18 0 1350 798 3 MP XPP X18 0 0 18 1350 798 3 MP XPP X0 18 18 0 1350 816 3 MP XPP X18 0 0 18 1350 816 3 MP XPP X0 18 18 0 1350 834 3 MP XPP X18 0 0 18 1350 834 3 MP XPP X0 17 18 0 1350 852 3 MP XPP X18 0 0 17 1350 852 3 MP XPP X0 18 18 0 1350 869 3 MP XPP X18 0 0 18 1350 869 3 MP XPP X0 18 18 0 1350 887 3 MP XPP X18 0 0 18 1350 887 3 MP XPP X0 18 18 0 1350 905 3 MP XPP X18 0 0 18 1350 905 3 MP XPP X0 18 18 0 1350 923 3 MP XPP X18 0 0 18 1350 923 3 MP XPP X0 18 18 0 1350 941 3 MP XPP X18 0 0 18 1350 941 3 MP XPP X0 17 18 0 1350 959 3 MP XPP X18 0 0 17 1350 959 3 MP XPP X0 18 18 0 1350 976 3 MP XPP X18 0 0 18 1350 976 3 MP XPP X0 18 18 0 1350 994 3 MP XPP X18 0 0 18 1350 994 3 MP XPP X0 18 18 0 1350 1012 3 MP XPP X18 0 0 18 1350 1012 3 MP XPP X0 18 18 0 1350 1030 3 MP XPP X18 0 0 18 1350 1030 3 MP XPP X0 18 18 0 1350 1048 3 MP XPP X18 0 0 18 1350 1048 3 MP XPP X0 17 18 0 1350 1066 3 MP XPP X18 0 0 17 1350 1066 3 MP XPP X0 18 18 0 1350 1083 3 MP XPP X18 0 0 18 1350 1083 3 MP XPP X0 18 18 0 1350 1101 3 MP XPP X18 0 0 18 1350 1101 3 MP XPP X0.238095 sg X0 18 18 0 1350 1119 3 MP XPP X18 0 0 18 1350 1119 3 MP XPP X0 18 18 0 1350 1137 3 MP XPP X18 0 0 18 1350 1137 3 MP XPP X0 18 18 0 1350 1155 3 MP XPP X18 0 0 18 1350 1155 3 MP XPP X0 17 18 0 1350 1173 3 MP XPP X18 0 0 17 1350 1173 3 MP XPP X0 18 18 0 1350 1190 3 MP XPP X18 0 0 18 1350 1190 3 MP XPP X0 18 18 0 1350 1208 3 MP XPP X18 0 0 18 1350 1208 3 MP XPP X0 18 18 0 1350 1226 3 MP XPP X18 0 0 18 1350 1226 3 MP XPP X0 18 18 0 1350 1244 3 MP XPP X18 0 0 18 1350 1244 3 MP XPP X0 17 18 0 1350 1262 3 MP XPP X18 0 0 17 1350 1262 3 MP XPP X0 18 18 0 1350 1279 3 MP XPP X18 0 0 18 1350 1279 3 MP XPP X0 18 18 0 1350 1297 3 MP XPP X18 0 0 18 1350 1297 3 MP XPP X0 18 18 0 1350 1315 3 MP XPP X18 0 0 18 1350 1315 3 MP XPP X1 sg X0 18 18 0 1350 1333 3 MP XPP X18 0 0 18 1350 1333 3 MP XPP X0 18 18 0 1350 1351 3 MP XPP X18 0 0 18 1350 1351 3 MP XPP X0 17 18 0 1350 1369 3 MP XPP X18 0 0 17 1350 1369 3 MP XPP X0 18 18 0 1350 1386 3 MP XPP X18 0 0 18 1350 1386 3 MP XPP X0 18 18 0 1350 1404 3 MP XPP X18 0 0 18 1350 1404 3 MP XPP X0 18 18 0 1350 1422 3 MP XPP X18 0 0 18 1350 1422 3 MP XPP X0 18 18 0 1350 1440 3 MP XPP X18 0 0 18 1350 1440 3 MP XPP X0 18 18 0 1350 1458 3 MP XPP X18 0 0 18 1350 1458 3 MP XPP X0 17 18 0 1350 1476 3 MP XPP X18 0 0 17 1350 1476 3 MP XPP X0 18 18 0 1350 1493 3 MP XPP X18 0 0 18 1350 1493 3 MP XPP X0 18 18 0 1350 1511 3 MP XPP X18 0 0 18 1350 1511 3 MP XPP X0 18 18 0 1350 1529 3 MP XPP X18 0 0 18 1350 1529 3 MP XPP X0 18 18 0 1350 1547 3 MP XPP X18 0 0 18 1350 1547 3 MP XPP X0 18 18 0 1350 1565 3 MP XPP X18 0 0 18 1350 1565 3 MP XPP X0 17 18 0 1350 1583 3 MP XPP X18 0 0 17 1350 1583 3 MP XPP X0 18 18 0 1350 1600 3 MP XPP X18 0 0 18 1350 1600 3 MP XPP X0 18 18 0 1350 1618 3 MP XPP X18 0 0 18 1350 1618 3 MP XPP X0 18 18 0 1350 1636 3 MP XPP X18 0 0 18 1350 1636 3 MP XPP X0 18 18 0 1350 1654 3 MP XPP X18 0 0 18 1350 1654 3 MP XPP X0 18 18 0 1350 1672 3 MP XPP X18 0 0 18 1350 1672 3 MP XPP X0 17 18 0 1350 1690 3 MP XPP X18 0 0 17 1350 1690 3 MP XPP X0 18 18 0 1350 1707 3 MP XPP X18 0 0 18 1350 1707 3 MP XPP X0 18 18 0 1350 1725 3 MP XPP X18 0 0 18 1350 1725 3 MP XPP X0 18 18 0 1350 1743 3 MP XPP X18 0 0 18 1350 1743 3 MP XPP X0 18 18 0 1350 1761 3 MP XPP X18 0 0 18 1350 1761 3 MP XPP X0 18 18 0 1350 1779 3 MP XPP X18 0 0 18 1350 1779 3 MP XPP X0 17 18 0 1350 1797 3 MP XPP X18 0 0 17 1350 1797 3 MP XPP X0 18 18 0 1350 1814 3 MP XPP X18 0 0 18 1350 1814 3 MP XPP X0 18 18 0 1350 1832 3 MP XPP X18 0 0 18 1350 1832 3 MP XPP X0 18 18 0 1350 1850 3 MP XPP X18 0 0 18 1350 1850 3 MP XPP X0 18 18 0 1350 1868 3 MP XPP X18 0 0 18 1350 1868 3 MP XPP X0 18 18 0 1350 1886 3 MP XPP X18 0 0 18 1350 1886 3 MP XPP X0 17 18 0 1350 1904 3 MP XPP X18 0 0 17 1350 1904 3 MP XPP X0 18 18 0 1350 1921 3 MP XPP X18 0 0 18 1350 1921 3 MP XPP X0 18 18 0 1350 1939 3 MP XPP X18 0 0 18 1350 1939 3 MP XPP X0 18 18 0 1350 1957 3 MP XPP X18 0 0 18 1350 1957 3 MP XPP X0 18 18 0 1350 1975 3 MP XPP X18 0 0 18 1350 1975 3 MP XPP X0 18 18 0 1350 1993 3 MP XPP X18 0 0 18 1350 1993 3 MP XPP X0 17 18 0 1350 2011 3 MP XPP X18 0 0 17 1350 2011 3 MP XPP X0 18 18 0 1350 2028 3 MP XPP X18 0 0 18 1350 2028 3 MP XPP X0 18 18 0 1350 2046 3 MP XPP X18 0 0 18 1350 2046 3 MP XPP X0 18 18 0 1350 2064 3 MP XPP X18 0 0 18 1350 2064 3 MP XPP X0 18 18 0 1350 2082 3 MP XPP X18 0 0 18 1350 2082 3 MP XPP X0 18 18 0 1350 2100 3 MP XPP X18 0 0 18 1350 2100 3 MP XPP X0 17 18 0 1350 2118 3 MP XPP X18 0 0 17 1350 2118 3 MP XPP X0 18 18 0 1350 2135 3 MP XPP X18 0 0 18 1350 2135 3 MP XPP X0 18 18 0 1350 2153 3 MP XPP X18 0 0 18 1350 2153 3 MP XPP X0 18 18 0 1368 388 3 MP XPP X18 0 0 18 1368 388 3 MP XPP X0 18 18 0 1368 406 3 MP XPP X18 0 0 18 1368 406 3 MP XPP X0 17 18 0 1368 424 3 MP XPP X18 0 0 17 1368 424 3 MP XPP X0 18 18 0 1368 441 3 MP XPP X18 0 0 18 1368 441 3 MP XPP X0 18 18 0 1368 459 3 MP XPP X18 0 0 18 1368 459 3 MP XPP X0 18 18 0 1368 477 3 MP XPP X18 0 0 18 1368 477 3 MP XPP X0 18 18 0 1368 495 3 MP XPP X18 0 0 18 1368 495 3 MP XPP X0 18 18 0 1368 513 3 MP XPP X18 0 0 18 1368 513 3 MP XPP X0 17 18 0 1368 531 3 MP XPP X18 0 0 17 1368 531 3 MP XPP X0 18 18 0 1368 548 3 MP XPP X18 0 0 18 1368 548 3 MP XPP X0 18 18 0 1368 566 3 MP XPP X18 0 0 18 1368 566 3 MP XPP X0 18 18 0 1368 584 3 MP XPP X18 0 0 18 1368 584 3 MP XPP X0 18 18 0 1368 602 3 MP XPP X18 0 0 18 1368 602 3 MP XPP X0 18 18 0 1368 620 3 MP XPP X18 0 0 18 1368 620 3 MP XPP X0 17 18 0 1368 638 3 MP XPP X18 0 0 17 1368 638 3 MP XPP X0 18 18 0 1368 655 3 MP XPP X18 0 0 18 1368 655 3 MP XPP X0 18 18 0 1368 673 3 MP XPP X18 0 0 18 1368 673 3 MP XPP X0 18 18 0 1368 691 3 MP XPP X18 0 0 18 1368 691 3 MP XPP X0 18 18 0 1368 709 3 MP XPP X18 0 0 18 1368 709 3 MP XPP X0 18 18 0 1368 727 3 MP XPP X18 0 0 18 1368 727 3 MP XPP X0 17 18 0 1368 745 3 MP XPP X18 0 0 17 1368 745 3 MP XPP X0 18 18 0 1368 762 3 MP XPP X18 0 0 18 1368 762 3 MP XPP X0 18 18 0 1368 780 3 MP XPP X18 0 0 18 1368 780 3 MP XPP X0 18 18 0 1368 798 3 MP XPP X18 0 0 18 1368 798 3 MP XPP X0 18 18 0 1368 816 3 MP XPP X18 0 0 18 1368 816 3 MP XPP X0 18 18 0 1368 834 3 MP XPP X18 0 0 18 1368 834 3 MP XPP X0 17 18 0 1368 852 3 MP XPP X18 0 0 17 1368 852 3 MP XPP X0 18 18 0 1368 869 3 MP XPP X18 0 0 18 1368 869 3 MP XPP X0 18 18 0 1368 887 3 MP XPP X18 0 0 18 1368 887 3 MP XPP X0 18 18 0 1368 905 3 MP XPP X18 0 0 18 1368 905 3 MP XPP X0 18 18 0 1368 923 3 MP XPP X18 0 0 18 1368 923 3 MP XPP X0 18 18 0 1368 941 3 MP XPP X18 0 0 18 1368 941 3 MP XPP X0 17 18 0 1368 959 3 MP XPP X18 0 0 17 1368 959 3 MP XPP X0 18 18 0 1368 976 3 MP XPP X18 0 0 18 1368 976 3 MP XPP X0 18 18 0 1368 994 3 MP XPP X18 0 0 18 1368 994 3 MP XPP X0 18 18 0 1368 1012 3 MP XPP X18 0 0 18 1368 1012 3 MP XPP X0 18 18 0 1368 1030 3 MP XPP X18 0 0 18 1368 1030 3 MP XPP X0 18 18 0 1368 1048 3 MP XPP X18 0 0 18 1368 1048 3 MP XPP X0 17 18 0 1368 1066 3 MP XPP X18 0 0 17 1368 1066 3 MP XPP X0 18 18 0 1368 1083 3 MP XPP X18 0 0 18 1368 1083 3 MP XPP X0 18 18 0 1368 1101 3 MP XPP X18 0 0 18 1368 1101 3 MP XPP X0.238095 sg X0 18 18 0 1368 1119 3 MP XPP X18 0 0 18 1368 1119 3 MP XPP X0 18 18 0 1368 1137 3 MP XPP X18 0 0 18 1368 1137 3 MP XPP X0 18 18 0 1368 1155 3 MP XPP X18 0 0 18 1368 1155 3 MP XPP X0 17 18 0 1368 1173 3 MP XPP X18 0 0 17 1368 1173 3 MP XPP X0 18 18 0 1368 1190 3 MP XPP X18 0 0 18 1368 1190 3 MP XPP X0 18 18 0 1368 1208 3 MP XPP X18 0 0 18 1368 1208 3 MP XPP X0 18 18 0 1368 1226 3 MP XPP X18 0 0 18 1368 1226 3 MP XPP X0 18 18 0 1368 1244 3 MP XPP X18 0 0 18 1368 1244 3 MP XPP X0 17 18 0 1368 1262 3 MP XPP X18 0 0 17 1368 1262 3 MP XPP X0 18 18 0 1368 1279 3 MP XPP X18 0 0 18 1368 1279 3 MP XPP X0 18 18 0 1368 1297 3 MP XPP X18 0 0 18 1368 1297 3 MP XPP X0 18 18 0 1368 1315 3 MP XPP X18 0 0 18 1368 1315 3 MP XPP X0 18 18 0 1368 1333 3 MP XPP X18 0 0 18 1368 1333 3 MP XPP X1 sg X0 18 18 0 1368 1351 3 MP XPP X18 0 0 18 1368 1351 3 MP XPP X0 17 18 0 1368 1369 3 MP XPP X18 0 0 17 1368 1369 3 MP XPP X0 18 18 0 1368 1386 3 MP XPP X18 0 0 18 1368 1386 3 MP XPP X0 18 18 0 1368 1404 3 MP XPP X18 0 0 18 1368 1404 3 MP XPP X0 18 18 0 1368 1422 3 MP XPP X18 0 0 18 1368 1422 3 MP XPP X0 18 18 0 1368 1440 3 MP XPP X18 0 0 18 1368 1440 3 MP XPP X0 18 18 0 1368 1458 3 MP XPP X18 0 0 18 1368 1458 3 MP XPP X0 17 18 0 1368 1476 3 MP XPP X18 0 0 17 1368 1476 3 MP XPP X0 18 18 0 1368 1493 3 MP XPP X18 0 0 18 1368 1493 3 MP XPP X0 18 18 0 1368 1511 3 MP XPP X18 0 0 18 1368 1511 3 MP XPP X0 18 18 0 1368 1529 3 MP XPP X18 0 0 18 1368 1529 3 MP XPP X0 18 18 0 1368 1547 3 MP XPP X18 0 0 18 1368 1547 3 MP XPP X0 18 18 0 1368 1565 3 MP XPP X18 0 0 18 1368 1565 3 MP XPP X0 17 18 0 1368 1583 3 MP XPP X18 0 0 17 1368 1583 3 MP XPP X0 18 18 0 1368 1600 3 MP XPP X18 0 0 18 1368 1600 3 MP XPP X0 18 18 0 1368 1618 3 MP XPP X18 0 0 18 1368 1618 3 MP XPP X0 18 18 0 1368 1636 3 MP XPP X18 0 0 18 1368 1636 3 MP XPP X0 18 18 0 1368 1654 3 MP XPP X18 0 0 18 1368 1654 3 MP XPP X0 18 18 0 1368 1672 3 MP XPP X18 0 0 18 1368 1672 3 MP XPP X0 17 18 0 1368 1690 3 MP XPP X18 0 0 17 1368 1690 3 MP XPP X0 18 18 0 1368 1707 3 MP XPP X18 0 0 18 1368 1707 3 MP XPP X0 18 18 0 1368 1725 3 MP XPP X18 0 0 18 1368 1725 3 MP XPP X0 18 18 0 1368 1743 3 MP XPP X18 0 0 18 1368 1743 3 MP XPP X0 18 18 0 1368 1761 3 MP XPP X18 0 0 18 1368 1761 3 MP XPP X0 18 18 0 1368 1779 3 MP XPP X18 0 0 18 1368 1779 3 MP XPP X0 17 18 0 1368 1797 3 MP XPP X18 0 0 17 1368 1797 3 MP XPP X0 18 18 0 1368 1814 3 MP XPP X18 0 0 18 1368 1814 3 MP XPP X0 18 18 0 1368 1832 3 MP XPP X18 0 0 18 1368 1832 3 MP XPP X0 18 18 0 1368 1850 3 MP XPP X18 0 0 18 1368 1850 3 MP XPP X0 18 18 0 1368 1868 3 MP XPP X18 0 0 18 1368 1868 3 MP XPP X0 18 18 0 1368 1886 3 MP XPP X18 0 0 18 1368 1886 3 MP XPP X0 17 18 0 1368 1904 3 MP XPP X18 0 0 17 1368 1904 3 MP XPP X0 18 18 0 1368 1921 3 MP XPP X18 0 0 18 1368 1921 3 MP XPP X0 18 18 0 1368 1939 3 MP XPP X18 0 0 18 1368 1939 3 MP XPP X0 18 18 0 1368 1957 3 MP XPP X18 0 0 18 1368 1957 3 MP XPP X0 18 18 0 1368 1975 3 MP XPP X18 0 0 18 1368 1975 3 MP XPP X0 18 18 0 1368 1993 3 MP XPP X18 0 0 18 1368 1993 3 MP XPP X0 17 18 0 1368 2011 3 MP XPP X18 0 0 17 1368 2011 3 MP XPP X0 18 18 0 1368 2028 3 MP XPP X18 0 0 18 1368 2028 3 MP XPP X0 18 18 0 1368 2046 3 MP XPP X18 0 0 18 1368 2046 3 MP XPP X0 18 18 0 1368 2064 3 MP XPP X18 0 0 18 1368 2064 3 MP XPP X0 18 18 0 1368 2082 3 MP XPP X18 0 0 18 1368 2082 3 MP XPP X0 18 18 0 1368 2100 3 MP XPP X18 0 0 18 1368 2100 3 MP XPP X0 17 18 0 1368 2118 3 MP XPP X18 0 0 17 1368 2118 3 MP XPP X0 18 18 0 1368 2135 3 MP XPP X18 0 0 18 1368 2135 3 MP XPP X0 18 18 0 1368 2153 3 MP XPP X18 0 0 18 1368 2153 3 MP XPP X0 18 17 0 1386 388 3 MP XPP X17 0 0 18 1386 388 3 MP XPP X0 18 17 0 1386 406 3 MP XPP X17 0 0 18 1386 406 3 MP XPP X0 17 17 0 1386 424 3 MP XPP X17 0 0 17 1386 424 3 MP XPP X0 18 17 0 1386 441 3 MP XPP X17 0 0 18 1386 441 3 MP XPP X0 18 17 0 1386 459 3 MP XPP X17 0 0 18 1386 459 3 MP XPP X0 18 17 0 1386 477 3 MP XPP X17 0 0 18 1386 477 3 MP XPP X0 18 17 0 1386 495 3 MP XPP X17 0 0 18 1386 495 3 MP XPP X0 18 17 0 1386 513 3 MP XPP X17 0 0 18 1386 513 3 MP XPP X0 17 17 0 1386 531 3 MP XPP X17 0 0 17 1386 531 3 MP XPP X0 18 17 0 1386 548 3 MP XPP X17 0 0 18 1386 548 3 MP XPP X0 18 17 0 1386 566 3 MP XPP X17 0 0 18 1386 566 3 MP XPP X0 18 17 0 1386 584 3 MP XPP X17 0 0 18 1386 584 3 MP XPP X0 18 17 0 1386 602 3 MP XPP X17 0 0 18 1386 602 3 MP XPP X0 18 17 0 1386 620 3 MP XPP X17 0 0 18 1386 620 3 MP XPP X0 17 17 0 1386 638 3 MP XPP X17 0 0 17 1386 638 3 MP XPP X0 18 17 0 1386 655 3 MP XPP X17 0 0 18 1386 655 3 MP XPP X0 18 17 0 1386 673 3 MP XPP X17 0 0 18 1386 673 3 MP XPP X0 18 17 0 1386 691 3 MP XPP X17 0 0 18 1386 691 3 MP XPP X0 18 17 0 1386 709 3 MP XPP X17 0 0 18 1386 709 3 MP XPP X0 18 17 0 1386 727 3 MP XPP X17 0 0 18 1386 727 3 MP XPP X0 17 17 0 1386 745 3 MP XPP X17 0 0 17 1386 745 3 MP XPP X0 18 17 0 1386 762 3 MP XPP X17 0 0 18 1386 762 3 MP XPP X0 18 17 0 1386 780 3 MP XPP X17 0 0 18 1386 780 3 MP XPP X0 18 17 0 1386 798 3 MP XPP X17 0 0 18 1386 798 3 MP XPP X0 18 17 0 1386 816 3 MP XPP X17 0 0 18 1386 816 3 MP XPP X0 18 17 0 1386 834 3 MP XPP X17 0 0 18 1386 834 3 MP XPP X0 17 17 0 1386 852 3 MP XPP X17 0 0 17 1386 852 3 MP XPP X0 18 17 0 1386 869 3 MP XPP X17 0 0 18 1386 869 3 MP XPP X0 18 17 0 1386 887 3 MP XPP X17 0 0 18 1386 887 3 MP XPP X0 18 17 0 1386 905 3 MP XPP X17 0 0 18 1386 905 3 MP XPP X0 18 17 0 1386 923 3 MP XPP X17 0 0 18 1386 923 3 MP XPP X0 18 17 0 1386 941 3 MP XPP X17 0 0 18 1386 941 3 MP XPP X0 17 17 0 1386 959 3 MP XPP X17 0 0 17 1386 959 3 MP XPP X0 18 17 0 1386 976 3 MP XPP X17 0 0 18 1386 976 3 MP XPP X0 18 17 0 1386 994 3 MP XPP X17 0 0 18 1386 994 3 MP XPP X0 18 17 0 1386 1012 3 MP XPP X17 0 0 18 1386 1012 3 MP XPP X0 18 17 0 1386 1030 3 MP XPP X17 0 0 18 1386 1030 3 MP XPP X0 18 17 0 1386 1048 3 MP XPP X17 0 0 18 1386 1048 3 MP XPP X0 17 17 0 1386 1066 3 MP XPP X17 0 0 17 1386 1066 3 MP XPP X0 18 17 0 1386 1083 3 MP XPP X17 0 0 18 1386 1083 3 MP XPP X0 18 17 0 1386 1101 3 MP XPP X17 0 0 18 1386 1101 3 MP XPP X0.238095 sg X0 18 17 0 1386 1119 3 MP XPP X17 0 0 18 1386 1119 3 MP XPP X0 18 17 0 1386 1137 3 MP XPP X17 0 0 18 1386 1137 3 MP XPP X0 18 17 0 1386 1155 3 MP XPP X17 0 0 18 1386 1155 3 MP XPP X0 17 17 0 1386 1173 3 MP XPP X17 0 0 17 1386 1173 3 MP XPP X0 18 17 0 1386 1190 3 MP XPP X17 0 0 18 1386 1190 3 MP XPP X0 18 17 0 1386 1208 3 MP XPP X17 0 0 18 1386 1208 3 MP XPP X0 18 17 0 1386 1226 3 MP XPP X17 0 0 18 1386 1226 3 MP XPP X0 18 17 0 1386 1244 3 MP XPP X17 0 0 18 1386 1244 3 MP XPP X0 17 17 0 1386 1262 3 MP XPP X17 0 0 17 1386 1262 3 MP XPP X0 18 17 0 1386 1279 3 MP XPP X17 0 0 18 1386 1279 3 MP XPP X0 18 17 0 1386 1297 3 MP XPP X17 0 0 18 1386 1297 3 MP XPP X0 18 17 0 1386 1315 3 MP XPP X17 0 0 18 1386 1315 3 MP XPP X0 18 17 0 1386 1333 3 MP XPP X17 0 0 18 1386 1333 3 MP XPP X0 18 17 0 1386 1351 3 MP XPP X17 0 0 18 1386 1351 3 MP XPP X1 sg X0 17 17 0 1386 1369 3 MP XPP X17 0 0 17 1386 1369 3 MP XPP X0 18 17 0 1386 1386 3 MP XPP X17 0 0 18 1386 1386 3 MP XPP X0 18 17 0 1386 1404 3 MP XPP X17 0 0 18 1386 1404 3 MP XPP X0 18 17 0 1386 1422 3 MP XPP X17 0 0 18 1386 1422 3 MP XPP X0 18 17 0 1386 1440 3 MP XPP X17 0 0 18 1386 1440 3 MP XPP X0 18 17 0 1386 1458 3 MP XPP X17 0 0 18 1386 1458 3 MP XPP X0 17 17 0 1386 1476 3 MP XPP X17 0 0 17 1386 1476 3 MP XPP X0 18 17 0 1386 1493 3 MP XPP X17 0 0 18 1386 1493 3 MP XPP X0 18 17 0 1386 1511 3 MP XPP X17 0 0 18 1386 1511 3 MP XPP X0 18 17 0 1386 1529 3 MP XPP X17 0 0 18 1386 1529 3 MP XPP X0 18 17 0 1386 1547 3 MP XPP X17 0 0 18 1386 1547 3 MP XPP X0 18 17 0 1386 1565 3 MP XPP X17 0 0 18 1386 1565 3 MP XPP X0 17 17 0 1386 1583 3 MP XPP X17 0 0 17 1386 1583 3 MP XPP X0 18 17 0 1386 1600 3 MP XPP X17 0 0 18 1386 1600 3 MP XPP X0 18 17 0 1386 1618 3 MP XPP X17 0 0 18 1386 1618 3 MP XPP X0 18 17 0 1386 1636 3 MP XPP X17 0 0 18 1386 1636 3 MP XPP X0 18 17 0 1386 1654 3 MP XPP X17 0 0 18 1386 1654 3 MP XPP X0 18 17 0 1386 1672 3 MP XPP X17 0 0 18 1386 1672 3 MP XPP X0 17 17 0 1386 1690 3 MP XPP X17 0 0 17 1386 1690 3 MP XPP X0 18 17 0 1386 1707 3 MP XPP X17 0 0 18 1386 1707 3 MP XPP X0 18 17 0 1386 1725 3 MP XPP X17 0 0 18 1386 1725 3 MP XPP X0 18 17 0 1386 1743 3 MP XPP X17 0 0 18 1386 1743 3 MP XPP X0 18 17 0 1386 1761 3 MP XPP X17 0 0 18 1386 1761 3 MP XPP X0 18 17 0 1386 1779 3 MP XPP X17 0 0 18 1386 1779 3 MP XPP X0 17 17 0 1386 1797 3 MP XPP X17 0 0 17 1386 1797 3 MP XPP X0 18 17 0 1386 1814 3 MP XPP X17 0 0 18 1386 1814 3 MP XPP X0 18 17 0 1386 1832 3 MP XPP X17 0 0 18 1386 1832 3 MP XPP X0 18 17 0 1386 1850 3 MP XPP X17 0 0 18 1386 1850 3 MP XPP X0 18 17 0 1386 1868 3 MP XPP X17 0 0 18 1386 1868 3 MP XPP X0 18 17 0 1386 1886 3 MP XPP X17 0 0 18 1386 1886 3 MP XPP X0 17 17 0 1386 1904 3 MP XPP X17 0 0 17 1386 1904 3 MP XPP X0 18 17 0 1386 1921 3 MP XPP X17 0 0 18 1386 1921 3 MP XPP X0 18 17 0 1386 1939 3 MP XPP X17 0 0 18 1386 1939 3 MP XPP X0 18 17 0 1386 1957 3 MP XPP X17 0 0 18 1386 1957 3 MP XPP X0 18 17 0 1386 1975 3 MP XPP X17 0 0 18 1386 1975 3 MP XPP X0 18 17 0 1386 1993 3 MP XPP X17 0 0 18 1386 1993 3 MP XPP X0 17 17 0 1386 2011 3 MP XPP X17 0 0 17 1386 2011 3 MP XPP X0 18 17 0 1386 2028 3 MP XPP X17 0 0 18 1386 2028 3 MP XPP X0 18 17 0 1386 2046 3 MP XPP X17 0 0 18 1386 2046 3 MP XPP X0 18 17 0 1386 2064 3 MP XPP X17 0 0 18 1386 2064 3 MP XPP X0 18 17 0 1386 2082 3 MP XPP X17 0 0 18 1386 2082 3 MP XPP X0 18 17 0 1386 2100 3 MP XPP X17 0 0 18 1386 2100 3 MP XPP X0 17 17 0 1386 2118 3 MP XPP X17 0 0 17 1386 2118 3 MP XPP X0 18 17 0 1386 2135 3 MP XPP X17 0 0 18 1386 2135 3 MP XPP X0 18 17 0 1386 2153 3 MP XPP X17 0 0 18 1386 2153 3 MP XPP X0 18 18 0 1403 388 3 MP XPP X18 0 0 18 1403 388 3 MP XPP X0 18 18 0 1403 406 3 MP XPP X18 0 0 18 1403 406 3 MP XPP X0 17 18 0 1403 424 3 MP XPP X18 0 0 17 1403 424 3 MP XPP X0 18 18 0 1403 441 3 MP XPP X18 0 0 18 1403 441 3 MP XPP X0 18 18 0 1403 459 3 MP XPP X18 0 0 18 1403 459 3 MP XPP X0 18 18 0 1403 477 3 MP XPP X18 0 0 18 1403 477 3 MP XPP X0 18 18 0 1403 495 3 MP XPP X18 0 0 18 1403 495 3 MP XPP X0 18 18 0 1403 513 3 MP XPP X18 0 0 18 1403 513 3 MP XPP X0 17 18 0 1403 531 3 MP XPP X18 0 0 17 1403 531 3 MP XPP X0 18 18 0 1403 548 3 MP XPP X18 0 0 18 1403 548 3 MP XPP X0 18 18 0 1403 566 3 MP XPP X18 0 0 18 1403 566 3 MP XPP X0 18 18 0 1403 584 3 MP XPP X18 0 0 18 1403 584 3 MP XPP X0 18 18 0 1403 602 3 MP XPP X18 0 0 18 1403 602 3 MP XPP X0 18 18 0 1403 620 3 MP XPP X18 0 0 18 1403 620 3 MP XPP X0 17 18 0 1403 638 3 MP XPP X18 0 0 17 1403 638 3 MP XPP X0 18 18 0 1403 655 3 MP XPP X18 0 0 18 1403 655 3 MP XPP X0 18 18 0 1403 673 3 MP XPP X18 0 0 18 1403 673 3 MP XPP X0 18 18 0 1403 691 3 MP XPP X18 0 0 18 1403 691 3 MP XPP X0 18 18 0 1403 709 3 MP XPP X18 0 0 18 1403 709 3 MP XPP X0 18 18 0 1403 727 3 MP XPP X18 0 0 18 1403 727 3 MP XPP X0 17 18 0 1403 745 3 MP XPP X18 0 0 17 1403 745 3 MP XPP X0 18 18 0 1403 762 3 MP XPP X18 0 0 18 1403 762 3 MP XPP X0 18 18 0 1403 780 3 MP XPP X18 0 0 18 1403 780 3 MP XPP X0 18 18 0 1403 798 3 MP XPP X18 0 0 18 1403 798 3 MP XPP X0 18 18 0 1403 816 3 MP XPP X18 0 0 18 1403 816 3 MP XPP X0 18 18 0 1403 834 3 MP XPP X18 0 0 18 1403 834 3 MP XPP X0 17 18 0 1403 852 3 MP XPP X18 0 0 17 1403 852 3 MP XPP X0 18 18 0 1403 869 3 MP XPP X18 0 0 18 1403 869 3 MP XPP X0 18 18 0 1403 887 3 MP XPP X18 0 0 18 1403 887 3 MP XPP X0 18 18 0 1403 905 3 MP XPP X18 0 0 18 1403 905 3 MP XPP X0 18 18 0 1403 923 3 MP XPP X18 0 0 18 1403 923 3 MP XPP X0 18 18 0 1403 941 3 MP XPP X18 0 0 18 1403 941 3 MP XPP X0 17 18 0 1403 959 3 MP XPP X18 0 0 17 1403 959 3 MP XPP X0 18 18 0 1403 976 3 MP XPP X18 0 0 18 1403 976 3 MP XPP X0 18 18 0 1403 994 3 MP XPP X18 0 0 18 1403 994 3 MP XPP X0 18 18 0 1403 1012 3 MP XPP X18 0 0 18 1403 1012 3 MP XPP X0 18 18 0 1403 1030 3 MP XPP X18 0 0 18 1403 1030 3 MP XPP X0 18 18 0 1403 1048 3 MP XPP X18 0 0 18 1403 1048 3 MP XPP X0 17 18 0 1403 1066 3 MP XPP X18 0 0 17 1403 1066 3 MP XPP X0 18 18 0 1403 1083 3 MP XPP X18 0 0 18 1403 1083 3 MP XPP X0 18 18 0 1403 1101 3 MP XPP X18 0 0 18 1403 1101 3 MP XPP X0.238095 sg X0 18 18 0 1403 1119 3 MP XPP X18 0 0 18 1403 1119 3 MP XPP X0 18 18 0 1403 1137 3 MP XPP X18 0 0 18 1403 1137 3 MP XPP X0 18 18 0 1403 1155 3 MP XPP X18 0 0 18 1403 1155 3 MP XPP X0 17 18 0 1403 1173 3 MP XPP X18 0 0 17 1403 1173 3 MP XPP X0 18 18 0 1403 1190 3 MP XPP X18 0 0 18 1403 1190 3 MP XPP X0 18 18 0 1403 1208 3 MP XPP X18 0 0 18 1403 1208 3 MP XPP X0 18 18 0 1403 1226 3 MP XPP X18 0 0 18 1403 1226 3 MP XPP X0 18 18 0 1403 1244 3 MP XPP X18 0 0 18 1403 1244 3 MP XPP X0 17 18 0 1403 1262 3 MP XPP X18 0 0 17 1403 1262 3 MP XPP X0 18 18 0 1403 1279 3 MP XPP X18 0 0 18 1403 1279 3 MP XPP X0 18 18 0 1403 1297 3 MP XPP X18 0 0 18 1403 1297 3 MP XPP X0 18 18 0 1403 1315 3 MP XPP X18 0 0 18 1403 1315 3 MP XPP X0 18 18 0 1403 1333 3 MP XPP X18 0 0 18 1403 1333 3 MP XPP X0 18 18 0 1403 1351 3 MP XPP X18 0 0 18 1403 1351 3 MP XPP X0 17 18 0 1403 1369 3 MP XPP X18 0 0 17 1403 1369 3 MP XPP X1 sg X0 18 18 0 1403 1386 3 MP XPP X18 0 0 18 1403 1386 3 MP XPP X0 18 18 0 1403 1404 3 MP XPP X18 0 0 18 1403 1404 3 MP XPP X0 18 18 0 1403 1422 3 MP XPP X18 0 0 18 1403 1422 3 MP XPP X0 18 18 0 1403 1440 3 MP XPP X18 0 0 18 1403 1440 3 MP XPP X0 18 18 0 1403 1458 3 MP XPP X18 0 0 18 1403 1458 3 MP XPP X0 17 18 0 1403 1476 3 MP XPP X18 0 0 17 1403 1476 3 