#! /bin/sh
# This is a shell archive.  Remove anything before this line, then unpack
# it by saving it into a file and typing "sh file".  To overwrite existing
# files, type "sh file -c".  You can also feed this as standard input via
# unshar, or by typing "sh <file", e.g..  If this archive is complete, you
# will see the following message at the end:
#		"End of shell archive."
# Contents:  AREADME.1ST Manual.ps Contents.m app_hh.m baart.m bidiag.m
#   blur.m cgls.m cgsvd.m csvd.m deriv2.m discrep.m dsvd.m fil_fac.m
#   foxgood.m gcv.m gcvfun.m gen_form.m gen_hh.m get_l.m heat.m
#   heb_new.m ilaplace.m l_corner.m l_curve.m lagrange.m lanc_b.m
#   lcfun.m lsolve.m lsqi.m lsqr.m ltsolve.m maxent.m mtsvd.m newton.m
#   nu.m parallax.m pcgls.m phillips.m picard.m pinit.m plot_lc.m
#   plsqr.m pnu.m pythag.m quasifun.m quasiopt.m regudemo.m regutm.m
#   shaw.m spikes.m spleval.m std_form.m tgsvd.m tikhonov.m tsvd.m
#   ttls.m ursell.m wing.m
# Wrapped by michela@aurora on Sat Oct 31 13:11:51 1998
PATH=/bin:/usr/bin:/usr/ucb ; export PATH
if test -f 'AREADME.1ST' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'AREADME.1ST'\"
else
echo shar: Extracting \"'AREADME.1ST'\" \(4627 characters\)
sed "s/^X//" >'AREADME.1ST' <<'END_OF_FILE'
X  ***************************************************************************
X  * All the software  contained in this library  is protected by copyright. *
X  * Permission  to use, copy, modify, and  distribute this software for any *
X  * purpose without fee is hereby granted, provided that this entire notice *
X  * is included  in all copies  of any software which is or includes a copy *
X  * or modification  of this software  and in all copies  of the supporting *
X  * documentation for such software.                                        *
X  ***************************************************************************
X  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED *
X  * WARRANTY. IN NO EVENT, NEITHER  THE AUTHORS, NOR THE PUBLISHER, NOR ANY *
X  * MEMBER  OF THE EDITORIAL BOARD OF  THE JOURNAL  "NUMERICAL ALGORITHMS", *
X  * NOR ITS EDITOR-IN-CHIEF, BE  LIABLE FOR ANY ERROR  IN THE SOFTWARE, ANY *
X  * MISUSE  OF IT  OR ANY DAMAGE ARISING OUT OF ITS USE. THE ENTIRE RISK OF *
X  * USING THE SOFTWARE LIES WITH THE PARTY DOING SO.                        *
X  ***************************************************************************
X  * ANY USE  OF THE SOFTWARE  CONSTITUTES  ACCEPTANCE  OF THE TERMS  OF THE *
X  * ABOVE STATEMENT.                                                        *
X  ***************************************************************************
X
X   AUTHOR:
X
X       P. C. HANSEN
X          DEPT. OF MATHEMATICAL MODELLING
X          TECHNICAL UNIVERSITY OF DENMARK
X
X   REFERENCE:
X
X       REGULARIZATION TOOLS: A MATLAB PACKAGE FOR ANALYSIS AND SOLUTION OF
X       DISCRETE ILL-POSED PROBLEMS,
X       NUMERICAL ALGORITHMS, 6 (1994), PP. 1-35
X
X   SOFTWARE REVISION:
X
X       Ver 3.0  APRIL 16, 1998
X
X   SOFTWARE LANGUAGE:
X
X       MATLAB 5
X
X**************************************************************************
X
XRegularization Tools.
XVersion 3.0  16-April-98.
XCopyright (c) 1998 by Per Christian Hansen.
X
XThe installation of Regularization Tools is very simple:
X
X  1.  Unpack the shell archive NA4 by executing the command
X         /bin/sh na4
X
X  2.  Remove the file na4
X
X  3.  The file Manual.ps contains the related manual in PostScript form
X
X***************************************************************
X* This is Version 3.0 of Regularization Tools for Matlab 5.2  *
X*-------------------------------------------------------------*
X*                 Per Christian Hansen, IMM                   *
X***************************************************************
X
X02/01/94:
XFixed bug in cgls (s -> s2).
X
X08/03/94:
XExpanded stopping criterion in newton.
X
X08/09/94:
XRevised comment lines in maxent.
X
X10/07/94:
XRemoved superfluorus statements in mtsvd.
X
X11/01/94:
XModified get_l slightly such that the sign of L*x is correct.
X
X02/09/95:
XRevised qr in csd, l_curve and mtsvd to compute "economy size" decomposition.
XRenamed csd to csdecomp (csd is now a function in the Signal Proc. Toolbox).
XRevised gsvd to call csdecomp.
X
X11/08/95:
XFixed bug in csdecomp when p=1.
X
X03/22/96:
XChanged tsvd and tgsvd to allow k=0.
X
X10/08/96:
XChanged tgsvd to allow a square L.
X
X10/22/96:
XChanged tikhonov to allow a square L.
X
X04/17/97:
XReplaced (..==NaN) with isnan(..) in bsvd.
XAdded initialization of U2t in csdecomp.
X
X04/21/97:
XChanged variable name "case" to "example" in deriv2.
XChanged meshdom to meshgrid in spikes, and deleted the flipud command.
XChanged variable xi to eta in picard.
X
X06/30/97:
XRemoved function bsvd (obsolete with sparse format of bidiagonal matrices).
XChanged to sparse format of bidiagonal matrix in bidiag.
XChanged to sparse format of bidiagonal matrix in lanc_b.
XAdded function regutm.
X
X07/02/97:
XAdded reorthogonalization of normal eq. residual vectors to cgls and pcgls.
XFixed bug in pcgls when computing filter factors.
X
X07/29/97:
XChanged variable name in pinit.
XModified lsolve, ltsolve, and std_form according to simpler formulas.
X
X09/18/97:
XAdded blur test problem.
XDeleted mgs, and included the MGS process in get_l.
X
X11/11/97:
XModified gen_hh to compensate for Matlab's signum function.
X
X12/22/97:
XReplaced gsvd with cgsvd, and deleted csdecomp.
XAdded more output arguments to dsvd, mtsvd, tgsvd, tikhonov, and tsvd.
XAdded method = 'ttls' to fil_fac.
XImproved the plots in gcv, lagrange, picard, plot_lc, and quasiopt.
XAdded input parameter x_0 to tikhonov.
X
X12/29/97:
XAdded call to fmin in gcv, l_curve, and quasiopt.
XCorrected bugs in discrep and lsqi.
XModified heb_new and newton to work with lambda instead of lambda squared.
X
X02/05/98:
XAdded d==0 to get_l.
X
X04/16/98:
XModified l_corner and spleval to be consistent with Spline Toolbox v. 2.0.
X
END_OF_FILE
if test 4627 -ne `wc -c <'AREADME.1ST'`; then
    echo shar: \"'AREADME.1ST'\" unpacked with wrong size!
fi
# end of 'AREADME.1ST'
fi
if test -f 'Manual.ps' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'Manual.ps'\"
else
echo shar: Extracting \"'Manual.ps'\" \(2119016 characters\)
sed "s/^X//" >'Manual.ps' <<'END_OF_FILE'
X%!PS-Adobe-2.0
X%%Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software
X%%Title: book.dvi
X%%Pages: 111
X%%PageOrder: Ascend
X%%BoundingBox: 0 0 596 842
X%%EndComments
X%DVIPSCommandLine: dvips book
X%DVIPSParameters: dpi=300, compressed, comments removed
X%DVIPSSource:  TeX output 1998.03.26:0819
X%%BeginProcSet: texc.pro
X/TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N
X/X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72
Xmul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1}
Xifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale
Xisls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div
Xhsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul
XTR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if}
Xforall round exch round exch]setmatrix}N /@landscape{/isls true N}B
X/@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B
X/FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{
X/nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N
Xstring /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N
Xend dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{
X/sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0]
XN df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup
Xlength 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{
X128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub
Xget 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data
Xdup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N
X/rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup
X/base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx
X0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff
Xsetcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff
X.1 sub]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N
X/cp 0 N{rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id
Xgp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp
Xadd /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add
X/gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{
Xdup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1
Xadv}B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2
Xidiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string
Xputinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval
Xadv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg}
X{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{
Xadv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2
Xchg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{]
X}if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup
Xlength 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{
Xcc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin
X0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul
Xadd .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore userdict
X/eop-hook known{eop-hook}if showpage}N /@start{userdict /start-hook
Xknown{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X
X/IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for
X65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0
X0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V
X{}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7
Xgetinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false}
Xifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false
XRMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1
Xfalse RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform
Xround exch round exch itransform moveto rulex 0 rlineto 0 ruley neg
Xrlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail
X{dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M}
XB /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{
X4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{
Xp 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p
Xa}B /bos{/SS save N}B /eos{SS restore}B end
X%%EndProcSet
X%%BeginProcSet: special.pro
XTeXDict begin /SDict 200 dict N SDict begin /@SpecialDefaults{/hs 612 N
X/vs 792 N /ho 0 N /vo 0 N /hsc 1 N /vsc 1 N /ang 0 N /CLIP 0 N /rwiSeen
Xfalse N /rhiSeen false N /letter{}N /note{}N /a4{}N /legal{}N}B
X/@scaleunit 100 N /@hscale{@scaleunit div /hsc X}B /@vscale{@scaleunit
Xdiv /vsc X}B /@hsize{/hs X /CLIP 1 N}B /@vsize{/vs X /CLIP 1 N}B /@clip{
X/CLIP 2 N}B /@hoffset{/ho X}B /@voffset{/vo X}B /@angle{/ang X}B /@rwi{
X10 div /rwi X /rwiSeen true N}B /@rhi{10 div /rhi X /rhiSeen true N}B
X/@llx{/llx X}B /@lly{/lly X}B /@urx{/urx X}B /@ury{/ury X}B /magscale
Xtrue def end /@MacSetUp{userdict /md known{userdict /md get type
X/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup
Xlength 20 add dict copy def}if end md begin /letter{}N /note{}N /legal{}
XN /od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath
Xclippath mark{transform{itransform moveto}}{transform{itransform lineto}
X}{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{
Xitransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{
Xclosepath}}pathforall newpath counttomark array astore /gc xdf pop ct 39
X0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}if}N
X/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1
Xscale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get
Xppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip
Xnot and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0
XTR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{noflips{TR
Xpop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1
X-1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg
XTR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg
Xsub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr
X0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add
X2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N /cp
X{pop pop showpage pm restore}N end}if}if}N /normalscale{Resolution 72
Xdiv VResolution 72 div neg scale magscale{DVImag dup scale}if 0 setgray}
XN /psfts{S 65781.76 div N}N /startTexFig{/psf$SavedState save N userdict
Xmaxlength dict begin /magscale true def normalscale currentpoint TR
X/psf$ury psfts /psf$urx psfts /psf$lly psfts /psf$llx psfts /psf$y psfts
X/psf$x psfts currentpoint /psf$cy X /psf$cx X /psf$sx psf$x psf$urx
Xpsf$llx sub div N /psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy
Xscale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR
X/showpage{}N /erasepage{}N /copypage{}N /p 3 def @MacSetUp}N /doclip{
Xpsf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
Xroll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
Xmoveto}N /endTexFig{end psf$SavedState restore}N /@beginspecial{SDict
Xbegin /SpecialSave save N gsave normalscale currentpoint TR
X@SpecialDefaults count /ocount X /dcount countdictstack N}N /@setspecial
X{CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
Xclosepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
Xsub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
X}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
XCLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
Xlineto closepath clip}if /showpage{}N /erasepage{}N /copypage{}N newpath
X}N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{
Xend}repeat grestore SpecialSave restore end}N /@defspecial{SDict begin}
XN /@fedspecial{end}B /li{lineto}B /rl{rlineto}B /rc{rcurveto}B /np{
X/SaveX currentpoint /SaveY X N 1 setlinecap newpath}N /st{stroke SaveX
XSaveY moveto}N /fil{fill SaveX SaveY moveto}N /ellipse{/endangle X
X/startangle X /yrad X /xrad X /savematrix matrix currentmatrix N TR xrad
Xyrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end
X%%EndProcSet
XTeXDict begin 39158280 55380996 1000 300 300 (book.dvi)
X@start /Fa 2 108 df<137013F8A2EA01DCA2139CEA038EA2130E487EA2380E0380A212
X0C381C01C0EA1FFF4813E0EA3800A2481370A2126000E0133815177F9618>65
XD<12E0A813F8EAE1F0EAE3E013C0EAE780EAEF0012FE7E138012F3EAE1C013E012E013F0
X13780D177E9611>107 D E /Fb 26 122 df<EC0F80137E13FE12011203D807C0C7FC5B
X120FA939FFFE0F80A3EA0F80B3A6192B7FAA1F>12 D<13FE3803FF80000F13C04813E0EB
X07F0383C01F8387800FC147C127000F0133EA212601220C7FCA3147CA2147814F8EB01F0
X14E01303EB07C0EB0F80EB1F00133E5B5B485A485A5B485A48C7FC121E5A387FFFFEA417
X287EA71D>50 D<EA01FC380FFF80003F13C014E0383C03F0EA3001000013F81300A41301
X13FF1207121FEA3FC0EA7E005A5AA3EAFC01EA7E07EA7FFF7EEA1FFCEA0FE0151B7E9A1C
X>97 D<12F8AF133F38F9FFC000FB13E0B512F0EB07F8EAFC0138F800FC147CA2143EA814
X7E147CA26C13F8130138FF07F0EBFFE000FB13C000F9138038F87E00172A7CA91E>I<EB
X7F803801FFE0000713F85A381FC078383F0010003E13005AA35AA7127CA37E003F131838
X1FC078380FFFF87E000113E038007F80151B7E9A1A>I<143EAFEA01FCEA03FF000F13BE
X4813FE13C1383F007E003E133E5AA212FC5AA77E127CA2007E137E6C13FEEA1FC113FF6C
X13BE3803FE3EEA01F8172A7EA91E>I<13FCEA03FF4813804813C0381F87E0EA3F01383E
X00F05A1470481378B512F8A400F8C7FCA31278127CA27E003F1318381FC0F8EA0FFF7E00
X0113E038007F00151B7E9A1A>I<EB3FC013FF5A5A3807E0005B485AA9EAFFFEA3EA0F80
XB3A6122A7FA912>I<90387C07803901FF3FC0000713FF5A903883E000381F01F0A2383E
X00F8A56C485AA2380F83E013FF485B001D90C7FCEA1C7C003CC8FCA2123E381FFFE014F8
X6C13FE487F481480387E003F007CEB0FC0481307A46C130F007EEB1F80393F807F00381F
XFFFE6C5B000313F038007F801A287F9A1D>I<12F8AF133FEBFFC000FB13E0B512F01383
X38FE01F8EAFC00A35AB2152A7CA91E>I<12F8A51200AA12F8B3A9052A7CA90E>I<12F8AF
XEB01F8EB03F0EB07E0EB0FC01480EB1F00133E5B5BEAF9F012FB12FF7F7FA2EAFE7E487E
X12F8EB1F80130F14C0EB07E0A2EB03F0130114F8EB00FC162A7CA91C>107
XD<12F8B3B3A6052A7CA90E>I<D8F83F133F9039FFC0FFC000FB01E313E0B500F713F001
X8313833AFE01FE01F839FC00FC00A3485BB2251B7C9A2E>I<EAF83FEBFFC000FB13E0B5
X12F0138338FE01F8EAFC00A35AB2151B7C9A1E>I<137E3801FF80000713E04813F0381F
X81F8383F00FC003E137C48133EA20078131E00F8131FA7007C133EA36C137C003F13FC38
X1FC3F8380FFFF06C13E06C13C038007E00181B7E9A1D>I<EAF83F38F9FFC000FB13E0B5
X12F0EB07F8EAFC0138F800FCA2147C147E143EA7147E147C14FC6C13F8130138FF07F0EB
XFFE000FB13C000F9138038F87E0090C7FCAC17277C9A1E>I<EBFC3EEA03FF4813BE4813
XFEEA1FC1EA3F00003E137E007E133E127C12FC5AA77E127C127E147E6C13FEEA1FC113FF
X6C13BE3807FE3EEA01F8C7FCAC17277E9A1E>I<EAF83C13FC12F912FBEAFFE013801300
X5A5AA35AB00E1B7C9A14>I<EA07F8EA1FFF4813805AEA7C0738F8010090C7FCA37E127F
X13F0EA3FFC6C7EEA07FFC61380EB1FC0130F1307A2124012E038FC1F80B5FC6C1300EA1F
XFEEA07F8121B7E9A16>I<EA0F80A7B51280A3380F8000B2148013C33807FFC0A26C1300
XEA01F812227FA115>I<00F813F8B3A213011303EAFC07B5FCEA7FFEEA3FF8EA1FC0151B
X7C9A1E>I<00F8131FA2007C133EA36C137CA36C13F8A3380F81F0A33807C3E0A3000313
XC013E700011380A30000130013F713FF137EA2181B7F9A1B>I<00F801F813F8130100FC
X7F007C9038DC01F0A21303003E90389E03E0A21307149F001F90388F07C0140F130F000F
X158090388F078FA2138ED8079E1400EC03CFA2D803DC13DEA2140113D8D801F813FCA214
X00251B7F9A28>I<007CEB1F80007EEB3F006C133E6C5B380F80FC6C6C5AEBE1F03803E3
XE0EA01F76CB45A6D5A91C7FC133EA2133F497E497E3801F3E0EA03E1803807C0F8380F80
X7C121F497E003E7F007E148048EB0FC01A1B809A1B>I<00F8131F7E007C133EA27E147C
XA27E14F81380000F13F01381EA07C114E013C31203EBE3C0120113E71480EA00F7140013
X77A2137E133EA2133CA2137C1378A25BA21201EA7FE05B5B90C7FC18277F9A1B>I
XE /Fc 2 95 df<126012F0A27E1278127C123CA2123E121E121F7EA27F12077F1203A27F
X12017F12007F1378A2137C133C133E131EA2131F7F14801307A2EB030011247D9F18>92
XD<EA0180EA07C0EA1FF0EA7EFCEAF83EEAE00E0F067C9B18>94 D
XE /Fd 3 52 df<1218127812981218AC12FF08107D8F0F>49 D<121FEA6180EA40C0EA80
X6012C01200A213C0EA0180EA030012065AEA10201220EA7FC012FF0B107F8F0F>I<121F
XEA2180EA60C0A212001380EA0100121FEA00801340136012C0A2EA8040EA6080EA1F000B
X107F8F0F>I E /Fe 5 122 df<B512F0A214027D881B>0 D<EA4001EAC003EA6006EA30
X0CEA1818EA0C30EA0660EA03C0EA0180A2EA03C0EA0660EA0C30EA1818EA300CEA6006EA
XC003EA400110127B901B>2 D<1202A3EAC218EAF278EA3AE0EA0F80A2EA3AE0EAF278EA
XC218EA0200A30D0E7E8E12>I<1206120FA2120E121EA2121C123C1238A212301270A212
X6012E012C0124008117F910A>48 D<1206A8EAFFF0A2EA0600B30C1D7E9611>121
XD E /Ff 14 123 df<B57E380F00F0143C80141F801580A415005C141E5C14F0EBFF80EB
X01C0EB0070A280143CA3143EA31502143F141FEC0F0439FFF00788C7EA01F01F207C9E24
X>82 D<007FB512F839780780780060141800401408A200C0140C00801404A400001400B3
X497E0003B5FC1E1F7D9E24>84 D<1318A2133CA3134EA213CF1387A238010380A2000313
XC0EA0201A23807FFE0EA0400A2481370A2001813380038137838FE01FF18177F961C>97
XD<B512C0EA1C011300144014601420A213081400A21318EA1FF8EA1C1813081410A21300
X14301420A21460EB01E0B5FC14177E9619>101 D<EB7E083803819838070078000C1338
X001C13185A00781308127000F01300A5EB03FEEB00381270127812387E120C1207380380
XD838007F0817177E961D>103 D<EAFF80EA1C00B3A3EAFF8009177E960E>105
XD<EAFFC0001CC7FCAD1440A314C0A2148013011307B5FC12177E9617>108
XD<38FC01FC381E007014201217EA1380A2EA11C0EA10E0A213701338A2131C130E1307A2
XEB03A0EB01E0A213001460123800FE132016177E961C>110 D<13FE38038380380E00E0
X481370003C1378003813380078133C0070131C00F0131EA70070131C0078133C00381338
X003C1378001C13706C13E0380383803800FE0017177E961D>I<EAFFFCEA1C07EB0380EB
X01C014E0A414C0EB0380EB0700EA1FFCEA1C0C13077F1480A214C0A214C214E2EB01E438
XFF807817177E961B>114 D<EA0FC4EA302CEA601CEA400CEAC004A3EAE0001270127FEA
X3FE0EA0FF8EA01FCEA001C130E13061280A3EAC004EAE008EAD810EA87E00F177E9615>
XI<387FFFFC3870381C00401304A200C0130600801302A300001300AE3803FF8017177F96
X1B>I<38FF81FC381C00701420B0000C1340120E6C138038018300EA007C16177E961C>I<
XB5128038F0070012E0EAC00EEA801E131C5B1378EA00705BA2485A485AA2380700805A12
X0EEA1C01003C13001238485A130FB5FC11177E9617>122 D E /Fg
X26 121 df<EA03C0380C3040EA101800201380EA600C12C0EB0D00130E1280130CEAC01C
X132C3860C480381F0300120E7E8D17>11 D<120E1203A2EA0180A213C01200A21360A313
X30A213781398EA0118EA020C1204EA080EEA18061230EAE00312C010177E9615>21
XD<380FFFC0123F382108001241485A1202A212061204A2EA0C18A212181308120E7F8D14
X>25 D<126012F0A2126004047D830A>58 D<126012F0A212701210A21220A21240A2040A
X7D830A>I<130813181330A31360A313C0A3EA0180A3EA0300A21206A35AA35AA35AA35A
XA35AA20D217E9812>61 D<14C0A21301A21303130514E01308131813101320A213401380
XA23801FFF0EB007012025AA25A121838FE03FE17177F961A>65 D<0007B512803800E003
XEC0100A3EA01C0A21440A248485A138113FF1381D80701C7FCA390C8FC120EA45AEAFFC0
X19177F9616>70 D<EA07FEEA00E0A4EA01C0A4EA0380A4EA0700A4120EA45AEAFFC00F17
X7E960F>73 D<EA07FFEA00E0A4485AA4485AA448C7FC1408A21410120E14301420146038
X1C01E0B512C015177F9618>76 D<381FFFFE38381C0E0020130412601240133812800000
X1300A25BA45BA4485AA41203EA3FFC17177F9615>84 D<EA0710EA18F0EA307012601360
X12C0A3EA80C013C4A212C1EA46C8EA38700E0E7E8D13>97 D<127C1218A45AA4EA6780EA
X68C0EA7040EA606012C0A4EA80C0A2EA8180EAC1001246123C0B177E960F>I<EA07C0EA
X0C20EA10701220EA60005AA35AA2EAC0101320EA60C0EA3F000C0E7E8D0F>I<133E130C
XA41318A4EA0730EA18F0EA30701260136012C0A3EA80C013C4A212C1EA46C8EA38700F17
X7E9612>I<120313801300C7FCA6121C12241246A25A120C5AA31231A21232A2121C0917
X7F960C>105 D<1318133813101300A6EA01C0EA0220EA0430A2EA08601200A313C0A4EA
X0180A4EA630012E312C612780D1D80960E>I<121F1206A45AA4EA181C1366138EEA190C
XEA3200123C123FEA3180EA60C013C4A3EAC0C813700F177E9612>I<38383C1E3844C663
X3847028138460301388E0703EA0C06A338180C061520140C154039301804C0EC07001B0E
X7F8D1F>109 D<EA383CEA44C6EA47021246EA8E06120CA3485A144013181480EA3009EB
X0E00120E7F8D15>I<EA07C0EA0C20EA1010EA2018126012C0A3EA8030A2EAC06013C0EA
X6180EA3E000D0E7E8D11>I<EA1C3CEA2246EA2382130312461206A3EA0C06A2130C1308
XEA1A30EA19E0EA1800A25AA312FC1014808D12>I<EA0710EA18D0EA30701260136012C0
XA3EA80C0A312C1EA478012391201A2EA0300A3EA1FC00C147E8D10>I<EA07C0EA0C20EA
X1870A2EA3800121EEA0FC0EA03E0EA0060126012E0EAC0C0EAC180EA3F000C0E7E8D10>
X115 D<1203A21206A4EAFFC0EA0C00A35AA45A1380A2EA31001232121C0A147F930D>I<
XEA0F1F3811A180EA20C31400EA41801201A348C7FC130212C3EAE704EAC508EA78F0110E
X7F8D14>120 D E /Fh 26 114 df<132013401380EA01005A1206A25AA25AA212381230
XA21270A3126012E0AD12601270A31230A212381218A27EA27EA27E7EEA0080134013200B
X317A8113>0 D<7E12407E7E12187EA27EA27EA213801201A213C0A3120013E0AD13C012
X01A31380A212031300A21206A25AA25A12105A5A5A0B317F8113>I<EAC0C0B3A90A1B7A
X8017>13 D<1306130C131813301370136013C012011380120313005A1206120E120C121C
XA212181238A312301270A65AB21270A612301238A31218121CA2120C120E120612077E13
X80120113C012001360137013301318130C13060F4A788119>16 D<12C012607E7E121C12
X0C7E12077E1380120113C0120013E013601370A213301338A31318131CA6130EB2131CA6
X13181338A313301370A2136013E013C012011380120313005A12065A121C12185A5A5A0F
X4A7F8119>I<1430146014C0EB0180EB03005B130E130C5B1338133013705B5B12015B12
X03A290C7FC5A1206120EA2120C121CA312181238A45AA75AB3A31270A77EA41218121CA3
X120C120EA2120612077E7FA212017F12007F13701330133813187F130E7F7FEB0180EB00
XC014601430146377811F>I<12C012607E7E7E120E7E7E6C7E7F12007F13701330133813
X18131CA2130C130E13061307A27F1480A3130114C0A4EB00E0A71470B3A314E0A7EB01C0
XA414801303A314005BA21306130E130C131CA213181338133013705B5B12015B48C7FC5A
X120E120C5A5A5A5A14637F811F>I<14181430146014E014C0EB01801303EB0700130613
X0E130C131C5BA25BA25BA212015BA2485AA3120790C7FCA25A120EA2121EA3121CA2123C
XA412381278A8127012F0B3A812701278A81238123CA4121CA2121EA3120EA2120F7EA27F
X1203A36C7EA27F1200A21370A27FA27F130C130E13061307EB03801301EB00C014E01460
X14301418157C768121>32 D<12C012607E123812187E120E7E7E7F12017F6C7EA21370A2
X7FA2133C131CA27FA3130F7FA214801303A214C0A31301A214E0A4130014F0A814701478
XB3A8147014F0A814E01301A414C0A21303A31480A213071400A25B130EA35BA2133C1338
XA25BA25BA2485A5B120390C7FC5A120E120C5A123812305A5A157C7F8121>I<141C143C
X14F8EB01E0EB03C0EB0780EB0F00130E131E5BA35BB3B3A25BA3485AA2485A5B48C7FC12
X0E5A127812E0A21278121C7E7E6C7E7F6C7EA26C7EA31378B3B3A27FA37F130E130FEB07
X80EB03C0EB01E0EB00F8143C141C167C7B8121>40 D<12E07E127C121E7E6C7E6C7E1201
X7F6C7EA31378B3B3A27FA37FA27F7FEB0380EB01C0EB00E01478141CA2147814E0EB01C0
XEB0380EB07005B131EA25BA35BB3B3A25BA3485A5B1203485A48C7FC121E127C12F05A16
X7C7B8121>I<140C141814381430146014E014C01301EB0380A2EB0700A2130EA25BA25B
XA21378137013F0A25B1201A2485AA4485AA3120F90C7FCA35AA2121EA3123EA4123CA312
X7CA81278A212F8B1164B748024>48 D<12C01260127012307E121C120C120E7EA26C7EA2
X6C7EA26C7EA21370A213781338133CA2131C131EA27FA4EB0780A314C01303A314E0A213
X01A314F0A41300A314F8A81478A2147CB1164B7F8024>I<12F8B11278A2127CA8123CA3
X123EA4121EA3121FA27EA37F1207A36C7EA46C7EA212007FA2137013781338A27FA27FA2
X7FA2EB0380A2EB01C0130014E01460143014381418140C164B748224>64
XD<147CB11478A214F8A814F0A31301A414E0A31303A214C0A313071480A3EB0F00A4131E
XA2131C133CA2133813781370A25BA2485AA2485AA248C7FCA2120E120C121C12185A1270
X12605A164B7F8224>I<12F8B3A9051B748024>I<12F8B3A9051B6E8024>I<B712F0A200
X70C7EA0FF8007814006C1538001C151C6C150C000F15046C15066C6C14026D14006C7E12
X00137013787F131C131E7F7F6D7EA291C8FC5B13065B5B133813305B5B120149140248C8
X120600061504000E150C000C151C4815384815F80070140F007FB612F0B7FC272A7E7F2C
X>80 D<14F8EB0184EB0306EB060E1404EB0E00A35BAA5BAA5BAA5BA3EA40C012E0EAC180
X0043C7FC123E172E7E7F14>82 D<B912C018E06CC81201EE001F6C6CED03F06C6C150000
X0F17386D16186C6C160C6C6C1604A26C6C16026C6C1600137FA26D7E6D7E130F806D7E6D
X7EA26D7E6D7E147E147F6E7E6E7EA2140F6E5A14034AC9FC140E5C5C5CA25C495A495A49
XCAFC130EA24916024916045B49160C00011718491638484816F848C9EA01F0000E160F48
XED01FF003FB812E0A25AB912C0373A7E7F3C>88 D<B9FCA3D80FF8C7EA1FF0000316C000
X011680B3B3AC486CEC3FC0D80FFFECFFF0B5D8F00F13FFA3303A7E7F35>I<ED0380ED04
X60ED0C70ED18F0A2ED3860ED30001570A2156015E0A314015DA31403A25DA21407A44AC7
XFCA55C141EA3143EA4143C147CA45CA6495AA45C1303A45CA313075CA549C8FCA4130EA2
X131EA2131CA3133C1338A313301370A21360EA60E0EAF0C012F1EAE1800063C9FC121E24
X5C7E7F17>I<14E01303EB0F80EB1E005B1370A25BB3A5485AA2485A48C7FC120E123C12
XF0A2123C120E7E6C7E6C7EA26C7EB3A51370A2133C7FEB0F80EB03E01300134A7C811C>
X110 D<12E012F8123E120F6C7EEA01C0A26C7EB3A51370A27F7F7FEB0780EB01E0A2EB07
X80EB0E005B5B5BA25BB3A5485AA2EA078048C7FC123E12F812E0134A7C811C>I<160216
X06160CA21618A21630A21660A216C0A2ED0180A2ED0300A21506A25DA25DA25DA25D1208
X001C5C123C00CE495A120E4AC7FC7E1406EA03805CEA01C05C13E000005BA2EB7060A26D
X5AA2EB1D80A2011FC8FC7F130E130627327C812A>I<16021606A2160CA31618A31630A3
X1660A316C0A3ED0180A3ED0300A31506A35DA35DA35DA35DA21208001C5C123C127C00DC
X495A128E120E4AC7FC7EA21406EA0380A25CA2EA01C05CA2EA00E05CA3EB7060A36D5AA3
XEB1D80A3011FC8FC7FA2130E1306A2274B7C812A>I E /Fi 1 121
Xdf<38FE1FC0A2381E0C006C5AEA07B813F06C5A1201487E1378EA063CEA0E3EEA1C1E38
XFC1FC0A2120F7F8E15>120 D E /Fj 23 121 df<120112021204120C1218A21230A212
X701260A312E0AA1260A312701230A21218A2120C12041202120108227D980E>40
XD<12801240122012301218A2120CA2120E1206A31207AA1206A3120E120CA21218A21230
X12201240128008227E980E>I<1330ABB512FCA238003000AB16187E931B>43
XD<EA07C0EA1830EA3018EA701CEA600CA2EAE00EA9EA600CA2EA701CEA3018EA1C70EA07
XC00F157F9412>48 D<1206120E12FE120EB1EAFFE00B157D9412>I<EA0F80EA30E0EA40
X70EA8030EAC03812E0124012001370A2136013C0EA0180EA03001206EA0C081208EA1018
XEA3FF0127F12FF0D157E9412>I<EA0FE0EA3030EA6018EA701CA21200131813381360EA
X07E0EA00301318130C130EA212E0A2EAC00CEA4018EA3030EA0FE00F157F9412>I<1330
XA2137013F012011370120212041208121812101220124012C0EAFFFEEA0070A5EA03FE0F
X157F9412>I<EA6030EA7FE013C0EA44001240A4EA4F80EA70E0EA4070EA00301338A212
X4012E0A2EA8030EA4060EA20C0EA1F000D157E9412>I<EA07E0EA1830EA2018EA600CA2
X1270EA7818EA3E10EA1F60EA07C0EA0FF0EA18F8EA607C131EEAC00E1306A21304EA600C
XEA3830EA0FE00F157F9412>56 D<B512FCA2C8FCA6B512FCA2160A7E8C1B>61
XD<EAFFFE381C0380EB00E014601470A414E0EB01C0381FFF8014C0381C00E01470143014
X38A4147014E0EB01C0B5120015177F9619>66 D<EAFFC0001CC7FCAD1420A31460A21440
X14C01303B5FC13177F9616>76 D<13FCEA0303380E01C0381C00E0481370003013300070
X1338A248131CA700601318007013380030133038387870381C84E0380E85C03803830038
X00FE0413021303148CEB01F8A2EB00F0161D7E961B>81 D<EA0FC4EA302CEA601CEA400C
XEAC004A3EAE0001270127FEA3FE0EA0FF8EA01FCEA001C130E13061280A3EAC004EAE008
XEAD810EA87E00F177E9614>83 D<EA0FC0EA1860EA3030EA7038EAE018EAFFF8EAE000A3
X1260EA7008EA3010EA1830EA07C00D0E7F8D10>101 D<EA0F9EEA18E3EA3060EA7070A3
XEA3060EA18C0EA2F80EA20001260EA3FE013F813FCEA600EEAC006A3EA600CEA3838EA0F
XE010157F8D12>103 D<12301278A212301200A512F81238AC12FE07177F960A>105
XD<38F8F83E383B1CC7393C0F0380EA380EAA39FE3F8FE01B0E7F8D1E>109
XD<EAF8F8EA3B1CEA3C0E1238AA38FE3F80110E7F8D14>I<EAF9F0EA3E1CEA380613077F
X1480A414005B130EEA3E1CEA39F00038C7FCA512FE11147F8D14>112
XD<EAF9E0EA3A70123CEA38201300A9B4FC0C0E7F8D0E>114 D<EAFE3FEA3C1CEA1C10EA
X0E20EA074013C0EA0380EA01C0EA02E0EA04F0EA0870EA1838EA383CEAFC7F100E7F8D13
X>120 D E /Fk 57 124 df<91383F03E09138C38470903901878CF00103139891380338
X60D907001300A35D130EA390B6FC90380E00E05BA44A5A1338A549485AA54948C7FCA4EB
XC00E1201140CEA318638798F1838F31E1038620C60383C07C02429829F1C>11
XD<EC3FE0ECE010903801803801031378A290380700301500A3130EA390B512E0EB0E0090
X381C01C0A4EC03801338A3EC0700A2137801701310EC0E20A313609038E00640EC038091
XC7FC5BA21201EA3180127948C8FC1262123C1D29829F1A>I<121C123E127EA2123A1202
X1204A21208A21210122012401280070E769F0E>39 D<121C123CA41204A21208A2121012
X20A212401280060E7D840E>44 D<EA7FF0EAFFE0127F0C037D8A10>I<127012F8A212F0
X12E005057B840E>I<1302A21306130E133C13DCEA031C12001338A41370A413E0A4EA01
XC0A4EA0380A41207EAFFF80F1E7B9D17>49 D<1207120F121FA2120E1200AA127012F8A2
X12F012E008147B930E>58 D<EA01C012031207A2EA0380C7FCAA121C123CA41204A25AA2
X5A5AA25A5A0A1D7D930E>I<14021406A2140E141EA2143F142F144F14CF148FEB010FA2
X1302A213041308A20110138014071320EB3FFFEB40071380A2EA0100A212021206120400
X1E14C039FF807FF81D207E9F22>65 D<48B512C039001E00F015781538153C5BA4491378
XA215F0EC01E09038F007809038FFFE009038F00F80EC03C03801E00115E0A3EA03C0A315
XC038078003EC0780EC0F00141E380F007CB512E01E1F7D9E20>I<ECFE02903807818690
X381C004C49133C136049131C00011418485A48C7FC5A001E1410A2481400A25AA45AA415
X801270A2EC01007E140200185B6C13186C1320380381C0D800FEC7FC1F217A9F21>I<90
XB5128090381E00E015701538151C5B150EA35BA449131EA44848133CA3157848481370A2
X15E0EC01C0380780031580EC0E005C380F0070B512C01F1F7D9E22>I<48B512FE39001E
X001C150C1504A25BA490387804081500A2140C495AEBFFF8EBF018A23801E010A3EC0010
X48481320A21540A248481380140115001407380F001FB512FE1F1F7D9E1F>I<48B512FC
X39001E003815181508A25BA4491310EC0800A3495A1430EBFFF0EBF0303801E020A44848
XC7FCA4485AA4120FEAFFF81E1F7D9E1E>I<ECFC04903807030C90381C00980130137813
XE04848133848481330A248C7FC120E001E1420A2481400A25AA45AECFFF0EC0780A2EC0F
X001270A3141E7E0018133E001C132E6C13CC38038304D800FCC7FC1E217A9F23>I<3801
XFFF038001F00131EA35BA45BA45BA4485AA4485AA4485AA4120FEAFFF0141F7D9E12>73
XD<9039FFF01FE090391F000F80011EEB0E0015085D495B5D4AC7FC1402495A5C5C1430EB
XF0F0EBF1F8EBF27813F448487E13F013E080EA03C0A280A2EA07806E7EA3000F8039FFF0
X3FF8231F7D9E23>75 D<3801FFF8D8001FC7FC131EA35BA45BA45BA4485AA315803903C0
X0100A25C140238078006A25C141C380F0078B512F8191F7D9E1D>I<D801FEEC7FC0D800
X1EECFC005E0117EB0178A20127EB02F01504A215080147EB09E015111521A20187495AEB
X83801583A23A01038107801482A2148400024AC7FC14881490A2390401E01EA214C0000C
X1380001C143E3AFF8103FFC02A1F7D9E29>I<01FFEB3FE0011FEB0F001504EB1780A201
X275BEB23C0A3903841E010A214F0134001805B1478A348486C5AA3141E00025CA2140FA2
X4891C7FC80A2120C001C1302EAFF80231F7D9E22>I<EB01FCEB070790381C01C0903830
X00E001E0136048481370485A0007143890C7FC120E121E121C123CA2481478A44814F0A2
X15E0140115C0140300701480EC070000785B0038131E5C6C13706C5B38078380D801FCC7
XFC1D217A9F23>I<48B5128039001E00E015701538153C5BA4491378A215F015E09038F0
X03C0EC0F00EBFFFC01F0C7FC485AA4485AA4485AA4120FEAFFF01E1F7D9E1F>I<EB01FC
XEB070790381C01C090383000E013E048481370485A0007147890C712385A121EA25A1578
X5AA44814F0A215E0140115C014030070148090381C0700EB200F3838411E5C001C137000
X0E5B39074380803801FD00380001011500EB0383148614FE5C6D5A6D5A1D297A9F23>I<
X90B5FC90381E03C0EC00E0157015785BA44913F0A2EC01E015C09038F00700141EEBFFF0
XEBF01C48487E140F8015803903C00F00A43807801E1508A21510000F130ED8FFF01320C7
XEA03C01D207D9E21>I<903807E04090381C18C09038300580EB600313C0000113010180
X13001203A391C7FC7FA213F86CB47E14E06C6C7E131FEB01F8EB0078A21438A21220A214
X3000601370146014E000705B38E80380D8C606C7FCEA81F81A217D9F1A>I<000FB512FC
X391E03C03800181418001014081220EB078012601240A239800F001000001400A3131EA4
X5BA45BA45BA41201387FFF801E1F799E21>I<393FFC0FF83907C003C09038800100A338
X0F0002A4001E5BA4485BA4485BA4485BA35CA200705B49C7FCEA3002EA3804EA0C18EA07
XE01D20779E22>I<39FFF003FC001FC712E06C14C01580EC0100A21402A25C5C13800007
X5B143014205CA25C138191C7FC13C2120313C413CC13C813D0A213E05BA25B120190C8FC
X1E20779E22>I<3BFFE1FFC07F803B1F003E001C00001E013C13181610143E021E5B121F
X6C013E5BA2025E5B149E4BC7FC9038011E02A201025BA201045BA201085BA201105B1320
X5D01405BA2D9801FC8FC80EB000E7E0006130CA2000413082920779E2D>I<EBF1803803
X89C038070780EA0E03121C123C383807001278A3EAF00EA31420EB1C40A2EA703C135C38
X308C80380F070013147C9317>97 D<EA0780123FEA0700A4120EA45AA213F0EA1D0CEA3A
X0E123CEA380FA21270A4EAE01EA3131C133C1338EA607013E0EA31C0EA1F0010207B9F15
X>I<137EEA01C138030080EA0E07121E001C1300EA3C0248C7FCA35AA5EA70011302EA30
X04EA1838EA07C011147C9315>I<1478EB03F8EB0070A414E0A4EB01C0A213F1EA038938
X070780EA0E03121C123C383807001278A3EAF00EA31420EB1C40A2EA703C135C38308C80
X380F070015207C9F17>I<137CEA01C2EA0701120E121C123CEA3802EA780CEA7BF0EA7C
X0012F0A4127013011302EA3804EA1838EA07C010147C9315>I<1478EB019CEB033CA2EB
X07181400A2130EA5EBFFE0EB1C00A45BA55BA55BA5485AA35B1231007BC7FC12F3126612
X3C1629829F0E>I<EB1E30EB7138EBE0F03801C070EA03801207EB00E05AA3381E01C0A4
XEB0380A2EA0E07130B38061700EA01E7EA0007A2130EA21230EA781C485AEA6070EA3FC0
X151D7F9315>I<EA01E0120FEA01C0A4485AA448C7FCA2131E1363380E8180380F01C012
X0EA2381C0380A438380700A3EB0E1000701320A2131CEB0C4000E013803860070014207D
X9F17>I<13C0EA01E0A213C0C7FCA7120E12131223EA4380EA4700A21287120EA35AA3EA
X38401380A21270EA31001232121C0B1F7C9E0E>I<EB0180EB03C0A2148090C7FCA7133C
X13461387A2EA0107A2EA020E1200A35BA45BA45BA45BA21230EA79C0EAF1800063C7FC12
X3C1228829E0E>I<EA01E0120FEA01C0A4485AA448C7FCA2EB03C0EB0420380E08E01311
X1321EB40C0381C8000001DC7FC121EEA1FC0EA38E01370A2EB384038707080A3EB310012
XE0EA601E13207D9F15>I<EA03C0121FEA0380A4EA0700A4120EA45AA45AA45AA3127112
XE2A4126412380A207C9F0C>I<391C0F80F0392630C318394740640C903880680EEB0070
XA2008E495A120EA34848485AA3ED70803A3803807100A215E115623970070064D8300313
X3821147C9325>I<381C0F80382630C0384740601380EB0070A2008E13E0120EA3381C01
XC0A3EB038400381388A2EB0708EB031000701330383001C016147C931A>I<137CEA01C3
X38030180000E13C0121E001C13E0123C1278A338F003C0A3EB07801400EA700F130EEA30
X18EA1870EA07C013147C9317>I<3801C1E0380262183804741C1378EB701EA2EA08E012
X00A33801C03CA3143838038078147014E0EBC1C038072380EB1E0090C7FCA2120EA45AA2
XB47E171D809317>I<EBF040380388C038070580EA0E03121C123C383807001278A3EAF0
X0EA45BA2EA703C135CEA30B8EA0F381200A25BA45BA2EA0FFE121D7C9315>I<EA1C1EEA
X266138278380EA47871307EB0300008EC7FC120EA35AA45AA45A123011147C9313>I<13
XFCEA0302EA0601EA0C03130713061300EA0F8013F0EA07F8EA03FCEA003E130E1270EAF0
X0CA2EAE008EA4010EA2060EA1F8010147D9313>I<EA018013C0EA0380A4EA0700A2EAFF
XF0EA0700120EA45AA45AA31320EA7040A21380A2EA3100121E0C1C7C9B0F>I<000E13C0
X001313E0382301C0EA4381EA4701A238870380120EA3381C0700A31410EB0E201218A238
X1C1E40EA0C263807C38014147C9318>I<380E0380EA1307002313C0EA4383EA47011300
X00871380120EA3381C0100A31302A25BA25BEA0E30EA03C012147C9315>I<000EEBC1C0
X001313E3392301C3E0384381C1384701C015603987038040120EA3391C070080A3EC0100
XA21306EB0F02000C5B380E13083803E1F01B147C931E>I<38038380380CC440381068E0
X13711220EB70C03840E0001200A3485AA314403863808012F3EB810012E5EA84C6EA7878
X13147D9315>I<000E13C0001313E0382301C0EA4381EA4701A238870380120EA3381C07
X00A4130E1218A2EA1C1EEA0C3CEA07DCEA001CA25B12F05BEAE060485AEA4380003EC7FC
X131D7C9316>I<3801C0403803E080EA07F1380C1F00EA0802C65A5B5B5B5B5B48C7FC12
X02485AEA08021210EA3E0CEA63FCEA41F8EA80E012147D9313>I<B512F014017C8C17>I
XE /Fl 70 124 df<14F013F8120112033807800090C7FC5AA738FFF8F0A3EA0F00B11421
X80A018>12 D<1278A412181230A21260A212E0050A7D9F0D>39 D<13E0EA01C0EA038012
X0713005A121EA2121C123CA212381278A3127012F0AE12701278A31238123CA2121C121E
XA27E7E13801203EA01C0EA00E00B2E7CA112>I<12E012707E123C121C121E7EA27E1380
XA2120313C0A3120113E0AE13C01203A313801207A213005AA2121E121C123C12385A5A0B
X2E7EA112>I<EA018013C01380A2EA4182EAE187EAF99FEA7DBEEA1FF8EA07E0A2EA1FF8
XEA7DBEEAF99FEAE187EA4182EA0180A213C0138010147DA117>I<1303AFB612FCA2D800
X03C7FCAF1E207E9A23>I<1278A412181230A21260A212E0050A7D830D>I<EAFFF0A30C03
X808B0F>I<12F0A404047C830D>I<144014C0EB0180A3EB0300A31306A25BA35BA35BA25B
XA35BA3485AA348C7FCA21206A35AA35AA25AA35AA35AA2122D7EA117>I<EA03F0487EEA
X1FFEEA1E1E487EEA380700781380A2EA700300F013C0AE38780780A300381300EA3C0FEA
X1E1EEA1FFE6C5AEA03F012207E9E17>I<13C01201120712FFA212FB1203B3A4EAFFFEA3
X0F1F7C9E17>I<EA03F0EA0FFC487EEA383FEA700F3860078012E0EB03C01240A21200A3
XEB0780A2EB0F00130E5B133C5B13E0485A485A48C7FC120E5A5A5AB512C0A3121F7E9E17
X>I<EA03F0EA1FFC487EEA7C1FEAF00F3860078012401200A3EB0F005B133EEA07FC13F0
X13FCEA001E7FEB0780A2EB03C0A4128012C0EB0780EA700F387C1F00EA3FFEEA0FFCEA03
XF012207E9E17>I<131FA2132F136FA213EF13CF12011203138F1207130F120F121EA212
X3C1238127812F0B512F0A338000F00A8141E7F9D17>I<383FFF80A3003CC7FCA713F8EA
X3FFE7FEB8F80EA3E0314C0123C380001E0A7384003C0126038F00780387C0F00EA3FFEEA
X0FFCEA03F0131F7F9D17>I<137CEA01FE1207EA0F8290C7FC121E5AA25AA213F8EAF3FC
XEAF7FEEAFE1F38FC0F80EAF807A238F003C0A512701278A2EB07801238383C0F00EA1E1E
XEA0FFEEA07F8EA01F012207E9E17>I<B512C0A3EA0001EB0380EB07005B130E5BA25B13
X78A25BA25B1201A25B1203A45B1207A6121E7E9D17>I<EA03F0EA0FFC487EEA3E1F3878
X078000F813C0EAF003A400701380EA7807383C0F00EA1FFEEA07F8487EEA1F3EEA3C0F38
X780780A238F003C0A638780780EA7C0F383E1F00EA1FFE6C5AEA03F012207E9E17>I<EA
X03F0487E487EEA1E1E487E487E148012F0130314C0A6EA7807A2EA7C0FEA3E1FEA1FFBEA
X0FF33807C780EA0007A214005B131E1220EA307CEA7FF86C5AEA0FC012207E9E17>I<12
XF0A41200AC12F0A404147C930D>I<1278A41200AC1278A412181230A21260A212E0051A