MP XPP X0 18 18 0 1403 1493 3 MP XPP X18 0 0 18 1403 1493 3 MP XPP X0 18 18 0 1403 1511 3 MP XPP X18 0 0 18 1403 1511 3 MP XPP X0 18 18 0 1403 1529 3 MP XPP X18 0 0 18 1403 1529 3 MP XPP X0 18 18 0 1403 1547 3 MP XPP X18 0 0 18 1403 1547 3 MP XPP X0 18 18 0 1403 1565 3 MP XPP X18 0 0 18 1403 1565 3 MP XPP X0 17 18 0 1403 1583 3 MP XPP X18 0 0 17 1403 1583 3 MP XPP X0 18 18 0 1403 1600 3 MP XPP X18 0 0 18 1403 1600 3 MP XPP X0 18 18 0 1403 1618 3 MP XPP X18 0 0 18 1403 1618 3 MP XPP X0 18 18 0 1403 1636 3 MP XPP X18 0 0 18 1403 1636 3 MP XPP X0 18 18 0 1403 1654 3 MP XPP X18 0 0 18 1403 1654 3 MP XPP X0 18 18 0 1403 1672 3 MP XPP X18 0 0 18 1403 1672 3 MP XPP X0 17 18 0 1403 1690 3 MP XPP X18 0 0 17 1403 1690 3 MP XPP X0 18 18 0 1403 1707 3 MP XPP X18 0 0 18 1403 1707 3 MP XPP X0 18 18 0 1403 1725 3 MP XPP X18 0 0 18 1403 1725 3 MP XPP X0 18 18 0 1403 1743 3 MP XPP X18 0 0 18 1403 1743 3 MP XPP X0 18 18 0 1403 1761 3 MP XPP X18 0 0 18 1403 1761 3 MP XPP X0 18 18 0 1403 1779 3 MP XPP X18 0 0 18 1403 1779 3 MP XPP X0 17 18 0 1403 1797 3 MP XPP X18 0 0 17 1403 1797 3 MP XPP X0 18 18 0 1403 1814 3 MP XPP X18 0 0 18 1403 1814 3 MP XPP X0 18 18 0 1403 1832 3 MP XPP X18 0 0 18 1403 1832 3 MP XPP X0 18 18 0 1403 1850 3 MP XPP X18 0 0 18 1403 1850 3 MP XPP X0 18 18 0 1403 1868 3 MP XPP X18 0 0 18 1403 1868 3 MP XPP X0 18 18 0 1403 1886 3 MP XPP X18 0 0 18 1403 1886 3 MP XPP X0 17 18 0 1403 1904 3 MP XPP X18 0 0 17 1403 1904 3 MP XPP X0 18 18 0 1403 1921 3 MP XPP X18 0 0 18 1403 1921 3 MP XPP X0 18 18 0 1403 1939 3 MP XPP X18 0 0 18 1403 1939 3 MP XPP X0 18 18 0 1403 1957 3 MP XPP X18 0 0 18 1403 1957 3 MP XPP X0 18 18 0 1403 1975 3 MP XPP X18 0 0 18 1403 1975 3 MP XPP X0 18 18 0 1403 1993 3 MP XPP X18 0 0 18 1403 1993 3 MP XPP X0 17 18 0 1403 2011 3 MP XPP X18 0 0 17 1403 2011 3 MP XPP X0 18 18 0 1403 2028 3 MP XPP X18 0 0 18 1403 2028 3 MP XPP X0 18 18 0 1403 2046 3 MP XPP X18 0 0 18 1403 2046 3 MP XPP X0 18 18 0 1403 2064 3 MP XPP X18 0 0 18 1403 2064 3 MP XPP X0 18 18 0 1403 2082 3 MP XPP X18 0 0 18 1403 2082 3 MP XPP X0 18 18 0 1403 2100 3 MP XPP X18 0 0 18 1403 2100 3 MP XPP X0 17 18 0 1403 2118 3 MP XPP X18 0 0 17 1403 2118 3 MP XPP X0 18 18 0 1403 2135 3 MP XPP X18 0 0 18 1403 2135 3 MP XPP X0 18 18 0 1403 2153 3 MP XPP X18 0 0 18 1403 2153 3 MP XPP X0 18 18 0 1421 388 3 MP XPP X18 0 0 18 1421 388 3 MP XPP X0 18 18 0 1421 406 3 MP XPP X18 0 0 18 1421 406 3 MP XPP X0 17 18 0 1421 424 3 MP XPP X18 0 0 17 1421 424 3 MP XPP X0 18 18 0 1421 441 3 MP XPP X18 0 0 18 1421 441 3 MP XPP X0 18 18 0 1421 459 3 MP XPP X18 0 0 18 1421 459 3 MP XPP X0 18 18 0 1421 477 3 MP XPP X18 0 0 18 1421 477 3 MP XPP X0 18 18 0 1421 495 3 MP XPP X18 0 0 18 1421 495 3 MP XPP X0 18 18 0 1421 513 3 MP XPP X18 0 0 18 1421 513 3 MP XPP X0 17 18 0 1421 531 3 MP XPP X18 0 0 17 1421 531 3 MP XPP X0 18 18 0 1421 548 3 MP XPP X18 0 0 18 1421 548 3 MP XPP X0 18 18 0 1421 566 3 MP XPP X18 0 0 18 1421 566 3 MP XPP X0 18 18 0 1421 584 3 MP XPP X18 0 0 18 1421 584 3 MP XPP X0 18 18 0 1421 602 3 MP XPP X18 0 0 18 1421 602 3 MP XPP X0 18 18 0 1421 620 3 MP XPP X18 0 0 18 1421 620 3 MP XPP X0 17 18 0 1421 638 3 MP XPP X18 0 0 17 1421 638 3 MP XPP X0 18 18 0 1421 655 3 MP XPP X18 0 0 18 1421 655 3 MP XPP X0 18 18 0 1421 673 3 MP XPP X18 0 0 18 1421 673 3 MP XPP X0 18 18 0 1421 691 3 MP XPP X18 0 0 18 1421 691 3 MP XPP X0 18 18 0 1421 709 3 MP XPP X18 0 0 18 1421 709 3 MP XPP X0 18 18 0 1421 727 3 MP XPP X18 0 0 18 1421 727 3 MP XPP X0 17 18 0 1421 745 3 MP XPP X18 0 0 17 1421 745 3 MP XPP X0 18 18 0 1421 762 3 MP XPP X18 0 0 18 1421 762 3 MP XPP X0 18 18 0 1421 780 3 MP XPP X18 0 0 18 1421 780 3 MP XPP X0 18 18 0 1421 798 3 MP XPP X18 0 0 18 1421 798 3 MP XPP X0 18 18 0 1421 816 3 MP XPP X18 0 0 18 1421 816 3 MP XPP X0 18 18 0 1421 834 3 MP XPP X18 0 0 18 1421 834 3 MP XPP X0 17 18 0 1421 852 3 MP XPP X18 0 0 17 1421 852 3 MP XPP X0 18 18 0 1421 869 3 MP XPP X18 0 0 18 1421 869 3 MP XPP X0 18 18 0 1421 887 3 MP XPP X18 0 0 18 1421 887 3 MP XPP X0 18 18 0 1421 905 3 MP XPP X18 0 0 18 1421 905 3 MP XPP X0 18 18 0 1421 923 3 MP XPP X18 0 0 18 1421 923 3 MP XPP X0 18 18 0 1421 941 3 MP XPP X18 0 0 18 1421 941 3 MP XPP X0 17 18 0 1421 959 3 MP XPP X18 0 0 17 1421 959 3 MP XPP X0 18 18 0 1421 976 3 MP XPP X18 0 0 18 1421 976 3 MP XPP X0 18 18 0 1421 994 3 MP XPP X18 0 0 18 1421 994 3 MP XPP X0 18 18 0 1421 1012 3 MP XPP X18 0 0 18 1421 1012 3 MP XPP X0 18 18 0 1421 1030 3 MP XPP X18 0 0 18 1421 1030 3 MP XPP X0 18 18 0 1421 1048 3 MP XPP X18 0 0 18 1421 1048 3 MP XPP X0 17 18 0 1421 1066 3 MP XPP X18 0 0 17 1421 1066 3 MP XPP X0 18 18 0 1421 1083 3 MP XPP X18 0 0 18 1421 1083 3 MP XPP X0 18 18 0 1421 1101 3 MP XPP X18 0 0 18 1421 1101 3 MP XPP X0.238095 sg X0 18 18 0 1421 1119 3 MP XPP X18 0 0 18 1421 1119 3 MP XPP X0 18 18 0 1421 1137 3 MP XPP X18 0 0 18 1421 1137 3 MP XPP X0 18 18 0 1421 1155 3 MP XPP X18 0 0 18 1421 1155 3 MP XPP X0 17 18 0 1421 1173 3 MP XPP X18 0 0 17 1421 1173 3 MP XPP X0 18 18 0 1421 1190 3 MP XPP X18 0 0 18 1421 1190 3 MP XPP X0 18 18 0 1421 1208 3 MP XPP X18 0 0 18 1421 1208 3 MP XPP X0 18 18 0 1421 1226 3 MP XPP X18 0 0 18 1421 1226 3 MP XPP X0 18 18 0 1421 1244 3 MP XPP X18 0 0 18 1421 1244 3 MP XPP X0 17 18 0 1421 1262 3 MP XPP X18 0 0 17 1421 1262 3 MP XPP X0 18 18 0 1421 1279 3 MP XPP X18 0 0 18 1421 1279 3 MP XPP X0 18 18 0 1421 1297 3 MP XPP X18 0 0 18 1421 1297 3 MP XPP X0 18 18 0 1421 1315 3 MP XPP X18 0 0 18 1421 1315 3 MP XPP X0 18 18 0 1421 1333 3 MP XPP X18 0 0 18 1421 1333 3 MP XPP X0 18 18 0 1421 1351 3 MP XPP X18 0 0 18 1421 1351 3 MP XPP X0 17 18 0 1421 1369 3 MP XPP X18 0 0 17 1421 1369 3 MP XPP X0 18 18 0 1421 1386 3 MP XPP X18 0 0 18 1421 1386 3 MP XPP X1 sg X0 18 18 0 1421 1404 3 MP XPP X18 0 0 18 1421 1404 3 MP XPP X0 18 18 0 1421 1422 3 MP XPP X18 0 0 18 1421 1422 3 MP XPP X0 18 18 0 1421 1440 3 MP XPP X18 0 0 18 1421 1440 3 MP XPP X0 18 18 0 1421 1458 3 MP XPP X18 0 0 18 1421 1458 3 MP XPP X0 17 18 0 1421 1476 3 MP XPP X18 0 0 17 1421 1476 3 MP XPP X0 18 18 0 1421 1493 3 MP XPP X18 0 0 18 1421 1493 3 MP XPP X0 18 18 0 1421 1511 3 MP XPP X18 0 0 18 1421 1511 3 MP XPP X0 18 18 0 1421 1529 3 MP XPP X18 0 0 18 1421 1529 3 MP XPP X0 18 18 0 1421 1547 3 MP XPP X18 0 0 18 1421 1547 3 MP XPP X0 18 18 0 1421 1565 3 MP XPP X18 0 0 18 1421 1565 3 MP XPP X0 17 18 0 1421 1583 3 MP XPP X18 0 0 17 1421 1583 3 MP XPP X0 18 18 0 1421 1600 3 MP XPP X18 0 0 18 1421 1600 3 MP XPP X0 18 18 0 1421 1618 3 MP XPP X18 0 0 18 1421 1618 3 MP XPP X0 18 18 0 1421 1636 3 MP XPP X18 0 0 18 1421 1636 3 MP XPP X0 18 18 0 1421 1654 3 MP XPP X18 0 0 18 1421 1654 3 MP XPP X0 18 18 0 1421 1672 3 MP XPP X18 0 0 18 1421 1672 3 MP XPP X0 17 18 0 1421 1690 3 MP XPP X18 0 0 17 1421 1690 3 MP XPP X0 18 18 0 1421 1707 3 MP XPP X18 0 0 18 1421 1707 3 MP XPP X0 18 18 0 1421 1725 3 MP XPP X18 0 0 18 1421 1725 3 MP XPP X0 18 18 0 1421 1743 3 MP XPP X18 0 0 18 1421 1743 3 MP XPP X0 18 18 0 1421 1761 3 MP XPP X18 0 0 18 1421 1761 3 MP XPP X0 18 18 0 1421 1779 3 MP XPP X18 0 0 18 1421 1779 3 MP XPP X0 17 18 0 1421 1797 3 MP XPP X18 0 0 17 1421 1797 3 MP XPP X0 18 18 0 1421 1814 3 MP XPP X18 0 0 18 1421 1814 3 MP XPP X0 18 18 0 1421 1832 3 MP XPP X18 0 0 18 1421 1832 3 MP XPP X0 18 18 0 1421 1850 3 MP XPP X18 0 0 18 1421 1850 3 MP XPP X0 18 18 0 1421 1868 3 MP XPP X18 0 0 18 1421 1868 3 MP XPP X0 18 18 0 1421 1886 3 MP XPP X18 0 0 18 1421 1886 3 MP XPP X0 17 18 0 1421 1904 3 MP XPP X18 0 0 17 1421 1904 3 MP XPP X0 18 18 0 1421 1921 3 MP XPP X18 0 0 18 1421 1921 3 MP XPP X0 18 18 0 1421 1939 3 MP XPP X18 0 0 18 1421 1939 3 MP XPP X0 18 18 0 1421 1957 3 MP XPP X18 0 0 18 1421 1957 3 MP XPP X0 18 18 0 1421 1975 3 MP XPP X18 0 0 18 1421 1975 3 MP XPP X0 18 18 0 1421 1993 3 MP XPP X18 0 0 18 1421 1993 3 MP XPP X0 17 18 0 1421 2011 3 MP XPP X18 0 0 17 1421 2011 3 MP XPP X0 18 18 0 1421 2028 3 MP XPP X18 0 0 18 1421 2028 3 MP XPP X0 18 18 0 1421 2046 3 MP XPP X18 0 0 18 1421 2046 3 MP XPP X0 18 18 0 1421 2064 3 MP XPP X18 0 0 18 1421 2064 3 MP XPP X0 18 18 0 1421 2082 3 MP XPP X18 0 0 18 1421 2082 3 MP XPP X0 18 18 0 1421 2100 3 MP XPP X18 0 0 18 1421 2100 3 MP XPP X0 17 18 0 1421 2118 3 MP XPP X18 0 0 17 1421 2118 3 MP XPP X0 18 18 0 1421 2135 3 MP XPP X18 0 0 18 1421 2135 3 MP XPP X0 18 18 0 1421 2153 3 MP XPP X18 0 0 18 1421 2153 3 MP XPP X0 18 18 0 1439 388 3 MP XPP X18 0 0 18 1439 388 3 MP XPP X0 18 18 0 1439 406 3 MP XPP X18 0 0 18 1439 406 3 MP XPP X0 17 18 0 1439 424 3 MP XPP X18 0 0 17 1439 424 3 MP XPP X0 18 18 0 1439 441 3 MP XPP X18 0 0 18 1439 441 3 MP XPP X0 18 18 0 1439 459 3 MP XPP X18 0 0 18 1439 459 3 MP XPP X0 18 18 0 1439 477 3 MP XPP X18 0 0 18 1439 477 3 MP XPP X0 18 18 0 1439 495 3 MP XPP X18 0 0 18 1439 495 3 MP XPP X0 18 18 0 1439 513 3 MP XPP X18 0 0 18 1439 513 3 MP XPP X0 17 18 0 1439 531 3 MP XPP X18 0 0 17 1439 531 3 MP XPP X0 18 18 0 1439 548 3 MP XPP X18 0 0 18 1439 548 3 MP XPP X0 18 18 0 1439 566 3 MP XPP X18 0 0 18 1439 566 3 MP XPP X0 18 18 0 1439 584 3 MP XPP X18 0 0 18 1439 584 3 MP XPP X0 18 18 0 1439 602 3 MP XPP X18 0 0 18 1439 602 3 MP XPP X0 18 18 0 1439 620 3 MP XPP X18 0 0 18 1439 620 3 MP XPP X0 17 18 0 1439 638 3 MP XPP X18 0 0 17 1439 638 3 MP XPP X0 18 18 0 1439 655 3 MP XPP X18 0 0 18 1439 655 3 MP XPP X0 18 18 0 1439 673 3 MP XPP X18 0 0 18 1439 673 3 MP XPP X0 18 18 0 1439 691 3 MP XPP X18 0 0 18 1439 691 3 MP XPP X0 18 18 0 1439 709 3 MP XPP X18 0 0 18 1439 709 3 MP XPP X0 18 18 0 1439 727 3 MP XPP X18 0 0 18 1439 727 3 MP XPP X0 17 18 0 1439 745 3 MP XPP X18 0 0 17 1439 745 3 MP XPP X0 18 18 0 1439 762 3 MP XPP X18 0 0 18 1439 762 3 MP XPP X0 18 18 0 1439 780 3 MP XPP X18 0 0 18 1439 780 3 MP XPP X0 18 18 0 1439 798 3 MP XPP X18 0 0 18 1439 798 3 MP XPP X0 18 18 0 1439 816 3 MP XPP X18 0 0 18 1439 816 3 MP XPP X0 18 18 0 1439 834 3 MP XPP X18 0 0 18 1439 834 3 MP XPP X0 17 18 0 1439 852 3 MP XPP X18 0 0 17 1439 852 3 MP XPP X0 18 18 0 1439 869 3 MP XPP X18 0 0 18 1439 869 3 MP XPP X0 18 18 0 1439 887 3 MP XPP X18 0 0 18 1439 887 3 MP XPP X0 18 18 0 1439 905 3 MP XPP X18 0 0 18 1439 905 3 MP XPP X0 18 18 0 1439 923 3 MP XPP X18 0 0 18 1439 923 3 MP XPP X0 18 18 0 1439 941 3 MP XPP X18 0 0 18 1439 941 3 MP XPP X0 17 18 0 1439 959 3 MP XPP X18 0 0 17 1439 959 3 MP XPP X0 18 18 0 1439 976 3 MP XPP X18 0 0 18 1439 976 3 MP XPP X0 18 18 0 1439 994 3 MP XPP X18 0 0 18 1439 994 3 MP XPP X0 18 18 0 1439 1012 3 MP XPP X18 0 0 18 1439 1012 3 MP XPP X0 18 18 0 1439 1030 3 MP XPP X18 0 0 18 1439 1030 3 MP XPP X0 18 18 0 1439 1048 3 MP XPP X18 0 0 18 1439 1048 3 MP XPP X0 17 18 0 1439 1066 3 MP XPP X18 0 0 17 1439 1066 3 MP XPP X0 18 18 0 1439 1083 3 MP XPP X18 0 0 18 1439 1083 3 MP XPP X0 18 18 0 1439 1101 3 MP XPP X18 0 0 18 1439 1101 3 MP XPP X0.238095 sg X0 18 18 0 1439 1119 3 MP XPP X18 0 0 18 1439 1119 3 MP XPP X0 18 18 0 1439 1137 3 MP XPP X18 0 0 18 1439 1137 3 MP XPP X0 18 18 0 1439 1155 3 MP XPP X18 0 0 18 1439 1155 3 MP XPP X0 17 18 0 1439 1173 3 MP XPP X18 0 0 17 1439 1173 3 MP XPP X0 18 18 0 1439 1190 3 MP XPP X18 0 0 18 1439 1190 3 MP XPP X0 18 18 0 1439 1208 3 MP XPP X18 0 0 18 1439 1208 3 MP XPP X0 18 18 0 1439 1226 3 MP XPP X18 0 0 18 1439 1226 3 MP XPP X0 18 18 0 1439 1244 3 MP XPP X18 0 0 18 1439 1244 3 MP XPP X0 17 18 0 1439 1262 3 MP XPP X18 0 0 17 1439 1262 3 MP XPP X0 18 18 0 1439 1279 3 MP XPP X18 0 0 18 1439 1279 3 MP XPP X0 18 18 0 1439 1297 3 MP XPP X18 0 0 18 1439 1297 3 MP XPP X0 18 18 0 1439 1315 3 MP XPP X18 0 0 18 1439 1315 3 MP XPP X0 18 18 0 1439 1333 3 MP XPP X18 0 0 18 1439 1333 3 MP XPP X0 18 18 0 1439 1351 3 MP XPP X18 0 0 18 1439 1351 3 MP XPP X0 17 18 0 1439 1369 3 MP XPP X18 0 0 17 1439 1369 3 MP XPP X0 18 18 0 1439 1386 3 MP XPP X18 0 0 18 1439 1386 3 MP XPP X0 18 18 0 1439 1404 3 MP XPP X18 0 0 18 1439 1404 3 MP XPP X1 sg X0 18 18 0 1439 1422 3 MP XPP X18 0 0 18 1439 1422 3 MP XPP X0 18 18 0 1439 1440 3 MP XPP X18 0 0 18 1439 1440 3 MP XPP X0 18 18 0 1439 1458 3 MP XPP X18 0 0 18 1439 1458 3 MP XPP X0 17 18 0 1439 1476 3 MP XPP X18 0 0 17 1439 1476 3 MP XPP X0 18 18 0 1439 1493 3 MP XPP X18 0 0 18 1439 1493 3 MP XPP X0 18 18 0 1439 1511 3 MP XPP X18 0 0 18 1439 1511 3 MP XPP X0 18 18 0 1439 1529 3 MP XPP X18 0 0 18 1439 1529 3 MP XPP X0 18 18 0 1439 1547 3 MP XPP X18 0 0 18 1439 1547 3 MP XPP X0 18 18 0 1439 1565 3 MP XPP X18 0 0 18 1439 1565 3 MP XPP X0 17 18 0 1439 1583 3 MP XPP X18 0 0 17 1439 1583 3 MP XPP X0 18 18 0 1439 1600 3 MP XPP X18 0 0 18 1439 1600 3 MP XPP X0 18 18 0 1439 1618 3 MP XPP X18 0 0 18 1439 1618 3 MP XPP X0 18 18 0 1439 1636 3 MP XPP X18 0 0 18 1439 1636 3 MP XPP X0 18 18 0 1439 1654 3 MP XPP X18 0 0 18 1439 1654 3 MP XPP X0 18 18 0 1439 1672 3 MP XPP X18 0 0 18 1439 1672 3 MP XPP X0 17 18 0 1439 1690 3 MP XPP X18 0 0 17 1439 1690 3 MP XPP X0 18 18 0 1439 1707 3 MP XPP X18 0 0 18 1439 1707 3 MP XPP X0 18 18 0 1439 1725 3 MP XPP X18 0 0 18 1439 1725 3 MP XPP X0 18 18 0 1439 1743 3 MP XPP X18 0 0 18 1439 1743 3 MP XPP X0 18 18 0 1439 1761 3 MP XPP X18 0 0 18 1439 1761 3 MP XPP X0 18 18 0 1439 1779 3 MP XPP X18 0 0 18 1439 1779 3 MP XPP X0 17 18 0 1439 1797 3 MP XPP X18 0 0 17 1439 1797 3 MP XPP X0 18 18 0 1439 1814 3 MP XPP X18 0 0 18 1439 1814 3 MP XPP X0 18 18 0 1439 1832 3 MP XPP X18 0 0 18 1439 1832 3 MP XPP X0 18 18 0 1439 1850 3 MP XPP X18 0 0 18 1439 1850 3 MP XPP X0 18 18 0 1439 1868 3 MP XPP X18 0 0 18 1439 1868 3 MP XPP X0 18 18 0 1439 1886 3 MP XPP X18 0 0 18 1439 1886 3 MP XPP X0 17 18 0 1439 1904 3 MP XPP X18 0 0 17 1439 1904 3 MP XPP X0 18 18 0 1439 1921 3 MP XPP X18 0 0 18 1439 1921 3 MP XPP X0 18 18 0 1439 1939 3 MP XPP X18 0 0 18 1439 1939 3 MP XPP X0 18 18 0 1439 1957 3 MP XPP X18 0 0 18 1439 1957 3 MP XPP X0 18 18 0 1439 1975 3 MP XPP X18 0 0 18 1439 1975 3 MP XPP X0 18 18 0 1439 1993 3 MP XPP X18 0 0 18 1439 1993 3 MP XPP X0 17 18 0 1439 2011 3 MP XPP X18 0 0 17 1439 2011 3 MP XPP X0 18 18 0 1439 2028 3 MP XPP X18 0 0 18 1439 2028 3 MP XPP X0 18 18 0 1439 2046 3 MP XPP X18 0 0 18 1439 2046 3 MP XPP X0 18 18 0 1439 2064 3 MP XPP X18 0 0 18 1439 2064 3 MP XPP X0 18 18 0 1439 2082 3 MP XPP X18 0 0 18 1439 2082 3 MP XPP X0 18 18 0 1439 2100 3 MP XPP X18 0 0 18 1439 2100 3 MP XPP X0 17 18 0 1439 2118 3 MP XPP X18 0 0 17 1439 2118 3 MP XPP X0 18 18 0 1439 2135 3 MP XPP X18 0 0 18 1439 2135 3 MP XPP X0 18 18 0 1439 2153 3 MP XPP X18 0 0 18 1439 2153 3 MP XPP X0 18 18 0 1457 388 3 MP XPP X18 0 0 18 1457 388 3 MP XPP X0 18 18 0 1457 406 3 MP XPP X18 0 0 18 1457 406 3 MP XPP X0 17 18 0 1457 424 3 MP XPP X18 0 0 17 1457 424 3 MP XPP X0 18 18 0 1457 441 3 MP XPP X18 0 0 18 1457 441 3 MP XPP X0 18 18 0 1457 459 3 MP XPP X18 0 0 18 1457 459 3 MP XPP X0 18 18 0 1457 477 3 MP XPP X18 0 0 18 1457 477 3 MP XPP X0 18 18 0 1457 495 3 MP XPP X18 0 0 18 1457 495 3 MP XPP X0 18 18 0 1457 513 3 MP XPP X18 0 0 18 1457 513 3 MP XPP X0 17 18 0 1457 531 3 MP XPP X18 0 0 17 1457 531 3 MP XPP X0 18 18 0 1457 548 3 MP XPP X18 0 0 18 1457 548 3 MP XPP X0 18 18 0 1457 566 3 MP XPP X18 0 0 18 1457 566 3 MP XPP X0 18 18 0 1457 584 3 MP XPP X18 0 0 18 1457 584 3 MP XPP X0 18 18 0 1457 602 3 MP XPP X18 0 0 18 1457 602 3 MP XPP X0 18 18 0 1457 620 3 MP XPP X18 0 0 18 1457 620 3 MP XPP X0 17 18 0 1457 638 3 MP XPP X18 0 0 17 1457 638 3 MP XPP X0 18 18 0 1457 655 3 MP XPP X18 0 0 18 1457 655 3 MP XPP X0 18 18 0 1457 673 3 MP XPP X18 0 0 18 1457 673 3 MP XPP X0 18 18 0 1457 691 3 MP XPP X18 0 0 18 1457 691 3 MP XPP X0 18 18 0 1457 709 3 MP XPP X18 0 0 18 1457 709 3 MP XPP X0 18 18 0 1457 727 3 MP XPP X18 0 0 18 1457 727 3 MP XPP X0 17 18 0 1457 745 3 MP XPP X18 0 0 17 1457 745 3 MP XPP X0 18 18 0 1457 762 3 MP XPP X18 0 0 18 1457 762 3 MP XPP X0 18 18 0 1457 780 3 MP XPP X18 0 0 18 1457 780 3 MP XPP X0 18 18 0 1457 798 3 MP XPP X18 0 0 18 1457 798 3 MP XPP X0 18 18 0 1457 816 3 MP XPP X18 0 0 18 1457 816 3 MP XPP X0 18 18 0 1457 834 3 MP XPP X18 0 0 18 1457 834 3 MP XPP X0 17 18 0 1457 852 3 MP XPP X18 0 0 17 1457 852 3 MP XPP X0 18 18 0 1457 869 3 MP XPP X18 0 0 18 1457 869 3 MP XPP X0 18 18 0 1457 887 3 MP XPP X18 0 0 18 1457 887 3 MP XPP X0 18 18 0 1457 905 3 MP XPP X18 0 0 18 1457 905 3 MP XPP X0 18 18 0 1457 923 3 MP XPP X18 0 0 18 1457 923 3 MP XPP X0 18 18 0 1457 941 3 MP XPP X18 0 0 18 1457 941 3 MP XPP X0 17 18 0 1457 959 3 MP XPP X18 0 0 17 1457 959 3 MP XPP X0 18 18 0 1457 976 3 MP XPP X18 0 0 18 1457 976 3 MP XPP X0 18 18 0 1457 994 3 MP XPP X18 0 0 18 1457 994 3 MP XPP X0 18 18 0 1457 1012 3 MP XPP X18 0 0 18 1457 1012 3 MP XPP X0 18 18 0 1457 1030 3 MP XPP X18 0 0 18 1457 1030 3 MP XPP X0 18 18 0 1457 1048 3 MP XPP X18 0 0 18 1457 1048 3 MP XPP X0 17 18 0 1457 1066 3 MP XPP X18 0 0 17 1457 1066 3 MP XPP X0 18 18 0 1457 1083 3 MP XPP X18 0 0 18 1457 1083 3 MP XPP X0 18 18 0 1457 1101 3 MP XPP X18 0 0 18 1457 1101 3 MP XPP X0.238095 sg X0 18 18 0 1457 1119 3 MP XPP X18 0 0 18 1457 1119 3 MP XPP X0 18 18 0 1457 1137 3 MP XPP X18 0 0 18 1457 1137 3 MP XPP X0 18 18 0 1457 1155 3 MP XPP X18 0 0 18 1457 1155 3 MP XPP X0 17 18 0 1457 1173 3 MP XPP X18 0 0 17 1457 1173 3 MP XPP X0 18 18 0 1457 1190 3 MP XPP X18 0 0 18 1457 1190 3 MP XPP X0 18 18 0 1457 1208 3 MP XPP X18 0 0 18 1457 1208 3 MP XPP X0 18 18 0 1457 1226 3 MP XPP X18 0 0 18 1457 1226 3 MP XPP X0 18 18 0 1457 1244 3 MP XPP X18 0 0 18 1457 1244 3 MP XPP X0 17 18 0 1457 1262 3 MP XPP X18 0 0 17 1457 1262 3 MP XPP X0 18 18 0 1457 1279 3 MP XPP X18 0 0 18 1457 1279 3 MP XPP X0 18 18 0 1457 1297 3 MP XPP X18 0 0 18 1457 1297 3 MP XPP X0 18 18 0 1457 1315 3 MP XPP X18 0 0 18 1457 1315 3 MP XPP X0 18 18 0 1457 1333 3 MP XPP X18 0 0 18 1457 1333 3 MP XPP X0 18 18 0 1457 1351 3 MP XPP X18 0 0 18 1457 1351 3 MP XPP X0 17 18 0 1457 1369 3 MP XPP X18 0 0 17 1457 1369 3 MP XPP X0 18 18 0 1457 1386 3 MP XPP X18 0 0 18 1457 1386 3 MP XPP X0 18 18 0 1457 1404 3 MP XPP X18 0 0 18 1457 1404 3 MP XPP X0 18 18 0 1457 1422 3 MP XPP X18 0 0 18 1457 1422 3 MP XPP X1 sg X0 18 18 0 1457 1440 3 MP XPP X18 0 0 18 1457 1440 3 MP XPP X0 18 18 0 1457 1458 3 MP XPP X18 0 0 18 1457 1458 3 MP XPP X0 17 18 0 1457 1476 3 MP XPP X18 0 0 17 1457 1476 3 MP XPP X0 18 18 0 1457 1493 3 MP XPP X18 0 0 18 1457 1493 3 MP XPP X0 18 18 0 1457 1511 3 MP XPP X18 0 0 18 1457 1511 3 MP XPP X0 18 18 0 1457 1529 3 MP XPP X18 0 0 18 1457 1529 3 MP XPP X0 18 18 0 1457 1547 3 MP XPP X18 0 0 18 1457 1547 3 MP XPP X0 18 18 0 1457 1565 3 MP XPP X18 0 0 18 1457 1565 3 MP XPP X0 17 18 0 1457 1583 3 MP XPP X18 0 0 17 1457 1583 3 MP XPP X0 18 18 0 1457 1600 3 MP XPP X18 0 0 18 1457 1600 3 MP XPP X0 18 18 0 1457 1618 3 MP XPP X18 0 0 18 1457 1618 3 MP XPP X0 18 18 0 1457 1636 3 MP XPP X18 0 0 18 1457 1636 3 MP XPP X0 18 18 0 1457 1654 3 MP XPP X18 0 0 18 1457 1654 3 MP XPP X0 18 18 0 1457 1672 3 MP XPP X18 0 0 18 1457 1672 3 MP XPP X0 17 18 0 1457 1690 3 MP XPP X18 0 0 17 1457 1690 3 MP XPP X0 18 18 0 1457 1707 3 MP XPP X18 0 0 18 1457 1707 3 MP XPP X0 18 18 0 1457 1725 3 MP XPP X18 0 0 18 1457 1725 3 MP XPP X0 18 18 0 1457 1743 3 MP XPP X18 0 0 18 1457 1743 3 MP XPP X0 18 18 0 1457 1761 3 MP XPP X18 0 0 18 1457 1761 3 MP XPP X0 18 18 0 1457 1779 3 MP XPP X18 0 0 18 1457 1779 3 MP XPP X0 17 18 0 1457 1797 3 MP XPP X18 0 0 17 1457 1797 3 MP XPP X0 18 18 0 1457 1814 3 MP XPP X18 0 0 18 1457 1814 3 MP XPP X0 18 18 0 1457 1832 3 MP XPP X18 0 0 18 1457 1832 3 MP XPP X0 18 18 0 1457 1850 3 MP XPP X18 0 0 18 1457 1850 3 MP XPP X0 18 18 0 1457 1868 3 MP XPP X18 0 0 18 1457 1868 3 MP XPP X0 18 18 0 1457 1886 3 MP XPP X18 0 0 18 1457 1886 3 MP XPP X0 17 18 0 1457 1904 3 MP XPP X18 0 0 17 1457 1904 3 MP XPP X0 18 18 0 1457 1921 3 MP XPP X18 0 0 18 1457 1921 3 MP XPP X0 18 18 0 1457 1939 3 MP XPP X18 0 0 18 1457 1939 3 MP XPP X0 18 18 0 1457 1957 3 MP XPP X18 0 0 18 1457 1957 3 MP XPP X0 18 18 0 1457 1975 3 MP XPP X18 0 0 18 1457 1975 3 MP XPP X0 18 18 0 1457 1993 3 MP XPP X18 0 0 18 1457 1993 3 MP XPP X0 17 18 0 1457 2011 3 MP XPP X18 0 0 17 1457 2011 3 MP XPP X0 18 18 0 1457 2028 3 MP XPP X18 0 0 18 1457 2028 3 MP XPP X0 18 18 0 1457 2046 3 MP XPP X18 0 0 18 1457 2046 3 MP XPP X0 18 18 0 1457 2064 3 MP XPP X18 0 0 18 1457 2064 3 MP XPP X0 18 18 0 1457 2082 3 MP XPP X18 0 0 18 1457 2082 3 MP XPP X0 18 18 0 1457 2100 3 MP XPP X18 0 0 18 1457 2100 3 MP XPP X0 17 18 0 1457 2118 3 MP XPP X18 0 0 17 1457 2118 3 MP XPP X0 18 18 0 1457 2135 3 MP XPP X18 0 0 18 1457 2135 3 MP XPP X0 18 18 0 1457 2153 3 MP XPP X18 0 0 18 1457 2153 3 MP XPP X0 18 18 0 1475 388 3 MP XPP X18 0 