X7D930D>I<B612FCA2C9FCA8B612FCA21E0C7E9023>61 D<131FA2497E133BA2EB7BC013
X731371EBF1E013E113E000017FA213C000031378A2138000077FA21300380FFFFEA2487F
X381E000FA24814801407A24814C01403A248EB01E01B207F9F1E>65
XD<EAFFFCEBFF8014C038F007E0EB01F013001478A514F0EB01E0EB0FC0B51280A214E038
XF003F0EB00F8143C141C141EA5143C14FCEB03F8B512F014C0EBFE0017207C9F1E>I<B5
X12E0A300F0C7FCABB51280A300F0C7FCAF13207C9F1A>70 D<EB1FE0EBFFF84813FE3803
XE03E3807800E48C7FC121E123E123C5AA35AA7EB03FEA33878001EA37E123E121E7EEA07
X803803E03E3801FFFE6C13F8EB1FC017227DA01E>I<12F0B3AE04207C9F0D>73
XD<00F0EB1F801500143E5C5C495A495A495A495A49C7FC133E5B5B12F1EAF3FC12F7EAFF
X9E131F487E486C7E00F87FEAF0038013016D7E80147880143E141E80158019207C9F20>
X75 D<12F0B3ABB512C0A312207C9F19>I<00F8147E6C14FEA200F414DE00F61301A300F3
XEB039EA2EB8007A200F1141EEBC00FA200F0130EEBE01EA2EB601CEB703CA2EB3038EB38
X78A2EB1870EB1CF0A2EB0CE0A2EB07C0A390C7FC1F207C9F28>I<00FC131E7EA212F7A2
X138012F3A2EAF1C0A213E012F013F013701378A2133CA2131C131E130E130F1307A2EB03
X9EA214DE1301A2EB00FEA2147E17207C9F20>I<EB1F80EBFFF0487F3803E07C3807801E
X48487E001EEB0780003E14C0003C130348EB01E0A30070130000F014F0A90078EB01E0A2
X130F393C0783C0003E13C7D81E031380390F01EF00EB81FF3807E0FE3801FFF86C7FEB1F
XBCEB003E80801580EC07C01C277EA021>81 D<EAFFFEEBFF8014E038F003F0EB00F81478
X143CA5147814F8EB03F0B512E01480EBFE00EAF01E130E130FEB0780A2EB03C0A2EB01E0
XA2EB00F014701478143CA2141E17207C9F1D>I<EA01FC3807FF80001F13C0EA3E03EA7C
X00007813005AA57E127C127EEA3FE0EA1FFCEA07FF0001138038003FC0EB07E01303EB01
XF01300A5EB01E012C038F003C0EAFC0F387FFF80381FFE00EA03F814227EA019>I<B612
XC0A3D8001EC7FCB3AB1A207E9F1F>I<00F0133CB3A700781378A26C13F0EA3E01381F03
XE0380FFFC000031300EA00FC16217C9F1F>I<00F0EB01E0A2007814C01403A26CEB0780
XA36CEB0F00A36C131EA2138000075BA23803C0381478A23801E07014F0A26C6C5A13F1A2
XEB71C0137BEB3B80A2133F6DC7FCA21B207F9F1E>I<00F0017C130F147EA20078016E13
X0E02EE131E14E7A26C153C0101138014C714C3001E1578010313C01483000E0181137000
X0F15F0010713E014010007010013E0018713E1018F13F1138E0003EC71C0A201CE1373D8
X01DCEB7B80153BA213D8D800F8EB1F00A328207F9F2B>I<0078EB0780007C130F6CEB1F
X00001E131E001F133E6C6C5A000713786C6C5A13E13801F1E03800F3C0137F5C6DC7FC7F
X131E133F80497E13F33801F1E0EBE0F048487E00071378497E380F003E48131E001E7F48
X1480007CEB07C0007813034814E01B207F9F1E>I<EAFF80A3EAF000B3B3A3EAFF80A309
X2D7DA10D>91 D<EAFF80A31207B3B3A312FFA3092D80A10D>93 D<EA0780EA0FC0A2EA1C
XE0EA3CF0EA7878EA7038EAE01C0E087C9F17>I<EA07E0EA3FF8EA7FFCEA701EEA401FEA
X000FA3133FEA07FF121FEA7E0F12F812F0A3EAF83FEA7FFFEA3FEFEA1F8F10147E9316>
X97 D<12F0ACEAF1F0EAF7FCB47EEAFC1F38F80F80EAF007A2EB03C0A6EB0780A238F80F
X00EAFC3FEAFFFEEAF7FCEAF1F012207D9F17>I<EA01FCEA07FF001F1380EA3E07EA3C01
X48C7FCA25AA61278A26C1380EA3E07EA1FFF00071300EA01F811147F9314>I<EB03C0AC
XEA03E3EA0FFBEA1FFFEA3F0FEA7C031278A212F0A61278A2EA7C07EA3E0FEA1FFFEA0FFB
XEA03E312207F9F17>I<EA03F0EA0FFC487EEA3E1FEA7C07127838700380B5FCA300F0C7
XFCA3127012786C1380EA3E07EA1FFF00071300EA01F811147F9314>I<137EEA01FE1203
XEA078013005AA7EAFFF0A3EA0F00B10F20809F0E>I<3803E0F0EA0FFF5A383E3E00EA3C
X1E487EA5EA3C1EEA3E3EEA1FFC485AEA33E00030C7FC1238EA3FFEEBFF806C13C0007F13
XE0387803F0EAF000A3EAF801387E07E0383FFFC0000F1300EA03FC141E7F9317>I<12F0
XACEAF1F8EAF3FCEAF7FEEAFC1FEAF80FA212F0AE10207D9F17>I<12F0A41200A812F0B3
XA204207D9F0B>I<EA01E0A4C7FCA8EA01E0B3A7EAC3C012FF1380EA3F000B29839F0C>I<
X12F0AC131F131E5B5B5BEAF1E0EAF3C0EAF780B47EA27FEAF9F012F8487E137CA27F131E
X131FEB0F8011207D9F16>I<12F0B3AE04207D9F0B>I<39F0FC07E039F3FE1FF039F7FF3F
XF839FE0FF07C39F807C03CA200F01380AE1E147D9325>I<EAF1F8EAF3FCEAF7FEEAFC1F
XEAF80FA212F0AE10147D9317>I<EA01F8EA07FE381FFF80383F0FC0EA3C03387801E0A2
X38F000F0A6387801E0A2383C03C0EA3F0F381FFF803807FE00EA01F814147F9317>I<EA
XF1F0EAF7FCB47EEAFC3F38F80F80EAF007A2EB03C0A6EB0780A238F80F00EAFC3FEAFFFE
XEAF7FCEAF1F000F0C7FCA9121D7D9317>I<3803E3C0EA0FFBEA1FFFEA3F0FEA3C07EA78
X03A212F0A61278A2EA7C07EA3F0FEA1FFFEA0FFBEA03E3EA0003A9121D7F9317>I<EAF0
XE012F312F7EAFF0012FCA25AA25AAC0B147D9310>I<EA0FF0EA3FFC127FEA780CEAF000
XA312FCEA7FE0EA3FF0EA1FF8EA03FCEA003E131EA212C0EAF03CEAFFFCEA7FF8EA0FE00F
X147F9311>I<121EA6EAFFF0A3EA1E00AD1310EA0FF8A2EA07E00D1A7F9910>I<EAF00FAF
X131F133FB5FCEA7FEFEA3F0F10147D9317>I<38F003C0A212F838780780A2383C0F00A3
XEA1E0E131EA2EA0F1C133CA2EA0738A213B8EA03F0A26C5A12147F9315>I<D8F01F13F0
X1480A239781B81E0133B14C11339393C31C3C0137114E3D81C701380EA1E6014E713E000
X0EEB770013C0A20007137E143E13801C147F931F>I<387801E0387C03C0383E0780EA1E
X0F000F1300EA079EEA03FC5B12016C5A12017F487EEA079EEA0F0F120E381E0780383C03
XC0387801E000F813F01414809315>I<38F003C0A238780780A2127C383C0F00A2121E13
X1EA2EA0F1CA2EA073C133813B8120313B0EA01F05B1200A2485AA212035B1207B4C7FC5A
X5A121D7F9315>I<EA7FFFA3EA003E133C137813F813F0EA01E01203EA07C01380EA0F00
X5A121E5A127CB5FCA310147F9314>I<B512FCA31603808D17>I E
X/Fm 29 121 df<B612C0A21A027C8B23>0 D<127012F8A3127005057C8D0D>I<00401304
X00C0130C006013186C13306C13606C13C03806018038030300EA0186EA00CC13781330A2
X137813CCEA0186EA030338060180380C00C048136048133048131848130C004013041618
X7A9623>I<EA0180A5EAE187EA718EEA399CEA0FF0EA03C0A2EA0FF0EA399CEA718EEAE1
X87EA0180A510147D9417>I<5B5BAEB612FCA2D80003C7FCADB612FCA21E207E9E23>6
XD<EB0FC0EB7038380180063802000148EB0080000C14C00012EB01200011130200211410
X3940800408EB4008EB20103980102004EB0840EB0480EB0300A2EB0480EB0840EB102039
X40201008EB4008EB800439210002100011142000121301000CEB00C0000414806CEB0100
X3801800638007038EB0FC01E207E9A23>10 D<EA03F0EA0FFC487E487E481380A2B512C0
XA66C1380A26C13006C5A6C5AEA03F012127E9317>15 D<B612FC7EC9FCA8B612FCA2C9FC
XA8007FB512FCB6FC1E167E9523>17 D<15C01403EC0F00141C1470495AEB0780011EC7FC
X1378EA01E0EA0380000EC8FC123C12F0A2123C120EEA0380EA01E0EA0078131EEB0780EB
X01E0EB0070141C140FEC03C014001500A8007FB51280B612C01A267C9C23>20
XD<12C012F0123C120EEA0380EA01E0EA0078131EEB0780EB01E0EB0070141C140FEC03C0
XA2EC0F00141C1470495AEB0780011EC7FC1378EA01E0EA0380000EC8FC123C127012C0C9
XFCA8007FB51280B612C01A267C9C23>I<D807C01304EA1FF0EA3FFCD8783E130CEA600F
X39C003C018903801F078398000FFF0EC3FE0EC0F80C9FCA2D807C01304EA1FF0EA3FFCD8
X783E130CEA600F39C003C018903801F078398000FFF0EC3FE0EC0F801E167E9523>25
XD<EDE007913801C00E9138070038021E13F091387803C09138E00700903803801C90380F
X007890383C01E090387003802601C00EC7FC3807803C380E0070383801C038F00780A238
X3801C0380E00703807803C3801C00E390070038090383C01E090380F0078903803801C90
X3800E00791387803C091381E00F002071338913801C00E913800E007281E7E992D>28
XD<EAE00738700380381C00E0000F13783803C01E3800E00790383801C090381E00F09038
X07803C903801C00E90390070038091383C01E091380E0070913803801C913801E00FA291
X3803801C91380E007091383C01E09138700380903901C00E00903807803C90381E00F090
X383801C0D9E007C7FC3803C01E380F0078001C13E0387003804848C8FC281E7E992D>I<
X13C0A3485AA2120390C9FC12065A121C1230B712FEA20030C9FC121C120C7E7E7F1201A2
X6C7EA327187D962D>32 D<1506A381A216801501ED00C0166016701618B8FCA2C9121816
X70166016C0ED018015031600A21506A328187E962D>I<15C0A2156081A28181B612FE81
XC8EA01C0ED00F0163C160F163C167016C0ED0380B712005DC8120C5D5D157015605DA228
X1A7E972D>41 D<D803F0EB0FC0D80FFCEB3FF0D81C7FEB70183A300F80C0043A6007C180
X063A4003E30002EB01F6268000FC1301147CA280A2143F004090386F8002ECC7C03A6001
X83E0063A200301F00C3A180E00FE38D80FFCEB3FF0D803F0EB0FC028147E932D>49
XD<EB3FF813FF3803C00048C7FC120C5A5AA25AA25AA3B512F8A200C0C7FCA31260A27EA2
X7E7E1207EA03C03800FFF8133F151C7C981E>I<140CA21418A21430A21460A214C0A2EB
X0180A3EB0300A21306A25BA25BA25BA25BA25BA2485AA248C7FCA21206A35AA25AA25AA2
X5AA25A1240162C7AA000>54 D<EB01F8EB0FFEEB187EEB601EEBC01C1201380380301400
X1207A37F7FEA03F8EA01FEEA007C13C048C7FC12065A121C5AA25AA200F0136014E0EB01
XC000F8138038FC0200EA7E0CEA3FF0EA1FC017217E9F18>69 D<0130131E01F0137E0003
XEB018E3900E0060EEC180C0001EB20005CEBE18001E2C7FC13E45B13D8EA03F8A213B813
XBC1207139C131C131E120FEA0E0FA2381E0780121C6D7E003C1406393801E00CECF008D8
X780013100070EB7C200060EB7FC048EB1F001F217F9F23>75 D<17F01603160702C0EB0F
XE00101EC0E00496C13181610A25E497EA213046E5BA2147801085C147CA2143C9026103E
X01C7FCA2141E141F01201302140F15821340EC07C4A2EB800315E4D8010013EC0063EB01
XF8127E00FE6D5A481460007891C8FC2C2581A225>78 D<130F1338136013E0EA01C0AFEA
X0380EA0700121E12F8121E1207EA0380EA01C0AFEA00E013601338130F102D7DA117>
X102 D<12F8121E1207EA0380EA01C0AFEA00E013601338130F1338136013E0EA01C0AFEA
X0380EA0700121E12F8102D7DA117>I<12C0B3B3A9022D7BA10D>106
XD<EA8010EAC030B3B3A8EA80100C2E7BA117>I<160816181630A21660A216C0A2ED0180
XA2ED0300A21506A25DA25DA25DA25DA25D1206001E495A122F004F49C7FCEA8780000713
X06EA03C05CA26C6C5AA26C6C5AA2EB7860A26D5AA2EB1F80A26DC8FCA21306A2252E7E81
X26>112 D<B712806C1500A2003CC71202123E001E5C121F6C5C7F00075C7F00035C7F00
X015C7F00005C7FD97801C7FC137CEB3C02133EEB1E04131F6D5A1488EB079014D0EB03E0
XA26D5AA26D5A21207E9E26>114 D<EA0F80EA1840EA3020EA7010EAE030137013201300
XA21260127012307E1206EA1980EA30C0EA7060EA6070EAE0301338A31260EA7030EA3070
XEA1860EA0CC0EA0300EA00C01360137013301338A2122012701260EA4070EA2060EA10C0
XEA0F800D297D9F14>120 D E /Fn 62 122 df<137EEA01C33903018080380E00C0001E
X13E0001CEBE100123C5A14E214E45A14E814F0A25C1270EB016038300671381818323807
XE01C19147E931D>11 D<14F8EB03061304EB080313101320EB4007A2138014063801000E
X140CEB07F8EB0470380207D8EB001CA2141E5AA448133CA3147800181370001413F014E0
X381201C038218700EA207C90C7FCA25AA45AA318297F9F1A>I<3803C002380FE004EA1F
XF0383FF808EA701838400C10EAC00400801320EA00021440A21480A2EB0300A31302A313
X06A35BA45BA31310171E7F9318>I<133EEB7FC013833801018090C7FC7FA27F12007FA2
X13701378A2EA01BCEA071E120EEA1C0E1218EA380F12707FA2EAE006130EA2130CA2EA60
X18A26C5A6C5AEA0F8012217EA014>I<137CEA0180EA0700120E5A123C12381278A2EA7F
XF0EAF000A31270A312301238EA0C18EA07E00E147E9312>I<131E1363EBC380EA01C1EA
X0381EB01C01207120F120EEA1E03121C123CA338780780EA7FFFA2EA780738F00F00A313
X0E131EEAE01C133C13381330EA60705BEA70C0EA3180001EC7FC12207E9F15>18
XD<1207EA01C07F12007F1370A213781338A2133C131CA2131E130EA2130F7F131FEB3780
X136313C3380183C0EA0381EA0701000E13E0EA1C005A48137012F048137848133815207D
X9F1B>21 D<38018018EBC01C38038038A438070070A4000E13E0A314E1381E01C2A21303
XEB05C4EA3F083839F0780038C7FCA25AA45AA35A181E7F931B>I<000F1330007F133800
X0E1370A314E05AEB01C0A2EB03800038130013065B5B485A5BEA71C00073C7FC12FC12E0
X15147E9316>I<1308A3EB0FE0EB3810EBF7E03801E000485A485AA248C7FCA57E6CB4FC
X3801C08038027F00000CC7FC5A121012305AA312E0A212701278123EEA1FC0EA0FF0EA03
XFCEA007F131F1303A21201EA00C6133C1429809F14>I<380FFFFC4813FE4813FC386082
X0012C01281EA010613041203A21202EA060C130E120CA2121CA2EA180FEA3807EA300617
X147E931A>I<EB7FFEEA01FF1207380F0780EA1E03381C01C012381270A338E00380A3EB
X0700A2130EEA600C6C5AEA1860EA0F8017147E931A>27 D<1440A21480A4EB0100A41302
XA2EB1FC0EBE270380384183806040C000C130E001C13063838080712301270A238E0100E
XA2140C141C386020380070133000301360381821C0380E4700EA03F8EA0040A25BA448C7
XFCA318297E9F1B>30 D<1410A35CA45CA45C000FEB818039118083C0002114E0EBC10100
X411300D84381136000831440EA0702A3000E14805BEC0100A21402495A00065B00071330
X3801C8C0D8007FC7FC1310A35BA45BA21B297E9F1E>32 D<127012F8A3127005057C840D
X>58 D<127012F012F8A212781208A31210A31220A21240050E7C840D>I<15C01403EC0F
X00141C1470495AEB0780011EC7FC1378EA01E0EA0380000EC8FC123C12F0A2123C120EEA
X0380EA01E0EA0078131EEB0780EB01E0EB0070141C140FEC03C014001A1C7C9823>I<14
X4014C0EB0180A3EB0300A31306A25BA35BA35BA25BA35BA3485AA348C7FCA21206A35AA3
X5AA25AA35AA35AA2122D7EA117>I<12C012F0123C120EEA0380EA01E0EA0078131EEB07
X80EB01E0EB0070141C140FEC03C0A2EC0F00141C1470495AEB0780011EC7FC1378EA01E0
XEA0380000EC8FC123C12F012C01A1C7C9823>I<14021406140EA2141E141F142F146F14
X4F148FA2EB010F1303130201041380A2EB0807131813101320A2EB7FFFEB8007A2D80100
X13C0140312025AA2120C003C1307B4EB3FFC1E207E9F22>65 D<48B512E039001E007815
X3C151C151E5BA449133CA2157815F09038F003C090B512009038F007C0EC00E0484813F0
X1578A3485AA31570484813F0EC01E0EC03C0EC0780390F001E00B512F01F1F7E9E22>I<
X027F1380903803C0C190390E0023000138131749130F5B48481306485A48C7FC5A000E14
X04121E4891C7FCA25AA45AA400701420A35D6C5CA26C49C7FC6C13066C13183801C06038
X007F8021217F9F21>I<48B612803A001E000F001503A2815BA4903878020292C7FCA214
X06495AEBFFFCEBF00CA23801E008A3EC000448485BA25DA248485B15601540EC01C0380F
X0007B65A211F7E9E22>69 D<48B6FC39001E001E1506A215025BA4491304EC0200A3495A
X140CEBFFFCEBF00C3801E008A44848C7FCA4485AA4120FEAFFFC201F7E9E1D>I<027F13
X80903803C0C190390E0023000138131749130F5B48481306485A48C7FC5A000E1404121E
X4891C7FCA25AA45AEC3FFEEC00F0A20070495AA46C495AA26C13076C13056CEB19803801
XC06026007F80C7FC21217F9F24>I<3A01FFF0FFF83A001F000F80011E1400A349131EA4
X495BA4495B90B512F89038F00078A248485BA44848485AA44848485AA4000F130739FFF8
X7FFC251F7E9E26>I<3801FFF038001F00131EA35BA45BA45BA4485AA4485AA4485AA412
X0FEAFFF0141F7E9E14>I<3A01FFF00FF83A001F0003E0011E1480ED02005D4913105D5D
X4A5AD97802C7FC5C5C1438EBF07814F8EBF13C13F448487E13F0EBE01F80EA03C06E7EA2
X8138078003A26E7EA2000F8039FFF80FFE251F7E9E27>75 D<3801FFF8D8001FC7FC131E
XA35BA45BA45BA4485AA3154048481380A21401150048485AA21406140E380F007CB512FC
X1A1F7E9E1F>I<D801FEEC0FF8D8001EEC1F8001171500162F164F0127145E169EED011E
XA290394380023CA21504150801835C15101520EB81C0D80101495A1580A2ECC10000024A
X5A14C214C4EB00E4489038E803C014F0A2000C13E0001EEBC007D8FFC0EB7FFC2D1F7E9E
X2C>I<14FF90380781C090381C00E0491370491338D801C0131C120349131E48C7120E5A
X121EA25AA248141EA448143CA2153815781570007014F0EC01E0007814C0EC03800038EB
X07006C130E5C000F1370380381C0C6B4C7FC1F217F9F23>79 D<48B512E039001E007815
X1C150E150F5BA449131EA2153C15784913E0EC03C09038FFFE0001F0C7FC485AA4485AA4
X485AA4120FEAFFF8201F7E9E1D>I<14FF90380781C090381C00E0491370491338484813
X1C485A49131E48C7FC48140E121EA25A151E5AA448143CA2153815781570007014F015E0
X90380E01C039783003803938408700001C138E149C000E13F03903C1C020EA00FF010013
X60154015C0ECE18014FF1500147E143C1F297F9F24>I<48B5128039001E00F01538151C
XA249131EA449133CA2157815F09038F001C0EC0700EBFFF8EBF00E48487E1580140315C0
X3903C00780A43907800F001502A21504000F130739FFF80308C7EA01F01F207E9E23>I<
X903803F04090380C08C09038300580EB600313C000011301018013001203A391C7FC7F7F
X13FC3801FFC06C13F06D7E131FEB01FCEB007C143C141CA21220A2141800601338143014
X7000705B38E80180D8C603C7FCEA81FC1A217E9F1C>I<000FB512FC391E03C038001814
X18001014081220EB078012601240A239800F001000001400A3131EA45BA45BA45BA41201
X387FFFC01E1F7F9E1B>I<397FFC07FE3907C000F0491340A348C71280A4001EEB0100A4
X481302A4485BA4485BA35C00705BA25C6C5BD81803C7FCEA0E0CEA03F01F207D9E1F>I<
X39FFF001FF390F80007890C712301520154015807F0007EB01005C14025CA25C6D5AA200
X035B146014405CA201C1C7FC13E2120113E413E8A213F0A25B5B12005B20207E9E1B>I<
X3BFFF03FFC0FF83B1F8007C003C0D80F00903880018017001602140F5E14176F5A14235E
X0243133002C3132002835BEB81035EEA078203C1C7FC138415C2018813C4139015C813A0
X15F0EBC0015D13805D01005B120692C8FC2D207E9E2B>I<9039FFF01FF890390FC00780
X9138800600010713046E5A5D01035B6E5A010113C0ECF18002F3C7FCEB00F214FC147814
X7CA314BEEB011EEB021F1304EB0C0F01187FEB100701207F1340EB8003D801007F000713
X01001F497E39FFC01FFE251F7F9E26>I<EBF180380389C038070780EA0E03121C123C38
X3807001278A3EAF00EA31410EB1C20A2EA703CEB5C40EA308C380F078014147E9318>97
XD<EA0780123FEA0700A4120EA45AA213F0EA1D0CEA3A0E123CEA380FA21270A4EAE01EA3
X131C133C1338EA607013E0EA31C0EA1F0010207E9F14>I<137CEA01C338070080EA0E07
X121E001C1300EA3C0248C7FCA35AA5EA70011302EA3004EA1838EA0FC011147E9314>I<
X1478EB03F8EB0070A414E0A4EB01C0A213F1EA038938070780EA0E03121C123C38380700
X1278A3EAF00EA31410EB1C20A2EA703CEB5C40EA308C380F078015207E9F18>I<137CEA
X0182EA0701120E121C123CEA3802EA780CEA7BF0EA7C0012F0A4127013011302EA3004EA
X1838EA0FC010147E9315>I<147C14CEEB019E1303140CEB0700A4130EA3EBFFF0EB0E00
XA25BA55BA55BA55BA45B1201EA3180127948C7FC1262123C17297E9F16>I<EB1E30EB71
X38EBE0F03801C070EA03801207EB00E05AA3381E01C0A4EB0380A2EA0E07130B38061700
XEA01E7EA0007A2130EA21230EA781C485AEA6070EA3FC0151D809316>I<EA01E0120FEA
X01C0A4485AA448C7FCA2131FEB6180380E80C0EA0F00000E13E0A2381C01C0A438380380
XA3EB070400701308130E1410130600E01320386003C016207E9F1A>I<13E01201A2EA00
XC01300A7120E1213EA23801243A3EA87001207A2120EA25AA21320EA3840A31380EA1900
X120E0B1F7E9E10>I<14C0EB01E0A214C090C7FCA7131E1323EB43801383EA0103A23802
X07001200A3130EA45BA45BA45BA21230EA78E0EAF1C0EA6380003EC7FC1328819E13>I<
XEA01E0120FEA01C0A4485AA448C7FCA2EB01E0EB0610380E0870EB10F013201460381C40
X00EA1D80001EC7FCEA1FC0EA38707FA2EB1C2038703840A3EB188012E038600F0014207E
X9F18>I<391E07C07C39231861869038A032033843C034D980381380A23A870070070012
X07A3000EEBE00EA3ED1C10261C01C01320153816401518263803801380D81801EB0F0024
X147E9328>109 D<381E0780382318C0EBA0603843C0701380A2388700E01207A3380E01
XC0A3EB0382001C1384EB07041408130300381310381801E017147E931B>I<137CEA01C3
X38030180000E13C0121E001C13E0123C1278A338F003C0A3EB07801400EA700F130EEA30
X18EA1870EA07C013147E9316>I<3803C1E038046218EB741CEA0878EB701EA2EA10E012
X00A33801C03CA3143838038078147014E0EBC1C038072380EB1E0090C7FCA2120EA45AA2
XEAFFC0171D819317>I<EBF040380388C038070580EA0E03121C123C383807001278A3EA
XF00EA45BA2EA703C135CEA30B8EA0F381200A25BA45BA2EA0FFC121D7E9314>I<13FCEA
X030338060080EA0C0113031400000EC7FCEA0F8013F86C7EEA01FEEA001F13071270EAF0
X06A2EAE004EA4008EA2030EA1FC011147E9315>115 D<EA018013C0EA0380A4EA0700A2
XEAFFF8EA0700120EA45AA45AA31310EA7020A213401380EA3100121E0D1C7F9B10>I<00
X0F136038118070002113E013C01241EA4380388381C0EA0701A3380E0380A31484EB0708
X120CA2380E0F10EA06133803E1E016147E931A>I<000FEB607039118070F00021EBE0F8
X01C0137800411438D843801318398381C010EA0701A3390E038020A31540A21580130700
X06EB8100380709C23801F07C1D147E9321>119 D<3803C1C0380C622038103470EB38F0
X12201460384070001200A35BA314203861C04012F1148012E238446300EA383C14147E93
X1A>I<001E13600023137014E0EA438013001247388701C0120EA3381C0380A4EB070012
X18121C5BEA0C3EEA03CEEA000EA25BEAF0181338485AEAC060EA41C0003FC7FC141D7E93
X16>I E /Fo 95 128 df<80497EA2497EA2EB05F01304497E1478EB107C143CEB203E14
X1EEB401F8001807F1407D801007F14030002801401488014004880157848147C153C4814
X3E151E007FB6FCA2B7128021207E9F26>1 D<B612E038780007007C13006C1460001E14
X20001F14306C7E000714107F12036C6C13007F12001378137C133C131C131813105B4913
X105B48C7FC000214305A48142015604814E0481307007FB5FCB6FC1C1F7E9E21>6
XD<EB3FC03801E0783807801E48487E001EEB078048EB03C0007C14E0A248EB01F0A60078
X14E0007C1303A2003C14C0A26CEB0780000E14006C130EA26C130C6C6C5A008114100080
X1310EBC0303940402020397FC03FE0A31C207E9F21>10 D<90381F83E09038F06E303901
XC07878380380F8903800F03048EB7000A7B612803907007000B2383FE3FF1D20809F1B>
XI<133FEBE0C0EA01C0380381E0EA0701A290C7FCA6B512E0EA0700B2383FC3FC1620809F
X19>I<EB3FE013E0EA01C1EA0381EA0700A8B5FCEA0700B2383FE7FC1620809F19>I<9038
X1F81F89038F04F043901C07C06390380F80FEB00F05A0270C7FCA6B7FC3907007007B23A
X3FE3FE3FE02320809F26>I<1207A2120F121C12381230126012C00808779F17>19
XD<EAC0C0EA6180EA3F00121E120C0A057A9C17>I<B5FC10017D9A17>22
XD<123E1241EA8080A4EA4100123E090874A022>I<127012F8A71270AA1220A51200A512
X7012F8A3127005217CA00D>33 D<EA7038EAF87CEAFC7EA2EA743AEA0402A3EA0804A2EA
X1008A2EA2010EA40200F0E7F9F17>I<137813841201EA03021207A45BA25BA2EA039090
X38A00FFC9038C001E0EC00C000011480EC0100EA02E000041302EA087038187804383038
X08EA703CEB1C10EAF00EEB0F20EB07C09038038004387001C0397802E008393804701839
X1C183C303907E00FC01E227EA023>38 D<127012F812FCA212741204A31208A21210A212
X201240060E7C9F0D>I<13401380EA01005A12061204120C5AA212381230A212701260A4
X12E0AC1260A412701230A212381218A27E120412067E7EEA008013400A2E7BA112>I<7E
X12407E12307E1208120C7EA212077EA213801201A413C0AC1380A412031300A25A1206A2
X5A120812185A12205A5A0A2E7EA112>I<1303AFB612FCA2D80003C7FCAF1E207E9A23>
X43 D<127012F012F8A212781208A31210A31220A21240050E7C840D>I<EAFFF0A20C0280
X8A0F>I<127012F8A3127005057C840D>I<144014C0EB0180A3EB0300A31306A25BA35BA3
X5BA25BA35BA3485AA348C7FCA21206A35AA35AA25AA35AA35AA2122D7EA117>I<EA03F0
XEA0E1C487EEA1806EA380738700380A400F013C0AD00701380A3EA780700381300EA1806
XEA1C0E6C5AEA03F0121F7E9D17>I<13801203120F12F31203B3A6EA07C0EAFFFE0F1E7C
X9D17>I<EA03F0EA0C1CEA100E487E00401380128000F013C0EAF803A3EA200712001480
XA2EB0F00130E5B5B5B13605B485A48C7FC000613405A5A00101380EA3FFF5AB5FC121E7E
X9D17>I<EA03F0EA0C1CEA100EEA200F007813801307A2EA380F12001400A2131E131C13
X70EA07F0EA003C130E130FEB0780A214C0122012F8A300F013801240EB0F00EA200EEA18
X3CEA07F0121F7E9D17>I<1306A2130EA2131E132EA2134E138EA2EA010E1202A2120412
X08A212101220A2124012C0B512F038000E00A7EBFFE0141E7F9D17>I<EA1803EA1FFE5B
X5B13E00010C7FCA6EA11F0EA161CEA180EEA10071480EA0003A214C0A3127012F0A200E0
X13801240EB0700EA20066C5AEA0838EA07E0121F7E9D17>I<137CEA0182EA0701380E03
X80EA0C0712183838030090C7FC12781270A2EAF1F0EAF21CEAF406EAF807EB0380A200F0
X13C0A51270A214801238EB07001218EA0C0E6C5AEA01F0121F7E9D17>I<1240387FFFE0
X14C0A23840008038800100A21302485AA25B5BA25BA21360A213E05B1201A41203A76C5A
X131F7E9D17>I<EA03F0EA0C0CEA1006EA3003382001801260A3127038780300123EEA3F
X06EA1FC8EA0FF0EA03F8487EEA0C7EEA103F38300F80EA6007EB01C012C01300A31480EA
X600100201300EA1002EA0C0CEA03F0121F7E9D17>I<EA03F0EA0E18487E487E13071270
XEB038012F0A214C0A5EA7007A21238EA180BEA0E13EA03E338000380A3EB07001230EA78
X06130EEA700CEA2018EA1070EA0FC0121F7E9D17>I<127012F8A312701200AA127012F8
XA3127005147C930D>I<127012F8A312701200AA127012F012F8A212781208A31210A312
X20A21240051D7C930D>I<B612FCA2C9FCA8B612FCA21E0C7E9023>61
XD<5B497EA3497EA3EB09E0A3EB10F0A3EB2078A3497EA2EBC03EEB801EA248B5FCEB000F
XA20002EB0780A348EB03C0A2120C001E14E039FF801FFE1F207F9F22>65
XD<B512E0380F0078141EA2801580A515005C141E147CEBFFF0EB007C141FEC0F80EC07C0
X140315E0A515C014071580EC0F00143EB512F01B1F7E9E20>I<90380FE0109038381C30
X9038E002703803C00139078000F048C71270121E15305A1510127C127800F81400A91278
X007C1410123CA26C1420A27E6C6C13406C6C13803900E00300EB380CEB0FF01C217E9F21
X>I<B512F83807801EEC0780EC03C0EC01E0EC00F015701578A2153CA3153EA8153CA215
X7C1578A215F0EC01E0EC03C0EC0780EC1E00B512F81F1F7F9E23>I<B61280380F000F14
X031401140015C01540A314401500A214C0130113FF130113001440A3EC0020A31540A315
XC01401EC0380140FB6FC1B1F7E9E1F>I<B61280380780071401A2140015C01540A4EC20
X00A3146014E013FF138014601420A391C7FCA87FEAFFFE1A1F7F9E1E>I<90380FE01090
X38381C309038E002703803C00139078000F048C71270121E15305A1510127C127800F814
X00A7EC3FFEEC01F000781300127C123CA27EA27E6C7E3903C001703900E002309038380C
X1090380FF0001F217E9F24>I<39FFF07FF8390F000780AD90B5FCEB0007AF39FFF07FF8
X1D1F7E9E22>I<EAFFF0EA0F00B3ABEAFFF00C1F7E9E10>I<3807FFC038003E00131EB3A3
X122012F8A3EAF01CEA403CEA6038EA1070EA0FC012207F9E17>I<39FFF007FC390F0003
XE0EC0180150014025C5C5C5C5C5C49C7FC5B497E130FEB13C0EB21E01341EB80F0EB0078
XA28080A280EC0780A2EC03C015E015F039FFF01FFE1F1F7E9E23>I<EAFFF8EA0F8090C7
XFCB21402A414061404A2140C141C147CB512FC171F7E9E1C>I<B46CEB07FE000715C0A2
XD805C0130BA2D804E01313A301701323A26D1343A36D1383A290380E0103A3EB0702A3EB
X0384A2EB01C8A3EB00F0A21460121FD8FFE0EB7FFE271F7F9E2A>I<B4EB0FF8390F8003
XE0EC0080EA0BC0EA09E0A2EA08F01378A27F7FA27FEB0780A2EB03C0EB01E0A2EB00F014
X78A2143C141EA2140F1407A214031401123E38FF80001D1F7E9E22>I<EB1FE0EB703838
X01C00E48487E39070003804814C0001EEB01E048EB00F0A2007C14F8A20078147800F814
X7CA900781478007C14F8A2003C14F0003E1301001E14E06CEB03C06C1480390380070038
X01E01E38007038EB1FE01E217E9F23>I<B512E0380F007C141E80EC0780A215C0A41580
XA2EC0F00141E147CEBFFE090C8FCAEEAFFF01A1F7E9E1F>I<EB1FE0EB70383801C00E48
X487E39070003804814C0001EEB01E0003E14F0003C1300007C14F8A20078147800F8147C
XA900781478007C14F8A2003C14F0383E0781391E0841E0390F1023C00007148039039017
X003801D01E3900783804EB1FF8EB001CEC0C0CEC0E1CEC0FF8A2140715F0EC01E01E297E
X9F23>I<B57E380F00F0143C8080A21580A41500A2141E5C14F0EBFF80EB01C0EB0070A2
X80143CA3143EA31504143F141FEC0F0839FFF00788C7EA01F01E207E9E21>I<3803F040
X380C0CC0EA1803EA3001EA6000A212E01440A36C13007E127CEA7F80EA3FF86CB4FC0007
X1380C613C0EB1FE013031301EB00F014707EA46C136014E06C13C038F8018038C60300EA
X81FC14217E9F19>I<007FB512E038780F010060EB006000401420A200C0143000801410
XA400001400B3497E3803FFFC1C1F7E9E21>I<39FFF00FF8390F0003E0EC0080B3A46CEB
X01001380120314026C6C5A6C6C5AEB3830EB0FC01D207E9E22>I<39FFF003FE391F8000
XF86CC7126015206C6C1340A36C6C1380A2EBE00100011400A23800F002A213F8EB7804A2
X6D5AA36D5AA2131F6D5AA2EB07C0A36D5AA36DC7FC1F207F9E22>I<3BFFF07FF81FF03B
X1F000FC007C06C903907800180170015C001805C00071502EC09E013C000035DEC19F014
X10D801E05CA2EC2078D800F05CA2EC403C01785CA2EC801E017C1460013C144090383D00
X0F133F6D5CA2011E1307010E91C7FCA2010C7F010413022C207F9E2F>I<397FF81FF839
X0FE007C03907C0030000031302EBE0063801F00400005BEBF818EB78106D5AEB3E60EB1E
X406D5AA213076D7E497E1305EB08F0EB18F8EB1078EB207CEB603EEB401EEB801F390100
X0F801407000214C000061303001FEB07E039FFC01FFE1F1F7F9E22>I<39FFF001FF391F
X800078000F146012076D1340000314807F3901F001001200EBF802EB7C06EB3C04EB3E08
X131EEB1F10EB0FB0EB07A014E06D5AACEB3FFC201F7F9E22>I<387FFFFE387E003C1278
X00701378006013F814F0384001E0130314C0EB07801200EB0F00131EA25B137C13785B12
X01EBE002EA03C0A2EA0780000F13061300001E1304003E130C123C48133C14FCB5FC171F
X7E9E1C>I<12FFA212C0B3B3A512FFA2082D7CA10D>I<EA0804EA1008EA2010A2EA4020A2
XEA8040A3EAB85CEAFC7EA2EA7C3EEA381C0F0E7A9F17>I<12FFA21203B3B3A512FFA208
X2D80A10D>I<120C121E1233EA6180EAC0C0EA80400A067A9E17>I<EA1FE0EA3030EA7818
X131CEA300E1200A313FEEA078EEA1E0E1238127800F01310A3131E127838386720380F83
XC014147E9317>97 D<121C12FC121CAA137CEA1D87381E0180EB00C0001C13E01470A214
X78A6147014F014E0001E13C0381A018038198700EA107C15207E9F19>I<EA01FCEA0706
XEA1C0F123813060078C7FC127012F0A61270127800381380A2381C0100EA0706EA01F811
X147F9314>I<EB01C0130F1301AAEA01F1EA070DEA0C03EA180112381278127012F0A612
X70A21238EA1803120CEA070D3801F1F815207F9F19>I<EA03F0EA0E1C487E487EA21270
XEB038012F0A2B5FC00F0C7FCA31270A26C1380A2381C0100EA0706EA01F811147F9314>
XI<137CEA01C6EA030F1207EA0E061300A7EAFFF0EA0E00B2EA7FE01020809F0E>I<14E0
X3803E330EA0E3CEA1C1C38380E00EA780FA5EA380E6C5AEA1E38EA33E00020C7FCA21230
XA2EA3FFE381FFF8014C0383001E038600070481330A4006013606C13C0381C03803803FC
X00141F7F9417>I<121C12FC121CAA137C1386EA1D03001E1380A2121CAE38FF8FF01420
X7E9F19>I<1238127CA31238C7FCA6121C12FC121CB1EAFF80091F7F9E0C>I<13E0EA01F0
XA3EA00E01300A61370EA07F012001370B3A31260EAF06013C0EA6180EA3F000C28829E0E
X>I<121C12FC121CAAEB1FE0EB0780EB060013045B5B5B136013E0EA1DF0EA1E70EA1C38
X133C131C7F130F7F148014C038FF9FF014207E9F18>I<121C12FC121CB3ABEAFF800920
X7F9F0C>I<391C3E03E039FCC30C30391D039038391E01E01CA2001C13C0AE3AFF8FF8FF
X8021147E9326>I<EA1C7CEAFC86EA1D03001E1380A2121CAE38FF8FF014147E9319>I<EA
X01F8EA070E381C0380383801C0A2387000E0A200F013F0A6007013E0A2383801C0A2381C
X038038070E00EA01F814147F9317>I<EA1C7CEAFD87381E018014C0381C00E014F01470
X1478A6147014F014E0381E01C0EB0380381D8700EA1C7C90C7FCA8B47E151D7E9319>I<
X3801F04038070CC0EA0E02EA1C03EA38011278127012F0A6127012781238EA1C03EA0C05
XEA0709EA01F1EA0001A8EB0FF8151D7F9318>I<EA1CF0EAFD18EA1E3CA21318EA1C00AE
XEAFFC00E147E9312>I<EA0FC8EA3038EA6018EAC008A3EAE000127CEA3FE0EA1FF0EA07
XF8EA003CEA800E130612C0A21304EAE00CEAD818EA87E00F147F9312>I<1202A31206A2
X120EA2123EEAFFF8EA0E00AB1304A5EA07081203EA01F00E1C7F9B12>I<381C0380EAFC
X1FEA1C03AE1307120CEA061B3803E3F014147E9319>I<38FF83F8383E00E0001C13C06C
X1380A338070100A21383EA0382A2EA01C4A213E4EA00E8A21370A3132015147F9318>I<
X39FF9FE1FC393C078070391C030060EC8020000E1440A214C0D80704138014E0A2390388
X61001471A23801D032143A143E3800E01CA2EB6018EB40081E147F9321>I<38FF87F838
X1E03C0380E0180EB0300EA0702EA0384EA01C813D8EA00F01370137813F8139CEA010E12
X02EA060738040380000C13C0003C13E038FE07FC16147F9318>I<38FF83F8383E00E000
X1C13C06C1380A338070100A21383EA0382A2EA01C4A213E4EA00E8A21370A31320A25BA3
XEAF080A200F1C7FC1262123C151D7F9318>I<EA7FFFEA700E1260EA401C133813781370
XEA00E0120113C0EA038012071301120E121EEA1C03EA3802EA7006130EEAFFFE10147F93
X14>I<B512FC1601808C17>I<B812F02C01808C2D>I<EA1C04EA3F08EA43F0EA80E00E04
X7C9D17>126 D<EA7038EAF87CA3EA70380E057C9E17>I E /Fp 58
X123 df<1238127C12FE12FFA2127F123B1203A21206A2120E120C12181230122008107C
X860F>44 D<EAFFF0A40C047F8B11>I<1238127C12FEA3127C123807077C860F>I<146014
XE0A2EB01C0A2EB0380A3EB0700A3130EA25BA35BA35BA25BA3485AA2485AA348C7FCA312
X0EA25AA35AA35AA25AA25A132D7DA11A>I<EA01FCEA07FF381F07C0EA1E03003E13E038
X7C01F0A300FC13F8AD007C13F0A3383E03E0001E13C0EA1F8F3807FF00EA01FC151D7E9C
X1A>I<137013F0120712FF12F91201B3A4387FFFC0A2121D7D9C1A>I<EA03FC381FFF8038
X381FC0387C07E038FE03F0A214F81301127C1238EA000314F0A2EB07E0EB0FC01400131E
X5B13705B3801C018EA0380EA0600481338381FFFF05A5AB5FCA2151D7E9C1A>I<EA03FC
X380FFF80381C0FC0383C07E0387E03F0A31307003C13E01200EB0FC0EB3F803803FE005B
X38000F80EB07C0EB03E014F014F81238127C12FEA214F012FC387807E0383C0FC0381FFF
X803803FC00151D7E9C1A>I<EB01C013031307A2130F131F133B1373136313C3EA018312
X03EA0703120E120C12181238127012E0B512FEA2380007C0A6EBFFFEA2171D7F9C1A>I<
X001C13E0EA1FFF14C01480140013FC13C00018C7FCA4EA19FE381FFF80381E07C0381803
XE0381001F0120014F8A2127812FCA314F0EA7803007013E0383C0FC0380FFF00EA03FC15
X1D7E9C1A>I<133F3801FFC03807C0E0EA0F81381F03F0121E123E127CEB01E090C7FCEA
XFC1013FF00FD13C0EB03E038FE01F0A200FC13F8A4127CA3003C13F0123E381E03E0380F
X07C03807FF803801FE00151D7E9C1A>I<1260387FFFF8A214F014E014C038E0018038C0
X0300A21306C65A5B13381330137013F0A2485AA21203A41207A56C5A6C5A151E7D9D1A>
XI<EA01FE380FFF80381E07C0383801E0EB00F01278A2127C127FEBC1E0383FE3C0381FFF
X80380FFE003807FF8014C0001F13E0383C3FF0EA780FEB03F8EAF00113001478A2147012
X78007C13E0383E03C0380FFF803803FC00151D7E9C1A>I<EA01FCEA0FFF381F0780383E
X03C0007C13E0130100FC13F0A314F8A4EA7C03A2EA3E05EA1FFDEA07F9EA0041EB01F012
X3C127EEB03E0A214C0383C078038381F00EA1FFCEA07F0151D7E9C1A>I<1238127C12FE
XA3127C12381200A61238127C12FEA3127C123807147C930F>I<14E0A2497EA3497EA2EB
X06FCA2EB0EFEEB0C7EA2497EA201307F141F01707FEB600FA2496C7E90B5FC4880EB8003
X000380EB0001A200066D7EA2000E803AFFE00FFFE0A2231F7E9E28>65
XD<B512FEECFFC03907C007E0EC03F0EC01F815FCA515F8140315F0EC0FE090B5128015C0
X9038C003F0EC01F815FC140015FEA515FC1401EC03F8EC07F0B612E015001F1F7E9E25>
XI<903807FC0290383FFF0E9038FE03DE3903F000FE4848133E4848131E485A48C7120EA2
X481406127EA200FE1400A7127E1506127F7E150C6C7E6C6C13186C6C13386C6C13703900
XFE01C090383FFF80903807FC001F1F7D9E26>I<B512FEECFFC03907E007F0EC01F86E7E
X157E81A2ED1F80A316C0A91680A3ED3F00A2157E5D4A5AEC07F0B612C04AC7FC221F7E9E
X28>I<B612E0A23807E00714011400156015701530A21430A21500147014F013FFA213E0
X14701430150CA214001518A31538157815F8EC03F0B6FCA21E1F7E9E22>I<B612E0A238
X07E00714011400156015701530A21430A21500147014F013FFA213E014701430A391C7FC
XA8B57EA21C1F7E9E21>I<903807FC0290383FFF0E9038FE03DE3903F000FE4848133E48
X48131E485A48C7120EA2481406127EA200FE91C7FCA591381FFFE0A2007E9038007E00A2
X127F7EA26C7E6C7E6C7E6C6C13FE3800FE0190383FFF8E903807FC06231F7D9E29>I<B5
XFCA2EA07E0B3A9B5FCA2101F7E9E14>73 D<B57EA2D807E0C7FCB115C0A31401A3EC0380
XA2140F141FB6FCA21A1F7E9E1F>76 D<D8FFE0EC3FF86D147F00071600D806F814DFA301
X7CEB019FA26DEB031FA26D1306A290380F800CA2903807C018A3903803E030A2903801F0
X60A2903800F8C0A2EC7D80A2EC3F00A3141ED8FFF0903803FFF8140C2D1F7E9E32>I<D8
XFFE0EBFFF07F0007EC06007FEA06FC137E7F1480131FEB0FC0EB07E0EB03F0EB01F814FC
X1300147E143FEC1F8615C6EC0FE61407EC03F6EC01FE1400A2157E153E151E150ED8FFF0
X1306A2241F7E9E29>I<B512FEECFF803907E00FE0EC03F0EC01F8A215FCA515F8A2EC03
XF0EC0FE090B51280ECFE0001E0C7FCACB5FCA21E1F7E9E24>80 D<EB1FF890B5FC3901F8
X1F803907E007E0390FC003F0391F8001F8A248C712FC4814FEA2007E147E00FE147FA900
X7E147EA2007F14FE6C14FCEB87C1391F8FE1F8390FD833F03907F81FE0000114806CB512
X0090381FFE03EB000EEC0F0715FF8015FEA2EC03FCEC01F8EC00F020287D9E27>I<B512
XFCECFF803907E00FE0EC03F081140181A45D14035DEC0FE090B5128002FCC7FCEBE03FEC
X0F8081140781A381A31630EC03F802011360B53800FFC0ED3F80241F7E9E27>I<3803FC
X08380FFF38381E03F8EA3800481378143812F01418A26C13007EEA7FC013FE383FFF806C
X13C06C13E06C13F0C613F81307EB00FC147C143C12C0A36C1338147800F8137038FE01E0
X38EFFFC000811300161F7D9E1D>I<007FB512FCA2397C07E07C0070141C0060140CA200
XE0140E00C01406A400001400B10003B512C0A21F1E7E9D24>I<D8FFFEEB3FF8A2D80FE0
XEB0380000715006D5B000314067F00015C7F00005CA2017E5BA2017F13706D1360EC80E0
X011F5B14C090380FC180A2D907E3C7FCA2EB03F6A214FE6D5AA26D5AA21470A2251F7F9E
X28>86 D<EA07FC381FFF80383F07C0EB03E0EB01F0A2120C1200133FEA07FDEA1F81EA3E
X01127C12F8A3EAFC02EA7E0C383FF87E380FE03E17147F9319>97
XD<B4FCA2121FAAEB1FC0EB7FF0EBE0F8EB807CEB007E143EA2143FA6143EA2147C138038
X1EC1F8381C7FE038181F8018207E9F1D>I<EA01FE3807FF80381F0FC0123EA2127CEB03
X0000FCC7FCA6127C127E003E1360003F13C0EA1F813807FF00EA01FC13147E9317>I<EB
X07F8A21300AAEA01F8EA07FEEA1F83EA3E01EA7E00127CA212FCA6127CA2127EEA3E01EA
X1F07380FFEFFEA03F818207E9F1D>I<EA01FE3807FF80380F83C0381E01E0383E00F05A
X14F812FCB5FCA200FCC7FCA3127CA26C1318121E380F80703807FFE0C6138015147F9318
X>I<EB3F80EBFFC03803E3E0EA07C71387120FEB83C0EB8000A5EAFFFCA2EA0F80B0EA7F
XF8A213207F9F10>I<3803FC3C380FFFFE381E079E383C03DE007C13E0A5003C13C0381E
X0780381FFF00EA13FC0030C7FCA21238383FFF806C13F06C13F84813FC3878007C007013
X3E00F0131EA30078133CA2383F01F8380FFFE000011300171E7F931A>I<B4FCA2121FAA
XEB0FC0EB3FE0EB61F0EBC0F813801300AD38FFE7FFA218207D9F1D>I<121C123E127FA3
X123E121CC7FCA6B4FCA2121FB0EAFFE0A20B217EA00E>I<1338137C13FEA3137C133813
X00A6EA01FEA2EA003EB3A212301278EAFC3C137CEA7878EA3FF0EA1FC00F2A83A010>I<
XB4FCA2121FAAEB01FEA2EB00F014C0EB0380EB0700130C5B137C13FC139E130F001E1380
XEB07C01303EB01E014F0EB00F838FFC3FFA218207E9F1C>I<B4FCA2121FB3AAEAFFE0A2
X0B207E9F0E>I<3AFE0FE03F8090391FF07FC03A1E70F9C3E09039407D01F0EB807E121F
XEB007CAC3AFFE3FF8FFEA227147D932C>I<38FE0FC0EB3FE0381E61F0EBC0F81380EA1F
X00AD38FFE7FFA218147D931D>I<48B4FC000713C0381F83F0383E00F8A248137CA200FC
X137EA6007C137CA26C13F8A2381F83F03807FFC00001130017147F931A>I<38FF1FC0EB
X7FF0381FE1F8EB80FCEB007EA2143E143FA6143E147E147CEB80FCEBC1F8EB7FE0EB1F80
X90C7FCA7EAFFE0A2181D7E931D>I<3801F8183807FE38381F8778383F01F8123EEA7E00
X127C12FCA6127C127EA2EA3F01EA1F87EA0FFEEA03F8C7FCA7EB07FFA2181D7E931C>I<
XEAFE3EEB7F80381ECFC0138FA2121FEB030090C7FCABEAFFF0A212147E9316>I<EA0FE6
XEA3FFEEA701EEA600EEAE006A2EAF800EAFFC0EA7FF8EA3FFCEA1FFE1203EA001FEAC007
XA212E0EAF006EAF81EEAFFFCEAC7F010147E9315>I<1203A45AA25AA2123FEAFFFCA2EA
X1F00AA1306A5EA0F8CEA07F8EA03F00F1D7F9C14>I<38FF07F8A2EA1F00AD1301A2EA0F
X063807FCFF6C5A18147D931D>I<39FFE07F80A2391F001C00380F8018A26C6C5AA26C6C
X5AA2EBF0E000015B13F900005B13FF6DC7FCA2133EA2131CA219147F931C>I<3AFFC7FE
X1FE0A23A1F00F0030014F8D80F801306A29038C1BC0E0007140CEBC3BE3903E31E18A290
X38F60F380001143001FE13B03900FC07E0A2EBF80301785BA2903830018023147F9326>
XI<38FFC0FFA2380F80703807C0606D5A3803E180EA01F36CB4C7FC137E133E133F497E13
X6FEBC7C0380183E0380381F048C67E000E7F39FF81FF80A219147F931C>I<39FFE07F80
XA2391F001C00380F8018A26C6C5AA26C6C5AA2EBF0E000015B13F900005B13FF6DC7FCA2
X133EA2131CA21318A2EA783012FC5BEAC0E0EAE1C0EA7F80001EC8FC191D7F931C>I<38
X3FFFE0A2383C07C038380F80EA701F38603F00133E5BC65A1201485AEBE060EA07C0EA0F
X80001F13E0383F00C0EA3E01EA7C03B5FCA213147F9317>I E /Fq
X36 123 df<B512E0A413047E911B>45 D<123C127E12FFA4127E123C0808798717>I<EB
X0FE0EB7FFC3801F83F3903E00F8039078003C0000F14E0EB0001001EEB00F0A2003E14F8
XA2007E14FC007C147CA400FC147EB0007C147CA4007E14FC003E14F8A2001E14F0001F13
X016C14E0EB80033907C007C03903E00F803901F83F0038007FFCEB0FE01F307CAE28>48
XD<1306131E133E13FE121FEAFF3E12E01200B3B3EBFF80007F13FFA2182F78AE28>I<EB
X3FC03801FFF8380780FE380E003F0018EB1F8048EB0FC0EC07E04814F00078130312FE6C
X14F8A21401A2127E003C1303C7FC15F0A2140715E015C0140FEC1F801500143E5C5C5C49
X5AEB038049C7FC130E5B5B4913185B485A4848133048C7FC1206481470001FB512F05A48
X14E0B6FCA21D2F7BAE28>I<EB1FF0EBFFFE3803E03F3907000FC0000CEB07E048EB03F0
X121FD83F8013F81401A3001F1303EA0F00C713F0A2EC07E015C0140FEC1F00143EEB01FC
XEB7FE080EB003EEC0F80EC07C0EC03E0EC01F015F815FC140015FEA21218127EB4FCA315
XFC481301007C14F812606CEB03F0001CEB07E06CEB0FC03907E03F003801FFFC38001FF0
X1F307CAE28>I<EC03801407A2140F141FA2143F147F146F14CF1301EB038F140F130613
X0E130C131813381330136013E0EA01C01380EA03005A12065A121C5A123012705AB71280
XA2C7380F8000AA4A7E0107B5FCA2212F7DAE28>I<B612FEEDFFC03A03FC0003F86C48EB
X00FC167E82EE1F8017C0160F17E0A617C0161F1780163FEE7F0016FCED03F8ED7FE090B6
X5A16F801F8C712FE163FEE1F80EE0FC017E0EE07F0A2160317F8A617F0160717E0160FEE
X1FC0EE3F80EEFF00486CEB03FCB712F016802D317CB037>66 D<DA07FC130891397FFF80
X18903A01FC01E038903907E00070D91F80EB1878013EC7EA0CF849140649140348481401
X48481400120748481578A248481538A248C9FC17185AA2127E170012FEA9127EA2007F16
X18A27EA26C7E17306C7EA26C6C1560000316E06C6C15C06C6CEC0180017CEC03006D1406
X6D6C5BD907E01338903901FC01E09039007FFF80DA07FCC7FC2D337BB138>I<B612FEED
XFFC03A03FC0007F06C48EB00FC163E707E707E707E1603707E83160083177C177EA2177F
X83A31880AA1800A35F177EA25FA24C5A5F16034C5A4C5A4C5A4CC7FC16FC486CEB07F0B7
X12C04BC8FC31317CB03B>I<B512F0A23803FC006C5AB3B3A7487EB512F0A214317CB01D>
X73 D<B612FCEDFFC03A03FC000FF06C48EB01F8ED007E82EE1F80A217C0160F17E0A617
XC0161F1780A2EE3F00167EED01F8ED0FF090B612C003FCC7FC01F8C9FCB3A2487EB512F0
XA22B317CB035>80 D<B612F015FF3A03FC001FC06C48EB03F06F7EED007E167F8283161F
X83A55F163F94C7FC5E167EED01F84B5AED1FC090B6C8FC15FC9038F8003FED0F80ED03E0
X82150182150082A582A41860A2167FA27013C0486CEC1F80B500F090380FC380933807FF
X00CA12FC33327CB039>82 D<90381FE0029038FFFC063903E01F0E390780038E390E0001
XDE48EB007E48143EA248141EA200F0140EA315067EA26C91C7FC127E127FEA3FC013FC38
X1FFFC06C13FC6CEBFF806C80C614F0011F7F01017FEB001FEC01FEEC007F8181ED0F80A2
X12C01507A37E1600A26C5C150E6C141E6C141C00F75CD8E3C013F039E0F803E039C03FFF
X80268007FCC7FC21337BB12C>I<007FB712FCA29039000FF001007C903907E0007C0078
X163C0070161C0060160CA200E0160EA2481606A6C71500B3ACEC1FF8011FB512F8A22F31
X7CB038>I<B500E0903803FFF8A2D803FEC8EA7F806C48ED3E0049151C6C6C1518A26D15
X38017E1530A26D5DA26E14E0011F5DA26D6C495AA26E1303010792C7FCA26D6C1306A26E
X130E0101140CA26D6C5BA26E1338027E1330A26E5BA2ED80E0021F5BA291380FC180A215
XE3020790C8FCA2EC03F6A215FE6E5AA26E5AA31570A235327EB03A>86
XD<14301478A314FCA2497E14BEA2EB031FA201077FEB060FA2496C7EA3496C7EA2496C7E
XA3496C7EEB7FFF90B57E9038C0007CA248487FA20003143F90C77EA248EC0F805A486CEB
X1FC0D8FFE0EBFFFCA226257EA42C>97 D<B6FC15E0390FC003F00007EB00F8157C157E15
X3E153FA5153E157E5D4A5AEC0FE090B5128015F09038C000FC157E81ED1F80150F16C0A6
XED1F80A2ED3F00157E000F495AB612F0158022257DA42A>I<D901FE134090390FFF80C0
X90383F80E190387C0031D801F0131B4848130F48481307485A90C712035A003E1401A212
X7E1500127C12FC1600A8007C15C0127EA2123EED01807E7E6DEB03006C6C13066C7E6C6C
X5BD8007C133890383F80E090380FFFC0D901FEC7FC22277DA52A>I<B6FC15C0390FC003
XF00007EB00FC153E81ED0F80ED07C0A2ED03E0A216F01501A216F8A916F0A3ED03E0A2ED
X07C0A2ED0F80ED1F00153E5D000FEB03F0B65A92C7FC25257DA42D>I<B612FEA2390FC0
X007E0007141E150E15061507A281A3140C92C7FCA3141C143CEBFFFCA2EBC03C141C140C
XA2ED0180A21400ED0300A45DA25D151E000F14FEB6FCA221257DA428>I<B612FCA2380F
XC0000007143C151C150C150EA21506A3140C1500A3141C143CEBFFFCA2EBC03C141C140C
XA491C7FCA9487EB5FCA21F257DA426>I<02FF1320010FEBC06090393F80F0E090387C00
X38D801F0130D4848130748481303485A150148C7FC481400123E127E1660127C12FC1600
XA6913801FFFEA2007C90380007F0007EEC03E0A2123E123F7E6C7EA26C7E6C7ED801F813
X07D8007E130C90393F80786090390FFFF0200100EB800027277DA52E>I<3AFFFE07FFF0
XA23A0FE0007F006C48133EAE90B512FEA29038C0003EAF486C137F3AFFFE07FFF0A22425
X7DA42C>I<EAFFFEA2EA0FE0EA07C0B3ADEA0FE0EAFFFEA20F257DA416>I<B5FCA2EA0FE0
X6C5AB3A2150CA4151CA31538A2157815F8000F1307B6FCA21E257DA425>108
XD<D8FFC0EC0FFC6D141F000F16C000071680D806F01437A201781467A36D14C7A26DEB01
X87A36DEB0307A29038078006A2903803C00CA3903801E018A2903800F030A3EC7860A2EC
X3CC0A3EC1F80A2000FEB0F00D81F80EC0FC0D8FFF0ECFFFC14062E257DA436>I<B46CEB
XFFF07FD807E0EB1F806DEB0F001506EA06F8137CA27F7F7F1480EB07C0130314E0EB01F0
XEB00F8A2147C143EA2141FEC0F86A2EC07C6EC03E6A2EC01F6EC00FE157EA2153E151E12
X0F486C130ED8FFF01306A224257DA42C>I<EB01FE90380FFFC090383F03F09038F8007C
X48487F48487F4848EB0F804848EB07C048C7EA03E0A2003EEC01F0A2007E15F8A2007C14
X0000FC15FCA9007C15F8007E1401A2003E15F0003F14036C15E06D1307000F15C06C6CEB
X0F806C6CEB1F006C6C133E6C6C5B90383F03F090380FFFC0D901FEC7FC26277DA52E>I<
XB512FEECFFC0390FC007F00007EB01F8EC007C157E153E153FA6153E157E157CEC01F8EC
X07F090B512C0ECFE0001C0C7FCAE487EEAFFFEA220257DA428>I<B512F814FF390FC00F
XC00007EB03F0EC00F881157C157EA5157C15FC5DEC03F0EC0FC090B5C7FC5CEBC01FEC07
X806E7E81140181A481A3160C15FC1400486CEB7C18D8FFFEEB3E38ED1FF0C8EA07C02626
X7DA42B>114 D<EBFE023807FF86380F01CE381C007E48133E0078131E0070130E12F0A2
X1406A27E91C7FC127C127EEA7FC0EA3FFE381FFFC06C13F000037FC67FEB0FFEEB00FF14
X3F80EC0F80A200C01307A46C14005C6C130E6C131E00FE5B38E7807838C3FFE038807F80
X19277DA521>I<007FB612E0A2397C00F80300701400A20060156000E01570A2481530A4
XC71400B3A4497E90387FFFF0A224257EA42A>I<D8FFFEEBFFF0A2D80FE0EB1F806C48EB
X0F001506B3A600035C7F12015D6C6C5B13786D13E090381F03C0D907FFC7FCEB01FC2426
X7DA42C>I<D8FFFCEB07FFA2D80FF0EB01F86C4814F06C6C14C012016DEB03806C6C1400
X017C5B017E13066D5B90381F801C15186D6C5A903807E07015606D6C5AEB01F95DEB00FF
X6EC7FC143EAD147F903807FFF0A228257FA42C>121 D<003FB512F0A290388003E0383E
X0007003C14C00038EB0F8048131F1500143E0060137E147C5CEA00015C495A13075C495A
X131F91C7FC133E137E137C49133012015B485A000714705B485A001F146090C712E0003E
X1301007E1303007C131FB6FCA21C257DA424>I E /Fr 44 123 df<EAFFFCA40E047F8C
X13>45 D<1238127C12FEA3127C123807077C8610>I<13181378EA01F812FFA21201B3A7
X387FFFE0A213207C9F1C>49 D<EA03FCEA0FFF383C1FC0387007E0007C13F0EAFE0314F8
XA21301127CEA3803120014F0A2EB07E014C0EB0F80EB1F00133E13385BEBE018EA01C0EA
X0380EA0700000E1338380FFFF05A5A5AB5FCA215207D9F1C>I<13FE3807FFC0380F07E0
X381E03F0123FEB81F8A3EA1F0314F0120014E0EB07C0EB1F803801FE007F380007C0EB01
XF014F8EB00FCA2003C13FE127EB4FCA314FCEA7E01007813F8381E07F0380FFFC03801FE
X0017207E9F1C>I<14E013011303A21307130F131FA21337137713E7EA01C71387EA0307
X1207120E120C12181238127012E0B6FCA2380007E0A790B5FCA218207E9F1C>I<003013
X20383E01E0383FFFC0148014005B13F8EA33C00030C7FCA4EA31FCEA37FF383E0FC03838
X07E0EA3003000013F0A214F8A21238127C12FEA200FC13F0A2387007E0003013C0383C1F
X80380FFF00EA03F815207D9F1C>I<EB1F80EBFFE03803E0703807C0F0380F01F8121F12
X3EA2387E00F0007C1300A2EAFC08EB7FC0EBFFE038FD80F038FF00F848137CA248137EA4
X127CA3003C137C123E001E13F86C13F0380783E03803FFC0C6130017207E9F1C>I<1260
X1278387FFFFEA214FC14F8A214F038E0006014C038C00180EB0300A2EA00065B131C1318
X13381378A25BA31201A31203A76C5A17227DA11C>I<13FE3803FFC0380703E0380E00F0
X5A1478123C123E123F1380EBE0F0381FF9E0EBFFC06C13806C13C06C13E04813F0381E7F
XF8383C1FFCEA7807EB01FEEAF000143E141EA36C131C007813387E001F13F0380FFFC000
X01130017207E9F1C>I<EA01FE3807FF80380F83E0381E01F0EA3E004813F8147800FC13
X7CA3147EA4007C13FEA2EA3E01381E037EEA0FFEEA07FCEA0020EB007CA2121E003F13F8
XA214F0EB01E0381E03C0381C0F80380FFE00EA03F817207E9F1C>I<D903FE138090381F
XFF819038FF01E33901F8003FD803E0131F4848130F48481307121F48C71203A248140112
X7EA200FE91C7FCA8127EED0180127F7E15036C6C1400120F6C6C1306D803F05B6C6C1338
X6CB413F090381FFFC0D903FEC7FC21227DA128>67 D<B67E15F03907F003FCEC007E81ED
X1F80ED0FC0ED07E0A216F01503A316F8A916F0A3ED07E0A2ED0FC0ED1F80ED3F00157EEC
X03FCB612F0158025227EA12B>I<B612F8A23807F001EC007815381518151CA2150CA214
X18A21500A214381478EBFFF8A2EBF07814381418A491C7FCA8B512C0A21E227EA123>70
XD<D903FE134090391FFFC0C090387F00F1D801F8133F4848130FD807C01307000F140348
X5A48C71201A2481400127EA200FE1500A791380FFFFC127E007F9038001FC0A27EA26C7E
X6C7E6C7E6C7ED801FC133F39007F80E790381FFFC30103130026227DA12C>I<B51280A2
X3807F000B3ACB51280A211227EA115>73 D<B512C0A2D807F0C7FCB31518A41538A21570
XA215F014011407B6FCA21D227EA122>76 D<D8FFF0EC0FFF6D5C000716E0D806FC1437A3
X017E1467A26D14C7A290391F800187A290390FC00307A3903807E006A2903803F00CA290
X3801F818A3903800FC30A2EC7E60A2EC3FC0A2EC1F80A3EC0F00D8FFF091B5FC14063022
X7EA135>I<D8FFF8EB1FFE7F0007EC00C07FEA06FF6D7E6D7E6D7E130F806D7E6D7E6D7E
X130080EC7F80EC3FC0EC1FE0EC0FF0140715F8EC03FCEC01FEEC00FF157FA2153F151F15
X0F15071503A2D8FFF01301150027227EA12C>I<B6FC15E03907F007F0EC01FC1400157E
XA2157FA5157EA215FC1401EC07F090B512E0150001F0C7FCADB57EA220227EA126>80
XD<B512FEECFFC03907F007F0EC01F86E7E157E157FA6157E5D4A5AEC07F090B512C05D90
X38F00FE06E7E6E7E6E7EA81606EC00FEEDFF0CB538803FF8ED0FF027227EA12A>82
XD<3801FE023807FF86381F01FE383C007E007C131E0078130EA200F81306A27E1400B4FC
X13E06CB4FC14C06C13F06C13F86C13FC000313FEEA003F1303EB007F143FA200C0131FA3
X6C131EA26C133C12FCB413F838C7FFE00080138018227DA11F>I<007FB61280A2397E03
XF80F00781407007014030060140100E015C0A200C01400A400001500B3A248B512F0A222
X227EA127>I<B5EB0FFEA2D807F0EB00C0A26C6CEB0180A26D1303000115007F00001406
X7F6D5BA2EC801C013F1318ECC038011F133014E0010F5BA26D6C5AA214F901035B14FD6D
XB4C7FCA26D5AA3147CA21438A227227FA12A>86 D<EA0FFC383FFF80387E07C0EB03E013
X0114F0123C1200A2133FEA03FDEA1FC1EA3F01127E12FCA4EA7E02EB0CF8381FF87F3807
XE03F18167E951B>97 D<B4FCA2121FABEB0FE0EB3FF8EBE07CEB803E497EEC0F80A215C0
XA81580141F01801300EBC03E381EE07C381C3FF838180FC01A237EA21F>I<EBFF800007
X13E0380F83F0EA1F03123E127E387C01E090C7FC12FCA6127C127EA2003E13186C133038
X0FC0603807FFC0C6130015167E9519>I<EB01FEA2EB003EABEA01FC3807FFBE380F81FE
X381F007E003E133E127E127C12FCA8127CA26C137E6C13FE380F83BE3907FF3FC0EA01FC
X1A237EA21F>I<13FE3807FF80380F87C0381E01E0003E13F0EA7C0014F812FCA2B5FCA2
X00FCC7FCA3127CA2127E003E13186C1330380FC0703803FFC0C6130015167E951A>I<EB
X1FC0EB7FE0EBF1F0EA01E31203EA07C3EBC1E0EBC000A6EAFFFEA2EA07C0B2EA3FFCA214
X2380A211>I<3801FE0F3907FFBF80380F87C7381F03E7391E01E000003E7FA5001E5BEA
X1F03380F87C0EBFF80D809FEC7FC0018C8FCA2121C381FFFE06C13F86C13FE001F7F383C
X003F48EB0F80481307A40078EB0F006C131E001F137C6CB45A000113C019217F951C>I<
XB4FCA2121FABEB07E0EB1FF8EB307CEB403CEB803EA21300AE39FFE1FFC0A21A237EA21F
X>I<121C123E127FA3123E121CC7FCA7B4FCA2121FB2EAFFE0A20B247EA310>I<B4FCA212
X1FB3ADEAFFE0A20B237EA210>108 D<3AFF07F007F090391FFC1FFC3A1F303E303E0140
X1340496C487EA201001300AE3BFFE0FFE0FFE0A22B167E9530>I<38FF07E0EB1FF8381F
X307CEB403CEB803EA21300AE39FFE1FFC0A21A167E951F>I<13FE3807FFC0380F83E038
X1E00F0003E13F848137CA300FC137EA7007C137CA26C13F8381F01F0380F83E03807FFC0
X3800FE0017167E951C>I<EBFE033807FF87380FC1C7381F006F48133F127E80127C12FC
XA7127EA2003E5B6C5B380FC1DF3807FF9F3801FC1FC7FCA8ECFFE0A21B207E951E>113
XD<EAFE1FEB3FC0381E67E013C71387A2381F83C090C7FCADEAFFF0A213167E9517>I<EA
X0FF3EA3FFFEA781FEA6007EAE003A212F000FCC7FCEA7FE013F8EA3FFEEA0FFF12013800
X0F80EAC007130312E0A238F00700EAFC0EEAEFFCEAC7F011167E9516>I<487EA41203A2
X1207A2120F123FB5FCA2EA0F80ABEB8180A5EB8300EA07C3EA03FEEA00F811207F9F16>
XI<38FF01FEA2381F003EAF147E14FE380F81BE3907FF3FC0EA01FC1A167E951F>I<39FF
XE01FE0A2391F800700000F1306EBC00E0007130C13E000035BA26C6C5AA26C6C5AA2EB7C
XC0A2137F6D5AA26DC7FCA2130EA21B167F951E>I<387FFFF0A2387C03E0387007C0EA60
X0F38E01F8000C01300133E137EC65A5B485A00031330EA07E013C0380F8070121F383F00
X60003E13E0EA7C03B5FCA214167E9519>122 D E /Fs 25 127 df<1230127812FCA212
X781230060676851A>46 D<14C0EB01E0A2130314C013071480130F1400A25B131E133E13
X3C137C1378A213F85B12015B12035BA212075B120F90C7FC5A121EA2123E123C127C1278
X12F85AA2126013277DA21A>I<EB0F80131F133BA2137313F313E3EA01C3120313831207
XEA0F03120E121E123C1238127812F0B512FEA338000380A6EB3FF8EB7FFCEB3FF8171E7F
X9D1A>52 D<1230127812FCA2127812301200A91230127812FCA212781230061576941A>
X58 D<133E3801FF804813C03807C1E0EA0F00381E0F70383C3FF0EA387F387070F8EBE0
X78A238E1C038A83870E070A2EB70E0EA387F383C3FC0381E0F00380F00383807C0F83803
XFFF06C13E038003F00151E7E9D1A>64 D<EA1FF0EA3FFC487EEA780FEA300738000380A2
X137FEA07FF121FEA3F83EA7803127012E0A3EA7007EA780F383FFFFCEA1FFDEA07F01615
X7D941A>97 D<127E12FE127E120EA6133EEBFF80000F13E0EBC1F0EB8070EB0038120E14
X1CA7000F13381478EB80F0EBC1E0EBFFC0000E138038063E00161E7F9D1A>I<EBFF8000
X0313C0000F13E0EA1F01383C00C04813001270A25AA51270A2007813707E381F01F0380F
XFFE0000313C03800FE0014157D941A>I<EB0FC0131F130F1301A6EA01F1EA07FDEA0FFF
XEA1E0FEA3C07EA7803EA700112E0A7EA7003A2EA3807EA3E0F381FFFF83807FDFC3801F1
XF8161E7E9D1A>I<EA01F8EA07FF481380381E07C0EA3C01387800E01270481370A2B512
XF0A300E0C7FC1270A2007813707E381F01F0380FFFE0000313803800FE0014157D941A>
XI<3801F87C3807FFFE5A381E078C381C0380383801C0A5381C0380EA1E07381FFF005BEA
X39F80038C7FCA27E381FFF8014E04813F83878007C0070131C48130EA40070131C007813
X3C003E13F8381FFFF0000713C00001130017217F941A>103 D<127E12FE127E120EA613
X3EEBFF80000F13C013C1EB80E01300120EAC387FC3FC38FFE7FE387FC3FC171E7F9D1A>
XI<13C0487EA26C5A90C7FCA6EA7FE0A31200AF387FFF80B512C06C1380121F7C9E1A>I<
X12FEA3120EA6EB0FFC131F130FEB03C0EB0780EB0F00131E5B5B13FC120F13DE138F380E
X07801303EB01C014E0EB00F038FFE3FEA3171E7F9D1A>107 D<EA7FE012FF127F1200B3
XA6387FFFC0B512E06C13C0131E7D9D1A>I<387CE0E038FFFBF8EA7FFF381F1F1CEA1E1E
XA2EA1C1CAC387F1F1F39FFBFBF80397F1F1F00191580941A>I<EA7E3E38FEFF80007F13
XC0EA0FC1EB80E01300120EAC387FC3FC38FFE7FE387FC3FC17157F941A>I<EA01F0EA07
XFCEA1FFF383E0F80EA3C07387803C0EA700138E000E0A6EAF001007013C0EA7803383C07
X80EA3E0F381FFF00EA07FCEA01F013157D941A>I<EA7E3E38FEFF80007F13E0380FC1F0
XEB8070EB0038120E141CA7000F13381478EB80F0EBC1E0EBFFC0000E1380EB3E0090C7FC
XA8EA7FC0487E6C5A16207F941A>I<387F81F838FF8FFC387F9FFE3803FE1EEBF80CEBE0
X00A25B5BAAEA7FFFB5FC7E17157F941A>114 D<3807FB80EA1FFF127FEA7807EAE003A3
X0078C7FCEA7FC0EA1FFCEA07FE38003F801307386001C012E0A2EAF00338FC0780B51200
XEAEFFEEAE3F812157C941A>I<487E1203A6387FFFE0B5FCA238038000AA1470A43801C1
XE013FF6C1380EB3F00141C7F9B1A>I<387E07E0EAFE0FEA7E07EA0E00AD1301EA0F0338
X07FFFC6C13FE3800FCFC17157F941A>I<38FF83FEA338380038A26C1370A31338137CA2
X380C6C60380EEEE0A413C6000613C0EA07C71383A217157F941A>119
XD<EA0703381F8780EA3FCF38F9FE00EAF0FCEA607011067C9D1A>126
XD E /Ft 11 117 df<91387FE003903907FFFC07011FEBFF0F90397FF00F9F9039FF0001
XFFD801FC7F4848147F4848143F4848141F485A160F485A1607127FA290C9FC5AA97E7F16
X07123FA26C7E160E6C7E6C6C141C6C6C143C6C6C14786CB4EB01F090397FF007C0011FB5
X12800107EBFE009038007FF028297CA831>67 D<B5D8F00FB5FCA3D803FCC7EA3FC0AF90
XB7FCA301FCC7123FB1B5D8F00FB5FCA330297EA835>72 D<B612F815FF16C03A03FC003F
XE0ED07F0ED03F816FC150116FEA716FC150316F8ED07F0ED3FE090B61280EDFE0001FCC8
XFCB0B512F0A327297EA82E>80 D<3803FF80000F13F0381F01FC383F80FE147F801580EA
X1F00C7FCA4EB3FFF3801FC3FEA0FE0EA1F80EA3F00127E5AA4145F007E13DF393F839FFC
X381FFE0F3803FC031E1B7E9A21>97 D<EB3FC03801FFF03803E07C380F803E001F7F1300
X48EB0F80127E15C0A200FE1307A2B6FCA248C8FCA3127EA2127F6CEB01C07E390F800380
X3907C007003803F01E3800FFFCEB3FE01A1B7E9A1F>101 D<EAFFE0A3120FAC147E9038
XE1FF809038E30FC001E413E0EBE80701F813F013F0A213E0B039FFFE3FFFA3202A7DA925
X>104 D<1207EA0F80EA1FC0EA3FE0A3EA1FC0EA0F80EA0700C7FCA7EAFFE0A3120FB3A3
XEAFFFEA30F2B7EAA12>I<38FFC07E9038C1FF809038C30FC0D80FC413E0EBC80701D813
XF013D0A213E0B039FFFE3FFFA3201B7D9A25>110 D<38FFC1F0EBC7FCEBC63E380FCC7F
X13D813D0A2EBF03EEBE000B0B5FCA3181B7F9A1B>114 D<3803FE30380FFFF0EA3E03EA
X7800127000F01370A27E00FE1300EAFFE06CB4FC14C06C13E06C13F0000713F8C6FCEB07
XFC130000E0137C143C7E14387E6C137038FF01E038E7FFC000C11300161B7E9A1B>I<13
XE0A41201A31203A21207120F381FFFE0B5FCA2380FE000AD1470A73807F0E0000313C038
X01FF8038007F0014267FA51A>I E /Fu 48 124 df<EB1FC0EB7020EBC0103801803800
X031378EA0700143091C7FCA7B512F8380700781438B2397FE1FF80192380A21B>12
XD<132013401380EA01005A12061204120CA25AA25AA312701260A312E0AE1260A3127012
X30A37EA27EA2120412067E7EEA0080134013200B327CA413>40 D<7E12407E7E12187E12
X041206A27EA2EA0180A313C01200A313E0AE13C0A312011380A3EA0300A21206A2120412
X0C5A12105A5A5A0B327DA413>I<127012F812FCA212741204A41208A21210A212201240
X060F7C840E>44 D<EAFFF8A20D02808B10>I<127012F8A3127005057C840E>I<EA01F0EA
X071CEA0C06487E00381380A2387001C0A400F013E0AE007013C0A3EA780300381380A238
X1C0700EA0C06EA071CEA01F013227EA018>48 D<13801203120F12F31203B3A9EA07C0EA
XFFFE0F217CA018>I<EA03F0EA0C1CEA100700201380384003C0A2008013E012F0EAF801
XA3EA2003120014C0A2EB07801400130E5B13185B5B5B485A90C7FC000213205A5A001813
X60481340383FFFC05AB5FC13217EA018>I<EA03F8EA0C1EEA100F38200780004013C012
X7813031307123800001380A214005B130C1338EA03F0EA001C130FEB0780A2EB03C0A214
XE01220127012F8A200F013C01240EB0780122038100F00EA0C1CEA03F013227EA018>I<
X1303A25BA25B1317A21327136713471387120113071202120612041208A212101220A212
X4012C0B512F838000700A7EB0F80EB7FF015217FA018>I<00101380381E0700EA1FFF5B
X13F8EA17E00010C7FCA6EA11F8EA120CEA1C07381803801210380001C0A214E0A4127012
XF0A200E013C01280EA4003148038200700EA1006EA0C1CEA03F013227EA018>I<EA01F8
XEA060EEA0803381001801220386000C0A31270A238780180003E1300EA3F02EA1FC4EA0F
XF812036C7EEA067EEA083F38100F80383007C0EA6003EB00E05A1460A40060134014C06C
X138038180300EA0E0EEA03F013227EA018>56 D<EA01F0EA060C487EEA18073838038012
X70A238F001C0A314E0A5127013031238EA1805120CEA0619EA03E1380001C0A3EB0380A2
X1230387807001306EA700CEA20186C5AEA0FC013227EA018>I<497EA3497EA3EB05E0A2
XEB09F01308A2EB1078A3497EA3497EA2EBC01F497EA248B51280EB0007A20002EB03C0A3
X48EB01E0A348EB00F0121C003EEB01F839FF800FFF20237EA225>65
XD<B512F8380F800E0007EB0780EC03C015E0140115F0A515E01403EC07C0EC0F80EC3E00
XEBFFFE9038800780EC03C0EC01E015F0140015F8A6EC01F0A2EC03E0EC07C0000FEB0F00
XB512FC1D227EA123>I<B512F0380F801E00071307EC0380EC01C0EC00E015F01578A215
X7C153CA3153EA9153CA2157C1578A215F015E01401EC03C0EC0700000F131EB512F01F22
X7EA125>68 D<3803FFE038001F007FB3A6127012F8A2130EEAF01EEA401C6C5AEA1870EA
X07C013237EA119>74 D<D8FFFCEBFF80D80FC0EB7C006C48133015205D5D4AC7FC14025C
X5C5C5C5C5CEB81C0EB83E01385EB88F01390EBA078EBC03C13808080A26E7E8114036E7E
XA26E7E81486C7F3AFFFC07FF8021227EA126>I<EAFFFCEA1F806CC7FCB3A21401A41403
XA214021406A2141E48137EB512FE18227DA11E>I<D8FFC0EB03FF000F15F0000715E0D8
X05E01305A2D804F01309A301781311A36D1321A36D1341A26D1381A39038078101A3EB03
XC2A2EB01E4A3EB00F8A31470120E001FEC03F03AFFE0203FFF28227EA12D>I<39FF8007
XFF3907C000F81570D805E01320EA04F0A21378137C133C7F131F7FEB0780A2EB03C0EB01
XE0A2EB00F014F81478143C143E141E140FA2EC07A0EC03E0A21401A21400000E1460121F
XD8FFE0132020227EA125>I<007FB512F839780780780060141800401408A300C0140C00
X801404A400001400B3A3497E3801FFFE1E227EA123>84 D<39FFFC07FF390FC000F86C48
X13701520B3A5000314407FA2000114806C7E9038600100EB3006EB1C08EB03F020237EA1
X25>I<D8FFF0EB7FC0D81F80EB1F006CC7120C7F00071408A26C6C5BA36C6C5BA26D1360
X00001440A201785BA2137CD93C01C7FCA2EB1E02A36D5AA2148CEB0788A2EB03D0A214F0
X6D5AA26D5AA322237FA125>I<EA1FE0EA3038EA780C130EEA30071200A313FFEA07C7EA
X1E07123C1278127000F01308A3130FEA7817383C2390380FC1E015157E9418>97
XD<120E12FE121E120EAB131FEB61C0EB8060380F0030000E1338143C141C141EA7141C14
X3C1438000F1370380C8060EB41C038083F0017237FA21B>I<EA01FEEA0703380C078012
X1C383803000078C7FC127012F0A712700078134012386C1380380C0100EA0706EA01F812
X157E9416>I<14E0130F13011300ABEA01F8EA0704EA0C02EA1C01EA38001278127012F0
XA7127012781238EA1801EA0C0238070CF03801F0FE17237EA21B>I<EA01FCEA0707380C
X0380381C01C01238007813E0EA700012F0B5FC00F0C7FCA512700078132012386C13406C
X138038070300EA00FC13157F9416>I<133E13E33801C780EA0387130748C7FCA9EAFFF8
X0007C7FCB27FEA7FF0112380A20F>I<14703803F198380E1E18EA1C0E38380700A20078
X1380A400381300A2EA1C0EEA1E1CEA33F00020C7FCA212301238EA3FFE381FFFC06C13E0
X383000F0481330481318A400601330A2003813E0380E03803803FE0015217F9518>I<12
X0E12FE121E120EABEB1F80EB60C0EB80E0380F0070A2120EAF38FFE7FF18237FA21B>I<
X121C123EA3121CC7FCA8120E127E121E120EB1EAFFC00A227FA10E>I<120E12FE121E12
X0EABEB03FCEB01F014C01480EB02005B5B5B133813F8EA0F1CEA0E1E130E7F1480EB03C0
X130114E0EB00F014F838FFE3FE17237FA21A>107 D<120E12FE121E120EB3ADEAFFE00B
X237FA20E>I<390E1FC07F3AFE60E183803A1E807201C03A0F003C00E0A2000E1338AF3A
XFFE3FF8FFE27157F942A>I<380E1F8038FE60C0381E80E0380F0070A2120EAF38FFE7FF
X18157F941B>I<EA01FCEA0707380C0180381800C0003813E0481370A200F01378A70070
X1370007813F0003813E0381C01C0380E038038070700EA01FC15157F9418>I<EA0E1F38
XFE61C0380E8060380F0070000E1338143CA2141EA7143CA21438000F1370380E80E0EB41
XC0EB3F0090C7FCA9EAFFE0171F7F941B>I<EA0E3CEAFE46EA1E8FEA0F0F13061300120E
XAD120FEAFFF010157F9413>114 D<EA0F88EA3078EA601812C01308A212E0EAF000127F
XEA3FE0EA0FF0EA01F8EA003CEA801C130CA212C01308EAE018EAD030EA8FC00E157E9413
X>I<1202A41206A3120E121E123EEAFFFCEA0E00AB1304A6EA07081203EA01F00E1F7F9E
X13>I<000E137038FE07F0EA1E00000E1370AD14F0A238060170380382783800FC7F1815
X7F941B>I<38FF80FE381E00781430000E1320A26C1340A2EB80C000031380A23801C100
XA2EA00E2A31374A21338A3131017157F941A>I<39FF8FF87F393E01E03C001CEBC01814
XE0000E1410EB0260147000071420EB04301438D803841340EB8818141CD801C81380EBD0
X0C140E3900F00F00497EA2EB6006EB400220157F9423>I<38FF80FE381E00781430000E
X1320A26C1340A2EB80C000031380A23801C100A2EA00E2A31374A21338A31310A25BA35B
X12F05B12F10043C7FC123C171F7F941A>121 D<B512FE1701808C18>123
XD E /Fv 25 122 df<B51280A311037F9016>45 D<1403A34A7EA24A7EA3EC17E01413A2
XEC23F01421A2EC40F8A3EC807CA2903801007E153EA20102133F81A2496D7EA3496D7EA2
X011880011FB5FCA29039200003F01501A2496D7EA349147CA20001157E90C8123EA24815
X3F825AD81F80EC3F80D8FFE0903801FFFCA22E327EB132>65 D<B612E015FC3907E0007F
X0003EC0F80ED03C06F7E6F7E16788282A282A21780160717C0A21603A217E0AB17C0A216
X07A21780A2160F17005E161E5E5E16F84B5A4B5AED0F800007023FC7FCB612FC15E02B31
X7CB033>68 D<B51280A23807F0006C5AB3B3A7487EB51280A211317DB017>73
XD<D8FFF0ED7FF8A200071700D802F815BEA3017CEC013EA26D1402A36D1404A36D6C1308
XA36D6C1310A36D6C1320A26D6C1340A36D6C1380A391387C0100A3EC3E02A36E5AA2EC0F
X88A3EC07D0A3EC03E0A300076D5AD80F80157FD8FFF891380FFFF8EC008035317CB03D>
X77 D<B612E015FC3907E0003F0003EC0F80ED03C0ED01E016F0ED00F8A21678167CA616
X7816F816F0150116E0ED03C0ED0F80ED3E0090B512F801E0C8FCB3A3487EB57EA226317D
XB02D>80 D<90387F80203801FFE03907C07860380F001C001EEB06E04813030038130100
X7813001270156012F0A21520A37E1500127C127E7E13C0EA1FF86CB47E6C13F06C13FCC6
X13FF010F1380010013C0EC1FE01407EC03F01401140015F8A26C1478A57E15706C14F015
XE07E6CEB01C000ECEB038000C7EB070038C1F01E38807FFCEB0FF01D337CB125>83
XD<13FE380303C0380C00E00010137080003C133C003E131C141EA21208C7FCA3EB0FFEEB
XFC1EEA03E0EA0F80EA1F00123E123C127C481404A3143EA21278007C135E6CEB8F08390F
X0307F03903FC03E01E1F7D9E21>97 D<EA078012FFA2120F1207AFEB81FC903886078090
X388801C090389000E001A0137001C07F49133C81A2151F81A21680A71600A25D151EA25D
X6D133801205B5D39061801C0D90607C7FC380401F821327EB125>I<EB1FC0EBF0303801
XC00C38078002EA0F00000E130F001E5B5AA2007C1304007890C7FC12F8A91278127C123C
X15807E000EEB0100120F380780023801C00C3800F030EB1FC0191F7E9E1D>I<15F0141F
XA214011400AFEB0FC0EB70303801C00C3803800238070001120E001E13005AA2127C1278
XA212F8A71278A2127C123CA27E000E13016C1302380380046C6C487E3A00F030FF80EB1F
XC021327EB125>I<EB3F80EBE0E0380380383807003C000E7F121E001C7F123C127C0078
X1480140712F8A2B6FC00F8C8FCA61278127C123C15807E000EEB0100000F13027E3801C0
X0C3800F030EB1FC0191F7E9E1D>I<EB07E0EB1C10EB3838EB707C13E01201EBC0380003
X1300ACB512C0A23803C000B3A8487EEA7FFFA216327FB114>I<15F090387F03083901C1
XC41C380380E8390700700848EB7800001E7FA2003E133EA6001E133CA26C5B6C13706D5A
X3809C1C0D8087FC7FC0018C8FCA5121C7E380FFFF86C13FF6C1480390E000FC00018EB01
XE048EB00F000701470481438A500701470A26C14E06CEB01C00007EB07003801C01C3800
X3FE01E2F7E9F21>I<120FEA1F80A4EA0F00C7FCABEA0780127FA2120F1207B3A6EA0FC0
XEAFFF8A20D307EAF12>105 D<EA078012FFA2120F1207AFEC0FFEA2EC03F01580150014
X0614085C5C5C5C13811383EB8FC01393EBA1E0EBC1F013801478147C143C143E80801580
XEC07C0140315E0390FC007F839FFFC0FFFA220327EB123>107 D<EA078012FFA2120F12
X07B3B3A7EA0FC0EAFFFCA20E327EB112>I<260780FEEB1FC03BFF83078060F0903A8C03
XC180783B0F9001E2003CD807A013E4DA00F47F01C013F8A2495BB3A2486C486C133F3CFF
XFC1FFF83FFF0A2341F7E9E38>I<380780FE39FF83078090388C03C0390F9001E0EA07A0
X6E7E13C0A25BB3A2486C487E3AFFFC1FFF80A2211F7E9E25>I<EB1FC0EBF0783801C01C
X38070007481480001EEB03C0001C1301003C14E0A248EB00F0A300F814F8A8007814F000
X7C1301003C14E0A26CEB03C0A26CEB07803907800F003801C01C3800F078EB1FC01D1F7E
X9E21>I<380783E038FF8418EB887CEA0F90EA07A01438EBC000A35BB3487EEAFFFEA216
X1F7E9E19>114 D<3801FC10380E0330381800F048137048133012E01410A37E6C130012
X7EEA3FF06CB4FC6C13C0000313E038003FF0EB01F813006C133CA2141C7EA27E14186C13
X38143000CC136038C301C03880FE00161F7E9E1A>I<1340A513C0A31201A21203120712
X0F381FFFE0B5FC3803C000B01410A80001132013E000001340EB78C0EB1F00142C7FAB19
X>I<D8078013F000FF131FA2000F130100071300B31401A300031302EBC0040001497E3A
X007030FF80EB1FC0211F7E9E25>I<D8FFF8EBFF80A2D80FC0EB7C006C48133815306C6C
X1320A26C6C5BA27F00005CA2D97801C7FCA2137CEB3C02A26D5AA2131F6D5AA2EB0790A2
X14D0EB03E0A26D5AA36D5AA249C8FCA31302A25B1270EAF80C13085BEA7020EA3040EA1F
X80212D7F9E23>121 D E /Fw 14 123 df<B812F8EFFFE018FC18FFD8001F902680003F
X13C0050313F005007FF07FFE727E84727F86A2727FA286A862A24E5BA2624E90C8FC4E5A
X4E5AF0FFF005075B053F138092B600FCC9FC18E084DB800013FCEF1FFF717F050313E085
X83717F85187FA285A785A5F30180F303C01A8084A272EC07801AC072EC0F00B700F06D6D
X5A0601EBF83E9539007FFFFC071F5BCD13C052487CC657>82 D<003FBA12FCA49026FE00
X079038E0007F01F0170FD87FC0EF03FE49170190C71600007E197EA2007C193EA3007819
X1EA400F8191F48190FA5C81700B3B3A60103B812C0A448467CC551>84
XD<90380FFFF090B6FC000315C03A07F8007FF0486CEB1FFCED07FE486C6D7E838183816C
X48816C5A6C5AC9FCA5157F023FB5FC0103B6FC011F13F090387FFE003801FFE0481380D8
X0FFEC7FC485A5B123F485AA2485AA45DA26C6C5BED077F6C6C130F6C6C013E13F83C0FFF
X80F83FFFE000039038FFF01FC6ECC00F90390FFE0003332E7CAD38>97
XD<EC1FFC49B512C0010714F090391FF80FFC90397FC001FE49486C7E4890C7EA7F804848
XEC3FC04848EC1FE0120F484815F0160F003F16F8A25B007F150717FCA212FFA290B7FCA3
X01F0C9FCA5127FA36C7EA2001F163CA26C7E17786C6C15F86C6CEC01F06C6DEB03E06C6D
XEB07C0D93FE0EB1F80903A1FFC01FF000107B512FC010014E0020F90C7FC2E2E7DAD35>
X101 D<171FDA7FF0EBFFC00107B5000313E0011FECC7E7903B7FE03FFF0FF09039FF800F
XFC48EB00074848EB03FE00079238FF07E0496DEB03C0000FEE8000A2001F82A8000F5EA2
X000793C7FC6D5B00035D6C6C495A6C6D485A9138E03FF0D801DFB512C0D803C791C8FC90
X38C07FF04848CAFCA37FA27FA213F890B612F06C15FF17E06C8217FC6C826D8148B81280
X1207D80FF0C7001F13C0D81FC014014848EC007F007FEE3FE048C9FC171FA56C6CED3FC0
XA26C6CED7F806C6CEDFF00D80FF8EC03FED803FEEC0FF82601FFE0EBFFF06C6CB612C001
X0F4AC7FCD9007F13C034447DAE3A>103 D<137C48B4FC4813804813C0A24813E0A56C13
XC0A26C13806C1300EA007C90C7FCACEB7FC0B5FCA412037EB3B2B6FCA418497CC820>
X105 D<EB7FC0B5FCA412037EB3B3B3A8B61280A419487CC720>108
XD<9039FF8007FEB590383FFFC04B13F0913981F81FF8913983C00FFC00039039870007FE
X6C138E029C8002B87F188014F0A25CA35CB3A9B60081B6FCA4382E7BAD41>110
XD<EC0FFE49B512F0010714FC90391FF803FF90267FE00013C0D9FF80EB3FE04890C76C7E
X48486E7E48486E7E000F82491403001F82003F17804980A2007F17C0A300FF17E0AA007F
X17C0A46C6C4A1380A2001F17006D5C000F5E6C6C4A5A00035E6C6C4A5A6C6D495AD97FE0
XEBFFC090261FFC0790C7FC0107B512FC010114F0D9001F90C8FC332E7DAD3A>I<90397F
X803F80B5EBFFE0028113F8913883C3FC91388707FE0003138E6C90389C0FFF14B8A214F0
XA2ED07FE9138E003FCED01F892C7FCA25CB3A8B612E0A4282E7DAD2F>114
XD<90390FFE01C090B512C7000314FF3807F801390FC0007F48C7121F48140F007E1407A2
X150312FEA27E7F01E090C7FC13F8387FFFC014FF6C14E015F86C806C14FF6C1580000115
XC06C6C14E0131F010014F014039138007FF80070141F00F0140F15077E1503A26C15F0A2
X7E6CEC07E07F6DEB0FC001F0EB1F80D8FEFCEBFF0039F87FFFFCD8F01F13F0D8E0031380
X252E7CAD2E>I<EB01E0A61303A31307A3130FA2131F133FA2137FEA01FF5A000F90B512
XC0B7FCA3C601E0C7FCB3A616F0A9017F14E0ECF001133FED03C0D91FF8138090390FFE0F
X00903807FFFE01015B9038001FF024427EC12D>I<D97FC0ECFF80B549B5FCA40003EC00
X076C81B3AA5EA36C5D5EA26D6C133B013F02F313C090271FF803E313FF6DB51283010314
X039038003FF8382E7BAD41>I<001FB712E0A39026FE000313C001F049138001C05B4949
X130090C75B4B5A003E147F5E4B5A003C495B5C5E4A5B5CC74890C7FC5D4A5A147F4A5A5D
X495B5B495B92388001E04913005B495A4A1303494814C013FF5C485B484913075A4A130F
X4890C7FC48151F4848147F49ECFF804848130FB8FCA32B2E7DAD34>122
XD E end
X%%EndProlog
X%%BeginSetup
X%%Feature: *Resolution 300dpi
XTeXDict begin
X%%PaperSize: A4
X
X%%EndSetup
X%%Page: 0 1
X0 0 bop 422 645 a Fw(Regularization)39 b(T)-10 b(o)s(ols)630
X827 y Fv(A)22 b(Matlab)f(P)n(ac)n(k)l(age)h(for)187 919
Xy(Analysis)e(and)g(Solution)h(of)g(Discrete)i(Ill-P)n(osed)e(Problems)
X666 1101 y Fu(V)l(ersion)15 b(3.0)i(for)f(Matlab)h(5.2)626
X1413 y Ft(P)n(er)23 b(Christian)h(Hansen)520 1529 y Fu(Departmen)o(t)15
Xb(of)i(Mathematical)d(Mo)q(delling)443 1587 y(Building)i(305,)h(T)l(ec)
Xo(hnical)d(Univ)o(ersit)o(y)g(of)j(Denmark)652 1645 y(DK-2800)h(Lyngb)o
X(y)l(,)e(Denmark)765 1762 y Fs(pch@imm.dtu)o(.dk)612
X1820 y(http://ww)o(w.i)o(mm.)o(dt)o(u.d)o(k/~)o(pc)o(h)838
X2060 y Fu(June)g(1992)675 2118 y(Last)i(revision)d(Marc)o(h)h(1998)387
X2641 y(The)g(soft)o(w)o(are)g(describ)q(ed)g(in)g(this)g(rep)q(ort)h
X(is)f(published)f(in)286 2699 y(Numerical)f(Algorithms)g
XFr(6)j Fu(\(1994\),)g(pp.)f(1{35,)h(and)g(is)f(a)o(v)m(ailable)g(via)
X266 2757 y(Netlib)f(\()p Fs(netlib@re)o(sea)o(rch)o(.a)o(tt.)o(com)o
XFu(\))e(in)j(the)g(\014le)g Fs(numeralgo/)o(na4)o Fu(.)p
Xeop
X%%Page: 1 2
X1 1 bop eop
X%%Page: 1 3
X1 2 bop 59 547 a Fq(Contents)59 802 y Fp(Changes)17 b(Since)i(V)l
X(ersion)d(2.0)1144 b(3)59 906 y(1)42 b(In)o(tro)q(duction)1391
Xb(5)59 1011 y(2)42 b(Discrete)18 b(Ill-P)o(osed)g(Problems)e(and)i
X(their)g(Regularization)464 b(7)127 1069 y Fo(2.1)46
Xb(Discrete)15 b(Ill-P)o(osed)i(Problems)32 b(.)22 b(.)h(.)f(.)g(.)h(.)f
X(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)
Xg(.)h(.)f(.)63 b(7)127 1127 y(2.2)46 b(Regularization)17
Xb(Metho)q(ds)34 b(.)22 b(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)
Xh(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)63
Xb(9)127 1185 y(2.3)46 b(SVD)15 b(and)g(Generalized)i(SVD)42
Xb(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)
Xh(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(10)232 1243
Xy(2.3.1)50 b(The)16 b(Singular)g(V)l(alue)g(Decomp)q(osition)27
Xb(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)
Xh(.)f(.)40 b(10)232 1301 y(2.3.2)50 b(The)16 b(Generalized)h(Singular)f
X(V)l(alue)g(Decomp)q(osition)26 b(.)c(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g
X(.)h(.)f(.)40 b(11)127 1359 y(2.4)46 b(The)15 b(Discrete)h(Picard)f
X(Condition)i(and)e(Filter)h(F)l(actors)i(.)k(.)h(.)f(.)g(.)h(.)f(.)h(.)
Xf(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(13)127 1417 y(2.5)46
Xb(The)15 b(L-Curv)o(e)43 b(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h
X(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)
Xf(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(15)127 1475 y(2.6)46
Xb(T)l(ransformation)14 b(to)h(Standard)g(F)l(orm)43 b(.)23
Xb(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h
X(.)f(.)g(.)h(.)f(.)40 b(17)232 1533 y(2.6.1)50 b(T)l(ransformation)14
Xb(for)h(Direct)g(Metho)q(ds)j(.)k(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f
X(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(18)232 1591 y(2.6.2)50
Xb(T)l(ransformation)14 b(for)h(Iterativ)o(e)g(Metho)q(ds)43
Xb(.)23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)
X40 b(19)232 1649 y(2.6.3)50 b(Norm)15 b(Relations)h(etc.)37
Xb(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)
Xh(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(20)127 1708
Xy(2.7)46 b(Direct)15 b(Regularization)i(Metho)q(ds)38
Xb(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)
Xh(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(21)232 1766 y(2.7.1)50
Xb(Tikhono)o(v)16 b(Regularization)g(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g
X(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40
Xb(21)232 1824 y(2.7.2)50 b(Least)15 b(Squares)h(with)f(a)g(Quadratic)h
X(Constrain)o(t)36 b(.)23 b(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h
X(.)f(.)40 b(21)232 1882 y(2.7.3)50 b(TSVD,)15 b(MTSVD,)f(and)i(TGSVD)45
Xb(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)
Xf(.)g(.)h(.)f(.)40 b(22)232 1940 y(2.7.4)50 b(Damp)q(ed)16
Xb(SVD/GSVD)41 b(.)23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h
X(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40
Xb(23)232 1998 y(2.7.5)50 b(Maxim)o(um)15 b(En)o(trop)o(y)f
X(Regularization)40 b(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f
X(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(23)232 2056 y(2.7.6)50
Xb(T)l(runcated)16 b(T)l(otal)f(Least)g(Squares)34 b(.)22
Xb(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g
X(.)h(.)f(.)40 b(24)127 2114 y(2.8)46 b(Iterativ)o(e)15
Xb(Regularization)i(Metho)q(ds)28 b(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h
X(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40
Xb(25)232 2172 y(2.8.1)50 b(Conjugate)15 b(Gradien)o(ts)g(and)g(LSQR)46
Xb(.)23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)
Xg(.)h(.)f(.)40 b(25)232 2230 y(2.8.2)50 b(Bidiagonalization)18
Xb(with)d(Regularization)38 b(.)23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f
X(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(27)232 2288 y(2.8.3)50
Xb(The)16 b Fn(\027)s Fo(-Metho)q(d)42 b(.)22 b(.)g(.)h(.)f(.)h(.)f(.)g
X(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)
Xh(.)f(.)g(.)h(.)f(.)40 b(28)232 2346 y(2.8.4)50 b(Extension)16
Xb(to)f(General-F)l(orm)g(Problems)d(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h
X(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(29)127 2404
Xy(2.9)46 b(Metho)q(ds)15 b(for)f(Cho)q(osing)i(the)f(Regularization)i
X(P)o(arameter)31 b(.)22 b(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f
X(.)40 b(29)59 2509 y Fp(3)i(Regularization)21 b(T)l(o)q(ols)d(T)l
X(utorial)980 b(33)127 2567 y Fo(3.1)46 b(The)15 b(Discrete)h(Picard)f
X(Condition)42 b(.)22 b(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f
X(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(33)127
X2625 y(3.2)46 b(Filter)16 b(F)l(actors)26 b(.)c(.)h(.)f(.)g(.)h(.)f(.)g
X(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)
Xh(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(34)127 2683
Xy(3.3)46 b(The)15 b(L-Curv)o(e)43 b(.)22 b(.)h(.)f(.)g(.)h(.)f(.)g(.)h
X(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)
Xf(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(35)127 2741
Xy(3.4)46 b(Regularization)17 b(P)o(arameters)e(.)23 b(.)f(.)h(.)f(.)g
X(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)
Xh(.)f(.)g(.)h(.)f(.)40 b(36)127 2799 y(3.5)46 b(Standard)15
Xb(F)l(orm)f(V)l(ersus)i(General)g(F)l(orm)22 b(.)g(.)g(.)h(.)f(.)g(.)h
X(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40
Xb(38)127 2857 y(3.6)46 b(No)15 b(Square)g(In)o(tegrable)h(Solution)g(.)
X23 b(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)
Xh(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(40)p eop
X%%Page: 2 4
X2 3 bop 64 159 a Fo(2)1486 b(CONTENTS)p 64 178 1767 2
Xv 59 304 a Fp(4)42 b(Regularization)21 b(T)l(o)q(ols)d(Reference)937
Xb(43)127 361 y Fo(Routines)17 b(b)o(y)e(Sub)s(ject)g(Area)30
Xb(.)23 b(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)
Xg(.)h(.)f(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40
Xb(43)127 417 y(The)16 b(T)l(est)f(Problems)24 b(.)e(.)h(.)f(.)g(.)h(.)f
X(.)g(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)
Xg(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(45)127
X474 y(Alphab)q(etical)18 b(List)e(of)e(Routines)30 b(.)22
Xb(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)g
X(.)h(.)f(.)h(.)f(.)g(.)h(.)f(.)g(.)h(.)f(.)40 b(46)59
X576 y Fp(Bibliograph)o(y)1401 b(105)p eop
X%%Page: 3 5
X3 4 bop 59 546 a Fq(Changes)27 b(Since)g(Version)g(2.0)59
X752 y Fo(The)15 b(follo)o(wing)h(is)g(a)f(list)h(of)f(the)g(ma)s(jor)f
X(c)o(hanges)h(since)h(V)l(ersion)g(2.0)f(of)f(the)i(pac)o(k)m(age.)127
X846 y Fm(\017)23 b Fo(Replaced)17 b Fl(gsvd)f Fo(b)o(y)f
XFl(cgsvd)h Fo(whic)o(h)g(has)f(a)g Fk(di\013er)n(ent)f
XFo(sequence)i(of)f(output)g(argumen)o(ts.)127 940 y Fm(\017)23
Xb Fo(Remo)o(v)o(ed)15 b(the)g(obsolete)h(function)g Fl(csdecomp)g
XFo(\(whic)o(h)g(replaced)g(the)f(function)h Fl(csd)p
XFo(\))127 1034 y Fm(\017)23 b Fo(Deleted)16 b(the)f(function)h
XFl(mgs)p Fo(.)127 1127 y Fm(\017)23 b Fo(Changed)e(the)g(storage)f
X(format)f(of)i(bidiagonal)i(matrices)e(to)f(sparse,)i(instead)g(of)e(a)
Xh(dense)173 1184 y(matrix)15 b(with)g(t)o(w)o(o)f(columns.)127
X1278 y Fm(\017)23 b Fo(Remo)o(v)o(ed)15 b(the)g(obsolete)h(function)g
XFl(bsvd)p Fo(.)127 1372 y Fm(\017)23 b Fo(Added)c(the)f(function)h
XFl(regutm)e Fo(that)g(generates)h(random)g(test)f(matrices)h(for)g
X(regularization)173 1428 y(metho)q(ds.)127 1522 y Fm(\017)23
Xb Fo(Added)16 b(the)f Fl(blur)h Fo(test)e(problem.)127
X1616 y Fm(\017)23 b Fo(F)l(unctions)d Fl(tsvd)g Fo(and)f
XFl(tgsvd)h Fo(no)o(w)f(allo)o(w)g Fl(k)g Fo(=)h(0,)f(and)g(functions)h
XFl(tgsvd)g Fo(and)f Fl(tikhonov)h Fo(no)o(w)173 1672
Xy(allo)o(w)15 b(a)g(square)g Fl(L)p Fo(.)127 1766 y Fm(\017)23
Xb Fo(Added)16 b(output)g(argumen)o(ts)e Fl(rho)h Fo(and)h
XFl(eta)g Fo(to)f(functions)h Fl(dsvd)p Fo(,)h Fl(mtsvd)p
XFo(,)e Fl(tgsvd)p Fo(,)h Fl(tikhonov)p Fo(,)g(and)173
X1822 y Fl(tsvd)p Fo(.)127 1916 y Fm(\017)23 b Fo(Added)16
Xb(a)f(priori)h(guess)f Fl(x)p 623 1916 14 2 v 16 w(0)g
XFo(as)g(input)h(to)f Fl(tikhonov)p Fo(.)127 2010 y Fm(\017)23
Xb Fo(Corrected)15 b Fl(get)p 445 2010 V 16 w(l)g Fo(suc)o(h)h(that)e
X(the)i(sign)f(of)g Fl(L*x)f Fo(is)i(correct.)127 2104
Xy Fm(\017)23 b Fo(Added)16 b(MGS)f(reorthogonalization)g(of)g(the)g
X(normal)g(equation)h(residual)g(v)o(ectors)f(in)h(the)f(t)o(w)o(o)173
X2160 y(functions)h Fl(cgls)f Fo(and)g Fl(p)q(cgls)p Fo(.)127
X2254 y Fm(\017)23 b Fo(Added)16 b(the)f(metho)q(d)h Fl('ttls')f
XFo(to)g(the)g(function)h Fl(\014l)p 1013 2254 V 17 w(fac)p
XFo(.)127 2348 y Fm(\017)23 b Fo(More)17 b(precise)j(computation)e(of)f
X(the)i(regularization)g(parameter)e(in)i Fl(gcv)p Fo(,)g
XFl(lcurve)p Fo(,)f(and)h Fl(qua-)173 2404 y(siopt)p Fo(.)127
X2498 y Fm(\017)k Fo(Changed)15 b Fl(heb)p 431 2498 V
X18 w(new)h Fo(and)f Fl(newton)h Fo(to)f(w)o(ork)f(with)i
XFn(\025)e Fo(instead)i(of)f Fn(\025)1324 2482 y Fj(2)1343
X2498 y Fo(.)127 2592 y Fm(\017)23 b Fo(Added)16 b(legend)g(to)f
XFl(lagrange)f Fo(and)i Fl(pica)o(rd)p Fo(.)p eop
X%%Page: 4 6
X4 5 bop 64 159 a Fo(4)1486 b(CONTENTS)p 64 178 1767 2
Xv eop
X%%Page: 5 7
X5 6 bop 59 546 a Fq(1.)35 b(Intr)n(oduction)59 752 y
XFo(Ill-p)q(osed)17 b(problems|and)f(regularization)g(metho)q(ds)f(for)f
X(computing)i(stabilized)h(solutions)e(to)g(the)59 809
Xy(ill-p)q(osed)i(problems|o)q(ccur)f(frequen)o(tly)e(enough)h(in)g
X(science)h(and)e(engineering)i(to)d(mak)o(e)h(it)h(w)o(orth-)59
X865 y(while)j(to)d(presen)o(t)i(a)f(general)g(framew)o(ork)f(for)h
X(their)h(n)o(umerical)g(treatmen)o(t.)22 b(The)16 b(purp)q(ose)h(of)f
X(this)59 922 y(pac)o(k)m(age)f(of)g(Matlab)g(routines)h(is)g(to)e(pro)o
X(vide)i(the)g(user)f(with)h(easy-to-use)f(routines,)g(based)h(on)f(n)o
X(u-)59 978 y(merically)f(robust)f(and)g(e\016cien)o(t)g(algorithms,)g
X(for)f(doing)h(exp)q(erimen)o(ts)h(with)f(analysis)g(and)g(solution)59
X1034 y(of)i(discrete)h(ill-p)q(osed)i(problems)e(b)o(y)f(means)g(of)g
X(regularization)h(metho)q(ds.)130 1091 y(The)i(theory)h(for)f(ill-p)q
X(osed)j(problems)e(is)g(w)o(ell)g(dev)o(elop)q(ed)i(in)e(the)g
X(literature.)30 b(W)l(e)19 b(can)g(easily)59 1147 y(illustrate)12
Xb(the)g(main)f(di\016culties)j(asso)q(ciated)d(with)h(suc)o(h)f
X(problems)h(b)o(y)g(means)f(of)f(a)h(small)h(n)o(umerical)59
X1204 y(example.)21 b(Consider)16 b(the)f(follo)o(wing)h(least)f
X(squares)g(problem)794 1306 y(min)821 1330 y Fi(x)877
X1306 y Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)i Fp(b)p Fm(k)1077
X1313 y Fj(2)59 1416 y Fo(with)16 b(co)q(e\016cien)o(t)g(matrix)f
XFn(A)g Fo(and)g(righ)o(t-hand)h(side)g Fp(b)f Fo(giv)o(en)h(b)o(y)544
X1565 y Fn(A)d Fo(=)639 1480 y Fh(0)639 1555 y(@)683 1508
Xy Fo(0)p Fn(:)p Fo(16)44 b(0)p Fn(:)p Fo(10)683 1565
Xy(0)p Fn(:)p Fo(17)g(0)p Fn(:)p Fo(11)683 1621 y(2)p
XFn(:)p Fo(02)g(1)p Fn(:)p Fo(29)897 1480 y Fh(1)897 1555
Xy(A)941 1565 y Fn(;)98 b Fp(b)13 b Fo(=)1142 1480 y Fh(0)1142
X1555 y(@)1186 1508 y Fo(0)p Fn(:)p Fo(27)1186 1565 y(0)p
XFn(:)p Fo(25)1186 1621 y(3)p Fn(:)p Fo(33)1274 1480 y
XFh(1)1274 1555 y(A)1333 1565 y Fn(:)59 1713 y Fo(Here,)h(the)g(righ)o
X(t-hand)g(side)g Fp(b)g Fo(is)g(generated)g(b)o(y)f(adding)i(a)e(small)
Xi(p)q(erturbation)f(to)f(an)g(exact)h(righ)o(t-)59 1770
Xy(hand)i(side)g(corresp)q(onding)g(to)f(the)g(exact)g(solution)984
X1769 y(\026)982 1770 y Fp(x)1010 1753 y Fg(T)1050 1770
Xy Fo(=)d(\(1)j(1\):)523 1921 y Fp(b)e Fo(=)613 1837 y
XFh(0)613 1912 y(@)656 1865 y Fo(0)p Fn(:)p Fo(16)45 b(0)p
XFn(:)p Fo(10)656 1921 y(0)p Fn(:)p Fo(17)g(0)p Fn(:)p
XFo(11)656 1978 y(2)p Fn(:)p Fo(02)g(1)p Fn(:)p Fo(29)871
X1837 y Fh(1)871 1912 y(A)915 1862 y(\022)953 1893 y Fo(1)p