0 18 1475 388 3 MP XPP X0 18 18 0 1475 406 3 MP XPP X18 0 0 18 1475 406 3 MP XPP X0 17 18 0 1475 424 3 MP XPP X18 0 0 17 1475 424 3 MP XPP X0 18 18 0 1475 441 3 MP XPP X18 0 0 18 1475 441 3 MP XPP X0 18 18 0 1475 459 3 MP XPP X18 0 0 18 1475 459 3 MP XPP X0 18 18 0 1475 477 3 MP XPP X18 0 0 18 1475 477 3 MP XPP X0 18 18 0 1475 495 3 MP XPP X18 0 0 18 1475 495 3 MP XPP X0 18 18 0 1475 513 3 MP XPP X18 0 0 18 1475 513 3 MP XPP X0 17 18 0 1475 531 3 MP XPP X18 0 0 17 1475 531 3 MP XPP X0 18 18 0 1475 548 3 MP XPP X18 0 0 18 1475 548 3 MP XPP X0 18 18 0 1475 566 3 MP XPP X18 0 0 18 1475 566 3 MP XPP X0 18 18 0 1475 584 3 MP XPP X18 0 0 18 1475 584 3 MP XPP X0 18 18 0 1475 602 3 MP XPP X18 0 0 18 1475 602 3 MP XPP X0 18 18 0 1475 620 3 MP XPP X18 0 0 18 1475 620 3 MP XPP X0 17 18 0 1475 638 3 MP XPP X18 0 0 17 1475 638 3 MP XPP X0 18 18 0 1475 655 3 MP XPP X18 0 0 18 1475 655 3 MP XPP X0 18 18 0 1475 673 3 MP XPP X18 0 0 18 1475 673 3 MP XPP X0 18 18 0 1475 691 3 MP XPP X18 0 0 18 1475 691 3 MP XPP X0 18 18 0 1475 709 3 MP XPP X18 0 0 18 1475 709 3 MP XPP X0 18 18 0 1475 727 3 MP XPP X18 0 0 18 1475 727 3 MP XPP X0 17 18 0 1475 745 3 MP XPP X18 0 0 17 1475 745 3 MP XPP X0 18 18 0 1475 762 3 MP XPP X18 0 0 18 1475 762 3 MP XPP X0 18 18 0 1475 780 3 MP XPP X18 0 0 18 1475 780 3 MP XPP X0 18 18 0 1475 798 3 MP XPP X18 0 0 18 1475 798 3 MP XPP X0 18 18 0 1475 816 3 MP XPP X18 0 0 18 1475 816 3 MP XPP X0 18 18 0 1475 834 3 MP XPP X18 0 0 18 1475 834 3 MP XPP X0 17 18 0 1475 852 3 MP XPP X18 0 0 17 1475 852 3 MP XPP X0 18 18 0 1475 869 3 MP XPP X18 0 0 18 1475 869 3 MP XPP X0 18 18 0 1475 887 3 MP XPP X18 0 0 18 1475 887 3 MP XPP X0 18 18 0 1475 905 3 MP XPP X18 0 0 18 1475 905 3 MP XPP X0 18 18 0 1475 923 3 MP XPP X18 0 0 18 1475 923 3 MP XPP X0 18 18 0 1475 941 3 MP XPP X18 0 0 18 1475 941 3 MP XPP X0 17 18 0 1475 959 3 MP XPP X18 0 0 17 1475 959 3 MP XPP X0 18 18 0 1475 976 3 MP XPP X18 0 0 18 1475 976 3 MP XPP X0 18 18 0 1475 994 3 MP XPP X18 0 0 18 1475 994 3 MP XPP X0 18 18 0 1475 1012 3 MP XPP X18 0 0 18 1475 1012 3 MP XPP X0 18 18 0 1475 1030 3 MP XPP X18 0 0 18 1475 1030 3 MP XPP X0 18 18 0 1475 1048 3 MP XPP X18 0 0 18 1475 1048 3 MP XPP X0 17 18 0 1475 1066 3 MP XPP X18 0 0 17 1475 1066 3 MP XPP X0 18 18 0 1475 1083 3 MP XPP X18 0 0 18 1475 1083 3 MP XPP X0 18 18 0 1475 1101 3 MP XPP X18 0 0 18 1475 1101 3 MP XPP X0.238095 sg X0 18 18 0 1475 1119 3 MP XPP X18 0 0 18 1475 1119 3 MP XPP X0 18 18 0 1475 1137 3 MP XPP X18 0 0 18 1475 1137 3 MP XPP X0 18 18 0 1475 1155 3 MP XPP X18 0 0 18 1475 1155 3 MP XPP X0 17 18 0 1475 1173 3 MP XPP X18 0 0 17 1475 1173 3 MP XPP X0 18 18 0 1475 1190 3 MP XPP X18 0 0 18 1475 1190 3 MP XPP X0 18 18 0 1475 1208 3 MP XPP X18 0 0 18 1475 1208 3 MP XPP X0 18 18 0 1475 1226 3 MP XPP X18 0 0 18 1475 1226 3 MP XPP X0 18 18 0 1475 1244 3 MP XPP X18 0 0 18 1475 1244 3 MP XPP X0 17 18 0 1475 1262 3 MP XPP X18 0 0 17 1475 1262 3 MP XPP X0 18 18 0 1475 1279 3 MP XPP X18 0 0 18 1475 1279 3 MP XPP X0 18 18 0 1475 1297 3 MP XPP X18 0 0 18 1475 1297 3 MP XPP X0 18 18 0 1475 1315 3 MP XPP X18 0 0 18 1475 1315 3 MP XPP X0 18 18 0 1475 1333 3 MP XPP X18 0 0 18 1475 1333 3 MP XPP X0 18 18 0 1475 1351 3 MP XPP X18 0 0 18 1475 1351 3 MP XPP X0 17 18 0 1475 1369 3 MP XPP X18 0 0 17 1475 1369 3 MP XPP X0 18 18 0 1475 1386 3 MP XPP X18 0 0 18 1475 1386 3 MP XPP X0 18 18 0 1475 1404 3 MP XPP X18 0 0 18 1475 1404 3 MP XPP X0 18 18 0 1475 1422 3 MP XPP X18 0 0 18 1475 1422 3 MP XPP X0 18 18 0 1475 1440 3 MP XPP X18 0 0 18 1475 1440 3 MP XPP X1 sg X0 18 18 0 1475 1458 3 MP XPP X18 0 0 18 1475 1458 3 MP XPP X0 17 18 0 1475 1476 3 MP XPP X18 0 0 17 1475 1476 3 MP XPP X0 18 18 0 1475 1493 3 MP XPP X18 0 0 18 1475 1493 3 MP XPP X0 18 18 0 1475 1511 3 MP XPP X18 0 0 18 1475 1511 3 MP XPP X0 18 18 0 1475 1529 3 MP XPP X18 0 0 18 1475 1529 3 MP XPP X0 18 18 0 1475 1547 3 MP XPP X18 0 0 18 1475 1547 3 MP XPP X0 18 18 0 1475 1565 3 MP XPP X18 0 0 18 1475 1565 3 MP XPP X0 17 18 0 1475 1583 3 MP XPP X18 0 0 17 1475 1583 3 MP XPP X0 18 18 0 1475 1600 3 MP XPP X18 0 0 18 1475 1600 3 MP XPP X0 18 18 0 1475 1618 3 MP XPP X18 0 0 18 1475 1618 3 MP XPP X0 18 18 0 1475 1636 3 MP XPP X18 0 0 18 1475 1636 3 MP XPP X0 18 18 0 1475 1654 3 MP XPP X18 0 0 18 1475 1654 3 MP XPP X0 18 18 0 1475 1672 3 MP XPP X18 0 0 18 1475 1672 3 MP XPP X0 17 18 0 1475 1690 3 MP XPP X18 0 0 17 1475 1690 3 MP XPP X0 18 18 0 1475 1707 3 MP XPP X18 0 0 18 1475 1707 3 MP XPP X0 18 18 0 1475 1725 3 MP XPP X18 0 0 18 1475 1725 3 MP XPP X0 18 18 0 1475 1743 3 MP XPP X18 0 0 18 1475 1743 3 MP XPP X0 18 18 0 1475 1761 3 MP XPP X18 0 0 18 1475 1761 3 MP XPP X0 18 18 0 1475 1779 3 MP XPP X18 0 0 18 1475 1779 3 MP XPP X0 17 18 0 1475 1797 3 MP XPP X18 0 0 17 1475 1797 3 MP XPP X0 18 18 0 1475 1814 3 MP XPP X18 0 0 18 1475 1814 3 MP XPP X0 18 18 0 1475 1832 3 MP XPP X18 0 0 18 1475 1832 3 MP XPP X0 18 18 0 1475 1850 3 MP XPP X18 0 0 18 1475 1850 3 MP XPP X0 18 18 0 1475 1868 3 MP XPP X18 0 0 18 1475 1868 3 MP XPP X0 18 18 0 1475 1886 3 MP XPP X18 0 0 18 1475 1886 3 MP XPP X0 17 18 0 1475 1904 3 MP XPP X18 0 0 17 1475 1904 3 MP XPP X0 18 18 0 1475 1921 3 MP XPP X18 0 0 18 1475 1921 3 MP XPP X0 18 18 0 1475 1939 3 MP XPP X18 0 0 18 1475 1939 3 MP XPP X0 18 18 0 1475 1957 3 MP XPP X18 0 0 18 1475 1957 3 MP XPP X0 18 18 0 1475 1975 3 MP XPP X18 0 0 18 1475 1975 3 MP XPP X0 18 18 0 1475 1993 3 MP XPP X18 0 0 18 1475 1993 3 MP XPP X0 17 18 0 1475 2011 3 MP XPP X18 0 0 17 1475 2011 3 MP XPP X0 18 18 0 1475 2028 3 MP XPP X18 0 0 18 1475 2028 3 MP XPP X0 18 18 0 1475 2046 3 MP XPP X18 0 0 18 1475 2046 3 MP XPP X0 18 18 0 1475 2064 3 MP XPP X18 0 0 18 1475 2064 3 MP XPP X0 18 18 0 1475 2082 3 MP XPP X18 0 0 18 1475 2082 3 MP XPP X0 18 18 0 1475 2100 3 MP XPP X18 0 0 18 1475 2100 3 MP XPP X0 17 18 0 1475 2118 3 MP XPP X18 0 0 17 1475 2118 3 MP XPP X0 18 18 0 1475 2135 3 MP XPP X18 0 0 18 1475 2135 3 MP XPP X0 18 18 0 1475 2153 3 MP XPP X18 0 0 18 1475 2153 3 MP XPP X0 18 17 0 1493 388 3 MP XPP X17 0 0 18 1493 388 3 MP XPP X0 18 17 0 1493 406 3 MP XPP X17 0 0 18 1493 406 3 MP XPP X0 17 17 0 1493 424 3 MP XPP X17 0 0 17 1493 424 3 MP XPP X0 18 17 0 1493 441 3 MP XPP X17 0 0 18 1493 441 3 MP XPP X0 18 17 0 1493 459 3 MP XPP X17 0 0 18 1493 459 3 MP XPP X0 18 17 0 1493 477 3 MP XPP X17 0 0 18 1493 477 3 MP XPP X0 18 17 0 1493 495 3 MP XPP X17 0 0 18 1493 495 3 MP XPP X0 18 17 0 1493 513 3 MP XPP X17 0 0 18 1493 513 3 MP XPP X0 17 17 0 1493 531 3 MP XPP X17 0 0 17 1493 531 3 MP XPP X0 18 17 0 1493 548 3 MP XPP X17 0 0 18 1493 548 3 MP XPP X0 18 17 0 1493 566 3 MP XPP X17 0 0 18 1493 566 3 MP XPP X0 18 17 0 1493 584 3 MP XPP X17 0 0 18 1493 584 3 MP XPP X0 18 17 0 1493 602 3 MP XPP X17 0 0 18 1493 602 3 MP XPP X0 18 17 0 1493 620 3 MP XPP X17 0 0 18 1493 620 3 MP XPP X0 17 17 0 1493 638 3 MP XPP X17 0 0 17 1493 638 3 MP XPP X0 18 17 0 1493 655 3 MP XPP X17 0 0 18 1493 655 3 MP XPP X0 18 17 0 1493 673 3 MP XPP X17 0 0 18 1493 673 3 MP XPP X0 18 17 0 1493 691 3 MP XPP X17 0 0 18 1493 691 3 MP XPP X0 18 17 0 1493 709 3 MP XPP X17 0 0 18 1493 709 3 MP XPP X0 18 17 0 1493 727 3 MP XPP X17 0 0 18 1493 727 3 MP XPP X0 17 17 0 1493 745 3 MP XPP X17 0 0 17 1493 745 3 MP XPP X0 18 17 0 1493 762 3 MP XPP X17 0 0 18 1493 762 3 MP XPP X0 18 17 0 1493 780 3 MP XPP X17 0 0 18 1493 780 3 MP XPP X0 18 17 0 1493 798 3 MP XPP X17 0 0 18 1493 798 3 MP XPP X0 18 17 0 1493 816 3 MP XPP X17 0 0 18 1493 816 3 MP XPP X0 18 17 0 1493 834 3 MP XPP X17 0 0 18 1493 834 3 MP XPP X0 17 17 0 1493 852 3 MP XPP X17 0 0 17 1493 852 3 MP XPP X0 18 17 0 1493 869 3 MP XPP X17 0 0 18 1493 869 3 MP XPP X0 18 17 0 1493 887 3 MP XPP X17 0 0 18 1493 887 3 MP XPP X0 18 17 0 1493 905 3 MP XPP X17 0 0 18 1493 905 3 MP XPP X0 18 17 0 1493 923 3 MP XPP X17 0 0 18 1493 923 3 MP XPP X0 18 17 0 1493 941 3 MP XPP X17 0 0 18 1493 941 3 MP XPP X0 17 17 0 1493 959 3 MP XPP X17 0 0 17 1493 959 3 MP XPP X0 18 17 0 1493 976 3 MP XPP X17 0 0 18 1493 976 3 MP XPP X0 18 17 0 1493 994 3 MP XPP X17 0 0 18 1493 994 3 MP XPP X0 18 17 0 1493 1012 3 MP XPP X17 0 0 18 1493 1012 3 MP XPP X0 18 17 0 1493 1030 3 MP XPP X17 0 0 18 1493 1030 3 MP XPP X0 18 17 0 1493 1048 3 MP XPP X17 0 0 18 1493 1048 3 MP XPP X0 17 17 0 1493 1066 3 MP XPP X17 0 0 17 1493 1066 3 MP XPP X0 18 17 0 1493 1083 3 MP XPP X17 0 0 18 1493 1083 3 MP XPP X0 18 17 0 1493 1101 3 MP XPP X17 0 0 18 1493 1101 3 MP XPP X0.238095 sg X0 18 17 0 1493 1119 3 MP XPP X17 0 0 18 1493 1119 3 MP XPP X0 18 17 0 1493 1137 3 MP XPP X17 0 0 18 1493 1137 3 MP XPP X0 18 17 0 1493 1155 3 MP XPP X17 0 0 18 1493 1155 3 MP XPP X0 17 17 0 1493 1173 3 MP XPP X17 0 0 17 1493 1173 3 MP XPP X0 18 17 0 1493 1190 3 MP XPP X17 0 0 18 1493 1190 3 MP XPP X0 18 17 0 1493 1208 3 MP XPP X17 0 0 18 1493 1208 3 MP XPP X0 18 17 0 1493 1226 3 MP XPP X17 0 0 18 1493 1226 3 MP XPP X0 18 17 0 1493 1244 3 MP XPP X17 0 0 18 1493 1244 3 MP XPP X0 17 17 0 1493 1262 3 MP XPP X17 0 0 17 1493 1262 3 MP XPP X0 18 17 0 1493 1279 3 MP XPP X17 0 0 18 1493 1279 3 MP XPP X0 18 17 0 1493 1297 3 MP XPP X17 0 0 18 1493 1297 3 MP XPP X0 18 17 0 1493 1315 3 MP XPP X17 0 0 18 1493 1315 3 MP XPP X0 18 17 0 1493 1333 3 MP XPP X17 0 0 18 1493 1333 3 MP XPP X0 18 17 0 1493 1351 3 MP XPP X17 0 0 18 1493 1351 3 MP XPP X0 17 17 0 1493 1369 3 MP XPP X17 0 0 17 1493 1369 3 MP XPP X0 18 17 0 1493 1386 3 MP XPP X17 0 0 18 1493 1386 3 MP XPP X0 18 17 0 1493 1404 3 MP XPP X17 0 0 18 1493 1404 3 MP XPP X0 18 17 0 1493 1422 3 MP XPP X17 0 0 18 1493 1422 3 MP XPP X0 18 17 0 1493 1440 3 MP XPP X17 0 0 18 1493 1440 3 MP XPP X0 18 17 0 1493 1458 3 MP XPP X17 0 0 18 1493 1458 3 MP XPP X1 sg X0 17 17 0 1493 1476 3 MP XPP X17 0 0 17 1493 1476 3 MP XPP X0 18 17 0 1493 1493 3 MP XPP X17 0 0 18 1493 1493 3 MP XPP X0 18 17 0 1493 1511 3 MP XPP X17 0 0 18 1493 1511 3 MP XPP X0 18 17 0 1493 1529 3 MP XPP X17 0 0 18 1493 1529 3 MP XPP X0 18 17 0 1493 1547 3 MP XPP X17 0 0 18 1493 1547 3 MP XPP X0 18 17 0 1493 1565 3 MP XPP X17 0 0 18 1493 1565 3 MP XPP X0 17 17 0 1493 1583 3 MP XPP X17 0 0 17 1493 1583 3 MP XPP X0 18 17 0 1493 1600 3 MP XPP X17 0 0 18 1493 1600 3 MP XPP X0 18 17 0 1493 1618 3 MP XPP X17 0 0 18 1493 1618 3 MP XPP X0 18 17 0 1493 1636 3 MP XPP X17 0 0 18 1493 1636 3 MP XPP X0 18 17 0 1493 1654 3 MP XPP X17 0 0 18 1493 1654 3 MP XPP X0 18 17 0 1493 1672 3 MP XPP X17 0 0 18 1493 1672 3 MP XPP X0 17 17 0 1493 1690 3 MP XPP X17 0 0 17 1493 1690 3 MP XPP X0 18 17 0 1493 1707 3 MP XPP X17 0 0 18 1493 1707 3 MP XPP X0 18 17 0 1493 1725 3 MP XPP X17 0 0 18 1493 1725 3 MP XPP X0 18 17 0 1493 1743 3 MP XPP X17 0 0 18 1493 1743 3 MP XPP X0 18 17 0 1493 1761 3 MP XPP X17 0 0 18 1493 1761 3 MP XPP X0 18 17 0 1493 1779 3 MP XPP X17 0 0 18 1493 1779 3 MP XPP X0 17 17 0 1493 1797 3 MP XPP X17 0 0 17 1493 1797 3 MP XPP X0 18 17 0 1493 1814 3 MP XPP X17 0 0 18 1493 1814 3 MP XPP X0 18 17 0 1493 1832 3 MP XPP X17 0 0 18 1493 1832 3 MP XPP X0 18 17 0 1493 1850 3 MP XPP X17 0 0 18 1493 1850 3 MP XPP X0 18 17 0 1493 1868 3 MP XPP X17 0 0 18 1493 1868 3 MP XPP X0 18 17 0 1493 1886 3 MP XPP X17 0 0 18 1493 1886 3 MP XPP X0 17 17 0 1493 1904 3 MP XPP X17 0 0 17 1493 1904 3 MP XPP X0 18 17 0 1493 1921 3 MP XPP X17 0 0 18 1493 1921 3 MP XPP X0 18 17 0 1493 1939 3 MP XPP X17 0 0 18 1493 1939 3 MP XPP X0 18 17 0 1493 1957 3 MP XPP X17 0 0 18 1493 1957 3 MP XPP X0 18 17 0 1493 1975 3 MP XPP X17 0 0 18 1493 1975 3 MP XPP X0 18 17 0 1493 1993 3 MP XPP X17 0 0 18 1493 1993 3 MP XPP X0 17 17 0 1493 2011 3 MP XPP X17 0 0 17 1493 2011 3 MP XPP X0 18 17 0 1493 2028 3 MP XPP X17 0 0 18 1493 2028 3 MP XPP X0 18 17 0 1493 2046 3 MP XPP X17 0 0 18 1493 2046 3 MP XPP X0 18 17 0 1493 2064 3 MP XPP X17 0 0 18 1493 2064 3 MP XPP X0 18 17 0 1493 2082 3 MP XPP X17 0 0 18 1493 2082 3 MP XPP X0 18 17 0 1493 2100 3 MP XPP X17 0 0 18 1493 2100 3 MP XPP X0 17 17 0 1493 2118 3 MP XPP X17 0 0 17 1493 2118 3 MP XPP X0 18 17 0 1493 2135 3 MP XPP X17 0 0 18 1493 2135 3 MP XPP X0 18 17 0 1493 2153 3 MP XPP X17 0 0 18 1493 2153 3 MP XPP X0 18 18 0 1510 388 3 MP XPP X18 0 0 18 1510 388 3 MP XPP X0 18 18 0 1510 406 3 MP XPP X18 0 0 18 1510 406 3 MP XPP X0 17 18 0 1510 424 3 MP XPP X18 0 0 17 1510 424 3 MP XPP X0 18 18 0 1510 441 3 MP XPP X18 0 0 18 1510 441 3 MP XPP X0 18 18 0 1510 459 3 MP XPP X18 0 0 18 1510 459 3 MP XPP X0 18 18 0 1510 477 3 MP XPP X18 0 0 18 1510 477 3 MP XPP X0 18 18 0 1510 495 3 MP XPP X18 0 0 18 1510 495 3 MP XPP X0 18 18 0 1510 513 3 MP XPP X18 0 0 18 1510 513 3 MP XPP X0 17 18 0 1510 531 3 MP XPP X18 0 0 17 1510 531 3 MP XPP X0 18 18 0 1510 548 3 MP XPP X18 0 0 18 1510 548 3 MP XPP X0 18 18 0 1510 566 3 MP XPP X18 0 0 18 1510 566 3 MP XPP X0 18 18 0 1510 584 3 MP XPP X18 0 0 18 1510 584 3 MP XPP X0 18 18 0 1510 602 3 MP XPP X18 0 0 18 1510 602 3 MP XPP X0 18 18 0 1510 620 3 MP XPP X18 0 0 18 1510 620 3 MP XPP X0 17 18 0 1510 638 3 MP XPP X18 0 0 17 1510 638 3 MP XPP X0 18 18 0 1510 655 3 MP XPP X18 0 0 18 1510 655 3 MP XPP X0 18 18 0 1510 673 3 MP XPP X18 0 0 18 1510 673 3 MP XPP X0 18 18 0 1510 691 3 MP XPP X18 0 0 18 1510 691 3 MP XPP X0 18 18 0 1510 709 3 MP XPP X18 0 0 18 1510 709 3 MP XPP X0 18 18 0 1510 727 3 MP XPP X18 0 0 18 1510 727 3 MP XPP X0 17 18 0 1510 745 3 MP XPP X18 0 0 17 1510 745 3 MP XPP X0 18 18 0 1510 762 3 MP XPP X18 0 0 18 1510 762 3 MP XPP X0 18 18 0 1510 780 3 MP XPP X18 0 0 18 1510 780 3 MP XPP X0 18 18 0 1510 798 3 MP XPP X18 0 0 18 1510 798 3 MP XPP X0 18 18 0 1510 816 3 MP XPP X18 0 0 18 1510 816 3 MP XPP X0 18 18 0 1510 834 3 MP XPP X18 0 0 18 1510 834 3 MP XPP X0 17 18 0 1510 852 3 MP XPP X18 0 0 17 1510 852 3 MP XPP X0 18 18 0 1510 869 3 MP XPP X18 0 0 18 1510 869 3 MP XPP X0 18 18 0 1510 887 3 MP XPP X18 0 0 18 1510 887 3 MP XPP X0 18 18 0 1510 905 3 MP XPP X18 0 0 18 1510 905 3 MP XPP X0 18 18 0 1510 923 3 MP XPP X18 0 0 18 1510 923 3 MP XPP X0 18 18 0 1510 941 3 MP XPP X18 0 0 18 1510 941 3 MP XPP X0 17 18 0 1510 959 3 MP XPP X18 0 0 17 1510 959 3 MP XPP X0 18 18 0 1510 976 3 MP XPP X18 0 0 18 1510 976 3 MP XPP X0 18 18 0 1510 994 3 MP XPP X18 0 0 18 1510 994 3 MP XPP X0 18 18 0 1510 1012 3 MP XPP X18 0 0 18 1510 1012 3 MP XPP X0 18 18 0 1510 1030 3 MP XPP X18 0 0 18 1510 1030 3 MP XPP X0 18 18 0 1510 1048 3 MP XPP X18 0 0 18 1510 1048 3 MP XPP X0 17 18 0 1510 1066 3 MP XPP X18 0 0 17 1510 1066 3 MP XPP X0 18 18 0 1510 1083 3 MP XPP X18 0 0 18 1510 1083 3 MP XPP X0 18 18 0 1510 1101 3 MP XPP X18 0 0 18 1510 1101 3 MP XPP X0.238095 sg X0 18 18 0 1510 1119 3 MP XPP X18 0 0 18 1510 1119 3 MP XPP X0 18 18 0 1510 1137 3 MP XPP X18 0 0 18 1510 1137 3 MP XPP X0 18 18 0 1510 1155 3 MP XPP X18 0 0 18 1510 1155 3 MP XPP X0 17 18 0 1510 1173 3 MP XPP X18 0 0 17 1510 1173 3 MP XPP X0 18 18 0 1510 1190 3 MP XPP X18 0 0 18 1510 1190 3 MP XPP X0 18 18 0 1510 1208 3 MP XPP X18 0 0 18 1510 1208 3 MP XPP X0 18 18 0 1510 1226 3 MP XPP X18 0 0 18 1510 1226 3 MP XPP X0 18 18 0 1510 1244 3 MP XPP X18 0 0 18 1510 1244 3 MP XPP X0 17 18 0 1510 1262 3 MP XPP X18 0 0 17 1510 1262 3 MP XPP X0 18 18 0 1510 1279 3 MP XPP X18 0 0 18 1510 1279 3 MP XPP X0 18 18 0 1510 1297 3 MP XPP X18 0 0 18 1510 1297 3 MP XPP X0 18 18 0 1510 1315 3 MP XPP X18 0 0 18 1510 1315 3 MP XPP X0 18 18 0 1510 1333 3 MP XPP X18 0 0 18 1510 1333 3 MP XPP X0 18 18 0 1510 1351 3 MP XPP X18 0 0 18 1510 1351 3 MP XPP X0 17 18 0 1510 1369 3 MP XPP X18 0 0 17 1510 1369 3 MP XPP X0 18 18 0 1510 1386 3 MP XPP X18 0 0 18 1510 1386 3 MP XPP X0 18 18 0 1510 1404 3 MP XPP X18 0 0 18 1510 1404 3 MP XPP X0 18 18 0 1510 1422 3 MP XPP X18 0 0 18 1510 1422 3 MP XPP X0 18 18 0 1510 1440 3 MP XPP X18 0 0 18 1510 1440 3 MP XPP X0 18 18 0 1510 1458 3 MP XPP X18 0 0 18 1510 1458 3 MP XPP X0 17 18 0 1510 1476 3 MP XPP X18 0 0 17 1510 1476 3 MP XPP X1 sg X0 18 18 0 1510 1493 3 MP XPP X18 0 0 18 1510 1493 3 MP XPP X0 18 18 0 1510 1511 3 MP XPP X18 0 0 18 1510 1511 3 MP XPP X0 18 18 0 1510 1529 3 MP XPP X18 0 0 18 1510 1529 3 MP XPP X0 18 18 0 1510 1547 3 MP XPP X18 0 0 18 1510 1547 3 MP XPP X0 18 18 0 1510 1565 3 MP XPP X18 0 0 18 1510 1565 3 MP XPP X0 17 18 0 1510 1583 3 MP XPP X18 0 0 17 1510 1583 3 MP XPP X0 18 18 0 1510 1600 3 MP XPP X18 0 0 18 1510 1600 3 MP XPP X0 18 18 0 1510 1618 3 MP XPP X18 0 0 18 1510 1618 3 MP XPP X0 18 18 0 1510 1636 3 MP XPP X18 0 0 18 1510 1636 3 MP XPP X0 18 18 0 1510 1654 3 MP XPP X18 0 0 18 1510 1654 3 MP XPP X0 18 18 0 1510 1672 3 MP XPP X18 0 0 18 1510 1672 3 MP XPP X0 17 18 0 1510 1690 3 MP XPP X18 0 0 17 1510 1690 3 MP XPP X0 18 18 0 1510 1707 3 MP XPP X18 0 0 18 1510 1707 3 MP XPP X0 18 18 0 1510 1725 3 MP XPP X18 0 0 18 1510 1725 3 MP XPP X0 18 18 0 1510 1743 3 MP XPP X18 0 0 18 1510 1743 3 MP XPP X0 18 18 0 1510 1761 3 MP XPP X18 0 0 18 1510 1761 3 MP XPP X0 18 18 0 1510 1779 3 MP XPP X18 0 0 18 1510 1779 3 MP XPP X0 17 18 0 1510 1797 3 MP XPP X18 0 0 17 1510 1797 3 MP XPP X0 18 18 0 1510 1814 3 MP XPP X18 0 0 18 1510 1814 3 MP XPP X0 18 18 0 1510 1832 3 MP XPP X18 0 0 18 1510 1832 3 MP XPP X0 18 18 0 1510 1850 3 MP XPP X18 0 0 18 1510 1850 3 MP XPP X0 18 18 0 1510 1868 3 MP XPP X18 0 0 18 1510 1868 3 MP XPP X0 18 18 0 1510 1886 3 MP XPP X18 0 0 18 1510 1886 3 MP XPP X0 17 18 0 1510 1904 3 MP XPP X18 0 0 17 1510 1904 3 MP XPP X0 18 18 0 1510 1921 3 MP XPP X18 0 0 18 1510 1921 3 MP XPP X0 18 18 0 1510 1939 3 MP XPP X18 0 0 18 1510 1939 3 MP XPP X0 18 18 0 1510 1957 3 MP XPP X18 0 0 18 1510 1957 3 MP XPP X0 18 18 0 1510 1975 3 MP XPP X18 0 0 18 1510 1975 3 MP XPP X0 18 18 0 1510 1993 3 MP XPP X18 0 0 18 1510 1993 3 MP XPP X0 17 18 0 1510 2011 3 MP XPP X18 0 0 17 1510 2011 3 MP XPP X0 18 18 0 1510 2028 3 MP XPP X18 0 0 18 1510 2028 3 MP XPP X0 18 18 0 1510 2046 3 MP XPP X18 0 0 18 1510 2046 3 MP XPP X0 18 18 0 1510 2064 3 MP XPP X18 0 0 18 1510 2064 3 MP XPP X0 18 18 0 1510 2082 3 MP XPP X18 0 0 18 1510 2082 3 MP XPP X0 18 18 0 1510 2100 3 MP XPP X18 0 0 18 1510 2100 3 MP XPP X0 17 18 0 1510 2118 3 MP XPP X18 0 0 17 1510 2118 3 MP XPP X0 18 18 0 1510 2135 3 MP XPP X18 0 0 18 1510 2135 3 MP XPP X0 18 18 0 1510 2153 3 MP XPP X18 0 0 18 1510 2153 3 MP XPP X0 18 18 0 1528 388 3 MP XPP X18 0 0 18 1528 388 3 MP XPP X0 18 18 0 1528 406 3 MP XPP X18 0 0 18 1528 406 3 MP XPP X0 17 18 0 1528 424 3 MP XPP X18 0 0 17 1528 424 3 MP XPP X0 18 18 0 1528 441 3 MP XPP X18 0 0 18 1528 441 3 MP XPP X0 18 18 0 1528 459 3 MP XPP X18 0 0 18 1528 459 3 MP XPP X0 18 18 0 1528 477 3 MP XPP X18 0 0 18 1528 477 3 MP XPP X0 18 18 0 1528 495 3 MP XPP X18 0 0 18 1528 495 3 MP XPP X0 18 18 0 1528 513 3 MP XPP X18 0 0 18 1528 513 3 MP XPP X0 17 18 0 1528 531 3 MP XPP X18 0 0 17 1528 531 3 MP XPP X0 18 18 0 1528 548 3 MP XPP X18 0 0 18 1528 548 3 MP XPP X0 18 18 0 1528 566 3 MP XPP X18 0 0 18 1528 566 3 MP XPP X0 18 18 0 1528 584 3 MP XPP X18 0 0 18 1528 584 3 MP XPP X0 18 18 0 1528 602 3 MP XPP X18 0 0 18 1528 602 3 MP XPP X0 18 18 0 1528 620 3 MP XPP X18 0 0 18 1528 620 3 MP XPP X0 17 18 0 1528 638 3 MP XPP X18 0 0 17 1528 638 3 MP XPP X0 18 18 0 1528 655 3 MP XPP X18 0 0 18 1528 655 3 MP XPP X0 18 18 0 1528 673 3 MP XPP X18 0 0 18 1528 673 3 MP XPP X0 18 18 0 1528 691 3 MP XPP X18 0 0 18 1528 691 3 MP XPP X0 18 18 0 1528 709 3 MP XPP X18 0 0 18 1528 709 3 MP XPP X0 18 18 0 1528 727 3 MP XPP X18 0 0 18 1528 727 3 MP XPP X0 17 18 0 1528 745 3 MP XPP X18 0 0 17 1528 745 3 MP XPP X0 18 18 0 1528 762 3 MP XPP X18 0 0 18 1528 762 3 MP XPP X0 18 18 0 1528 780 3 MP XPP X18 0 0 18 1528 780 3 MP XPP X0 18 18 0 1528 798 3 MP XPP X18 0 0 18 1528 798 3 MP XPP X0 18 18 0 1528 816 3 MP XPP X18 0 0 18 1528 816 3 MP XPP X0 18 18 0 1528 834 3 MP XPP X18 0 0 18 1528 834 3 MP XPP X0 17 18 0 1528 852 3 MP XPP X18 0 0 17 1528 852 3 MP XPP X0 18 18 0 1528 869 3 MP XPP X18 0 0 18 1528 869 3 MP XPP X0 18 18 0 1528 887 3 MP XPP X18 0 0 18 1528 887 3 MP XPP X0 18 18 0 1528 905 3 MP XPP X18 0 0 18 1528 905 3 MP XPP X0 18 18 0 1528 923 3 MP XPP X18 0 0 18 1528 923 3 MP XPP X0 18 18 0 1528 941 3 MP XPP X18 0 0 18 1528 941 3 MP XPP X0 17 18 0 1528 959 3 MP XPP X18 0 0 17 1528 959 3 MP XPP X0 18 18 0 1528 976 3 MP XPP X18 0 0 18 1528 976 3 MP XPP X0 18 18 0 1528 994 3 MP XPP X18 0 0 18 1528 994 3 MP XPP X0 18 18 0 1528 1012 3 MP XPP X18 0 0 18 1528 1012 3 MP XPP X0 18 18 0 1528 1030 3 MP XPP X18 0 0 18 1528 1030 3 MP XPP X0 18 18 0 1528 1048 3 MP XPP X18 0 0 18 1528 1048 3 MP XPP X0 17 18 0 1528 1066 3 MP XPP X18 0 0 17 1528 1066 3 MP XPP X0 18 18 0 1528 1083 3 MP XPP X18 0 0 18 1528 1083 3 MP XPP X0 18 18 0 1528 1101 3 MP XPP