XFn(:)p Fo(00)953 1949 y(1)p Fn(:)p Fo(00)1041 1862 y
XFh(\023)1082 1921 y Fo(+)1128 1837 y Fh(0)1128 1912 y(@)1207
X1865 y Fo(0)p Fn(:)p Fo(01)1171 1921 y Fm(\000)p Fo(0)p
XFn(:)p Fo(03)1207 1978 y(0)p Fn(:)p Fo(02)1295 1837 y
XFh(1)1295 1912 y(A)1354 1921 y Fn(:)59 2070 y Fo(The)17
Xb(di\016cult)o(y)i(with)e(this)h(least)f(squares)g(problem)h(is)g(that)
Xe(the)h(matrix)g Fn(A)g Fo(is)h(ill-conditione)q(d;)i(its)59
X2127 y(condition)c(n)o(um)o(b)q(er)g(is)f(1)p Fn(:)p
XFo(1)9 b Fm(\001)g Fo(10)605 2110 y Fj(3)624 2127 y Fo(.)20
Xb(This)c(implies)h(that)d(the)h(computed)g(solution)h(is)g(p)q(oten)o
X(tially)g(v)o(ery)59 2183 y(sensitiv)o(e)j(to)d(p)q(erturbations)i(of)f
X(the)g(data.)26 b(Indeed,)19 b(if)f(w)o(e)f(compute)h(the)f(ordinary)h
X(least-squares)59 2239 y(solution)e Fp(x)259 2246 y Fj(LSQ)345
X2239 y Fo(b)o(y)f(means)g(of)g(a)g(QR)h(factorization)f(of)g
XFn(A)p Fo(,)f(then)i(w)o(e)f(obtain)751 2365 y Fp(x)779
X2372 y Fj(LSQ)863 2365 y Fo(=)911 2305 y Fh(\022)984
X2337 y Fo(7)p Fn(:)p Fo(01)949 2393 y Fm(\000)p Fo(8)p
XFn(:)p Fo(40)1073 2305 y Fh(\023)1126 2365 y Fn(:)59
X2485 y Fo(This)i(solution)g(is)g(ob)o(viously)g(w)o(orthless,)e(and)i
X(something)f(m)o(ust)g(b)q(e)h(done)f(in)h(order)f(to)g(compute)g(a)59
X2542 y(b)q(etter)f(appro)o(ximation)g(to)g(the)g(exact)g(solution)926
X2541 y(\026)923 2542 y Fp(x)951 2525 y Fg(T)991 2542
Xy Fo(=)e(\(1)h(1\).)130 2598 y(The)i(large)g(condition)i(n)o(um)o(b)q
X(er)e(implies)j(that)c(the)h(columns)h(of)f Fn(A)g Fo(are)g(nearly)h
X(linearly)h(dep)q(en-)59 2655 y(den)o(t.)k(One)17 b(could)g(therefore)f
X(think)h(of)e(replacing)j(the)e(ill-conditioned)k(matrix)15
Xb Fn(A)f Fo(=)h(\()p Fp(a)1628 2662 y Fj(1)1664 2655
Xy Fp(a)1689 2662 y Fj(2)1709 2655 y Fo(\))g(with)59 2711
Xy(either)d(\()p Fp(a)227 2718 y Fj(1)257 2711 y Fp(0)p
XFo(\))f(or)g(\()p Fp(0)f(a)443 2718 y Fj(2)463 2711 y
XFo(\),)h(b)q(oth)h(of)e(whic)o(h)i(are)e(w)o(ell)i(conditioned.)21
Xb(The)11 b(t)o(w)o(o)e(corresp)q(onding)j(so-called)59
X2768 y(basic)k(solutions)g(are)568 2834 y Fp(x)596 2810
Xy Fj(\(1\))596 2848 y(B)655 2834 y Fo(=)703 2775 y Fh(\022)741
X2806 y Fo(1)p Fn(:)p Fo(65)741 2862 y(0)p Fn(:)p Fo(00)830
X2775 y Fh(\023)883 2834 y Fn(;)98 b Fp(x)1022 2810 y
XFj(\(2\))1022 2848 y(B)1082 2834 y Fo(=)1129 2775 y Fh(\022)1168
X2806 y Fo(0)p Fn(:)p Fo(00)1168 2862 y(2)p Fn(:)p Fo(58)1256
X2775 y Fh(\023)1309 2834 y Fn(:)p eop
X%%Page: 6 8
X6 7 bop 64 159 a Fo(6)1267 b(Chapter)15 b(1.)g(In)o(tro)q(duction)p
X64 178 1767 2 v 59 304 a(Although)d(these)g(solutions)g(are)f(m)o(uc)o
X(h)h(less)g(sensitiv)o(e)g(to)f(p)q(erturbations)h(of)f(the)h(data,)f
X(and)g(although)59 361 y(the)k(corresp)q(onding)i(residual)f(norms)f
X(are)g(b)q(oth)g(small,)438 445 y Fm(k)p Fn(A)8 b Fp(x)531
X421 y Fj(\(1\))531 459 y(B)587 445 y Fm(\000)i Fp(b)p
XFm(k)684 452 y Fj(2)716 445 y Fo(=)j(0)p Fn(:)p Fo(031)h
XFn(;)98 b Fm(k)p Fn(A)8 b Fp(x)1087 421 y Fj(\(2\))1087
X459 y(B)1143 445 y Fm(\000)j Fp(b)p Fm(k)1241 452 y Fj(2)1273
X445 y Fo(=)i(0)p Fn(:)p Fo(036)h Fn(;)59 524 y Fo(the)h(basic)h
X(solutions)g(nev)o(ertheless)g(ha)o(v)o(e)f(nothing)h(in)g(common)f
X(with)1307 523 y(\026)1304 524 y Fp(x)1332 508 y Fg(T)1372
X524 y Fo(=)e(\(1)h(1\).)130 581 y(A)19 b(ma)s(jor)e(di\016cult)o(y)k
X(with)e(the)g(ordinary)g(least)h(squares)f(solution)g
XFp(x)1368 588 y Fj(LSQ)1458 581 y Fo(is)h(that)e(its)h(norm)g(is)59
X637 y(signi\014can)o(tly)f(greater)c(than)i(the)g(norm)g(of)f(the)h
X(exact)g(solution.)22 b(One)17 b(ma)o(y)e(therefore)h(try)f(another)59
X694 y(approac)o(h)22 b(to)f(solving)i(the)f(least)g(squares)g(problem)g
X(b)o(y)g(adding)h(the)f(side)h(constrain)o(t)e(that)h(the)59
X750 y(solution)16 b(norm)f(m)o(ust)f(not)h(exceed)h(a)f(certain)h(v)m
X(alue)g Fn(\013)p Fo(,)544 829 y(min)571 854 y Fi(x)627
X829 y Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)i Fp(b)p Fm(k)827
X836 y Fj(2)892 829 y Fo(sub)s(ject)k(to)45 b Fm(k)p Fp(x)p
XFm(k)1210 836 y Fj(2)1241 829 y Fm(\024)13 b Fn(\013)i(:)59
X917 y Fo(The)g(suc)o(h)f(computed)h(solution)g Fp(x)661
X924 y Fg(\013)699 917 y Fo(dep)q(ends)h(in)f(a)f(non-linear)i(w)o(a)o
X(y)d(on)i Fn(\013)p Fo(,)f(and)g(for)g Fn(\013)g Fo(equal)h(to)f(0.1,)
X59 973 y(1,)h(1.385,)e(and)i(10)g(w)o(e)g(obtain)125
X1071 y Fp(x)153 1078 y Fj(0)p Fg(:)p Fj(1)212 1071 y
XFo(=)260 1012 y Fh(\022)298 1043 y Fo(0)p Fn(:)p Fo(08)298
X1100 y(0)p Fn(:)p Fo(05)387 1012 y Fh(\023)440 1071 y
XFn(;)98 b Fp(x)579 1078 y Fj(1)611 1071 y Fo(=)659 1012
Xy Fh(\022)697 1043 y Fo(0)p Fn(:)p Fo(84)697 1100 y(0)p
XFn(:)p Fo(54)786 1012 y Fh(\023)839 1071 y Fn(;)g Fp(x)978
X1078 y Fj(1)p Fg(:)p Fj(385)1073 1071 y Fo(=)1121 1012
Xy Fh(\022)1159 1043 y Fo(1)p Fn(:)p Fo(17)1159 1100 y(0)p
XFn(:)p Fo(74)1247 1012 y Fh(\023)1300 1071 y Fn(;)h Fp(x)1440
X1078 y Fj(10)1489 1071 y Fo(=)1537 1012 y Fh(\022)1611
X1043 y Fo(6)p Fn(:)p Fo(51)1575 1100 y Fm(\000)p Fo(7)p
XFn(:)p Fo(60)1699 1012 y Fh(\023)1752 1071 y Fn(:)59
X1169 y Fo(W)l(e)19 b(see)h(that)f(b)o(y)g(a)g(prop)q(er)g(c)o(hoice)h
X(of)f Fn(\013)h Fo(w)o(e)f(can)g(indeed)i(compute)f(a)f(solution)h
XFp(x)1565 1176 y Fj(1)p Fg(:)p Fj(385)1666 1169 y Fo(whic)o(h)g(is)59
X1226 y(fairly)d(close)g(to)f(the)h(desired)h(exact)e(solution)878
X1225 y(\026)876 1226 y Fp(x)904 1209 y Fg(T)946 1226
Xy Fo(=)f(\(1)h(1\).)23 b(Ho)o(w)o(ev)o(er,)16 b(care)g(m)o(ust)g(b)q(e)
Xh(tak)o(en)f(when)59 1282 y(c)o(ho)q(osing)g Fn(\013)p
XFo(,)f(and)g(the)g(prop)q(er)h(c)o(hoice)g(of)f Fn(\013)g
XFo(is)h(not)f(ob)o(vious.)130 1339 y(Although)k(the)h(ab)q(o)o(v)o(e)e
X(example)i(is)g(a)f(small)h(one,)f(it)h(highligh)o(ts)g(the)g(three)f
X(main)g(di\016culties)59 1395 y(asso)q(ciates)c(with)h(discrete)g
X(ill-p)q(osed)i(problems:)115 1470 y(1.)k(the)15 b(condition)h(n)o(um)o
X(b)q(er)g(of)f(the)g(matrix)g Fn(A)g Fo(is)h(large)115
X1556 y(2.)22 b(replacing)c Fn(A)f Fo(b)o(y)g(a)g(w)o(ell-conditioned)j
X(matrix)c(deriv)o(ed)i(from)f Fn(A)g Fo(do)q(es)g(not)f(necessarily)j
X(lead)173 1612 y(to)14 b(a)h(useful)h(solution)115 1698
Xy(3.)22 b(care)15 b(m)o(ust)f(tak)o(en)h(when)h(imp)q(osing)g
X(additional)h(constrain)o(ts.)59 1773 y(The)d(purp)q(ose)g(of)f(n)o
X(umerical)h(regularization)h(theory)e(is)h(to)e(pro)o(vide)i(e\016cien)
Xo(t)g(and)g(n)o(umerically)h(sta-)59 1830 y(ble)i(metho)q(ds)f(for)g
X(including)j(prop)q(er)d(side)h(constrain)o(ts)e(that)h(lead)h(to)e
X(useful)i(stabilized)h(solutions,)59 1886 y(and)g(to)f(pro)o(vide)h
X(robust)f(metho)q(ds)h(for)e(c)o(ho)q(osing)i(the)g(optimal)g(w)o(eigh)
Xo(t)f(giv)o(en)h(to)f(these)h(side)g(con-)59 1943 y(strain)o(ts)11
Xb(suc)o(h)i(that)e(the)h(regularized)i(solution)e(is)h(a)f(go)q(o)q(d)g
X(appro)o(ximation)g(to)f(the)h(desired)h(unkno)o(wn)59
X1999 y(solution.)130 2055 y(The)k(routines)h(pro)o(vided)g(in)g(this)g
X(pac)o(k)m(age)f(are)g(examples)h(of)f(suc)o(h)g(pro)q(cedures.)27
Xb(In)18 b(addition,)59 2112 y(w)o(e)g(pro)o(vide)i(a)e(n)o(um)o(b)q(er)
Xh(of)f(utilit)o(y)i(routines)f(for)f(analyzing)i(the)f(discrete)g
X(ill-p)q(osed)j(problems)d(in)59 2168 y(details,)g(for)e(displa)o(ying)
Xj(these)e(prop)q(erties,)h(and)f(for)f(easy)h(generation)f(of)h(simple)
Xh(test)e(problems.)59 2225 y(By)h(means)h(of)f(the)g(routines)h(in)g
XFf(Regulariza)m(tion)h(Tools)p Fo(,)f(the)f(user)h(can|at)f(least)g
X(for)g(small)59 2281 y(to)i(medium-size)j(problems|exp)q(erimen)o(t)g
X(with)f(di\013eren)o(t)f(regularization)h(strategies,)f(compare)59
X2338 y(them,)14 b(and)g(dra)o(w)f(conclusions)j(from)d(these)h(exp)q
X(erimen)o(ts)h(that)e(w)o(ould)h(otherwise)g(require)h(a)e(ma)s(jor)59
X2394 y(programming)18 b(e\013ort.)30 b(F)l(or)18 b(discrete)i(ill-p)q
X(osed)h(problems,)f(whic)o(h)g(are)f(indeed)h(di\016cult)g(to)f(treat)
X59 2451 y(n)o(umerically)l(,)e(suc)o(h)e(an)h(approac)o(h)e(is)i
X(certainly)g(sup)q(erior)g(to)f(a)g(single)h(blac)o(k-b)q(o)o(x)g
X(routine.)130 2507 y(The)i(pac)o(k)m(age)h(w)o(as)f(mainly)h(dev)o
X(elop)q(ed)i(in)e(the)g(p)q(erio)q(d)h(1990{1992)c(at)i(UNI)p
XFm(\017)p Fo(C)g(and)h(to)f(some)59 2564 y(exten)o(t)d(it)h(re\015ects)
Xg(the)g(author's)e(o)o(wn)i(w)o(ork.)k(Prof.)14 b(Dianne)j(P)l(.)e
X(O'Leary)h(and)g(Dr.)e(Martin)i(Hank)o(e)59 2620 y(help)q(ed)k(with)e
X(the)f(iterativ)o(e)h(metho)q(ds.)27 b(Prof.)17 b(Lars)g(Eld)o(\023)-21
Xb(en|and)19 b(his)f(1979)f(Sim)o(ula)h(pac)o(k)m(age)g([22)o(])59
X2676 y(with)i(the)g(same)g(purp)q(ose)g(as)g Ff(Regulariza)m(tion)i
X(Tools)p Fo(|pro)o(vided)f(a)e(great)g(source)h(of)g(inspi-)59
X2733 y(ration.)31 b(The)19 b(pac)o(k)m(age)g(w)o(as)f(also)h(inspired)i
X(b)o(y)e(a)g(pap)q(er)g(b)o(y)g(Natterer)f([58)o(])h(where)g(a)g(\\n)o
X(umerical)59 2789 y(analyst's)g(to)q(olkit)h(for)g(ill-p)q(osed)i
X(problems")e(is)h(suggested.)33 b(The)20 b(F)l(ortran)f(programs)g(b)o
X(y)h(Drak)o(e)59 2846 y([19)o(],)15 b(te)g(Riele)i([66)o(],)d(and)i(W)l
X(ah)o(ba)e(and)i(her)f(co-w)o(ork)o(ers)f([6])g(also)i(deserv)o(e)f(to)
Xg(b)q(e)g(men)o(tioned)h(here.)p eop
X%%Page: 7 9
X7 8 bop 59 548 a Fq(2.)35 b(Discrete)28 b(Ill-Posed)f(Pr)n(oblems)f
X(and)h(their)59 640 y(Regulariza)-5 b(tion)59 848 y Fo(In)14
Xb(this)f(c)o(hapter)g(w)o(e)g(giv)o(e)g(a)g(brief)h(in)o(tro)q(duction)
Xg(to)f(discrete)h(ill-p)q(osed)h(problems,)f(w)o(e)f(discuss)h(some)59
X905 y(n)o(umerical)h(regularization)g(metho)q(ds,)f(and)g(w)o(e)g(in)o
X(tro)q(duce)h(sev)o(eral)f(n)o(umerical)h(\\to)q(ols")f(suc)o(h)g(as)g
X(the)59 961 y(singular)19 b(v)m(alue)g(decomp)q(osition,)h(the)e
X(discrete)h(Picard)f(condition,)i(and)e(the)g(L-curv)o(e,)h(whic)o(h)g
X(are)59 1018 y(suited)g(for)e(analysis)i(of)e(the)h(discrete)h(ill-p)q
X(osed)i(problems.)28 b(A)18 b(more)g(complete)h(treatmen)o(t)d(of)i
X(all)59 1074 y(these)d(asp)q(ects)h(is)g(giv)o(en)f(in)h([47)o(].)59
X1215 y Fr(2.1.)i(Discrete)f(Ill-P)n(osed)h(Problems)59
X1322 y Fo(The)g(concept)h(of)e(ill-p)q(osed)k(problems)d(go)q(es)g(bac)
Xo(k)g(to)f(Hadamard)g(in)i(the)f(b)q(eginning)i(of)e(this)g(cen-)59
X1378 y(tury)l(,)k(cf.)f(e.g.)f([34)o(].)37 b(Hadamard)21
Xb(essen)o(tially)h(de\014ned)g(a)f(problem)h(to)e(b)q(e)i
XFk(il)r(l-p)n(ose)n(d)e Fo(if)i(the)f(solu-)59 1434 y(tion)c(is)h(not)f
X(unique)h(or)f(if)h(it)f(is)h(not)e(a)h(con)o(tin)o(uous)h(function)f
X(of)g(the)g(data|i.e.,)g(if)h(an)f(arbitrarily)59 1491
Xy(small)k(p)q(erturbation)g(of)e(the)h(data)g(can)g(cause)h(an)f
X(arbitrarily)g(large)h(p)q(erturbation)f(of)g(the)g(solu-)59
X1547 y(tion.)h(Hadamard)15 b(b)q(eliev)o(ed)j(that)d(ill-p)q(osed)j
X(problems)f(w)o(ere)e(\\arti\014cial")h(in)h(that)d(they)i(w)o(ould)g
X(not)59 1604 y(describ)q(e)k(ph)o(ysical)f(systems.)29
Xb(He)18 b(w)o(as)g(wrong,)g(though,)g(and)g(to)q(da)o(y)g(there)g(is)h
X(a)f(v)m(ast)g(amoun)o(t)f(of)59 1660 y(literature)g(on)g(ill-p)q(osed)
Xi(problems)e(arising)g(in)h(man)o(y)e(areas)g(of)g(science)i(and)f
X(engineering,)h(cf.)f(e.g.)59 1717 y([14)o(,)e(15)o(,)g(16,)f(32,)h(57)
Xo(,)g(61)o(,)g(63,)f(69,)h(79)o(].)130 1776 y(The)i(classical)i
X(example)g(of)e(an)g(ill-p)q(osed)j(problem)f(is)f(a)f(F)l(redholm)h
X(in)o(tegral)g(equation)g(of)f(the)59 1832 y(\014rst)e(kind)h(with)g(a)
Xf(square)g(in)o(tegrable)h(k)o(ernel)g([31)o(],)537 1911
Xy Fh(Z)578 1924 y Fg(b)560 2005 y(a)603 1968 y Fn(K)s
XFo(\()p Fn(s;)8 b(t)p Fo(\))g Fn(f)d Fo(\()p Fn(t)p Fo(\))j
XFn(dt)j Fo(=)i Fn(g)r Fo(\()p Fn(s)p Fo(\))h Fn(;)98
Xb(c)13 b Fm(\024)g Fn(s)f Fm(\024)h Fn(d)i(;)384 b Fo(\(2.1\))59
X2094 y(where)20 b(the)g(righ)o(t-hand)h(side)g Fn(g)g
XFo(and)f(the)g(k)o(ernel)h Fn(K)i Fo(are)d(giv)o(en,)h(and)f(where)h
XFn(f)k Fo(is)20 b(the)g(unkno)o(wn)59 2150 y(solution.)h(If)15
Xb(the)g(solution)h Fn(f)21 b Fo(is)15 b(p)q(erturb)q(ed)i(b)o(y)380
X2260 y(\001)p Fn(f)5 b Fo(\()p Fn(t)p Fo(\))13 b(=)g
XFn(\017)i Fo(sin)q(\(2)p Fn(\031)r(p)8 b(t)p Fo(\))14
Xb Fn(;)98 b(p)12 b Fo(=)h(1)p Fn(;)8 b Fo(2)p Fn(;)g(:)g(:)g(:)19
Xb(;)98 b(\017)13 b Fo(=)g(constan)o(t)59 2370 y(then)j(the)f(corresp)q
X(onding)h(p)q(erturbation)g(of)e(the)i(righ)o(t-hand)f(side)i
XFn(g)f Fo(is)g(giv)o(en)f(b)o(y)442 2503 y(\001)p Fn(g)r
XFo(\()p Fn(s)p Fo(\))d(=)h Fn(\017)647 2446 y Fh(Z)688
X2459 y Fg(b)670 2540 y(a)713 2503 y Fn(K)s Fo(\()p Fn(s;)8
Xb(t)p Fo(\))14 b(sin)q(\(2)p Fn(\031)r(p)8 b(t)p Fo(\))g
XFn(dt)13 b(;)98 b(p)13 b Fo(=)g(1)p Fn(;)8 b Fo(2)p Fn(;)g(:)g(:)f(:)59
X2631 y Fo(and)19 b(due)g(to)f(the)g(Riemann-Leb)q(esgue)k(lemma)c(it)h
X(follo)o(ws)g(that)e(\001)p Fn(g)i Fm(!)g Fo(0)f(as)g
XFn(p)g Fm(!)h(1)g Fo([31)o(,)f(p.)h(2].)59 2688 y(Hence,)f(the)f(ratio)
Xf Fm(k)p Fo(\001)p Fn(f)5 b Fm(k)p Fn(=)p Fm(k)p Fo(\001)p
XFn(g)r Fm(k)14 b Fo(can)j(b)q(ecome)h(arbitrary)e(large)h(b)o(y)f(c)o
X(ho)q(osing)h(the)g(in)o(teger)g Fn(p)g Fo(large)59 2744
Xy(enough,)24 b(th)o(us)f(sho)o(wing)f(that)g(\(2.1\))f(is)i(an)g(ill-p)
Xq(osed)i(problem.)43 b(In)23 b(particular,)i(this)e(example)59
X2801 y(illustrates)14 b(that)e(F)l(redholm)h(in)o(tegral)g(equations)g
X(of)g(the)g(\014rst)f(kind)i(with)f(square)f(in)o(tegrable)i(k)o
X(ernels)59 2857 y(are)h(extremely)h(sensitiv)o(e)g(to)f(high-frequency)
Xh(p)q(erturbations.)p eop
X%%Page: 8 10
X8 9 bop 64 159 a Fo(8)974 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 130 304 a(Strictly)c(sp)q(eaking,)h(ill-p)q(osed)i
X(problems)d(m)o(ust)f(b)q(e)i(in\014nite)h(dimensional|otherwise)g(the)
Xe(ratio)59 361 y Fm(k)p Fo(\001)p Fn(f)5 b Fm(k)p Fn(=)p
XFm(k)p Fo(\001)p Fn(g)r Fm(k)14 b Fo(sta)o(ys)i(b)q(ounded,)h(although)
Xg(it)f(ma)o(y)g(b)q(ecome)h(v)o(ery)f(large.)23 b(Ho)o(w)o(ev)o(er,)16
Xb(certain)h(\014nite-)59 417 y(dimensional)g(discrete)e(problems)g(ha)o
X(v)o(e)f(prop)q(erties)h(v)o(ery)g(similar)g(to)f(those)g(of)g(ill-p)q
X(osed)j(problems,)59 474 y(suc)o(h)11 b(as)f(b)q(eing)i(highly)g
X(sensitiv)o(e)g(to)e(high-frequency)i(p)q(erturbations,)f(and)g(it)g
X(is)g(natural)g(to)f(asso)q(ciate)59 530 y(the)18 b(term)g
XFk(discr)n(ete)h(il)r(l-p)n(ose)n(d)f(pr)n(oblems)g Fo(with)h(these)f
X(problems.)30 b(W)l(e)19 b(can)f(b)q(e)h(more)f(precise)h(with)59
X587 y(this)d(c)o(haracterization)f(for)g(linear)h(systems)f(of)f
X(equations)696 678 y Fn(A)8 b Fp(x)j Fo(=)i Fp(b)j Fn(;)98
Xb(A)12 b Fm(2)h Fp(I)-8 b(R)1122 659 y Fg(n)p Fe(\002)p
XFg(n)1737 678 y Fo(\(2.2\))59 769 y(and)15 b(linear)i(least-squares)e
X(problems)478 860 y(min)505 885 y Fi(x)561 860 y Fm(k)p
XFn(A)8 b Fp(x)h Fm(\000)i Fp(b)p Fm(k)761 867 y Fj(2)796
X860 y Fn(;)98 b(A)12 b Fm(2)h Fp(I)-8 b(R)1048 841 y
XFg(m)p Fe(\002)p Fg(n)1145 860 y Fn(;)98 b(m)13 b(>)g(n)i(:)325
Xb Fo(\(2.3\))59 960 y(W)l(e)22 b(sa)o(y)f(that)g(these)h(are)g
X(discrete)h(ill-p)q(osed)h(problems)e(if)h(b)q(oth)f(of)f(the)h(follo)o
X(wing)h(criteria)f(are)59 1016 y(satis\014ed:)115 1101
Xy(1.)g(the)15 b(singular)h(v)m(alues)g(of)f Fn(A)g Fo(deca)o(y)h
X(gradually)g(to)e(zero)115 1191 y(2.)22 b(the)15 b(ratio)g(b)q(et)o(w)o
X(een)g(the)g(largest)g(and)h(the)f(smallest)h(nonzero)f(singular)h(v)m
X(alues)h(is)e(large.)59 1275 y(Singular)i(v)m(alues)f(are)g(discussed)h
X(in)f(detail)g(in)h(Section)f(2.3.)k(Criterion)c(2)f(implies)j(that)c
X(the)i(matrix)59 1332 y Fn(A)i Fo(is)h(ill-conditione)q(d,)i(i.e.,)e
X(that)e(the)i(solution)g(is)f(p)q(oten)o(tially)i(v)o(ery)e(sensitiv)o
X(e)h(to)f(p)q(erturbations;)59 1388 y(criterion)g(1)f(implies)j(that)d
X(there)g(is)h(no)g(\\nearb)o(y")e(problem)i(with)g(a)f(w)o
X(ell-conditioned)k(co)q(e\016cien)o(t)59 1445 y(matrix)15
Xb(and)g(with)h(w)o(ell-determined)i(n)o(umerical)e(rank.)130
X1501 y(The)11 b(t)o(ypical)g(manifestations)g(of)f(discrete)i(ill-p)q
X(osed)h(problems)e(are)g(systems)f(of)g(linear)i(equations)59
X1558 y(and)i(linear)g(least-squares)g(problems)g(arising)g(from)e
X(discretization)j(of)e(ill-p)q(osed)j(problems.)k(E.g.,)12
Xb(if)59 1614 y(a)h(Galerkin-t)o(yp)q(e)h(metho)q(d)f([3)o(])f(is)i
X(used)f(to)g(discretize)h(the)f(F)l(redholm)g(in)o(tegral)h(equation)f
X(\(2.1\),)e(then)59 1671 y(a)k(problem)h(of)e(the)i(form)e(\(2.2\))g
X(or)g(\(2.3\))g(arises|dep)q(ending)k(on)d(the)g(t)o(yp)q(e)g(of)g
X(collo)q(cation)h(metho)q(d)59 1727 y(used|with)h(the)e(elemen)o(ts)h
XFn(a)585 1734 y Fg(ij)630 1727 y Fo(and)g Fn(b)739 1734
Xy Fg(i)767 1727 y Fo(of)f(the)g(matrix)g Fn(A)h Fo(and)f(the)g(righ)o
X(t-hand)h(side)g Fp(b)f Fo(giv)o(en)h(b)o(y)318 1847
Xy Fn(a)342 1854 y Fg(ij)385 1847 y Fo(=)433 1789 y Fh(Z)474
X1802 y Fg(b)456 1883 y(a)499 1789 y Fh(Z)541 1802 y Fg(d)522
X1883 y(c)568 1847 y Fn(K)s Fo(\()p Fn(s;)8 b(t)p Fo(\))g
XFn(\036)739 1854 y Fg(i)752 1847 y Fo(\()p Fn(s)p Fo(\))g
XFn( )847 1854 y Fg(j)864 1847 y Fo(\()p Fn(t)p Fo(\))g
XFn(ds)g(dt)15 b(;)98 b(b)1163 1854 y Fg(i)1189 1847 y
XFo(=)1237 1789 y Fh(Z)1278 1802 y Fg(d)1260 1883 y(c)1306
X1847 y Fn(\036)1333 1854 y Fg(i)1347 1847 y Fo(\()p Fn(s)p
XFo(\))8 b Fn(g)r Fo(\()p Fn(s)p Fo(\))g Fn(ds)13 b(;)165
Xb Fo(\(2.4\))59 1954 y(where)15 b Fn(\036)217 1961 y
XFg(i)245 1954 y Fo(and)g Fn( )363 1961 y Fg(j)395 1954
Xy Fo(are)f(the)g(particular)h(basis)g(functions)g(used)g(in)g(the)g
X(Galerkin)g(metho)q(d.)20 b(F)l(or)13 b(suc)o(h)59 2010
Xy(problems,)h(the)g(close)g(relationship)h(b)q(et)o(w)o(een)f(the)g
X(ill-p)q(osedness)i(of)d(the)h(in)o(tegral)g(equation)g(and)g(the)59
X2067 y(ill-conditioni)q(ng)21 b(of)c(the)h(matrix)f Fn(A)h
XFo(are)f(w)o(ell)i(understo)q(o)q(d)f([1,)f(39)o(,)h(78)o(].)27
Xb(In)19 b(particular,)f(it)g(can)g(b)q(e)59 2123 y(sho)o(wn)d(that)f
X(the)h(singular)h(v)m(alues)g(of)f Fn(A)g Fo(deca)o(y)g(in)h(suc)o(h)f
X(a)g(w)o(a)o(y)f(that)g(b)q(oth)h(criteria)h(1)e(and)h(2)g(ab)q(o)o(v)o
X(e)59 2180 y(are)g(satis\014ed.)130 2236 y(An)23 b(in)o(teresting)g
X(and)g(imp)q(ortan)o(t)f(asp)q(ect)h(of)f(discrete)h(ill-p)q(osed)j
X(problems)d(is)g(that)f(the)h(ill-)59 2293 y(conditioning)14
Xb(of)e(the)g(problem)g(do)q(es)h(not)e(mean)h(that)f(a)h(meaningful)i
X(appro)o(ximate)d(solution)i(cannot)59 2349 y(b)q(e)20
Xb(computed.)34 b(Rather,)20 b(the)g(ill-conditioni)q(ng)i(implies)g
X(that)d(standard)g(metho)q(ds)h(in)g(n)o(umerical)59
X2406 y(linear)13 b(algebra)g([9)o(,)f(29)o(])g(for)f(solving)i(\(2.2\))
Xe(and)h(\(2.3\),)f(suc)o(h)i(as)e(LU,)i(Cholesky)l(,)g(or)e(QR)i
X(factorization,)59 2462 y(cannot)18 b(b)q(e)g(used)h(in)f(a)g(straigh)o
X(tforw)o(ard)d(manner)j(to)f(compute)h(suc)o(h)h(a)e(solution.)29
Xb(Instead,)18 b(more)59 2518 y(sophisticated)13 b(metho)q(ds)g(m)o(ust)
Xe(b)q(e)i(applied)h(in)f(order)f(to)g(ensure)g(the)h(computation)f(of)f
X(a)h(meaningful)59 2575 y(solution.)21 b(This)15 b(is)h(the)f(essen)o
X(tial)i(goal)e(of)f(regularization)i(metho)q(ds.)130
X2631 y(The)c(pac)o(k)m(age)g Ff(Regulariza)m(tion)i(Tools)e
XFo(pro)o(vides)g(a)g(collection)i(of)d(easy-to-use)h(Matlab)g(rou-)59
X2688 y(tines)18 b(for)f(the)g(n)o(umerical)i(treatmen)o(t)d(of)h
X(discrete)h(ill-p)q(osed)i(problems.)26 b(The)18 b(philosoph)o(y)h(b)q
X(ehind)59 2744 y Ff(Regulariza)m(tion)g(Tools)d Fo(is)h(mo)q(dularit)o
X(y)g(and)g(regularit)o(y)f(b)q(et)o(w)o(een)h(the)g(routines.)24
Xb(Man)o(y)16 b(rou-)59 2801 y(tines)d(require)f(the)g(SVD)g(of)g(the)g
X(co)q(e\016cien)o(t)h(matrix)e Fn(A)p Fo(|this)i(is)g(not)e
X(necessarily)j(the)e(b)q(est)g(approac)o(h)59 2857 y(in)k(a)f(giv)o(en)
Xg(application,)i(but)e(it)h(is)f(certainly)h(w)o(ell)h(suited)f(for)e
X(Matlab)h([54)o(])g(and)g(for)f(this)i(pac)o(k)m(age.)p
Xeop
X%%Page: 9 11
X9 10 bop 59 159 a Fo(2.2.)14 b(Regularization)j(Metho)q(ds)1182
Xb(9)p 59 178 1767 2 v 130 304 a(The)16 b(n)o(umerical)h(treatmen)o(t)d
X(of)i(in)o(tegral)g(equations)g(in)h(general)f(is)g(treated)g(in)g
X(standard)g(refer-)59 361 y(ences)g(suc)o(h)f(as)g([4)o(,)g(5,)f(13,)g
X(17,)g(18],)g(and)h(surv)o(eys)g(of)g(regularization)h(theory)e(can)h
X(b)q(e)h(found)f(in,)h(e.g.,)59 417 y([7)o(,)f(10,)f(31,)h(32)o(,)g(46)
Xo(,)g(47,)f(50,)h(51)o(,)g(65)o(,)g(73)o(,)g(79].)59
X548 y Fr(2.2.)j(Regularization)f(Metho)r(ds)59 651 y
XFo(The)j(primary)f(di\016cult)o(y)i(with)e(the)h(discrete)g(ill-p)q
X(osed)i(problems)e(\(2.2\))e(and)h(\(2.3\))f(is)i(that)f(they)59
X707 y(are)e(essen)o(tially)i(underdetermined)g(due)f(to)f(the)g
X(cluster)h(of)f(small)h(singular)g(v)m(alues)g(of)f Fn(A)p
XFo(.)26 b(Hence,)59 764 y(it)18 b(is)h(necessary)f(to)f(incorp)q(orate)
Xh(further)g(information)g(ab)q(out)g(the)g(desired)h(solution)g(in)g
X(order)e(to)59 820 y(stabilize)i(the)e(problem)g(and)g(to)f(single)i
X(out)f(a)f(useful)i(and)f(stable)g(solution.)25 b(This)18
Xb(is)f(the)g(purp)q(ose)59 877 y(of)e Fk(r)n(e)n(gularization)p
XFo(.)130 934 y(Although)21 b(man)o(y)f(t)o(yp)q(es)h(of)f(additional)i
X(information)f(ab)q(out)g(the)f(solution)i Fp(x)e Fo(is)h(p)q(ossible)i
X(in)59 990 y(principle,)e(the)e(dominating)g(approac)o(h)e(to)h
X(regularization)h(of)f(discrete)h(ill-p)q(osed)i(problems)e(is)f(to)59
X1047 y(require)13 b(that)e(the)h(2-norm|or)f(an)h(appropriate)g
X(seminorm|of)g(the)g(solution)g(b)q(e)h(small.)19 b(An)13
Xb(initial)59 1103 y(estimate)k Fp(x)271 1087 y Fe(\003)308
X1103 y Fo(of)g(the)g(solution)h(ma)o(y)f(also)g(b)q(e)h(included)i(in)e
X(the)f(side)h(constrain)o(t.)26 b(Hence,)18 b(the)g(side)59
X1160 y(constrain)o(t)d(in)o(v)o(olv)o(es)h(minimization)h(of)e(the)g
X(quan)o(tit)o(y)718 1264 y(\012\()p Fp(x)p Fo(\))c(=)i
XFm(k)p Fn(L)8 b Fo(\()p Fp(x)h Fm(\000)h Fp(x)1064 1245
Xy Fe(\003)1084 1264 y Fo(\))p Fm(k)1125 1271 y Fj(2)1159
X1264 y Fn(:)565 b Fo(\(2.5\))59 1369 y(Here,)17 b(the)f(matrix)g
XFn(L)h Fo(is)g(t)o(ypically)g(either)h(the)e(iden)o(tit)o(y)h(matrix)f
XFn(I)1238 1376 y Fg(n)1278 1369 y Fo(or)g(a)g Fn(p)11
Xb Fm(\002)g Fn(n)17 b Fo(discrete)g(appro)o(xi-)59 1425
Xy(mation)d(of)g(the)h(\()p Fn(n)8 b Fm(\000)h Fn(p)p
XFo(\)-th)14 b(deriv)m(ativ)o(e)i(op)q(erator,)d(in)i(whic)o(h)h(case)e
XFn(L)g Fo(is)h(a)f(banded)i(matrix)e(with)g(full)59 1481
Xy(ro)o(w)f(rank.)19 b(In)14 b(some)f(cases)g(it)h(is)g(more)f
X(appropriate)g(that)g(the)g(side)i(constrain)o(t)d(b)q(e)j(a)e(Sob)q
X(olev)h(norm)59 1538 y(of)h(the)g(form)493 1618 y(\012\()p
XFp(x)p Fo(\))590 1600 y Fj(2)621 1618 y Fo(=)e Fn(\013)698
X1600 y Fj(2)698 1630 y(0)718 1618 y Fm(k)p Fp(x)c Fm(\000)i
XFp(x)852 1600 y Fe(\003)871 1618 y Fm(k)894 1600 y Fj(2)894
X1630 y(2)924 1618 y Fo(+)991 1563 y Fg(q)969 1578 y Fh(X)971
X1669 y Fg(i)p Fj(=1)1037 1618 y Fn(\013)1066 1600 y Fj(2)1066
X1630 y Fg(i)1086 1618 y Fm(k)p Fn(L)1140 1625 y Fg(i)1161
X1618 y Fo(\()p Fp(x)e Fm(\000)i Fp(x)1290 1600 y Fe(\003)1309
X1618 y Fo(\))p Fm(k)1350 1600 y Fj(2)1350 1630 y(2)1384
X1618 y Fn(;)59 1738 y Fo(where)21 b Fn(L)227 1745 y Fg(i)262
X1738 y Fo(appro)o(ximates)f(the)h Fn(i)p Fo(th)g(deriv)m(ativ)o(e)h(op)
Xq(erator.)36 b(Notice)21 b(that)f(this)h(\012)g(can)g(alw)o(a)o(ys)f(b)
Xq(e)59 1795 y(written)c(in)h(the)f(form)f(\(2.5\))f(b)o(y)i(setting)g
XFn(L)g Fo(equal)h(to)e(the)h(Cholesky)g(factor)f(of)h(the)g(matrix)f
XFn(\013)1721 1778 y Fj(2)1721 1806 y(0)1741 1795 y Fn(I)1761
X1802 y Fg(n)1795 1795 y Fo(+)59 1819 y Fh(P)103 1829
Xy Fg(q)103 1864 y(i)p Fj(=1)170 1851 y Fn(\013)199 1835
Xy Fj(2)199 1863 y Fg(i)219 1851 y Fn(L)250 1835 y Fg(T)250
X1863 y(i)277 1851 y Fn(L)308 1858 y Fg(i)322 1851 y Fo(.)k(By)13
Xb(means)f(of)g(the)h(side)g(constrain)o(t)f(\012)h(one)f(can)h
X(therefore)f(con)o(trol)g(the)h(smo)q(othness)59 1908
Xy(of)i(the)g(regularized)i(solution.)130 1965 y(When)10
Xb(the)h(side)g(constrain)o(t)g(\012\()p Fp(x)p Fo(\))e(is)i(in)o(tro)q
X(duced,)h(one)f(m)o(ust)e(giv)o(e)i(up)g(the)g(requiremen)o(t)g(that)e
XFn(A)f Fp(x)59 2021 y Fo(equals)14 b Fp(b)g Fo(in)g(the)g(linear)g
X(system)f(\(2.2\))f(and)i(instead)g(seek)g(a)f(solution)h(that)f(pro)o
X(vides)h(a)f(fair)h(balance)59 2078 y(b)q(et)o(w)o(een)i(minimizing)i
X(\012\()p Fp(x)p Fo(\))c(and)i(minimizing)i(the)e(residual)h(norm)e
XFm(k)p Fn(A)8 b Fp(x)h Fm(\000)i Fp(b)p Fm(k)1473 2085
Xy Fj(2)1492 2078 y Fo(.)21 b(The)16 b(underlying)59 2134
Xy(idea)11 b(is)g(that)f(a)g(regularized)h(solution)h(with)e(small)h
X(\(semi\)norm)f(and)h(a)f(suitably)h(small)g(residual)h(norm)59
X2191 y(is)j(not)f(to)q(o)g(far)g(from)g(the)h(desired,)g(unkno)o(wn)g
X(solution)h(to)d(the)i(unp)q(erturb)q(ed)h(problem)g(underlying)59
X2247 y(the)c(giv)o(en)h(problem.)20 b(The)12 b(same)g(idea)i(of)d
X(course)i(also)f(applies)i(to)e(the)g(least)h(squares)f(problem)h
X(\(2.3\).)130 2305 y(Undoubtedly)l(,)26 b(the)c(most)g(common)g(and)h
X(w)o(ell-kno)o(wn)h(form)e(of)g(regularization)i(is)f(the)g(one)59
X2361 y(kno)o(wn)16 b(as)g Fk(Tikhonov)g(r)n(e)n(gularization)g
XFo([62)o(,)g(67)o(,)g(68)o(].)23 b(Here,)16 b(the)h(idea)f(is)h(to)f
X(de\014ne)h(the)f(regularized)59 2417 y(solution)h Fp(x)260
X2424 y Fg(\025)299 2417 y Fo(as)f(the)g(minimizer)i(of)e(the)h(follo)o
X(wing)g(w)o(eigh)o(ted)f(com)o(bination)h(of)f(the)g(residual)i(norm)59
X2474 y(and)d(the)h(side)g(constrain)o(t)476 2578 y Fp(x)504
X2585 y Fg(\025)539 2578 y Fo(=)d(argmin)733 2531 y Fh(n)761
X2578 y Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)h Fp(b)p Fm(k)960
X2559 y Fj(2)960 2589 y(2)990 2578 y Fo(+)g Fn(\025)1062
X2559 y Fj(2)1082 2578 y Fm(k)p Fn(L)e Fo(\()p Fp(x)g
XFm(\000)j Fp(x)1272 2559 y Fe(\003)1291 2578 y Fo(\))p
XFm(k)1332 2559 y Fj(2)1332 2589 y(2)1351 2531 y Fh(o)1401
X2578 y Fn(;)323 b Fo(\(2.6\))59 2688 y(where)14 b(the)f
XFk(r)n(e)n(gularization)h(p)n(ar)n(ameter)f Fn(\025)g
XFo(con)o(trols)g(the)g(w)o(eigh)o(t)g(giv)o(en)h(to)e(minimization)k
X(of)c(the)i(side)59 2744 y(constrain)o(t)h(relativ)o(e)g(to)g
X(minimization)i(of)d(the)h(residual)i(norm.)i(Clearly)l(,)d(a)e(large)h
XFn(\025)g Fo(\(equiv)m(alen)o(t)h(to)59 2801 y(a)g(large)h(amoun)o(t)e
X(of)h(regularization\))h(fa)o(v)o(ors)e(a)h(small)h(solution)h
X(seminorm)e(at)g(the)h(cost)f(of)g(a)g(large)59 2857
Xy(residual)k(norm,)e(while)i(a)e(small)h Fn(\025)f Fo(\(i.e.,)g(a)g
X(small)h(amoun)o(t)f(of)g(regularization\))g(has)h(the)f(opp)q(osite)p
Xeop
X%%Page: 10 12
X10 11 bop 64 159 a Fo(10)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(e\013ect.)36 b(As)21 b(w)o(e)f(shall)i(see)f
X(in)g(Eq.)g(\(2.14\),)e Fn(\025)i Fo(also)f(con)o(trols)h(the)f
X(sensitivit)o(y)i(of)f(the)f(regularized)59 361 y(solution)e
XFp(x)261 368 y Fg(\025)300 361 y Fo(to)e(p)q(erturbations)i(in)g
XFn(A)f Fo(and)g Fp(b)p Fo(,)g(and)g(the)g(p)q(erturbation)g(b)q(ound)h
X(is)g(prop)q(ortional)f(to)59 417 y Fn(\025)86 401 y
XFe(\000)p Fj(1)133 417 y Fo(.)28 b(Th)o(us,)19 b(the)f(regularization)h
X(parameter)f Fn(\025)f Fo(is)i(an)f(imp)q(ortan)o(t)g(quan)o(tit)o(y)g
X(whic)o(h)h(con)o(trols)f(the)59 474 y(prop)q(erties)j(of)f(the)h
X(regularized)g(solution,)h(and)f Fn(\025)f Fo(should)h(therefore)f(b)q
X(e)h(c)o(hosen)g(with)g(care.)35 b(In)59 530 y(Section)16
Xb(2.9)e(w)o(e)h(return)g(to)g(n)o(umerical)h(metho)q(ds)g(for)e
X(actually)i(computing)g Fn(\025)p Fo(.)130 589 y(W)l(e)i(remark)f(that)
Xg(an)h(underlying)h(assumption)f(for)g(the)g(use)g(of)f(Tikhono)o(v)h
X(regularization)h(in)59 646 y(the)c(form)g(of)g(Eq.)f(\(2.6\))g(is)i
X(that)e(the)h(errors)g(in)h(the)f(righ)o(t-hand)h(side)g(are)f(un)o
X(biased)h(and)g(that)e(their)59 702 y(co)o(v)m(ariance)21
Xb(matrix)e(is)i(prop)q(ortional)f(to)f(the)h(iden)o(tit)o(y)h(matrix.)
X34 b(If)20 b(the)g(latter)f(condition)j(is)e(not)59 758
Xy(satis\014ed)14 b(one)g(should)g(incorp)q(orate)g(the)f(additional)i
X(information)f(and)g(rescale)g(the)f(problem)h(or)f(use)59
X815 y(a)i(regularized)i(v)o(ersion)e(of)g(the)g(general)h(Gauss-Mark)o
X(o)o(v)d(linear)j(mo)q(del:)357 930 y(min)448 882 y Fh(n)475
X930 y Fm(k)p Fp(u)p Fm(k)550 911 y Fj(2)550 941 y(2)580
X930 y Fo(+)10 b Fn(\025)652 911 y Fj(2)671 930 y Fm(k)p
XFn(L)e Fp(x)p Fm(k)784 911 y Fj(2)784 941 y(2)803 882
Xy Fh(o)929 930 y Fo(sub)s(ject)15 b(to)90 b Fn(A)8 b
XFp(x)i Fo(+)g Fn(C)g Fp(u)j Fo(=)g Fp(b)i Fn(;)204 b
XFo(\(2.7\))59 1047 y(where)15 b Fn(C)j Fo(is)e(the)f(Cholesky)h(factor)
Xe(of)h(the)g(co)o(v)m(ariance)h(matrix.)j(The)d(latter)f(approac)o(h)f
X(using)i(\(2.7\))59 1103 y(m)o(ust)g(b)q(e)i(used)g(if)f(the)g(co)o(v)m
X(ariance)h(matrix)e(is)i(rank)e(de\014cien)o(t,)j(i.e.,)e(if)g
XFn(C)j Fo(is)d(not)g(a)g(square)f(matrix.)59 1160 y(F)l(or)f(a)f
X(discussion)j(of)e(this)h(approac)o(h)f(and)g(a)g(n)o(umerical)h
X(algorithm)g(for)e(solving)i(\(2.7\),)d(cf.)i([80)o(].)130
X1219 y(Besides)21 b(Tikhono)o(v)e(regularization,)j(there)d(are)h(man)o
X(y)f(other)g(regularization)i(metho)q(ds)e(with)59 1275
Xy(prop)q(erties)g(that)f(mak)o(e)g(them)g(b)q(etter)h(suited)g(to)f
X(certain)g(problems)h(or)f(certain)h(computers.)30 b(W)l(e)59
X1331 y(return)12 b(to)f(these)i(metho)q(ds)f(in)h(Sections)g(2.7)e(and)
Xh(2.8,)f(but)h(\014rst)g(it)g(is)h(con)o(v)o(enien)o(t)g(to)e(in)o(tro)
Xq(duce)i(some)59 1388 y(imp)q(ortan)o(t)g(n)o(umerical)h(\\to)q(ols")e
X(for)h(analysis)h(of)e(discrete)i(ill-p)q(osed)i(problems)d(in)h
X(Sections)g(2.3{2.5.)59 1444 y(As)20 b(w)o(e)f(shall)i(demonstrate,)f
X(getting)f(insigh)o(t)i(in)o(to)f(the)f(discrete)i(ill-p)q(osed)h
X(problem)f(is)f(often)f(at)59 1501 y(least)g(as)g(imp)q(ortan)o(t)g(as)
Xg(computing)h(a)f(solution,)h(b)q(ecause)h(the)e(regularized)i
X(solution)f(should)g(b)q(e)59 1557 y(computed)i(with)f(suc)o(h)h(care.)
X38 b(Finally)l(,)24 b(in)e(Section)g(2.9)f(w)o(e)g(shall)h(describ)q(e)
Xh(some)e(metho)q(ds)g(for)59 1614 y(c)o(ho)q(osing)16
Xb(the)f(regularization)h(parameter.)59 1754 y Fr(2.3.)i(SVD)h(and)g
X(Generalized)e(SVD)59 1860 y Fo(The)e(sup)q(erior)g(n)o(umerical)h
X(\\to)q(ols")e(for)g(analysis)h(of)f(discrete)h(ill-p)q(osed)i
X(problems)f(are)e(the)g Fk(singular)59 1917 y(value)20
Xb(de)n(c)n(omp)n(osition)e Fo(\(SVD\))h(of)f Fn(A)h Fo(and)h(its)f
X(generalization)h(to)f(t)o(w)o(o)f(matrices,)h(the)g
XFk(gener)n(alize)n(d)59 1973 y(singular)13 b(value)g(de)n(c)n(omp)n
X(osition)f Fo(\(GSVD\))f(of)g(the)h(matrix)g(pair)h(\()p
XFn(A;)8 b(L)p Fo(\))i([29)o(,)i Fm(x)p Fo(2.5.3)f(and)h
XFm(x)p Fo(8.7.3].)17 b(The)59 2030 y(SVD)f(rev)o(eals)h(all)g(the)f
X(di\016culties)i(asso)q(ciated)f(with)f(the)g(ill-conditi)q(oning)j(of)
Xd(the)g(matrix)g Fn(A)g Fo(while)59 2086 y(the)k(GSVD)g(of)g(\()p
XFn(A;)8 b(L)p Fo(\))19 b(yields)j(imp)q(ortan)o(t)e(insigh)o(t)h(in)o
X(to)f(the)g(regularization)h(problem)g(in)o(v)o(olving)59
X2143 y(b)q(oth)15 b(the)h(co)q(e\016cien)o(t)g(matrix)f
XFn(A)g Fo(and)g(the)h(regularization)g(matrix)f Fn(L)p
XFo(,)f(suc)o(h)i(as)f(in)h(\(2.6\).)59 2277 y Fp(2.3.1.)g(The)i
X(Singular)h(V)l(alue)e(Decomp)q(osition)59 2367 y Fo(Let)e
XFn(A)d Fm(2)h Fp(I)-8 b(R)281 2349 y Fg(m)p Fe(\002)p
XFg(n)377 2367 y Fo(b)q(e)15 b(a)f(rectangular)h(matrix)f(with)g
XFn(m)f Fm(\025)g Fn(n)p Fo(.)20 b(Then)14 b(the)h(SVD)f(of)g
XFn(A)h Fo(is)f(a)g(decomp)q(osi-)59 2424 y(tion)h(of)g(the)h(form)665
X2506 y Fn(A)c Fo(=)h Fn(U)g Fo(\006)8 b Fn(V)880 2488
Xy Fg(T)920 2506 y Fo(=)987 2453 y Fg(n)968 2466 y Fh(X)969
X2557 y Fg(i)p Fj(=1)1043 2506 y Fp(u)1072 2513 y Fg(i)1094
X2506 y Fn(\033)1120 2513 y Fg(i)1142 2506 y Fp(v)1171
X2488 y Fg(T)1170 2518 y(i)1212 2506 y Fn(;)512 b Fo(\(2.8\))59
X2635 y(where)20 b Fn(U)k Fo(=)19 b(\()p Fp(u)351 2642
Xy Fj(1)371 2635 y Fn(;)8 b(:)g(:)g(:)d(;)j Fp(u)502 2642
Xy Fg(n)524 2635 y Fo(\))19 b(and)h Fn(V)29 b Fo(=)19
Xb(\()p Fp(v)810 2642 y Fj(1)829 2635 y Fn(;)8 b(:)g(:)g(:)d(;)j
XFp(v)959 2642 y Fg(n)981 2635 y Fo(\))19 b(are)g(matrices)g(with)h
X(orthonormal)e(columns,)59 2691 y Fn(U)95 2675 y Fg(T)123
X2691 y Fn(U)i Fo(=)d Fn(V)262 2675 y Fg(T)290 2691 y
XFn(V)25 b Fo(=)17 b Fn(I)414 2698 y Fg(n)437 2691 y Fo(,)g(and)h(where)
Xf(\006)f(=)g(diag)q(\()p Fn(\033)919 2698 y Fj(1)938
X2691 y Fn(;)8 b(:)g(:)g(:)d(;)j(\033)1066 2698 y Fg(n)1089
X2691 y Fo(\))17 b(has)g(non-negativ)o(e)g(diagonal)h(elemen)o(ts)59
X2748 y(app)q(earing)e(in)g(non-increasing)h(order)e(suc)o(h)g(that)755
X2857 y Fn(\033)781 2864 y Fj(1)813 2857 y Fm(\025)e Fn(:)8
Xb(:)g(:)j Fm(\025)i Fn(\033)1001 2864 y Fg(n)1037 2857
Xy Fm(\025)g Fo(0)i Fn(:)601 b Fo(\(2.9\))p eop
X%%Page: 11 13
X11 12 bop 59 159 a Fo(2.3.)14 b(SVD)h(and)h(Generalized)g(SVD)1096
Xb(11)p 59 178 1767 2 v 59 304 a(The)16 b(n)o(um)o(b)q(ers)h
XFn(\033)364 311 y Fg(i)394 304 y Fo(are)e(the)h Fk(singular)h(values)e
XFo(of)h Fn(A)g Fo(while)h(the)f(v)o(ectors)g Fp(u)1345
X311 y Fg(i)1375 304 y Fo(and)g Fp(v)1492 311 y Fg(i)1521
X304 y Fo(are)g(the)g(left)g(and)59 361 y(righ)o(t)f(singular)i(v)o
X(ectors)e(of)g Fn(A)p Fo(,)g(resp)q(ectiv)o(ely)l(.)23
Xb(The)16 b(condition)h(n)o(um)o(b)q(er)f(of)f Fn(A)h
XFo(is)g(equal)g(to)f(the)h(ratio)59 417 y Fn(\033)85
X424 y Fj(1)105 417 y Fn(=\033)154 424 y Fg(n)177 417
Xy Fo(.)130 474 y(F)l(rom)e(the)g(relations)i Fn(A)545
X458 y Fg(T)572 474 y Fn(A)d Fo(=)g Fn(V)k Fo(\006)744
X458 y Fj(2)771 474 y Fn(V)808 458 y Fg(T)850 474 y Fo(and)e
XFn(A)8 b(A)1014 458 y Fg(T)1054 474 y Fo(=)13 b Fn(U)f
XFo(\006)1178 458 y Fj(2)1198 474 y Fn(U)1234 458 y Fg(T)1276
X474 y Fo(w)o(e)j(see)g(that)f(the)g(SVD)h(of)f Fn(A)h
XFo(is)59 530 y(strongly)i(link)o(ed)j(to)c(the)i(eigen)o(v)m(alue)i
X(decomp)q(ositions)e(of)g(the)f(symmetric)h(p)q(ositiv)o(e)g
X(semi-de\014nite)59 587 y(matrices)12 b Fn(A)272 570
Xy Fg(T)300 587 y Fn(A)g Fo(and)h Fn(A)8 b(A)508 570 y
XFg(T)535 587 y Fo(.)19 b(This)13 b(sho)o(ws)f(that)f(the)i(SVD)f(is)h
X(unique)h(for)e(a)g(giv)o(en)h(matrix)f Fn(A)p Fo(|except)59
X643 y(for)k(singular)h(v)o(ectors)e(asso)q(ciated)i(with)f(m)o(ultiple)
Xi(singular)f(v)m(alues.)24 b(In)17 b(connection)g(with)g(discrete)59
X700 y(ill-p)q(osed)h(problems,)d(t)o(w)o(o)f(c)o(haracteristic)i
X(features)f(of)f(the)i(SVD)f(of)g Fn(A)g Fo(are)g(v)o(ery)g(often)f
X(found.)127 795 y Fm(\017)23 b Fo(The)10 b(singular)i(v)m(alues)f
XFn(\033)585 802 y Fg(i)610 795 y Fo(deca)o(y)f(gradually)h(to)f(zero)g
X(with)h(no)g(particular)g(gap)f(in)h(the)g(sp)q(ectrum.)173
X851 y(An)i(increase)h(of)f(the)g(dimensions)h(of)f Fn(A)g
XFo(will)i(increase)f(the)f(n)o(um)o(b)q(er)g(of)g(small)h(singular)g(v)
Xm(alues.)127 946 y Fm(\017)23 b Fo(The)13 b(left)h(and)g(righ)o(t)f
X(singular)h(v)o(ectors)f Fp(u)889 953 y Fg(i)916 946
Xy Fo(and)g Fp(v)1030 953 y Fg(i)1057 946 y Fo(tend)h(to)f(ha)o(v)o(e)g
X(more)g(sign)h(c)o(hanges)f(in)h(their)173 1003 y(elemen)o(ts)i(as)e
X(the)i(index)g Fn(i)f Fo(increases,)h(i.e.,)e(as)h Fn(\033)1016
X1010 y Fg(i)1045 1003 y Fo(decreases.)59 1098 y(Although)g(these)f
X(features)g(are)g(found)h(in)g(man)o(y)f(discrete)h(ill-p)q(osed)i
X(problems)e(arising)g(in)g(practical)59 1154 y(applications,)23
Xb(they)e(are)g(unfortunately)g(v)o(ery)f(di\016cult|or)i(p)q(erhaps)g
X(imp)q(ossible|to)h(pro)o(v)o(e)d(in)59 1211 y(general.)130
X1267 y(T)l(o)14 b(see)h(ho)o(w)e(the)i(SVD)f(giv)o(es)h(insigh)o(t)g
X(in)o(to)g(the)f(ill-conditi)q(onin)q(g)j(of)d Fn(A)p
XFo(,)g(consider)h(the)g(follo)o(wing)59 1324 y(relations)h(whic)o(h)g
X(follo)o(w)f(directly)i(from)d(Eq.)h(\(2.8\):)640 1431
Xy Fn(A)8 b Fp(v)710 1438 y Fg(i)765 1431 y Fo(=)42 b
XFn(\033)868 1438 y Fg(i)890 1431 y Fp(u)919 1438 y Fg(i)575
X1488 y Fm(k)p Fn(A)8 b Fp(v)668 1495 y Fg(i)681 1488
Xy Fm(k)704 1495 y Fj(2)765 1488 y Fo(=)42 b Fn(\033)868
X1495 y Fg(i)953 1387 y Fh(\))1085 1459 y Fn(i)13 b Fo(=)g(1)p
XFn(;)8 b(:)g(:)g(:)t(;)g(n)15 b(:)374 b Fo(\(2.10\))59
X1595 y(W)l(e)16 b(see)g(that)f(a)g(small)i(singular)f(v)m(alue)h
XFn(\033)785 1602 y Fg(i)799 1595 y Fo(,)e(compared)h(to)f
XFm(k)p Fn(A)p Fm(k)1171 1602 y Fj(2)1204 1595 y Fo(=)f
XFn(\033)1279 1602 y Fj(1)1298 1595 y Fo(,)i(means)f(that)g(there)h
X(exists)g(a)59 1651 y(certain)f(linear)g(com)o(bination)g(of)e(the)i
X(columns)g(of)e Fn(A)p Fo(,)h(c)o(haracterized)h(b)o(y)f(the)g(elemen)o
X(ts)h(of)f(the)g(righ)o(t)59 1708 y(singular)j(v)o(ector)e
XFp(v)397 1715 y Fg(i)411 1708 y Fo(,)h(suc)o(h)g(that)f
XFm(k)p Fn(A)8 b Fp(v)735 1715 y Fg(i)748 1708 y Fm(k)771
X1715 y Fj(2)804 1708 y Fo(=)15 b Fn(\033)880 1715 y Fg(i)910
X1708 y Fo(is)h(small.)23 b(In)16 b(other)g(w)o(ords,)f(one)h(or)f(more)
Xh(small)h Fn(\033)1817 1715 y Fg(i)59 1764 y Fo(implies)f(that)d
XFn(A)h Fo(is)g(nearly)g(rank)g(de\014cien)o(t,)h(and)f(the)g(v)o
X(ectors)e Fp(v)1177 1771 y Fg(i)1205 1764 y Fo(asso)q(ciated)i(with)g
X(the)g(small)g Fn(\033)1742 1771 y Fg(i)1770 1764 y Fo(are)59
X1821 y(n)o(umerical)19 b(n)o(ull-v)o(ectors)f(of)f Fn(A)p
XFo(.)28 b(F)l(rom)16 b(this)i(and)g(the)g(c)o(haracteristic)g(features)
Xf(of)g Fn(A)h Fo(w)o(e)f(conclude)59 1877 y(that)i(the)g(matrix)g(in)h
X(a)f(discrete)i(ill-p)q(osed)h(problem)e(is)g(alw)o(a)o(ys)e(highly)j
X(ill-conditione)q(d,)i(and)c(its)59 1934 y(n)o(umerical)e(n)o
X(ull-space)g(is)e(spanned)h(b)o(y)f(v)o(ectors)g(with)g(man)o(y)g(sign)
Xh(c)o(hanges.)130 1990 y(The)10 b(SVD)h(also)f(giv)o(es)g(imp)q(ortan)o
X(t)g(insigh)o(t)h(in)o(to)g(another)f(asp)q(ect)g(of)g(discrete)h
X(ill-p)q(osed)i(problems,)59 2047 y(namely)k(the)g(smo)q(othing)f
X(e\013ect)h(t)o(ypically)h(asso)q(ciated)f(with)f(a)h(square)f(in)o
X(tegrable)h(k)o(ernel.)25 b(Notice)59 2103 y(that)18
Xb(as)h Fn(\033)247 2110 y Fg(i)280 2103 y Fo(decreases,)g(the)g
X(singular)h(v)o(ectors)e Fp(u)939 2110 y Fg(i)972 2103
Xy Fo(and)h Fp(v)1092 2110 y Fg(i)1125 2103 y Fo(b)q(ecome)g(more)g(and)
Xg(more)f(oscillatory)l(.)59 2160 y(Consider)i(no)o(w)g(the)g(mapping)g
XFn(A)8 b Fp(x)19 b Fo(of)h(an)f(arbitrary)g(v)o(ector)h
XFp(x)p Fo(.)33 b(Using)20 b(the)g(SVD,)g(w)o(e)f(get)g
XFp(x)h Fo(=)59 2184 y Fh(P)103 2197 y Fg(n)103 2228 y(i)p
XFj(=1)162 2216 y Fo(\()p Fp(v)209 2200 y Fg(T)208 2228
Xy(i)236 2216 y Fp(x)p Fo(\))8 b Fp(v)318 2223 y Fg(i)345
X2216 y Fo(and)724 2305 y Fn(A)g Fp(x)k Fo(=)873 2252
Xy Fg(n)854 2264 y Fh(X)855 2355 y Fg(i)p Fj(=1)921 2305
Xy Fn(\033)947 2312 y Fg(i)969 2305 y Fo(\()p Fp(v)1016
X2286 y Fg(T)1015 2316 y(i)1042 2305 y Fp(x)p Fo(\))c
XFp(u)1125 2312 y Fg(i)1153 2305 y Fn(:)59 2423 y Fo(This)15
Xb(clearly)g(sho)o(ws)f(that)f(the)h(due)h(to)f(the)g(m)o(ultiplication)
Xj(with)d(the)g Fn(\033)1323 2430 y Fg(i)1352 2423 y Fo(the)g
X(high-frequency)i(com-)59 2480 y(p)q(onen)o(ts)d(of)f
XFp(x)g Fo(are)g(more)g(damp)q(ed)h(in)g Fn(A)8 b Fp(x)k
XFo(than)g(then)h(lo)o(w-frequency)g(comp)q(onen)o(ts.)19
Xb(Moreo)o(v)o(er,)12 b(the)59 2536 y(in)o(v)o(erse)j(problem,)g(namely)
Xg(that)e(of)h(computing)h Fp(x)f Fo(from)f Fn(A)8 b Fp(x)k
XFo(=)h Fp(b)i Fo(or)e(min)c Fm(k)p Fn(A)f Fp(x)f Fm(\000)i
XFp(b)p Fm(k)1583 2543 y Fj(2)1602 2536 y Fo(,)14 b(m)o(ust)g(ha)o(v)o
X(e)59 2593 y(the)h(opp)q(osite)h(e\013ect:)k(it)15 b(ampli\014es)i(the)
Xe(high-frequency)i(oscillations)g(in)f(the)f(righ)o(t-hand)h(side)g
XFp(b)p Fo(.)59 2714 y Fp(2.3.2.)g(The)i(Generalized)h(Singular)g(V)l
X(alue)e(Decomp)q(osition)59 2801 y Fo(The)d(GSVD)g(of)g(the)g(matrix)g
X(pair)g(\()p Fn(A;)8 b(L)p Fo(\))13 b(is)i(a)e(generalization)j(of)d
X(the)i(SVD)f(of)g Fn(A)g Fo(in)h(the)f(sense)g(that)59
X2857 y(the)f(generalized)h(singular)g(v)m(alues)f(of)f(\()p
XFn(A;)c(L)p Fo(\))k(are)g(the)g(square)h(ro)q(ots)f(of)g(the)g
X(generalized)j(eigen)o(v)m(alues)p eop
X%%Page: 12 14
X12 13 bop 64 159 a Fo(12)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(of)g(the)g(matrix)g(pair)g(\()p
XFn(A)490 288 y Fg(T)518 304 y Fn(A;)8 b(L)604 288 y Fg(T)630
X304 y Fn(L)p Fo(\).)26 b(In)18 b(order)e(to)h(k)o(eep)g(our)g(exp)q
X(osition)i(simple,)f(w)o(e)f(assume)g(that)59 361 y(the)e(dimensions)i
X(of)e Fn(A)d Fm(2)h Fp(I)-8 b(R)563 343 y Fg(m)p Fe(\002)p
XFg(n)660 361 y Fo(and)15 b Fn(L)e Fm(2)g Fp(I)-8 b(R)886
X343 y Fg(p)p Fe(\002)p Fg(n)970 361 y Fo(satisfy)15 b
XFn(m)d Fm(\025)h Fn(n)g Fm(\025)g Fn(p)p Fo(,)i(whic)o(h)h(is)f(alw)o
X(a)o(ys)f(the)i(case)59 417 y(in)h(connection)h(with)e(discrete)h
X(ill-p)q(osed)i(problems.)24 b(Then)17 b(the)f(GSVD)g(is)h(a)f(decomp)q
X(osition)i(of)e Fn(A)59 474 y Fo(and)f Fn(L)h Fo(in)g(the)f(form)434
X588 y Fn(A)e Fo(=)g Fn(U)573 529 y Fh(\022)611 560 y
XFo(\006)78 b(0)616 617 y(0)50 b Fn(I)709 624 y Fg(n)p
XFe(\000)p Fg(p)785 529 y Fh(\023)824 588 y Fn(X)866 570
Xy Fe(\000)p Fj(1)927 588 y Fn(;)98 b(L)13 b Fo(=)g Fn(V)k
XFo(\()p Fn(M)j(;)i Fo(0\))8 b Fn(X)1382 570 y Fe(\000)p
XFj(1)1443 588 y Fn(;)259 b Fo(\(2.11\))59 719 y(where)12
Xb(the)f(columns)h(of)f Fn(U)18 b Fm(2)13 b Fp(I)-8 b(R)625
X701 y Fg(m)p Fe(\002)p Fg(n)718 719 y Fo(and)12 b Fn(V)22
Xb Fm(2)13 b Fp(I)-8 b(R)947 701 y Fg(p)p Fe(\002)p Fg(p)1023
X719 y Fo(are)11 b(orthonormal,)g Fn(X)16 b Fm(2)d Fp(I)-8
Xb(R)1513 701 y Fg(n)p Fe(\002)p Fg(n)1597 719 y Fo(is)12
Xb(nonsingu-)59 775 y(lar,)g(and)h(\006)e(and)h Fn(M)17
Xb Fo(are)12 b Fn(p)t Fm(\002)t Fn(p)f Fo(diagonal)i(matrices:)18
Xb(\006)13 b(=)g(diag)q(\()p Fn(\033)1185 782 y Fj(1)1204
X775 y Fn(;)8 b(:)g(:)g(:)d(;)j(\033)1332 782 y Fg(p)1351
X775 y Fo(\),)k Fn(M)17 b Fo(=)c(diag)q(\()p Fn(\026)1632
X782 y Fj(1)1652 775 y Fn(;)8 b(:)g(:)g(:)d(;)j(\026)1781
X782 y Fg(p)1800 775 y Fo(\).)59 831 y(Moreo)o(v)o(er,)13
Xb(the)j(diagonal)g(en)o(tries)f(of)g(\006)g(and)g Fn(M)20
Xb Fo(are)15 b(non-negativ)o(e)h(and)f(ordered)h(suc)o(h)f(that)419
X936 y(0)d Fm(\024)h Fn(\033)528 943 y Fj(1)576 936 y
XFm(\024)g Fn(:)8 b(:)g(:)i Fm(\024)j Fn(\033)763 943
Xy Fg(p)796 936 y Fm(\024)g Fo(1)i Fn(;)98 b Fo(1)12 b
XFm(\025)h Fn(\026)1103 943 y Fj(1)1151 936 y Fm(\025)g
XFn(:)8 b(:)g(:)j Fm(\025)i Fn(\026)1340 943 y Fg(p)1372
X936 y Fn(>)g Fo(0)i Fn(;)59 1041 y Fo(and)g(they)h(are)f(normalized)h
X(suc)o(h)g(that)640 1146 y Fn(\033)668 1127 y Fj(2)666
X1157 y Fg(i)697 1146 y Fo(+)11 b Fn(\026)770 1127 y Fj(2)770
X1157 y Fg(i)802 1146 y Fo(=)i(1)i Fn(;)98 b(i)13 b Fo(=)g(1)p
XFn(;)8 b(:)g(:)g(:)t(;)g(p)14 b(:)59 1250 y Fo(Then)i(the)f
XFk(gener)n(alize)n(d)g(singular)g(values)g Fn(\015)819
X1257 y Fg(i)848 1250 y Fo(of)g(\()p Fn(A;)8 b(L)p Fo(\))13
Xb(are)i(de\014ned)i(as)e(the)g(ratios)655 1355 y Fn(\015)679
X1362 y Fg(i)705 1355 y Fo(=)e Fn(\033)779 1362 y Fg(i)793
X1355 y Fn(=\026)843 1362 y Fg(i)873 1355 y Fn(;)98 b(i)12
Xb Fo(=)h(1)p Fn(;)8 b(:)g(:)g(:)d(;)j(p)14 b(;)480 b
XFo(\(2.12\))59 1460 y(and)17 b(they)h(ob)o(viously)g(app)q(ear)f(in)h
X(non-decreasing)h(order.)26 b(F)l(or)16 b(historical)j(reasons,)e(this)
Xg(ordering)59 1516 y(is)f(the)f(opp)q(osite)h(of)f(the)g(ordering)g(of)
Xg(the)h(ordinary)f(singular)h(v)m(alues)g(of)f Fn(A)p
XFo(.)130 1573 y(F)l(or)9 b Fn(p)k(<)g(n)d Fo(the)h(matrix)f
XFn(L)i Fm(2)h Fp(I)-8 b(R)682 1555 y Fg(p)p Fe(\002)p
XFg(n)761 1573 y Fo(alw)o(a)o(ys)9 b(has)i(a)f(non)o(trivial)h(n)o
X(ull-space)h Fm(N)7 b Fo(\()p Fn(L)p Fo(\).)18 b(E.g.,)10
Xb(if)h Fn(L)f Fo(is)h(an)59 1630 y(appro)o(ximation)k(to)f(the)h
X(second)g(deriv)m(ativ)o(e)h(op)q(erator)e(on)h(a)g(regular)f(mesh,)h
XFn(L)e Fo(=)g(tridiag)q(\(1)p Fn(;)8 b Fm(\000)p Fo(2)p
XFn(;)g Fo(1\),)59 1686 y(then)17 b Fm(N)7 b Fo(\()p Fn(L)p
XFo(\))15 b(is)i(spanned)g(b)o(y)f(the)g(t)o(w)o(o)f(v)o(ectors)h(\(1)p
XFn(;)8 b Fo(1)p Fn(;)g(:)f(:)h(:)t(;)g Fo(1\))1127 1670
Xy Fg(T)1169 1686 y Fo(and)16 b(\(1)p Fn(;)8 b Fo(2)p
XFn(;)g(:)g(:)f(:)e(;)j(n)p Fo(\))1489 1670 y Fg(T)1515
X1686 y Fo(.)23 b(In)17 b(the)f(GSVD,)59 1743 y(the)f(last)g
XFn(n)c Fm(\000)f Fn(p)15 b Fo(columns)h Fp(x)549 1750
Xy Fg(i)578 1743 y Fo(of)f(the)g(nonsingular)i(matrix)d
XFn(X)19 b Fo(satisfy)645 1847 y Fn(L)8 b Fp(x)712 1854
Xy Fg(i)738 1847 y Fo(=)13 b Fp(0)j Fn(;)98 b(i)12 b Fo(=)h
XFn(p)d Fo(+)g(1)p Fn(;)e(:)g(:)g(:)d(;)j(n)470 b Fo(\(2.13\))59
X1952 y(and)15 b(they)h(are)f(therefore)g(basis)g(v)o(ectors)g(for)f
X(the)h(n)o(ull-space)j Fm(N)7 b Fo(\()p Fn(L)p Fo(\).)130
X2009 y(There)19 b(is)h(a)f(sligh)o(t)g(notational)g(problem)h(here)g(b)
Xq(ecause)g(the)f(matrices)g Fn(U)5 b Fo(,)20 b(\006,)g(and)f
XFn(V)29 b Fo(in)20 b(the)59 2066 y(GSVD)15 b(of)h(\()p
XFn(A;)8 b(L)p Fo(\))14 b(are)h Fk(di\013er)n(ent)g Fo(from)g(the)h
X(matrices)g(with)g(the)f(same)h(sym)o(b)q(ols)g(in)g(the)g(SVD)g(of)f
XFn(A)p Fo(.)59 2122 y(Ho)o(w)o(ev)o(er,)d(in)h(this)g(presen)o(tation)g
X(it)f(will)j(alw)o(a)o(ys)c(b)q(e)j(clear)f(from)e(the)i(con)o(text)f
X(whic)o(h)h(decomp)q(osition)59 2179 y(is)k(used.)24
Xb(When)16 b Fn(L)h Fo(is)g(the)f(iden)o(tit)o(y)h(matrix)f
XFn(I)876 2186 y Fg(n)899 2179 y Fo(,)h(then)f(the)h Fn(U)k
XFo(and)c Fn(V)25 b Fo(of)16 b(the)h(GSVD)f(are)g(iden)o(tical)59
X2235 y(to)e(the)g Fn(U)20 b Fo(and)14 b Fn(V)24 b Fo(of)14
Xb(the)h(SVD,)f(and)g(the)h(generalized)h(singular)f(v)m(alues)h(of)e
X(\()p Fn(A;)8 b(I)1479 2242 y Fg(n)1501 2235 y Fo(\))14
Xb(are)g(iden)o(tical)i(to)59 2292 y(the)f(singular)h(v)m(alues)h(of)e
XFn(A)p Fo(|except)h(for)e(the)i(ordering)f(of)g(the)g(singular)h(v)m
X(alues)h(and)e(v)o(ectors.)130 2349 y(In)g(general,)f(there)h(is)g(no)f
X(connection)h(b)q(et)o(w)o(een)g(the)g(generalized)h(singular)f(v)m
X(alues/v)o(ectors)f(and)59 2406 y(the)e(ordinary)g(singular)h(v)m
X(alues/v)o(ectors.)19 b(F)l(or)11 b(discrete)i(ill-p)q(osed)i
X(problems,)e(though,)f(w)o(e)g(can)g(actu-)59 2462 y(ally)17
Xb(sa)o(y)d(something)i(ab)q(out)g(the)f(SVD-GSVD)h(connection)g(b)q
X(ecause)h Fn(L)e Fo(is)h(t)o(ypically)h(a)e(reasonably)59
X2518 y(w)o(ell-conditioned)23 b(matrix.)33 b(When)20
Xb(this)g(is)g(the)g(case,)h(then)f(it)g(can)f(b)q(e)i(sho)o(wn)e(that)g
X(the)h(matrix)59 2575 y Fn(X)h Fo(in)d(\(2.11\))e(is)i(also)f(w)o
X(ell-conditioned.)30 b(Hence,)18 b(the)g(diagonal)g(matrix)f(\006)h(m)o
X(ust)f(displa)o(y)h(the)g(ill-)59 2631 y(conditioning)f(of)f
XFn(A)p Fo(,)f(and)h(since)g Fn(\015)658 2638 y Fg(i)685
X2631 y Fo(=)e Fn(\033)760 2638 y Fg(i)781 2631 y Fo(\(1)c
XFm(\000)h Fn(\033)906 2615 y Fj(2)904 2643 y Fg(i)925
X2631 y Fo(\))943 2615 y Fj(1)p Fg(=)p Fj(2)1011 2631
Xy Fm(\031)j Fn(\033)1086 2638 y Fg(i)1115 2631 y Fo(for)h(small)h
XFn(\033)1330 2638 y Fg(i)1360 2631 y Fo(the)f(generalized)j(singular)59
X2688 y(v)m(alues)e(m)o(ust)e(deca)o(y)h(gradually)g(to)f(zero)h(as)f
X(the)g(ordinary)h(singular)h(v)m(alues)g(do.)j(Moreo)o(v)o(er,)13
Xb(the)i(os-)59 2744 y(cillation)i(prop)q(erties)f(\(i.e.,)f(the)g
X(increase)i(in)f(sign)f(c)o(hanges\))g(of)g(the)h(righ)o(t)f(singular)h
X(v)o(ectors)e(carries)59 2801 y(o)o(v)o(er)j(to)f(the)i(columns)g(of)f
XFn(X)j Fo(in)f(the)e(GSVD:)g(the)g(smaller)h(the)g Fn(\015)1228
X2808 y Fg(i)1259 2801 y Fo(the)f(more)g(sign)h(c)o(hanges)f(in)h
XFp(x)1804 2808 y Fg(i)1818 2801 y Fo(.)59 2857 y(F)l(or)d(more)f(sp)q
X(eci\014c)j(results,)f(cf.)f([41)o(].)p eop
X%%Page: 13 15
X13 14 bop 59 159 a Fo(2.4.)14 b(The)h(Discrete)h(Picard)g(Condition)g
X(and)f(Filter)h(F)l(actors)648 b(13)p 59 178 1767 2 v
X130 304 a(As)17 b(an)h(immediate)h(example)f(of)f(the)h(use)g(of)f
X(GSVD)h(in)g(the)g(analysis)g(of)f(discrete)i(regulariza-)59
X361 y(tion)d(problems,)g(w)o(e)g(men)o(tion)g(the)f(follo)o(wing)i(p)q
X(erturbation)f(b)q(ound)h(for)e(Tikhono)o(v)h(regularization)59
X417 y(deriv)o(ed)j(in)f([40)o(].)27 b(Let)18 b Fn(E)h
XFo(and)f Fp(e)g Fo(denote)g(the)f(p)q(erturbations)h(of)f
XFn(A)h Fo(and)g Fp(b)p Fo(,)g(resp)q(ectiv)o(ely)l(,)h(and)f(let)61
X473 y(\026)59 474 y Fp(x)87 481 y Fg(\025)127 474 y Fo(denote)f(the)h
X(exact)f(solution)h(to)f(the)g(unp)q(erturb)q(ed)j(problem;)e(then)g
X(the)g(relativ)o(e)g(error)e(in)j(the)59 530 y(p)q(erturb)q(ed)d
X(solution)g Fp(x)471 537 y Fg(\025)509 530 y Fo(satis\014es)190
X611 y Fm(k)p Fp(x)241 618 y Fg(\025)273 611 y Fm(\000)321
X610 y Fo(\026)318 611 y Fp(x)346 618 y Fg(\025)369 611
Xy Fm(k)392 618 y Fj(2)p 190 632 222 2 v 243 673 a Fm(k)268
X672 y Fo(\026)266 673 y Fp(x)294 680 y Fg(\025)316 673
Xy Fm(k)339 680 y Fj(2)458 642 y Fm(\024)580 611 y(k)p
XFn(A)p Fm(k)660 618 y Fj(2)686 611 y Fm(k)p Fn(X)t Fm(k)774
X618 y Fj(2)800 611 y Fn(\025)827 595 y Fe(\000)p Fj(1)p
X539 632 375 2 v 539 673 a Fo(1)10 b Fm(\000)h(k)p Fn(E)s
XFm(k)701 680 y Fj(2)727 673 y Fm(k)p Fn(X)t Fm(k)815
X680 y Fj(2)841 673 y Fn(\025)868 660 y Fe(\000)p Fj(1)929
X642 y Fm(\002)580 707 y Fh(\022)610 766 y Fo(\(1)f(+)g(cond)q(\()p
XFn(X)t Fo(\)\))907 735 y Fm(k)p Fn(E)s Fm(k)990 742 y
XFj(2)p 907 756 102 2 v 908 797 a Fm(k)p Fn(A)p Fm(k)988
X804 y Fj(2)1023 766 y Fo(+)1087 735 y Fm(k)p Fp(e)p Fm(k)1157
X742 y Fj(2)p 1074 756 117 2 v 1074 797 a Fm(k)p Fp(b)1126
X804 y Fg(\025)1148 797 y Fm(k)1171 804 y Fj(2)1205 766
Xy Fo(+)h Fm(k)p Fn(E)s Fm(k)1334 773 y Fj(2)1360 766
Xy Fm(k)p Fn(X)t Fm(k)1448 773 y Fj(2)1474 766 y Fn(\025)1501
X747 y Fe(\000)p Fj(1)1556 735 y Fm(k)p Fp(r)1601 742
Xy Fg(\025)1623 735 y Fm(k)1646 742 y Fj(2)p 1552 756
XV 1552 797 a Fm(k)p Fp(b)1604 804 y Fg(\025)1627 797
Xy Fm(k)1650 804 y Fj(2)1674 707 y Fh(\023)1715 766 y
XFo(\(2.14\))59 875 y(where)h(w)o(e)g(ha)o(v)o(e)f(de\014ned)i
XFp(b)534 882 y Fg(\025)570 875 y Fo(=)g Fn(A)8 b Fp(x)688
X882 y Fg(\025)721 875 y Fo(and)k Fp(r)828 882 y Fg(\025)863
X875 y Fo(=)h Fp(b)s Fm(\000)s Fp(b)1010 882 y Fg(\025)1034
X875 y Fo(.)19 b(The)12 b(imp)q(ortan)o(t)f(conclusion)j(w)o(e)d(can)h
X(mak)o(e)59 931 y(from)k(this)h(relation)g(is)g(that)e(for)h(all)h
X(reasonable)g Fn(\025)f Fo(the)h(p)q(erturbation)g(b)q(ound)g(for)f
X(the)g(regularized)59 988 y(solution)g Fp(x)259 995 y
XFg(\025)297 988 y Fo(is)g(prop)q(ortional)g(to)f Fn(\025)688
X971 y Fe(\000)p Fj(1)750 988 y Fo(and)h(to)f(the)g(norm)g(of)g(the)h
X(matrix)f Fn(X)t Fo(.)20 b(The)c(latter)f(quan)o(tit)o(y)59
X1044 y(is)i(analyzed)g(in)f([41)o(])g(where)g(it)g(is)h(sho)o(wn)f
X(that)f Fm(k)p Fn(X)t Fm(k)986 1051 y Fj(2)1020 1044
Xy Fo(is)i(appro)o(ximately)f(b)q(ounded)h(b)o(y)f Fm(k)p
XFn(L)1671 1028 y Fe(y)1689 1044 y Fm(k)1712 1051 y Fj(2)1731
X1044 y Fo(,)g(i.e.,)59 1100 y(b)o(y)i(the)g(in)o(v)o(erse)g(of)f(the)h
X(smallest)h(singular)f(v)m(alue)h(of)f Fn(L)p Fo(.)27
Xb(Hence,)19 b(in)g(addition)g(to)e(con)o(trolling)i(the)59
X1157 y(smo)q(othness)12 b(of)f(the)h(regularized)h(solution,)g
XFn(\025)f Fo(and)g Fn(L)f Fo(also)h(con)o(trol)g(its)g(sensitivit)o(y)h
X(to)e(p)q(erturbations)59 1213 y(of)k Fn(A)g Fo(and)g
XFp(b)p Fo(.)130 1270 y(The)j(SVD)g(and)g(the)g(GSVD)f(are)h(computed)g
X(b)o(y)g(means)g(of)f(routines)i Fl(csvd)g Fo(and)f Fl(cgsvd)g
XFo(in)h(this)59 1326 y(pac)o(k)m(age.)59 1450 y Fr(2.4.)f(The)g
X(Discrete)f(Picard)i(Condition)g(and)g(Filter)e(F)-5
Xb(actors)59 1552 y Fo(As)13 b(w)o(e)g(ha)o(v)o(e)g(seen)h(in)g(Section)
Xg(2.3,)e(the)h(in)o(tegration)g(in)h(Eq.)f(\(2.1\))f(with)h(a)g(square)
Xg(in)o(tegrable)h(k)o(ernel)59 1608 y Fn(K)23 b Fo(\(2.1\))18
Xb(has)i(a)f(smo)q(othing)h(e\013ect)g(on)g Fn(f)5 b Fo(.)34
Xb(The)20 b(opp)q(osite)h(op)q(eration,)g(namely)l(,)g(that)e(of)h
X(solving)59 1665 y(the)d(\014rst)f(kind)h(F)l(redholm)g(in)o(tegral)g
X(equation)g(for)e Fn(f)5 b Fo(,)17 b(therefore)f(tends)h(to)e(amplify)j
X(oscillations)g(in)59 1721 y(the)i(righ)o(t-hand)h(side)g
XFn(g)r Fo(.)33 b(Hence,)22 b(if)f(w)o(e)e(require)i(that)e(the)i
X(solution)f Fn(f)26 b Fo(b)q(e)20 b(a)g(square)g(in)o(tegrable)59
X1778 y(solution)15 b(with)f(\014nite)h Fn(L)478 1785
Xy Fj(2)497 1778 y Fo(-norm,)f(then)g(not)f(all)i(functions)g(are)e(v)m
X(alid)i(as)f(righ)o(t-hand)g(side)h Fn(g)r Fo(.)k(Indeed,)59
X1834 y Fn(g)h Fo(m)o(ust)f(b)q(e)h(su\016cien)o(tly)g(smo)q(oth)f(to)f
X(\\surviv)o(e")i(the)f(in)o(v)o(ersion)h(bac)o(k)f(to)f
XFn(f)5 b Fo(.)32 b(The)20 b(mathematical)59 1891 y(form)o(ulation)d(of)
Xg(this)g(smo)q(othness)g(criterion)h(on)f Fn(g)r Fo(|once)h(the)f(k)o
X(ernel)h Fn(K)i Fo(is)d(giv)o(en|is)i(called)g(the)59
X1947 y(Picard)d(condition)g([31)o(,)f Fm(x)p Fo(1.2].)130
X2004 y(F)l(or)e(discrete)i(ill-p)q(osed)h(problems)f(there)f(is,)g
X(strictly)g(sp)q(eaking,)h(no)f(Picard)g(condition)i(b)q(ecause)59
X2060 y(the)h(norm)f(of)g(the)h(solution)h(is)f(alw)o(a)o(ys)f(b)q
X(ounded.)26 b(Nev)o(ertheless,)17 b(it)g(mak)o(es)f(sense)h(to)f(in)o
X(tro)q(duce)i(a)59 2117 y(discrete)12 b(Picard)g(condition)h(as)d
X(follo)o(ws.)19 b(In)12 b(a)f(real-w)o(orld)h(application,)h(the)e
X(righ)o(t-hand)h(side)g Fp(b)f Fo(is)h(al-)59 2173 y(w)o(a)o(ys)g(con)o
X(taminated)h(b)o(y)f(v)m(arious)i(t)o(yp)q(es)f(or)f(errors,)g(suc)o(h)
Xh(as)g(measuremen)o(t)g(errors,)f(appro)o(ximation)59
X2229 y(errors,)i(and)h(rounding)i(errors.)i(Hence,)c
XFp(b)h Fo(can)f(b)q(e)h(written)f(as)832 2316 y Fp(b)e
XFo(=)925 2304 y(\026)922 2316 y Fp(b)d Fo(+)g Fp(e)15
Xb Fn(;)657 b Fo(\(2.15\))59 2403 y(where)18 b Fp(e)g
XFo(are)g(the)g(errors,)g(and)636 2391 y(\026)632 2403
Xy Fp(b)h Fo(is)f(the)g(unp)q(erturb)q(ed)i(righ)o(t-hand)f(side.)29
Xb(Both)1538 2391 y(\026)1535 2403 y Fp(b)18 b Fo(and)h(the)f(cor-)59
X2459 y(resp)q(onding)i(unp)q(erturb)q(ed)g(solution)738
X2458 y(\026)736 2459 y Fp(x)e Fo(represen)o(t)h(the)g(underlying)h(unp)
Xq(erturb)q(ed)h(and)d(unkno)o(wn)59 2516 y(problem.)i(No)o(w,)12
Xb(if)h(w)o(e)g(w)o(an)o(t)f(to)g(b)q(e)h(able)h(to)e(compute)h(a)f
X(regularized)j(solution)e Fp(x)1484 2523 y Fj(reg)1546
X2516 y Fo(from)f(the)h(giv)o(en)59 2572 y(righ)o(t-hand)18
Xb(side)h Fp(b)f Fo(suc)o(h)h(that)e Fp(x)661 2579 y Fj(reg)728
X2572 y Fo(appro)o(ximates)h(the)g(exact)f(solution)1393
X2571 y(\026)1390 2572 y Fp(x)p Fo(,)h(then)g(it)h(is)f(sho)o(wn)g(in)59
X2629 y([44)o(])f(that)g(the)g(corresp)q(onding)i(exact)e(righ)o(t-hand)
Xh(side)1068 2617 y(\026)1064 2629 y Fp(b)g Fo(m)o(ust)f(satisfy)g(a)g
X(criterion)h(v)o(ery)f(similar)59 2685 y(to)e(the)g(Picard)h
X(condition:)59 2801 y Fp(The)k(discrete)h(Picard)f(condition)p
XFo(.)29 b(The)17 b(unp)q(erturb)q(ed)i(righ)o(t-hand)f(side)1470
X2789 y(\026)1467 2801 y Fp(b)f Fo(in)h(a)f(discrete)i(ill-)59
X2857 y(p)q(osed)e(problem)h(with)f(regularization)h(matrix)e
XFn(L)h Fo(satis\014es)g(the)g(discrete)h(Picard)f(condition)h(if)g(the)
Xp eop
X%%Page: 14 16
X14 15 bop 64 159 a Fo(14)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(F)l(ourier)d(co)q(e\016cien)o(ts)g
XFm(j)p Fp(u)485 288 y Fg(T)485 316 y(i)515 292 y Fo(\026)512
X304 y Fp(b)p Fm(j)f Fo(on)g(the)g(a)o(v)o(erage)f(deca)o(y)h(to)g(zero)
Xg(faster)f(than)h(the)h(generalized)h(singular)59 361
Xy(v)m(alues)h Fn(\015)218 368 y Fg(i)232 361 y Fo(.)59
X476 y(The)11 b(discrete)g(Picard)h(condition)g(is)f(not)f(as)g
X(\\arti\014cial")i(as)e(it)h(\014rst)f(ma)o(y)g(seem:)18
Xb(it)11 b(can)g(b)q(e)g(sho)o(wn)f(that)59 533 y(if)18
Xb(the)g(underlying)h(in)o(tegral)f(equation)g(\(2.1\))e(satis\014es)i
X(the)g(Picard)g(condition,)h(then)f(the)g(discrete)59
X589 y(ill-p)q(osed)g(problem)f(obtained)f(b)o(y)f(discretization)i(of)f
X(the)f(in)o(tegral)h(equation)g(satis\014es)g(the)g(discrete)59
X646 y(Picard)g(condition)g([39)o(].)k(See)c(also)f([73)o(,)g(74)o(].)
X130 702 y(The)j(main)g(di\016cult)o(y)i(with)e(discrete)h(ill-p)q(osed)
Xi(problems)d(is)h(caused)f(b)o(y)g(the)g(errors)g Fp(e)g
XFo(in)h(the)59 759 y(giv)o(en)i(righ)o(t-hand)g(side)h
XFp(b)e Fo(\(2.15\),)g(b)q(ecause)h(suc)o(h)g(errors)f(t)o(ypically)i
X(tend)f(to)e(ha)o(v)o(e)i(comp)q(onen)o(ts)59 815 y(along)14
Xb(all)h(the)g(left)f(singular)h(v)o(ectors)f Fp(u)751
X822 y Fg(i)765 815 y Fo(.)19 b(F)l(or)14 b(example,)h(if)g
XFm(k)p Fp(e)p Fm(k)1179 822 y Fj(2)1210 815 y Fo(=)e
XFn(\017)i Fo(and)f(if)h(the)f(elemen)o(ts)h(of)f Fp(e)g
XFo(are)59 872 y(un)o(biased)i(and)f(uncorrelated,)g(then)h(the)e(exp)q
X(ected)j(v)m(alue)f(of)e(the)h(F)l(ourier)g(co)q(e\016cien)o(ts)h(of)e
XFp(e)h Fo(satisfy)576 969 y Fm(E)604 922 y Fh(\020)629
X969 y Fm(j)p Fp(u)671 951 y Fg(T)671 981 y(i)698 969
Xy Fp(e)p Fm(j)735 922 y Fh(\021)772 969 y Fo(=)e Fn(m)860
X951 y Fe(\000)892 937 y Fd(1)p 892 943 16 2 v 892 964
Xa(2)914 969 y Fn(\017)j(;)98 b(i)12 b Fo(=)h(1)p Fn(;)8
Xb(:)g(:)g(:)d(;)j(n)14 b(:)401 b Fo(\(2.16\))59 1075
Xy(As)15 b(a)f(consequence,)i(the)f(F)l(ourier)g(co)q(e\016cien)o(ts)h
XFm(j)p Fp(u)939 1058 y Fg(T)939 1087 y(i)966 1075 y Fp(b)p
XFm(j)f Fo(of)f(the)h(p)q(erturb)q(ed)h(righ)o(t-hand)f(side)h(lev)o(el)
Xg(o\013)59 1131 y(at)g(appro)o(ximately)h Fn(m)457 1115
Xy Fe(\000)p Fj(1)p Fg(=)p Fj(2)539 1131 y Fn(\017)g Fo(ev)o(en)g(if)h
X(the)e(unp)q(erturb)q(ed)j(righ)o(t-hand)e(side)1388
X1119 y(\026)1384 1131 y Fp(b)g Fo(satis\014es)g(the)g(discrete)59
X1188 y(Picard)f(condition,)g(b)q(ecause)g(these)f(F)l(ourier)h(co)q
X(e\016cien)o(ts)g(are)f(dominated)h(b)o(y)f Fm(j)p Fp(u)1494
X1171 y Fg(T)1494 1200 y(i)1521 1188 y Fp(e)p Fm(j)g Fo(for)f(large)h
XFn(i)p Fo(.)130 1244 y(Consider)g(no)o(w)f(the)g(linear)i(system)e
X(\(2.2\))f(and)h(the)h(least)f(squares)g(problem)i(\(2.3\),)c(and)j
X(assume)59 1301 y(for)f(simplicit)o(y)j(that)d Fn(A)g
XFo(has)h(no)f(exact)g(zero)h(singular)g(v)m(alues.)21
Xb(Using)15 b(the)g(SVD,)f(it)h(is)g(easy)f(to)g(sho)o(w)59
X1357 y(that)h(the)g(solutions)h(to)e(b)q(oth)i(systems)e(are)h(giv)o
X(en)h(b)o(y)f(the)g(same)g(equation:)741 1478 y Fp(x)769
X1485 y Fj(LSQ)853 1478 y Fo(=)920 1425 y Fg(n)901 1437
Xy Fh(X)902 1528 y Fg(i)p Fj(=1)981 1447 y Fp(u)1010 1430
Xy Fg(T)1010 1459 y(i)1037 1447 y Fp(b)p 981 1467 86 2
Xv 1004 1509 a Fn(\033)1030 1516 y Fg(i)1079 1478 y Fp(v)1107
X1485 y Fg(i)1136 1478 y Fn(:)566 b Fo(\(2.17\))59 1607
Xy(This)22 b(relation)f(clearly)h(illustrates)g(the)f(di\016culties)i
X(with)f(the)f(standard)f(solution)i(to)e(\(2.2\))f(and)59
X1663 y(\(2.3\).)g(Since)e(the)f(F)l(ourier)g(co)q(e\016cien)o(ts)g
XFm(j)p Fp(u)814 1647 y Fg(T)814 1675 y(i)841 1663 y Fp(b)p
XFm(j)f Fo(corresp)q(onding)i(to)e(the)g(smaller)i(singular)f(v)m(alues)
Xh Fn(\033)1817 1670 y Fg(i)59 1720 y Fo(do)c(not)f(deca)o(y)g(as)g
X(fast)g(as)g(the)h(singular)g(v)m(alues|but)i(rather)d(tend)h(to)e(lev)
Xo(el)j(o\013|the)f(solution)g Fp(x)1760 1727 y Fj(LSQ)59
X1776 y Fo(is)h(dominated)g(b)o(y)f(the)g(terms)g(in)h(the)g(sum)f
X(corresp)q(onding)h(to)f(the)g(smallest)h Fn(\033)1429
X1783 y Fg(i)1443 1776 y Fo(.)19 b(As)14 b(a)f(consequence,)59
X1833 y(the)i(solution)h Fp(x)337 1840 y Fj(LSQ)423 1833
Xy Fo(has)f(man)o(y)g(sign)h(c)o(hanges)f(and)g(th)o(us)g(app)q(ears)h
X(completely)g(random.)130 1889 y(With)i(this)h(analysis)g(in)g(mind,)g
X(w)o(e)f(can)h(see)f(that)g(the)g(purp)q(ose)h(of)e(a)h(regularization)
Xh(metho)q(d)59 1945 y(is)h(to)f(damp)q(en)h(or)g(\014lter)g(out)f(the)g
X(con)o(tributions)i(to)e(the)g(solution)i(corresp)q(onding)f(to)f(the)h
X(small)59 2002 y(generalized)c(singular)g(v)m(alues.)k(Hence,)15
Xb(w)o(e)g(will)h(require)f(that)f(a)g(regularization)h(metho)q(d)g(pro)
Xq(duces)59 2058 y(a)g(regularized)i(solution)e Fp(x)529
X2065 y Fj(reg)594 2058 y Fo(whic)o(h,)h(for)e Fp(x)834
X2042 y Fe(\003)866 2058 y Fo(=)f Fp(0)p Fo(,)i(can)g(b)q(e)h(written)f
X(as)g(follo)o(ws)445 2183 y Fp(x)473 2190 y Fj(reg)535
X2183 y Fo(=)602 2130 y Fg(n)583 2143 y Fh(X)585 2234
Xy Fg(i)p Fj(=1)658 2183 y Fn(f)680 2190 y Fg(i)707 2152
Xy Fp(u)736 2136 y Fg(T)736 2165 y(i)764 2152 y Fp(b)p
X707 2173 V 730 2214 a Fn(\033)756 2221 y Fg(i)805 2183
Xy Fp(v)833 2190 y Fg(i)1213 2183 y Fo(if)46 b Fn(L)12
Xb Fo(=)h Fn(I)1396 2190 y Fg(n)1715 2183 y Fo(\(2.18\))442
X2329 y Fp(x)470 2336 y Fj(reg)532 2329 y Fo(=)601 2273
Xy Fg(p)580 2288 y Fh(X)581 2380 y Fg(i)p Fj(=1)655 2329
Xy Fn(f)677 2336 y Fg(i)704 2298 y Fp(u)733 2282 y Fg(T)733
X2310 y(i)760 2298 y Fp(b)p 704 2318 V 727 2360 a Fn(\033)753
X2367 y Fg(i)802 2329 y Fp(x)830 2336 y Fg(i)854 2329
Xy Fo(+)940 2276 y Fg(n)920 2288 y Fh(X)899 2380 y Fg(i)p
XFj(=)p Fg(p)p Fj(+1)1002 2329 y Fo(\()p Fp(u)1049 2310
Xy Fg(T)1049 2340 y(i)1076 2329 y Fp(b)p Fo(\))8 b Fp(x)1159
X2336 y Fg(i)1213 2329 y Fo(if)46 b Fn(L)12 b Fm(6)p Fo(=)h
XFn(I)1396 2336 y Fg(n)1435 2329 y Fn(:)267 b Fo(\(2.19\))59
X2462 y(Here,)14 b(the)h(n)o(um)o(b)q(ers)f Fn(f)460 2469
Xy Fg(i)489 2462 y Fo(are)g Fk(\014lter)g(factors)h Fo(for)e(the)i
X(particular)g(regularization)g(metho)q(d.)20 b(The)14
Xb(\014lter)59 2518 y(factors)f(m)o(ust)g(ha)o(v)o(e)g(the)g(imp)q
X(ortan)o(t)h(prop)q(ert)o(y)f(that)g(as)g Fn(\033)1071
X2525 y Fg(i)1098 2518 y Fo(decreases,)h(the)g(corresp)q(onding)h
XFn(f)1697 2525 y Fg(i)1724 2518 y Fo(tends)59 2575 y(to)g(zero)g(in)h
X(suc)o(h)f(a)g(w)o(a)o(y)f(that)g(the)i(con)o(tributions)g(\()p
XFp(u)997 2558 y Fg(T)997 2587 y(i)1024 2575 y Fp(b)p
XFn(=\033)1102 2582 y Fg(i)1116 2575 y Fo(\))8 b Fp(x)1170
X2582 y Fg(i)1198 2575 y Fo(to)14 b(the)h(solution)h(from)f(the)g
X(smaller)59 2631 y Fn(\033)85 2638 y Fg(i)115 2631 y
XFo(are)h(e\013ectiv)o(ely)h(\014ltered)g(out.)23 b(The)16
Xb(di\013erence)i(b)q(et)o(w)o(een)e(the)h(v)m(arious)f(regularization)i
X(metho)q(ds)59 2688 y(lies)f(essen)o(tially)h(in)e(the)g(w)o(a)o(y)f
X(that)g(these)h(\014lter)g(factors)f Fn(f)1078 2695 y
XFg(i)1108 2688 y Fo(are)h(de\014ned.)23 b(Hence,)16 b(the)g(\014lter)h
X(factors)59 2744 y(pla)o(y)h(an)f(imp)q(ortan)o(t)g(role)h(in)h
X(connection)f(with)g(regularization)g(theory)l(,)g(and)g(it)g(is)g(w)o
X(orth)o(while)f(to)59 2801 y(c)o(haracterize)e(the)g(\014lter)g
X(factors)f(for)g(the)h(v)m(arious)g(regularization)h(metho)q(ds)f(that)
Xf(w)o(e)h(shall)h(presen)o(t)59 2857 y(b)q(elo)o(w.)p
Xeop
X%%Page: 15 17
X15 16 bop 59 159 a Fo(2.5.)14 b(The)h(L-Curv)o(e)1380
Xb(15)p 59 178 1767 2 v 130 304 a(F)l(or)17 b(Tikhono)o(v)i
X(regularization,)g(whic)o(h)h(pla)o(ys)e(a)g(cen)o(tral)h(role)g(in)g
X(regularization)g(theory)l(,)g(the)59 361 y(\014lter)d(factors)f(are)h
X(either)g Fn(f)545 368 y Fg(i)573 361 y Fo(=)e Fn(\033)650
X344 y Fj(2)648 373 y Fg(i)670 361 y Fn(=)p Fo(\()p Fn(\033)739
X344 y Fj(2)737 373 y Fg(i)768 361 y Fo(+)d Fn(\025)841
X344 y Fj(2)860 361 y Fo(\))k(\(for)g Fn(L)f Fo(=)g Fn(I)1095
X368 y Fg(n)1118 361 y Fo(\))i(or)f Fn(f)1230 368 y Fg(i)1258
X361 y Fo(=)f Fn(\015)1334 344 y Fj(2)1331 373 y Fg(i)1353
X361 y Fn(=)p Fo(\()p Fn(\015)1421 344 y Fj(2)1418 373
Xy Fg(i)1450 361 y Fo(+)d Fn(\025)1523 344 y Fj(2)1542
X361 y Fo(\))k(\(for)g Fn(L)f Fm(6)p Fo(=)g Fn(I)1777
X368 y Fg(n)1800 361 y Fo(\),)59 417 y(and)i(the)g(\014ltering)h
X(e\013ectiv)o(ely)g(sets)e(in)i(for)e Fn(\033)849 424
Xy Fg(i)877 417 y Fn(<)f(\025)h Fo(and)h Fn(\015)1081
X424 y Fg(i)1109 417 y Fn(<)e(\025)p Fo(,)h(resp)q(ectiv)o(ely)l(.)23
Xb(In)17 b(particular,)f(this)59 474 y(sho)o(ws)c(that)g(discrete)i
X(ill-p)q(osed)h(problems)f(are)e(essen)o(tially)j(unregularized)f(b)o
X(y)f(Tikhono)o(v's)f(metho)q(d)59 530 y(for)j Fn(\025)d(>)h(\033)242
X537 y Fj(1)277 530 y Fo(and)i Fn(\025)d(>)h(\015)476
X537 y Fg(p)495 530 y Fo(,)i(resp)q(ectiv)o(ely)l(.)130
X589 y(Filter)f(factors)e(for)h(v)m(arious)h(regularization)h(metho)q
X(ds)e(can)h(b)q(e)g(computed)g(b)o(y)g(means)f(of)g(routine)59
X646 y Fl(\014l)p 97 646 14 2 v 17 w(fac)k Fo(in)h(this)f(pac)o(k)m
X(age,)h(while)g(routine)g Fl(pica)o(rd)f Fo(plots)g(the)h(imp)q(ortan)o
X(t)e(quan)o(tities)i Fn(\033)1572 653 y Fg(i)1586 646
Xy Fo(,)f Fm(j)p Fp(u)1658 629 y Fg(T)1658 658 y(i)1686
X646 y Fp(b)p Fm(j)p Fo(,)f(and)59 702 y Fm(j)p Fp(u)101
X686 y Fg(T)101 714 y(i)128 702 y Fp(b)p Fm(j)p Fn(=\033)219
X709 y Fg(i)248 702 y Fo(if)g Fn(L)c Fo(=)h Fn(I)401 709
Xy Fg(n)425 702 y Fo(,)h(or)h Fn(\015)532 709 y Fg(i)546
X702 y Fo(,)f Fm(j)p Fp(u)615 686 y Fg(T)615 714 y(i)643
X702 y Fp(b)p Fm(j)p Fo(,)g(and)h Fm(j)p Fp(u)842 686
Xy Fg(T)842 714 y(i)870 702 y Fp(b)p Fm(j)p Fn(=\015)959
X709 y Fg(i)987 702 y Fo(if)g Fn(L)e Fm(6)p Fo(=)g Fn(I)1140
X709 y Fg(n)1163 702 y Fo(.)59 843 y Fr(2.5.)18 b(The)g(L-Curv)n(e)59
X949 y Fo(P)o(erhaps)k(the)g(most)f(con)o(v)o(enien)o(t)h(graphical)h
X(to)q(ol)f(for)f(analysis)i(of)f(discrete)g(ill-p)q(osed)j(problems)59
X1005 y(is)20 b(the)f(so-called)i Fk(L-curve)e Fo(whic)o(h)h(is)g(a)f
X(plot|for)g(all)h(v)m(alid)h(regularization)f(parameters|of)f(the)59
X1062 y(\(semi\)norm)e Fm(k)p Fn(L)8 b Fp(x)394 1069 y
XFj(reg)442 1062 y Fm(k)465 1069 y Fj(2)501 1062 y Fo(of)17
Xb(the)g(regularized)h(solution)g(v)o(ersus)f(the)g(corresp)q(onding)h
X(residual)g(norm)59 1118 y Fm(k)p Fn(A)8 b Fp(x)152 1125
Xy Fj(reg)205 1118 y Fm(\000)d Fp(b)p Fm(k)297 1125 y
XFj(2)317 1118 y Fo(.)19 b(In)13 b(this)g(w)o(a)o(y)l(,)f(the)g(L-curv)o
X(e)i(clearly)f(displa)o(ys)h(the)e(compromise)h(b)q(et)o(w)o(een)g
X(minimiza-)59 1175 y(tion)j(of)g(these)g(t)o(w)o(o)e(quan)o(tities,)i
X(whic)o(h)h(is)g(the)f(heart)f(of)g(an)o(y)h(regularization)h(metho)q
X(d.)22 b(The)16 b(use)g(of)59 1231 y(suc)o(h)i(plots)h(in)g(connection)
Xg(with)f(ill-conditi)q(oned)j(least)d(squares)g(problems)h(go)q(es)f
X(bac)o(k)g(to)f(Miller)59 1288 y([55)o(])e(and)g(La)o(wson)g(&)h
X(Hanson)f([52)o(].)260 1354 y
X 21145466 19579138 5394104 12432752 34272296 39008583 startTexFig
X 260 1354 a
X%%BeginDocument: regu/lcurve.eps
X/FreeHandDict 200 dict def
XFreeHandDict begin
X/currentpacking where{pop true setpacking}if
X/bdf{bind def}bind def
X/bdef{bind def}bdf
X/xdf{exch def}bdf
X/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def}ifelse}bdf
X/min{2 copy gt{exch}if pop}bdf
X/max{2 copy lt{exch}if pop}bdf
X/graystep .01 def
X/bottom -0 def
X/delta -0 def
X/frac -0 def
X/left -0 def
X/numsteps -0 def
X/numsteps1 -0 def
X/radius -0 def
X/right -0 def
X/top -0 def
X/x -0 def
X/y -0 def
X/df currentflat def
X/tempstr 1 string def
X/clipflatness 3 def
X/inverted?
X0 currenttransfer exec .5 ge def
X/concatprocs{
X/proc2 exch cvlit def/proc1 exch cvlit def
X/newproc proc1 length proc2 length add array def
Xnewproc 0 proc1 putinterval newproc proc1 length proc2 putinterval
Xnewproc cvx}bdf
X/storerect{/top xdf/right xdf/bottom xdf/left xdf}bdf
X/rectpath{newpath left bottom moveto left top lineto
Xright top lineto right bottom lineto closepath}bdf
X/sf{dup 0 eq{pop df dup 3 mul}{dup} ifelse /clipflatness xdf setflat}bdf
Xversion cvr 38.0 le
X{/setrgbcolor{
Xcurrenttransfer exec 3 1 roll
Xcurrenttransfer exec 3 1 roll
Xcurrenttransfer exec 3 1 roll
Xsetrgbcolor}bdf}if
X/gettint{0 get}bdf
X/puttint{0 exch put}bdf
X/vms{/vmsv save def}bdf
X/vmr{vmsv restore}bdf
X/vmrs{vmr vms}bdf
X/CD{/NF exch def
X{exch dup/FID ne{exch NF 3 1 roll put}
X{pop pop}ifelse}forall NF}bdf
X/MN{1 index length/Len exch def
Xdup length Len add string dup
XLen 4 -1 roll putinterval dup 0 4 -1 roll putinterval}bdf
X/RC{256 string cvs(|______)anchorsearch
X{1 index MN cvn/NewN exch def cvn
Xfindfont dup maxlength dict CD dup/FontName NewN put dup
X/Encoding MacVec put NewN exch definefont pop}{pop}ifelse}bdf
X/RF{dup FontDirectory exch known{pop}{RC}ifelse}bdf
X/FF{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known
X{exch}if pop findfont}bdf
Xuserdict begin /BDFontDict 20 dict def end
XBDFontDict begin
X/bu{}def
X/bn{}def
X/setTxMode{pop}def
X/gm{moveto}def
X/show{pop}def
X/gr{pop}def
X/fnt{pop pop pop}def
X/fs{pop}def
X/fz{pop}def
X/lin{pop pop}def
Xend
X/MacVec 256 array def
XMacVec 0 /Helvetica findfont
X/Encoding get 0 128 getinterval putinterval
XMacVec 127 /DEL put MacVec 16#27 /quotesingle put MacVec 16#60 /grave put
X/NUL/SOH/STX/ETX/EOT/ENQ/ACK/BEL/BS/HT/LF/VT/FF/CR/SO/SI
X/DLE/DC1/DC2/DC3/DC4/NAK/SYN/ETB/CAN/EM/SUB/ESC/FS/GS/RS/US
XMacVec 0 32 getinterval astore pop
X/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis/Udieresis/aacute
X/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute/egrave
X/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute
X/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex/udieresis
X/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls
X/register/copyright/trademark/acute/dieresis/notequal/AE/Oslash
X/infinity/plusminus/lessequal/greaterequal/yen/mu/partialdiff/summation
X/product/pi/integral/ordfeminine/ordmasculine/Omega/ae/oslash
X/questiondown/exclamdown/logicalnot/radical/florin/approxequal/Delta/guillemotleft
X/guillemotright/ellipsis/nbspace/Agrave/Atilde/Otilde/OE/oe
X/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide/lozenge
X/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright/fi/fl
X/daggerdbl/periodcentered/quotesinglbase/quotedblbase
X/perthousand/Acircumflex/Ecircumflex/Aacute
X/Edieresis/Egrave/Iacute/Icircumflex/Idieresis/Igrave/Oacute/Ocircumflex
X/apple/Ograve/Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde
X/macron/breve/dotaccent/ring/cedilla/hungarumlaut/ogonek/caron
XMacVec 128 128 getinterval astore pop
X/fps{currentflat exch dup 0 le{pop 1}if
X{dup setflat 3 index stopped
X{1.3 mul dup 3 index gt{pop setflat pop pop stop}if}{exit}ifelse
X}loop pop setflat pop pop
X}bdf
X/fp{100 currentflat fps}bdf
X/rfp{clipflatness currentflat fps}bdf
X/fcp{100 clipflatness fps}bdf
X/fclip{{clip}fcp}bdf
X/feoclip{{eoclip}fcp}bdf
Xend %. FreeHandDict
XFreeHandDict begin
X/ccmyk{dup 5 -1 roll sub 0 max exch}ndf
X/setcmykcolor{1 exch sub ccmyk ccmyk ccmyk pop setrgbcolor}ndf
X/setcmykcoloroverprint{4{dup -1 eq{pop 0}if 4 1 roll}repeat setcmykcolor}ndf
X/findcmykcustomcolor{5 /packedarray where{pop packedarray}{array astore readonly}ifelse}ndf
X/setcustomcolor{exch aload pop pop 4{4 index mul 4 1 roll}repeat setcmykcolor pop}ndf
X/setseparationgray{1 exch sub dup dup dup setcmykcolor}ndf
X/setoverprint{pop}ndf
X/currentoverprint false ndf
X/colorimage{pop pop
X[5 -1 roll/exec cvx 6 -1 roll/exec cvx 7 -1 roll/exec cvx 8 -1 roll/exec cvx
X/exch cvx/pop cvx/exch cvx/pop cvx/exch cvx/pop cvx/invbuf cvx]cvx image}
X%. version 47.1 of Postscript defines colorimage incorrectly (rgb model only)
Xversion cvr 47.1 le{userdict begin bdf end}{ndf}ifelse
X/customcolorimage{pop image}ndf
X/separationimage{image}ndf
X/newcmykcustomcolor{6 /packedarray where{pop packedarray}{array astore readonly}ifelse}ndf
X/inkoverprint false ndf
X/setinkoverprint{pop}ndf
X/overprintprocess{pop}ndf
X/setspotcolor
X{spots exch get 0 5 getinterval exch setcustomcolor}ndf
X/currentcolortransfer{currenttransfer dup dup dup}ndf
X/setcolortransfer{systemdict begin settransfer end pop pop pop}ndf
X/setimagecmyk{dup length 4 eq
X{aload pop}
X{aload pop spots exch get 0 4 getinterval aload pop 4
X{4 index mul 4 1 roll}repeat 5 -1 roll pop} ifelse
Xsystemdict /colorimage known{version cvr 47.1 gt}{false}ifelse
Xnot{pop 1 currentgray sub}if
X/ik xdf /iy xdf /im xdf /ic xdf
X}ndf
X/setcolor{dup length 4 eq
X{aload overprintprocess setcmykcolor}
X{aload 1 get spots exch get 5 get setinkoverprint setspotcolor}
Xifelse}ndf
X/bc2[0 0]def
X/bc4[0 0 0 0]def
X/c1[0 0 0 0]def
X/c2[0 0 0 0]def
X/absmax{2 copy abs exch abs gt{exch}if pop}bdf
X/calcstep
X{c1 length 4 eq
X{
X0 1 3
X{c1 1 index get
Xc2 3 -1 roll get
Xsub
X}for
Xabsmax absmax absmax
X}
X{
Xbc2 c1 1 get 1 exch put
Xc1 gettint c2 gettint
Xsub abs
X}ifelse
Xgraystep div abs round dup 0 eq{pop 1}if
Xdup /numsteps xdf 1 sub dup 0 eq{pop 1}if /numsteps1 xdf
X}bdf
X/cblend{
Xc1 length 4 eq
X{
X0 1 3
X{bc4 exch
Xc1 1 index get
Xc2 2 index get
X1 index sub
Xfrac mul add put
X}for bc4
X}{
Xbc2
Xc1 gettint
Xc2 gettint
X1 index sub
Xfrac mul add
Xputtint bc2
X}ifelse
Xsetcolor
X}bdf
X/logtaper{/frac frac 9 mul 1 add log def}bdf
X/imbits 1 def
X/iminv false def
X/invbuf{0 1 2 index length 1 sub{dup 2 index exch get 255 exch sub 2 index 3 1 roll put}for}bdf
X/cyanrp{currentfile cyanbuf readhexstring pop iminv{invbuf}if}def
X/magentarp{cyanbuf magentabuf copy}bdf
X/yellowrp{cyanbuf yellowbuf copy}bdf
X/blackrp{cyanbuf blackbuf copy}bdf
X/fixtransfer{
Xdup{ic mul ic sub 1 add}concatprocs exch
Xdup{im mul im sub 1 add}concatprocs exch
Xdup{iy mul iy sub 1 add}concatprocs exch
X{ik mul ik sub 1 add}concatprocs
Xcurrentcolortransfer
X5 -1 roll exch concatprocs 7 1 roll
X4 -1 roll exch concatprocs 6 1 roll
X3 -1 roll exch concatprocs 5 1 roll
Xconcatprocs 4 1 roll
Xsetcolortransfer
X}bdf
X/textopf false def
X/curtextmtx{}def
X/otw .25 def
X/msf{dup/curtextmtx xdf makefont setfont}bdf
X/makesetfont/msf load def
X/curtextheight{.707104 .707104 curtextmtx dtransform
Xdup mul exch dup mul add sqrt}bdf
X/ta{1 index
X{tempstr 0 2 index put tempstr 2 index
Xgsave exec grestore
Xtempstr stringwidth rmoveto
X5 index eq{6 index 6 index rmoveto}if
X3 index 3 index rmoveto
X}forall 7{pop}repeat}bdf
X/sts{setcolor textopf setoverprint/ts{awidthshow}def exec}bdf
X/stol{setlinewidth setcolor textopf setoverprint newpath
X/ts{{false charpath stroke}ta}def exec}bdf
X/currentpacking where{pop false setpacking}if
X/spots[1 0 0 0 (Process Cyan) false newcmykcustomcolor
X0 1 0 0 (Process Magenta) false newcmykcustomcolor
X0 0 1 0 (Process Yellow) false newcmykcustomcolor
X0 0 0 1 (Process Black) false newcmykcustomcolor
X]def
Xvms
X0 sf
Xnewpath
X130.4 581.1 moveto
X130.4 243.8 lineto
X510.2 243.8 lineto
Xgsave
X2.8 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
X/f1 /|______Helvetica-Narrow dup RF findfont def
X{
Xf1 [24 0 0 24 0 0] makesetfont
X245 506.445526 moveto
X0 0 32 0 0 (less filtering) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f1 /|______Helvetica-Narrow dup RF findfont def
X{
Xf1 [24 0 0 24 0 0] makesetfont
X391.5 349.445526 moveto
X0 0 32 0 0 (more filtering) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X0 sf
Xnewpath
X393.1 373.7 moveto
X506 373.7 lineto
X513.7 373.7 520 367.4 520 359.7 curveto
X520 355.1 lineto
X520 347.4 513.7 341.1 506 341.1 curveto
X393.1 341.1 lineto
X385.4 341.1 379.1 347.4 379.1 355.1 curveto
X379.1 359.7 lineto
X379.1 367.4 385.4 373.7 393.1 373.7 curveto
Xclosepath
Xgsave
X0.3 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
X0 sf
Xnewpath
X246 531.2 moveto
X351.3 531.2 lineto
X359 531.2 365.3 524.9 365.3 517.2 curveto
X365.3 512.9 lineto
X365.3 505.2 359 498.9 351.3 498.9 curveto
X246 498.9 lineto
X238.3 498.9 232 505.2 232 512.9 curveto
X232 517.2 lineto
X232 524.9 238.3 531.2 246 531.2 curveto
Xclosepath
Xgsave
X0.3 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
X0 sf
Xnewpath
X197 514.5 moveto
X199 513.3 201 512 202.9 510.5 curveto
X214.2 502 220.4 494.6 227.7 478.5 curveto
X228.3 477.3 228.8 476.1 229.3 474.9 curveto
Xgsave
X0.9 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
X0 sf
Xnewpath
X367.3 330.7 moveto
X378.5 329.2 389.6 327.1 400.9 324 curveto
X409.6 321.7 415.7 318.9 420.3 315.9 curveto
Xgsave
X0.9 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
X0 sf
Xnewpath
X145.1 519.2 moveto
X159.9 516.3 176.7 512.1 191.5 501 curveto
X202.8 492.5 209 485.1 216.3 469 curveto
X222 456.5 223.2 442.2 223.8 432.8 curveto
X227.5 379 226.8 378.9 229.8 346 curveto
X231 333 242 325 252.5 324.3 curveto
X263.5 323.6 291.7 323.4 316.5 322.5 curveto
X346.5 321.3 372 319.3 399 312 curveto
X418.2 306.9 425 299.3 430 292.3 curveto
X435.4 284.6 438.9 271.1 441.2 257.2 curveto
Xgsave
X1.7 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
X/f2 /|______Times-Roman dup RF findfont def
X{
Xf2 [24 0 0 24 0 0] makesetfont
X252 207.277344 moveto
X0 0 32 0 0 (log || ) ts
X302.947266 207.277344 moveto
X0 0 32 0 0 (A) ts
X318.955078 207.277344 moveto
X0 0 32 0 0 ( ) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f3 /|______Times-Bold dup RF findfont def
X{
Xf3 [24 0 0 24 0 0] makesetfont
X324.955078 207.277344 moveto
X0 0 32 0 0 (x) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f2 /|______Times-Roman dup RF findfont def
X{
Xf2 [24 0 0 24 0 0] makesetfont
X336.955078 207.277344 moveto
X0 0 32 0 0 ( \320 ) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f3 /|______Times-Bold dup RF findfont def
X{
Xf3 [24 0 0 24 0 0] makesetfont
X360.955078 207.277344 moveto
X0 0 32 0 0 (b) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f2 /|______Times-Roman dup RF findfont def
X{
Xf2 [24 0 0 24 0 0] makesetfont
X374.296875 207.277344 moveto
X0 0 32 0 0 ( ||) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f2 /|______Times-Roman dup RF findfont def
X{
Xf2 [0 24 -24 0 0 0] makesetfont
X112.922653 356.700012 moveto
X0 0 32 0 0 (log || L) ts
X112.922653 422.741028 moveto
X0 0 32 0 0 ( ) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f3 /|______Times-Bold dup RF findfont def
X{
Xf3 [0 24 -24 0 0 0] makesetfont
X112.922653 428.741028 moveto
X0 0 32 0 0 (x) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f2 /|______Times-Roman dup RF findfont def
X{
Xf2 [0 24 -24 0 0 0] makesetfont
X112.922653 440.741028 moveto
X0 0 32 0 0 ( ||) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f2 /|______Times-Roman dup RF findfont def
X{
Xf2 [0 14 -14 0 0 0] makesetfont
X117.029877 458.700012 moveto
X0 0 32 0 0 (2) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X/f2 /|______Times-Roman dup RF findfont def
X{
Xf2 [14 0 0 14 0 0] makesetfont
X390.799988 202.270111 moveto
X0 0 32 0 0 (2) ts
X} 
X[0 0 0 1]
Xsts
Xvmrs
X0 sf
Xnewpath
X225.7 400.9 moveto
X226.3 390.8 226.9 381.3 227.4 374.7 curveto
X230.5 336.8 231.2 322.3 233.3 257 curveto
Xgsave
X[2 8] 0 setdash
X1.7 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
X[] 0 setdash
Xgrestore
X0 sf
Xnewpath
X145.3 325.3 moveto
X204.8 325.2 258.4 324.3 296.5 323.4 curveto
Xgsave
X[8 4] 0 setdash
X1.1 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