X18 0 0 18 1528 1101 3 MP XPP X0.238095 sg X0 18 18 0 1528 1119 3 MP XPP X18 0 0 18 1528 1119 3 MP XPP X0 18 18 0 1528 1137 3 MP XPP X18 0 0 18 1528 1137 3 MP XPP X0 18 18 0 1528 1155 3 MP XPP X18 0 0 18 1528 1155 3 MP XPP X0 17 18 0 1528 1173 3 MP XPP X18 0 0 17 1528 1173 3 MP XPP X0 18 18 0 1528 1190 3 MP XPP X18 0 0 18 1528 1190 3 MP XPP X0 18 18 0 1528 1208 3 MP XPP X18 0 0 18 1528 1208 3 MP XPP X0 18 18 0 1528 1226 3 MP XPP X18 0 0 18 1528 1226 3 MP XPP X0 18 18 0 1528 1244 3 MP XPP X18 0 0 18 1528 1244 3 MP XPP X0 17 18 0 1528 1262 3 MP XPP X18 0 0 17 1528 1262 3 MP XPP X0 18 18 0 1528 1279 3 MP XPP X18 0 0 18 1528 1279 3 MP XPP X0 18 18 0 1528 1297 3 MP XPP X18 0 0 18 1528 1297 3 MP XPP X0 18 18 0 1528 1315 3 MP XPP X18 0 0 18 1528 1315 3 MP XPP X0 18 18 0 1528 1333 3 MP XPP X18 0 0 18 1528 1333 3 MP XPP X0 18 18 0 1528 1351 3 MP XPP X18 0 0 18 1528 1351 3 MP XPP X0 17 18 0 1528 1369 3 MP XPP X18 0 0 17 1528 1369 3 MP XPP X0 18 18 0 1528 1386 3 MP XPP X18 0 0 18 1528 1386 3 MP XPP X0 18 18 0 1528 1404 3 MP XPP X18 0 0 18 1528 1404 3 MP XPP X0 18 18 0 1528 1422 3 MP XPP X18 0 0 18 1528 1422 3 MP XPP X0 18 18 0 1528 1440 3 MP XPP X18 0 0 18 1528 1440 3 MP XPP X0 18 18 0 1528 1458 3 MP XPP X18 0 0 18 1528 1458 3 MP XPP X0 17 18 0 1528 1476 3 MP XPP X18 0 0 17 1528 1476 3 MP XPP X0 18 18 0 1528 1493 3 MP XPP X18 0 0 18 1528 1493 3 MP XPP X1 sg X0 18 18 0 1528 1511 3 MP XPP X18 0 0 18 1528 1511 3 MP XPP X0 18 18 0 1528 1529 3 MP XPP X18 0 0 18 1528 1529 3 MP XPP X0 18 18 0 1528 1547 3 MP XPP X18 0 0 18 1528 1547 3 MP XPP X0 18 18 0 1528 1565 3 MP XPP X18 0 0 18 1528 1565 3 MP XPP X0 17 18 0 1528 1583 3 MP XPP X18 0 0 17 1528 1583 3 MP XPP X0 18 18 0 1528 1600 3 MP XPP X18 0 0 18 1528 1600 3 MP XPP X0 18 18 0 1528 1618 3 MP XPP X18 0 0 18 1528 1618 3 MP XPP X0 18 18 0 1528 1636 3 MP XPP X18 0 0 18 1528 1636 3 MP XPP X0 18 18 0 1528 1654 3 MP XPP X18 0 0 18 1528 1654 3 MP XPP X0 18 18 0 1528 1672 3 MP XPP X18 0 0 18 1528 1672 3 MP XPP X0 17 18 0 1528 1690 3 MP XPP X18 0 0 17 1528 1690 3 MP XPP X0 18 18 0 1528 1707 3 MP XPP X18 0 0 18 1528 1707 3 MP XPP X0 18 18 0 1528 1725 3 MP XPP X18 0 0 18 1528 1725 3 MP XPP X0 18 18 0 1528 1743 3 MP XPP X18 0 0 18 1528 1743 3 MP XPP X0 18 18 0 1528 1761 3 MP XPP X18 0 0 18 1528 1761 3 MP XPP X0 18 18 0 1528 1779 3 MP XPP X18 0 0 18 1528 1779 3 MP XPP X0 17 18 0 1528 1797 3 MP XPP X18 0 0 17 1528 1797 3 MP XPP X0 18 18 0 1528 1814 3 MP XPP X18 0 0 18 1528 1814 3 MP XPP X0 18 18 0 1528 1832 3 MP XPP X18 0 0 18 1528 1832 3 MP XPP X0 18 18 0 1528 1850 3 MP XPP X18 0 0 18 1528 1850 3 MP XPP X0 18 18 0 1528 1868 3 MP XPP X18 0 0 18 1528 1868 3 MP XPP X0 18 18 0 1528 1886 3 MP XPP X18 0 0 18 1528 1886 3 MP XPP X0 17 18 0 1528 1904 3 MP XPP X18 0 0 17 1528 1904 3 MP XPP X0 18 18 0 1528 1921 3 MP XPP X18 0 0 18 1528 1921 3 MP XPP X0 18 18 0 1528 1939 3 MP XPP X18 0 0 18 1528 1939 3 MP XPP X0 18 18 0 1528 1957 3 MP XPP X18 0 0 18 1528 1957 3 MP XPP X0 18 18 0 1528 1975 3 MP XPP X18 0 0 18 1528 1975 3 MP XPP X0 18 18 0 1528 1993 3 MP XPP X18 0 0 18 1528 1993 3 MP XPP X0 17 18 0 1528 2011 3 MP XPP X18 0 0 17 1528 2011 3 MP XPP X0 18 18 0 1528 2028 3 MP XPP X18 0 0 18 1528 2028 3 MP XPP X0 18 18 0 1528 2046 3 MP XPP X18 0 0 18 1528 2046 3 MP XPP X0 18 18 0 1528 2064 3 MP XPP X18 0 0 18 1528 2064 3 MP XPP X0 18 18 0 1528 2082 3 MP XPP X18 0 0 18 1528 2082 3 MP XPP X0 18 18 0 1528 2100 3 MP XPP X18 0 0 18 1528 2100 3 MP XPP X0 17 18 0 1528 2118 3 MP XPP X18 0 0 17 1528 2118 3 MP XPP X0 18 18 0 1528 2135 3 MP XPP X18 0 0 18 1528 2135 3 MP XPP X0 18 18 0 1528 2153 3 MP XPP X18 0 0 18 1528 2153 3 MP XPP X0 18 18 0 1546 388 3 MP XPP X18 0 0 18 1546 388 3 MP XPP X0 18 18 0 1546 406 3 MP XPP X18 0 0 18 1546 406 3 MP XPP X0 17 18 0 1546 424 3 MP XPP X18 0 0 17 1546 424 3 MP XPP X0 18 18 0 1546 441 3 MP XPP X18 0 0 18 1546 441 3 MP XPP X0 18 18 0 1546 459 3 MP XPP X18 0 0 18 1546 459 3 MP XPP X0 18 18 0 1546 477 3 MP XPP X18 0 0 18 1546 477 3 MP XPP X0 18 18 0 1546 495 3 MP XPP X18 0 0 18 1546 495 3 MP XPP X0 18 18 0 1546 513 3 MP XPP X18 0 0 18 1546 513 3 MP XPP X0 17 18 0 1546 531 3 MP XPP X18 0 0 17 1546 531 3 MP XPP X0 18 18 0 1546 548 3 MP XPP X18 0 0 18 1546 548 3 MP XPP X0 18 18 0 1546 566 3 MP XPP X18 0 0 18 1546 566 3 MP XPP X0 18 18 0 1546 584 3 MP XPP X18 0 0 18 1546 584 3 MP XPP X0 18 18 0 1546 602 3 MP XPP X18 0 0 18 1546 602 3 MP XPP X0 18 18 0 1546 620 3 MP XPP X18 0 0 18 1546 620 3 MP XPP X0 17 18 0 1546 638 3 MP XPP X18 0 0 17 1546 638 3 MP XPP X0 18 18 0 1546 655 3 MP XPP X18 0 0 18 1546 655 3 MP XPP X0 18 18 0 1546 673 3 MP XPP X18 0 0 18 1546 673 3 MP XPP X0 18 18 0 1546 691 3 MP XPP X18 0 0 18 1546 691 3 MP XPP X0 18 18 0 1546 709 3 MP XPP X18 0 0 18 1546 709 3 MP XPP X0 18 18 0 1546 727 3 MP XPP X18 0 0 18 1546 727 3 MP XPP X0 17 18 0 1546 745 3 MP XPP X18 0 0 17 1546 745 3 MP XPP X0 18 18 0 1546 762 3 MP XPP X18 0 0 18 1546 762 3 MP XPP X0 18 18 0 1546 780 3 MP XPP X18 0 0 18 1546 780 3 MP XPP X0 18 18 0 1546 798 3 MP XPP X18 0 0 18 1546 798 3 MP XPP X0 18 18 0 1546 816 3 MP XPP X18 0 0 18 1546 816 3 MP XPP X0 18 18 0 1546 834 3 MP XPP X18 0 0 18 1546 834 3 MP XPP X0 17 18 0 1546 852 3 MP XPP X18 0 0 17 1546 852 3 MP XPP X0 18 18 0 1546 869 3 MP XPP X18 0 0 18 1546 869 3 MP XPP X0 18 18 0 1546 887 3 MP XPP X18 0 0 18 1546 887 3 MP XPP X0 18 18 0 1546 905 3 MP XPP X18 0 0 18 1546 905 3 MP XPP X0 18 18 0 1546 923 3 MP XPP X18 0 0 18 1546 923 3 MP XPP X0 18 18 0 1546 941 3 MP XPP X18 0 0 18 1546 941 3 MP XPP X0 17 18 0 1546 959 3 MP XPP X18 0 0 17 1546 959 3 MP XPP X0 18 18 0 1546 976 3 MP XPP X18 0 0 18 1546 976 3 MP XPP X0 18 18 0 1546 994 3 MP XPP X18 0 0 18 1546 994 3 MP XPP X0 18 18 0 1546 1012 3 MP XPP X18 0 0 18 1546 1012 3 MP XPP X0 18 18 0 1546 1030 3 MP XPP X18 0 0 18 1546 1030 3 MP XPP X0 18 18 0 1546 1048 3 MP XPP X18 0 0 18 1546 1048 3 MP XPP X0 17 18 0 1546 1066 3 MP XPP X18 0 0 17 1546 1066 3 MP XPP X0 18 18 0 1546 1083 3 MP XPP X18 0 0 18 1546 1083 3 MP XPP X0 18 18 0 1546 1101 3 MP XPP X18 0 0 18 1546 1101 3 MP XPP X0.238095 sg X0 18 18 0 1546 1119 3 MP XPP X18 0 0 18 1546 1119 3 MP XPP X0 18 18 0 1546 1137 3 MP XPP X18 0 0 18 1546 1137 3 MP XPP X0 18 18 0 1546 1155 3 MP XPP X18 0 0 18 1546 1155 3 MP XPP X0 17 18 0 1546 1173 3 MP XPP X18 0 0 17 1546 1173 3 MP XPP X0 18 18 0 1546 1190 3 MP XPP X18 0 0 18 1546 1190 3 MP XPP X0 18 18 0 1546 1208 3 MP XPP X18 0 0 18 1546 1208 3 MP XPP X0 18 18 0 1546 1226 3 MP XPP X18 0 0 18 1546 1226 3 MP XPP X0 18 18 0 1546 1244 3 MP XPP X18 0 0 18 1546 1244 3 MP XPP X0 17 18 0 1546 1262 3 MP XPP X18 0 0 17 1546 1262 3 MP XPP X0 18 18 0 1546 1279 3 MP XPP X18 0 0 18 1546 1279 3 MP XPP X0 18 18 0 1546 1297 3 MP XPP X18 0 0 18 1546 1297 3 MP XPP X0 18 18 0 1546 1315 3 MP XPP X18 0 0 18 1546 1315 3 MP XPP X0 18 18 0 1546 1333 3 MP XPP X18 0 0 18 1546 1333 3 MP XPP X0 18 18 0 1546 1351 3 MP XPP X18 0 0 18 1546 1351 3 MP XPP X0 17 18 0 1546 1369 3 MP XPP X18 0 0 17 1546 1369 3 MP XPP X0 18 18 0 1546 1386 3 MP XPP X18 0 0 18 1546 1386 3 MP XPP X0 18 18 0 1546 1404 3 MP XPP X18 0 0 18 1546 1404 3 MP XPP X0 18 18 0 1546 1422 3 MP XPP X18 0 0 18 1546 1422 3 MP XPP X0 18 18 0 1546 1440 3 MP XPP X18 0 0 18 1546 1440 3 MP XPP X0 18 18 0 1546 1458 3 MP XPP X18 0 0 18 1546 1458 3 MP XPP X0 17 18 0 1546 1476 3 MP XPP X18 0 0 17 1546 1476 3 MP XPP X0 18 18 0 1546 1493 3 MP XPP X18 0 0 18 1546 1493 3 MP XPP X0 18 18 0 1546 1511 3 MP XPP X18 0 0 18 1546 1511 3 MP XPP X1 sg X0 18 18 0 1546 1529 3 MP XPP X18 0 0 18 1546 1529 3 MP XPP X0 18 18 0 1546 1547 3 MP XPP X18 0 0 18 1546 1547 3 MP XPP X0 18 18 0 1546 1565 3 MP XPP X18 0 0 18 1546 1565 3 MP XPP X0 17 18 0 1546 1583 3 MP XPP X18 0 0 17 1546 1583 3 MP XPP X0 18 18 0 1546 1600 3 MP XPP X18 0 0 18 1546 1600 3 MP XPP X0 18 18 0 1546 1618 3 MP XPP X18 0 0 18 1546 1618 3 MP XPP X0 18 18 0 1546 1636 3 MP XPP X18 0 0 18 1546 1636 3 MP XPP X0 18 18 0 1546 1654 3 MP XPP X18 0 0 18 1546 1654 3 MP XPP X0 18 18 0 1546 1672 3 MP XPP X18 0 0 18 1546 1672 3 MP XPP X0 17 18 0 1546 1690 3 MP XPP X18 0 0 17 1546 1690 3 MP XPP X0 18 18 0 1546 1707 3 MP XPP X18 0 0 18 1546 1707 3 MP XPP X0 18 18 0 1546 1725 3 MP XPP X18 0 0 18 1546 1725 3 MP XPP X0 18 18 0 1546 1743 3 MP XPP X18 0 0 18 1546 1743 3 MP XPP X0 18 18 0 1546 1761 3 MP XPP X18 0 0 18 1546 1761 3 MP XPP X0 18 18 0 1546 1779 3 MP XPP X18 0 0 18 1546 1779 3 MP XPP X0 17 18 0 1546 1797 3 MP XPP X18 0 0 17 1546 1797 3 MP XPP X0 18 18 0 1546 1814 3 MP XPP X18 0 0 18 1546 1814 3 MP XPP X0 18 18 0 1546 1832 3 MP XPP X18 0 0 18 1546 1832 3 MP XPP X0 18 18 0 1546 1850 3 MP XPP X18 0 0 18 1546 1850 3 MP XPP X0 18 18 0 1546 1868 3 MP XPP X18 0 0 18 1546 1868 3 MP XPP X0 18 18 0 1546 1886 3 MP XPP X18 0 0 18 1546 1886 3 MP XPP X0 17 18 0 1546 1904 3 MP XPP X18 0 0 17 1546 1904 3 MP XPP X0 18 18 0 1546 1921 3 MP XPP X18 0 0 18 1546 1921 3 MP XPP X0 18 18 0 1546 1939 3 MP XPP X18 0 0 18 1546 1939 3 MP XPP X0 18 18 0 1546 1957 3 MP XPP X18 0 0 18 1546 1957 3 MP XPP X0 18 18 0 1546 1975 3 MP XPP X18 0 0 18 1546 1975 3 MP XPP X0 18 18 0 1546 1993 3 MP XPP X18 0 0 18 1546 1993 3 MP XPP X0 17 18 0 1546 2011 3 MP XPP X18 0 0 17 1546 2011 3 MP XPP X0 18 18 0 1546 2028 3 MP XPP X18 0 0 18 1546 2028 3 MP XPP X0 18 18 0 1546 2046 3 MP XPP X18 0 0 18 1546 2046 3 MP XPP X0 18 18 0 1546 2064 3 MP XPP X18 0 0 18 1546 2064 3 MP XPP X0 18 18 0 1546 2082 3 MP XPP X18 0 0 18 1546 2082 3 MP XPP X0 18 18 0 1546 2100 3 MP XPP X18 0 0 18 1546 2100 3 MP XPP X0 17 18 0 1546 2118 3 MP XPP X18 0 0 17 1546 2118 3 MP XPP X0 18 18 0 1546 2135 3 MP XPP X18 0 0 18 1546 2135 3 MP XPP X0 18 18 0 1546 2153 3 MP XPP X18 0 0 18 1546 2153 3 MP XPP X0 18 18 0 1564 388 3 MP XPP X18 0 0 18 1564 388 3 MP XPP X0 18 18 0 1564 406 3 MP XPP X18 0 0 18 1564 406 3 MP XPP X0 17 18 0 1564 424 3 MP XPP X18 0 0 17 1564 424 3 MP XPP X0 18 18 0 1564 441 3 MP XPP X18 0 0 18 1564 441 3 MP XPP X0 18 18 0 1564 459 3 MP XPP X18 0 0 18 1564 459 3 MP XPP X0 18 18 0 1564 477 3 MP XPP X18 0 0 18 1564 477 3 MP XPP X0 18 18 0 1564 495 3 MP XPP X18 0 0 18 1564 495 3 MP XPP X0 18 18 0 1564 513 3 MP XPP X18 0 0 18 1564 513 3 MP XPP X0 17 18 0 1564 531 3 MP XPP X18 0 0 17 1564 531 3 MP XPP X0 18 18 0 1564 548 3 MP XPP X18 0 0 18 1564 548 3 MP XPP X0 18 18 0 1564 566 3 MP XPP X18 0 0 18 1564 566 3 MP XPP X0 18 18 0 1564 584 3 MP XPP X18 0 0 18 1564 584 3 MP XPP X0 18 18 0 1564 602 3 MP XPP X18 0 0 18 1564 602 3 MP XPP X0 18 18 0 1564 620 3 MP XPP X18 0 0 18 1564 620 3 MP XPP X0 17 18 0 1564 638 3 MP XPP X18 0 0 17 1564 638 3 MP XPP X0 18 18 0 1564 655 3 MP XPP X18 0 0 18 1564 655 3 MP XPP X0 18 18 0 1564 673 3 MP XPP X18 0 0 18 1564 673 3 MP XPP X0 18 18 0 1564 691 3 MP XPP X18 0 0 18 1564 691 3 MP XPP X0 18 18 0 1564 709 3 MP XPP X18 0 0 18 1564 709 3 MP XPP X0 18 18 0 1564 727 3 MP XPP X18 0 0 18 1564 727 3 MP XPP X0 17 18 0 1564 745 3 MP XPP X18 0 0 17 1564 745 3 MP XPP X0 18 18 0 1564 762 3 MP XPP X18 0 0 18 1564 762 3 MP XPP X0 18 18 0 1564 780 3 MP XPP X18 0 0 18 1564 780 3 MP XPP X0 18 18 0 1564 798 3 MP XPP X18 0 0 18 1564 798 3 MP XPP X0 18 18 0 1564 816 3 MP XPP X18 0 0 18 1564 816 3 MP XPP X0 18 18 0 1564 834 3 MP XPP X18 0 0 18 1564 834 3 MP XPP X0 17 18 0 1564 852 3 MP XPP X18 0 0 17 1564 852 3 MP XPP X0 18 18 0 1564 869 3 MP XPP X18 0 0 18 1564 869 3 MP XPP X0 18 18 0 1564 887 3 MP XPP X18 0 0 18 1564 887 3 MP XPP X0 18 18 0 1564 905 3 MP XPP X18 0 0 18 1564 905 3 MP XPP X0 18 18 0 1564 923 3 MP XPP X18 0 0 18 1564 923 3 MP XPP X0 18 18 0 1564 941 3 MP XPP X18 0 0 18 1564 941 3 MP XPP X0 17 18 0 1564 959 3 MP XPP X18 0 0 17 1564 959 3 MP XPP X0 18 18 0 1564 976 3 MP XPP X18 0 0 18 1564 976 3 MP XPP X0 18 18 0 1564 994 3 MP XPP X18 0 0 18 1564 994 3 MP XPP X0 18 18 0 1564 1012 3 MP XPP X18 0 0 18 1564 1012 3 MP XPP X0 18 18 0 1564 1030 3 MP XPP X18 0 0 18 1564 1030 3 MP XPP X0 18 18 0 1564 1048 3 MP XPP X18 0 0 18 1564 1048 3 MP XPP X0 17 18 0 1564 1066 3 MP XPP X18 0 0 17 1564 1066 3 MP XPP X0 18 18 0 1564 1083 3 MP XPP X18 0 0 18 1564 1083 3 MP XPP X0 18 18 0 1564 1101 3 MP XPP X18 0 0 18 1564 1101 3 MP XPP X0.238095 sg X0 18 18 0 1564 1119 3 MP XPP X18 0 0 18 1564 1119 3 MP XPP X0 18 18 0 1564 1137 3 MP XPP X18 0 0 18 1564 1137 3 MP XPP X0 18 18 0 1564 1155 3 MP XPP X18 0 0 18 1564 1155 3 MP XPP X0 17 18 0 1564 1173 3 MP XPP X18 0 0 17 1564 1173 3 MP XPP X0 18 18 0 1564 1190 3 MP XPP X18 0 0 18 1564 1190 3 MP XPP X0 18 18 0 1564 1208 3 MP XPP X18 0 0 18 1564 1208 3 MP XPP X0 18 18 0 1564 1226 3 MP XPP X18 0 0 18 1564 1226 3 MP XPP X0 18 18 0 1564 1244 3 MP XPP X18 0 0 18 1564 1244 3 MP XPP X0 17 18 0 1564 1262 3 MP XPP X18 0 0 17 1564 1262 3 MP XPP X0 18 18 0 1564 1279 3 MP XPP X18 0 0 18 1564 1279 3 MP XPP X0 18 18 0 1564 1297 3 MP XPP X18 0 0 18 1564 1297 3 MP XPP X0 18 18 0 1564 1315 3 MP XPP X18 0 0 18 1564 1315 3 MP XPP X0 18 18 0 1564 1333 3 MP XPP X18 0 0 18 1564 1333 3 MP XPP X0 18 18 0 1564 1351 3 MP XPP X18 0 0 18 1564 1351 3 MP XPP X0 17 18 0 1564 1369 3 MP XPP X18 0 0 17 1564 1369 3 MP XPP X0 18 18 0 1564 1386 3 MP XPP X18 0 0 18 1564 1386 3 MP XPP X0 18 18 0 1564 1404 3 MP XPP X18 0 0 18 1564 1404 3 MP XPP X0 18 18 0 1564 1422 3 MP XPP X18 0 0 18 1564 1422 3 MP XPP X0 18 18 0 1564 1440 3 MP XPP X18 0 0 18 1564 1440 3 MP XPP X0 18 18 0 1564 1458 3 MP XPP X18 0 0 18 1564 1458 3 MP XPP X0 17 18 0 1564 1476 3 MP XPP X18 0 0 17 1564 1476 3 MP XPP X0 18 18 0 1564 1493 3 MP XPP X18 0 0 18 1564 1493 3 MP XPP X0 18 18 0 1564 1511 3 MP XPP X18 0 0 18 1564 1511 3 MP XPP X0 18 18 0 1564 1529 3 MP XPP X18 0 0 18 1564 1529 3 MP XPP X1 sg X0 18 18 0 1564 1547 3 MP XPP X18 0 0 18 1564 1547 3 MP XPP X0 18 18 0 1564 1565 3 MP XPP X18 0 0 18 1564 1565 3 MP XPP X0 17 18 0 1564 1583 3 MP XPP X18 0 0 17 1564 1583 3 MP XPP X0 18 18 0 1564 1600 3 MP XPP X18 0 0 18 1564 1600 3 MP XPP X0 18 18 0 1564 1618 3 MP XPP X18 0 0 18 1564 1618 3 MP XPP X0 18 18 0 1564 1636 3 MP XPP X18 0 0 18 1564 1636 3 MP XPP X0 18 18 0 1564 1654 3 MP XPP X18 0 0 18 1564 1654 3 MP XPP X0 18 18 0 1564 1672 3 MP XPP X18 0 0 18 1564 1672 3 MP XPP X0 17 18 0 1564 1690 3 MP XPP X18 0 0 17 1564 1690 3 MP XPP X0 18 18 0 1564 1707 3 MP XPP X18 0 0 18 1564 1707 3 MP XPP X0 18 18 0 1564 1725 3 MP XPP X18 0 0 18 1564 1725 3 MP XPP X0 18 18 0 1564 1743 3 MP XPP X18 0 0 18 1564 1743 3 MP XPP X0 18 18 0 1564 1761 3 MP XPP X18 0 0 18 1564 1761 3 MP XPP X0 18 18 0 1564 1779 3 MP XPP X18 0 0 18 1564 1779 3 MP XPP X0 17 18 0 1564 1797 3 MP XPP X18 0 0 17 1564 1797 3 MP XPP X0 18 18 0 1564 1814 3 MP XPP X18 0 0 18 1564 1814 3 MP XPP X0 18 18 0 1564 1832 3 MP XPP X18 0 0 18 1564 1832 3 MP XPP X0 18 18 0 1564 1850 3 MP XPP X18 0 0 18 1564 1850 3 MP XPP X0 18 18 0 1564 1868 3 MP XPP X18 0 0 18 1564 1868 3 MP XPP X0 18 18 0 1564 1886 3 MP XPP X18 0 0 18 1564 1886 3 MP XPP X0 17 18 0 1564 1904 3 MP XPP X18 0 0 17 1564 1904 3 MP XPP X0 18 18 0 1564 1921 3 MP XPP X18 0 0 18 1564 1921 3 MP XPP X0 18 18 0 1564 1939 3 MP XPP X18 0 0 18 1564 1939 3 MP XPP X0 18 18 0 1564 1957 3 MP XPP X18 0 0 18 1564 1957 3 MP XPP X0 18 18 0 1564 1975 3 MP XPP X18 0 0 18 1564 1975 3 MP XPP X0 18 18 0 1564 1993 3 MP XPP X18 0 0 18 1564 1993 3 MP XPP X0 17 18 0 1564 2011 3 MP XPP X18 0 0 17 1564 2011 3 MP XPP X0 18 18 0 1564 2028 3 MP XPP X18 0 0 18 1564 2028 3 MP XPP X0 18 18 0 1564 2046 3 MP XPP X18 0 0 18 1564 2046 3 MP XPP X0 18 18 0 1564 2064 3 MP XPP X18 0 0 18 1564 2064 3 MP XPP X0 18 18 0 1564 2082 3 MP XPP X18 0 0 18 1564 2082 3 MP XPP X0 18 18 0 1564 2100 3 MP XPP X18 0 0 18 1564 2100 3 MP XPP X0 17 18 0 1564 2118 3 MP XPP X18 0 0 17 1564 2118 3 MP XPP X0 18 18 0 1564 2135 3 MP XPP X18 0 0 18 1564 2135 3 MP XPP X0 18 18 0 1564 2153 3 MP XPP X18 0 0 18 1564 2153 3 MP XPP X0 18 18 0 1582 388 3 MP XPP X18 0 0 18 1582 388 3 MP XPP X0 18 18 0 1582 406 3 MP XPP X18 0 0 18 1582 406 3 MP XPP X0 17 18 0 1582 424 3 MP XPP X18 0 0 17 1582 424 3 MP XPP X0 18 18 0 1582 441 3 MP XPP X18 0 0 18 1582 441 3 MP XPP X0 18 18 0 1582 459 3 MP XPP X18 0 0 18 1582 459 3 MP XPP X0 18 18 0 1582 477 3 MP XPP X18 0 0 18 1582 477 3 MP XPP X0 18 18 0 1582 495 3 MP XPP X18 0 0 18 1582 495 3 MP XPP X0 18 18 0 1582 513 3 MP XPP X18 0 0 18 1582 513 3 MP XPP X0 17 18 0 1582 531 3 MP XPP X18 0 0 17 1582 531 3 MP XPP X0 18 18 0 1582 548 3 MP XPP X18 0 0 18 1582 548 3 MP XPP X0 18 18 0 1582 566 3 MP XPP X18 0 0 18 1582 566 3 MP XPP X0 18 18 0 1582 584 3 MP XPP X18 0 0 18 1582 584 3 MP XPP X0 18 18 0 1582 602 3 MP XPP X18 0 0 18 1582 602 3 MP XPP X0 18 18 0 1582 620 3 MP XPP X18 0 0 18 1582 620 3 MP XPP X0 17 18 0 1582 638 3 MP XPP X18 0 0 17 1582 638 3 MP XPP X0 18 18 0 1582 655 3 MP XPP X18 0 0 18 1582 655 3 MP XPP X0 18 18 0 1582 673 3 MP XPP X18 0 0 18 1582 673 3 MP XPP X0 18 18 0 1582 691 3 MP XPP X18 0 0 18 1582 691 3 MP XPP X0 18 18 0 1582 709 3 MP XPP X18 0 0 18 1582 709 3 MP XPP X0 18 18 0 1582 727 3 MP XPP X18 0 0 18 1582 727 3 MP XPP X0 17 18 0 1582 745 3 MP XPP X18 0 0 17 1582 745 3 MP XPP X0 18 18 0 1582 762 3 MP XPP X18 0 0 18 1582 762 3 MP XPP X0 18 18 0 1582 780 3 MP XPP X18 0 0 18 1582 780 3 MP XPP X0 18 18 0 1582 798 3 MP XPP X18 0 0 18 1582 798 3 MP XPP X0 18 18 0 1582 816 3 MP XPP X18 0 0 18 1582 816 3 MP XPP X0 18 18 0 1582 834 3 MP XPP X18 0 0 18 1582 834 3 MP XPP X0 17 18 0 1582 852 3 MP XPP X18 0 0 17 1582 852 3 MP XPP X0 18 18 0 1582 869 3 MP XPP X18 0 0 18 1582 869 3 MP XPP X0 18 18 0 1582 887 3 MP XPP X18 0 0 18 1582 887 3 MP XPP X0 18 18 0 1582 905 3 MP XPP X18 0 0 18 1582 905 3 MP XPP X0 18 18 0 1582 923 3 MP XPP X18 0 0 18 1582 923 3 MP XPP X0 18 18 0 1582 941 3 MP XPP X18 0 0 18 1582 941 3 MP XPP X0 17 18 0 1582 959 3 MP XPP X18 0 0 17 1582 959 3 MP XPP X0 18 18 0 1582 976 3 MP XPP X18 0 0 18 1582 976 3 MP XPP X0 18 18 0 1582 994 3 MP XPP X18 0 0 18 1582 994 3 MP XPP X0 18 18 0 1582 1012 3 MP XPP X18 0 0 18 1582 1012 3 MP XPP X0 18 18 0 1582 1030 3 MP XPP X18 0 0 18 1582 1030 3 MP XPP X0 18 18 0 1582 1048 3 MP XPP X18 0 0 18 1582 1048 3 MP XPP X0 17 18 0 1582 1066 3 MP XPP X18 0 0 17 1582 1066 3 MP XPP X0 18 18 0 1582 1083 3 MP XPP X18 0 0 18 1582 1083 3 MP XPP X0 18 18 0 1582 1101 3 MP XPP X18 0 0 18 1582 1101 3 MP XPP X0.238095 sg X0 18 18 0 1582 1119 3 MP XPP X18 0 0 18 1582 1119 3 MP XPP X0 18 18 0 1582 1137 3 MP XPP X18 0 0 18 1582 1137 3 MP XPP X0 18 18 0 1582 1155 3 MP XPP X18 0 0 18 1582 1155 3 MP XPP X0 17 18 0 1582 1173 3 MP XPP X18 0 0 17 1582 1173 3 MP XPP X0 18 18 0 1582 1190 3 MP XPP X18 0 0 18 1582 1190 3 MP XPP X0 18 18 0 1582 1208 3 MP XPP X18 0 0 18 1582 1208 3 MP XPP X0 18 18 0 1582 1226 3 MP XPP X18 0 0 18 1582 1226 3 MP XPP X0 18 18 0 1582 1244 3 MP XPP X18 0 0 18 1582 1244 3 MP XPP X0 17 18 0 1582 1262 3 MP XPP X18 0 0 17 1582 1262 3 MP XPP X0 18 18 0 1582 1279 3 MP XPP X18 0 0 18 1582 1279 3 MP XPP X0 18 18 0 1582 1297 3 MP XPP X18 0 0 18 1582 1297 3 MP XPP X0 18 18 0 1582 1315 3 MP XPP X18 0 0 18 1582 1315 3 MP XPP X0 18 18 0 1582 1333 3 MP XPP X18 0 0 18 1582 1333 3 MP XPP X0 18 18 0 1582 1351 3 MP XPP X18 0 0 18 1582 1351 3 MP XPP X0 17 18 0 1582 1369 3 MP XPP X18 0 0 17 1582 1369 3 MP XPP X0 18 18 0 1582 1386 3 MP XPP X18 0 0 18 1582 1386 3 MP XPP X0 18 18 0 1582 1404 3 MP XPP X18 0 0 18 1582 1404 3 MP XPP X0 18 18 0 1582 1422 3 MP XPP X18 0 0 18 1582 1422 3 MP XPP X0 18 18 0 1582 1440 3 MP XPP X18 0 0 18 1582 1440 3 MP XPP X0 18 18 0 1582 1458 3 MP XPP X18 0 0 18 1582 1458 3 MP XPP X0 17 18 0 1582 1476 3 MP XPP X18 0 0 17 1582 1476 3 MP XPP X0 18 18 0 1582 1493 3 MP XPP X18 0 0 18 1582 1493 3 MP XPP X0 18 18 0 1582 1511 3 MP XPP X18 0 0 18 1582 1511 3 MP XPP X0 18 18 0 1582 1529 3 MP XPP X18 0 0 18 1582 1529 3 MP XPP X0 18 18 0 1582 1547 3 MP XPP X18 0 0 18 1582 1547 3 MP XPP X1 sg X0 18 18 0 1582 1565 3 MP XPP X18 0 0 18 1582 1565 3 MP XPP X0 17 18 0 1582 1583 3 MP XPP X18 0 0 17 1582 1583 3 MP XPP X0 18 18 0 1582 1600 3 MP XPP X18 0 0 18 1582 1600 3 MP XPP X0 18 18 0 1582 1618 3 MP XPP X18 0 0 18 1582 1618 3 MP XPP X0 18 18 0 1582 1636 3 MP XPP X18 0 0 18 1582 1636 3 MP XPP X0 18 18 0 1582 1654 3 MP XPP X18 0 0 18 1582 1654 3 MP XPP X0 18 18 0 1582 1672 3 MP XPP X18 0 0 18 1582 1672 3 MP XPP X0 17 18 0 1582 1690 3 MP XPP X18 0 0 17 1582 1690 3 MP XPP X0 18 18 0 1582 1707 3 MP XPP X18 0 0 18 1582 1707 3 MP XPP X0 18 18 0 1582 1725 3 MP XPP X18 0 0 18 1582 1725 3 MP XPP X0 18 18 0 1582 1743 3 MP XPP X18 0 0 18 1582 1743 3 MP XPP X0 18 18 0 1582 1761 3 MP XPP X18 0 0 18 1582 1761 3 MP XPP X0 18 18 0 1582 1779 3 MP XPP X18 0 0 18 1582 1779 