X[] 0 setdash
Xgrestore
X0 sf
Xnewpath
X122.5 577.6 moveto
X138.3 577.6 lineto
X130.7 588.8 lineto
X122.5 577.6 lineto
Xclosepath
Xgsave
X[0 0 0 1]setcolor  {fill}fp 
Xgrestore
Xgsave
X1.7 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
X0 sf
Xnewpath
X506.4 251.7 moveto
X506.4 235.9 lineto
X517.6 243.5 lineto
X506.4 251.7 lineto
Xclosepath
Xgsave
X[0 0 0 1]setcolor  {fill}fp 
Xgrestore
Xgsave
X1.7 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
X0 sf
Xnewpath
X195.7 510.5 moveto
X200.2 516.4 lineto
X193.9 516.6 lineto
X195.7 510.5 lineto
Xclosepath
Xgsave
X[0 0 0 1]setcolor  {fill}fp 
Xgrestore
Xgsave
X0.8 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
X0 sf
Xnewpath
X421 319.4 moveto
X416.8 313.2 lineto
X423.1 313.4 lineto
X421 319.4 lineto
Xclosepath
Xgsave
X[0 0 0 1]setcolor  {fill}fp 
Xgrestore
Xgsave
X0.8 setlinewidth 1 setlinecap 0 setlinejoin 3.863693 setmiterlimit [0 0 0 1]setcolor  {stroke}fp 
Xgrestore
Xvmr
Xend  % FreeHandDict
X%%EndDocument
X
X endTexFig
X 504 2692 a Fo(Figure)g(2.1:)k(The)d(generic)g(form)e(of)h(the)g
X(L-curv)o(e.)130 2801 y(F)l(or)h(discrete)i(ill-p)q(osed)i(problems)e
X(it)f(turns)g(out)g(that)f(the)h(L-curv)o(e,)h(when)g(plotted)g(in)g
XFk(lo)n(g-lo)n(g)59 2857 y(sc)n(ale)p Fo(,)h(almost)g(alw)o(a)o(ys)g
X(has)g(a)g(c)o(haracteristic)h(L-shap)q(ed)h(app)q(earance)f(\(hence)g
X(its)g(name\))f(with)h(a)p eop
X%%Page: 16 18
X16 17 bop 64 159 a Fo(16)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(distinct)h(corner)e(separating)h(the)f(v)o
X(ertical)h(and)g(the)g(horizon)o(tal)f(parts)g(of)g(the)h(curv)o(e.)24
Xb(T)l(o)16 b(see)h(wh)o(y)59 361 y(this)k(is)h(so,)g(w)o(e)e(notice)i
X(that)e(if)647 360 y(\026)645 361 y Fp(x)g Fo(denotes)h(the)g(exact,)h
X(unregularized)h(solution)f(corresp)q(onding)59 417 y(to)c(the)h(exact)
Xg(righ)o(t-hand)g(side)649 405 y(\026)646 417 y Fp(b)g
XFo(in)h(Eq.)e(\(2.15\),)g(then)h(the)g(error)f Fp(x)1318
X424 y Fj(reg)1380 417 y Fm(\000)1431 416 y Fo(\026)1428
X417 y Fp(x)h Fo(in)g(the)g(regularized)59 474 y(solution)d(consists)f
X(of)f(t)o(w)o(o)g(comp)q(onen)o(ts,)h(namely)l(,)g(a)g(p)q(erturbation)
Xg(error)f(from)h(the)g(error)f Fp(e)h Fo(in)h(the)59
X530 y(giv)o(en)g(righ)o(t-hand)g(side)h Fp(b)p Fo(,)e(and)h(a)f
X(regularization)i(error)e(due)h(to)f(the)h(regularization)g(of)g(the)f
X(error-)59 587 y(free)k(comp)q(onen)o(t)390 575 y(\026)387
X587 y Fp(b)g Fo(in)h(the)f(righ)o(t-hand)h(side.)33 b(The)20
Xb(v)o(ertical)g(part)e(of)h(the)g(L-curv)o(e)h(corresp)q(onds)59
X643 y(to)d(solutions)h(where)f Fm(k)p Fn(L)8 b Fp(x)532
X650 y Fj(reg)581 643 y Fm(k)604 650 y Fj(2)640 643 y
XFo(is)18 b(v)o(ery)f(sensitiv)o(e)i(to)d(c)o(hanges)i(in)g(the)f
X(regularization)h(parameter)59 700 y(b)q(ecause)f(the)e(p)q
X(erturbation)i(error)e Fp(e)g Fo(from)g(dominates)h Fp(x)1079
X707 y Fj(reg)1144 700 y Fo(and)g(b)q(ecause)g Fp(e)g
XFo(do)q(es)g(not)f(satisfy)h(the)59 756 y(discrete)21
Xb(Picard)f(condition.)36 b(The)20 b(horizon)o(tal)h(part)e(of)h(the)g
X(L-curv)o(e)g(corresp)q(onds)h(to)e(solutions)59 812
Xy(where)g(it)g(is)h(the)f(residual)h(norm)f Fm(k)p Fn(A)8
Xb Fp(x)764 819 y Fj(reg)825 812 y Fm(\000)13 b Fp(b)p
XFm(k)925 819 y Fj(2)963 812 y Fo(that)19 b(is)g(most)f(sensitiv)o(e)i
X(to)f(the)g(regularization)59 869 y(parameter)f(b)q(ecause)i
XFp(x)480 876 y Fj(reg)548 869 y Fo(is)g(dominated)f(b)o(y)g(the)g
X(regularization)h(error|as)f(long)g(as)1634 857 y(\026)1630
X869 y Fp(b)g Fo(satis\014es)59 925 y(the)c(discrete)h(Picard)g
X(condition.)130 982 y(W)l(e)f(can)f(substan)o(tiate)h(this)g(b)o(y)g
X(means)g(of)f(the)h(relations)g(for)f(the)h(regularized)h(solution)g
XFp(x)1729 989 y Fj(reg)1793 982 y Fo(in)59 1038 y(terms)g(of)f(the)i
X(\014lter)f(factors.)22 b(F)l(or)15 b(general-form)h(regularization)h
X(\()p Fn(L)d Fm(6)p Fo(=)h Fn(I)1366 1045 y Fg(n)1389
X1038 y Fo(\))h(Eq.)g(\(2.19\))e(yields)k(the)59 1095
Xy(follo)o(wing)e(expression)g(for)f(the)g(error)f(in)i
XFp(x)810 1102 y Fj(reg)860 1095 y Fo(:)226 1244 y Fp(x)254
X1251 y Fj(reg)314 1244 y Fm(\000)362 1243 y Fo(\026)359
X1244 y Fp(x)c Fo(=)447 1160 y Fh(0)447 1234 y(@)505 1189
Xy Fg(p)484 1204 y Fh(X)485 1295 y Fg(i)p Fj(=1)551 1244
Xy Fn(f)573 1251 y Fg(i)600 1213 y Fp(u)629 1197 y Fg(T)629
X1226 y(i)657 1213 y Fp(e)p 600 1234 81 2 v 620 1275 a
XFn(\033)646 1282 y Fg(i)693 1244 y Fp(x)721 1251 y Fg(i)745
X1244 y Fo(+)831 1191 y Fg(n)812 1204 y Fh(X)790 1295
Xy Fg(i)p Fj(=)p Fg(p)p Fj(+1)893 1244 y Fo(\()p Fp(u)940
X1225 y Fg(T)940 1255 y(i)967 1244 y Fp(e)p Fo(\))c Fp(x)1045
X1251 y Fg(i)1058 1160 y Fh(1)1058 1234 y(A)1104 1244
Xy Fo(+)1171 1189 y Fg(p)1150 1204 y Fh(X)1151 1295 y
XFg(i)p Fj(=1)1217 1244 y Fo(\()p Fn(f)1257 1251 y Fg(i)1281
X1244 y Fm(\000)j Fo(1\))1380 1213 y Fp(u)1409 1197 y
XFg(T)1409 1226 y(i)1439 1201 y Fo(\026)1436 1213 y Fp(b)p
X1380 1234 86 2 v 1402 1275 a Fn(\033)1428 1282 y Fg(i)1478
X1244 y Fp(x)1506 1251 y Fg(i)1535 1244 y Fn(:)167 b Fo(\(2.20\))59
X1389 y(Here,)15 b(the)f(term)g(in)i(the)f(paren)o(thesis)g(is)g(the)f
XFk(p)n(erturb)n(ation)i(err)n(or)f Fo(due)h(to)d(the)i(p)q(erturbation)
Xg Fp(e)p Fo(,)f(and)59 1446 y(the)19 b(second)g(term)f(is)h(the)f
XFk(r)n(e)n(gularization)h(err)n(or)g Fo(caused)g(b)o(y)f
X(regularization)h(of)f(the)h(unp)q(erturb)q(ed)59 1502
Xy(comp)q(onen)o(t)296 1490 y(\026)293 1502 y Fp(b)e Fo(of)f(the)h(righ)
Xo(t-hand)g(side.)25 b(When)17 b(only)h(little)g(regularization)f(is)h
X(in)o(tro)q(duced,)f(most)59 1558 y(of)f(the)h(\014lter)g(factors)f
XFn(f)474 1565 y Fg(i)505 1558 y Fo(are)g(appro)o(ximately)h(one)g(and)g
X(the)g(error)f Fp(x)1279 1565 y Fj(reg)1339 1558 y Fm(\000)1388
X1557 y Fo(\026)1385 1558 y Fp(x)h Fo(is)g(dominated)g(b)o(y)g(the)59
X1615 y(p)q(erturbation)i(error.)28 b(On)19 b(the)f(other)g(hand,)h
X(with)f(plen)o(t)o(y)h(of)f(regularization)h(most)e(\014lter)i(factors)
X59 1671 y(are)c(small,)h Fn(f)289 1678 y Fg(i)315 1671
Xy Fm(\034)e Fo(1,)g(and)h Fp(x)540 1678 y Fj(reg)600
X1671 y Fm(\000)648 1670 y Fo(\026)645 1671 y Fp(x)g Fo(is)h(dominated)f
X(b)o(y)h(the)f(regularization)h(error.)130 1728 y(In)c([45)o(,)g(48])f
X(Eq.)h(\(2.20\))e(w)o(as)i(used)g(to)g(analyze)h(the)f(relationship)i
X(b)q(et)o(w)o(een)e(the)h(error)e(in)i Fp(x)1696 1735
Xy Fj(reg)1757 1728 y Fo(and)59 1784 y(the)i(b)q(eha)o(vior)g(of)f(the)g
X(L-curv)o(e.)21 b(The)15 b(result)g(is)g(that)e(if)1039
X1772 y(\026)1035 1784 y Fp(b)i Fo(satis\014es)g(the)f(discrete)i
X(Picard)f(condition,)59 1841 y(then)20 b(the)f(horizon)o(tal)h(part)e
X(of)h(the)g(curv)o(e)h(corresp)q(onds)f(to)g(solutions)h(where)f(the)h
X(regularization)59 1897 y(error)d(dominates|i.e.,)h(where)g(so)f(m)o
X(uc)o(h)h(\014ltering)g(is)g(in)o(tro)q(duced)h(that)e(the)g(solution)i
X(sta)o(ys)d(v)o(ery)59 1954 y(smo)q(oth)c(and)i Fm(k)p
XFn(L)8 b Fp(x)394 1961 y Fj(reg)442 1954 y Fm(k)465 1961
Xy Fj(2)497 1954 y Fo(therefore)13 b(only)h(c)o(hanges)e(a)h(little)h
X(with)g(the)f(regularization)h(parameter.)k(In)59 2010
Xy(con)o(trast,)c(the)i(v)o(ertical)g(part)g(of)f(the)h(L-curv)o(e)g
X(corresp)q(onds)g(to)f(solutions)i(that)e(are)g(dominated)i(b)o(y)59
X2067 y(the)g(p)q(erturbation)h(error,)e(and)i(due)g(to)e(the)h
X(division)i(b)o(y)e(the)h(small)g Fn(\033)1313 2074 y
XFg(i)1344 2067 y Fo(it)f(is)h(clear)f(that)g Fm(k)p Fn(L)8
Xb Fp(x)1740 2074 y Fj(reg)1788 2067 y Fm(k)1811 2074
Xy Fj(2)59 2123 y Fo(v)m(aries)17 b(dramatically)g(with)g(the)f
X(regularization)i(parameter)d(while,)j(sim)o(ultaneously)l(,)g(the)e
X(residual)59 2180 y(norm)e(do)q(es)h(not)f(c)o(hange)g(m)o(uc)o(h.)20
Xb(Moreo)o(v)o(er,)12 b(it)j(is)g(sho)o(wn)f(in)h([48)o(])f(that)g(a)g
X(log-log)h(scale)g(emphasizes)59 2236 y(the)20 b(di\013eren)o(t)h(app)q
X(earances)g(of)f(the)g(v)o(ertical)h(and)f(the)h(horizon)o(tal)f
X(parts.)35 b(In)21 b(this)f(w)o(a)o(y)l(,)h(the)f(L-)59
X2292 y(curv)o(e)g(clearly)g(displa)o(ys)h(the)e(trade-o\013)g(b)q(et)o
X(w)o(een)h(minimizing)i(the)d(residual)i(norm)e(and)h(the)g(side)59
X2349 y(constrain)o(t.)130 2405 y(W)l(e)g(note)g(in)h(passing)g(that)e
X(the)h(L-curv)o(e)h(is)g(a)f(con)o(tin)o(uous)g(curv)o(e)h(when)f(the)h
X(regularization)59 2462 y(parameter)13 b(is)h(con)o(tin)o(uous)g(as)f
X(in)i(Tikhono)o(v)e(regularization.)21 b(F)l(or)13 b(regularization)h
X(metho)q(ds)g(with)g(a)59 2518 y(discrete)i(regularization)g
X(parameter,)e(suc)o(h)i(as)f(truncated)g(SVD,)g(w)o(e)g(plot)h(the)f
X(L-curv)o(e)h(as)f(a)g(\014nite)59 2575 y(set)i(of)f(p)q(oin)o(ts.)25
Xb(Ho)o(w)16 b(to)g(mak)o(e)g(suc)o(h)i(a)e(\\discrete)h(L-curv)o(e")h
X(con)o(tin)o(uous)f(is)g(discussed)h(in)g([48)o(].)24
Xb(In)59 2631 y(this)14 b(reference,)h(alternativ)o(e)f(norms)f(for)g
X(plotting)i(the)f(L-curv)o(e,)g(dep)q(ending)i(on)e(the)g
X(regularization)59 2688 y(metho)q(d,)h(are)g(also)g(discussed.)130
X2744 y(The)i(L-curv)o(e)i(for)e(Tikhono)o(v)g(regularization)i(pla)o
X(ys)f(a)f(cen)o(tral)h(role)g(in)g(connection)h(with)f(reg-)59
X2801 y(ularization)h(metho)q(ds)f(for)g(discrete)g(ill-p)q(osed)j
X(problems)e(b)q(ecause)g(it)f(divides)i(the)e(\014rst)f(quadran)o(t)59
X2857 y(in)o(to)h(t)o(w)o(o)f(regions.)29 b(It)18 b(is)h(imp)q(ossible)h
X(to)e(construct)f(an)o(y)h(solution)h(that)e(corresp)q(onds)i(to)e(a)h
X(p)q(oin)o(t)p eop
X%%Page: 17 19
X17 18 bop 59 159 a Fo(2.6.)14 b(T)l(ransformation)g(to)h(Standard)g(F)l
X(orm)956 b(17)p 59 178 1767 2 v 59 304 a(b)q(elo)o(w)21
Xb(the)f(Tikhono)o(v)g(L-curv)o(e;)j(an)o(y)c(regularized)j(solution)e
X(m)o(ust)g(lie)h(on)f(or)g(ab)q(o)o(v)o(e)f(this)i(curv)o(e.)59
X361 y(The)16 b(solution)h(computed)f(b)o(y)g(Tikhono)o(v)g
X(regularization)g(is)h(therefore)e(optimal)i(in)f(the)g(sense)g(that)59
X417 y(for)f(a)g(giv)o(en)h(residual)h(norm)e(there)g(do)q(es)h(not)f
X(exist)h(a)f(solution)h(with)g(smaller)g(seminorm)f(than)h(the)59
X474 y(Tikhono)o(v)k(solution|and)h(the)f(same)g(is)g(true)g(with)g(the)
Xg(roles)g(of)f(the)h(norms)f(in)o(terc)o(hanged.)35 b(A)59
X530 y(consequence)17 b(of)d(this)i(is)g(that)e(one)i(can)f(compare)g
X(other)g(regularization)h(metho)q(ds)f(with)h(Tikhono)o(v)59
X587 y(regularization)k(b)o(y)f(insp)q(ecting)j(ho)o(w)c(close)i(the)g
X(L-curv)o(e)f(for)g(the)g(alternativ)o(e)h(metho)q(d)f(is)h(to)f(the)59
X643 y(Tikhono)o(v)d(L-curv)o(e.)24 b(If)499 631 y(\026)495
X643 y Fp(b)17 b Fo(satis\014es)f(the)g(discrete)h(Picard)g(condition,)g
X(then)g(the)f(t)o(w)o(o)f(L-curv)o(es)i(are)59 700 y(close)k(to)e(eac)o
X(h)h(other)f(and)h(the)g(solutions)h(computed)f(b)o(y)g(the)g(t)o(w)o
X(o)e(regularization)j(metho)q(ds)f(are)59 756 y(similar)c([45].)130
X812 y(F)l(or)11 b(a)g(giv)o(en)i(\014xed)f(righ)o(t-hand)g(side)h
XFp(b)g Fo(=)865 800 y(\026)862 812 y Fp(b)s Fo(+)s Fp(e)p
XFo(,)g(there)f(is)g(ob)o(viously)h(an)e(optimal)i(regularization)59
X869 y(parameter)k(that)f(balances)i(the)f(p)q(erturbation)h(error)f
X(and)g(the)g(regularization)i(error)d(in)i Fp(x)1683
X876 y Fj(reg)1732 869 y Fo(.)26 b(An)59 925 y(essen)o(tial)17
Xb(feature)f(of)g(the)h(L-curv)o(e)g(is)g(that)e(this)i(optimal)g
X(regularization)g(parameter|de\014ned)h(in)59 982 y(the)e(ab)q(o)o(v)o
X(e)f(sense|is)i(not)e(far)g(from)g(the)h(regularization)g(parameter)f
X(that)g(corresp)q(onds)h(to)e(the)i(L-)59 1038 y(curv)o(e's)d(corner)g
X([45)o(].)19 b(In)14 b(other)f(w)o(ords,)g(b)o(y)g(lo)q(cating)h(the)g
X(corner)f(of)g(the)g(L-curv)o(e)i(one)e(can)h(compute)59
X1095 y(an)j(appro)o(ximation)g(to)g(the)g(optimal)h(regularization)g
X(parameter)e(and)h(th)o(us,)g(in)h(turn,)g(compute)f(a)59
X1151 y(regularized)h(solution)e(with)h(a)f(go)q(o)q(d)g(balance)h(b)q
X(et)o(w)o(een)f(the)h(t)o(w)o(o)d(error)i(t)o(yp)q(es.)22
Xb(W)l(e)17 b(return)f(to)f(this)59 1208 y(asp)q(ect)e(in)h(Section)f
X(2.9;)g(su\016ce)g(it)g(here)g(to)f(sa)o(y)g(that)g(for)h(con)o(tin)o
X(uous)g(L-curv)o(es,)g(a)g(computationally)59 1264 y(con)o(v)o(enien)o
X(t)23 b(de\014nition)g(of)f(the)g(L-curv)o(e's)g(corner)g(is)g(the)g(p)
Xq(oin)o(t)h(with)f(maxim)o(um)g(curv)m(ature)g(in)59
X1321 y(log-log)16 b(scale.)130 1377 y(In)k(the)g Ff(Regulariza)m(tion)i
X(Tools)e Fo(pac)o(k)m(age,)h(routine)f Fl(l)p 1173 1377
X14 2 v 16 w(curve)g Fo(pro)q(duces)h(a)f(log-log)g(plot)g(of)59
X1433 y(the)i(L-curv)o(e)g(and|if)h(required|also)h(lo)q(cates)e(the)g
X(corner)f(and)h(iden)o(ti\014es)i(the)e(corresp)q(onding)59
X1490 y(regularization)d(parameter.)26 b(Giv)o(en)19 b(a)e(discrete)i
X(set)e(of)g(v)m(alues)i(of)f Fm(k)p Fn(A)8 b Fp(x)1350
X1497 y Fj(reg)1410 1490 y Fm(\000)k Fp(b)p Fm(k)1509
X1497 y Fj(2)1546 1490 y Fo(and)18 b Fm(k)p Fn(L)8 b Fp(x)1727
X1497 y Fj(reg)1776 1490 y Fm(k)1799 1497 y Fj(2)1818
X1490 y Fo(,)59 1546 y(routine)14 b Fl(plot)p 290 1546
XV 16 w(lc)f Fo(plots)h(the)f(corresp)q(onding)h(L-curv)o(e,)f(while)i
X(routine)e Fl(l)p 1283 1546 V 17 w(co)o(rner)f Fo(lo)q(cates)h(the)g
X(L-curv)o(e's)59 1603 y(corner.)59 1726 y Fr(2.6.)18
Xb(T)-5 b(ransformation)18 b(to)g(Standard)i(F)-5 b(orm)59
X1828 y Fo(A)16 b(regularization)g(problem)g(with)g(side)g(constrain)o
X(t)f(\012\()p Fp(x)p Fo(\))d(=)i Fm(k)p Fn(L)8 b Fo(\()p
XFp(x)h Fm(\000)h Fp(x)1331 1811 y Fe(\003)1350 1828 y
XFo(\))p Fm(k)1391 1835 y Fj(2)1426 1828 y Fo(\(2.5\))k(is)i(said)g(to)f
X(b)q(e)h(in)59 1884 y Fk(standar)n(d)g(form)f Fo(if)g(the)g(matrix)f
XFn(L)g Fo(is)h(the)g(iden)o(tit)o(y)g(matrix)g Fn(I)1121
X1891 y Fg(n)1144 1884 y Fo(.)20 b(In)15 b(man)o(y)f(applications,)i
X(regulariza-)59 1941 y(tion)g(in)h(standard)e(form)h(is)g(not)f(the)h
X(b)q(est)h(c)o(hoice,)f(i.e.,)g(one)g(should)h(use)f(some)g
XFn(L)e Fm(6)p Fo(=)g Fn(I)1583 1948 y Fg(n)1622 1941
Xy Fo(in)j(the)f(side)59 1997 y(constrain)o(t)i(\012\()p
XFp(x)p Fo(\).)30 b(The)19 b(prop)q(er)g(c)o(hoice)h(of)e(matrix)g
XFn(L)h Fo(dep)q(ends)h(on)f(the)g(particular)g(application,)59
X2054 y(but)c(often)g(an)g(appro)o(ximation)h(to)e(the)h(\014rst)g(or)g
X(second)h(deriv)m(ativ)o(e)g(op)q(erator)e(giv)o(es)i(go)q(o)q(d)f
X(results.)130 2110 y(Ho)o(w)o(ev)o(er,)23 b(from)e(a)i(n)o(umerical)h
X(p)q(oin)o(t)f(of)f(view)h(it)g(is)g(m)o(uc)o(h)f(simpler)i(to)e(treat)
Xg(problems)h(in)59 2166 y(standard)10 b(form,)h(basically)h(b)q(ecause)
Xg(only)f(one)g(matrix,)f Fn(A)p Fo(,)i(is)f(in)o(v)o(olv)o(ed)g
X(instead)g(of)g(the)f(t)o(w)o(o)g(matrices)59 2223 y
XFn(A)17 b Fo(and)f Fn(L)p Fo(.)24 b(Hence,)17 b(it)g(is)g(con)o(v)o
X(enien)o(t)g(to)f(b)q(e)h(able)g(to)f(transform)f(a)i(giv)o(en)g
X(regularization)g(problem)59 2279 y(in)i(general)f(form)f(in)o(to)g(an)
Xh(equiv)m(alen)o(t)h(one)f(in)g(standard)g(form)e(b)o(y)i(means)g(of)f
X(n)o(umerically)i(stable)59 2336 y(metho)q(ds.)h(F)l(or)14
Xb(example,)h(for)f(Tikhono)o(v)h(regularization)h(w)o(e)e(w)o(an)o(t)g
X(a)g(n)o(umerically)i(stable)f(metho)q(d)59 2392 y(for)e(transforming)g
X(the)g(general-form)h(problem)g(\(2.6\))e(in)o(to)i(the)f(follo)o(wing)
Xh(standard-form)f(problem)592 2482 y(min)683 2435 y Fh(n)711
X2482 y Fm(k)745 2470 y Fo(\026)734 2482 y Fn(A)777 2481
Xy Fo(\026)775 2482 y Fp(x)d Fm(\000)861 2470 y Fo(\026)858
X2482 y Fp(b)p Fm(k)910 2463 y Fj(2)910 2493 y(2)940 2482
Xy Fo(+)g Fn(\025)1012 2463 y Fj(2)1039 2482 y Fm(k)1064
X2481 y Fo(\026)1062 2482 y Fp(x)f Fm(\000)1147 2481 y
XFo(\026)1145 2482 y Fp(x)1173 2463 y Fe(\003)1192 2482
Xy Fm(k)1215 2463 y Fj(2)1215 2493 y(2)1235 2435 y Fh(o)1285
X2482 y Fn(;)417 b Fo(\(2.21\))59 2575 y(where)12 b(the)g(new)g(matrix)
X509 2563 y(\026)497 2575 y Fn(A)p Fo(,)g(the)g(new)g(righ)o(t-hand)g
X(side)1032 2563 y(\026)1029 2575 y Fp(b)p Fo(,)g(and)g(the)g(v)o(ector)
X1378 2574 y(\026)1376 2575 y Fp(x)1404 2558 y Fe(\003)1435
X2575 y Fo(are)g(deriv)o(ed)g(from)g(the)59 2631 y(original)17
Xb(quan)o(tities)g Fn(A)p Fo(,)f Fn(L)p Fo(,)g Fp(b)p
XFo(,)g(and)g Fp(x)733 2615 y Fe(\003)752 2631 y Fo(.)23
Xb(Moreo)o(v)o(er,)14 b(w)o(e)i(also)g(w)o(an)o(t)f(a)h(n)o(umerically)i
X(stable)e(sc)o(heme)59 2688 y(for)i(transforming)f(the)h(solution)662
X2687 y(\026)660 2688 y Fp(x)688 2695 y Fg(\025)728 2688
Xy Fo(to)g(\(2.21\))e(bac)o(k)i(to)f(the)h(general-form)g(setting.)29
Xb(Finally)l(,)20 b(w)o(e)59 2744 y(prefer)14 b(a)g(transformation)f
X(that)g(leads)i(to)e(a)h(simple)h(relationship)h(b)q(et)o(w)o(een)e
X(the)h(SVD)f(of)1644 2733 y(\026)1632 2744 y Fn(A)g Fo(and)h(the)59
X2801 y(GSVD)e(of)g(\()p Fn(A;)8 b(L)p Fo(\),)k(for)h(then)h(w)o(e)g(ha)
Xo(v)o(e)f(a)g(p)q(erfect)h(understanding)h(of)e(the)g(relationship)j(b)
Xq(et)o(w)o(een)e(the)59 2857 y(t)o(w)o(o)g(regularization)i(problems.)p
Xeop
X%%Page: 18 20
X18 19 bop 64 159 a Fo(18)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 130 304 a(F)l(or)g(the)h(simple)i(case)e(where)h
XFn(L)f Fo(is)g(square)g(and)h(in)o(v)o(ertible,)h(the)e(transformation)
Xf(is)i(ob)o(vious:)71 349 y(\026)59 361 y Fn(A)13 b Fo(=)g
XFn(A)8 b(L)227 344 y Fe(\000)p Fj(1)274 361 y Fo(,)304
X349 y(\026)301 361 y Fp(b)13 b Fo(=)g Fp(b)p Fo(,)450
X360 y(\026)448 361 y Fp(x)476 344 y Fe(\003)508 361 y
XFo(=)g Fn(L)8 b Fp(x)623 344 y Fe(\003)641 361 y Fo(,)15
Xb(and)h(the)f(bac)o(k-transformation)f(simply)i(b)q(ecomes)g
XFp(x)1606 368 y Fg(\025)1641 361 y Fo(=)d Fn(L)1720 344
Xy Fe(\000)p Fj(1)1769 360 y Fo(\026)1767 361 y Fp(x)1795
X368 y Fg(\025)1817 361 y Fo(.)130 417 y(In)21 b(most)e(applications,)k
X(ho)o(w)o(ev)o(er,)d(the)g(matrix)g Fn(L)g Fo(is)h(not)f(square,)h(and)
Xg(the)f(transformation)59 474 y(b)q(ecomes)g(somewhat)f(more)h(in)o(v)o
X(olv)o(ed)g(than)g(just)f(a)h(matrix)f(in)o(v)o(ersion.)34
Xb(It)20 b(turns)g(out)f(that)g(it)h(is)59 530 y(a)f(go)q(o)q(d)g(idea)g
X(to)g(distinguish)i(b)q(et)o(w)o(een)e(direct)h(and)f(iterativ)o(e)g
X(regularization)h(metho)q(ds|cf.)g(the)59 587 y(next)d(t)o(w)o(o)f
X(sections.)27 b(F)l(or)17 b(the)g(direct)h(metho)q(ds)f(w)o(e)g(need)i
X(to)d(b)q(e)i(able)g(to)f(compute)g(the)h(matrix)1809
X575 y(\026)1797 587 y Fn(A)59 643 y Fo(explicitly)h(b)o(y)d(standard)g
X(metho)q(ds)h(suc)o(h)g(as)e(the)i(QR)g(factorization.)23
Xb(F)l(or)16 b(the)g(iterativ)o(e)h(metho)q(ds,)59 700
Xy(on)f(the)g(other)f(hand,)h(w)o(e)f(merely)i(need)f(to)g(b)q(e)g(able)
Xh(to)e(compute)h(the)f(matrix-v)o(ector)g(pro)q(duct)1773
X688 y(\026)1761 700 y Fn(A)1806 699 y Fo(\026)1803 700
Xy Fp(x)59 756 y Fo(e\016cien)o(tly)l(.)32 b(Belo)o(w,)20
Xb(w)o(e)e(describ)q(e)j(t)o(w)o(o)c(metho)q(ds)i(for)f(transformation)f
X(to)h(standard)h(form)f(whic)o(h)59 812 y(are)j(suited)i(for)e(direct)i
X(and)e(iterativ)o(e)h(metho)q(ds,)i(resp)q(ectiv)o(ely)l(.)41
Xb(W)l(e)22 b(assume)f(that)g(the)h(matrix)59 869 y Fn(L)13
Xb Fm(2)g Fp(I)-8 b(R)197 851 y Fg(p)p Fe(\002)p Fg(n)281
X869 y Fo(has)15 b(full)h(ro)o(w)f(rank,)f(i.e.,)h(the)g(rank)g(of)g
XFn(L)g Fo(is)h Fn(p)p Fo(.)59 987 y Fp(2.6.1.)g(T)l(ransformation)i
X(for)f(Direct)h(Metho)q(ds)59 1073 y Fo(The)i(standard-form)e
X(transformation)h(for)f(direct)j(metho)q(ds)e(describ)q(ed)j(here)e(w)o
X(as)f(dev)o(elop)q(ed)i(b)o(y)59 1129 y(Eld)o(\023)-21
Xb(en)11 b([21)o(],)g(and)g(it)h(is)f(based)g(on)g(t)o(w)o(o)f(QR)h
X(factorizations.)19 b(The)11 b(description)h(of)f(this)g
X(transformation)59 1186 y(is)18 b(quite)g(algorithmic,)h(and)e(it)h(is)
Xg(summarized)g(b)q(elo)o(w)g(\(where,)f(for)g(con)o(v)o(enience,)i(the)
Xf(subscripts)59 1242 y Fn(p)p Fo(,)d Fn(o)p Fo(,)h(and)f
XFn(q)j Fo(denote)e(matrices)f(with)h Fn(p)p Fo(,)f Fn(n)c
XFm(\000)g Fn(p)p Fo(,)k(and)h Fn(m)10 b Fm(\000)h Fo(\()p
XFn(n)f Fm(\000)h Fn(p)p Fo(\))k(columns,)h(resp)q(ectiv)o(ely\).)22
Xb(First,)59 1299 y(compute)15 b(a)g(QR)h(factorization)f(of)g
XFn(L)712 1282 y Fg(T)739 1299 y Fo(,)643 1407 y Fn(L)674
X1388 y Fg(T)714 1407 y Fo(=)e Fn(K)d(R)j Fo(=)g(\()p
XFn(K)964 1414 y Fg(p)998 1407 y Fn(K)1037 1414 y Fg(o)1056
X1407 y Fo(\))1082 1347 y Fh(\022)1119 1378 y Fn(R)1154
X1385 y Fg(p)1135 1435 y Fo(0)1181 1347 y Fh(\023)1234
X1407 y Fn(:)468 b Fo(\(2.22\))59 1523 y(W)l(e)13 b(remark)e(that)h
X(since)i Fn(L)e Fo(has)g(full)i(rank,)f(its)f(pseudoin)o(v)o(erse)i(is)
Xf(simply)g Fn(L)1367 1506 y Fe(y)1398 1523 y Fo(=)g Fn(K)1485
X1530 y Fg(p)1512 1523 y Fn(R)1547 1506 y Fe(\000)p Fg(T)1547
X1534 y(p)1602 1523 y Fo(.)18 b(Moreo)o(v)o(er,)59 1579
Xy(the)11 b(columns)g(of)f Fn(K)391 1586 y Fg(o)420 1579
Xy Fo(are)g(an)h(orthonormal)e(basis)i(for)f(the)g(n)o(ull)i(space)f(of)
Xf Fn(L)p Fo(.)18 b(Next,)11 b(form)f(the)g(\\skinn)o(y")59
X1636 y(matrix)15 b Fn(A)8 b(K)288 1643 y Fg(o)319 1636
Xy Fm(2)13 b Fp(I)-8 b(R)413 1617 y Fg(m)p Fe(\002)p Fj(\()p
XFg(n)p Fe(\000)p Fg(p)p Fj(\))583 1636 y Fo(and)16 b(compute)f(its)g
X(QR)h(factorization,)629 1744 y Fn(A)8 b(K)710 1751 y
XFg(o)741 1744 y Fo(=)13 b Fn(H)e(T)19 b Fo(=)13 b(\()p
XFn(H)988 1751 y Fg(o)1021 1744 y Fn(H)1059 1751 y Fg(q)1078
X1744 y Fo(\))1104 1684 y Fh(\022)1142 1715 y Fn(T)1169
X1722 y Fg(o)1153 1772 y Fo(0)1195 1684 y Fh(\023)1248
X1744 y Fn(:)454 b Fo(\(2.23\))59 1858 y(Then)16 b(the)f(transformed)f
X(quan)o(tities)732 1846 y(\026)720 1858 y Fn(A)h Fo(and)861
X1846 y(\026)858 1858 y Fp(b)g Fo(are)g(giv)o(en)h(b)o(y)f(the)g(follo)o
X(wing)h(iden)o(tities)492 1935 y(\026)480 1947 y Fn(A)c
XFo(=)h Fn(H)616 1928 y Fg(T)612 1958 y(q)643 1947 y Fn(A)8
Xb(L)716 1928 y Fe(y)746 1947 y Fo(=)13 b Fn(H)836 1928
Xy Fg(T)832 1958 y(q)863 1947 y Fn(A)8 b(K)944 1954 y
XFg(p)971 1947 y Fn(R)1006 1928 y Fe(\000)p Fg(T)1006
X1958 y(p)1076 1947 y Fn(;)1190 1935 y Fo(\026)1187 1947
Xy Fp(b)13 b Fo(=)g Fn(H)1319 1928 y Fg(T)1315 1958 y(q)1353
X1947 y Fp(b)i Fn(;)305 b Fo(\(2.24\))59 2036 y(and)16
Xb(w)o(e)f(stress)g(that)g(the)g(most)g(e\016cien)o(t)h(w)o(a)o(y)f(to)f
X(compute)1142 2025 y(\026)1130 2036 y Fn(A)i Fo(and)1271
X2024 y(\026)1268 2036 y Fp(b)g Fo(is)g(to)f(apply)h(the)f(orthogonal)59
X2093 y(transformations)e(that)h(mak)o(e)f(up)i Fn(K)i
XFo(and)e Fn(H)j Fo(\\on)c(the)g(\015y")g(to)g Fn(A)h
XFo(and)f Fp(b)g Fo(as)g(the)h(QR)g(factorizations)59
X2149 y(in)f(\(2.22\))e(and)i(\(2.23\))d(are)i(computed.)20
Xb(When)14 b(\(2.21\))e(has)h(b)q(een)i(solv)o(ed)f(for)1408
X2148 y(\026)1405 2149 y Fp(x)p Fo(,)f(the)h(transformation)59
X2205 y(bac)o(k)h(to)g(the)g(general-form)g(setting)g(then)h(tak)o(es)e
X(the)i(form)595 2295 y Fp(x)c Fo(=)h Fn(L)714 2276 y
XFe(y)734 2294 y Fo(\026)732 2295 y Fp(x)c Fo(+)i Fn(K)854
X2306 y Fg(o)880 2295 y Fn(T)913 2276 y Fe(\000)p Fj(1)907
X2306 y Fg(o)960 2295 y Fn(H)1002 2276 y Fg(T)998 2306
Xy(o)1029 2295 y Fo(\()p Fp(b)f Fm(\000)h Fn(A)d(L)1205
X2276 y Fe(y)1224 2294 y Fo(\026)1222 2295 y Fp(x)o Fo(\))15
Xb Fn(:)420 b Fo(\(2.25\))130 2384 y(The)14 b(SVD)f(of)g(the)h(matrix)
X615 2372 y(\026)603 2384 y Fn(A)f Fo(is)i(related)f(to)f(the)g(GSVD)h
X(of)f(\()p Fn(A;)8 b(L)p Fo(\))k(as)i(follo)o(ws:)19
Xb(let)1600 2372 y(\026)1588 2384 y Fn(A)13 b Fo(=)1690
X2372 y(\026)1683 2384 y Fn(U)1731 2372 y Fo(\026)1726
X2384 y(\006)1774 2372 y(\026)1767 2384 y Fn(V)1803 2367
Xy Fg(T)59 2440 y Fo(denote)f(the)h(SVD)f(of)445 2429
Xy(\026)433 2440 y Fn(A)p Fo(,)g(and)g(let)h Fn(E)674
X2447 y Fg(p)705 2440 y Fo(denote)g(the)f Fn(p)t Fm(\002)t
XFn(p)g Fo(exc)o(hange)g(matrix)g Fn(E)1395 2447 y Fg(p)1427
X2440 y Fo(=)h(an)o(tidiag)q(\(1)p Fn(;)8 b(:)g(:)g(:)t(;)g
XFo(1\).)59 2497 y(Also,)15 b(let)h Fn(U)5 b Fo(,)15 b
XFn(V)9 b Fo(,)15 b(\006,)g Fn(M)5 b Fo(,)14 b(and)i Fn(X)i
XFo(denote)e(the)f(GSVD)g(matrices)g(from)g(Eq.)f(\(2.11\).)k(Then)416
X2586 y Fn(U)g Fo(=)13 b(\()p Fn(H)569 2593 y Fg(q)602
X2574 y Fo(\026)595 2586 y Fn(U)f(E)672 2593 y Fg(p)707
X2586 y Fn(;)22 b(H)780 2593 y Fg(o)799 2586 y Fo(\))15
Xb Fn(;)82 b Fo(\006)8 b Fn(M)1017 2567 y Fe(\000)p Fj(1)1077
X2586 y Fo(=)13 b Fn(E)1159 2593 y Fg(p)1191 2574 y Fo(\026)1186
X2586 y(\006)7 b Fn(E)1260 2593 y Fg(p)1715 2586 y Fo(\(2.26\))417
X2686 y Fn(V)22 b Fo(=)521 2675 y(\026)514 2686 y Fn(V)10
Xb(E)585 2693 y Fg(p)619 2686 y Fn(;)295 b(X)111 b Fo(=)1124
X2627 y Fh(\022)1162 2658 y Fn(M)1211 2642 y Fe(\000)p
XFj(1)1258 2658 y Fn(V)1295 2642 y Fg(T)1322 2658 y Fn(L)1206
X2715 y(H)1248 2698 y Fg(T)1244 2726 y(o)1275 2715 y Fn(A)1361
X2627 y Fh(\023)1391 2637 y Fe(\000)p Fj(1)1461 2686 y
XFn(:)241 b Fo(\(2.27\))59 2801 y(Moreo)o(v)o(er,)15 b(the)i(last)g
XFn(n)11 b Fm(\000)h Fn(p)17 b Fo(columns)g(of)f Fn(X)k
XFo(are)d(giv)o(en)g(b)o(y)g Fn(K)1157 2812 y Fg(o)1183
X2801 y Fn(T)1216 2784 y Fe(\000)p Fj(1)1210 2812 y Fg(o)1263
X2801 y Fo(.)25 b(F)l(or)16 b(pro)q(ofs)g(of)h(\(2.26\){\(2.2)o(7\))59
X2857 y(and)c(an)f(in)o(v)o(estigation)h(of)f(the)h(accuracy)f(of)h(the)
Xf(GSVD)g(matrices)h(computed)g(this)g(w)o(a)o(y)l(,)f(cf.)g([41)o(,)g
X(43)o(].)p eop
X%%Page: 19 21
X19 20 bop 59 159 a Fo(2.6.)14 b(T)l(ransformation)g(to)h(Standard)g(F)l
X(orm)956 b(19)p 59 178 1767 2 v 59 304 a Fp(2.6.2.)16
Xb(T)l(ransformation)i(for)f(Iterativ)o(e)h(Metho)q(ds)59
X391 y Fo(F)l(or)c(the)h(iterativ)o(e)h(metho)q(ds)f(the)g(matrix)818
X379 y(\026)806 391 y Fn(A)g Fo(is)h(nev)o(er)f(computed)g(explicitly)l
X(.)23 b(Instead,)15 b(one)g(merely)59 447 y(needs)d(to)f(b)q(e)h(able)g
X(to)e(pre-m)o(ultiply)j(a)e(v)o(ector)g(with)967 436
Xy(\026)955 447 y Fn(A)g Fo(and)1096 436 y(\026)1084 447
Xy Fn(A)1118 431 y Fg(T)1157 447 y Fo(e\016cien)o(tly)l(.)20
Xb(If)12 b Fn(K)1455 454 y Fg(o)1485 447 y Fo(is)f(an)h(orthonormal)59
X504 y(basis)i(for)e(the)h(n)o(ull)i(space)e(of)g Fn(L)p
XFo(,)g(e.g.)f(computed)i(b)o(y)f(\(2.22\),)e(then)j Fp(y)f
XFo(=)g Fn(L)1340 487 y Fe(y)1360 503 y Fo(\026)1357 504
Xy Fp(x)g Fo(and)1487 503 y(^)1484 504 y Fp(y)g Fo(=)g(\()p
XFn(L)1622 487 y Fe(y)1640 504 y Fo(\))1658 487 y Fg(T)1685
X504 y Fp(x)p Fo(,)g(b)q(oth)59 560 y(of)19 b(whic)o(h)h(are)f(used)h
X(in)g(the)f(iterativ)o(e)h(pro)q(cedures,)h(can)e(easily)h(b)o(y)g
X(computed)f(b)o(y)h(the)f(follo)o(wing)59 617 y(algorithms:)239
X747 y Fp(y)42 b Fm( )396 688 y Fh(\022)434 719 y Fn(I)454
X726 y Fg(n)p Fe(\000)p Fg(p)538 719 y Fo(0)482 776 y
XFn(L)568 688 y Fh(\023)599 698 y Fe(\000)p Fj(1)653 688
Xy Fh(\022)692 719 y Fp(0)694 775 y Fo(\026)692 776 y
XFp(x)727 688 y Fh(\023)239 826 y Fp(y)g Fm( )g Fp(y)10
Xb Fm(\000)h Fn(K)519 838 y Fg(o)545 826 y Fn(K)587 810
Xy Fg(T)584 838 y(o)614 826 y Fp(y)1019 716 y(x)80 b Fm( )42
Xb Fp(x)9 b Fm(\000)i Fn(K)1336 727 y Fg(o)1362 716 y
XFn(K)1404 699 y Fg(T)1401 727 y(o)1432 716 y Fp(x)981
X745 y Fh(\022)1022 775 y Fo(^)1019 776 y Fp(y)1021 833
Xy(z)1055 745 y Fh(\023)1127 804 y Fm( )1214 745 y Fh(\022)1300
X776 y Fn(L)1252 833 y Fo(0)k Fn(I)1310 840 y Fg(n)p Fe(\000)p
XFg(p)1386 745 y Fh(\023)1417 755 y Fe(\000)p Fg(T)1479
X804 y Fp(x)g Fn(:)1715 771 y Fo(\(2.28\))59 929 y(By)21
Xb(means)h(of)e(these)i(simple)g(algorithms,)h(whic)o(h)f(are)e(describ)
Xq(ed)k(in)e([8)o(],)g(the)f(ab)q(o)o(v)o(e)g(standard-)59
X985 y(transformation)13 b(metho)q(d)h(can)g(also)g(b)q(e)g(used)h(for)e
X(iterativ)o(e)h(metho)q(ds.)20 b(Notice)14 b(that)f(a)h(basis)g(for)g
X(the)59 1042 y(n)o(ull)19 b(space)f(of)f Fn(L)g Fo(is)h
X(required|often,)h(the)f(basis)g(v)o(ectors)e(can)i(b)q(e)g(computed)g
X(explicitly)l(,)j(or)c(they)59 1098 y(can)e(b)q(e)h(computed)g(from)e
XFn(L)h Fo(b)o(y)l(,)g(sa)o(y)l(,)g(a)g(rank)g(rev)o(ealing)h
X(factorization)f([12)o(].)130 1155 y(The)d(algorithm)g(from)f
XFm(x)p Fo(2.6.1)f(can)i(b)q(e)g(reform)o(ulated)g(in)h(suc)o(h)f(a)f(w)
Xo(a)o(y)g(that)g(the)h(pseudoin)o(v)o(erse)h Fn(L)1813
X1138 y Fe(y)59 1211 y Fo(is)k(replaced)g(b)o(y)f(a)g(w)o(eak)o(er)f
X(generalized)j(in)o(v)o(erse,)e(using)h(an)f(idea)h(from)e([23)o(])h
X(\(and)g(later)g(adv)o(o)q(cated)59 1268 y(in)j([35)o(,)f(36)o(,)g
X(37]\).)28 b(This)19 b(reform)o(ulation)f(has)g(certain)h(adv)m(an)o
X(tages)e(for)h(iterativ)o(e)g(metho)q(ds,)h(as)f(w)o(e)59
X1324 y(shall)e(see)g(in)g Fm(x)p Fo(2.8.4.)i(De\014ne)e(the)f
XFn(A)p Fk(-weighte)n(d)i(gener)n(alize)n(d)e(inverse)g(of)h
XFn(L)f Fo(as)g(follo)o(ws)724 1446 y Fn(L)755 1424 y
XFe(y)755 1460 y Fg(A)797 1446 y Fo(=)e Fn(X)893 1387
Xy Fh(\022)931 1418 y Fn(M)980 1401 y Fe(\000)p Fj(1)968
X1474 y Fo(0)1035 1387 y Fh(\023)1073 1446 y Fn(V)1110
X1427 y Fg(T)1153 1446 y Fn(;)549 b Fo(\(2.29\))59 1581
Xy(where)14 b(w)o(e)g(emphasize)h(that)f Fn(L)600 1559
Xy Fe(y)600 1595 y Fg(A)642 1581 y Fo(is)h(generally)g(di\013eren)o(t)f
X(from)g(the)g(pseudoin)o(v)o(erse)h Fn(L)1558 1565 y
XFe(y)1590 1581 y Fo(when)f Fn(p)f(<)g(n)p Fo(.)59 1638
Xy(Also,)i(de\014ne)i(the)e(v)o(ector)737 1723 y Fp(x)765
X1730 y Fj(0)797 1723 y Fo(=)885 1670 y Fg(n)866 1683
Xy Fh(X)845 1774 y Fg(i)p Fj(=)p Fg(p)p Fj(+1)955 1723
Xy Fo(\()p Fp(u)1002 1704 y Fg(T)1002 1734 y(i)1029 1723
Xy Fp(b)p Fo(\))8 b Fp(x)1112 1730 y Fg(i)1140 1723 y
XFn(;)562 b Fo(\(2.30\))59 1851 y(whic)o(h)16 b(is)g(the)g
X(unregularized)h(comp)q(onen)o(t)f(of)f(the)g(regularized)i(solution)f
XFp(x)1393 1858 y Fj(reg)1443 1851 y Fo(,)f(cf.)g(Eq.)g(\(2.19\),)e
X(i.e.,)59 1907 y Fp(x)87 1914 y Fj(0)127 1907 y Fo(is)21
Xb(the)f(comp)q(onen)o(t)h(of)f Fp(x)584 1914 y Fj(reg)654
X1907 y Fo(that)f(lies)j(in)f(the)g(n)o(ull)h(space)f(of)f
XFn(L)p Fo(.)35 b(Then)21 b(the)g(standard-form)59 1964
Xy(quan)o(tities)281 1952 y(\026)269 1964 y Fn(A)15 b
XFo(and)410 1952 y(\026)407 1964 y Fp(b)g Fo(in)h(the)f(alternativ)o(e)g
X(v)o(ersion)h(of)f(the)g(algorithm)g(are)g(de\014ned)i(as)d(follo)o(ws)
X650 2055 y(\026)638 2067 y Fn(A)f Fo(=)g Fn(A)8 b(L)806
X2044 y Fe(y)806 2080 y Fg(A)849 2067 y Fn(;)964 2055
Xy Fo(\026)960 2067 y Fp(b)13 b Fo(=)g Fp(b)d Fm(\000)h
XFn(A)d Fp(x)1205 2074 y Fj(0)1239 2067 y Fn(:)463 b Fo(\(2.31\))59
X2169 y(Moreo)o(v)o(er,)13 b(the)j(transformation)e(bac)o(k)h(to)f(the)h
X(general-form)h(setting)f(tak)o(es)f(the)i(simple)g(form)792
X2272 y Fp(x)c Fo(=)h Fn(L)911 2250 y Fe(y)911 2286 y
XFg(A)942 2271 y Fo(\026)940 2272 y Fp(x)c Fo(+)i Fp(x)1051
X2279 y Fj(0)1085 2272 y Fn(:)617 b Fo(\(2.32\))59 2375
Xy(This)16 b(bac)o(ktransformation)e(is)h(mathematically)h(equiv)m(alen)
Xo(t)h(to)e(the)g(one)g(in)h(\(2.25\))e(since)i(w)o(e)f(ha)o(v)o(e)348
X2483 y Fn(L)379 2461 y Fe(y)379 2496 y Fg(A)420 2483
Xy Fo(=)e(\()p Fn(I)506 2490 y Fg(n)540 2483 y Fm(\000)d
XFn(K)624 2494 y Fg(o)650 2483 y Fn(T)683 2464 y Fe(\000)p
XFj(1)677 2494 y Fg(o)730 2483 y Fn(H)772 2464 y Fg(T)768
X2494 y(o)799 2483 y Fn(A)p Fo(\))e Fn(L)890 2464 y Fe(y)998
X2483 y Fo(and)91 b Fp(x)1190 2490 y Fj(0)1222 2483 y
XFo(=)13 b Fn(K)1309 2494 y Fg(o)1336 2483 y Fn(T)1369
X2464 y Fe(\000)p Fj(1)1363 2494 y Fg(o)1416 2483 y Fn(H)1458
X2464 y Fg(T)1454 2494 y(o)1485 2483 y Fp(b)i Fn(:)173
Xb Fo(\(2.33\))130 2586 y(T)l(o)17 b(use)i(this)f(alternativ)o(e)g(form)
Xo(ulation)g(of)g(the)g(standard-form)f(transformation,)g(w)o(e)g(need)i
X(to)59 2642 y(compute)f Fp(x)274 2649 y Fj(0)311 2642
Xy Fo(as)g(w)o(ell)h(as)e(the)i(matrix-v)o(ector)e(pro)q(ducts)h
XFn(L)1114 2620 y Fe(y)1114 2656 y Fg(A)1145 2641 y Fo(\026)1142
X2642 y Fp(x)g Fo(and)g(\()p Fn(L)1328 2620 y Fe(y)1328
X2656 y Fg(A)1356 2642 y Fo(\))1374 2626 y Fg(T)1401 2642
Xy Fp(x)g Fo(e\016cien)o(tly)l(.)30 b(Giv)o(en)18 b(a)59
X2699 y(basis)e Fn(W)21 b Fo(for)15 b Fm(N)7 b Fo(\()p
XFn(L)p Fo(\),)14 b(the)h(v)o(ector)f Fp(x)685 2706 y
XFj(0)720 2699 y Fo(is)i(computed)f(b)o(y)g(the)h(follo)o(wing)g
X(algorithm:)781 2800 y Fn(S)61 b Fm( )42 b Fo(\()p Fn(A)8
Xb(W)e Fo(\))1084 2784 y Fe(y)781 2857 y Fp(x)809 2864
Xy Fj(0)870 2857 y Fm( )42 b Fn(W)14 b(S)c Fp(b)15 b Fn(:)1715
X2829 y Fo(\(2.34\))p eop
X%%Page: 20 22
X20 21 bop 64 159 a Fo(20)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(This)c(algorithm)f(in)o(v)o(olv)o(es)h
XFn(O)q Fo(\()p Fn(mn)p Fo(\()p Fn(n)t Fm(\000)t Fn(p)p
XFo(\)\))e(op)q(erations.)19 b(T)l(o)12 b(compute)h Fn(L)1326
X282 y Fe(y)1326 318 y Fg(A)1357 303 y Fo(\026)1354 304
Xy Fp(x)f Fo(and)g(\()p Fn(L)1528 282 y Fe(y)1528 318
Xy Fg(A)1556 304 y Fo(\))1574 288 y Fg(T)1602 304 y Fp(x)f
XFo(e\016cien)o(tly)59 367 y(\(w)o(e)16 b(emphasize)j(that)d
XFn(L)496 345 y Fe(y)496 381 y Fg(A)541 367 y Fo(is)i(nev)o(er)f
X(computed)g(explicitly\),)i(w)o(e)e(partition)g Fn(L)f
XFo(=)g(\()p Fn(L)1559 374 y Fj(11)1603 367 y Fn(;)f(L)1662
X374 y Fj(12)1699 367 y Fo(\),)i Fn(T)k Fo(=)59 424 y(\()p
XFn(T)104 431 y Fj(11)148 424 y Fn(;)15 b(T)203 431 y
XFj(12)240 424 y Fo(\))10 b(and)h Fp(x)380 407 y Fg(T)420
X424 y Fo(=)i(\()p Fp(x)514 407 y Fg(T)514 435 y Fj(1)548
X424 y Fn(;)i Fp(x)604 407 y Fg(T)604 435 y Fj(2)631 424
Xy Fo(\))10 b(suc)o(h)i(that)e Fn(L)883 431 y Fj(11)930
X424 y Fo(and)h Fn(T)1041 431 y Fj(11)1089 424 y Fo(ha)o(v)o(e)f
XFn(p)h Fo(columns)g(and)g Fp(x)1507 431 y Fj(1)1537 424
Xy Fo(has)g Fn(p)f Fo(elemen)o(ts.)59 480 y(F)l(or)15
Xb(e\016ciency)l(,)h(w)o(e)f(also)g(need)h(to)f(compute)g(the)g(\()p
XFn(n)c Fm(\000)f Fn(p)p Fo(\))g Fm(\002)g Fn(n)16 b Fo(matrix)843
X588 y Fn(T)j Fm( )13 b Fn(S)d(A)15 b(:)668 b Fo(\(2.35\))59
X699 y(Then)16 b Fp(y)d Fo(=)g Fn(L)298 677 y Fe(y)298
X713 y Fg(A)329 698 y Fo(\026)326 699 y Fp(x)i Fo(and)460
X698 y(^)457 699 y Fp(y)e Fo(=)g(\()p Fn(L)595 677 y Fe(y)595
X713 y Fg(A)623 699 y Fo(\))641 683 y Fg(T)668 699 y Fp(x)i
XFo(are)g(computed)h(b)o(y:)392 808 y Fp(y)42 b Fm( )g
XFn(L)580 789 y Fe(\000)p Fj(1)580 821 y(11)630 807 y
XFo(\026)627 808 y Fp(x)392 888 y(y)g Fm( )549 828 y Fh(\022)587
X859 y Fp(y)590 916 y Fo(0)623 828 y Fh(\023)664 888 y
XFm(\000)10 b Fn(W)k(T)793 895 y Fj(11)838 888 y Fp(y)1090
X829 y(x)41 b Fm( )h Fp(x)10 b Fm(\000)g Fn(T)1362 813
Xy Fg(T)1356 841 y Fj(11)1393 829 y Fn(W)1442 813 y Fg(T)1470
X829 y Fp(x)1092 887 y Fo(^)1089 888 y Fp(y)42 b Fm( )g
XFn(L)1277 869 y Fe(\000)p Fg(T)1277 901 y Fj(11)1332
X888 y Fp(x)15 b Fn(:)1715 859 y Fo(\(2.36\))59 1014 y(In)i(the)g(ab)q
X(o)o(v)o(e)f(form)o(ulas,)g Fn(W)23 b Fo(need)17 b(not)g(ha)o(v)o(e)f
X(orthonormal)f(columns,)j(although)f(this)g(is)g(the)f(b)q(est)59
X1070 y(c)o(hoice)i(from)f(a)g(n)o(umerical)h(p)q(oin)o(t)g(of)f(view.)
X26 b(F)l(or)17 b(more)g(details)h(ab)q(out)f(these)h(algorithms,)f(cf.)
Xg([47)o(,)59 1127 y(Section)f(2.3.2].)130 1185 y(F)l(or)e(the)h(latter)
Xf(standard-form)g(transformation)f(there)i(is)g(an)g(ev)o(en)g(simpler)
Xh(relation)f(b)q(et)o(w)o(een)59 1241 y(the)d(SVD)f(of)300
X1230 y(\026)288 1241 y Fn(A)g Fo(and)h(part)f(of)g(the)h(GSVD)f(of)h
X(\()p Fn(A;)c(L)p Fo(\))i(than)h(in)i Fm(x)p Fo(2.6.1)d(b)q(ecause)j
XFn(A)8 b(L)1473 1219 y Fe(y)1473 1255 y Fg(A)1513 1241
Xy Fo(=)1561 1209 y Fh(P)1605 1219 y Fg(p)1605 1254 y(i)p
XFj(=)p Fg(i)1666 1241 y Fp(u)1695 1248 y Fg(i)1717 1241
Xy Fn(\015)1741 1248 y Fg(i)1762 1241 y Fp(v)1791 1225
Xy Fg(T)1790 1253 y(i)1818 1241 y Fo(.)59 1298 y(I.e.,)13
Xb(except)h(for)f(the)g(ordering)h(the)f(GSVD)g(quan)o(tities)h
XFp(u)1066 1305 y Fg(i)1080 1298 y Fo(,)f Fn(\015)1130
X1305 y Fg(i)1144 1298 y Fo(,)g(and)g Fp(v)1284 1305 y
XFg(i)1311 1298 y Fo(are)g(iden)o(tical)j(to)c(the)h(similar)59
X1354 y(SVD)i(quan)o(tities,)h(and)f(with)h(the)f(same)g(notation)g(as)f
X(in)i(Eq.)f(\(2.26\))f(w)o(e)g(ha)o(v)o(e)352 1462 y(\()p
XFp(u)399 1469 y Fj(1)426 1462 y Fn(:)8 b(:)g(:)e Fp(u)516
X1469 y Fg(p)535 1462 y Fo(\))13 b(=)622 1450 y(\026)614
X1462 y Fn(U)f(E)691 1469 y Fg(p)726 1462 y Fn(;)98 b(V)22
Xb Fo(=)941 1450 y(\026)934 1462 y Fn(V)17 b(E)1012 1469
Xy Fg(p)1047 1462 y Fn(;)98 b Fo(\006)8 b Fn(M)1248 1443
Xy Fe(\000)p Fj(1)1307 1462 y Fo(=)13 b Fn(E)1389 1469
Xy Fg(p)1421 1450 y Fo(\026)1416 1462 y(\006)8 b Fn(E)1491
X1469 y Fg(p)1525 1462 y Fn(:)177 b Fo(\(2.37\))59 1569
Xy(This)16 b(relation)g(is)f(v)o(ery)g(imp)q(ortan)o(t)g(in)h
X(connection)g(with)g(the)f(iterativ)o(e)h(regularization)g(metho)q(ds.)
X59 1699 y Fp(2.6.3.)g(Norm)h(Relations)i(etc.)59 1788
Xy Fo(F)l(rom)12 b(the)h(ab)q(o)o(v)o(e)f(relations)i(\(2.26\))d(and)i
X(\(2.37\))d(b)q(et)o(w)o(een)k(the)e(SVD)h(of)1322 1777
Xy(\026)1310 1788 y Fn(A)f Fo(and)h(the)g(GSVD)g(of)f(\()p
XFn(A;)c(L)p Fo(\))59 1844 y(w)o(e)19 b(obtain)g(the)g(follo)o(wing)g(v)
Xo(ery)g(imp)q(ortan)o(t)f(relations)h(b)q(et)o(w)o(een)g(the)g(norms)g
X(related)g(to)f(the)h(t)o(w)o(o)59 1901 y(regularization)d(problems)356
X2008 y Fm(k)p Fn(L)8 b Fo(\()p Fp(x)g Fm(\000)j Fp(x)546
X1989 y Fe(\003)565 2008 y Fo(\))p Fm(k)606 2015 y Fj(2)638
X2008 y Fo(=)i Fm(k)711 2007 y Fo(\026)709 2008 y Fp(x)c
XFm(\000)794 2007 y Fo(\026)792 2008 y Fp(x)820 1989 y
XFe(\003)839 2008 y Fm(k)862 2015 y Fj(2)897 2008 y Fn(;)98
Xb Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)h Fp(b)p Fm(k)1207 2015
Xy Fj(2)1239 2008 y Fo(=)j Fm(k)1322 1997 y Fo(\026)1310
X2008 y Fn(A)1354 2007 y Fo(\026)1352 2008 y Fp(x)c Fm(\000)1438
X1996 y Fo(\026)1435 2008 y Fp(b)p Fm(k)1487 2015 y Fj(2)1521
X2008 y Fn(;)181 b Fo(\(2.38\))59 2116 y(where)19 b Fp(x)f
XFo(denotes)h(the)g(solution)g(obtained)h(b)o(y)e(transforming)1198
X2115 y(\026)1195 2116 y Fp(x)h Fo(bac)o(k)f(to)g(the)h(general-form)g
X(set-)59 2172 y(ting.)35 b(These)21 b(relations)f(are)g(v)o(ery)g(imp)q
X(ortan)o(t)g(in)h(connection)g(with)f(metho)q(ds)h(for)e(c)o(ho)q
X(osing)i(the)59 2228 y(regularization)16 b(parameter)e(b)q(ecause)i
X(they)e(sho)o(w)h(that)f(an)o(y)g(parameter-c)o(hoice)h(strategy)f
X(based)h(on)59 2285 y(these)d(norms)g(will)i(yield)g(the)e
XFk(same)g Fo(regularization)h(parameter)e(when)i(applied)h(to)d(the)i
X(general-form)59 2341 y(problem)j(and)f(the)h(transformed)e
X(standard-form)g(problem.)130 2400 y(Sev)o(eral)20 b(routines)h(are)e
X(included)k(in)e Ff(Regulariza)m(tion)h(Tools)e Fo(for)f(computations)h
X(related)59 2456 y(to)g(the)g(standard-form)g(transformations.)34
Xb(First)20 b(of)g(all,)j(the)d(routines)h Fl(std)p 1445
X2456 14 2 v 18 w(fo)o(rm)d Fo(and)j Fl(gen)p 1730 2456
XV 17 w(fo)o(rm)59 2512 y Fo(p)q(erform)14 b(b)q(oth)g(transformations)f
X(to)h(standard)g(from)f(and)h(bac)o(k)h(to)e(general)i(form.)k(These)14
Xb(routines)59 2569 y(are)h(mainly)h(included)h(for)e(p)q(edagogical)h
X(reasons.)j(Routine)d Fl(pinit)h Fo(computes)e(the)g(v)o(ector)f
XFp(x)1676 2576 y Fj(0)1710 2569 y Fo(in)i(Eq.)59 2625
Xy(\(2.30\))e(as)i(w)o(ell)g(as)g(the)g(matrix)f Fn(T)f(A)i
XFo(b)o(y)g(means)g(of)f(Algorithm)h(\(2.34\).)k(Finally)l(,)e(the)e(t)o
X(w)o(o)e(routines)59 2686 y Fl(lsolve)h Fo(and)h Fl(ltsolve)f
XFo(compute)h Fn(L)616 2664 y Fe(y)616 2700 y Fg(A)646
X2685 y Fo(\026)644 2686 y Fp(x)f Fo(and)g(\()p Fn(L)824
X2664 y Fe(y)824 2700 y Fg(A)852 2686 y Fo(\))870 2670
Xy Fg(T)897 2686 y Fp(x)g Fo(b)o(y)g(the)h(algorithms)f(in)h(\(2.36\).)
X130 2744 y(Regarding)g(the)g(matrix)f Fn(L)p Fo(,)g(discrete)i(appro)o
X(ximations)e(to)g(deriv)m(ativ)o(e)i(op)q(erators)e(on)g(a)h(regular)59
X2801 y(mesh)e(can)g(b)q(e)g(computed)g(b)o(y)g(routine)g
XFl(get)p 803 2801 V 17 w(l)f Fo(whic)o(h)i(also)f(pro)o(vides)g(a)f
X(matrix)h Fn(W)19 b Fo(with)c(orthonormal)59 2857 y(basis)h(v)o(ectors)
Xe(for)h(the)g(n)o(ull)i(space)e(of)g Fn(L)p Fo(.)p eop
X%%Page: 21 23
X21 22 bop 59 159 a Fo(2.7.)14 b(Direct)h(Regularization)i(Metho)q(ds)
X1021 b(21)p 59 178 1767 2 v 59 304 a Fr(2.7.)18 b(Direct)f
X(Regularization)g(Metho)r(ds)59 406 y Fo(In)k(this)f(and)g(the)g(next)g
X(section)g(w)o(e)g(shall)h(brie\015y)g(review)f(the)g(regularization)h
X(metho)q(ds)f(for)f(n)o(u-)59 462 y(merical)c(treatmen)o(t)d(of)h
X(discrete)h(ill-p)q(osed)i(problems)f(included)h(in)e(the)g
XFf(Regulariza)m(tion)h(Tools)59 519 y Fo(pac)o(k)m(age.)20
Xb(Our)14 b(aim)h(is)f(not)g(to)g(compare)g(these)h(and)f(other)g(metho)
Xq(ds,)g(b)q(ecause)h(that)f(is)h(outside)g(the)59 575
Xy(scop)q(e)g(of)g(this)g(pap)q(er.)21 b(In)15 b(fact,)f(v)o(ery)h
X(little)h(has)f(b)q(een)h(done)f(in)h(this)f(area,)f(cf.)h([2)o(,)f
X(37,)g(42,)g(53].)19 b(This)59 632 y(section)e(fo)q(cuses)g(on)g(metho)
Xq(ds)g(whic)o(h)g(are)f(essen)o(tially)j(direct,)e(i.e.,)g(metho)q(ds)f
X(where)h(the)g(solution)59 688 y(is)g(de\014ned)h(b)o(y)e(a)g(direct)h
X(computation)f(\(whic)o(h)h(ma)o(y)e(still)j(in)o(v)o(olv)o(e)f(an)f
X(iterativ)o(e)h(ro)q(ot-\014nding)g(pro-)59 745 y(cedure,)g(sa)o(y\),)e
X(while)j(regularization)f(metho)q(ds)g(whic)o(h)g(are)f(in)o
X(trinsically)j(iterativ)o(e)d(are)g(treated)g(in)59 801
Xy(the)f(next)h(section.)59 920 y Fp(2.7.1.)g(Tikhono)o(v)i
X(Regularization)59 1006 y Fo(Tikhono)o(v's)k(metho)q(d)h(is)g(of)g
X(course)f(a)h(direct)g(metho)q(d)g(b)q(ecause)h(the)e(regularized)i
X(solution)g Fp(x)1796 1013 y Fg(\025)1818 1006 y Fo(,)59
X1062 y(de\014ned)17 b(b)o(y)e(Eq.)f(\(2.6\),)g(is)h(the)h(solution)g
X(to)e(the)h(follo)o(wing)h(least)g(squares)f(problem)646
X1180 y(min)729 1118 y Fh(\015)729 1143 y(\015)729 1168
Xy(\015)729 1193 y(\015)752 1120 y(\022)802 1151 y Fn(A)791
X1208 y(\025L)856 1120 y Fh(\023)894 1180 y Fp(x)9 b Fm(\000)977
X1120 y Fh(\022)1057 1151 y Fp(b)1015 1208 y Fn(\025L)f
XFp(x)1109 1191 y Fe(\003)1135 1120 y Fh(\023)1166 1118
Xy(\015)1166 1143 y(\015)1166 1168 y(\015)1166 1193 y(\015)1189
X1221 y Fj(2)1231 1180 y Fn(;)471 b Fo(\(2.39\))59 1296
Xy(and)20 b(it)f(is)h(easy)g(to)f(see)g(that)g Fp(x)624
X1303 y Fg(\025)666 1296 y Fo(is)h(unique)h(if)f(the)f(n)o(ull)i(spaces)
Xf(of)f Fn(A)g Fo(and)h Fn(L)f Fo(in)o(tersect)h(trivially)59
X1353 y(\(as)15 b(they)h(usually)i(do)e(in)g(practice\).)23
Xb(The)16 b(most)f(e\016cien)o(t)i(algorithm)f(for)f(n)o(umerical)i
X(treatmen)o(t)e(of)59 1409 y(Tikhono)o(v's)d(metho)q(d)h(for)e(a)h
X(general)h(regularization)g(matrix)f Fn(L)h Fo(consists)f(of)g(three)h
X(steps)f([21)o(].)18 b(First,)59 1466 y(the)c(problem)g(is)h
X(transformed)d(in)o(to)i(standard)f(form)g(b)o(y)h(means)g(of)f(Eqs.)g
X(\(2.22\){\(2.24\))d(from)j Fm(x)p Fo(2.6.1)59 1522 y(\()89
X1511 y(\026)77 1522 y Fn(A)f Fo(=)h Fn(A)i Fo(if)f Fn(L)f
XFo(=)g Fn(I)372 1529 y Fg(n)395 1522 y Fo(\),)h(then)g(the)g(matrix)778
X1511 y(\026)766 1522 y Fn(A)g Fo(is)h(transformed)e(in)o(to)h(a)g
XFn(p)7 b Fm(\002)h Fn(p)14 b Fo(upp)q(er)h(bidiagonal)h(matrix)70
X1567 y(\026)59 1579 y Fn(B)i Fo(b)o(y)d(means)g(of)g(left)h(and)f(righ)
Xo(t)g(orthogonal)f(transformations,)820 1663 y(\026)808
X1675 y Fn(A)e Fo(=)910 1663 y(\026)902 1675 y Fn(U)957
X1663 y Fo(\026)946 1675 y Fn(B)997 1663 y Fo(\026)990
X1675 y Fn(V)1027 1656 y Fg(T)1070 1675 y Fn(;)59 1771
Xy Fo(and)21 b(\014nally)h(the)f(resulting)g(sparse)g(problem)g(with)g
X(a)f(banded)1224 1759 y(\026)1214 1771 y Fn(B)j Fo(is)e(solv)o(ed)g
X(for)1546 1759 y(\026)1539 1771 y Fn(V)1575 1754 y Fg(T)1605
X1770 y Fo(\026)1603 1771 y Fp(x)1631 1778 y Fg(\025)1674
X1771 y Fo(and)g(the)59 1827 y(solution)16 b(is)g(transformed)e(bac)o(k)
Xh(to)g(the)g(original)h(setting)f(b)o(y)h(means)f(of)f(\(2.25\).)130
X1883 y(In)g(this)h(pac)o(k)m(age)f(w)o(e)g(tak)o(e)f(another)h(approac)
Xo(h)g(to)f(solving)i(\(2.39\),)d(namely)l(,)j(b)o(y)f(using)h(the)f
X(\014lter)59 1940 y(factors)g(and)h(the)h(GSVD)f(explicitly)j(\(or)c
X(the)h(SVD,)g(if)h Fn(L)c Fo(=)h Fn(I)1142 1947 y Fg(n)1166
X1940 y Fo(\),)h(cf.)h(Eqs.)f(\(2.18\))g(and)h(\(2.19\).)j(This)59
X1996 y(approac)o(h,)i(whic)o(h)h(is)g(implemen)o(ted)g(in)g(routine)f
XFl(tikhonov)p Fo(,)i(is)e(more)g(suited)h(to)e(Matlab's)g(coarse)59
X2053 y(gran)o(ularit)o(y)l(.)g(F)l(or)12 b(p)q(edagogical)j(reasons,)d
X(w)o(e)h(also)g(include)i(a)e(routine)h Fl(bidiag)f Fo(for)f
X(bidiagonalization)59 2109 y(of)j(a)g(matrix.)59 2228
Xy Fp(2.7.2.)h(Least)j(Squares)d(with)i(a)g(Quadratic)h(Constrain)o(t)59
X2314 y Fo(There)h(are)f(t)o(w)o(o)f(other)h(regularization)h(metho)q
X(ds)f(whic)o(h)h(are)f(almost)g(equiv)m(alen)o(t)i(to)e(Tikhono)o(v's)
X59 2371 y(metho)q(d,)c(and)g(whic)o(h)h(can)f(b)q(e)g(treated)g(n)o
X(umerically)i(b)o(y)d(essen)o(tially)j(the)e(same)f(tec)o(hnique)j(as)d
X(men-)59 2427 y(tioned)g(ab)q(o)o(v)o(e)f(in)o(v)o(olving)i(a)e
X(transformation)f(to)h(standard)g(form)f(follo)o(w)o(ed)i(b)o(y)f
X(bidiagonalization)j(of)59 2484 y(the)h(co)q(e\016cien)o(t)g(matrix.)24
Xb(These)16 b(t)o(w)o(o)g(metho)q(ds)g(are)g(the)h(follo)o(wing)g(least)
Xg(squares)f(problems)h(with)59 2540 y(a)e(quadratic)g(inequalit)o(y)i
X(constrain)o(t)432 2636 y(min)8 b Fm(k)p Fn(A)g Fp(x)h
XFm(\000)h Fp(b)p Fm(k)714 2643 y Fj(2)844 2636 y Fo(sub)s(ject)15
Xb(to)56 b Fm(k)p Fn(L)8 b Fo(\()p Fp(x)g Fm(\000)j Fp(x)1289
X2617 y Fe(\003)1308 2636 y Fo(\))p Fm(k)1349 2643 y Fj(2)1381
X2636 y Fm(\024)i Fn(\013)257 b Fo(\(2.40\))434 2705 y(min)9
Xb Fm(k)p Fn(L)f Fo(\()p Fp(x)g Fm(\000)j Fp(x)708 2686
Xy Fe(\003)727 2705 y Fo(\))p Fm(k)768 2712 y Fj(2)844
X2705 y Fo(sub)s(ject)k(to)56 b Fm(k)p Fn(A)8 b Fp(x)h
XFm(\000)h Fp(b)p Fm(k)1298 2712 y Fj(2)1331 2705 y Fm(\024)i
XFn(\016)18 b(;)286 b Fo(\(2.41\))59 2801 y(where)13 b
XFn(\013)g Fo(and)f Fn(\016)j Fo(are)d(nonzero)g(parameters)g(eac)o(h)h
X(pla)o(ying)g(the)g(role)g(as)f(regularization)h(parameter)f(in)59
X2857 y(\(2.40\))f(and)h(\(2.41\),)f(resp)q(ectiv)o(ely)l(.)21
Xb(The)13 b(solution)g(to)f(b)q(oth)h(these)f(problems)h(is)g(iden)o
X(tical)i(to)d Fp(x)1704 2864 y Fg(\025)1738 2857 y Fo(from)p
Xeop
X%%Page: 22 24
X22 23 bop 64 159 a Fo(22)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(Tikhono)o(v's)11 b(metho)q(d)g(for)g(suitably)
Xh(c)o(hosen)f(v)m(alues)i(of)d Fn(\025)h Fo(that)g(dep)q(end)h(in)g(a)f
X(nonlinear)i(w)o(a)o(y)d(on)h Fn(\013)g Fo(and)59 361
Xy Fn(\016)r Fo(.)19 b(The)13 b(solution)h(to)e(the)i(\014rst)e(problem)
Xi(\(2.40\))d(is)j(computed)f(as)g(follo)o(ws:)18 b(if)c
XFm(k)p Fn(L)8 b Fo(\()p Fp(x)1517 368 y Fj(LSQ)1592 361
Xy Fm(\000)e Fp(x)1661 368 y Fj(0)1681 361 y Fo(\))p Fm(k)1722
X368 y Fj(2)1753 361 y Fm(\024)13 b Fn(\013)59 417 y Fo(then)j
XFn(\025)c Fm( )h Fo(0)i(and)g Fp(x)414 424 y Fg(\025)449
X417 y Fm( )e Fp(x)535 424 y Fj(LSQ)606 417 y Fo(,)i(else)h(use)f(an)g
X(iterativ)o(e)h(sc)o(heme)f(to)g(solv)o(e)401 517 y(min)9
Xb Fm(k)p Fn(A)f Fp(x)578 524 y Fg(\025)609 517 y Fm(\000)j
XFp(b)p Fm(k)707 524 y Fj(2)817 517 y Fo(sub)s(ject)k(to)91
Xb Fm(k)p Fn(L)8 b Fo(\()p Fp(x)1215 524 y Fg(\025)1246
X517 y Fm(\000)i Fp(x)1319 499 y Fe(\003)1339 517 y Fo(\))p
XFm(k)1380 524 y Fj(2)1411 517 y Fo(=)j Fn(\013)59 617
Xy Fo(for)i Fn(\025)g Fo(and)g Fp(x)287 624 y Fg(\025)309
X617 y Fo(.)21 b(Similarly)l(,)c(the)e(solution)i(to)d(the)i(second)g
X(problem)g(\(2.41\))d(is)j(computed)g(as)f(follo)o(ws)59
X674 y(\(where)h Fp(x)237 681 y Fj(0)271 674 y Fo(is)g(giv)o(en)h(b)o(y)
Xe(Eq.)g(\(2.30\)\):)j(if)f Fm(k)p Fn(A)8 b Fp(x)886 681
Xy Fj(0)915 674 y Fm(\000)i Fp(b)p Fm(k)1012 681 y Fj(2)1045
X674 y Fm(\024)k Fn(\016)j Fo(then)f Fn(\025)d Fm( )g(1)j
XFo(and)g Fp(x)1511 681 y Fg(\025)1547 674 y Fm( )d Fp(x)1633
X681 y Fj(0)1653 674 y Fo(,)i(else)h(use)59 730 y(an)f(iterativ)o(e)h
X(sc)o(heme)f(to)g(solv)o(e)405 830 y(min)8 b Fm(k)p Fn(L)g
XFo(\()p Fp(x)596 837 y Fg(\025)627 830 y Fm(\000)j Fp(x)701
X812 y Fe(\003)720 830 y Fo(\))p Fm(k)761 837 y Fj(2)871
X830 y Fo(sub)s(ject)k(to)91 b Fm(k)p Fn(A)8 b Fp(x)1254
X837 y Fg(\025)1285 830 y Fm(\000)j Fp(b)p Fm(k)1383 837
Xy Fj(2)1415 830 y Fo(=)i Fn(\016)59 930 y Fo(for)e Fn(\025)f
XFo(and)h Fp(x)274 937 y Fg(\025)297 930 y Fo(.)18 b(In)12
Xb Ff(Regulariza)m(tion)h(Tools)p Fo(,)e(routines)h Fl(lsqi)f
XFo(and)h Fl(discrep)g Fo(solv)o(e)f(\(2.40\))f(and)h(\(2.41\),)59
X987 y(resp)q(ectiv)o(ely)l(.)25 b(The)16 b(name)g(\\discrep")h(is)g
X(related)f(to)g(the)g(discrepancy)i(principle)h(for)c(c)o(ho)q(osing)i
X(the)59 1043 y(regularization)e(parameter,)e(cf.)g(Section)i(2.9.)k(An)
X14 b(e\016cien)o(t)g(algorithm)g(for)g(solving)g(\(2.40\))e(when)j
XFn(A)59 1100 y Fo(is)d(large)g(and)g(sparse,)g(based)g(on)g(Gauss)f
X(quadrature)g(and)h(Lanczos)g(bidiagonalization,)i(is)f(describ)q(ed)59
X1156 y(in)j([30)o(].)59 1276 y Fp(2.7.3.)g(TSVD,)h(MTSVD,)g(and)h
X(TGSVD)59 1362 y Fo(A)11 b(fundamen)o(tal)g(observ)m(ation)g(regarding)
Xg(the)g(ab)q(o)o(v)o(emen)o(tioned)g(metho)q(ds)g(is)g(that)g(they)f
X(circum)o(v)o(en)o(t)59 1418 y(the)21 b(ill)h(conditioning)h(af)d
XFn(A)h Fo(b)o(y)f(in)o(tro)q(ducing)i(a)f(new)f(problem)i(\(2.39\))c
X(with)j(a)g(w)o(ell-conditioned)59 1496 y(co)q(e\016cien)o(t)e(matrix)
X425 1436 y Fh(\022)474 1468 y Fn(A)463 1524 y(\025L)528
X1436 y Fh(\023)576 1496 y Fo(with)f(full)i(rank.)28 b(A)18
Xb(di\013eren)o(t)g(w)o(a)o(y)f(to)g(treat)g(the)h(ill-conditi)q(oning)j
X(of)59 1571 y Fn(A)16 b Fo(is)g(to)e(deriv)o(e)j(a)e(new)h(problem)g
X(with)g(a)f(w)o(ell-conditioned)j Fk(r)n(ank)e(de\014cient)f
XFo(co)q(e\016cien)o(t)h(matrix.)21 b(A)59 1628 y(fundamen)o(tal)16
Xb(result)g(ab)q(out)g(rank)f(de\014cien)o(t)i(matrices,)f(whic)o(h)g
X(can)g(b)q(e)g(deriv)o(ed)h(from)e(the)g(SVD)h(of)59
X1684 y Fn(A)p Fo(,)c(is)g(that)e(the)i(closest)f(rank-)p
XFn(k)i Fo(appro)o(ximation)e Fn(A)944 1691 y Fg(k)977
X1684 y Fo(to)f Fn(A)p Fo(|measured)j(in)f(the)f(2-norm|is)h(obtained)59
X1741 y(b)o(y)j(truncating)h(the)f(SVD)g(expansion)h(in)g(\(2.8\))e(at)g
XFn(k)q Fo(,)h(i.e.,)g Fn(A)1133 1748 y Fg(k)1170 1741
Xy Fo(is)g(giv)o(en)h(b)o(y)639 1880 y Fn(A)673 1887 y
XFg(k)707 1880 y Fo(=)775 1827 y Fg(k)755 1839 y Fh(X)756
X1931 y Fg(i)p Fj(=1)830 1880 y Fp(u)859 1887 y Fg(i)881
X1880 y Fn(\033)907 1887 y Fg(i)928 1880 y Fp(v)957 1861
Xy Fg(T)956 1891 y(i)999 1880 y Fn(;)98 b(k)14 b Fm(\024)f
XFn(n)i(:)464 b Fo(\(2.42\))59 2017 y(The)15 b(truncated)g(SVD)h
X(\(TSVD\))e([72)o(,)h(38)o(,)g(42)o(])g(and)g(the)g(mo)q(di\014ed)i
X(TSVD)e(\(MTSVD\))f([49)o(])g(regular-)59 2073 y(ization)i(metho)q(ds)f
X(are)g(based)h(on)f(this)h(observ)m(ation)f(in)h(that)f(one)g(solv)o
X(es)g(the)h(problems)505 2173 y(min)8 b Fm(k)p Fp(x)p
XFm(k)662 2180 y Fj(2)779 2173 y Fo(sub)s(ject)15 b(to)56
Xb(min)8 b Fm(k)p Fn(A)1174 2180 y Fg(k)1203 2173 y Fp(x)i
XFm(\000)g Fp(b)p Fm(k)1338 2180 y Fj(2)1715 2173 y Fo(\(2.43\))507
X2242 y(min)f Fm(k)p Fn(L)f Fp(x)p Fm(k)704 2249 y Fj(2)779
X2242 y Fo(sub)s(ject)15 b(to)56 b(min)8 b Fm(k)p Fn(A)1174
X2249 y Fg(k)1203 2242 y Fp(x)i Fm(\000)g Fp(b)p Fm(k)1338
X2249 y Fj(2)1373 2242 y Fn(;)329 b Fo(\(2.44\))59 2342
Xy(where)20 b Fn(A)229 2349 y Fg(k)269 2342 y Fo(is)g(the)g(rank-)p
XFn(k)g Fo(matrix)f(in)h(Eq.)f(\(2.42\).)31 b(The)19 b(solutions)i(to)d
X(these)i(t)o(w)o(o)e(problems)i(are)59 2398 y(giv)o(en)c(b)o(y)780
X2491 y Fp(x)808 2498 y Fg(k)842 2491 y Fo(=)910 2439
Xy Fg(k)890 2451 y Fh(X)891 2542 y Fg(i)p Fj(=1)970 2461
Xy Fp(u)999 2444 y Fg(T)999 2473 y(i)1026 2461 y Fp(b)p
X970 2481 86 2 v 993 2523 a Fn(\033)1019 2530 y Fg(i)1068
X2491 y Fp(v)1096 2498 y Fg(i)1715 2491 y Fo(\(2.45\))666
X2618 y Fp(x)694 2625 y Fg(L;k)761 2618 y Fo(=)d Fp(x)837
X2625 y Fg(k)868 2618 y Fm(\000)e Fn(V)941 2625 y Fg(k)969
X2618 y Fo(\()p Fn(L)d(V)1053 2625 y Fg(k)1073 2618 y
XFo(\))1091 2600 y Fe(y)1109 2618 y Fn(L)g Fp(x)1176 2625
Xy Fg(k)1211 2618 y Fn(;)491 b Fo(\(2.46\))59 2701 y(where)16
Xb(\()p Fn(L)8 b(V)275 2708 y Fg(k)295 2701 y Fo(\))313
X2684 y Fe(y)347 2701 y Fo(is)16 b(the)h(pseudoin)o(v)o(erse)g(of)e
XFn(L)8 b(V)879 2708 y Fg(k)900 2701 y Fo(,)16 b(and)g
XFn(V)1045 2708 y Fg(k)1080 2701 y Fm(\021)e Fo(\()p Fp(v)1175
X2708 y Fg(k)q Fj(+1)1241 2701 y Fn(;)8 b(:)g(:)g(:)d(;)j
XFp(v)1371 2708 y Fg(n)1393 2701 y Fo(\).)22 b(In)17 b(other)e(w)o
X(ords,)h(the)59 2757 y(correction)f(to)g Fp(x)355 2764
Xy Fg(k)391 2757 y Fo(in)h(\(2.46\))d(is)j(the)f(solution)h(to)f(the)g
X(follo)o(wing)h(least)f(squares)g(problem)709 2857 y(min)8
Xb Fm(k)p Fo(\()p Fn(L)g(V)899 2864 y Fg(k)919 2857 y
XFo(\))g Fp(z)i Fm(\000)g Fn(L)e Fp(x)1090 2864 y Fg(k)1111
X2857 y Fm(k)1134 2864 y Fj(2)1168 2857 y Fn(:)p eop
X%%Page: 23 25
X23 24 bop 59 159 a Fo(2.7.)14 b(Direct)h(Regularization)i(Metho)q(ds)
X1021 b(23)p 59 178 1767 2 v 59 304 a(W)l(e)15 b(note)g(in)i(passing)e
X(that)g(the)g(TSVD)g(solution)h Fp(x)970 311 y Fg(k)1006
X304 y Fo(is)g(the)f(only)h(regularized)h(solution)f(whic)o(h)g(has)59
X361 y(no)g(comp)q(onen)o(t)f(in)i(the)e(n)o(umerical)i(n)o(ull-space)g
X(of)e Fn(A)p Fo(,)h(spanned)g(b)o(y)g(the)f(columns)h(of)g
XFn(V)1598 368 y Fg(k)1618 361 y Fo(.)21 b(All)c(other)59
X417 y(regularized)i(solutions,)f(exempli\014ed)i(b)o(y)d(the)h(MTSVD)f
X(solution)h Fp(x)1274 424 y Fg(L;k)1328 417 y Fo(,)g(has)f(some)g(comp)
Xq(onen)o(t)h(in)59 474 y Fn(A)p Fo('s)j(n)o(umerical)h(n)o(ull)h(space)
Xe(in)h(order)f(to)g(ac)o(hiev)o(e)h(the)f(desired)h(prop)q(erties)g(of)
Xf(the)g(solution,)i(as)59 530 y(con)o(trolled)16 b(b)o(y)f(the)g
X(matrix)g Fn(L)p Fo(.)130 587 y(As)h(an)g(alternativ)o(e)h(to)f(the)g
X(ab)q(o)o(v)o(emen)o(tioned)h(MTSVD)f(metho)q(d)h(for)f(general-form)g
X(problems)59 643 y(one)c(can)h(generalize)h(the)e(TSVD)g(metho)q(d)h
X(to)e(the)i(GSVD)f(setting)g([41)o(,)g(44)o(].)19 b(The)12
Xb(resulting)i(metho)q(d,)59 700 y(truncated)h(GSVD)g(\(TGSVD\),)f(is)i
X(easiest)g(to)e(in)o(tro)q(duce)j(via)e(the)h(standard-form)e
X(transformation)59 760 y(from)j Fm(x)p Fo(2.6.2)g(with)419
X749 y(\026)407 760 y Fn(A)h Fo(=)f Fn(A)8 b(L)584 738
Xy Fe(y)584 774 y Fg(A)612 760 y Fo(,)647 748 y(\026)644
X760 y Fp(b)17 b Fo(=)h Fp(b)12 b Fm(\000)g Fn(A)c Fp(x)901
X767 y Fj(0)920 760 y Fo(,)18 b(and)g Fp(x)f Fo(=)h Fn(L)1171
X738 y Fe(y)1171 774 y Fg(A)1202 759 y Fo(\026)1199 760
Xy Fp(x)12 b Fo(+)g Fp(x)1314 767 y Fj(0)1351 760 y Fm(\))17
Xb Fn(L)8 b Fp(x)17 b Fo(=)1552 759 y(\026)1550 760 y
XFp(x)o Fo(.)28 b(In)19 b(analogy)59 817 y(with)d(the)h(TSVD)e(metho)q
X(d)i(w)o(e)e(no)o(w)h(in)o(tro)q(duce)h(a)f(rank-)p Fn(k)h
XFo(appro)o(ximation)1419 805 y(\026)1407 817 y Fn(A)1441
X824 y Fg(k)1478 817 y Fo(to)1546 805 y(\026)1534 817
Xy Fn(A)f Fo(via)h(its)f(SVD.)59 873 y(Due)j(to)f(the)g(SVD-GSVD)h
X(relations)g(b)q(et)o(w)o(een)934 862 y(\026)922 873
Xy Fn(A)g Fo(and)g(\()p Fn(A;)8 b(L)p Fo(\),)17 b(computation)h(of)h
X(the)f(matrix)1787 862 y(\026)1775 873 y Fn(A)1809 880
Xy Fg(k)59 930 y Fo(is)f(essen)o(tially)h(a)f(\\truncated)f(GSVD")g(b)q
X(ecause)946 918 y(\026)934 930 y Fn(A)968 937 y Fg(k)1005
X930 y Fo(=)1055 898 y Fh(P)1099 908 y Fg(p)1099 944 y(i)p
XFj(=)p Fg(p)p Fe(\000)p Fg(k)q Fj(+1)1258 930 y Fp(u)1287
X937 y Fg(i)1308 930 y Fn(\015)1332 937 y Fg(i)1354 930
Xy Fp(v)1383 913 y Fg(T)1382 942 y(i)1409 930 y Fo(.)24
Xb(Then)18 b(w)o(e)e(de\014ne)i(the)59 999 y(truncated)d(GSVD)g
X(\(TGSVD\))f(solution)i(as)854 998 y(^)852 999 y Fp(x)880
X1006 y Fg(L;k)947 999 y Fo(=)d Fn(L)1026 977 y Fe(y)1026
X1013 y Fg(A)1057 998 y Fo(\026)1055 999 y Fp(x)1083 1006
Xy Fg(k)1114 999 y Fo(+)d Fp(x)1187 1006 y Fj(0)1207 999
Xy Fo(,)k(where)1368 998 y(\026)1366 999 y Fp(x)1394 1006
Xy Fg(k)1430 999 y Fo(solv)o(es)h(the)g(problem)487 1101
Xy(min)8 b Fm(k)595 1100 y Fo(\026)593 1101 y Fp(x)p Fm(k)644
X1108 y Fj(2)754 1101 y Fo(sub)s(ject)15 b(to)98 b(min)8
Xb Fm(k)1169 1090 y Fo(\026)1157 1101 y Fn(A)1191 1108
Xy Fg(k)1223 1100 y Fo(\026)1220 1101 y Fp(x)i Fm(\000)1306
X1089 y Fo(\026)1303 1101 y Fp(b)p Fm(k)1355 1108 y Fj(2)1390
X1101 y Fn(:)312 b Fo(\(2.47\))59 1203 y(De\014nition)14
Xb(\(2.47\))d(together)g(with)i(the)g(GSVD)f(of)h(\()p
XFn(A;)8 b(L)p Fo(\))j(then)i(immediately)h(lead)f(to)f(the)h(follo)o
X(wing)59 1260 y(simple)k(expression)f(of)f(the)g(TGSVD)g(solution)547
X1391 y(^)545 1392 y Fp(x)573 1399 y Fg(k)q(;L)640 1392
Xy Fo(=)754 1336 y Fg(p)732 1352 y Fh(X)688 1444 y Fg(i)p
XFj(=)p Fg(p)p Fe(\000)p Fg(k)q Fj(+1)849 1361 y Fp(u)878
X1345 y Fg(T)878 1373 y(i)906 1361 y Fp(b)p 849 1382 86
X2 v 872 1423 a Fn(\033)898 1430 y Fg(i)948 1392 y Fp(x)976
X1399 y Fg(i)999 1392 y Fo(+)1085 1339 y Fg(n)1066 1352
Xy Fh(X)1045 1443 y Fg(i)p Fj(=)p Fg(p)p Fj(+1)1147 1392
Xy Fo(\()p Fp(u)1194 1373 y Fg(T)1194 1403 y(i)1221 1392
Xy Fp(b)p Fo(\))8 b Fp(x)1304 1399 y Fg(i)1333 1392 y
XFn(;)369 b Fo(\(2.48\))59 1538 y(where)16 b(the)h(last)f(term)g(is)g
X(the)g(comp)q(onen)o(t)h Fp(x)855 1545 y Fj(0)890 1538
Xy Fo(\(2.30\))d(in)j(the)g(n)o(ull)g(space)g(of)f Fn(L)p
XFo(.)22 b(De\014ned)17 b(this)g(w)o(a)o(y)l(,)59 1595
Xy(the)g(TGSVD)g(solution)h(is)f(a)g(natural)g(generalization)i(of)d
X(the)i(TSVD)e(solution)i Fp(x)1513 1602 y Fg(k)1534 1595
Xy Fo(.)26 b(The)17 b(TGSVD)59 1651 y(metho)q(d)g(is)g(also)g(a)g
X(generalization)h(of)e(TSVD)h(b)q(ecause)h(b)q(oth)f
XFp(x)1202 1658 y Fg(k)1240 1651 y Fo(and)1332 1650 y(^)1330
X1651 y Fp(x)1358 1658 y Fg(k)q(;L)1429 1651 y Fo(can)g(b)q(e)h(deriv)o
X(ed)f(from)59 1708 y(the)d(corresp)q(onding)h(Tikhono)o(v)f(solutions)g
X(\(2.18\))e(and)i(\(2.19\))e(b)o(y)i(substituting)h(0's)e(and)h(1's)f
X(for)h(the)59 1764 y(Tikhono)o(v)h(\014lter)h(factors)e
XFn(f)541 1771 y Fg(i)555 1764 y Fo(.)130 1820 y(The)k(TSVD,)f(MTSVD,)g
X(and)h(TGSVD)g(solutions)g(are)g(computed)g(b)o(y)g(the)g(routines)g
X(with)h(the)59 1877 y(ob)o(vious)c(names)h Fl(tsvd)p
XFo(,)g Fl(mtsvd)p Fo(,)f(and)g Fl(tgsvd)p Fo(.)59 1997
Xy Fp(2.7.4.)h(Damp)q(ed)i(SVD/GSVD)59 2083 y Fo(A)12
Xb(less)h(kno)o(w)f(regularization)h(metho)q(d)g(whic)o(h)g(is)f(based)h
X(on)f(the)h(SVD)f(or)g(the)g(GSVD)g(is)h(the)f(damp)q(ed)59
X2139 y(SVD/GSVD)21 b(\(damp)q(ed)h(SVD)f(w)o(as)g(in)o(tro)q(duced)i
X(in)f([20)o(],)g(and)g(our)f(generalization)i(to)e(damp)q(ed)59
X2196 y(GSVD)15 b(is)g(ob)o(vious\).)20 b(Here,)15 b(instead)h(of)e
X(using)i(\014lter)g(factors)e(0)h(and)g(1)g(as)f(in)i(TSVD)f(and)h
X(TGSVD,)59 2252 y(one)f(in)o(tro)q(duces)h(a)f(smo)q(other)g(cut-o\013)
Xg(b)o(y)g(means)g(of)g(\014lter)g(factors)f Fn(f)1274
X2259 y Fg(i)1304 2252 y Fo(de\014ned)j(as)206 2361 y
XFn(f)228 2368 y Fg(i)255 2361 y Fo(=)349 2330 y Fn(\033)375
X2337 y Fg(i)p 308 2350 123 2 v 308 2392 a Fn(\033)334
X2399 y Fg(i)359 2392 y Fo(+)10 b Fn(\025)481 2361 y Fo(\(for)k
XFn(L)f Fo(=)g Fn(I)680 2368 y Fg(n)703 2361 y Fo(\))91
Xb(and)g Fn(f)998 2368 y Fg(i)1025 2361 y Fo(=)1143 2330
Xy Fn(\033)1169 2337 y Fg(i)p 1078 2350 172 2 v 1078 2392
Xa Fn(\033)1104 2399 y Fg(i)1128 2392 y Fo(+)10 b Fn(\025)e(\026)1235
X2399 y Fg(i)1299 2361 y Fo(\(for)15 b Fn(L)d Fm(6)p Fo(=)h
XFn(I)1498 2368 y Fg(n)1522 2361 y Fo(\))i Fn(:)147 b
XFo(\(2.49\))59 2482 y(These)21 b(\014lter)f(factors)f(deca)o(y)h(slo)o
X(w)o(er)g(than)g(the)g(Tikhono)o(v)g(\014lter)h(factors)e(and)h(th)o
X(us,)h(in)g(a)f(sense,)59 2538 y(in)o(tro)q(duce)h(less)f(\014ltering.)
X34 b(The)19 b(damp)q(ed)i(SVD/GSVD)e(solutions)h(are)f(computed)h(b)o
X(y)g(means)f(of)59 2595 y(routine)d Fl(dsvd)p Fo(.)59
X2715 y Fp(2.7.5.)g(Maxim)o(um)h(En)o(trop)o(y)f(Regularization)59
X2801 y Fo(This)h(regularization)g(metho)q(d)g(is)g(frequen)o(tly)g
X(used)g(in)g(image)g(reconstruction)g(and)f(related)h(appli-)59
X2857 y(cations)g(where)g(a)f(solution)i(with)f(p)q(ositiv)o(e)g(elemen)
Xo(ts)h(is)f(sough)o(t.)23 b(In)18 b(maxim)o(um)e(en)o(trop)o(y)g
X(regular-)p eop
X%%Page: 24 26
X24 25 bop 64 159 a Fo(24)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(ization,)f(the)f(follo)o(wing)h(nonlinear)g
X(function)h(is)e(used)h(as)f(side)h(constrain)o(t:)693
X431 y(\012\()p Fp(x)p Fo(\))c(=)869 378 y Fg(n)850 391
Xy Fh(X)851 482 y Fg(i)p Fj(=1)925 431 y Fn(x)951 438
Xy Fg(i)980 431 y Fo(log)q(\()p Fn(w)1090 438 y Fg(i)1111
X431 y Fn(x)1137 438 y Fg(i)1151 431 y Fo(\))j Fn(;)518
Xb Fo(\(2.50\))59 564 y(where)16 b Fn(x)217 571 y Fg(i)248
X564 y Fo(are)f(the)i(p)q(ositiv)o(e)g(elemen)o(ts)g(of)e(the)i(v)o
X(ector)e Fp(x)p Fo(,)h(and)g Fn(w)1208 571 y Fj(1)1227
X564 y Fn(;)8 b(:)g(:)g(:)d(;)j(w)1362 571 y Fg(n)1400
X564 y Fo(are)16 b Fn(n)h Fo(w)o(eigh)o(ts.)22 b(Notice)59
X621 y(that)12 b Fm(\000)p Fo(\012\()p Fp(x)p Fo(\))g(measures)g(the)h
X(en)o(trop)o(y)e(of)i Fp(x)p Fo(,)f(hence)h(the)g(name)g(of)f(this)h
X(regularization)g(metho)q(d.)19 b(The)59 677 y(mathematical)e
X(justi\014cation)g(for)f(this)g(particular)h(c)o(hoice)h(of)e(\012\()p
XFp(x)p Fo(\))f(is)i(that)e(it)i(yields)h(a)e(solution)h
XFp(x)59 733 y Fo(whic)o(h)f(is)g(most)f(ob)s(jectiv)o(e,)g(or)g
X(maximally)h(uncommitted,)g(with)g(resp)q(ect)f(to)g(missing)i
X(information)59 790 y(in)f(the)f(righ)o(t-hand)h(side,)g(cf.)f(e.g.)f
X([64)o(].)130 846 y(Maxim)o(um)j(en)o(trop)o(y)g(regularization)h(is)g
X(implemen)o(ted)i(in)e Ff(Regulariza)m(tion)i(Tools)d
XFo(in)i(the)59 903 y(routine)13 b Fl(maxent)f Fo(whic)o(h)i(uses)e(a)h
X(nonlinear)g(conjugate)f(gradien)o(t)h(algorithm)f([28)o(,)h
XFm(x)p Fo(4.1])e(with)i(inexact)59 959 y(line)18 b(searc)o(h)e(to)g
X(compute)g(the)h(regularized)g(solution.)24 b(The)17
Xb(t)o(ypical)g(step)f(in)h(this)g(metho)q(d)f(has)h(the)59
X1016 y(form)592 1061 y Fp(x)620 1045 y Fj(\()p Fg(k)q
XFj(+1\))757 1061 y Fm( )42 b Fp(x)872 1045 y Fj(\()p
XFg(k)q Fj(\))930 1061 y Fo(+)11 b Fn(\013)1005 1068 y
XFg(k)1034 1061 y Fp(p)1063 1045 y Fj(\()p Fg(k)q Fj(\))592
X1120 y Fp(p)621 1103 y Fj(\()p Fg(k)q Fj(+1\))757 1120
Xy Fm( )42 b(\000r)p Fn(F)6 b Fo(\()p Fp(x)998 1103 y
XFj(\()p Fg(k)q Fj(+1\))1092 1120 y Fo(\))j(+)i Fn(\014)1191
X1127 y Fg(k)1220 1120 y Fp(p)1249 1103 y Fj(\()p Fg(k)q
XFj(\))1715 1090 y Fo(\(2.51\))59 1198 y(in)16 b(whic)o(h)g
XFn(F)22 b Fo(is)16 b(the)f(function)h(to)e(b)q(e)i(minimized,)532
X1324 y Fn(F)6 b Fo(\()p Fp(x)p Fo(\))12 b(=)h Fm(k)p
XFn(A)8 b Fp(x)h Fm(\000)h Fp(b)p Fm(k)890 1306 y Fj(2)890
X1336 y(2)920 1324 y Fo(+)g Fn(\025)992 1306 y Fj(2)1038
X1271 y Fg(n)1019 1284 y Fh(X)1021 1375 y Fg(i)p Fj(=1)1094
X1324 y Fn(x)1120 1331 y Fg(i)1142 1324 y Fo(log)q(\()p
XFn(w)1252 1331 y Fg(i)1273 1324 y Fn(x)1299 1331 y Fg(i)1313
X1324 y Fo(\))k Fn(;)59 1457 y Fo(and)h Fn(F)6 b Fo('s)16
Xb(gradien)o(t)f(is)h(giv)o(en)f(b)o(y)451 1614 y Fm(r)p
XFn(F)6 b Fo(\()p Fp(x)p Fo(\))12 b(=)h(2)8 b Fn(A)713
X1596 y Fg(T)740 1614 y Fo(\()p Fn(A)g Fp(x)h Fm(\000)h
XFp(b)p Fo(\))g(+)g Fn(\025)1011 1596 y Fj(2)1038 1517
Xy Fh(0)1038 1590 y(B)1038 1617 y(@)1086 1547 y Fo(1)g(+)g(log)q(\()p
XFn(w)1274 1554 y Fj(1)1293 1547 y Fn(x)1319 1554 y Fj(1)1338
X1547 y Fo(\))1215 1592 y(.)1215 1609 y(.)1215 1625 y(.)1082
X1682 y(1)g(+)g(log)q(\()p Fn(w)1270 1689 y Fg(n)1293
X1682 y Fn(x)1319 1689 y Fg(n)1342 1682 y Fo(\))1367 1517
Xy Fh(1)1367 1590 y(C)1367 1617 y(A)1426 1614 y Fn(:)59
X1781 y Fo(In)18 b(Algorithm)f(\(2.51\),)f(the)h(step-length)h
X(parameter)f Fn(\013)1051 1788 y Fg(k)1089 1781 y Fo(miminizes)j
XFn(F)6 b Fo(\()p Fp(x)1385 1765 y Fj(\()p Fg(k)q Fj(\))1445
X1781 y Fo(+)11 b Fn(\013)1520 1788 y Fg(k)1549 1781 y
XFp(p)1578 1765 y Fj(\()p Fg(k)q Fj(\))1627 1781 y Fo(\))17
Xb(with)h(the)59 1837 y(constrain)o(t)d(that)g(all)h(elemen)o(ts)h(of)e
XFp(x)702 1821 y Fj(\()p Fg(k)q Fj(\))760 1837 y Fo(+)c
XFn(\013)835 1844 y Fg(k)864 1837 y Fp(p)893 1821 y Fj(\()p
XFg(k)q Fj(\))957 1837 y Fo(b)q(e)17 b(p)q(ositiv)o(e,)f(and)f(it)h(is)g
X(computed)g(b)o(y)g(means)f(of)59 1894 y(an)g(inexact)h(line)h(searc)o
X(h.)j(Then)15 b Fn(\014)666 1901 y Fg(k)702 1894 y Fo(is)h(computed)g
X(b)o(y)329 1993 y Fn(\014)355 2000 y Fg(k)388 1993 y
XFo(=)d(\()p Fm(r)p Fn(F)6 b Fo(\()p Fp(x)573 1974 y Fj(\()p
XFg(k)q Fj(+1\))666 1993 y Fo(\))k Fm(\000)h(r)p Fn(F)6
Xb Fo(\()p Fp(x)859 1974 y Fj(\()p Fg(k)q Fj(\))907 1993
Xy Fo(\)\))943 1974 y Fg(T)970 1993 y Fm(r)p Fn(F)g Fo(\()p
XFp(x)1089 1974 y Fj(\()p Fg(k)q Fj(+1\))1183 1993 y Fo(\))i
XFn(=)g Fm(kr)p Fn(F)e Fo(\()p Fp(x)1382 1974 y Fj(\()p
XFg(k)q Fj(+1\))1473 1993 y Fo(\))p Fm(k)1514 1974 y Fj(2)1514
X2004 y(2)1549 1993 y Fn(:)59 2092 y Fo(This)21 b(c)o(hoice)g(of)f
XFn(\014)391 2099 y Fg(k)432 2092 y Fo(has)h(the)f(p)q(oten)o(tial)h
X(adv)m(an)o(tage)f(that)f(it)i(giv)o(es)g(\\automatic")e(restart)g(to)h
X(the)59 2148 y(steep)q(est)c(descen)o(t)f(direction)i(in)f(case)f(of)g
X(slo)o(w)g(con)o(v)o(ergence.)59 2268 y Fp(2.7.6.)h(T)l(runcated)i(T)l
X(otal)h(Least)f(Squares)59 2353 y Fo(The)f(last)f(direct)h
X(regularization)g(metho)q(d)g(included)h(in)g Ff(Regulariza)m(tion)g
X(Tools)e Fo(is)h(truncated)59 2410 y(total)22 b(least)g(squares)h
X(\(TTLS\).)e(F)l(or)h(rank)g(de\014cien)o(t)i(matrices,)g(total)e
X(least)g(squares)g([26)o(])g(tak)o(es)59 2466 y(its)g(basis)g(in)h(an)f
X(SVD)g(of)f(the)h(comp)q(ound)g(matrix)g(\()p Fn(A)f
XFp(b)p Fo(\))j(=)1229 2455 y(~)1221 2466 y Fn(U)1269
X2455 y Fo(~)1264 2466 y(\006)1312 2455 y(~)1305 2466
Xy Fn(V)1341 2450 y Fg(T)1391 2466 y Fo(with)e(the)g(matrix)1747
X2455 y(~)1740 2466 y Fn(V)33 b Fm(2)59 2523 y Fp(I)-8
Xb(R)111 2505 y Fj(\()p Fg(n)p Fj(+1\))p Fe(\002)p Fj(\()p
XFg(n)p Fj(+1\))343 2523 y Fo(partitioned)16 b(suc)o(h)g(that)335
X2629 y(~)328 2641 y Fn(V)22 b Fo(=)425 2581 y Fh(\022)470
X2601 y Fo(~)463 2612 y Fn(V)490 2619 y Fj(11)579 2601
Xy Fo(~)572 2612 y Fn(V)599 2619 y Fj(12)470 2657 y Fo(~)463
X2669 y Fn(V)490 2676 y Fj(21)579 2657 y Fo(~)572 2669
Xy Fn(V)599 2676 y Fj(22)644 2581 y Fh(\023)697 2641 y
XFn(;)815 2629 y Fo(~)808 2641 y Fn(V)835 2648 y Fj(11)885
X2641 y Fm(2)13 b Fp(I)-8 b(R)979 2622 y Fg(n)p Fe(\002)p
XFg(k)1064 2641 y Fn(;)1183 2629 y Fo(~)1176 2641 y Fn(V)1203
X2648 y Fj(22)1252 2641 y Fm(2)13 b Fp(I)-8 b(R)1346 2622
Xy Fj(1)p Fe(\002)p Fj(\()p Fg(n)p Fj(+1)p Fe(\000)p Fg(k)q
XFj(\))1549 2641 y Fn(;)153 b Fo(\(2.52\))59 2758 y(where)15
Xb Fn(k)i Fo(is)e(the)h(n)o(umerical)g(rank)f(of)g Fn(A)p
XFo(.)20 b(Then)15 b(the)h(TLS)f(solution)h(is)g(giv)o(en)g(b)o(y)594
X2856 y(~)592 2857 y Fp(x)620 2864 y Fg(k)653 2857 y Fo(=)d
XFm(\000)743 2846 y Fo(~)736 2857 y Fn(V)763 2864 y Fj(12)815
X2846 y Fo(~)808 2857 y Fn(V)845 2835 y Fe(y)835 2870
Xy Fj(22)884 2857 y Fo(=)g Fm(\000)974 2846 y Fo(~)967
X2857 y Fn(V)994 2864 y Fj(12)1046 2846 y Fo(~)1039 2857
Xy Fn(V)1076 2838 y Fg(T)1066 2868 y Fj(22)1111 2857 y
XFn(=)8 b Fm(k)1172 2846 y Fo(~)1165 2857 y Fn(V)1192
X2864 y Fj(22)1228 2857 y Fm(k)1251 2838 y Fj(2)1251 2868
Xy(2)1285 2857 y Fn(:)417 b Fo(\(2.53\))p eop
X%%Page: 25 27
X25 26 bop 59 159 a Fo(2.8.)14 b(Iterativ)o(e)h(Regularization)i(Metho)q
X(ds)976 b(25)p 59 178 1767 2 v 59 304 a(The)15 b(TLS)g(solution)h(is)f
X(robust)g(to)f(p)q(erturbations)h(of)g Fn(A)f Fo(b)q(ecause)i
X(inaccuracies)h(in)e Fn(A)g Fo(are)g(explicitly)59 361
Xy(tak)o(en)f(in)o(to)g(accoun)o(t)g(in)h(the)g(TLS)g(metho)q(d.)k
X(Therefore,)14 b(for)g(discrete)h(ill-p)q(osed)i(problems)e(with)g(no)
X59 417 y(gap)e(in)g(the)g(singular)h(v)m(alue)g(sp)q(ectrum)g(of)e
XFn(A)p Fo(,)h(it)g(mak)o(es)f(sense)i(to)e(de\014ne)i(a)f(truncated)g
X(TLS)g(solution)59 474 y(b)o(y)k(means)h(of)f(\(2.53\))f(where)h
XFn(k)i Fo(then)f(pla)o(ys)f(the)h(role)g(of)f(the)g(regularization)i
X(parameter;)e(see)h([27)o(])59 530 y(for)d(more)f(details.)21
Xb(The)16 b(truncated)f(TLS)h(solution)g(is)f(computed)h(b)o(y)f(means)g
X(of)g(routine)h Fl(ttls)p Fo(.)59 662 y Fr(2.8.)i(Iterativ)n(e)f
X(Regularization)g(Metho)r(ds)59 765 y Fo(This)f(section)g(describ)q(es)
Xh(the)f(iterativ)o(e)f(regularization)i(metho)q(ds)e(included)j(in)f
XFf(Regulariza)m(tion)59 822 y(Tools)p Fo(.)24 b(W)l(e)17
Xb(stress)f(that)g(our)g(Matlab)g(routines)i(should)f(b)q(e)h
X(considered)g(as)e(mo)q(del)h(implemen)o(ta-)59 878 y(tions;)c(real)f
X(implemen)o(tations)i(should)f(incorp)q(orate)f(an)o(y)f(sparsit)o(y)h
X(and/or)g(structure)f(of)h(the)g(matrix)59 935 y(A.)18
Xb(W)l(e)h(shall)g(\014rst)f(describ)q(e)i(standard-form)e(v)o(ersions)g
X(of)g(the)h(metho)q(ds)f(and)h(then)f(describ)q(e)j(the)59
X991 y(extension)15 b(necessary)g(for)f(treating)g(general-form)g
X(problems.)20 b(F)l(or)14 b(more)g(details)i(ab)q(out)e(these)g(and)59
X1048 y(other)h(iterativ)o(e)g(metho)q(ds,)g(cf.)g([37)o(,)g(Chapter)g
X(6{7].)59 1173 y Fp(2.8.1.)h(Conjugate)j(Gradien)o(ts)e(and)h(LSQR)59
X1261 y Fo(The)13 b(conjugate)f(gradien)o(t)h(\(CG\))e(algorithm)i(is)g
X(a)g(w)o(ell-kno)o(wn)g(metho)q(d)g(for)f(solving)i(sparse)e(systems)59
X1317 y(of)20 b(equations)i(with)f(a)f(symmetric)h(p)q(ositiv)o(e)h
X(de\014nite)h(co)q(e\016cien)o(t)e(matrix.)37 b(In)21
Xb(connection)h(with)59 1374 y(discrete)14 b(ill-p)q(osed)i(problems,)e
X(it)f(is)h(an)f(in)o(teresting)h(fact)f(that)f(when)i(the)f(CG)g
X(algorithm)g(is)h(applied)59 1430 y(to)g(the)g(unregularized)i(normal)e
X(equations)h Fn(A)863 1414 y Fg(T)891 1430 y Fn(A)8 b
XFp(x)k Fo(=)h Fn(A)1055 1414 y Fg(T)1082 1430 y Fp(b)h
XFo(\(implemen)o(ted)i(suc)o(h)f(that)e Fn(A)1644 1414
Xy Fg(T)1672 1430 y Fn(A)h Fo(is)h(not)59 1487 y(formed\))h(then)h(the)g
X(lo)o(w-frequency)g(comp)q(onen)o(ts)g(of)f(the)h(solution)h(tend)f(to)
Xf(con)o(v)o(erge)g(faster)g(than)59 1543 y(the)g(high-frequency)h(comp)
Xq(onen)o(ts.)k(Hence,)16 b(the)g(CG)f(pro)q(cess)h(has)f(some)g
X(inheren)o(t)i(regularization)59 1600 y(e\013ect)f(where)f(the)h(n)o
X(um)o(b)q(er)g(of)g(iterations)f(pla)o(ys)h(the)g(role)g(of)f(the)h
X(regularization)h(parameter.)j(The)59 1656 y Fn(k)q Fo(th)15
Xb(step)g(of)g(the)g(CG)g(pro)q(cess)h(essen)o(tially)g(has)f(the)h
X(form)614 1759 y Fn(\014)640 1766 y Fg(k)733 1759 y Fm( )42
Xb(k)p Fp(q)871 1742 y Fj(\()p Fg(k)q Fe(\000)p Fj(1\))964
X1759 y Fm(k)987 1742 y Fj(2)987 1770 y(2)1007 1759 y
XFn(=)p Fm(k)p Fp(q)1081 1742 y Fj(\()p Fg(k)q Fe(\000)p
XFj(2\))1174 1759 y Fm(k)1197 1742 y Fj(2)1197 1770 y(2)614
X1817 y Fp(p)643 1801 y Fj(\()p Fg(k)q Fj(\))733 1817
Xy Fm( )g Fp(q)848 1801 y Fj(\()p Fg(k)q Fe(\000)p Fj(1\))952
X1817 y Fo(+)10 b Fn(\014)1023 1824 y Fg(k)1052 1817 y
XFp(p)1081 1801 y Fj(\()p Fg(k)q Fe(\000)p Fj(1\))614
X1876 y Fn(\013)643 1883 y Fg(k)733 1876 y Fm( )42 b(k)p
XFp(q)871 1859 y Fj(\()p Fg(k)q Fe(\000)p Fj(1\))964 1876
Xy Fm(k)987 1859 y Fj(2)987 1887 y(2)1007 1876 y Fn(=)p
XFm(k)p Fn(A)1087 1859 y Fg(T)1114 1876 y Fn(A)8 b Fp(p)1185
X1859 y Fj(\()p Fg(k)q Fj(\))1233 1876 y Fm(k)1256 1859
Xy Fj(2)1256 1887 y(2)614 1934 y Fp(x)642 1917 y Fj(\()p
XFg(k)q Fj(\))733 1934 y Fm( )42 b Fp(x)848 1917 y Fj(\()p
XFg(k)q Fe(\000)p Fj(1\))952 1934 y Fo(+)10 b Fn(\013)1026
X1941 y Fg(k)1055 1934 y Fp(p)1084 1917 y Fj(\()p Fg(k)q
XFj(\))614 1992 y Fp(q)642 1976 y Fj(\()p Fg(k)q Fj(\))733
X1992 y Fm( )42 b Fp(q)848 1976 y Fj(\()p Fg(k)q Fe(\000)p
XFj(1\))952 1992 y Fm(\000)10 b Fn(\013)1026 1999 y Fg(k)1055
X1992 y Fn(A)1089 1976 y Fg(T)1117 1992 y Fn(A)e Fp(p)1188
X1976 y Fj(\()p Fg(k)q Fj(\))1715 1875 y Fo(\(2.54\))59
X2103 y(where)j Fp(x)214 2087 y Fj(\()p Fg(k)q Fj(\))274
X2103 y Fo(is)g(the)g(appro)o(ximation)g(to)f Fp(x)h Fo(after)f
XFn(k)i Fo(iterations,)g(while)g Fp(p)1272 2087 y Fj(\()p
XFg(k)q Fj(\))1332 2103 y Fo(and)f Fp(q)1444 2087 y Fj(\()p
XFg(k)q Fj(\))1503 2103 y Fo(are)g(t)o(w)o(o)e(auxiliary)59
X2160 y(iteration)16 b(v)o(ectors)e(of)h(length)h Fn(n)p
XFo(.)130 2217 y(T)l(o)11 b(explain)i(this)g(regularizing)g(e\013ect)e
X(of)h(the)g(CG)f(metho)q(d,)h(w)o(e)g(in)o(tro)q(duce)g(the)g(Krylo)o
X(v)g(subspace)350 2322 y Fm(K)385 2329 y Fg(k)406 2322
Xy Fo(\()p Fn(A)458 2303 y Fg(T)486 2322 y Fn(A;)c(A)575
X2303 y Fg(T)602 2322 y Fp(b)p Fo(\))k(=)h(span)p Fm(f)p
XFn(A)857 2303 y Fg(T)884 2322 y Fp(b)p Fn(;)8 b(A)968
X2303 y Fg(T)995 2322 y Fn(A)g(A)1071 2303 y Fg(T)1098
X2322 y Fp(b)p Fn(;)g(:)g(:)g(:)d(;)j Fo(\()p Fn(A)1281
X2303 y Fg(T)1308 2322 y Fn(A)p Fo(\))1360 2303 y Fg(k)q
XFe(\000)p Fj(1)1426 2322 y Fn(A)1460 2303 y Fg(T)1488
X2322 y Fp(b)p Fm(g)59 2427 y Fo(asso)q(ciated)19 b(with)h(the)f
XFn(k)q Fo(th)f(step)h(of)g(the)g(CG)f(algorithm)h(applied)i(to)e
XFn(A)1348 2410 y Fg(T)1375 2427 y Fn(A)8 b Fp(x)18 b
XFo(=)h Fn(A)1551 2410 y Fg(T)1579 2427 y Fp(b)p Fo(.)31
Xb(It)19 b(is)h(also)59 2483 y(con)o(v)o(enien)o(t)c(to)e(in)o(tro)q
X(duce)j(the)e(Ritz)h(p)q(olynomial)h Fn(P)983 2490 y
XFg(k)1019 2483 y Fo(asso)q(ciated)f(with)f(step)h Fn(k)q
XFo(:)686 2630 y Fn(P)715 2637 y Fg(k)737 2630 y Fo(\()p
XFn(\033)r Fo(\))11 b(=)881 2577 y Fg(k)864 2590 y Fh(Y)860
X2681 y Fg(j)r Fj(=1)942 2594 y Fo(\()p Fn(\022)982 2570
Xy Fj(\()p Fg(k)q Fj(\))981 2607 y Fg(j)1031 2594 y Fo(\))1049
X2577 y Fj(2)1078 2594 y Fm(\000)g Fn(\033)1152 2577 y
XFj(2)p 942 2620 230 2 v 993 2674 a Fo(\()p Fn(\022)1033
X2650 y Fj(\()p Fg(k)q Fj(\))1032 2686 y Fg(j)1082 2674
Xy Fo(\))1100 2660 y Fj(2)1191 2630 y Fn(:)511 b Fo(\(2.55\))59
X2794 y(Here,)18 b(\()p Fn(\022)222 2770 y Fj(\()p Fg(k)q
XFj(\))221 2807 y Fg(j)271 2794 y Fo(\))289 2778 y Fj(2)326
X2794 y Fo(are)f(the)g(Ritz)i(v)m(alues,)f(i.e.,)g(the)g
XFn(k)g Fo(eigen)o(v)m(alues)h(of)e Fn(A)1273 2778 y Fg(T)1301
X2794 y Fn(A)g Fo(restricted)h(to)f(the)g(Krylo)o(v)59
X2857 y(subspace)g Fm(K)285 2864 y Fg(k)306 2857 y Fo(\()p
XFn(A)358 2841 y Fg(T)386 2857 y Fn(A;)8 b(A)475 2841
Xy Fg(T)501 2857 y Fp(b)p Fo(\).)24 b(The)17 b(large)g(Ritz)g(v)m(alues)
Xh(are)e(appro)o(ximations)h(to)f(some)g(of)g(the)h(large)p
Xeop
X%%Page: 26 28
X26 27 bop 64 159 a Fo(26)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(eigen)o(v)m(alues)i Fn(\033)324
X288 y Fj(2)322 316 y Fg(i)360 304 y Fo(of)e(the)g(cross-pro)q(duct)h
X(matrix)e Fn(A)962 288 y Fg(T)990 304 y Fn(A)p Fo(.)26
Xb(Then)17 b(the)g(\014lter)h(factors)e(asso)q(ciated)h(with)59
X361 y(the)e(solution)h(after)f Fn(k)h Fo(steps)f(of)g(the)g(CG)g
X(algorithm)g(are)g(giv)o(en)h(b)o(y)585 471 y Fn(f)612
X447 y Fj(\()p Fg(k)q Fj(\))607 484 y Fg(i)673 471 y Fo(=)d(1)d
XFm(\000)h Fn(P)829 478 y Fg(k)850 471 y Fo(\()p Fn(\033)894
X478 y Fg(i)908 471 y Fo(\))k Fn(;)98 b(i)12 b Fo(=)h(1)p
XFn(;)8 b(:)g(:)g(:)d(;)j(k)15 b(:)410 b Fo(\(2.56\))59
X576 y(As)16 b Fn(k)g Fo(increases,)g(and)g(the)g(Ritz)h(v)m(alues)f
X(con)o(v)o(erge)f(to)g(some)h(of)f(the)h(eigen)o(v)m(alues)h(of)e
XFn(A)1582 559 y Fg(T)1610 576 y Fn(A)p Fo(,)g(then)h(for)59
X637 y(selected)f Fn(i)d Fo(and)i Fn(j)h Fo(w)o(e)e(ha)o(v)o(e)g
XFn(\022)566 613 y Fj(\()p Fg(k)q Fj(\))565 650 y Fg(j)628
X637 y Fm(\031)g Fn(\033)702 644 y Fg(i)716 637 y Fo(.)19
Xb(Moreo)o(v)o(er,)12 b(as)h Fn(k)h Fo(increases)g(these)g(appro)o
X(ximations)f(impro)o(v)o(e)59 700 y(while,)i(sim)o(ultaneously)l(,)g
X(more)f(eigen)o(v)m(alues)h(of)f Fn(A)936 684 y Fg(T)963
X700 y Fn(A)g Fo(are)f(b)q(eing)i(appro)o(ximated)f(b)o(y)f(the)h
X(additional)59 757 y(Ritz)i(v)m(alues.)130 814 y(Equations)k(\(2.55\))e
X(and)j(\(2.56\))d(for)h(the)i(CG)e(\014lter)i(factors)e(shed)i(ligh)o
X(t)g(on)f(the)g(regularizing)59 878 y(prop)q(ert)o(y)c(of)g(the)g(CG)g
X(metho)q(d.)24 b(After)15 b Fn(k)j Fo(iterations,)e(if)h(all)g(the)g
X(largest)f(Ritz)h(v)m(alues)g(\()p Fn(\022)1638 854 y
XFj(\()p Fg(k)q Fj(\))1637 891 y Fg(j)1687 878 y Fo(\))1705
X862 y Fj(2)1741 878 y Fo(ha)o(v)o(e)59 941 y(con)o(v)o(erged)i(to)f
X(all)i(the)g(largest)e(eigen)o(v)m(alues)j Fn(\033)900
X925 y Fj(2)898 953 y Fg(i)939 941 y Fo(of)d Fn(A)1028
X925 y Fg(T)1056 941 y Fn(A)p Fo(,)i(then)f(the)g(corresp)q(onding)h
XFn(P)1637 948 y Fg(k)1659 941 y Fo(\()p Fn(\033)1703
X948 y Fg(i)1717 941 y Fo(\))f Fm(\031)g Fo(0)59 997 y(and)c(the)g
X(\014lter)g(factors)f(asso)q(ciated)h(with)g(these)h
XFn(\033)943 1004 y Fg(i)971 997 y Fo(will)h(therefore)e(b)q(e)g(close)h
X(to)e(one.)20 b(On)15 b(the)g(other)59 1054 y(hand,)21
Xb(for)e(all)i(those)f(eigen)o(v)m(alues)h(smaller)g(than)f(the)g