3 MP XPP X0 17 18 0 1582 1797 3 MP XPP X18 0 0 17 1582 1797 3 MP XPP X0 18 18 0 1582 1814 3 MP XPP X18 0 0 18 1582 1814 3 MP XPP X0 18 18 0 1582 1832 3 MP XPP X18 0 0 18 1582 1832 3 MP XPP X0 18 18 0 1582 1850 3 MP XPP X18 0 0 18 1582 1850 3 MP XPP X0 18 18 0 1582 1868 3 MP XPP X18 0 0 18 1582 1868 3 MP XPP X0 18 18 0 1582 1886 3 MP XPP X18 0 0 18 1582 1886 3 MP XPP X0 17 18 0 1582 1904 3 MP XPP X18 0 0 17 1582 1904 3 MP XPP X0 18 18 0 1582 1921 3 MP XPP X18 0 0 18 1582 1921 3 MP XPP X0 18 18 0 1582 1939 3 MP XPP X18 0 0 18 1582 1939 3 MP XPP X0 18 18 0 1582 1957 3 MP XPP X18 0 0 18 1582 1957 3 MP XPP X0 18 18 0 1582 1975 3 MP XPP X18 0 0 18 1582 1975 3 MP XPP X0 18 18 0 1582 1993 3 MP XPP X18 0 0 18 1582 1993 3 MP XPP X0 17 18 0 1582 2011 3 MP XPP X18 0 0 17 1582 2011 3 MP XPP X0 18 18 0 1582 2028 3 MP XPP X18 0 0 18 1582 2028 3 MP XPP X0 18 18 0 1582 2046 3 MP XPP X18 0 0 18 1582 2046 3 MP XPP X0 18 18 0 1582 2064 3 MP XPP X18 0 0 18 1582 2064 3 MP XPP X0 18 18 0 1582 2082 3 MP XPP X18 0 0 18 1582 2082 3 MP XPP X0 18 18 0 1582 2100 3 MP XPP X18 0 0 18 1582 2100 3 MP XPP X0 17 18 0 1582 2118 3 MP XPP X18 0 0 17 1582 2118 3 MP XPP X0 18 18 0 1582 2135 3 MP XPP X18 0 0 18 1582 2135 3 MP XPP X0 18 18 0 1582 2153 3 MP XPP X18 0 0 18 1582 2153 3 MP XPP X0 18 17 0 1600 388 3 MP XPP X17 0 0 18 1600 388 3 MP XPP X0 18 17 0 1600 406 3 MP XPP X17 0 0 18 1600 406 3 MP XPP X0 17 17 0 1600 424 3 MP XPP X17 0 0 17 1600 424 3 MP XPP X0 18 17 0 1600 441 3 MP XPP X17 0 0 18 1600 441 3 MP XPP X0 18 17 0 1600 459 3 MP XPP X17 0 0 18 1600 459 3 MP XPP X0 18 17 0 1600 477 3 MP XPP X17 0 0 18 1600 477 3 MP XPP X0 18 17 0 1600 495 3 MP XPP X17 0 0 18 1600 495 3 MP XPP X0 18 17 0 1600 513 3 MP XPP X17 0 0 18 1600 513 3 MP XPP X0 17 17 0 1600 531 3 MP XPP X17 0 0 17 1600 531 3 MP XPP X0 18 17 0 1600 548 3 MP XPP X17 0 0 18 1600 548 3 MP XPP X0 18 17 0 1600 566 3 MP XPP X17 0 0 18 1600 566 3 MP XPP X0 18 17 0 1600 584 3 MP XPP X17 0 0 18 1600 584 3 MP XPP X0 18 17 0 1600 602 3 MP XPP X17 0 0 18 1600 602 3 MP XPP X0 18 17 0 1600 620 3 MP XPP X17 0 0 18 1600 620 3 MP XPP X0 17 17 0 1600 638 3 MP XPP X17 0 0 17 1600 638 3 MP XPP X0 18 17 0 1600 655 3 MP XPP X17 0 0 18 1600 655 3 MP XPP X0 18 17 0 1600 673 3 MP XPP X17 0 0 18 1600 673 3 MP XPP X0 18 17 0 1600 691 3 MP XPP X17 0 0 18 1600 691 3 MP XPP X0 18 17 0 1600 709 3 MP XPP X17 0 0 18 1600 709 3 MP XPP X0 18 17 0 1600 727 3 MP XPP X17 0 0 18 1600 727 3 MP XPP X0 17 17 0 1600 745 3 MP XPP X17 0 0 17 1600 745 3 MP XPP X0 18 17 0 1600 762 3 MP XPP X17 0 0 18 1600 762 3 MP XPP X0 18 17 0 1600 780 3 MP XPP X17 0 0 18 1600 780 3 MP XPP X0 18 17 0 1600 798 3 MP XPP X17 0 0 18 1600 798 3 MP XPP X0 18 17 0 1600 816 3 MP XPP X17 0 0 18 1600 816 3 MP XPP X0 18 17 0 1600 834 3 MP XPP X17 0 0 18 1600 834 3 MP XPP X0 17 17 0 1600 852 3 MP XPP X17 0 0 17 1600 852 3 MP XPP X0 18 17 0 1600 869 3 MP XPP X17 0 0 18 1600 869 3 MP XPP X0 18 17 0 1600 887 3 MP XPP X17 0 0 18 1600 887 3 MP XPP X0 18 17 0 1600 905 3 MP XPP X17 0 0 18 1600 905 3 MP XPP X0 18 17 0 1600 923 3 MP XPP X17 0 0 18 1600 923 3 MP XPP X0 18 17 0 1600 941 3 MP XPP X17 0 0 18 1600 941 3 MP XPP X0 17 17 0 1600 959 3 MP XPP X17 0 0 17 1600 959 3 MP XPP X0 18 17 0 1600 976 3 MP XPP X17 0 0 18 1600 976 3 MP XPP X0 18 17 0 1600 994 3 MP XPP X17 0 0 18 1600 994 3 MP XPP X0 18 17 0 1600 1012 3 MP XPP X17 0 0 18 1600 1012 3 MP XPP X0 18 17 0 1600 1030 3 MP XPP X17 0 0 18 1600 1030 3 MP XPP X0 18 17 0 1600 1048 3 MP XPP X17 0 0 18 1600 1048 3 MP XPP X0 17 17 0 1600 1066 3 MP XPP X17 0 0 17 1600 1066 3 MP XPP X0 18 17 0 1600 1083 3 MP XPP X17 0 0 18 1600 1083 3 MP XPP X0 18 17 0 1600 1101 3 MP XPP X17 0 0 18 1600 1101 3 MP XPP X0.238095 sg X0 18 17 0 1600 1119 3 MP XPP X17 0 0 18 1600 1119 3 MP XPP X0 18 17 0 1600 1137 3 MP XPP X17 0 0 18 1600 1137 3 MP XPP X0 18 17 0 1600 1155 3 MP XPP X17 0 0 18 1600 1155 3 MP XPP X0 17 17 0 1600 1173 3 MP XPP X17 0 0 17 1600 1173 3 MP XPP X0 18 17 0 1600 1190 3 MP XPP X17 0 0 18 1600 1190 3 MP XPP X0 18 17 0 1600 1208 3 MP XPP X17 0 0 18 1600 1208 3 MP XPP X0 18 17 0 1600 1226 3 MP XPP X17 0 0 18 1600 1226 3 MP XPP X0 18 17 0 1600 1244 3 MP XPP X17 0 0 18 1600 1244 3 MP XPP X0 17 17 0 1600 1262 3 MP XPP X17 0 0 17 1600 1262 3 MP XPP X0 18 17 0 1600 1279 3 MP XPP X17 0 0 18 1600 1279 3 MP XPP X0 18 17 0 1600 1297 3 MP XPP X17 0 0 18 1600 1297 3 MP XPP X0 18 17 0 1600 1315 3 MP XPP X17 0 0 18 1600 1315 3 MP XPP X0 18 17 0 1600 1333 3 MP XPP X17 0 0 18 1600 1333 3 MP XPP X0 18 17 0 1600 1351 3 MP XPP X17 0 0 18 1600 1351 3 MP XPP X0 17 17 0 1600 1369 3 MP XPP X17 0 0 17 1600 1369 3 MP XPP X0 18 17 0 1600 1386 3 MP XPP X17 0 0 18 1600 1386 3 MP XPP X0 18 17 0 1600 1404 3 MP XPP X17 0 0 18 1600 1404 3 MP XPP X0 18 17 0 1600 1422 3 MP XPP X17 0 0 18 1600 1422 3 MP XPP X0 18 17 0 1600 1440 3 MP XPP X17 0 0 18 1600 1440 3 MP XPP X0 18 17 0 1600 1458 3 MP XPP X17 0 0 18 1600 1458 3 MP XPP X0 17 17 0 1600 1476 3 MP XPP X17 0 0 17 1600 1476 3 MP XPP X0 18 17 0 1600 1493 3 MP XPP X17 0 0 18 1600 1493 3 MP XPP X0 18 17 0 1600 1511 3 MP XPP X17 0 0 18 1600 1511 3 MP XPP X0 18 17 0 1600 1529 3 MP XPP X17 0 0 18 1600 1529 3 MP XPP X0 18 17 0 1600 1547 3 MP XPP X17 0 0 18 1600 1547 3 MP XPP X0 18 17 0 1600 1565 3 MP XPP X17 0 0 18 1600 1565 3 MP XPP X1 sg X0 17 17 0 1600 1583 3 MP XPP X17 0 0 17 1600 1583 3 MP XPP X0 18 17 0 1600 1600 3 MP XPP X17 0 0 18 1600 1600 3 MP XPP X0 18 17 0 1600 1618 3 MP XPP X17 0 0 18 1600 1618 3 MP XPP X0 18 17 0 1600 1636 3 MP XPP X17 0 0 18 1600 1636 3 MP XPP X0 18 17 0 1600 1654 3 MP XPP X17 0 0 18 1600 1654 3 MP XPP X0 18 17 0 1600 1672 3 MP XPP X17 0 0 18 1600 1672 3 MP XPP X0 17 17 0 1600 1690 3 MP XPP X17 0 0 17 1600 1690 3 MP XPP X0 18 17 0 1600 1707 3 MP XPP X17 0 0 18 1600 1707 3 MP XPP X0 18 17 0 1600 1725 3 MP XPP X17 0 0 18 1600 1725 3 MP XPP X0 18 17 0 1600 1743 3 MP XPP X17 0 0 18 1600 1743 3 MP XPP X0 18 17 0 1600 1761 3 MP XPP X17 0 0 18 1600 1761 3 MP XPP X0 18 17 0 1600 1779 3 MP XPP X17 0 0 18 1600 1779 3 MP XPP X0 17 17 0 1600 1797 3 MP XPP X17 0 0 17 1600 1797 3 MP XPP X0 18 17 0 1600 1814 3 MP XPP X17 0 0 18 1600 1814 3 MP XPP X0 18 17 0 1600 1832 3 MP XPP X17 0 0 18 1600 1832 3 MP XPP X0 18 17 0 1600 1850 3 MP XPP X17 0 0 18 1600 1850 3 MP XPP X0 18 17 0 1600 1868 3 MP XPP X17 0 0 18 1600 1868 3 MP XPP X0 18 17 0 1600 1886 3 MP XPP X17 0 0 18 1600 1886 3 MP XPP X0 17 17 0 1600 1904 3 MP XPP X17 0 0 17 1600 1904 3 MP XPP X0 18 17 0 1600 1921 3 MP XPP X17 0 0 18 1600 1921 3 MP XPP X0 18 17 0 1600 1939 3 MP XPP X17 0 0 18 1600 1939 3 MP XPP X0 18 17 0 1600 1957 3 MP XPP X17 0 0 18 1600 1957 3 MP XPP X0 18 17 0 1600 1975 3 MP XPP X17 0 0 18 1600 1975 3 MP XPP X0 18 17 0 1600 1993 3 MP XPP X17 0 0 18 1600 1993 3 MP XPP X0 17 17 0 1600 2011 3 MP XPP X17 0 0 17 1600 2011 3 MP XPP X0 18 17 0 1600 2028 3 MP XPP X17 0 0 18 1600 2028 3 MP XPP X0 18 17 0 1600 2046 3 MP XPP X17 0 0 18 1600 2046 3 MP XPP X0 18 17 0 1600 2064 3 MP XPP X17 0 0 18 1600 2064 3 MP XPP X0 18 17 0 1600 2082 3 MP XPP X17 0 0 18 1600 2082 3 MP XPP X0 18 17 0 1600 2100 3 MP XPP X17 0 0 18 1600 2100 3 MP XPP X0 17 17 0 1600 2118 3 MP XPP X17 0 0 17 1600 2118 3 MP XPP X0 18 17 0 1600 2135 3 MP XPP X17 0 0 18 1600 2135 3 MP XPP X0 18 17 0 1600 2153 3 MP XPP X17 0 0 18 1600 2153 3 MP XPP X0 18 18 0 1617 388 3 MP XPP X18 0 0 18 1617 388 3 MP XPP X0 18 18 0 1617 406 3 MP XPP X18 0 0 18 1617 406 3 MP XPP X0 17 18 0 1617 424 3 MP XPP X18 0 0 17 1617 424 3 MP XPP X0 18 18 0 1617 441 3 MP XPP X18 0 0 18 1617 441 3 MP XPP X0 18 18 0 1617 459 3 MP XPP X18 0 0 18 1617 459 3 MP XPP X0 18 18 0 1617 477 3 MP XPP X18 0 0 18 1617 477 3 MP XPP X0 18 18 0 1617 495 3 MP XPP X18 0 0 18 1617 495 3 MP XPP X0 18 18 0 1617 513 3 MP XPP X18 0 0 18 1617 513 3 MP XPP X0 17 18 0 1617 531 3 MP XPP X18 0 0 17 1617 531 3 MP XPP X0 18 18 0 1617 548 3 MP XPP X18 0 0 18 1617 548 3 MP XPP X0 18 18 0 1617 566 3 MP XPP X18 0 0 18 1617 566 3 MP XPP X0 18 18 0 1617 584 3 MP XPP X18 0 0 18 1617 584 3 MP XPP X0 18 18 0 1617 602 3 MP XPP X18 0 0 18 1617 602 3 MP XPP X0 18 18 0 1617 620 3 MP XPP X18 0 0 18 1617 620 3 MP XPP X0 17 18 0 1617 638 3 MP XPP X18 0 0 17 1617 638 3 MP XPP X0 18 18 0 1617 655 3 MP XPP X18 0 0 18 1617 655 3 MP XPP X0 18 18 0 1617 673 3 MP XPP X18 0 0 18 1617 673 3 MP XPP X0 18 18 0 1617 691 3 MP XPP X18 0 0 18 1617 691 3 MP XPP X0 18 18 0 1617 709 3 MP XPP X18 0 0 18 1617 709 3 MP XPP X0 18 18 0 1617 727 3 MP XPP X18 0 0 18 1617 727 3 MP XPP X0 17 18 0 1617 745 3 MP XPP X18 0 0 17 1617 745 3 MP XPP X0 18 18 0 1617 762 3 MP XPP X18 0 0 18 1617 762 3 MP XPP X0 18 18 0 1617 780 3 MP XPP X18 0 0 18 1617 780 3 MP XPP X0 18 18 0 1617 798 3 MP XPP X18 0 0 18 1617 798 3 MP XPP X0 18 18 0 1617 816 3 MP XPP X18 0 0 18 1617 816 3 MP XPP X0 18 18 0 1617 834 3 MP XPP X18 0 0 18 1617 834 3 MP XPP X0 17 18 0 1617 852 3 MP XPP X18 0 0 17 1617 852 3 MP XPP X0 18 18 0 1617 869 3 MP XPP X18 0 0 18 1617 869 3 MP XPP X0 18 18 0 1617 887 3 MP XPP X18 0 0 18 1617 887 3 MP XPP X0 18 18 0 1617 905 3 MP XPP X18 0 0 18 1617 905 3 MP XPP X0 18 18 0 1617 923 3 MP XPP X18 0 0 18 1617 923 3 MP XPP X0 18 18 0 1617 941 3 MP XPP X18 0 0 18 1617 941 3 MP XPP X0 17 18 0 1617 959 3 MP XPP X18 0 0 17 1617 959 3 MP XPP X0 18 18 0 1617 976 3 MP XPP X18 0 0 18 1617 976 3 MP XPP X0 18 18 0 1617 994 3 MP XPP X18 0 0 18 1617 994 3 MP XPP X0 18 18 0 1617 1012 3 MP XPP X18 0 0 18 1617 1012 3 MP XPP X0 18 18 0 1617 1030 3 MP XPP X18 0 0 18 1617 1030 3 MP XPP X0 18 18 0 1617 1048 3 MP XPP X18 0 0 18 1617 1048 3 MP XPP X0 17 18 0 1617 1066 3 MP XPP X18 0 0 17 1617 1066 3 MP XPP X0 18 18 0 1617 1083 3 MP XPP X18 0 0 18 1617 1083 3 MP XPP X0 18 18 0 1617 1101 3 MP XPP X18 0 0 18 1617 1101 3 MP XPP X0.238095 sg X0 18 18 0 1617 1119 3 MP XPP X18 0 0 18 1617 1119 3 MP XPP X0 18 18 0 1617 1137 3 MP XPP X18 0 0 18 1617 1137 3 MP XPP X0 18 18 0 1617 1155 3 MP XPP X18 0 0 18 1617 1155 3 MP XPP X0 17 18 0 1617 1173 3 MP XPP X18 0 0 17 1617 1173 3 MP XPP X0 18 18 0 1617 1190 3 MP XPP X18 0 0 18 1617 1190 3 MP XPP X0 18 18 0 1617 1208 3 MP XPP X18 0 0 18 1617 1208 3 MP XPP X0 18 18 0 1617 1226 3 MP XPP X18 0 0 18 1617 1226 3 MP XPP X0 18 18 0 1617 1244 3 MP XPP X18 0 0 18 1617 1244 3 MP XPP X0 17 18 0 1617 1262 3 MP XPP X18 0 0 17 1617 1262 3 MP XPP X0 18 18 0 1617 1279 3 MP XPP X18 0 0 18 1617 1279 3 MP XPP X0 18 18 0 1617 1297 3 MP XPP X18 0 0 18 1617 1297 3 MP XPP X0 18 18 0 1617 1315 3 MP XPP X18 0 0 18 1617 1315 3 MP XPP X0 18 18 0 1617 1333 3 MP XPP X18 0 0 18 1617 1333 3 MP XPP X0 18 18 0 1617 1351 3 MP XPP X18 0 0 18 1617 1351 3 MP XPP X0 17 18 0 1617 1369 3 MP XPP X18 0 0 17 1617 1369 3 MP XPP X0 18 18 0 1617 1386 3 MP XPP X18 0 0 18 1617 1386 3 MP XPP X0 18 18 0 1617 1404 3 MP XPP X18 0 0 18 1617 1404 3 MP XPP X0 18 18 0 1617 1422 3 MP XPP X18 0 0 18 1617 1422 3 MP XPP X0 18 18 0 1617 1440 3 MP XPP X18 0 0 18 1617 1440 3 MP XPP X0 18 18 0 1617 1458 3 MP XPP X18 0 0 18 1617 1458 3 MP XPP X0 17 18 0 1617 1476 3 MP XPP X18 0 0 17 1617 1476 3 MP XPP X0 18 18 0 1617 1493 3 MP XPP X18 0 0 18 1617 1493 3 MP XPP X0 18 18 0 1617 1511 3 MP XPP X18 0 0 18 1617 1511 3 MP XPP X0 18 18 0 1617 1529 3 MP XPP X18 0 0 18 1617 1529 3 MP XPP X0 18 18 0 1617 1547 3 MP XPP X18 0 0 18 1617 1547 3 MP XPP X0 18 18 0 1617 1565 3 MP XPP X18 0 0 18 1617 1565 3 MP XPP X0 17 18 0 1617 1583 3 MP XPP X18 0 0 17 1617 1583 3 MP XPP X1 sg X0 18 18 0 1617 1600 3 MP XPP X18 0 0 18 1617 1600 3 MP XPP X0 18 18 0 1617 1618 3 MP XPP X18 0 0 18 1617 1618 3 MP XPP X0 18 18 0 1617 1636 3 MP XPP X18 0 0 18 1617 1636 3 MP XPP X0 18 18 0 1617 1654 3 MP XPP X18 0 0 18 1617 1654 3 MP XPP X0 18 18 0 1617 1672 3 MP XPP X18 0 0 18 1617 1672 3 MP XPP X0 17 18 0 1617 1690 3 MP XPP X18 0 0 17 1617 1690 3 MP XPP X0 18 18 0 1617 1707 3 MP XPP X18 0 0 18 1617 1707 3 MP XPP X0 18 18 0 1617 1725 3 MP XPP X18 0 0 18 1617 1725 3 MP XPP X0 18 18 0 1617 1743 3 MP XPP X18 0 0 18 1617 1743 3 MP XPP X0 18 18 0 1617 1761 3 MP XPP X18 0 0 18 1617 1761 3 MP XPP X0 18 18 0 1617 1779 3 MP XPP X18 0 0 18 1617 1779 3 MP XPP X0 17 18 0 1617 1797 3 MP XPP X18 0 0 17 1617 1797 3 MP XPP X0 18 18 0 1617 1814 3 MP XPP X18 0 0 18 1617 1814 3 MP XPP X0 18 18 0 1617 1832 3 MP XPP X18 0 0 18 1617 1832 3 MP XPP X0 18 18 0 1617 1850 3 MP XPP X18 0 0 18 1617 1850 3 MP XPP X0 18 18 0 1617 1868 3 MP XPP X18 0 0 18 1617 1868 3 MP XPP X0 18 18 0 1617 1886 3 MP XPP X18 0 0 18 1617 1886 3 MP XPP X0 17 18 0 1617 1904 3 MP XPP X18 0 0 17 1617 1904 3 MP XPP X0 18 18 0 1617 1921 3 MP XPP X18 0 0 18 1617 1921 3 MP XPP X0 18 18 0 1617 1939 3 MP XPP X18 0 0 18 1617 1939 3 MP XPP X0 18 18 0 1617 1957 3 MP XPP X18 0 0 18 1617 1957 3 MP XPP X0 18 18 0 1617 1975 3 MP XPP X18 0 0 18 1617 1975 3 MP XPP X0 18 18 0 1617 1993 3 MP XPP X18 0 0 18 1617 1993 3 MP XPP X0 17 18 0 1617 2011 3 MP XPP X18 0 0 17 1617 2011 3 MP XPP X0 18 18 0 1617 2028 3 MP XPP X18 0 0 18 1617 2028 3 MP XPP X0 18 18 0 1617 2046 3 MP XPP X18 0 0 18 1617 2046 3 MP XPP X0 18 18 0 1617 2064 3 MP XPP X18 0 0 18 1617 2064 3 MP XPP X0 18 18 0 1617 2082 3 MP XPP X18 0 0 18 1617 2082 3 MP XPP X0 18 18 0 1617 2100 3 MP XPP X18 0 0 18 1617 2100 3 MP XPP X0 17 18 0 1617 2118 3 MP XPP X18 0 0 17 1617 2118 3 MP XPP X0 18 18 0 1617 2135 3 MP XPP X18 0 0 18 1617 2135 3 MP XPP X0 18 18 0 1617 2153 3 MP XPP X18 0 0 18 1617 2153 3 MP XPP X0 18 18 0 1635 388 3 MP XPP X18 0 0 18 1635 388 3 MP XPP X0 18 18 0 1635 406 3 MP XPP X18 0 0 18 1635 406 3 MP XPP X0 17 18 0 1635 424 3 MP XPP X18 0 0 17 1635 424 3 MP XPP X0 18 18 0 1635 441 3 MP XPP X18 0 0 18 1635 441 3 MP XPP X0 18 18 0 1635 459 3 MP XPP X18 0 0 18 1635 459 3 MP XPP X0 18 18 0 1635 477 3 MP XPP X18 0 0 18 1635 477 3 MP XPP X0 18 18 0 1635 495 3 MP XPP X18 0 0 18 1635 495 3 MP XPP X0 18 18 0 1635 513 3 MP XPP X18 0 0 18 1635 513 3 MP XPP X0 17 18 0 1635 531 3 MP XPP X18 0 0 17 1635 531 3 MP XPP X0 18 18 0 1635 548 3 MP XPP X18 0 0 18 1635 548 3 MP XPP X0 18 18 0 1635 566 3 MP XPP X18 0 0 18 1635 566 3 MP XPP X0 18 18 0 1635 584 3 MP XPP X18 0 0 18 1635 584 3 MP XPP X0 18 18 0 1635 602 3 MP XPP X18 0 0 18 1635 602 3 MP XPP X0 18 18 0 1635 620 3 MP XPP X18 0 0 18 1635 620 3 MP XPP X0 17 18 0 1635 638 3 MP XPP X18 0 0 17 1635 638 3 MP XPP X0 18 18 0 1635 655 3 MP XPP X18 0 0 18 1635 655 3 MP XPP X0 18 18 0 1635 673 3 MP XPP X18 0 0 18 1635 673 3 MP XPP X0 18 18 0 1635 691 3 MP XPP X18 0 0 18 1635 691 3 MP XPP X0 18 18 0 1635 709 3 MP XPP X18 0 0 18 1635 709 3 MP XPP X0 18 18 0 1635 727 3 MP XPP X18 0 0 18 1635 727 3 MP XPP X0 17 18 0 1635 745 3 MP XPP X18 0 0 17 1635 745 3 MP XPP X0 18 18 0 1635 762 3 MP XPP X18 0 0 18 1635 762 3 MP XPP X0 18 18 0 1635 780 3 MP XPP X18 0 0 18 1635 780 3 MP XPP X0 18 18 0 1635 798 3 MP XPP X18 0 0 18 1635 798 3 MP XPP X0 18 18 0 1635 816 3 MP XPP X18 0 0 18 1635 816 3 MP XPP X0 18 18 0 1635 834 3 MP XPP X18 0 0 18 1635 834 3 MP XPP X0 17 18 0 1635 852 3 MP XPP X18 0 0 17 1635 852 3 MP XPP X0 18 18 0 1635 869 3 MP XPP X18 0 0 18 1635 869 3 MP XPP X0 18 18 0 1635 887 3 MP XPP X18 0 0 18 1635 887 3 MP XPP X0 18 18 0 1635 905 3 MP XPP X18 0 0 18 1635 905 3 MP XPP X0 18 18 0 1635 923 3 MP XPP X18 0 0 18 1635 923 3 MP XPP X0 18 18 0 1635 941 3 MP XPP X18 0 0 18 1635 941 3 MP XPP X0 17 18 0 1635 959 3 MP XPP X18 0 0 17 1635 959 3 MP XPP X0 18 18 0 1635 976 3 MP XPP X18 0 0 18 1635 976 3 MP XPP X0 18 18 0 1635 994 3 MP XPP X18 0 0 18 1635 994 3 MP XPP X0 18 18 0 1635 1012 3 MP XPP X18 0 0 18 1635 1012 3 MP XPP X0 18 18 0 1635 1030 3 MP XPP X18 0 0 18 1635 1030 3 MP XPP X0 18 18 0 1635 1048 3 MP XPP X18 0 0 18 1635 1048 3 MP XPP X0 17 18 0 1635 1066 3 MP XPP X18 0 0 17 1635 1066 3 MP XPP X0 18 18 0 1635 1083 3 MP XPP X18 0 0 18 1635 1083 3 MP XPP X0 18 18 0 1635 1101 3 MP XPP X18 0 0 18 1635 1101 3 MP XPP X0.238095 sg X0 18 18 0 1635 1119 3 MP XPP X18 0 0 18 1635 1119 3 MP XPP X0 18 18 0 1635 1137 3 MP XPP X18 0 0 18 1635 1137 3 MP XPP X0 18 18 0 1635 1155 3 MP XPP X18 0 0 18 1635 1155 3 MP XPP X0 17 18 0 1635 1173 3 MP XPP X18 0 0 17 1635 1173 3 MP XPP X0 18 18 0 1635 1190 3 MP XPP X18 0 0 18 1635 1190 3 MP XPP X0 18 18 0 1635 1208 3 MP XPP X18 0 0 18 1635 1208 3 MP XPP X0 18 18 0 1635 1226 3 MP XPP X18 0 0 18 1635 1226 3 MP XPP X0 18 18 0 1635 1244 3 MP XPP X18 0 0 18 1635 1244 3 MP XPP X0 17 18 0 1635 1262 3 MP XPP X18 0 0 17 1635 1262 3 MP XPP X0 18 18 0 1635 1279 3 MP XPP X18 0 0 18 1635 1279 3 MP XPP X0 18 18 0 1635 1297 3 MP XPP X18 0 0 18 1635 1297 3 MP XPP X0 18 18 0 1635 1315 3 MP XPP X18 0 0 18 1635 1315 3 MP XPP X0 18 18 0 1635 1333 3 MP XPP X18 0 0 18 1635 1333 3 MP XPP X0 18 18 0 1635 1351 3 MP XPP X18 0 0 18 1635 1351 3 MP XPP X0 17 18 0 1635 1369 3 MP XPP X18 0 0 17 1635 1369 3 MP XPP X0 18 18 0 1635 1386 3 MP XPP X18 0 0 18 1635 1386 3 MP XPP X0 18 18 0 1635 1404 3 MP XPP X18 0 0 18 1635 1404 3 MP XPP X0 18 18 0 1635 1422 3 MP XPP X18 0 0 18 1635 1422 3 MP XPP X0 18 18 0 1635 1440 3 MP XPP X18 0 0 18 1635 1440 3 MP XPP X0 18 18 0 1635 1458 3 MP XPP X18 0 0 18 1635 1458 3 MP XPP X0 17 18 0 1635 1476 3 MP XPP X18 0 0 17 1635 1476 3 MP XPP X0 18 18 0 1635 1493 3 MP XPP X18 0 0 18 1635 1493 3 MP XPP X0 18 18 0 1635 1511 3 MP XPP X18 0 0 18 1635 1511 3 MP XPP X0 18 18 0 1635 1529 3 MP XPP X18 0 0 18 1635 1529 3 MP XPP X0 18 18 0 1635 1547 3 MP XPP X18 0 0 18 1635 1547 3 MP XPP X0 18 18 0 1635 1565 3 MP XPP X18 0 0 18 1635 1565 3 MP XPP X0 17 18 0 1635 1583 3 MP XPP X18 0 0 17 1635 1583 3 MP XPP X0 18 18 0 1635 1600 3 MP XPP X18 0 0 18 1635 1600 3 MP XPP X1 sg X0 18 18 0 1635 1618 3 MP XPP X18 0 0 18 1635 1618 3 MP XPP X0 18 18 0 1635 1636 3 MP XPP X18 0 0 18 1635 1636 3 MP XPP X0 18 18 0 1635 1654 3 MP XPP X18 0 0 18 1635 1654 3 MP XPP X0 18 18 0 1635 1672 3 MP XPP X18 0 0 18 1635 1672 3 MP XPP X0 17 18 0 1635 1690 3 MP XPP X18 0 0 17 1635 1690 3 MP XPP X0 18 18 0 1635 1707 3 MP XPP X18 0 0 18 1635 1707 3 MP XPP X0 18 18 0 1635 1725 3 MP XPP X18 0 0 18 1635 1725 3 MP XPP X0 18 18 0 1635 1743 3 MP XPP X18 0 0 18 1635 1743 3 MP XPP X0 18 18 0 1635 1761 3 MP XPP X18 0 0 18 1635 1761 3 MP XPP X0 18 18 0 1635 1779 3 MP XPP X18 0 0 18 1635 1779 3 MP XPP X0 17 18 0 1635 1797 3 MP XPP X18 0 0 17 1635 1797 3 MP XPP X0 18 18 0 1635 1814 3 MP XPP X18 0 0 18 1635 1814 3 MP XPP X0 18 18 0 1635 1832 3 MP XPP X18 0 0 18 1635 1832 3 MP XPP X0 18 18 0 1635 1850 3 MP XPP X18 0 0 18 1635 1850 3 MP XPP X0 18 18 0 1635 1868 3 MP XPP X18 0 0 18 1635 1868 3 MP XPP X0 18 18 0 1635 1886 3 MP XPP X18 0 0 18 1635 1886 3 MP XPP X0 17 18 0 1635 1904 3 MP XPP X18 0 0 17 1635 1904 3 MP XPP X0 18 18 0 1635 1921 3 MP XPP X18 0 0 18 1635 1921 3 MP XPP X0 18 18 0 1635 1939 3 MP XPP X18 0 0 18 1635 1939 3 MP XPP X0 18 18 0 1635 1957 3 MP XPP X18 0 0 18 1635 1957 3 MP XPP X0 18 18 0 1635 1975 3 MP XPP X18 0 0 18 1635 1975 3 MP XPP X0 18 18 0 1635 1993 3 MP XPP X18 0 0 18 1635 1993 3 MP XPP X0 17 18 0 1635 2011 3 MP XPP X18 0 0 17 1635 2011 3 MP XPP X0 18 18 0 1635 2028 3 MP XPP X18 0 0 18 1635 2028 3 MP XPP X0 18 18 0 1635 2046 3 MP XPP X18 0 0 18 1635 2046 3 MP XPP X0 18 18 0 1635 2064 3 MP XPP X18 0 0 18 1635 2064 3 MP XPP X0 18 18 0 1635 2082 3 MP XPP X18 0 0 18 1635 2082 3 MP XPP X0 18 18 0 1635 2100 3 MP XPP X18 0 0 18 1635 2100 3 MP XPP X0 17 18 0 1635 2118 3 MP XPP X18 0 0 17 1635 2118 3 MP XPP X0 18 18 0 1635 2135 3 MP XPP X18 0 0 18 1635 2135 3 MP XPP X0 18 18 0 1635 2153 3 MP XPP X18 0 0 18 1635 2153 3 MP XPP X0 18 18 0 1653 388 3 MP XPP X18 0 0 18 1653 388 3 MP XPP X0 18 18 0 1653 406 3 MP XPP X18 0 0 18 1653 406 3 MP XPP X0 17 18 0 1653 424 3 MP XPP X18 0 0 17 1653 424 3 MP XPP X0 18 18 0 1653 441 3 MP XPP X18 0 0 18 1653 441 3 MP XPP X0 18 18 0 1653 459 3 MP XPP X18 0 0 18 1653 459 3 MP XPP X0 18 18 0 1653 477 3 MP XPP X18 0 0 18 1653 477 3 MP XPP X0 18 18 0 1653 495 3 MP XPP X18 0 0 18 1653 495 3 MP XPP X0 18 18 0 1653 513 3 MP XPP X18 0 0 18 1653 513 3 MP XPP X0 17 18 0 1653 531 3 MP XPP X18 0 0 17 1653 531 3 MP XPP X0 18 18 0 1653 548 3 MP XPP X18 0 0 18 1653 548 3 MP XPP X0 18 18 0 1653 566 3 MP XPP X18 0 0 18 1653 566 3 MP XPP X0 18 18 0 1653 584 3 MP XPP X18 0 0 18 1653 584 3 MP XPP X0 18 18 0 1653 602 3 MP XPP X18 0 0 18 1653 602 3 MP XPP X0 18 18 0 1653 620 3 MP XPP X18 0 0 18 1653 620 3 MP XPP X0 17 18 0 1653 638 3 MP XPP X18 0 0 17 1653 638 3 MP XPP X0 18 18 0 1653 655 3 MP XPP X18 0 0 18 1653 655 3 MP XPP X0 18 18 0 1653 673 3 MP XPP X18 0 0 18 1653 673 3 MP XPP X0 18 18 0 1653 691 3 MP XPP X18 0 0 18 1653 691 3 MP XPP X0 18 18 0 1653 709 3 MP XPP X18 0 0 18 1653 709 3 MP XPP X0 18 18 0 1653 727 3 MP XPP X18 0 0 18 1653 727 3 MP XPP X0 17 18 0 1653 745 3 MP XPP X18 0 0 17 1653 745 3 MP XPP X0 18 18 0 1653 762 3 MP XPP X18 0 0 18 1653 762 3 MP XPP X0 18 18 0 1653 780 3 MP XPP X18 0 0 18 1653 780 3 MP XPP X0 18 18 0 1653 798 3 MP XPP X18 0 0 18 1653 798 3 MP XPP X0 18 18 0 1653 816 3 MP XPP X18 0 0 18 1653 816 3 MP XPP X0 18 18 0 1653 834 3 MP XPP X18 0 0 18 1653 834 3 MP XPP X0 17 18 0 1653 852 3 MP XPP X18 0 0 17 1653 852 3 MP XPP X0 18 18 0 1653 869 3 MP XPP X18 0 0 18 1653 869 3 MP XPP X0 18 18 0 1653 887 3 MP XPP X18 0 0 18 1653 887 3 MP XPP X0 18 18 0 1653 905 3 MP XPP X18 0 0 18 1653 905 3 MP XPP X0 18 18 0 1653 923 3 MP XPP X18 0 0 18 1653 923 3 MP XPP X0 18 18 0 1653 941 3 MP XPP X18 0 0 18 1653 941 3 MP XPP X0 17 18 0 1653 959 3 MP XPP X18 0 0 17 1653 959 3 MP XPP X0 18 18 0 1653 976 3 MP XPP X18 0 0 18 1653 976 3 MP XPP X0 18 18 0 1653 994 3 MP XPP X18 0 0 18 1653 994 3 MP XPP X0 18 18 0 1653 1012 3 MP XPP X18 0 0 18 1653 1012 3 MP XPP X0 18 18 0 1653 1030 3 MP XPP X18 0 0 18 1653 1030 3 MP XPP X0 18 18 0 1653 1048 3 MP XPP X18 0 0 18 1653 1048 3 MP XPP X0 17 18 0 1653 1066 3 MP XPP X18 0 0 17 1653 1066 3 MP XPP X0 18 18 0 1653 1083 3 MP XPP X18 0 0 18 1653 1083 3 MP XPP X0 18 18 0 1653 1101 3 MP XPP X18 0 0 18 1653 1101 3 MP XPP X0.238095 sg X0 18 18 0 1653 1119 3 MP XPP X18 0 0 18 1653 1119 3 MP XPP X0 18 18 0 1653 1137 3 MP XPP X18 0 0 18 1653 1137 3 MP XPP X0 18 18 0 1653 1155 3 MP XPP X18 0 0 18 1653 1155 3 MP XPP X0 17 18 0 1653 1173 3 MP XPP X18 0 0 17 1653 1173 3 MP XPP X0 18 18 0 1653 1190 3 MP XPP X18 0 0 18 1653 1190 3 MP XPP X0 18 18 0 1653 1208 3 MP XPP X18 0 0 18 1653 1208 3 MP XPP X0 18 18 0 1653 1226 3 MP XPP X18 0 0 18 1653 1226 3 MP XPP X0 18 18 0 1653 1244 3 MP XPP X18 0 0 18 1653 1244 3 MP XPP X0 17 18 0 1653 1262 3 MP XPP X18 0 0 17 1653 1262 3 MP XPP X0 18 18 0 1653 1279 3 MP XPP X18 0 0 18 1653 1279 3 MP XPP X0 18 18 0 1653 1297 3 MP XPP X18 0 0 18 1653 1297 3 MP XPP X0 18 18 0 1653 1315 3 MP XPP X18 0 0 18 1653 1315 3 MP XPP X0 18 18 0 1653 1333 3 MP XPP X18 0 0 18 1653 1333 3 MP XPP X0 18 18 0 1653 1351 3 MP XPP X18 0 0 18 1653 1351 3 MP XPP X0 17 18 0 1653 1369 3 MP XPP X18 0 0 17 1653 1369 3 MP XPP X0 18 18 0 1653 1386 3 MP XPP X18 0 0 18 1653 1386 3 MP XPP X0 18 18 0 1653 1404 3 MP XPP X18 0 0 18 1653 1404 3 MP XPP X0 18 18 0 1653 1422 3 MP XPP X18 0 0 18 1653 1422 3 MP XPP X0 18 18 0 1653 1440 3 MP XPP X18 0 0 18 1653 1440 3 MP XPP X0 18 18 0 1653 1458 3 MP XPP X18 0 0 18 1653 1458 3 MP XPP X0 17 18 0 1653 1476 3 MP XPP X18 0 0 17 1653 1476 3 MP XPP X0 18 18 0 1653 1493 3 MP XPP X18 0 0 18 1653 1493 3 MP XPP X0 18 18 0 1653 1511 3 MP XPP X18 0 0 18 1653 1511 3 MP XPP X0 18 18 0 1653 1529 3 MP XPP X18 0 0 18 1653 1529 3 MP XPP X0 18 18 0 1653 1547 3 MP XPP X18 0 0 18 1653 1547 3 MP XPP X0 18 18 0 1653 1565 3 MP XPP X18 0 0 18 1653 1565 3 MP XPP X0 17 18 0 1653 1583 3 MP XPP X18 0 0 17 1653 1583 3 MP XPP X0 18 18 0 1653 1600 3 MP XPP X18 0 0 18 1653 1600 3 MP XPP X0 18 18 0 1653 1618 3 MP XPP X18 0 0 18 1653 1618 3 MP XPP X1 sg X0 18 18 0 1653 1636 3 MP XPP X18 0 0 18 1653 1636 3 MP XPP X0 18 18 0 1653 1654 3 MP XPP X18 0 0 18 1653 1654 3 MP XPP X0 18 18 0 1653 1672 3 MP XPP X18 0 0 18 1653 1672 3 MP XPP X0 17 18 0 1653 1690 3 MP XPP X18 0 0 17 1653 1690 3 MP XPP X0 18 18 0 1653 1707 3 MP XPP X18 0 0 18 1653 1707 3 MP XPP X0 18 18 0 1653 1725 3 MP XPP X18 0 0 18 1653 1725 3 MP XPP X0 18 18 0 1653 1743 3 MP XPP X18 0 0 18 1653 1743 3 MP XPP X0 18 18 0 1653 1761 3 MP XPP X18 0 0 18 1653 1761 3 MP XPP X0 18 18 0 1653 1779 3 MP XPP X18 0 0 18 1653 1779 3 MP XPP X0 17 18 0 1653 1797 3 MP XPP X18 0 0 17 1653 1797 3 MP XPP X0 18 18 0 1653 1814 3 MP XPP X18 0 0 18 1653 1814 3 MP XPP X0 18 18 0 1653 1832 3 MP XPP X18 0 0 18 1653 1832 3 MP XPP X0 18 18 0 1653 1850 3 MP XPP X18 0 0 18 1653 1850 3 MP XPP X0 18 18 0 1653 1868 3 MP XPP X18 0 0 18 1653 1868 3 MP XPP X0 18 18 0 1653 1886 3 MP XPP X18 0 0 18 1653 1886 3 MP XPP X0 17 18 0 1653 1904 3 MP XPP X18 0 0 17 1653 1904 3 MP XPP X0 18 18 0 1653 1921 3 MP XPP X18 0 0 18 1653 1921 3 MP XPP X0 18 18 0 1653 1939 3 MP XPP X18 0 0 18 1653 1939 3 MP XPP X0 18 18 0 1653 1957 3 MP XPP X18 0 0 18 1653 1957 3 MP XPP X0 18 18 0 1653 1975 3 MP XPP X18 0 0 18 1653 1975 3 MP XPP X0 18 18 0 1653 1993 3 MP XPP X18 0 0 18 1653 1993 3 MP XPP X0 17 18 0 1653 2011 3 MP XPP X18 0 0 17 1653 2011 3 MP XPP X0 18 18 0 1653 2028 3 MP XPP X18 0 0 18 1653 2028 3 MP XPP X0 18 18 0 1653 2046 3 MP XPP X18 0 0 18 1653 2046 3 MP XPP X0 18 18 0 1653 2064 3 MP XPP X18 0 0 18 1653 2064 3 MP XPP X0 18 18 0 1653 2082 3 MP XPP X18 0 0 18 1653 2082 3 MP XPP X0 18 18 0 1653 2100 3 MP XPP X18 0 0 18 1653 2100 3 MP XPP X0 17 18 0 1653 2118 3 MP XPP X18 0 0 17 1653 2118 3 MP XPP X0 18 18 0 1653 2135 3 MP XPP X18 0 0 18 1653 2135 3 MP XPP X0 18 18 0 1653 2153 3 MP XPP X18 0 0 18 1653 2153 3 MP XPP X0 18 18 0 1671 388 3 MP XPP X18 0 0 18 1671 388 3 MP XPP X0 18 18 0 1671 406 3 MP XPP X18 0 0 18 1671 406 3 MP XPP X0 17 18 0 1671 424 3 MP XPP X18 0 0 17 1671 424 3 MP XPP X0 18 18 0 1671 441 3 MP XPP X18 0 0 18 1671 441 3 MP XPP X0 18 18 0 1671 459 3 MP XPP X18 0 0 18 1671 459 3 MP XPP X0 18 18 0 1671 477 3 MP XPP X18 0 0 18 1671 477 3 MP XPP X0 18 18 0 1671 495 3 MP XPP X18 0 0 18 1671 495 3 MP XPP X0 18 18 0 1671 513 3 MP XPP X18 0 0 18 1671 513 3 MP XPP X0 17 18 0 1671 531 3 MP XPP X18 0 0 17 1671 531 3 MP XPP X0 18 18 0 1671 548 3 MP XPP X18 0 0 18 1671 548 3 MP XPP X0 18 18 0 1671 566 3 MP XPP X18 0 0 18 1671 566 3 MP XPP X0 18 18 0 1671 584 3 MP XPP X18 0 0 18 1671 584 3 MP XPP X0 18 18 0 1671 602 3 MP XPP X18 0 0 18 1671 602 3 MP XPP X0 18 18 0 1671 620 3 MP XPP X18 0 0 18 1671 620 3 MP XPP X0 17 18 0 1671 638 3 MP XPP X18 0 0 17 1671 638 3 MP XPP X0 18 18 0 1671 655 3 MP XPP X18 0 0 18 1671 655 3 MP XPP X0 18 18 0 1671 673 3 MP XPP X18 0 0 18 1671 673 3 MP XPP X0 18 18 0 1671 691 3 MP XPP X18 0 0 18 1671 691 3 MP XPP X0 18 18 0 1671 709 3 MP XPP X18 0 0 18 1671 709 3 MP XPP X0 18 18 0 1671 727 3 MP XPP X18 0 0 18 1671 727 3 MP XPP X0 17 18 0 1671 745 3 MP XPP X18 0 0 17 1671 745 3 MP XPP X0 18 18 0 1671 762 3 MP XPP X18 0 0 18 1671 762 3 MP XPP X0 18 18 0 1671 780 3 MP XPP X18 0 0 18 1671 780 3 MP XPP X0 18 18 0 1671 798 3 MP XPP X18 0 0 18 1671 798 3 MP XPP X0 18 18 0 1671 816 3 MP XPP X18 0 0 18 1671 816 3 MP XPP X0 18 18 0 1671 834 3 MP XPP X18 0 0 18 1671 834 3 MP XPP X0 17 18 0 1671 852 3 MP XPP X18 0 0 17 1671 852 3 MP XPP X0 18 18 0 1671 869 3 MP XPP X18 0 0 18 1671 869 3 MP XPP X0 18 18 0 1671 887 3 MP XPP X18 0 0 18 1671 887 3 MP XPP X0 18 18 0 1671 905 3 MP XPP X18 0 0 18 1671 905 3 MP XPP X0 18 18 0 1671 923 3 MP XPP X18 0 0 18 1671 923 3 MP XPP X0 18 18 0 1671 941 3 MP XPP X18 0 0 18 1671 941 3 MP XPP X0 17 18 0 1671 959 3 MP XPP X18 0 0 17 1671 959 3 MP XPP X0 18 18 0 1671 976 3 MP XPP X18 0 0 18 1671 976 3 MP XPP X0 18 18 0 1671 994 3 MP XPP X18 0 0 18 1671 994 3 MP XPP X0 18 18 0 1671 1012 3 MP XPP X18 0 0 18 1671 1012 3 MP XPP X0 18 18 0 1671 1030 3 MP XPP X18 0 0 18 1671 1030 3 MP XPP X0 18 18 0 1671 1048 3 MP XPP X18 0 0 18 1671 1048 3 MP XPP X0 17 18 0 1671 1066 3 MP XPP X18 0 0 17 1671 1066 3 MP XPP X0 18 18 0 1671 1083 3 MP XPP X18 0 0 18 1671 1083 3 MP XPP X0 18 18 0 1671 1101 3 MP XPP X18 0 0 18 1671 1101 3 MP XPP X0.238095 sg X0 18 18 0 1671 1119 3 MP XPP X18 0 0 18 1671 1119 3 MP XPP X0 18 18 0 1671 1137 3 MP XPP X18 0 0 18 1671 1137 3 MP XPP X0 18 18 0 1671 1155 3 MP XPP X18 0 0 18 1671 1155 3 MP XPP X0 17 18 0 1671 1173 3 MP XPP X18 0 0 17 1671 1173 3 MP XPP X0 18 18 0 1671 1190 3 MP XPP X18 0 0 18 1671 1190 3 MP XPP X0 18 18 0 1671 1208 3 MP XPP X18 0 0 18 1671 1208 3 MP XPP X0 18 18 0 1671 1226 3 MP XPP X18 0 0 18 1671 1226 3 MP XPP X0 18 18 0 1671 1244 3 MP XPP X18 0 0 18 1671 1244 3 MP XPP X0 17 18 0 1671 1262 3 MP XPP X18 0 0 17 1671 1262 3 MP XPP X0 18 18 0 1671 1279 3 MP XPP X18 0 0 18 1671 1279 3 MP XPP X0 18 18 0 1671 1297 3 MP XPP X18 0 0 18 1671 1297 3 MP XPP X0 18 18 0 1671 1315 3 MP XPP X18 0 0 18 1671 1315 3 MP XPP X0 18 18 0 1671 1333 3 MP XPP X18 0 0 18 1671 1333 3 MP XPP X0 18 18 0 1671 1351 3 MP XPP X18 0 0 18 1671 1351 3 MP XPP X0 17 18 0 1671 1369 3 MP XPP X18 0 0 17 1671 1369 3 MP XPP X0 18 18 0 1671 1386 3 MP XPP X18 0 0 18 1671 1386 3 MP XPP X0 18 18 0 1671 1404 3 MP XPP X18 0 0 18 1671 1404 3 MP XPP X0 18 18 0 1671 1422 3 MP XPP X18 0 0 18 1671 1422 3 MP XPP X0 18 18 0 1671 1440 3 MP XPP X18 0 0 18 1671 1440 3 MP XPP X0 18 18 0 1671 1458 3 MP XPP X18 0 0 18 1671 1458 3 MP XPP X0 17 18 0 1671 1476 3 MP XPP X18 0 0 17 1671 1476 3 MP XPP X0 18 18 0 1671 1493 3 MP XPP X18 0 0 18 1671 1493 3 MP XPP X0 18 18 0 1671 1511 3 MP XPP X18 0 0 18 1671 1511 3 MP XPP X0 18 18 0 1671 1529 3 MP XPP X18 0 0 18 1671 1529 3 MP XPP X0 18 18 0 1671 1547 3 MP XPP X18 0 0 18 1671 1547 3 MP XPP X0 18 18 0 1671 1565 3 MP XPP X18 0 0 18 1671 1565 3 MP XPP X0 17 18 0 1671 1583 3 MP XPP X18 0 0 17 1671 1583 3 MP XPP X0 18 18 0 1671 1600 3 MP XPP X18 0 0 18 1671 1600 3 MP XPP X0 18 18 0 1671 1618 3 MP XPP X18 0 0 18 1671 1618 3 MP XPP X0 18 18 0 1671 1636 3 MP XPP X18 0 0 18 1671 1636 3 MP XPP X1 sg X0 18 18 0 1671 1654 3 MP XPP X18 0 0 18 1671 1654 3 MP XPP X0 18 18 0 1671 1672 3 MP XPP X18 0 0 18 1671 1672 3 MP XPP X0 17 18 0 1671 1690 3 MP XPP X18 0 0 17 1671 1690 3 MP XPP X0 18 18 0 1671 1707 3 MP XPP X18 0 0 18 1671 1707 3 MP XPP X0 18 18 0 1671 1725 3 MP XPP X18 0 0 18 1671 1725 3 MP XPP X0 18 18 0 1671 1743 3 MP XPP X18 0 0 18 1671 1743 3 MP XPP X0 18 18 0 1671 1761 3 MP XPP X18 0 0 18 1671 1761 3 MP XPP X0 18 18 0 1671 1779 3 MP XPP X18 0 0 18 1671 1779 3 MP XPP X0 17 18 0 1671 1797 3 MP XPP X18 0 0 17 1671 1797 3 MP XPP X0 18 18 0 1671 1814 3 MP XPP X18 0 0 18 1671 1814 3 MP XPP X0 18 18 0 1671 1832 3 MP XPP X18 0 0 18 1671 1832 3 MP XPP X0 18 18 0 1671 1850 3 MP XPP X18 0 0 18 1671 1850 3 MP XPP X0 18 18 0 1671 1868 3 MP XPP X18 0 0 18 1671 1868 3 MP XPP X0 18 18 0 1671 1886 3 MP XPP X18 0 0 18 1671 1886 3 MP XPP X0 17 18 0 1671 1904 3 MP XPP X18 0 0 17 1671 1904 3 MP XPP X0 18 18 0 1671 1921 3 MP XPP X18 0 0 18 1671 1921 3 MP XPP X0 18 18 0 1671 1939 3 MP XPP X18 0 0 18 1671 1939 3 MP XPP X0 18 18 0 1671 1957 3 MP XPP X18 0 0 18 1671 1957 3 MP XPP X0 18 18 0 1671 1975 3 MP XPP X18 0 0 18 1671 1975 3 MP XPP X0 18 18 0 1671 1993 3 MP XPP X18 0 0 18 1671 1993 3 MP XPP X0 17 18 0 1671 2011 3 MP XPP X18 0 0 17 1671 2011 3 MP XPP X0 18 18 0 1671 2028 3 MP XPP X18 0 0 18 1671 2028 3 MP XPP X0 18 18 0 1671 2046 3 MP XPP X18 0 0 18 1671 2046 3 MP XPP X0 18 18 0 1671 2064 3 MP XPP X18 0 0 18 1671 2064 3 MP XPP X0 18 18 0 1671 2082 3 MP XPP X18 0 0 18 1671 2082 3 MP XPP X0 18 18 0 1671 2100 3 MP XPP X18 0 0 18 1671 2100 3 MP XPP X0 17 18 0 1671 2118 3 MP XPP X18 0 0 17 1671 2118 3 MP XPP X0 18 18 0 1671 2135 3 MP XPP X18 0 0 18 1671 2135 3 MP XPP X0 18 18 0 1671 2153 3 MP XPP X18 0 0 18 1671 2153 3 MP XPP X0 18 18 0 1689 388 3 MP XPP X18 0 0 18 1689 388 3 MP XPP X0 18 18 0 1689 406 3 MP XPP X18 0 0 18 1689 406 3 MP XPP X0 17 18 0 1689 424 3 MP XPP X18 0 0 17 1689 424 3 MP XPP X0 18 18 0 1689 441 3 MP XPP X18 0 0 18 1689 441 3 MP XPP X0 18 18 0 1689 459 3 MP XPP X18 0 0 18 1689 459 3 MP XPP X0 18 18 0 1689 477 3 MP XPP X18 0 0 18 1689 477 3 MP XPP X0 18 18 0 1689 495 3 MP XPP X18 0 0 18 1689 495 3 MP XPP X0 18 18 0 1689 513 3 MP XPP X18 0 0 18 1689 513 3 MP XPP X0 17 18 0 1689 531 3 MP XPP X18 0 0 17 1689 531 3 MP XPP X0 18 18 0 1689 548 3 MP XPP X18 0 0 18 1689 548 3 MP XPP X0 18 18 0 1689 566 3 MP XPP X18 0 0 18 1689 566 3 MP XPP X0 18 18 0 1689 584 3 MP XPP X18 0 0 18 1689 584 3 MP XPP X0 18 18 0 1689 602 3 MP XPP X18 0 0 18 1689 602 3 MP XPP X0 18 18 0 1689 620 3 MP XPP X18 0 0 18 1689 620 3 MP XPP X0 17 18 0 1689 638 3 MP XPP X18 0 0 17 1689 638 3 MP XPP X0 18 18 0 1689 655 3 MP XPP X18 0 0 18 1689 655 3 MP XPP X0 18 18 0 1689 673 3 MP XPP X18 0 0 18 1689 673 3 MP XPP X0 18 18 0 1689 691 3 MP XPP X18 0 0 18 1689 691 3 MP XPP X0 18 18 0 1689 709 3 MP XPP X18 0 0 18 1689 709 3 MP XPP X0 18 18 0 1689 727 3 MP XPP X18 0 0 18 1689 727 3 MP XPP X0 17 18 0 1689 745 3 MP XPP X18 0 0 17 1689 745 3 MP XPP X0 18 18 0 1689 762 3 MP XPP X18 0 0 18 1689 762 3 MP XPP X0 18 18 0 1689 780 3 MP XPP X18 0 0 18 1689 780 3 MP XPP X0 18 18 0 1689 798 3 MP XPP X18 0 0 18 1689 798 3 MP XPP X0 18 18 0 1689 816 3 MP XPP X18 0 0 18 1689 816 3 MP XPP X0 18 18 0 1689 834 3 MP XPP X18 0 0 18 1689 834 3 MP XPP X0 17 18 0 1689 852 3 MP XPP X18 0 0 17 1689 852 3 MP XPP X0 18 18 0 1689 869 3 MP XPP X18 0 0 18 1689 869 3 MP XPP X0 18 18 0 1689 887 3 MP XPP X18 0 0 18 1689 887 3 MP XPP X0 18 18 0 1689 905 3 MP XPP X18 0 0 18 1689 905 3 MP XPP X0 18 18 0 1689 923 3 MP XPP X18 0 0 18 1689 923 3 MP XPP X0 18 18 0 1689 941 3 MP XPP X18 0 0 18 1689 941 3 MP XPP X0 17 18 0 1689 959 3 MP XPP X18 0 0 17 1689 959 3 MP XPP X0 18 18 0 1689 976 3 MP XPP X18 0 0 18 1689 976 3 MP XPP X0 18 18 0 1689 994 3 MP XPP X18 0 0 18 1689 994 3 MP XPP X0 18 18 0 1689 1012 3 MP XPP X18 0 0 18 1689 1012 3 MP XPP X0 18 18 0 1689 1030 3 MP XPP X18 0 0 18 1689 1030 3 MP XPP X0 18 18 0 1689 1048 3 MP XPP X18 0 0 18 1689 1048 3 MP XPP X0 17 18 0 1689 1066 3 MP XPP X18 0 0 17 1689 1066 3 MP XPP X0 18 18 0 1689 1083 3 MP XPP X18 0 0 18 1689 1083 3 MP XPP X0 18 18 0 1689 1101 3 MP XPP X18 0 0 18 1689 1101 3 MP XPP X0.238095 sg X0 18 18 0 1689 1119 3 MP XPP X18 0 0 18 1689 1119 3 MP XPP X0 18 18 0 1689 1137 3 MP XPP X18 0 0 18 1689 1137 3 MP XPP X0 18 18 0 1689 1155 3 MP XPP X18 0 0 18 1689 1155 3 MP XPP X0 17 18 0 1689 1173 3 MP XPP X18 0 0 17 1689 1173 3 MP XPP X0 18 18 0 1689 1190 3 MP XPP X18 0 0 18 1689 1190 3 MP XPP X0 18 18 0 1689 1208 3 MP XPP X18 0 0 18 1689 1208 3 MP XPP X0 18 18 0 1689 1226 3 MP XPP X18 0 0 18 1689 1226 3 MP XPP X0 18 18 0 1689 1244 3 MP XPP X18 0 0 18 1689 1244 3 MP XPP X0 17 18 0 1689 1262 3 MP XPP X18 0 0 17 1689 1262 3 MP XPP X0 18 18 0 1689 1279 3 MP XPP X18 0 0 18 1689 1279 3 MP XPP X0 18 18 0 1689 1297 3 MP XPP X18 0 0 18 1689 1297 3 MP XPP X0 18 18 0 1689 1315 3 MP XPP X18 0 0 18 1689 1315 3 MP XPP X0 18 18 0 1689 1333 3 MP XPP X18 0 0 18 1689 1333 3 MP XPP X0 18 18 0 1689 1351 3 MP XPP X18 0 0 18 1689 1351 3 MP XPP X0 17 18 0 1689 1369 3 MP XPP X18 0 0 17 1689 1369 3 MP XPP X0 18 18 0 1689 1386 3 MP XPP X18 0 0 18 1689 1386 3 MP XPP X0 18 18 0 1689 1404 3 MP XPP X18 0 0 18 1689 1404 3 MP XPP X0 18 18 0 1689 1422 3 MP XPP X18 0 0 18 1689 1422 3 MP XPP X0 18 18 0 1689 1440 3 MP XPP X18 0 0 18 1689 1440 3 MP XPP X0 18 18 0 1689 1458 3 MP XPP X18 0 0 18 1689 1458 3 MP XPP X0 17 18 0 1689 1476 3 MP XPP X18 0 0 17 1689 1476 3 MP XPP X0 18 18 0 1689 1493 3 MP XPP X18 0 0 18 1689 1493 3 MP XPP X0 18 18 0 1689 1511 3 MP XPP X18 0 0 18 1689 1511 3 MP XPP X0 18 18 0 1689 1529 3 MP XPP X18 0 0 18 1689 1529 3 MP XPP X0 18 18 0 1689 1547 3 MP XPP X18 0 0 18 1689 1547 3 MP XPP X0 18 18 0 1689 1565 3 MP XPP X18 0 0 18 1689 1565 3 MP XPP X0 17 18 0 1689 1583 3 MP XPP X18 0 0 17 1689 1583 3 MP XPP X0 18 18 0 1689 1600 3 MP XPP X18 0 0 18 1689 1600 3 MP XPP X0 18 18 0 1689 1618 3 MP XPP X18 0 0 18 1689 1618 3 MP XPP X0 18 18 0 1689 1636 3 MP XPP X18 0 0 18 1689 1636 3 MP XPP X0 18 18 0 1689 1654 3 MP XPP X18 0 0 18 1689 1654 3 MP XPP X1 sg X0 18 18 0 1689 1672 3 MP XPP X18 0 0 18 1689 1672 3 MP XPP X0 17 18 0 1689 1690 3 MP XPP X18 0 0 17 1689 1690 3 MP XPP X0 18 18 0 1689 1707 3 MP XPP X18 0 0 18 1689 1707 3 MP XPP X0 18 18 0 1689 1725 3 MP XPP X18 0 0 18 1689 1725 3 MP XPP X0 18 18 0 1689 1743 3 MP XPP X18 0 0 18 1689 1743 3 MP XPP X0 18 18 0 1689 1761 3 MP XPP X18 0 0 18 1689 1761 3 MP XPP X0 18 18 0 1689 1779 3 MP XPP X18 0 0 18 1689 1779 3 MP XPP X0 17 18 0 1689 1797 3 MP XPP X18 0 0 17 1689 1797 3 MP XPP X0 18 18 0 1689 1814 3 MP XPP X18 0 0 18 1689 1814 3 MP XPP X0 18 18 0 1689 1832 3 MP XPP X18 0 0 18 1689 1832 3 MP XPP X0 18 18 0 1689 1850 3 MP XPP X18 0 0 18 1689 1850 3 MP XPP X0 18 18 0 1689 1868 3 MP XPP X18 0 0 18 1689 1868 3 MP XPP X0 18 18 0 1689 1886 3 MP XPP X18 0 0 18 1689 1886 3 MP XPP X0 17 18 0 1689 1904 3 MP XPP X18 0 0 17 1689 1904 3 MP XPP X0 18 18 0 1689 1921 3 MP XPP X18 0 0 18 1689 1921 3 MP XPP X0 18 18 0 1689 1939 3 MP XPP X18 0 0 18 1689 1939 3 MP XPP X0 18 18 0 1689 1957 3 MP XPP X18 0 0 18 1689 1957 3 MP XPP X0 18 18 0 1689 1975 3 MP XPP X18 0 0 18 1689 1975 3 MP XPP X0 18 18 0 1689 1993 3 MP XPP X18 0 0 18 1689 1993 3 MP XPP X0 17 18 0 1689 2011 3 MP XPP X18 0 0 17 1689 2011 3 MP XPP X0 18 18 0 1689 2028 3 MP XPP X18 0 0 18 1689 2028 3 MP XPP X0 18 18 0 1689 2046 3 MP XPP X18 0 0 18 1689 2046 3 MP XPP X0 18 18 0 1689 2064 3 MP XPP X18 0 0 18 1689 2064 3 MP XPP X0 18 18 0 1689 2082 3 MP XPP X18 0 0 18 1689 2082 3 MP XPP X0 18 18 0 1689 2100 3 MP XPP X18 0 0 18 1689 2100 3 MP XPP X0 17 18 0 1689 2118 3 MP XPP X18 0 0 17 1689 2118 3 MP XPP X0 18 18 0 1689 2135 3 MP XPP X18 0 0 18 1689 2135 3 MP XPP X0 18 18 0 1689 2153 3 MP XPP X18 0 0 18 1689 2153 3 MP XPP X0 18 17 0 1707 388 3 MP XPP X17 0 0 18 1707 388 3 MP XPP X0 18 17 0 1707 406 3 MP XPP X17 0 0 18 1707 406 3 MP XPP X0 17 17 0 1707 424 3 MP XPP X17 0 0 17 1707 424 3 MP XPP X0 18 17 0 1707 441 3 MP XPP X17 0 0 18 1707 441 3 MP XPP X0 18 17 0 1707 459 3 MP XPP X17 0 0 18 1707 459 3 MP XPP X0 18 17 0 1707 477 3 MP XPP X17 0 0 18 1707 477 3 MP XPP X0 18 17 0 1707 495 3 MP XPP X17 0 0 18 1707 495 3 MP XPP X0 18 17 0 1707 513 3 MP XPP X17 0 0 18 1707 513 3 MP XPP X0 17 17 0 1707 531 3 MP XPP X17 0 0 17 1707 531 3 MP XPP X0 18 17 0 1707 548 3 MP XPP X17 0 0 18 1707 548 3 MP XPP X0 18 17 0 1707 566 3 MP XPP X17 0 0 18 1707 566 3 MP XPP X0 18 17 0 1707 584 3 MP XPP X17 0 0 18 1707 584 3 MP XPP X0 18 17 0 1707 602 3 MP XPP X17 0 0 18 1707 602 3 MP XPP X0 18 17 0 1707 620 3 MP XPP X17 0 0 18 1707 620 3 MP XPP X0 17 17 0 1707 638 3 MP XPP X17 0 0 17 1707 638 3 MP XPP X0 18 17 0 1707 655 3 MP XPP X17 0 0 18 1707 655 3 MP XPP X0 18 17 0 1707 673 3 MP XPP X17 0 0 18 1707 673 3 MP XPP X0 18 17 0 1707 691 3 MP XPP X17 0 0 18 1707 691 3 MP XPP X0 18 17 0 1707 709 3 MP XPP X17 0 0 18 1707 709 3 MP XPP X0 18 17 0 1707 727 3 MP XPP X17 0 0 18 1707 727 3 MP XPP X0 17 17 0 1707 745 3 MP XPP X17 0 0 17 1707 745 3 MP XPP X0 18 17 0 1707 762 3 MP XPP X17 0 0 18 1707 762 3 MP XPP X0 18 17 0 1707 780 3 MP XPP X17 0 0 18 1707 780 3 MP XPP X0 18 17 0 1707 798 3 MP XPP X17 0 0 18 1707 798 3 MP XPP X0 18 17 0 1707 816 3 MP XPP X17 0 0 18 1707 816 3 MP XPP X0 18 17 0 1707 834 3 MP XPP X17 0 0 18 1707 834 3 MP XPP X0 17 17 0 1707 852 3 MP XPP X17 0 0 17 1707 852 3 MP XPP X0 18 17 0 1707 869 3 MP XPP X17 0 0 18 1707 869 3 MP XPP X0 18 17 0 1707 887 3 MP XPP X17 0 0 18 1707 887 3 MP XPP X0 18 17 0 1707 905 3 MP XPP X17 0 0 18 1707 905 3 MP XPP X0 18 17 0 1707 923 3 MP XPP X17 0 0 18 1707 923 3 MP XPP X0 18 17 0 1707 941 3 MP XPP X17 0 0 18 1707 941 3 MP XPP X0 17 17 0 1707 959 3 MP XPP X17 0 0 17 1707 959 3 MP XPP X0 18 17 0 1707 976 3 MP XPP X17 0 0 18 1707 976 3 MP XPP X0 18 17 0 1707 994 3 MP XPP X17 0 0 18 1707 994 3 MP XPP X0 18 17 0 1707 1012 3 MP XPP X17 0 0 18 1707 1012 3 MP XPP X0 18 17 0 1707 1030 3 MP XPP X17 0 0 18 1707 1030 3 MP XPP X0 18 17 0 1707 1048 3 MP XPP X17 0 0 18 1707 1048 3 MP XPP X0 17 17 0 1707 1066 3 MP XPP X17 0 0 17 1707 1066 3 MP XPP X0 18 17 0 1707 1083 3 MP XPP X17 0 0 18 1707 1083 3 MP XPP X0 18 17 0 1707 1101 3 MP XPP X17 0 0 18 1707 1101 3 MP XPP X0.238095 sg X0 18 17 0 1707 1119 3 MP XPP X17 0 0 18 1707 1119 3 MP XPP X0 18 17 0 1707 1137 3 MP XPP X17 0 0 18 1707 1137 3 MP XPP X0 18 17 0 1707 1155 3 MP XPP X17 0 0 18 1707 1155 3 MP XPP X0 17 17 0 1707 1173 3 MP XPP X17 0 0 17 1707 1173 3 MP XPP X0 18 17 0 1707 1190 3 MP XPP X17 0 0 18 1707 1190 3 MP XPP X0 18 17 0 1707 1208 3 MP XPP X17 0 0 18 1707 1208 3 MP XPP X0 18 17 0 1707 1226 3 MP XPP X17 0 0 18 1707 1226 3 MP XPP X0 18 17 0 1707 1244 3 MP XPP X17 0 0 18 1707 1244 3 MP XPP X0 17 17 0 1707 1262 3 MP XPP X17 0 0 17 1707 1262 3 MP XPP X0 18 17 0 1707 1279 3 MP XPP X17 0 0 18 1707 1279 3 MP XPP X0 18 17 0 1707 1297 3 MP XPP X17 0 0 18 1707 1297 3 MP XPP X0 18 17 0 1707 1315 3 MP XPP X17 0 0 18 1707 1315 3 MP XPP X0 18 17 0 1707 1333 3 MP XPP X17 0 0 18 1707 1333 3 MP XPP X0 18 17 0 1707 1351 3 MP XPP X17 0 0 18 1707 1351 3 MP XPP X0 17 17 0 1707 1369 3 MP XPP X17 0 0 17 1707 1369 3 MP XPP X0 18 17 0 1707 1386 3 MP XPP X17 0 0 18 1707 1386 3 MP XPP X0 18 17 0 1707 1404 3 MP XPP X17 0 0 18 1707 1404 3 MP XPP X0 18 17 0 1707 1422 3 MP XPP X17 0 0 18 1707 1422 3 MP XPP X0 18 17 0 1707 1440 3 MP XPP X17 0 0 18 1707 1440 3 MP XPP X0 18 17 0 1707 1458 3 MP XPP X17 0 0 18 1707 1458 3 MP XPP X0 17 17 0 1707 1476 3 MP XPP X17 0 0 17 1707 1476 3 MP XPP X0 18 17 0 1707 1493 3 MP XPP X17 0 0 18 1707 1493 3 MP XPP X0 18 17 0 1707 1511 3 MP XPP X17 0 0 18 1707 1511 3 MP XPP X0 18 17 0 1707 1529 3 MP XPP X17 0 0 18 1707 1529 3 MP XPP X0 18 17 0 1707 1547 3 MP XPP X17 0 0 18 1707 1547 3 MP XPP X0 18 17 0 1707 1565 3 MP XPP X17 0 0 18 1707 1565 3 MP XPP X0 17 17 0 1707 1583 3 MP XPP X17 0 0 17 1707 1583 3 MP XPP X0 18 17 0 1707 1600 3 MP XPP X17 0 0 18 1707 1600 3 MP XPP X0 18 17 0 1707 1618 3 MP XPP X17 0 0 18 1707 1618 3 MP XPP X0 18 17 0 1707 1636 3 MP XPP X17 0 0 18 1707 1636 3 MP XPP X0 18 17 0 1707 1654 3 MP XPP X17 0 0 18 1707 1654 3 MP XPP X0 18 17 0 1707 1672 3 MP XPP X17 0 0 18 1707 1672 3 MP XPP X1 sg X0 17 17 0 1707 1690 3 MP XPP X17 0 0 17 1707 1690 3 MP XPP X0 18 17 0 1707 1707 3 MP XPP X17 0 0 18 1707 1707 3 MP XPP X0 18 17 0 1707 1725 3 MP XPP X17 0 0 18 1707 1725 3 MP XPP X0 18 17 0 1707 1743 3 MP XPP X17 0 0 18 1707 1743 3 MP XPP X0 18 17 0 1707 1761 3 MP XPP X17 0 0 18 1707 1761 3 MP XPP X0 18 17 0 1707 1779 3 MP XPP X17 0 0 18 1707 1779 3 MP XPP X0 17 17 0 1707 1797 3 MP XPP X17 0 0 17 1707 1797 3 MP XPP X0 18 17 0 1707 1814 3 MP XPP X17 0 0 18 1707 1814 3 MP XPP X0 18 17 0 1707 1832 3 MP XPP X17 0 0 18 1707 1832 3 MP XPP X0 18 17 0 1707 1850 3 MP XPP X17 0 0 18 1707 1850 3 MP XPP X0 18 17 0 1707 1868 3 MP XPP X17 0 0 18 1707 1868 3 MP XPP X0 18 17 0 1707 1886 3 MP XPP X17 0 0 18 1707 1886 3 MP XPP X0 17 17 0 1707 1904 3 MP XPP X17 0 0 17 1707 1904 3 MP XPP X0 18 17 0 1707 1921 3 MP XPP X17 0 0 18 1707 1921 3 MP XPP X0 18 17 0 1707 1939 3 MP XPP X17 0 0 18 1707 1939 3 MP XPP X0 18 17 0 1707 1957 3 MP XPP X17 0 0 18 1707 1957 3 MP XPP X0 18 17 0 1707 1975 3 MP XPP X17 0 0 18 1707 1975 3 MP XPP X0 18 17 0 1707 1993 3 MP XPP X17 0 0 18 1707 1993 3 MP XPP X0 17 17 0 1707 2011 3 MP XPP X17 0 0 17 1707 2011 3 MP XPP X0 18 17 0 1707 2028 3 MP XPP X17 0 0 18 1707 2028 3 MP XPP X0 18 17 0 1707 2046 3 MP XPP X17 0 0 18 1707 2046 3 MP XPP X0 18 17 0 1707 2064 3 MP XPP X17 0 0 18 1707 2064 3 MP XPP X0 18 17 0 1707 2082 3 MP XPP X17 0 0 18 1707 2082 3 MP XPP X0 18 17 0 1707 2100 3 MP XPP X17 0 0 18 1707 2100 3 MP XPP X0 17 17 0 1707 2118 3 MP XPP X17 0 0 17 1707 2118 3 MP XPP X0 18 17 0 1707 2135 3 MP XPP X17 0 0 18 1707 2135 3 MP XPP X0 18 17 0 1707 2153 3 MP XPP X17 0 0 18 1707 2153 3 MP XPP X0 18 18 0 1724 388 3 MP XPP X18 0 0 18 1724 388 3 MP XPP X0 18 18 0 1724 406 3 MP XPP X18 0 0 18 1724 406 3 MP XPP X0 17 18 0 1724 424 3 MP XPP X18 0 0 17 1724 424 3 MP XPP X0 18 18 0 1724 441 3 MP XPP X18 0 0 18 1724 441 3 MP XPP X0 18 18 0 1724 459 3 MP XPP X18 0 0 18 1724 459 3 MP XPP X0 18 18 0 1724 477 3 MP XPP X18 0 0 18 1724 477 3 MP XPP X0 18 18 0 1724 495 3 MP XPP X18 0 0 18 1724 495 3 MP XPP X0 18 18 0 1724 513 3 MP XPP X18 0 0 18 1724 513 3 MP XPP X0 17 18 0 1724 531 3 MP XPP X18 0 0 17 1724 531 3 MP XPP X0 18 18 0 1724 548 3 MP XPP X18 0 0 18 1724 548 3 MP XPP X0 18 18 0 1724 566 3 MP XPP X18 0 0 18 1724 566 3 MP XPP X0 18 18 0 1724 584 3 MP XPP X18 0 0 18 1724 584 3 MP XPP X0 18 18 0 1724 602 3 MP XPP X18 0 0 18 1724 602 3 MP XPP X0 18 18 0 1724 620 3 MP XPP X18 0 0 18 1724 620 3 MP XPP X0 17 18 0 1724 638 3 MP XPP X18 0 0 17 1724 638 3 MP XPP X0.746032 sg X0 18 18 0 1724 655 3 MP XPP X18 0 0 18 1724 655 3 MP XPP X0 18 18 0 1724 673 3 MP XPP X18 0 0 18 1724 673 3 MP XPP X0 18 18 0 1724 691 3 MP XPP X18 0 0 18 1724 691 3 MP XPP X0 18 18 0 1724 709 3 MP XPP X18 0 0 18 1724 709 3 MP XPP X0 18 18 0 1724 727 3 MP XPP X18 0 0 18 1724 727 3 MP XPP X0 17 18 0 1724 745 3 MP XPP X18 0 0 17 1724 745 3 MP XPP X0 18 18 0 1724 762 3 MP XPP X18 0 0 18 1724 762 3 MP XPP X0 18 18 0 1724 780 3 MP XPP X18 0 0 18 1724 780 3 MP XPP X1 sg X0 18 18 0 1724 798 3 MP XPP X18 0 0 18 1724 798 3 MP XPP X0 18 18 0 1724 816 3 MP XPP X18 0 0 18 1724 816 3 MP XPP X0 18 18 0 1724 834 3 MP XPP X18 0 0 18 1724 834 3 MP XPP X0 17 18 0 1724 852 3 MP XPP X18 0 0 17 1724 852 3 MP XPP X0 18 18 0 1724 869 3 MP XPP X18 0 0 18 1724 869 3 MP XPP X0 18 18 0 1724 887 3 MP XPP X18 0 0 18 1724 887 3 MP XPP X0 18 18 0 1724 905 3 MP XPP X18 0 0 18 1724 905 3 MP XPP X0 18 18 0 1724 923 3 MP XPP X18 0 0 18 1724 923 3 MP XPP X0 18 18 0 1724 941 3 MP XPP X18 0 0 18 1724 941 3 MP XPP X0 17 18 0 1724 959 3 MP XPP X18 0 0 17 1724 959 3 MP XPP X0 18 18 0 1724 976 3 MP XPP X18 0 0 18 1724 976 3 MP XPP X0 18 18 0 1724 994 3 MP XPP X18 0 0 18 1724 994 3 MP XPP X0 18 18 0 1724 1012 3 MP XPP X18 0 0 18 1724 1012 3 MP XPP X0 18 18 0 1724 1030 3 MP XPP X18 0 0 18 1724 1030 3 MP XPP X0 18 18 0 1724 1048 3 MP XPP X18 0 0 18 1724 1048 3 MP XPP X0 17 18 0 1724 1066 3 MP XPP X18 0 0 17 1724 1066 3 MP XPP X0 18 18 0 1724 1083 3 MP XPP X18 0 0 18 1724 1083 3 MP XPP X0 18 18 0 1724 1101 3 MP XPP X18 0 0 18 1724 1101 3 MP XPP X0.238095 sg X0 18 18 0 1724 1119 3 MP XPP X18 0 0 18 1724 1119 3 MP XPP X0 18 18 0 1724 1137 3 MP XPP X18 0 0 18 1724 1137 3 MP XPP X0 18 18 0 1724 1155 3 MP XPP X18 0 0 18 1724 1155 3 MP XPP X0 17 18 0 1724 1173 3 MP XPP X18 0 0 17 1724 1173 3 MP XPP X0 18 18 0 1724 1190 3 MP XPP X18 0 0 18 1724 1190 3 MP XPP X0 18 18 0 1724 1208 3 MP XPP X18 0 0 18 1724 1208 3 MP XPP X0 18 18 0 1724 1226 3 MP XPP X18 0 0 18 1724 1226 3 MP XPP X0 18 18 0 1724 1244 3 MP XPP X18 0 0 18 1724 1244 3 MP XPP X0 17 18 0 1724 1262 3 MP XPP X18 0 0 17 1724 1262 3 MP XPP X0 18 18 0 1724 1279 3 MP XPP X18 0 0 18 1724 1279 3 MP XPP X0 18 18 0 1724 1297 3 MP XPP X18 0 0 18 1724 1297 3 MP XPP X0 18 18 0 1724 1315 3 MP XPP X18 0 0 18 1724 1315 3 MP XPP X0 18 18 0 1724 1333 3 MP XPP X18 0 0 18 1724 1333 3 MP XPP X0 18 18 0 1724 1351 3 MP XPP X18 0 0 18 1724 1351 3 MP XPP X0 17 18 0 1724 1369 3 MP XPP X18 0 0 17 1724 1369 3 MP XPP X0 18 18 0 1724 1386 3 MP XPP X18 0 0 18 1724 1386 3 MP XPP X0 18 18 0 1724 1404 3 MP XPP X18 0 0 18 1724 1404 3 MP XPP X0 18 18 0 1724 1422 3 MP XPP X18 0 0 18 1724 1422 3 MP XPP X0 18 18 0 1724 1440 3 MP XPP X18 0 0 18 1724 1440 3 MP XPP X0 18 18 0 1724 1458 3 MP XPP X18 0 0 18 1724 1458 3 MP XPP X0 17 18 0 1724 1476 3 MP XPP X18 0 0 17 1724 1476 3 MP XPP X0 18 18 0 1724 1493 3 MP XPP X18 0 0 18 1724 1493 3 MP XPP X0 18 18 0 1724 1511 3 MP XPP X18 0 0 18 1724 1511 3 MP XPP X0 18 18 0 1724 1529 3 MP XPP X18 0 0 18 1724 1529 3 MP XPP X0 18 18 0 1724 1547 3 MP XPP X18 0 0 18 1724 1547 3 MP XPP X0 18 18 0 1724 1565 3 MP XPP X18 0 0 18 1724 1565 3 MP XPP X0 17 18 0 1724 1583 3 MP XPP X18 0 0 17 1724 1583 3 MP XPP X0 18 18 0 1724 1600 3 MP XPP X18 0 0 18 1724 1600 3 MP XPP X0 18 18 0 1724 1618 3 MP XPP X18 0 0 18 1724 1618 3 MP XPP X0 18 18 0 1724 1636 3 MP XPP X18 0 0 18 1724 1636 3 MP XPP X0 18 18 0 1724 1654 3 MP XPP X18 0 0 18 1724 1654 3 MP XPP X0 18 18 0 1724 1672 3 MP XPP X18 0 0 18 1724 1672 3 MP XPP X0 17 18 0 1724 1690 3 MP XPP X18 0 0 17 1724 1690 3 MP XPP X1 sg X0 18 18 0 1724 1707 3 MP XPP X18 0 0 18 1724 1707 3 MP XPP X0 18 18 0 1724 1725 3 MP XPP X18 0 0 18 1724 1725 3 MP XPP X0 18 18 0 1724 1743 3 MP XPP X18 0 0 18 1724 1743 3 MP XPP X0 18 18 0 1724 1761 3 MP XPP X18 0 0 18 1724 1761 3 MP XPP X0 18 18 0 1724 1779 3 MP XPP X18 0 0 18 1724 1779 3 MP XPP X0 17 18 0 1724 1797 3 MP XPP X18 0 0 17 1724 1797 3 MP XPP X0 18 18 0 1724 1814 3 MP XPP X18 0 0 18 1724 1814 3 MP XPP X0 18 18 0 1724 1832 3 MP XPP X18 0 0 18 1724 1832 3 MP XPP X0 18 18 0 1724 1850 3 MP XPP X18 0 0 18 1724 1850 3 MP XPP X0 18 18 0 1724 1868 3 MP XPP X18 0 0 18 1724 1868 3 MP XPP X0 18 18 0 1724 1886 3 MP XPP X18 0 0 18 1724 1886 3 MP XPP X0 17 18 0 1724 1904 3 MP XPP X18 0 0 17 1724 1904 3 MP XPP X0 18 18 0 1724 1921 3 MP XPP X18 0 0 18 1724 1921 3 MP XPP X0 18 18 0 1724 1939 3 MP XPP X18 0 0 18 1724 1939 3 MP XPP X0 18 18 0 1724 1957 3 MP XPP X18 0 0 18 1724 1957 3 MP XPP X0 18 18 0 1724 1975 3 MP XPP X18 0 0 18 1724 1975 3 MP XPP X0 18 18 0 1724 1993 3 MP XPP X18 0 0 18 1724 1993 3 MP XPP X0 17 18 0 1724 2011 3 MP XPP X18 0 0 17 1724 2011 3 MP XPP X0 18 18 0 1724 2028 3 MP XPP X18 0 0 18 1724 2028 3 MP XPP X0 18 18 0 1724 2046 3 MP XPP X18 0 0 18 1724 2046 3 MP XPP X0 18 18 0 1724 2064 3 MP XPP X18 0 0 18 1724 2064 3 MP XPP X0 18 18 0 1724 2082 3 MP XPP X18 0 0 18 1724 2082 3 MP XPP X0 18 18 0 1724 2100 3 MP XPP X18 0 0 18 1724 2100 3 MP XPP X0 17 18 0 1724 2118 3 MP XPP X18 0 0 17 1724 2118 3 MP XPP X0 18 18 0 1724 2135 3 MP XPP X18 0 0 18 1724 2135 3 MP XPP X0 18 18 0 1724 2153 3 MP XPP X18 0 0 18 1724 2153 3 MP XPP X0 18 18 0 1742 388 3 MP XPP X18 0 0 18 1742 388 3 MP XPP X0 18 18 0 1742 406 3 MP XPP X18 0 0 18 1742 406 3 MP XPP X0 17 18 0 1742 424 3 MP XPP X18 0 0 17 1742 424 3 MP XPP X0 18 18 0 1742 441 3 MP XPP X18 0 0 18 1742 441 3 MP XPP X0 18 18 0 1742 459 3 MP XPP X18 0 0 18 1742 459 3 MP XPP X0 18 18 0 1742 477 3 MP XPP X18 0 0 18 1742 477 3 MP XPP X0 18 18 0 1742 495 3 MP XPP X18 0 0 18 1742 495 3 MP XPP X0 18 18 0 1742 513 3 MP XPP X18 0 0 18 1742 513 3 MP XPP X0 17 18 0 1742 531 3 MP XPP X18 0 0 17 1742 531 3 MP XPP X0 18 18 0 1742 548 3 MP XPP X18 0 0 18 1742 548 3 MP XPP X0 18 18 0 1742 566 3 MP XPP X18 0 0 18 1742 566 3 MP XPP X0 18 18 0 1742 584 3 MP XPP X18 0 0 18 1742 584 3 MP XPP X0 18 18 0 1742 602 3 MP XPP X18 0 0 18 1742 602 3 MP XPP X0 18 18 0 1742 620 3 MP XPP X18 0 0 18 1742 620 3 MP XPP X0.746032 sg X0 17 18 0 1742 638 3 MP XPP X18 0 0 17 1742 638 3 MP XPP X0 18 18 0 1742 655 3 MP XPP X18 0 0 18 1742 655 3 MP XPP X0 18 18 0 1742 673 3 MP XPP X18 0 0 18 1742 673 3 MP XPP X0 18 18 0 1742 691 3 MP XPP X18 0 0 18 1742 691 3 MP XPP X0 18 18 0 1742 709 3 MP XPP X18 0 0 18 1742 709 3 MP XPP X0 18 18 0 1742 727 3 MP XPP X18 0 0 18 1742 727 3 MP XPP X0 17 18 0 1742 745 3 MP XPP X18 0 0 17 1742 745 3 MP XPP X0 18 18 0 1742 762 3 MP XPP X18 0 0 18 1742 762 3 MP XPP X0 18 18 0 1742 780 3 MP XPP X18 0 0 18 1742 780 3 MP XPP X0 18 18 0 1742 798 3 MP XPP X18 0 0 18 1742 798 3 MP XPP X1 sg X0 18 18 0 1742 816 3 MP XPP X18 0 0 18 1742 816 3 MP XPP X0 18 18 0 1742 834 3 MP XPP X18 0 0 18 1742 834 3 MP XPP X0 17 18 0 1742 852 3 MP XPP X18 0 0 17 1742 852 3 MP XPP X0 18 18 0 1742 869 3 MP XPP X18 0 0 18 1742 869 3 MP XPP X0 18 18 0 1742 887 3 MP XPP X18 0 0 18 1742 887 3 MP XPP X0 18 18 0 1742 905 3 MP XPP X18 0 0 18 1742 905 3 MP XPP X0 18 18 0 1742 923 3 MP XPP X18 0 0 18 1742 923 3 MP XPP X0 18 18 0 1742 941 3 MP XPP X18 0 0 18 1742 941 3 MP XPP X0 17 18 0 1742 959 3 MP XPP X18 0 0 17 1742 959 3 MP XPP X0 18 18 0 1742 976 3 MP XPP X18 0 0 18 1742 976 3 MP XPP X0 18 18 0 1742 994 3 MP XPP X18 0 0 18 1742 994 3 MP XPP X0 18 18 0 1742 1012 3 MP XPP X18 0 0 18 1742 1012 3 MP XPP X0 18 18 0 1742 1030 3 MP XPP X18 0 0 18 1742 1030 3 MP XPP X0 18 18 0 1742 1048 3 MP XPP X18 0 0 18 1742 1048 3 MP XPP X0 17 18 0 1742 1066 3 MP XPP X18 0 0 17 1742 1066 3 MP XPP X0 18 18 0 1742 1083 3 MP XPP X18 0 0 18 1742 1083 3 MP XPP X0 18 18 0 1742 1101 3 MP XPP X18 0 0 18 1742 1101 3 MP XPP X0 18 18 0 1742 1119 3 MP XPP X18 0 0 18 1742 1119 3 MP XPP X0 18 18 0 1742 1137 3 MP XPP X18 0 0 18 1742 1137 3 MP XPP X0 18 18 0 1742 1155 3 MP XPP X18 0 0 18 1742 1155 3 MP XPP X0 17 18 0 1742 1173 3 MP XPP X18 0 0 17 1742 1173 3 MP XPP X0 18 18 0 1742 1190 3 MP XPP X18 0 0 18 1742 1190 3 MP XPP X0 18 18 0 1742 1208 3 MP XPP X18 0 0 18 1742 1208 3 MP XPP X0 18 18 0 1742 1226 3 MP XPP X18 0 0 18 1742 1226 3 MP XPP X0 18 18 0 1742 1244 3 MP XPP X18 0 0 18 1742 1244 3 MP XPP X0 17 18 0 1742 1262 3 MP XPP X18 0 0 17 1742 1262 3 MP XPP X0 18 18 0 1742 1279 3 MP XPP X18 0 0 18 1742 1279 3 MP XPP X0 18 18 0 1742 1297 3 MP XPP X18 0 0 18 1742 1297 3 MP XPP X0 18 18 0 1742 1315 3 MP XPP X18 0 0 18 1742 1315 3 MP XPP X0 18 18 0 1742 1333 3 MP XPP X18 0 0 18 1742 1333 3 MP XPP X0 18 18 0 1742 1351 3 MP XPP X18 0 0 18 1742 1351 3 MP XPP X0 17 18 0 1742 1369 3 MP XPP X18 0 0 17 1742 1369 3 MP XPP X0 18 18 0 1742 1386 3 MP XPP X18 0 0 18 1742 1386 3 MP XPP X0 18 18 0 1742 1404 3 MP XPP X18 0 0 18 1742 1404 3 MP XPP X0 18 18 0 1742 1422 3 MP XPP X18 0 0 18 1742 1422 3 MP XPP X0 18 18 0 1742 1440 3 MP XPP X18 0 0 18 1742 1440 3 MP XPP X0 18 18 0 1742 1458 3 MP XPP X18 0 0 18 1742 1458 3 MP XPP X0 17 18 0 1742 1476 3 MP XPP X18 0 0 17 1742 1476 3 MP XPP X0 18 18 0 1742 1493 3 MP XPP X18 0 0 18 1742 1493 3 MP XPP X0 18 18 0 1742 1511 3 MP XPP X18 0 0 18 1742 1511 3 MP XPP X0 18 18 0 1742 1529 3 MP XPP X18 0 0 18 1742 1529 3 MP XPP X0 18 18 0 1742 1547 3 MP XPP X18 0 0 18 1742 1547 3 MP XPP X0 18 18 0 1742 1565 3 MP XPP X18 0 0 18 1742 1565 3 MP XPP X0 17 18 0 1742 1583 3 MP XPP X18 0 0 17 1742 1583 3 MP XPP X0 18 18 0 1742 1600 3 MP XPP X18 0 0 18 1742 1600 3 MP XPP X0 18 18 0 1742 1618 3 MP XPP X18 0 0 18 1742 1618 3 MP XPP X0 18 18 0 1742 1636 3 MP XPP X18 0 0 18 1742 1636 3 MP XPP X0 18 18 0 1742 1654 3 MP XPP X18 0 0 18 1742 1654 3 MP XPP X0 18 18 0 1742 1672 3 MP XPP X18 0 0 18 1742 1672 3 MP XPP X0 17 18 0 1742 1690 3 MP XPP X18 0 0 17 1742 1690 3 MP XPP X0 18 18 0 1742 1707 3 MP XPP X18 0 0 18 1742 1707 3 MP XPP X0 18 18 0 1742 1725 3 MP XPP X18 0 0 18 1742 1725 3 MP XPP X0 18 18 0 1742 1743 3 MP XPP X18 0 0 18 1742 1743 3 MP XPP X0 18 18 0 1742 1761 3 MP XPP X18 0 0 18 1742 1761 3 MP XPP X0 18 18 0 1742 1779 3 MP XPP X18 0 0 18 1742 1779 3 MP XPP X0 17 18 0 1742 1797 3 MP XPP X18 0 0 17 1742 1797 3 MP XPP X0 18 18 0 1742 1814 3 MP XPP X18 0 0 18 1742 1814 3 MP XPP X0 18 18 0 1742 1832 3 MP XPP X18 0 0 18 1742 1832 3 MP XPP X0 18 18 0 1742 1850 3 MP XPP X18 0 0 18 1742 1850 3 MP XPP X0 18 18 0 1742 1868 3 MP XPP X18 0 0 18 1742 1868 3 MP XPP X0 18 18 0 1742 1886 3 MP XPP X18 0 0 18 1742 1886 3 MP XPP X0 17 18 0 1742 1904 3 MP XPP X18 0 0 17 1742 1904 3 MP XPP X0 18 18 0 1742 1921 3 MP XPP X18 0 0 18 1742 1921 3 MP XPP X0 18 18 0 1742 1939 3 MP XPP X18 0 0 18 1742 1939 3 MP XPP X0 18 18 0 1742 1957 3 MP XPP X18 0 0 18 1742 1957 3 MP XPP X0 18 18 0 1742 1975 3 MP XPP X18 0 0 18 1742 1975 3 MP XPP X0 18 18 0 1742 1993 3 MP XPP X18 0 0 18 1742 1993 3 MP XPP X0 17 18 0 1742 2011 3 MP XPP X18 0 0 17 1742 2011 3 MP XPP X0 18 18 0 1742 2028 3 MP XPP X18 0 0 18 1742 2028 3 MP XPP X0 18 18 0 1742 2046 3 MP XPP X18 0 0 18 1742 2046 3 MP XPP X0 18 18 0 1742 2064 3 MP XPP X18 0 0 18 1742 2064 3 MP XPP X0 18 18 0 1742 2082 3 MP XPP X18 0 0 18 1742 2082 3 MP XPP X0 18 18 0 1742 2100 3 MP XPP X18 0 0 18 1742 2100 3 MP XPP X0 17 18 0 1742 2118 3 MP XPP X18 0 0 17 1742 2118 3 MP XPP X0 18 18 0 1742 2135 3 MP XPP X18 0 0 18 1742 2135 3 MP XPP X0 18 18 0 1742 2153 3 MP XPP X18 0 0 18 1742 2153 3 MP XPP X0 18 18 0 1760 388 3 MP XPP X18 0 0 18 1760 388 3 MP XPP X0 18 18 0 1760 406 3 MP XPP X18 0 0 18 1760 406 3 MP XPP X0 17 18 0 1760 424 3 MP XPP X18 0 0 17 1760 424 3 MP XPP X0 18 18 0 1760 441 3 MP XPP X18 0 0 18 1760 441 3 MP XPP X0 18 18 0 1760 459 3 MP XPP X18 0 0 18 1760 459 3 MP XPP X0 18 18 0 1760 477 3 MP XPP X18 0 0 18 1760 477 3 MP XPP X0 18 18 0 1760 495 3 MP XPP X18 0 0 18 1760 495 3 MP XPP X0 18 18 0 1760 513 3 MP XPP X18 0 0 18 1760 513 3 MP XPP X0 17 18 0 1760 531 3 MP XPP X18 0 0 17 1760 531 3 MP XPP X0 18 18 0 1760 548 3 MP XPP X18 0 0 18 1760 548 3 MP XPP X0 18 18 0 1760 566 3 MP XPP X18 0 0 18 1760 566 3 MP XPP X0 18 18 0 1760 584 3 MP XPP X18 0 0 18 1760 584 3 MP XPP X0.746032 sg X0 18 18 0 1760 602 3 MP XPP X18 0 0 18 1760 602 3 MP XPP X0 18 18 0 1760 620 3 MP XPP X18 0 0 18 1760 620 3 MP XPP X0 17 18 0 1760 638 3 MP XPP X18 0 0 17 1760 638 3 MP XPP X0 18 18 0 1760 655 3 MP XPP X18 0 0 18 1760 655 3 MP XPP X0 18 18 0 1760 673 3 MP XPP X18 0 0 18 1760 673 3 MP XPP X0 18 18 0 1760 691 3 MP XPP X18 0 0 18 1760 691 3 MP XPP X0 18 18 0 1760 709 3 MP XPP X18 0 0 18 1760 709 3 MP XPP X0 18 18 0 1760 727 3 MP XPP X18 0 0 18 1760 727 3 MP XPP X0 17 18 0 1760 745 3 MP XPP X18 0 0 17 1760 745 3 MP XPP X0 18 18 0 1760 762 3 MP XPP X18 0 0 18 1760 762 3 MP XPP X0 18 18 0 1760 780 3 MP XPP X18 0 0 18 1760 780 3 MP XPP X0 18 18 0 1760 798 3 MP XPP X18 0 0 18 1760 798 3 MP XPP X0 18 18 0 1760 816 3 MP XPP X18 0 0 18 1760 816 3 MP XPP X0 18 18 0 1760 834 3 MP XPP X18 0 0 18 1760 834 3 MP XPP X1 sg X0 17 18 0 1760 852 3 MP XPP X18 0 0 17 1760 852 3 MP XPP X0 18 18 0 1760 869 3 MP XPP X18 0 0 18 1760 869 3 MP XPP X0 18 18 0 1760 887 3 MP XPP X18 0 0 18 1760 887 3 MP XPP X0 18 18 0 1760 905 3 MP XPP X18 0 0 18 1760 905 3 MP XPP X0 18 18 0 1760 923 3 MP XPP X18 0 0 18 1760 923 3 MP XPP X0 18 18 0 1760 941 3 MP XPP X18 0 0 18 1760 941 3 MP XPP X0 17 18 0 1760 959 3 MP XPP X18 0 0 17 1760 959 3 MP XPP X0 18 18 0 1760 976 3 MP XPP X18 0 0 18 1760 976 3 MP XPP X0 18 18 0 1760 994 3 MP XPP X18 0 0 18 1760 994 3 MP XPP X0 18 18 0 1760 1012 3 MP XPP X18 0 0 18 1760 1012 3 MP XPP X0 18 18 0 1760 1030 3 MP XPP X18 0 0 18 1760 1030 3 MP XPP X0 18 18 0 1760 1048 3 MP XPP X18 0 0 18 1760 1048 3 MP XPP X0 17 18 0 1760 1066 3 MP XPP X18 0 0 17 1760 1066 3 MP XPP X0 18 18 0 1760 1083 3 MP XPP X18 0 0 18 1760 1083 3 MP XPP X0 18 18 0 1760 1101 3 MP XPP X18 0 0 18 1760 1101 3 MP XPP X0 18 18 0 1760 1119 3 MP XPP X18 0 0 18 1760 1119 3 MP XPP X0 18 18 0 1760 1137 3 MP XPP X18 0 0 18 1760 1137 3 MP XPP X0 18 18 0 1760 1155 3 MP XPP X18 0 0 18 1760 1155 3 MP XPP X0 17 18 0 1760 1173 3 MP XPP X18 0 0 17 1760 1173 3 MP XPP X0 18 18 0 1760 1190 3 MP XPP X18 0 0 18 1760 1190 3 MP XPP X0 18 18 0 1760 1208 3 MP XPP X18 0 0 18 1760 1208 3 MP XPP X0 18 18 0 1760 1226 3 MP XPP X18 0 0 18 1760 1226 3 MP XPP X0 18 18 0 1760 1244 3 MP XPP X18 0 0 18 1760 1244 3 MP XPP X0 17 18 0 1760 1262 3 MP XPP X18 0 0 17 1760 1262 3 MP XPP X0 18 18 0 1760 1279 3 MP XPP X18 0 0 18 1760 1279 3 MP XPP X0 18 18 0 1760 1297 3 MP XPP X18 0 0 18 1760 1297 3 MP XPP X0 18 18 0 1760 1315 3 MP XPP X18 0 0 18 1760 1315 3 MP XPP X0 18 18 0 1760 1333 3 MP XPP X18 0 0 18 1760 1333 3 MP XPP X0 18 18 0 1760 1351 3 MP XPP X18 0 0 18 1760 1351 3 MP XPP X0 17 18 0 1760 1369 3 MP XPP X18 0 0 17 1760 1369 3 MP XPP X0 18 18 0 1760 1386 3 MP XPP X18 0 0 18 1760 1386 3 MP XPP X0 18 18 0 1760 1404 3 MP XPP X18 0 0 18 1760 1404 3 MP XPP X0 18 18 0 1760 1422 3 MP XPP X18 0 0 18 1760 1422 3 MP XPP X0 18 18 0 1760 1440 3 MP XPP X18 0 0 18 1760 1440 3 MP XPP X0 18 18 0 1760 1458 3 MP XPP X18 0 0 18 1760 1458 3 MP XPP X0 17 18 0 1760 1476 3 MP XPP X18 0 0 17 1760 1476 3 MP XPP X0 18 18 0 1760 1493 3 MP XPP X18 0 0 18 1760 1493 3 MP XPP X0 18 18 0 1760 1511 3 MP XPP X18 0 0 18 1760 1511 3 MP XPP X0 18 18 0 1760 1529 3 MP XPP X18 0 0 18 1760 1529 3 MP XPP X0 18 18 0 1760 1547 3 MP XPP X18 0 0 18 1760 1547 3 MP XPP X0 18 18 0 1760 1565 3 MP XPP X18 0 0 18 1760 1565 3 MP XPP X0 17 18 0 1760 1583 3 MP XPP X18 0 0 17 1760 1583 3 MP XPP X0 18 18 0 1760 1600 3 MP XPP X18 0 0 18 1760 1600 3 MP XPP X0 18 18 0 1760 1618 3 MP XPP X18 0 0 18 1760 1618 3 MP XPP X0 18 18 0 1760 1636 3 MP XPP X18 0 0 18 1760 1636 3 MP XPP X0 18 18 0 1760 1654 3 MP XPP X18 0 0 18 1760 1654 3 MP XPP X0 18 18 0 1760 1672 3 MP XPP X18 0 0 18 1760 1672 3 MP XPP X0 17 18 0 1760 1690 3 MP XPP X18 0 0 17 1760 1690 3 MP XPP X0 18 18 0 1760 1707 3 MP XPP X18 0 0 18 1760 1707 3 MP XPP X0 18 18 0 1760 1725 3 MP XPP X18 0 0 18 1760 1725 3 MP XPP X0 18 18 0 1760 1743 3 MP XPP X18 0 0 18 1760 1743 3 MP XPP X0 18 18 0 1760 1761 3 MP XPP X18 0 0 18 1760 1761 3 MP XPP X0 18 18 0 1760 1779 3 MP XPP X18 0 0 18 1760 1779 3 MP XPP X0 17 18 0 1760 1797 3 MP XPP X18 0 0 17 1760 1797 3 MP XPP X0 18 18 0 1760 1814 3 MP XPP X18 0 0 18 1760 1814 3 MP XPP X0 18 18 0 1760 1832 3 MP XPP X18 0 0 18 1760 1832 3 MP XPP X0 18 18 0 1760 1850 3 MP XPP X18 0 0 18 1760 1850 3 MP XPP X0 18 18 0 1760 1868 3 MP XPP X18 0 0 18 1760 1868 3 MP XPP X0 18 18 0 1760 1886 3 MP XPP X18 0 0 18 1760 1886 3 MP XPP X0 17 18 0 1760 1904 3 MP XPP X18 0 0 17 1760 1904 3 MP XPP X0 18 18 0 1760 1921 3 MP XPP X18 0 0 18 1760 1921 3 MP XPP X0 18 18 0 1760 1939 3 MP XPP X18 0 0 18 1760 1939 3 MP XPP X0 18 18 0 1760 1957 3 MP XPP X18 0 0 18 1760 1957 3 MP XPP X0 18 18 0 1760 1975 3 MP XPP X18 0 0 18 1760 1975 3 MP XPP X0 18 18 0 1760 1993 3 MP XPP X18 0 0 18 1760 1993 3 MP XPP X0 17 18 0 1760 2011 3 MP XPP X18 0 0 17 1760 2011 3 MP XPP X0 18 18 0 1760 2028 3 MP XPP X18 0 0 18 1760 2028 3 MP XPP X0 18 18 0 1760 2046 3 MP XPP X18 0 0 18 1760 2046 3 MP XPP X0 18 18 0 1760 2064 3 MP XPP X18 0 0 18 1760 2064 3 MP XPP X0 18 18 0 1760 2082 3 MP XPP X18 0 0 18 1760 2082 3 MP XPP X0 18 18 0 1760 2100 3 MP XPP X18 0 0 18 1760 2100 3 MP XPP X0 17 18 0 1760 2118 3 MP XPP X18 0 0 17 1760 2118 3 MP XPP X0 18 18 0 1760 2135 3 MP XPP X18 0 0 18 1760 2135 3 MP XPP X0 18 18 0 1760 2153 3 MP XPP X18 0 0 18 1760 2153 3 MP XPP X0 18 18 0 1778 388 3 MP XPP X18 0 0 18 1778 388 3 MP XPP X0 18 18 0 1778 406 3 MP XPP X18 0 0 18 1778 406 3 MP XPP X0 17 18 0 1778 424 3 MP XPP X18 0 0 17 1778 424 3 MP XPP X0 18 18 0 1778 441 3 MP XPP X18 0 0 18 1778 441 3 MP XPP X0 18 18 0 1778 459 3 MP XPP X18 0 0 18 1778 459 3 MP XPP X0 18 18 0 1778 477 3 MP XPP X18 0 0 18 1778 477 3 MP XPP X0 18 18 0 1778 495 3 MP XPP X18 0 0 18 1778 495 3 MP XPP X0 18 18 0 1778 513 3 MP XPP X18 0 0 18 1778 513 3 MP XPP X0 17 18 0 1778 531 3 MP XPP X18 0 0 17 1778 531 3 MP XPP X0 18 18 0 1778 548 3 MP XPP X18 0 0 18 1778 548 3 MP XPP X0 18 18 0 1778 566 3 MP XPP X18 0 0 18 1778 566 3 MP XPP X0.746032 sg X0 18 18 0 1778 584 3 MP XPP X18 0 0 18 1778 584 3 MP XPP X0 18 18 0 1778 602 3 MP XPP X18 0 0 18 1778 602 3 MP XPP X0 18 18 0 1778 620 3 MP XPP X18 0 0 18 1778 620 3 MP XPP X0 17 18 0 1778 638 3 MP XPP X18 0 0 17 1778 638 3 MP XPP X0 18 18 0 1778 655 3 MP XPP X18 0 0 18 1778 655 3 MP XPP X0 18 18 0 1778 673 3 MP XPP X18 0 0 18 1778 673 3 MP XPP X0 18 18 0 1778 691 3 MP XPP X18 0 0 18 1778 691 3 MP XPP X0 18 18 0 1778 709 3 MP XPP X18 0 0 18 1778 709 3 MP XPP X0 18 18 0 1778 727 3 MP XPP X18 0 0 18 1778 727 3 MP XPP X0 17 18 0 1778 745 3 MP XPP X18 0 0 17 1778 745 3 MP XPP X0 18 18 0 1778 762 3 MP XPP X18 0 0 18 1778 762 3 MP XPP X0 18 18 0 1778 780 3 MP XPP X18 0 0 18 1778 780 3 MP XPP X0 18 18 0 1778 798 3 MP XPP X18 0 0 18 1778 798 3 MP XPP X0 18 18 0 1778 816 3 MP XPP X18 0 0 18 1778 816 3 MP XPP X0 18 18 0 1778 834 3 MP XPP X18 0 0 18 1778 834 3 MP XPP X0 17 18 0 1778 852 3 MP XPP X18 0 0 17 1778 852 3 MP XPP X1 sg X0 18 18 0 1778 869 3 MP XPP X18 0 0 18 1778 869 3 MP XPP X0 18 18 0 1778 887 3 MP XPP X18 0 0 18 1778 887 3 MP XPP X0 18 18 0 1778 905 3 MP XPP X18 0 0 18 1778 905 3 MP XPP X0 18 18 0 1778 923 3 MP XPP X18 0 0 18 1778 923 3 MP XPP X0 18 18 0 1778 941 3 MP XPP X18 0 0 18 1778 941 3 MP XPP X0 17 18 0 1778 959 3 MP XPP X18 0 0 17 1778 959 3 MP XPP X0 18 18 0 1778 976 3 MP XPP X18 0 0 18 1778 976 3 MP XPP X0 18 18 0 1778 994 3 MP XPP X18 0 0 18 1778 994 3 MP XPP X0 18 18 0 1778 1012 3 MP XPP X18 0 0 18 1778 1012 3 MP XPP X0 18 18 0 1778 1030 3 MP XPP X18 0 0 18 1778 1030 3 MP XPP X0 18 18 0 1778 1048 3 MP XPP X18 0 0 18 1778 1048 3 MP XPP X0 17 18 0 1778 1066 3 MP XPP X18 0 0 17 1778 1066 3 MP XPP X0 18 18 0 1778 1083 3 MP XPP X18 0 0 18 1778 1083 3 MP XPP X0 18 18 0 1778 1101 3 MP XPP X18 0 0 18 1778 1101 3 MP XPP X0 18 18 0 1778 1119 3 MP XPP X18 0 0 18 1778 1119 3 MP XPP X0 18 18 0 1778 1137 3 MP XPP X18 0 0 18 1778 1137 3 MP XPP X0 18 18 0 1778 1155 3 MP XPP X18 0 0 18 1778 1155 3 MP XPP X0 17 18 0 1778 1173 3 MP XPP X18 0 0 17 1778 1173 3 MP XPP X0 18 18 0 1778 1190 3 MP XPP X18 0 0 18 1778 1190 3 MP XPP X0 18 18 0 1778 1208 3 MP XPP X18 0 0 18 1778 1208 3 MP XPP X0 18 18 0 1778 1226 3 MP XPP X18 0 0 18 1778 1226 3 MP XPP X0 18 18 0 1778 1244 3 MP XPP X18 0 0 18 1778 1244 3 MP XPP X0 17 18 0 1778 1262 3 MP XPP X18 0 0 17 1778 1262 3 MP XPP X0 18 18 0 1778 1279 3 MP XPP X18 0 0 18 1778 1279 3 MP XPP X0 18 18 0 1778 1297 3 MP XPP X18 0 0 18 1778 1297 3 MP XPP X0 18 18 0 1778 1315 3 MP XPP X18 0 0 18 1778 1315 3 MP XPP X0 18 18 0 1778 1333 3 MP XPP X18 0 0 18 1778 1333 3 MP XPP X0 18 18 0 1778 1351 3 MP XPP X18 0 0 18 1778 1351 3 MP XPP X0 17 18 0 1778 1369 3 MP XPP X18 0 0 17 1778 1369 3 MP XPP X0 18 18 0 1778 1386 3 MP XPP X18 0 0 18 1778 1386 3 MP XPP X0 18 18 0 1778 1404 3 MP XPP X18 0 0 18 1778 1404 3 MP XPP X0 18 18 0 1778 1422 3 MP XPP X18 0 0 18 1778 1422 3 MP XPP X0 18 18 0 1778 1440 3 MP XPP X18 0 0 18 1778 1440 3 MP XPP X0 18 18 0 1778 1458 3 MP XPP X18 0 0 18 1778 1458 3 MP XPP X0 17 18 0 1778 1476 3 MP XPP X18 0 0 17 1778 1476 3 MP XPP X0 18 18 0 1778 1493 3 MP XPP X18 0 0 18 1778 1493 3 MP XPP X0 18 18 0 1778 1511 3 MP XPP X18 0 0 18 1778 1511 3 MP XPP X0 18 18 0 1778 1529 3 MP XPP X18 0 0 18 1778 1529 3 MP XPP X0 18 18 0 1778 1547 3 MP XPP X18 0 0 18 1778 1547 3 MP XPP X0 18 18 0 1778 1565 3 MP XPP X18 0 0 18 1778 1565 3 MP XPP X0 17 18 0 1778 1583 3 MP XPP X18 0 0 17 1778 1583 3 MP XPP X0 18 18 0 1778 1600 3 MP XPP X18 0 0 18 1778 1600 3 MP XPP X0 18 18 0 1778 1618 3 MP XPP X18 0 0 18 1778 1618 3 MP XPP X0 18 18 0 1778 1636 3 MP XPP X18 0 0 18 1778 1636 3 MP XPP X0 18 18 0 1778 1654 3 MP XPP X18 0 0 18 1778 1654 3 MP XPP X0 18 18 0 1778 1672 3 MP XPP X18 0 0 18 1778 1672 3 MP XPP X0 17 18 0 1778 1690 3 MP XPP X18 0 0 17 1778 1690 3 MP XPP X0 18 18 0 1778 1707 3 MP XPP X18 0 0 18 1778 1707 3 MP XPP X0 18 18 0 1778 1725 3 MP XPP X18 0 0 18 1778 1725 3 MP XPP X0 18 18 0 1778 1743 3 MP XPP X18 0 0 18 1778 1743 3 MP XPP X0 18 18 0 1778 1761 3 MP XPP X18 0 0 18 1778 1761 3 MP XPP X0 18 18 0 1778 1779 3 MP XPP X18 0 0 18 1778 1779 3 MP XPP X0 17 18 0 1778 1797 3 MP XPP X18 0 0 17 1778 1797 3 MP XPP X0 18 18 0 1778 1814 3 MP XPP X18 0 0 18 1778 1814 3 MP XPP X0 18 18 0 1778 1832 3 MP XPP X18 0 0 18 1778 1832 3 MP XPP X0 18 18 0 1778 1850 3 MP XPP X18 0 0 18 1778 1850 3 MP XPP X0 18 18 0 1778 1868 3 MP XPP X18 0 0 18 1778 1868 3 MP XPP X0 18 18 0 1778 1886 3 MP XPP X18 0 0 18 1778 1886 3 MP XPP X0 17 18 0 1778 1904 3 MP XPP X18 0 0 17 1778 1904 3 MP XPP X0 18 18 0 1778 1921 3 MP XPP X18 0 0 18 1778 1921 3 MP XPP X0 18 18 0 1778 1939 3 MP XPP X18 0 0 18 1778 1939 3 MP XPP X0 18 18 0 1778 1957 3 MP XPP X18 0 0 18 1778 1957 3 MP XPP X0 18 18 0 1778 1975 3 MP XPP X18 0 0 18 1778 1975 3 MP XPP X0 18 18 0 1778 1993 3 MP XPP X18 0 0 18 1778 1993 3 MP XPP X0 17 18 0 1778 2011 3 MP XPP X18 0 0 17 1778 2011 3 MP XPP X0 18 18 0 1778 2028 3 MP XPP X18 0 0 18 1778 2028 3 MP XPP X0 18 18 0 1778 2046 3 MP XPP X18 0 0 18 1778 2046 3 MP XPP X0 18 18 0 1778 2064 3 MP XPP X18 0 0 18 1778 2064 3 MP XPP X0 18 18 0 1778 2082 3 MP XPP X18 0 0 18 1778 2082 3 MP XPP X0 18 18 0 1778 2100 3 MP XPP X18 0 0 18 1778 2100 3 MP XPP X0 17 18 0 1778 2118 3 MP XPP X18 0 0 17 1778 2118 3 MP XPP X0 18 18 0 1778 2135 3 MP XPP X18 0 0 18 1778 2135 3 MP XPP X0 18 18 0 1778 2153 3 MP XPP X18 0 0 18 1778 2153 3 MP XPP X0 18 18 0 1796 388 3 MP XPP X18 0 0 18 1796 388 3 MP XPP X0 18 18 0 1796 406 3 MP XPP X18 0 0 18 1796 406 3 MP XPP X0 17 18 0 1796 424 3 MP XPP X18 0 0 17 1796 424 3 MP XPP X0 18 18 0 1796 441 3 MP XPP X18 0 0 18 1796 441 3 MP XPP X0 18 18 0 1796 459 3 MP XPP X18 0 0 18 1796 459 3 MP XPP X0 18 18 0 1796 477 3 MP XPP X18 0 0 18 1796 477 3 MP XPP X0 18 18 0 1796 495 3 MP XPP X18 0 0 18 1796 495 3 MP XPP X0 18 18 0 1796 513 3 MP XPP X18 0 0 18 1796 513 3 MP XPP X0 17 18 0 1796 531 3 MP XPP X18 0 0 17 1796 531 3 MP XPP X0 18 18 0 1796 548 3 MP XPP X18 0 0 18 1796 548 3 MP XPP X0 18 18 0 1796 566 3 MP XPP X18 0 0 18 1796 566 3 MP XPP X0.746032 sg X0 18 18 0 1796 584 3 MP XPP X18 0 0 18 1796 584 3 MP XPP X0 18 18 0 1796 602 3 MP XPP X18 0 0 18 1796 602 3 MP XPP X0 18 18 0 1796 620 3 MP XPP X18 0 0 18 1796 620 3 MP XPP X0 17 18 0 1796 638 3 MP XPP X18 0 0 17 1796 638 3 MP XPP X0 18 18 0 1796 655 3 MP XPP X18 0 0 18 1796 655 3 MP XPP X0 18 18 0 1796 673 3 MP XPP X18 0 0 18 1796 673 3 MP XPP X0 18 18 0 1796 691 3 MP XPP X18 0 0 18 1796 691 3 MP XPP X0 18 18 0 1796 709 3 MP XPP X18 0 0 18 1796 709 3 MP XPP X0 18 18 0 1796 727 3 MP XPP X18 0 0 18 1796 727 3 MP XPP X0 17 18 0 1796 745 3 MP XPP X18 0 0 17 1796 745 3 MP XPP X0 18 18 0 1796 762 3 MP XPP X18 0 0 18 1796 762 3 MP XPP X0 18 18 0 1796 780 3 MP XPP X18 0 0 18 1796 780 3 MP XPP X0 18 18 0 1796 798 3 MP XPP X18 0 0 18 1796 798 3 MP XPP X0 18 18 0 1796 816 3 MP XPP X18 0 0 18 1796 816 3 MP XPP X0 18 18 0 1796 834 3 MP XPP X18 0 0 18 1796 834 3 MP XPP X0 17 18 0 1796 852 3 MP XPP X18 0 0 17 1796 852 3 MP XPP X1 sg X0 18 18 0 1796 869 3 MP XPP X18 0 0 18 1796 869 3 MP XPP X0 18 18 0 1796 887 3 MP XPP X18 0 0 18 1796 887 3 MP XPP X0 18 18 0 1796 905 3 MP XPP X18 0 0 18 1796 905 3 MP XPP X0 18 18 0 1796 923 3 MP XPP X18 0 0 18 1796 923 3 MP XPP X0 18 18 0 1796 941 3 MP XPP X18 0 0 18 1796 941 3 MP XPP X0 17 18 0 1796 959 3 MP XPP X18 0 0 17 1796 959 3 MP XPP X0 18 18 0 1796 976 3 MP XPP X18 0 0 18 1796 976 3 MP XPP X0 18 18 0 1796 994 3 MP XPP X18 0 0 18 1796 994 3 MP XPP X0 18 18 0 1796 1012 3 MP XPP X18 0 0 18 1796 1012 3 MP XPP X0 18 18 0 1796 1030 3 MP XPP X18 0 0 18 1796 1030 3 MP XPP X0 18 18 0 1796 1048 3 MP XPP X18 0 0 18 1796 1048 3 MP XPP X0 17 18 0 1796 1066 3 MP XPP X18 0 0 17 1796 1066 3 MP XPP X0 18 18 0 1796 1083 3 MP XPP X18 0 0 18 1796 1083 3 MP XPP X0 18 18 0 1796 1101 3 MP XPP X18 0 0 18 1796 1101 3 MP XPP X0 18 18 0 1796 1119 3 MP XPP X18 0 0 18 1796 1119 3 MP XPP X0 18 18 0 1796 1137 3 MP XPP X18 0 0 18 1796 1137 3 MP XPP X0 18 18 0 1796 1155 3 MP XPP X18 0 0 18 1796 1155 3 MP XPP X0 17 18 0 1796 1173 3 MP XPP X18 0 0 17 1796 1173 3 MP XPP X0 18 18 0 1796 1190 3 MP XPP X18 0 0 18 1796 1190 3 MP XPP X0 18 18 0 1796 1208 3 MP XPP X18 0 0 18 1796 1208 3 MP XPP X0 18 18 0 1796 1226 3 MP XPP X18 0 0 18 1796 1226 3 MP XPP X0 18 18 0 1796 1244 3 MP XPP X18 0 0 18 1796 1244 3 MP XPP X0 17 18 0 1796 1262 3 MP XPP X18 0 0 17 1796 1262 3 MP XPP X0 18 18 0 1796 1279 3 MP XPP X18 0 0 18 1796 1279 3 MP XPP X0 18 18 0 1796 1297 3 MP XPP X18 0 0 18 1796 1297 3 MP XPP X0 18 18 0 1796 1315 3 MP XPP X18 0 0 18 1796 1315 3 MP XPP X0 18 18 0 1796 1333 3 MP XPP X18 0 0 18 1796 1333 3 MP XPP X0 18 18 0 1796 1351 3 MP XPP X18 0 0 18 1796 1351 3 MP XPP X0 17 18 0 1796 1369 3 MP XPP X18 0 0 17 1796 1369 3 MP XPP X0 18 18 0 1796 1386 3 MP XPP X18 0 0 18 1796 1386 3 MP XPP X0 18 18 0 1796 1404 3 MP XPP X18 0 0 18 1796 1404 3 MP XPP X0 18 18 0 1796 1422 3 MP XPP X18 0 0 18 1796 1422 3 MP XPP X0 18 18 0 1796 1440 3 MP XPP X18 0 0 18 1796 1440 3 MP XPP X0 18 18 0 1796 1458 3 MP XPP X18 0 0 18 1796 1458 3 MP XPP X0 17 18 0 1796 1476 3 MP XPP X18 0 0 17 1796 1476 3 MP XPP X0 18 18 0 1796 1493 3 MP XPP X18 0 0 18 1796 1493 3 MP XPP X0 18 18 0 1796 1511 3 MP XPP X18 0 0 18 1796 1511 3 MP XPP X0 18 18 0 1796 1529 3 MP XPP X18 0 0 18 1796 1529 3 MP XPP X0 18 18 0 1796 1547 3 MP XPP X18 0 0 18 1796 1547 3 MP XPP X0 18 18 0 1796 1565 3 MP XPP X18 0 0 18 1796 1565 3 MP XPP X0 17 18 0 1796 1583 3 MP XPP X18 0 0 17 1796 1583 3 MP XPP X0 18 18 0 1796 1600 3 MP XPP X18 0 0 18 1796 1600 3 MP XPP X0 18 18 0 1796 1618 3 MP XPP X18 0 0 18 1796 1618 3 MP XPP X0 18 18 0 1796 1636 3 MP XPP X18 0 0 18 1796 1636 3 MP XPP X0 18 18 0 1796 1654 3 MP XPP X18 0 0 18 1796 1654 3 MP XPP X0 18 18 0 1796 1672 3 MP XPP X18 0 0 18 1796 1672 3 MP XPP X0 17 18 0 1796 1690 3 MP XPP X18 0 0 17 1796 1690 3 MP XPP X0 18 18 0 1796 1707 3 MP XPP X18 0 0 18 1796 1707 3 MP XPP X0 18 18 0 1796 1725 3 MP XPP X18 0 0 18 1796 1725 3 MP XPP X0 18 18 0 1796 1743 3 MP XPP X18 0 0 18 1796 1743 3 MP XPP X0 18 18 0 1796 1761 3 MP XPP X18 0 0 18 1796 1761 3 MP XPP X0 18 18 0 1796 1779 3 MP XPP X18 0 0 18 1796 1779 3 MP XPP X0 17 18 0 1796 1797 3 MP XPP X18 0 0 17 1796 1797 3 MP XPP X0 18 18 0 1796 1814 3 MP XPP X18 0 0 18 1796 1814 3 MP XPP X0 18 18 0 1796 1832 3 MP XPP X18 0 0 18 1796 1832 3 MP XPP X0 18 18 0 1796 1850 3 MP XPP X18 0 0 18 1796 1850 3 MP XPP X0 18 18 0 1796 1868 3 MP XPP X18 0 0 18 1796 1868 3 MP XPP X0 18 18 0 1796 1886 3 MP XPP X18 0 0 18 1796 1886 3 MP XPP X0 17 18 0 1796 1904 3 MP XPP X18 0 0 17 1796 1904 3 MP XPP X0 18 18 0 1796 1921 3 MP XPP X18 0 0 18 1796 1921 3 MP XPP X0 18 18 0 1796 1939 3 MP XPP X18 0 0 18 1796 1939 3 MP XPP X0 18 18 0 1796 1957 3 MP XPP X18 0 0 18 1796 1957 3 MP XPP X0 18 18 0 1796 1975 3 MP XPP X18 0 0 18 1796 1975 3 MP XPP X0 18 18 0 1796 1993 3 MP XPP X18 0 0 18 1796 1993 3 MP XPP X0 17 18 0 1796 2011 3 MP XPP X18 0 0 17 1796 2011 3 MP XPP X0 18 18 0 1796 2028 3 MP XPP X18 0 0 18 1796 2028 3 MP XPP X0 18 18 0 1796 2046 3 MP XPP X18 0 0 18 1796 2046 3 MP XPP X0 18 18 0 1796 2064 3 MP XPP X18 0 0 18 1796 2064 3 MP XPP X0 18 18 0 1796 2082 3 MP XPP X18 0 0 18 1796 2082 3 MP XPP X0 18 18 0 1796 2100 3 MP XPP X18 0 0 18 1796 2100 3 MP XPP X0 17 18 0 1796 2118 3 MP XPP X18 0 0 17 1796 2118 3 MP XPP X0 18 18 0 1796 2135 3 MP XPP X18 0 0 18 1796 2135 3 MP XPP X0 18 18 0 1796 2153 3 MP XPP X18 0 0 18 1796 2153 3 MP XPP X0 18 17 0 1814 388 3 MP XPP X17 0 0 18 1814 388 3 MP XPP X0 18 17 0 1814 406 3 MP XPP X17 0 0 18 1814 406 3 MP XPP X0 17 17 0 1814 424 3 MP XPP X17 0 0 17 1814 424 3 MP XPP X0 18 17 0 1814 441 3 MP XPP X17 0 0 18 1814 441 3 MP XPP X0 18 17 0 1814 459 3 MP XPP X17 0 0 18 1814 459 3 MP XPP X0 18 17 0 1814 477 3 MP XPP X17 0 0 18 1814 477 3 MP XPP X0 18 17 0 1814 495 3 MP XPP X17 0 0 18 1814 495 3 MP XPP X0 18 17 0 1814 513 3 MP XPP X17 0 0 18 1814 513 3 MP XPP X0 17 17 0 1814 531 3 MP XPP X17 0 0 17 1814 531 3 MP XPP X0 18 17 0 1814 548 3 MP XPP X17 0 0 18 1814 548 3 MP XPP X0.746032 sg X0 18 17 0 1814 566 3 MP XPP X17 0 0 18 1814 566 3 MP XPP X0 18 17 0 1814 584 3 MP XPP X17 0 0 18 1814 584 3 MP XPP X0 18 17 0 1814 602 3 MP XPP X17 0 0 18 1814 602 3 MP XPP X0 18 17 0 1814 620 3 MP XPP X17 0 0 18 1814 620 3 MP XPP X0 17 17 0 1814 638 3 MP XPP X17 0 0 17 1814 638 3 MP XPP X0 18 17 0 1814 655 3 MP XPP X17 0 0 18 1814 655 3 MP XPP X0 18 17 0 1814 673 3 MP XPP X17 0 0 18 1814 673 3 MP XPP X0 18 17 0 1814 691 3 MP XPP X17 0 0 18 1814 691 3 MP XPP X0 18 17 0 1814 709 3 MP XPP X17 0 0 18 1814 709 3 MP XPP X0 18 17 0 1814 727 3 MP XPP X17 0 0 18 1814 727 3 MP XPP X0 17 17 0 1814 745 3 MP XPP X17 0 0 17 1814 745 3 MP XPP X0 18 17 0 1814 762 3 MP XPP X17 0 0 18 1814 762 3 MP XPP X0 18 17 0 1814 780 3 MP XPP X17 0 0 18 1814 780 3 MP XPP X0 18 17 0 1814 798 3 MP XPP X17 0 0 18 1814 798 3 MP XPP X0 18 17 0 1814 816 3 MP XPP X17 0 0 18 1814 816 3 MP XPP X0 18 17 0 1814 834 3 MP XPP X17 0 0 18 1814 834 3 MP XPP X0 17 17 0 1814 852 3 MP XPP X17 0 0 17 1814 852 3 MP XPP X0 18 17 0 1814 869 3 MP XPP X17 0 0 18 1814 869 3 MP XPP X1 sg X0 18 17 0 1814 887 3 MP XPP X17 0 0 18 1814 887 3 MP XPP X0 18 17 0 1814 905 3 MP XPP X17 0 0 18 1814 905 3 MP XPP X0 18 17 0 1814 923 3 MP XPP X17 0 0 18 1814 923 3 MP XPP X0 18 17 0 1814 941 3 MP XPP X17 0 0 18 1814 941 3 MP XPP X0 17 17 0 1814 959 3 MP XPP X17 0 0 17 1814 959 3 MP XPP X0 18 17 0 1814 976 3 MP XPP X17 0 0 18 1814 976 3 MP XPP X0 18 17 0 1814 994 3 MP XPP X17 0 0 18 1814 994 3 MP XPP X0 18 17 0 1814 1012 3 MP XPP X17 0 0 18 1814 1012 3 MP XPP X0 18 17 0 1814 1030 3 MP XPP X17 0 0 18 1814 1030 3 MP XPP X0 18 17 0 1814 1048 3 MP XPP X17 0 0 18 1814 1048 3 MP XPP X0 17 17 0 1814 1066 3 MP XPP X17 0 0 17 1814 1066 3 MP XPP X0 18 17 0 1814 1083 3 MP XPP X17 0 0 18 1814 1083 3 MP XPP X0 18 17 0 1814 1101 3 MP XPP X17 0 0 18 1814 1101 3 MP XPP X0 18 17 0 1814 1119 3 MP XPP X17 0 0 18 1814 1119 3 MP XPP X0 18 17 0 1814 1137 3 MP XPP X17 0 0 18 1814 1137 3 MP XPP X0 18 17 0 1814 1155 3 MP XPP X17 0 0 18 1814 1155 3 MP XPP X0 17 17 0 1814 1173 3 MP XPP X17 0 0 17 1814 1173 3 MP XPP X0 18 17 0 1814 1190 3 MP XPP X17 0 0 18 1814 1190 3 MP XPP X0 18 17 0 1814 1208 3 MP XPP X17 0 0 18 1814 1208 3 MP XPP X0 18 17 0 1814 1226 3 MP XPP X17 0 0 18 1814 1226 3 MP XPP X0 18 17 0 1814 1244 3 MP XPP X17 0 0 18 1814 1244 3 MP XPP X0 17 17 0 1814 1262 3 MP XPP X17 0 0 17 1814 1262 3 MP XPP X0 18 17 0 1814 1279 3 MP XPP X17 0 0 18 1814 1279 3 MP XPP X0 18 17 0 1814 1297 3 MP XPP X17 0 0 18 1814 1297 3 MP XPP X0 18 17 0 1814 1315 3 MP XPP X17 0 0 18 1814 1315 3 MP XPP X0 18 17 0 1814 1333 3 MP XPP X17 0 0 18 1814 1333 3 MP XPP X0 18 17 0 1814 1351 3 MP XPP X17 0 0 18 1814 1351 3 MP XPP X0 17 17 0 1814 1369 3 MP XPP X17 0 0 17 1814 1369 3 MP XPP X0 18 17 0 1814 1386 3 MP XPP X17 0 0 18 1814 1386 3 MP XPP X0 18 17 0 1814 1404 3 MP XPP X17 0 0 18 1814 1404 3 MP XPP X0 18 17 0 1814 1422 3 MP XPP X17 0 0 18 1814 1422 3 MP XPP X0 18 17 0 1814 1440 3 MP XPP X17 0 0 18 1814 1440 3 MP XPP X0 18 17 0 1814 1458 3 MP XPP X17 0 0 18 1814 1458 3 MP XPP X0 17 17 0 1814 1476 3 MP XPP X17 0 0 17 1814 1476 3 MP XPP X0 18 17 0 1814 1493 3 MP XPP X17 0 0 18 1814 1493 3 MP XPP X0 18 17 0 1814 1511 3 MP XPP X17 0 0 18 1814 1511 3 MP XPP X0 18 17 0 1814 1529 3 MP XPP X17 0 0 18 1814 1529 3 MP XPP X0 18 17 0 1814 1547 3 MP XPP X17 0 0 18 1814 1547 3 MP XPP X0 18 17 0 1814 1565 3 MP XPP X17 0 0 18 1814 1565 3 MP XPP X0 17 17 0 1814 1583 3 MP XPP X17 0 0 17 1814 1583 3 MP XPP X0 18 17 0 1814 1600 3 MP XPP X17 0 0 18 1814 1600 3 MP XPP X0 18 17 0 1814 1618 3 MP XPP X17 0 0 18 1814 1618 3 MP XPP X0 18 17 0 1814 1636 3 MP XPP X17 0 0 18 1814 1636 3 MP XPP X0 18 17 0 1814 1654 3 MP XPP X17 0 0 18 1814 1654 3 MP XPP X0 18 17 0 1814 1672 3 MP XPP X17 0 0 18 1814 1672 3 MP XPP X0 17 17 0 1814 1690 3 MP XPP X17 0 0 17 1814 1690 3 MP XPP X0 18 17 0 1814 1707 3 MP XPP X17 0 0 18 1814 1707 3 MP XPP X0 18 17 0 1814 1725 3 MP XPP X17 0 0 18 1814 1725 3 MP XPP X0 18 17 0 1814 1743 3 MP XPP X17 0 0 18 1814 1743 3 MP XPP X0 18 17 0 1814 1761 3 MP XPP X17 0 0 18 1814 1761 3 MP XPP X0 18 17 0 1814 1779 3 MP XPP X17 0 0 18 1814 1779 3 MP XPP X0 17 17 0 1814 1797 3 MP XPP X17 0 0 17 1814 1797 3 MP XPP X0 18 17 0 1814 1814 3 MP XPP X17 0 0 18 1814 1814 3 MP XPP X0 18 17 0 1814 1832 3 MP XPP X17 0 0 18 1814 1832 3 MP XPP X0 18 17 0 1814 1850 3 MP XPP X17 0 0 18 1814 1850 3 MP XPP X0 18 17 0 1814 1868 3 MP XPP X17 0 0 18 1814 1868 3 MP XPP X0 18 17 0 1814 1886 3 MP XPP X17 0 0 18 1814 1886 3 MP XPP X0 17 17 0 1814 1904 3 MP XPP X17 0 0 17 1814 1904 3 MP XPP X0 18 17 0 1814 1921 3 MP XPP X17 0 0 18 1814 1921 3 MP XPP X0 18 17 0 1814 1939 3 MP XPP X17 0 0 18 1814 1939 3 MP XPP X0 18 17 0 1814 1957 3 MP XPP X17 0 0 18 1814 1957 3 MP XPP X0 18 17 0 1814 1975 3 MP XPP X17 0 0 18 1814 1975 3 MP XPP X0 18 17 0 1814 1993 3 MP XPP X17 0 0 18 1814 1993 3 MP XPP X0 17 17 0 1814 2011 3 MP XPP X17 0 0 17 1814 2011 3 MP XPP X0 18 17 0 1814 2028 3 MP XPP X17 0 0 18 1814 2028 3 MP XPP X0 18 17 0 1814 2046 3 MP XPP X17 0 0 18 1814 2046 3 MP XPP X0 18 17 0 1814 2064 3 MP XPP X17 0 0 18 1814 2064 3 MP XPP X0 18 17 0 1814 2082 3 MP XPP X17 0 0 18 1814 2082 3 MP XPP X0 18 17 0 1814 2100 3 MP XPP X17 0 0 18 1814 2100 3 MP XPP X0 17 17 0 1814 2118 3 MP XPP X17 0 0 17 1814 2118 3 MP XPP X0 18 17 0 1814 2135 3 MP XPP X17 0 0 18 1814 2135 3 MP XPP X0 18 17 0 1814 2153 3 MP XPP X17 0 0 18 1814 2153 3 MP XPP X0 18 18 0 1831 388 3 MP XPP X18 0 0 18 1831 388 3 MP XPP X0 18 18 0 1831 406 3 MP XPP X18 0 0 18 1831 406 3 MP XPP X0 17 18 0 1831 424 3 MP XPP X18 0 0 17 1831 424 3 MP XPP X0 18 18 0 1831 441 3 MP XPP X18 0 0 18 1831 441 3 MP XPP X0 18 18 0 1831 459 3 MP XPP X18 0 0 18 1831 459 3 MP XPP X0 18 18 0 1831 477 3 MP XPP X18 0 0 18 1831 477 3 MP XPP X0 18 18 0 1831 495 3 MP XPP X18 0 0 18 1831 495 3 MP XPP X0 18 18 0 1831 513 3 MP XPP X18 0 0 18 1831 513 3 MP XPP X0 17 18 0 1831 531 3 MP XPP X18 0 0 17 1831 531 3 MP XPP X0.746032 sg X0 18 18 0 1831 548 3 MP XPP X18 0 0 18 1831 548 3 MP XPP X0 18 18 0 1831 566 3 MP XPP X18 0 0 18 1831 566 3 MP XPP X0 18 18 0 1831 584 3 MP XPP X18 0 0 18 1831 584 3 MP XPP X0 18 18 0 1831 602 3 MP XPP X18 0 0 18 1831 602 3 MP XPP X0 18 18 0 1831 620 3 MP XPP X18 0 0 18 1831 620 3 MP XPP X0 17 18 0 1831 638 3 MP XPP X18 0 0 17 1831 638 3 MP XPP X0 18 18 0 1831 655 3 MP XPP X18 0 0 18 1831 655 3 MP XPP X0 18 18 0 1831 673 3 MP XPP X18 0 0 18 1831 673 3 MP XPP X0 18 18 0 1831 691 3 MP XPP X18 0 0 18 1831 691 3 MP XPP X0 18 18 0 1831 709 3 MP XPP X18 0 0 18 1831 709 3 MP XPP X0 18 18 0 1831 727 3 MP XPP X18 0 0 18 1831 727 3 MP XPP X0 17 18 0 1831 745 3 MP XPP X18 0 0 17 1831 745 3 MP XPP X0 18 18 0 1831 762 3 MP XPP X18 0 0 18 1831 762 3 MP XPP X0 18 18 0 1831 780 3 MP XPP X18 0 0 18 1831 780 3 MP XPP X0 18 18 0 1831 798 3 MP XPP X18 0 0 18 1831 798 3 MP XPP X0 18 18 0 1831 816 3 MP XPP X18 0 0 18 1831 816 3 MP XPP X0 18 18 0 1831 834 3 MP XPP X18 0 0 18 1831 834 3 MP XPP X0 17 18 0 1831 852 3 MP XPP X18 0 0 17 1831 852 3 MP XPP X0 18 18 0 1831 869 3 MP XPP X18 0 0 18 1831 869 3 MP XPP X0 18 18 0 1831 887 3 MP XPP X18 0 0 18 1831 887 3 MP XPP X1 sg X0 18 18 0 1831 905 3 MP XPP X18 0 0 18 1831 905 3 MP XPP X0 18 18 0 1831 923 3 MP XPP X18 0 0 18 1831 923 3 MP XPP X0 18 18 0 1831 941 3 MP XPP X18 0 0 18 1831 941 3 MP XPP X0 17 18 0 1831 959 3 MP XPP X18 0 0 17 1831 959 3 MP XPP X0 18 18 0 1831 976 3 MP XPP X18 0 0 18 1831 976 3 MP XPP X0 18 18 0 1831 994 3 MP XPP X18 0 0 18 1831 994 3 MP XPP X0 18