X(smallest)g(Ritz)h(v)m(alue,)h(the)e(corresp)q(onding)59
X1110 y(\014lter)c(factors)e(satisfy)464 1252 y Fn(f)491
X1228 y Fj(\()p Fg(k)q Fj(\))486 1265 y Fg(i)552 1252
Xy Fo(=)f Fn(\033)628 1233 y Fj(2)626 1263 y Fg(i)676
X1199 y(k)656 1211 y Fh(X)655 1302 y Fg(j)r Fj(=1)724
X1252 y Fo(\()p Fn(\022)764 1228 y Fj(\()p Fg(k)q Fj(\))763
X1265 y Fg(j)813 1252 y Fo(\))831 1233 y Fe(\000)p Fj(2)888
X1252 y Fo(+)e Fn(O)970 1205 y Fh(\020)994 1252 y Fn(\033)1022
X1233 y Fj(4)1020 1263 y Fg(i)1042 1252 y Fo(\()p Fn(\022)1082
X1228 y Fj(\()p Fg(k)q Fj(\))1081 1266 y Fg(k)1131 1252
Xy Fo(\))1149 1233 y Fe(\000)p Fj(2)1196 1252 y Fo(\()p
XFn(\022)1236 1228 y Fj(\()p Fg(k)q Fj(\))1235 1266 y
XFg(k)q Fe(\000)p Fj(1)1301 1252 y Fo(\))1319 1233 y Fe(\000)p
XFj(2)1366 1205 y Fh(\021)1413 1252 y Fn(;)59 1403 y Fo(sho)o(wing)k
X(that)g(these)g(\014lter)h(factors)e(deca)o(y)h(lik)o(e)i
XFn(\033)942 1387 y Fj(2)940 1415 y Fg(i)976 1403 y Fo(for)e
XFn(\033)1072 1410 y Fg(i)1098 1403 y Fn(<)e(\022)1167
X1410 y Fg(k)1189 1403 y Fo(\()p Fn(k)q Fo(\))o(.)130
X1461 y(F)l(rom)k(this)h(analysis)h(of)f(the)g(CG)f(\014lter)i(factors)d
X(w)o(e)i(see)g(that)g(the)g(CG)f(pro)q(cess)h(indeed)i(has)e(a)59
X1517 y(regularizing)h(e\013ect)e(if)g(the)g(Ritz)h(v)m(alues)g(con)o(v)
Xo(erge)f(to)g(the)g(eigen)o(v)m(alues)i(of)d Fn(A)1442
X1501 y Fg(T)1470 1517 y Fn(A)h Fo(in)h(their)g(natural)59
X1573 y(order,)13 b(starting)h(with)g(the)g(largest.)19
Xb(When)14 b(this)g(is)g(the)g(case,)g(w)o(e)f(are)h(sure)g(that)f(the)g
X(CG)h(algorithm)59 1630 y(is)i(a)f(regularizing)i(pro)q(cess)f(with)g
X(the)f(n)o(um)o(b)q(er)h(of)f(iterations)g Fn(k)i Fo(as)e(the)g
X(regularization)i(parameter.)59 1686 y(Unfortunately)l(,)i(pro)o(ving)f
X(that)f(the)i(Ritz)g(v)m(alues)g(actually)g(con)o(v)o(erge)e(in)i(this)
Xg(order)f(is)g(a)g(di\016cult)59 1743 y(task.)30 b(F)l(or)18
Xb(problems)i(with)f(a)g(gap)f(in)i(the)f(singular)h(v)m(alue)g(sp)q
X(ectrum)f(of)f Fn(A)h Fo(it)g(is)h(pro)o(v)o(ed)e(in)i([47)o(,)59
X1799 y Fm(x)p Fo(6.4])13 b(that)f(all)j(the)f(large)f(eigen)o(v)m
X(alues)j(of)d Fn(A)826 1783 y Fg(T)854 1799 y Fn(A)g
XFo(will)j(b)q(e)e(appro)o(ximated)f(b)o(y)h(Ritz)g(v)m(alues)h(b)q
X(efore)f(an)o(y)59 1856 y(of)h(the)g(small)h(eigen)o(v)m(alues)h(of)e
XFn(A)629 1839 y Fg(T)657 1856 y Fn(A)g Fo(get)g(appro)o(ximated.)k(The)
Xd(case)f(where)g(the)h(singular)g(v)m(alues)g(of)59 1912
Xy Fn(A)h Fo(deca)o(y)f(gradually)h(to)f(zero)g(with)h(no)f(gap)g(in)i
X(the)e(sp)q(ectrum)h(is)g(more)f(di\016cult)i(to)d(analyze|but)59
X1969 y(n)o(umerical)h(examples)g(and)g(mo)q(del)g(problems)f([70)o(,)g
X(71])f(indicate)j(that)d(the)h(desired)i(con)o(v)o(ergence)e(of)59
X2025 y(the)h(Ritz)h(v)m(alues)h(actually)f(holds)f(as)g(long)h(as)e
X(the)i(discrete)g(Picard)f(condition)i(is)e(satis\014ed)h(for)f(the)59
X2082 y(unp)q(erturb)q(ed)h(comp)q(onen)o(t)f(of)f(the)g(righ)o(t-hand)h
X(side)g(and)g(there)f(is)h(a)f(go)q(o)q(d)h(separation)f(among)g(the)59
X2138 y(large)g(singular)h(v)m(alues)h(of)e Fn(A)p Fo(.)130
X2195 y(T)l(o)k(put)i(the)f(CG)f(metho)q(d)i(in)o(to)f(the)g(common)g
X(framew)o(ork)e(from)h(the)i(previous)f(section,)i(w)o(e)59
X2252 y(notice)16 b(that)e(the)i(solution)g Fp(x)570 2235
Xy Fj(\()p Fg(k)q Fj(\))633 2252 y Fo(after)f Fn(k)h Fo(CG)e(steps)i
X(can)f(b)q(e)h(de\014ned)g(as)399 2356 y(min)8 b Fm(k)p
XFn(A)g Fp(x)i Fm(\000)g Fp(b)p Fm(k)682 2363 y Fj(2)792
X2356 y Fo(sub)s(ject)16 b(to)90 b Fp(x)12 b Fm(2)h(K)1200
X2363 y Fg(k)1221 2356 y Fo(\()p Fn(A)1273 2338 y Fg(T)1300
X2356 y Fn(A;)8 b(A)1389 2338 y Fg(T)1416 2356 y Fp(b)p
XFo(\))15 b Fn(;)224 b Fo(\(2.57\))59 2461 y(where)13
Xb Fm(K)223 2468 y Fg(k)244 2461 y Fo(\()p Fn(A)296 2445
Xy Fg(T)323 2461 y Fn(A;)8 b(A)412 2445 y Fg(T)439 2461
Xy Fp(b)p Fo(\))13 b(is)g(the)g(Krylo)o(v)h(subspace)f(asso)q(ciated)g
X(with)h(the)f(normal)g(equations.)19 b(Th)o(us,)59 2518
Xy(w)o(e)g(see)g(that)g(CG)g(replaces)h(the)f(side)h(constrain)o(t)f
X(\012\()p Fp(x)p Fo(\))f(=)i Fm(k)p Fp(x)p Fm(k)1213
X2525 y Fj(2)1251 2518 y Fo(with)f(the)h(side)g(constrain)o(t)f
XFp(x)f Fm(2)59 2574 y(K)94 2581 y Fg(k)115 2574 y Fo(\()p
XFn(A)167 2558 y Fg(T)194 2574 y Fn(A;)8 b(A)283 2558
Xy Fg(T)310 2574 y Fp(b)p Fo(\).)18 b(Ob)o(viously)l(,)13
Xb(if)e(the)f(Ritz)i(v)m(alues)f(con)o(v)o(erge)g(as)f(desired,)i(then)f
X(the)f(Krylo)o(v)h(subspace)59 2630 y(satis\014es)i Fm(K)259
X2637 y Fg(k)280 2630 y Fo(\()p Fn(A)332 2614 y Fg(T)360
X2630 y Fn(A;)8 b(A)449 2614 y Fg(T)476 2630 y Fp(b)p
XFo(\))k Fm(\031)h Fo(span)p Fm(f)p Fp(v)725 2637 y Fj(1)744
X2630 y Fn(;)8 b(:)g(:)g(:)d(;)j Fp(v)874 2637 y Fg(k)894
X2630 y Fm(g)13 b Fo(indicating)i(that)d(the)h(CG)g(solution)h
XFp(x)1592 2614 y Fj(\()p Fg(k)q Fj(\))1653 2630 y Fo(is)f(similar)59
X2687 y(to,)h(sa)o(y)l(,)h(the)g(TSVD)g(solution)h Fp(x)635
X2694 y Fg(k)656 2687 y Fo(.)130 2744 y(Ev)o(en)d(the)g(b)q(est)h
X(implemen)o(tation)g(of)f(the)h(normal-equation)g(CG)e(algorithm)i
X(su\013ers)e(from)h(some)59 2801 y(loss)19 b(of)g(accuracy)g(due)h(to)f
X(the)g(implicit)i(use)f(of)f(the)g(cross-pro)q(duct)g(matrix)g
XFn(A)1492 2784 y Fg(T)1519 2801 y Fn(A)p Fo(.)32 b(An)20
Xb(alterna-)59 2857 y(tiv)o(e)g(iterativ)o(e)f(algorithm)h(that)f(a)o(v)
Xo(oids)g Fn(A)826 2841 y Fg(T)853 2857 y Fn(A)h Fo(completely)h(is)f
X(the)f(algorithm)h(LSQR)h([60)o(].)32 b(This)p eop
X%%Page: 27 29
X27 28 bop 59 159 a Fo(2.8.)14 b(Iterativ)o(e)h(Regularization)i(Metho)q
X(ds)976 b(27)p 59 178 1767 2 v 59 304 a(algorithm)19
Xb(uses)h(the)f(Lanczos)h(bidiagonalization)i(algorithm)d([29)o(,)h
XFm(x)p Fo(9.3.4])d(to)i(build)i(up)f(a)f(lo)o(w)o(er)59
X361 y(bidiagonal)d(matrix)e(and,)h(sim)o(ultaneously)l(,)h(up)q(dates)f
X(a)f(QR)h(factorization)g(of)f(this)h(bidiagonal)h(ma-)59
X417 y(trix.)k(The)c(QR)g(factorization,)e(in)i(turn,)f(is)h(used)g(to)e
X(up)q(date)i(the)f(LSQR)i(solution)f(in)g(eac)o(h)f(step.)20
Xb(If)59 474 y Fn(B)93 481 y Fg(k)131 474 y Fo(denotes)d(the)f(\()p
XFn(k)c Fo(+)f(1\))f Fm(\002)i Fn(k)17 b Fo(bidiagonalization)i(matrix)d
X(generated)g(in)h(the)g Fn(k)q Fo(th)f(step)h(of)f(LSQR,)59
X538 y(then)f(the)f(quan)o(tities)h Fn(\022)470 514 y
XFj(\()p Fg(k)q Fj(\))469 551 y Fg(j)534 538 y Fo(in)g(Eq.)f(\(2.55\))e
X(are)i(the)h(singular)g(v)m(alues)h(of)e(this)g Fn(B)1429
X545 y Fg(k)1451 538 y Fo(.)20 b(Hence,)15 b(the)f(LSQR)59
X595 y(algorithm)h(is)h(mathematically)g(equiv)m(alen)o(t)h(to)e(the)h
X(normal-equation)g(CG)e(algorithm)i(in)g(that)f(the)59
X651 y Fn(k)q Fo(th)g(iteration)h(v)o(ectors)e Fp(x)509
X635 y Fj(\()p Fg(k)q Fj(\))573 651 y Fo(in)i(CG)e(and)i(LSQR)g(are)f
X(iden)o(tical)i(in)f(exact)f(arithmetic.)130 709 y(In)e(real)g
X(computations,)g(the)g(con)o(v)o(ergence)g(of)f(CG)g(and)h(LSQR)h(is)g
X(dela)o(y)o(ed)f(due)g(to)g(the)f(in\015uence)59 765
Xy(of)g(the)h(\014nite)g(precision)i(arithmetic,)e(and)g(the)f
X(dimension)j(of)d(the)g(subspace)i(in)f(whic)o(h)h Fp(x)1607
X749 y Fj(\()p Fg(k)q Fj(\))1667 765 y Fo(lies)g(do)q(es)59
X821 y(not)i(increase)h(in)h(eac)o(h)e(step.)23 b(As)17
Xb(a)f(consequence,)h Fp(x)995 805 y Fj(\()p Fg(k)q Fj(\))1060
X821 y Fo(t)o(ypically)h(sta)o(ys)d(almost)h(unc)o(hanged)h(for)f(a)59
X878 y(few)i(steps,)f(then)h(c)o(hanges)g(to)f(a)g(new)h(v)o(ector)f
X(and)g(sta)o(ys)g(unc)o(hanged)h(again)g(for)f(some)g(steps,)h(etc.)59
X934 y(\(The)d(underlying)h(phenomenon)g(is)f(related)h(to)e(CG)g(and)h
X(LSQR)h(computing)f(\\ghost")f(eigen)o(v)m(alues)59 991
Xy(and)i(singular)h(v)m(alues,)g(resp)q(ectiv)o(ely)l(,)g(cf.)f([29)o(,)
Xf Fm(x)p Fo(9.2.5]\).)20 b(In)d(LSQR,)g(it)f(is)g(p)q(ossible)i(to)d
X(store)g(the)h(so-)59 1047 y(called)i(Lanczos)g(v)o(ectors)e(generated)
Xh(during)g(the)g(pro)q(cess)g(and)g(apply)h(some)f(reorthogonalization)
X59 1104 y(sc)o(heme)g(to)f(them,)h(whic)o(h)h(prev)o(en)o(ts)e(the)h
X(ab)q(o)o(v)o(emen)o(tioned)g(dela)o(y|but)h(in)g(practice)f(it)g(is)g
X(usually)59 1160 y(less)g(computationally)h(demanding)f(just)g(to)f
X(use)h(LSQR)h(without)e(an)o(y)g(reorthogonalization.)24
Xb(Or-)59 1217 y(thogonalization)13 b(can)g(also)f(b)q(e)h(applied)h(to)
Xe(the)h(normal)f(equation)h(residual)h(v)o(ectors)d Fn(A)1576
X1200 y Fg(T)1604 1217 y Fo(\()p Fn(A)d Fp(x)1692 1200
Xy Fj(\()p Fg(k)q Fj(\))1744 1217 y Fm(\000)d Fp(b)p Fo(\))59
X1273 y(in)16 b(the)f(CG)g(algorithm.)130 1331 y(There)g(are)h(sev)o
X(eral)f(w)o(a)o(ys)g(to)g(implemen)o(t)i(the)e(CG)g(algorithm)h(for)f
X(the)g(normal)h(equations)g(in)g(a)59 1387 y(n)o(umerically)h(stable)f
X(fashion.)21 b(The)16 b(one)f(used)h(in)g(the)g(routine)g
XFl(cgls)f Fo(in)i Ff(Regulariza)m(tion)g(Tools)59 1444
Xy Fo(is)h(from)e([9)o(,)i(p.)f(289].)24 b(The)18 b(implemen)o(tation)g
XFl(lsqr)f Fo(is)h(iden)o(tical)h(to)e(the)g(original)h(LSQR)h
X(algorithm)59 1500 y(from)c([60)o(].)130 1558 y(Regarding)d(the)f
X(\014lter)h(factors)e(for)h(CG)f(and)i(LSQR,)g(w)o(e)f(ha)o(v)o(e)g
X(found)h(that)e(the)h(expression)i(\(2.56\))59 1614 y(using)j(the)f
X(Ritz)h(p)q(olynomial)h(is)e(extremely)h(sensitiv)o(e)g(to)f(rounding)h
X(errors.)j(Instead,)c(w)o(e)g(compute)59 1676 y(the)h(\014lter)g
X(factors)e Fn(f)422 1652 y Fj(\()p Fg(k)q Fj(\))417 1689
Xy Fg(i)486 1676 y Fo(b)o(y)i(means)f(of)g(n)o(umerically)j(more)d
X(robust)g(recursions)h(deriv)o(ed)g(in)h([76)o(])e(\(see)59
X1732 y(also)g([47)o(]\).)k(Notice)c(that)e(the)i(exact)f(singular)i(v)m
X(alues)g Fn(\033)1040 1739 y Fg(i)1068 1732 y Fo(of)e
XFn(A)h Fo(are)f(required)i(to)e(compute)g(the)h(\014lter)59
X1789 y(factors;)f(hence)i(this)g(option)f(is)h(mainly)g(of)f(p)q
X(edagogical)h(in)o(terest.)59 1915 y Fp(2.8.2.)g(Bidiagonali)q(za)q
X(tio)q(n)k(with)e(Regularization)59 2003 y Fo(It)11 b(is)h(p)q(ossible)
Xh(to)d(mo)q(dify)i(the)f(LSQR)i(algorithm)e(and)g(deriv)o(e)h(a)f(h)o
X(ybrid)h(b)q(et)o(w)o(een)f(a)g(direct)h(and)f(an)g(it-)59
X2059 y(erativ)o(e)h(regularization)g(algorithm.)19 b(The)12
Xb(idea)g(is)g(to)f(use)h(the)g(ab)q(o)o(v)o(emen)o(tioned)g(Lanczos)g
X(algorithm)59 2116 y(to)h(build)i(up)f(the)f(bidiagonal)i(matrix)e
XFn(B)765 2123 y Fg(k)800 2116 y Fo(sequen)o(tially)l(,)j(and)d(in)i
X(eac)o(h)e(step)g(to)g(replace)i(LSQR's)f(QR)59 2172
Xy(factorization)k(of)g Fn(B)415 2179 y Fg(k)456 2172
Xy Fo(with)h(a)f(direct)h(regularization)g(sc)o(heme)g(suc)o(h)g(as)f
X(Tikhono)o(v)h(regularization)59 2229 y(or)14 b(TSVD.)h(These)g(ideas)h
X(are)e(outlined)j(in)f([8)o(,)f(59)o(];)f(see)i(also)e(the)h
X(discussion)i([37)o(,)e(Chapter)f(7].)19 b(The)59 2285
Xy(w)o(ork)e(in)o(v)o(olv)o(ed)i(in)g(the)g(direct)g(regularization)g
X(pro)q(cess)f(is)h(small)g(compared)f(to)g(the)g(w)o(ork)g(in)h(the)59
X2342 y(iterativ)o(e)d(pro)q(cess)g(b)q(ecause)h(of)e(the)h(bidiagonal)i
X(form)d(of)g Fn(B)1113 2349 y Fg(k)1135 2342 y Fo(.)21
Xb(Again,)16 b(reorthogonalization)g(of)g(the)59 2398
Xy(Lanczos)g(v)o(ectors)e(is)i(p)q(ossible)h(but)e(rarely)g(used)h(in)g
X(practice.)130 2455 y(One)f(rationale)g(b)q(ehind)i(this)f(\\h)o
X(ybrid")f(algorithm)f(is)i(that)e(if)h(the)g(n)o(um)o(b)q(er)g
XFn(k)h Fo(of)f(Lanczos)g(bidi-)59 2512 y(agonalization)g(steps)f(is)g
X(so)g(large)g(that)g Fn(B)790 2519 y Fg(k)825 2512 y
XFo(b)q(ecomes)h(ill-conditi)q(oned)i(and)d(needs)h(regularization|)59
X2574 y(b)q(ecause)j(the)f(singular)h(v)m(alues)g Fn(\022)642
X2550 y Fj(\()p Fg(k)q Fj(\))641 2588 y Fg(k)708 2574
Xy Fo(of)e Fn(B)795 2581 y Fg(k)834 2574 y Fo(start)g(to)g(appro)o
X(ximate)g(some)h(of)f(the)h(smaller)h(singular)59 2630
Xy(v)m(alues)e(of)f Fn(A)p Fo(|then)h(hop)q(efully)h(all)f(the)f
XFk(lar)n(ge)g Fo(singular)h(v)m(alues)g(of)f Fn(A)g Fo(are)g(appro)o
X(ximated)g(b)o(y)g(singu-)59 2687 y(lar)j(v)m(alues)g(of)g
XFn(B)356 2694 y Fg(k)377 2687 y Fo(.)27 b(When)18 b(this)g(is)h(the)e
X(case,)h(then)g(w)o(e)f(are)h(ensured)g(that)f(the)h(\\h)o(ybrid")f
X(metho)q(d)59 2743 y(computes)d(a)f(prop)q(er)g(regularized)i
X(solution,)f(pro)o(vided)g(of)f(course)h(that)f(the)g(explicit)j
X(regularization)59 2800 y(in)g(eac)o(h)f(step)h(prop)q(erly)g
X(\014lters)f(out)g(the)g(in\015uence)j(of)d(the)g(small)h(singular)g(v)
Xm(alues.)130 2857 y(The)22 b(second,)i(and)e(p)q(erhaps)g(most)f(imp)q
X(ortan)o(t,)i(rational)f(b)q(ehind)i(the)e(\\h)o(ybrid")h(algorithm)p
Xeop
X%%Page: 28 30
X28 29 bop 64 159 a Fo(28)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(is)j(that)f(it)h(requires)g(a)g(di\013eren)o
X(t)g(stopping)g(criterion)g(whic)o(h)h(is)f(not)f(as)h(dep)q(enden)o(t)
Xh(on)e(c)o(ho)q(osing)59 361 y(the)j(correct)f Fn(k)i
XFo(as)e(the)h(previously)h(men)o(tioned)g(metho)q(ds.)40
Xb(Pro)o(vided)22 b(again)g(that)f(the)h(explicit)59 417
Xy(regularization)c(sc)o(heme)f(in)g(eac)o(h)g(step)f(is)h(successful)h
X(in)g(\014ltering)f(out)g(the)f(in\015uence)j(of)d(the)h(small)59
X474 y(singular)23 b(v)m(alues,)i(then)d(after)g(a)g(certain)g(stage)g
XFn(k)h Fo(the)f(iteration)g(v)o(ector)g Fp(x)1442 457
Xy Fj(\()p Fg(k)q Fj(\))1512 474 y Fo(of)g(the)g(\\h)o(ybrid")59
X530 y(algorithm)17 b(will)h(hardly)f(c)o(hange.)24 b(This)17
Xb(is)g(so)f(b)q(ecause)h(all)h(the)e(comp)q(onen)o(ts)h(asso)q(ciated)g
X(with)g(the)59 587 y(large)e(singular)i(v)m(alues)f(ha)o(v)o(e)f(b)q
X(een)i(captured)e(while)i(the)f(comp)q(onen)o(ts)f(asso)q(ciated)h
X(with)f(the)h(small)59 643 y(singular)i(v)m(alues)h(are)e(\014ltered)h
X(out.)26 b(Th)o(us,)17 b(the)h(stopping)g(criteria)g(should)g(no)o(w)f
X(b)q(e)h(based)f(on)h(the)59 700 y(relativ)o(e)e(c)o(hange)f(in)i
XFp(x)453 683 y Fj(\()p Fg(k)q Fj(\))501 700 y Fo(.)j(With)c(this)g
X(stopping)f(criteria,)h(w)o(e)f(see)h(that)f(taking)g(to)q(o)g(man)o(y)
Xg(steps)g(in)59 756 y(the)i(\\h)o(ybrid")g(algorithm)g(will)i(not)e
X(deteriorate)f(the)h(iteration)h(v)o(ector,)e(but)h(merely)h(increase)g
X(the)59 812 y(computational)e(e\013ort.)130 880 y(F)l(or)f(con)o(v)o
X(enience,)i Ff(Regulariza)m(tion)h(Tools)e Fo(pro)o(vides)g(the)g
X(routine)h Fl(lanc)p 1498 880 14 2 v 16 w(b)g Fo(for)e(computing)59
X937 y(the)d(lo)o(w)o(er)g(bidiagonal)i(matrix)e Fn(B)646
X944 y Fg(k)680 937 y Fo(as)g(w)o(ell)h(as)f(the)h(corresp)q(onding)g
X(left)g(and)f(righ)o(t)g(Lanczos)h(v)o(ectors.)59 993
Xy(The)20 b(routine)h Fl(csvd)f Fo(computes)g(the)g(SVD)g(of)g
XFn(B)915 1000 y Fg(k)937 993 y Fo(.)33 b(The)21 b(user)f(can)g(then)g
X(com)o(bine)h(the)e(necessary)59 1050 y(routines)d(to)e(form)h(a)g(sp)q
X(eci\014c)i(\\h)o(ybrid")e(algorithm.)59 1236 y Fp(2.8.3.)h(The)i
XFn(\027)s Fp(-Metho)q(d)59 1344 y Fo(Both)i(CG)g(and)g(LSQR)h(con)o(v)o
X(erge)f(rather)f(fast)h(to)f(a)h(regularized)h(solution)g(with)g(damp)q
X(ed)g(high-)59 1400 y(frequency)d(comp)q(onen)o(ts,)g(and)f(if)h(the)g
X(iterations)f(are)g(con)o(tin)o(ued)h(then)g(the)g(high-frequency)h
X(com-)59 1457 y(p)q(onen)o(ts)c(v)o(ery)g(so)q(on)g(start)f(to)g
X(dominate)i(the)f(iteration)g(v)o(ector.)k(F)l(or)c(some)g(metho)q(ds)g
X(for)f(c)o(ho)q(osing)59 1513 y(the)f(regularization)g(parameter,)f
X(i.e.,)g(the)h(n)o(um)o(b)q(er)g(of)f(iterations)g Fn(k)i
XFo(\(suc)o(h)e(as)g(the)h(L-curv)o(e)g(criterion)59 1569
Xy(describ)q(ed)19 b(in)f(Section)h(2.9\),)d(this)h(is)h(a)f(fa)o(v)o
X(orable)g(prop)q(ert)o(y)l(.)26 b(Ho)o(w)o(ev)o(er,)16
Xb(there)i(are)f(other)g(circum-)59 1626 y(stances)c(in)h(whic)o(h)f(is)
Xh(is)f(more)g(desirable)h(to)f(ha)o(v)o(e)f(an)h(iterativ)o(e)g(sc)o
X(heme)g(that)g(con)o(v)o(erges)f(slo)o(w)o(er)g(and)59
X1682 y(th)o(us)j(is)h(less)g(sensitiv)o(e)g(to)e(the)i(c)o(hoice)g(of)f
XFn(k)q Fo(.)130 1750 y(This)j(is)h(exactly)g(the)f(philosoph)o(y)h(b)q
X(ehind)i(the)d Fn(\027)s Fo(-metho)q(d)h([11)o(])e(whic)o(h)i(is)g
X(similar)g(to)f(the)g(CG)59 1807 y(metho)q(d)j(except)g(that)e(the)i
X(co)q(e\016cien)o(ts)g Fn(\013)829 1814 y Fg(k)871 1807
Xy Fo(and)g Fn(\014)991 1814 y Fg(k)1032 1807 y Fo(used)g(to)f(up)q
X(date)h(the)f(iteration)h(v)o(ectors)f(in)59 1863 y(Algorithm)g
X(\(2.54\))d(are)i(problem)h(indep)q(enden)o(t)i(and)d(dep)q(end)i(only)
Xf(on)f(the)g(iteration)h(n)o(um)o(b)q(er)g Fn(k)59 1920
Xy Fo(and)15 b(a)g(presp)q(eci\014ed)j(constan)o(t)c Fn(\027)19
Xb Fo(satisfying)c(0)e Fn(<)g(\027)j(<)d Fo(1:)154 2085
Xy Fn(\013)183 2092 y Fg(k)217 2085 y Fo(=)g(4)323 2052
Xy(\()p Fn(k)e Fo(+)g Fn(\027)s Fo(\)\()p Fn(k)f Fo(+)h
XFn(\027)i Fo(+)649 2034 y Fj(1)p 649 2041 18 2 v 649
X2068 a(2)671 2052 y Fo(\))p 301 2074 412 2 v 301 2119
Xa(\()p Fn(k)d Fo(+)h(2)p Fn(\027)s Fo(\)\()p Fn(k)f Fo(+)h(2)p
XFn(\027)i Fo(+)672 2101 y Fj(1)p 672 2108 18 2 v 672
X2134 a(2)694 2119 y Fo(\))732 2085 y Fn(;)98 b(\014)869
X2092 y Fg(k)903 2085 y Fo(=)1059 2052 y(\()p Fn(k)11
Xb Fo(+)g Fn(\027)s Fo(\)\()p Fn(k)g Fo(+)f(1\)\()p Fn(k)g
XFo(+)1443 2034 y Fj(1)p 1443 2041 V 1443 2068 a(2)1465
X2052 y Fo(\))p 956 2074 631 2 v 956 2119 a(\()p Fn(k)h
XFo(+)f(2)p Fn(\027)s Fo(\)\()p Fn(k)h Fo(+)f(2)p Fn(\027)j
XFo(+)1327 2101 y Fj(1)p 1327 2108 18 2 v 1327 2134 a(2)1349
X2119 y Fo(\)\()p Fn(k)e Fo(+)f Fn(\027)k Fo(+)c(1\))1607
X2085 y Fn(:)95 b Fo(\(2.58\))59 2253 y(\(It)15 b(can)g(b)q(e)h(sho)o
X(wn)e(that)h(the)g(\014lter)g(factors)f(can)h(b)q(e)h(expressed)g(in)g
X(terms)e(of)h(Jacobi)h(p)q(olynomials\).)130 2321 y(A)f(sligh)o(t)h
X(incon)o(v)o(enience)i(with)d(the)h Fn(\027)s Fo(-metho)q(d)g(is)g
X(that)f(it)g(requires)h(the)g(problem)g(to)f(b)q(e)h(scaled)59
X2377 y(suc)o(h)e(that)e Fm(k)p Fn(A)p Fm(k)336 2384 y
XFj(2)368 2377 y Fo(is)i(sligh)o(tly)g(less)g(than)f(one,)g(otherwise)h
X(the)f(metho)q(d)g(either)h(div)o(erges)g(or)e(con)o(v)o(erges)59
X2434 y(to)q(o)g(slo)o(w.)18 b(A)13 b(practical)g(w)o(a)o(y)e(to)h
X(treat)f(this)i(di\016cult)o(y)g([37)o(,)g Fm(x)p Fo(6.3])e(is)i(use)f
X(the)h(Lanczos)f(bidiagonaliza-)59 2498 y(tion)h(algorithm)g(to)f
X(compute)h(a)f(go)q(o)q(d)h(appro)o(ximation)g Fn(\022)1057
X2474 y Fj(\()p Fg(k)q Fj(\))1056 2510 y(1)1119 2498 y
XFo(=)g Fm(k)p Fn(B)1224 2505 y Fg(k)1245 2498 y Fm(k)1268
X2505 y Fj(2)1300 2498 y Fo(to)f Fm(k)p Fn(A)p Fm(k)1433
X2505 y Fj(2)1465 2498 y Fo(and)h(then)g(rescale)h Fn(A)59
X2563 y Fo(and)h Fp(b)h Fo(b)o(y)f(0)p Fn(:)p Fo(99)p
XFn(=\022)382 2539 y Fj(\()p Fg(k)q Fj(\))381 2576 y(1)430
X2563 y Fo(.)20 b(Usually)c(a)f(few)g(Lanczos)h(steps)f(are)g
X(su\016cien)o(t.)20 b(This)c(initialization)i(pro)q(cess)59
X2620 y(can)d(also)h(b)q(e)f(used)h(to)f(pro)o(vide)h(the)f
XFn(\027)s Fo(-metho)q(d)h(with)f(a)g(go)q(o)q(d)g(initial)j(guess,)c
X(namely)l(,)i(the)f(iteration)59 2676 y(v)o(ector)g Fp(x)224
X2660 y Fj(\()p Fg(k)q Fj(\))287 2676 y Fo(after)g(a)f(few)h(LSQR)i
X(steps.)130 2744 y(The)d(routine)h Fl(nu)g Fo(in)g Ff(Regulariza)m
X(tion)h(Tools)e Fo(implemen)o(ts)i(the)e Fn(\027)s Fo(-metho)q(d)h(as)f
X(describ)q(ed)i(in)59 2801 y([11)o(])h(with)h(the)f(ab)q(o)o(v)o(emen)o
X(tioned)h(rescaling.)27 b(The)17 b(LSQR)i(start-v)o(ector)d(is)h(not)g
X(used,)h(but)g(can)f(b)q(e)59 2857 y(supplied)h(b)o(y)d(the)g(user)g
X(if)h(desired.)p eop
X%%Page: 29 31
X29 30 bop 59 159 a Fo(2.9.)14 b(Metho)q(ds)h(for)g(Cho)q(osing)g(the)g
X(Regularization)i(P)o(arameter)590 b(29)p 59 178 1767
X2 v 59 304 a Fp(2.8.4.)16 b(Extension)i(to)g(General-F)l(orm)f
X(Problems)59 390 y Fo(So)d(far)g(w)o(e)h(ha)o(v)o(e)f(describ)q(ed)i
X(sev)o(eral)f(iterativ)o(e)g(metho)q(ds)f(for)g(treating)g
X(regularization)i(problems)f(in)59 447 y(standard)f(form;)f(w)o(e)h
X(shall)h(no)o(w)f(brie\015y)h(describ)q(e)h(the)f(necessary)f
X(extension)h(to)f(these)g(metho)q(ds)g(for)59 503 y(treating)c
X(problems)i(in)f(general)h(form.)17 b(The)11 b(idea)h(presen)o(ted)f
X(here)g(is)g(originally)i(from)d([35)o(,)g(36)o(].)18
Xb(F)l(rom)59 560 y(the)d(discussion)h(of)e(the)g(standard-form)g
X(transformation)f(for)h(iterativ)o(e)g(metho)q(ds)h(in)g
XFm(x)p Fo(2.6.2,)e(w)o(e)h(see)59 616 y(that)c(essen)o(tially)j(w)o(e)e
X(m)o(ust)g(apply)g(the)h(ab)q(o)o(v)o(e)e(standard-form)h(iterativ)o(e)
Xg(metho)q(ds)g(to)g(a)g(transformed)59 672 y(problem)k(with)350
X661 y(\026)338 672 y Fn(A)f Fo(and)477 660 y(\026)473
X672 y Fp(b)q Fo(.)19 b(I.e.,)14 b(according)h(to)e(\(2.57\))g(w)o(e)h
X(m)o(ust)f(compute)i(the)f(solution)1625 671 y(\026)1622
X672 y Fp(x)1650 656 y Fj(\()p Fg(k)q Fj(\))1713 672 y
XFo(to)g(the)59 729 y(problem)399 785 y(min)8 b Fm(k)517
X774 y Fo(\026)505 785 y Fn(A)549 784 y Fo(\026)547 785
Xy Fp(x)i Fm(\000)633 773 y Fo(\026)630 785 y Fp(b)p Fm(k)682
X792 y Fj(2)792 785 y Fo(sub)s(ject)16 b(to)1084 784 y(\026)1082
X785 y Fp(x)c Fm(2)h(K)1200 792 y Fg(k)1221 785 y Fo(\()1251
X774 y(\026)1239 785 y Fn(A)1273 767 y Fg(T)1312 774 y
XFo(\026)1300 785 y Fn(A;)1366 774 y Fo(\026)1355 785
Xy Fn(A)1389 767 y Fg(T)1419 773 y Fo(\026)1416 785 y
XFp(b)p Fo(\))i Fn(:)224 b Fo(\(2.59\))130 870 y(If)17
Xb(w)o(e)h(use)g(the)f(alternativ)o(e)h(form)o(ulation)f(from)g
XFm(x)p Fo(2.6.2)f(with)1244 859 y(\026)1232 870 y Fn(A)h
XFo(=)g Fn(A)8 b(L)1408 848 y Fe(y)1408 884 y Fg(A)1453
X870 y Fo(and)1547 858 y(\026)1544 870 y Fp(b)17 b Fo(=)f
XFp(b)c Fm(\000)g Fn(A)c Fp(x)1799 877 y Fj(0)1818 870
Xy Fo(,)59 927 y(then)18 b(the)f(standard-form)g(transformation)f(can)h
X(b)q(e)h(\\built)h(in)o(to")e(the)g(iterativ)o(e)h(sc)o(heme.)26
Xb(In)18 b(this)59 983 y(w)o(a)o(y)l(,)d(w)o(e)h(w)o(ork)f(directly)i
X(with)g Fp(x)640 967 y Fj(\()p Fg(k)q Fj(\))704 983 y
XFo(and)f(a)o(v)o(oid)g(the)g(bac)o(k-transformation)f(from)1521
X982 y(\026)1518 983 y Fp(x)1546 967 y Fj(\()p Fg(k)q
XFj(\))1611 983 y Fo(to)g Fp(x)1695 967 y Fj(\()p Fg(k)q
XFj(\))1744 983 y Fo(.)22 b(T)l(o)59 1040 y(deriv)o(e)16
Xb(this)f(tec)o(hnique,)h(consider)g(the)f(side)g(constrain)o(t)g(in)h
X(\(2.59\))d(whic)o(h)i(implies)i(that)d(there)h(exist)59
X1096 y(constan)o(ts)f Fn(\030)280 1103 y Fj(0)300 1096
Xy Fn(;)8 b(:)g(:)g(:)d(;)j(\030)422 1103 y Fg(k)q Fe(\000)p
XFj(1)502 1096 y Fo(suc)o(h)16 b(that)683 1230 y(\026)680
X1231 y Fp(x)708 1212 y Fj(\()p Fg(k)q Fj(\))769 1231
Xy Fo(=)817 1178 y Fg(k)q Fe(\000)p Fj(1)819 1191 y Fh(X)821
X1282 y Fg(i)p Fj(=0)897 1231 y Fn(\030)917 1238 y Fg(i)938
X1231 y Fo(\()968 1220 y(\026)956 1231 y Fn(A)990 1212
Xy Fg(T)1030 1220 y Fo(\026)1018 1231 y Fn(A)p Fo(\))1070
X1212 y Fg(i)1103 1220 y Fo(\026)1091 1231 y Fn(A)1125
X1212 y Fg(T)1156 1219 y Fo(\026)1153 1231 y Fp(b)f Fn(:)59
X1375 y Fo(If)h(w)o(e)e(insert)310 1364 y(\026)298 1375
Xy Fn(A)f Fo(=)g Fn(A)8 b(L)466 1353 y Fe(y)466 1389 y
XFg(A)509 1375 y Fo(and)601 1363 y(\026)597 1375 y Fp(b)13
Xb Fo(=)g Fp(b)d Fm(\000)h Fn(A)d Fp(x)842 1382 y Fj(0)876
X1375 y Fo(in)o(to)15 b(this)h(relation,)f(w)o(e)g(obtain)426
X1512 y(\026)424 1513 y Fp(x)452 1494 y Fj(\()p Fg(k)q
XFj(\))513 1513 y Fo(=)561 1460 y Fg(k)q Fe(\000)p Fj(1)563
X1473 y Fh(X)564 1564 y Fg(i)p Fj(=0)640 1513 y Fn(\030)660
X1520 y Fg(i)682 1466 y Fh(\020)706 1513 y Fo(\()p Fn(L)755
X1491 y Fe(y)755 1527 y Fg(A)784 1513 y Fo(\))802 1494
Xy Fg(T)829 1513 y Fn(A)863 1494 y Fg(T)890 1513 y Fn(A)8
Xb(L)963 1491 y Fe(y)963 1527 y Fg(A)991 1466 y Fh(\021)1016
X1478 y Fg(i)1046 1513 y Fo(\()p Fn(L)1095 1491 y Fe(y)1095
X1527 y Fg(A)1123 1513 y Fo(\))1141 1494 y Fg(T)1168 1513
Xy Fn(A)1202 1494 y Fg(T)1229 1513 y Fo(\()p Fp(b)i Fm(\000)h
XFn(A)d Fp(x)1402 1520 y Fj(0)1421 1513 y Fo(\))14 b Fn(:)59
X1657 y Fo(Using)i(Eqs.)e(\(2.31\))f(and)i(\(2.30\))e(for)h
XFn(L)737 1635 y Fe(y)737 1671 y Fg(A)780 1657 y Fo(and)h
XFp(x)896 1664 y Fj(0)930 1657 y Fo(together)g(with)g(the)g(GSVD)f(it)h
X(is)h(straigh)o(tforw)o(ard)59 1720 y(to)e(sho)o(w)g(that)g(\()p
XFn(L)373 1698 y Fe(y)373 1734 y Fg(A)401 1720 y Fo(\))419
X1704 y Fg(T)446 1720 y Fn(A)480 1704 y Fg(T)508 1720
Xy Fn(A)8 b Fp(x)578 1727 y Fj(0)609 1720 y Fo(=)13 b
XFp(0)p Fo(.)20 b(Th)o(us,)14 b(b)o(y)h(inserting)g(the)g(ab)q(o)o(v)o
X(e)f(expression)h(for)1588 1719 y(\026)1585 1720 y Fp(x)1613
X1704 y Fj(\()p Fg(k)q Fj(\))1676 1720 y Fo(in)o(to)g(the)59
X1783 y(bac)o(k-transformation)f Fp(x)503 1767 y Fj(\()p
XFg(k)q Fj(\))564 1783 y Fo(=)f Fn(L)643 1761 y Fe(y)643
X1797 y Fg(A)674 1782 y Fo(\026)671 1783 y Fp(x)699 1767
Xy Fj(\()p Fg(k)q Fj(\))758 1783 y Fo(+)d Fp(x)831 1790
Xy Fj(0)851 1783 y Fo(,)k(w)o(e)h(obtain)429 1921 y Fp(x)457
X1902 y Fj(\()p Fg(k)q Fj(\))518 1921 y Fo(=)566 1868
Xy Fg(k)q Fe(\000)p Fj(1)568 1881 y Fh(X)569 1972 y Fg(i)p
XFj(=0)645 1921 y Fn(\030)665 1928 y Fg(i)687 1874 y Fh(\020)711
X1921 y Fn(L)742 1899 y Fe(y)742 1935 y Fg(A)778 1921
Xy Fo(\()p Fn(L)827 1899 y Fe(y)827 1935 y Fg(A)856 1921
Xy Fo(\))874 1902 y Fg(T)901 1921 y Fn(A)935 1902 y Fg(T)962
X1921 y Fn(A)996 1874 y Fh(\021)1021 1886 y Fg(i)1051
X1921 y Fn(L)1082 1899 y Fe(y)1082 1935 y Fg(A)1118 1921
Xy Fo(\()p Fn(L)1167 1899 y Fe(y)1167 1935 y Fg(A)1195
X1921 y Fo(\))1213 1902 y Fg(T)1240 1921 y Fn(A)1274 1902
Xy Fg(T)1301 1921 y Fp(b)c Fo(+)f Fp(x)1414 1928 y Fj(0)1448
X1921 y Fn(:)254 b Fo(\(2.60\))59 2065 y(F)l(rom)17 b(this)h(relation)g
X(w)o(e)f(see)h(that)f(w)o(e)g(can)h(consider)h(the)e(matrix)h
XFn(L)1284 2043 y Fe(y)1284 2079 y Fg(A)1320 2065 y Fo(\()p
XFn(L)1369 2043 y Fe(y)1369 2079 y Fg(A)1397 2065 y Fo(\))1415
X2049 y Fg(T)1459 2065 y Fo(a)g(\\preconditioner")59 2122
Xy(for)f(the)h(iterativ)o(e)f(metho)q(ds,)h(and)g(w)o(e)f(stress)g(that)
Xg(the)h(purp)q(ose)g(of)f(the)g(\\preconditioner")i(is)f(not)59
X2178 y(to)h(impro)o(v)o(e)g(the)h(condition)g(n)o(um)o(b)q(er)g(of)f
X(the)g(iteration)h(matrix)f(but)g(rather)g(to)g(ensure)h(that)f(the)59
X2235 y(\\preconditioned")k(iteration)f(v)o(ector)e Fp(x)780
X2218 y Fj(\()p Fg(k)q Fj(\))850 2235 y Fo(lies)j(in)f(the)g(correct)f
X(subspace)h(and)f(th)o(us)g(minimizes)59 2291 y Fm(k)p
XFn(L)8 b Fp(x)149 2275 y Fj(\()p Fg(k)q Fj(\))197 2291
Xy Fm(k)220 2298 y Fj(2)239 2291 y Fo(.)20 b(Minimization)d(of)e(the)g
X(correct)g(residual)h(norm)f(is)h(ensured)g(b)o(y)f(Eq.)g(\(2.38\).)130
X2348 y(\\Preconditioning")g(is)f(easy)g(to)f(build)j(in)o(to)d(CG,)g
X(LSQR,)i(and)f(the)g Fn(\027)s Fo(-metho)q(d)h(b)o(y)e(means)h(of)g
X(the)59 2404 y(algorithms)i(in)h(\(2.36\))d(from)i Fm(x)p
XFo(2.6.2.)21 b(The)16 b(sp)q(ecial)i(\\preconditioned")g(v)o(ersions)e
X(are)g(implemen)o(ted)59 2461 y(as)f(routines)g Fl(p)q(cgls)p
XFo(,)h Fl(plsqr)p Fo(,)g(and)f Fl(pnu)i Fo(in)f Ff(Regulariza)m(tion)h
X(Tools)p Fo(.)59 2586 y Fr(2.9.)h(Metho)r(ds)g(for)h(Cho)r(osing)f(the)
Xh(Regularization)e(P)n(arameter)59 2688 y Fo(No)i(regularization)h(pac)
Xo(k)m(age)f(is)g(complete)h(without)f(routines)g(for)g(computation)g
X(of)f(the)h(regular-)59 2744 y(ization)j(parameter.)37
Xb(As)21 b(w)o(e)g(ha)o(v)o(e)g(already)g(discussed)i(in)f(Section)g
X(2.5)e(a)h(go)q(o)q(d)g(regularization)59 2801 y(parameter)15
Xb(should)i(yield)g(a)f(fair)g(balance)g(b)q(et)o(w)o(een)h(the)f(p)q
X(erturbation)g(error)f(and)h(the)g(regulariza-)59 2857
Xy(tion)e(error)g(in)h(the)f(regularized)i(solution.)k(Throughout)14
Xb(the)g(y)o(ears)f(a)h(v)m(ariet)o(y)h(of)e(parameter-c)o(hoice)p
Xeop
X%%Page: 30 32
X30 31 bop 64 159 a Fo(30)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v 59 304 a(strategies)h(ha)o(v)o(e)h(b)q(een)h(prop)q
X(osed.)31 b(These)20 b(metho)q(ds)f(can)g(roughly)g(b)q(e)h(divided)h
X(in)o(to)e(t)o(w)o(o)e(classes)59 361 y(dep)q(ending)d(on)f(their)f
X(assumption)h(ab)q(out)f Fm(k)p Fp(e)p Fm(k)875 368 y
XFj(2)894 361 y Fo(,)g(the)h(norm)e(of)h(the)h(p)q(erturbation)f(of)g
X(the)g(righ)o(t-hand)59 417 y(side.)21 b(The)15 b(t)o(w)o(o)f(classes)i
X(can)f(b)q(e)h(c)o(haracterized)g(as)f(follo)o(ws:)115
X514 y(1.)22 b(Metho)q(ds)15 b(based)g(on)g(kno)o(wledge,)h(or)e(a)h(go)
Xq(o)q(d)g(estimate,)g(of)g Fm(k)p Fp(e)p Fm(k)1303 521
Xy Fj(2)1322 514 y Fo(.)115 611 y(2.)22 b(Metho)q(ds)17
Xb(that)f(do)h(not)f(require)i Fm(k)p Fp(e)p Fm(k)834
X618 y Fj(2)853 611 y Fo(,)f(but)g(instead)h(seek)f(to)f(extract)g(the)h
X(necessary)g(infor-)173 667 y(mation)e(from)f(the)h(giv)o(en)h(righ)o
X(t-hand)g(side.)59 764 y(F)l(or)g(man)o(y)h(of)g(these)g(metho)q(ds,)g
X(the)g(con)o(v)o(ergence)h(rate)e(for)g(the)h(solution)h(as)f
XFm(k)p Fp(e)p Fm(k)1520 771 y Fj(2)1555 764 y Fm(!)f
XFo(0)h(has)g(b)q(een)59 820 y(analyzed)i([25)o(,)e(33,)g(75].)28
Xb(F)l(our)17 b(parameter-c)o(hoice)h(routines)h(are)e(included)k(in)e
XFf(Regulariza)m(tion)59 877 y(Tools)p Fo(,)14 b(one)i(from)e(class)i(1)
Xf(and)g(three)g(from)g(class)g(2.)130 934 y(The)d(only)h(metho)q(d)g(b)
Xq(elonging)h(to)d(class)i(1)f(is)h(the)f Fk(discr)n(ep)n(ancy)h
X(principle)f Fo([56)o(,)h Fm(x)p Fo(27])e(whic)o(h,)j(in)f(all)59
X990 y(simplicit)o(y)l(,)k(amoun)o(ts)d(to)g(c)o(ho)q(osing)h(the)g
X(regularization)h(parameter)e(suc)o(h)h(that)f(the)h(residual)h(norm)59
X1047 y(for)f(the)g(regularized)h(solution)g(satis\014es)722
X1151 y Fm(k)p Fn(A)8 b Fp(x)815 1158 y Fj(reg)874 1151
Xy Fm(\000)i Fp(b)p Fm(k)971 1158 y Fj(2)1003 1151 y Fo(=)j
XFm(k)p Fp(e)p Fm(k)1121 1158 y Fj(2)1155 1151 y Fn(:)547
Xb Fo(\(2.61\))59 1255 y(When)19 b(a)g(go)q(o)q(d)f(estimate)h(for)f
XFm(k)p Fp(e)p Fm(k)680 1262 y Fj(2)718 1255 y Fo(is)h(kno)o(wn,)g(this)
Xg(metho)q(d)g(yields)h(a)e(go)q(o)q(d)h(regularization)h(pa-)59
X1312 y(rameter)14 b(corresp)q(onding)j(to)d(a)h(regularized)h(solution)
Xg(immediately)h(to)d(the)i(righ)o(t)f(of)f(the)h(L-curv)o(e's)59
X1368 y(corner.)k(Due)14 b(to)f(the)g(steep)h(part)f(of)g(the)g(L-curv)o
X(e)h(w)o(e)g(see)f(that)g(an)g(underestimate)h(of)f Fm(k)p
XFp(e)p Fm(k)1649 1375 y Fj(2)1682 1368 y Fo(is)h(lik)o(ely)59
X1424 y(to)e(pro)q(duce)h(an)f(underregularized)j(solution)e(with)f(a)g
X(v)o(ery)g(large)h(\(semi\)norm.)18 b(On)13 b(the)g(other)f(hand,)59
X1481 y(an)h(o)o(v)o(erestimate)g(of)g Fm(k)p Fp(e)p Fm(k)503
X1488 y Fj(2)535 1481 y Fo(pro)q(duces)h(an)g(o)o(v)o(erregularized)g
X(solution)g(with)g(to)q(o)e(large)i(regularization)59
X1537 y(error.)130 1595 y(The)k(three)h(metho)q(ds)g(from)e(class)i(2)g
X(that)e(w)o(e)i(ha)o(v)o(e)f(included)j(in)e Ff(Regulariza)m(tion)i
X(Tools)59 1651 y Fo(are)15 b(the)h(L-curv)o(e)g(criterion,)h
X(generalized)g(cross-v)m(alidation,)g(and)f(the)f(quasi-optimalit)o(y)i
X(criterion.)59 1707 y(The)g Fk(L-curve)h(criterion)e
XFo(has)h(already)g(b)q(een)h(discussed)g(in)g(connection)f(with)h(the)e
X(in)o(tro)q(duction)i(of)59 1764 y(the)c(L-curv)o(e)g(in)h(Section)f
X(2.5.)19 b(Our)14 b(implemen)o(tation)h(follo)o(ws)f(the)f(description)
Xj(in)e([48)o(])f(closely)l(.)21 b(F)l(or)59 1820 y(a)15
Xb(con)o(tin)o(uous)g(regularization)i(parameter)d Fn(\025)h
XFo(w)o(e)g(compute)g(the)g(curv)m(ature)h(of)f(the)g(curv)o(e)645
X1925 y(\(log)8 b Fm(k)p Fn(A)g Fp(x)822 1932 y Fg(\025)854
X1925 y Fm(\000)j Fp(b)p Fm(k)952 1932 y Fj(2)979 1925
Xy Fn(;)j Fo(log)9 b Fm(k)p Fn(L)f Fp(x)1163 1932 y Fg(\025)1184
X1925 y Fm(k)1207 1932 y Fj(2)1227 1925 y Fo(\))59 2029
Xy(\(with)19 b Fn(\025)g Fo(as)f(its)h(parameter\))f(and)i(seek)f(the)g
X(p)q(oin)o(t)g(with)h(maxim)o(um)f(curv)m(ature,)h(whic)o(h)g(w)o(e)e
X(then)59 2085 y(de\014ne)e(as)e(the)h(L-curv)o(e's)g(corner.)k(When)c
X(the)g(regularization)h(parameter)d(is)j(discrete)f(w)o(e)f(appro)o
X(xi-)59 2142 y(mate)g(the)h(discrete)h(L-curv)o(e)g(in)f(log-log)h
X(scale)f(b)o(y)g(a)g(2D)f(spline)j(curv)o(e,)d(compute)h(the)g(p)q(oin)
Xo(t)h(on)f(the)59 2198 y(spline)21 b(curv)o(e)e(with)g(maxim)o(um)g
X(curv)m(ature,)h(and)f(de\014ne)h(the)f(corner)g(of)g(the)g(discrete)g
X(L-curv)o(e)h(as)59 2255 y(that)15 b(p)q(oin)o(t)g(whic)o(h)h(is)g
X(closest)f(to)g(the)g(corner)g(of)g(the)g(spline)j(curv)o(e.)130
X2312 y Fk(Gener)n(alize)n(d)h(cr)n(oss-validation)h Fo(\(GCV\))f(is)i
X(based)g(on)f(the)h(philosoph)o(y)g(that)f(if)h(an)f(arbitrary)59
X2368 y(elemen)o(t)15 b Fn(b)246 2375 y Fg(i)273 2368
Xy Fo(of)f(the)g(righ)o(t-hand)h(side)g Fp(b)f Fo(is)g(left)g(out,)g
X(then)g(the)g(corresp)q(onding)h(regularized)h(solution)59
X2425 y(should)f(predict)g(this)g(observ)m(ation)g(w)o(ell,)g(and)f(the)
Xg(c)o(hoice)h(of)f(regularization)h(parameter)f(should)h(b)q(e)59
X2481 y(indep)q(enden)o(t)22 b(of)c(an)h(orthogonal)f(transformation)g
X(of)h Fp(b)p Fo(;)h(cf.)f([77)o(,)h(Chapter)f(4])f(for)g(more)h
X(details.)59 2538 y(This)d(leads)g(to)e(c)o(ho)q(osing)i(the)f
X(regularization)h(parameter)f(whic)o(h)h(minimizes)h(the)e(GCV)g
X(function)681 2667 y Fn(G)d Fm(\021)845 2636 y(k)p Fn(A)c
XFp(x)938 2643 y Fj(reg)997 2636 y Fm(\000)i Fp(b)p Fm(k)1094
X2620 y Fj(2)1094 2648 y(2)p 782 2657 394 2 v 782 2698
Xa Fo(\(trace\()p Fn(I)937 2705 y Fg(m)980 2698 y Fm(\000)g
XFn(A)e(A)1101 2685 y Fg(I)1121 2698 y Fo(\)\))1157 2685
Xy Fj(2)1196 2667 y Fn(;)506 b Fo(\(2.62\))59 2801 y(where)17
Xb Fn(A)226 2784 y Fg(I)263 2801 y Fo(is)g(a)g(matrix)f(whic)o(h)i(pro)q
X(duces)f(the)g(regularized)h(solution)g Fp(x)1339 2808
Xy Fj(reg)1405 2801 y Fo(when)f(m)o(ultiplied)i(with)59
X2857 y Fp(b)p Fo(,)14 b(i.e.,)f Fp(x)227 2864 y Fj(reg)289
X2857 y Fo(=)g Fn(A)371 2841 y Fg(I)391 2857 y Fp(b)p
XFo(.)19 b(Note)14 b(that)f Fn(G)g Fo(is)h(de\014ned)h(for)e(b)q(oth)h
X(con)o(tin)o(uous)g(and)f(discrete)i(regularization)p
Xeop
X%%Page: 31 33
X31 32 bop 59 159 a Fo(2.9.)14 b(Metho)q(ds)h(for)g(Cho)q(osing)g(the)g
X(Regularization)i(P)o(arameter)590 b(31)p 59 178 1767
X2 v 59 304 a(parameters.)23 b(The)17 b(denominator)g(in)h(\(2.62\))c
X(can)j(b)q(e)g(computed)g(in)h Fn(O)q Fo(\()p Fn(n)p
XFo(\))e(op)q(erations)h(if)g(the)g(bidi-)59 361 y(agonalization)f
X(algorithm)g(from)f(Section)h(2.7)f(is)h(used)g([24].)k(Alternativ)o
X(ely)l(,)d(the)f(\014lter)g(factors)f(can)59 417 y(b)q(e)h(used)g(to)e
X(ev)m(aluate)i(the)g(denominator)f(b)o(y)g(means)g(of)g(the)g(simple)i
X(expression)530 550 y(trace)o(\()p Fn(I)666 557 y Fg(m)709
X550 y Fm(\000)11 b Fn(A)d(A)831 531 y Fg(I)851 550 y
XFo(\))k(=)h Fn(m)d Fm(\000)g Fo(\()p Fn(n)g Fm(\000)h
XFn(p)p Fo(\))e Fm(\000)1242 494 y Fg(p)1221 510 y Fh(X)1222
X601 y Fg(i)p Fj(=1)1296 550 y Fn(f)1318 557 y Fg(i)1347
X550 y Fn(:)355 b Fo(\(2.63\))59 689 y(This)18 b(is)g(the)g(approac)o(h)
Xf(used)h(in)g(routine)g Fl(gcv)p Fo(.)27 b(In)18 b([45)o(])f(it)h(is)g
X(illustrated)h(that)e(the)g(GCV)g(metho)q(d)59 745 y(indeed)j(seeks)f
X(to)f(balance)h(the)f(p)q(erturbation)h(and)g(regularization)g(errors)f
X(and)g(th)o(us,)h(in)g(turn,)g(is)59 802 y(related)d(to)e(the)i(corner)
Xf(of)f(the)i(L-curv)o(e.)130 858 y(The)10 b(\014nal)h(metho)q(d)g
X(included)i(in)e Ff(Regulariza)m(tion)i(Tools)d Fo(is)g(the)h
XFk(quasi-optimality)i(criterion)59 915 y Fo([56)o(,)k
XFm(x)p Fo(27].)25 b(This)18 b(metho)q(d)f(is,)h(strictly)f(sp)q
X(eaking,)h(only)g(de\014ned)g(for)f(a)f(con)o(tin)o(uous)i
X(regularization)59 971 y(parameter)c Fn(\025)h Fo(and)h(amoun)o(ts)e
X(to)g(minimizing)k(the)e(function)472 1128 y Fn(Q)c Fm(\021)h
XFn(\025)603 1066 y Fh(\015)602 1091 y(\015)602 1116 y(\015)602
X1141 y(\015)630 1097 y Fn(d)p Fp(x)682 1104 y Fg(\025)p
X630 1117 74 2 v 642 1159 a Fn(d\025)709 1066 y Fh(\015)709
X1091 y(\015)709 1116 y(\015)709 1141 y(\015)732 1168
Xy Fj(2)765 1128 y Fo(=)813 1043 y Fh(0)813 1118 y(@)870
X1072 y Fg(p)849 1087 y Fh(X)850 1178 y Fg(i)p Fj(=1)916
X1056 y Fh( )949 1128 y Fn(f)971 1135 y Fg(i)993 1128
Xy Fo(\(1)d Fm(\000)g Fn(f)1111 1135 y Fg(i)1126 1128
Xy Fo(\))1156 1097 y Fp(u)1185 1080 y Fg(T)1185 1109 y(i)1212
X1097 y Fp(b)p 1156 1117 86 2 v 1180 1159 a Fn(\015)1204
X1166 y Fg(i)1246 1056 y Fh(!)1279 1067 y Fj(2)1307 1043
Xy Fh(1)1307 1118 y(A)1343 1055 y Fj(1)p Fg(=)p Fj(2)1405
X1128 y Fn(:)297 b Fo(\(2.64\))59 1275 y(As)22 b(demonstrated)f(in)i
X([45)o(],)f(under)h(certain)f(assumptions)g(the)f(approac)o(h)h(also)f
X(corresp)q(onds)h(to)59 1331 y(\014nding)13 b(a)e(go)q(o)q(d)g(balance)
Xh(b)q(et)o(w)o(een)g(p)q(erturbation)f(and)h(regularization)g(errors)e
X(in)i Fp(x)1513 1338 y Fg(\025)1536 1331 y Fo(.)18 b(F)l(or)11
Xb(a)g(discrete)59 1388 y(regularization)16 b(parameter)f
XFn(k)q Fo(,)f(w)o(e)h(use)h Fn(\025)c Fo(=)h Fn(\015)874
X1395 y Fg(k)910 1388 y Fo(and)i(the)h(appro)o(ximations)268
X1455 y Fh(\015)268 1480 y(\015)268 1505 y(\015)268 1530
Xy(\015)296 1486 y Fn(d)p Fp(x)348 1493 y Fg(\025)p 296
X1506 74 2 v 308 1548 a Fn(d\025)375 1455 y Fh(\015)375
X1480 y(\015)375 1505 y(\015)375 1530 y(\015)398 1557
Xy Fj(2)430 1516 y Fm(\031)483 1486 y(k)p Fo(\001)p Fp(x)572
X1493 y Fg(k)593 1486 y Fm(k)616 1493 y Fj(2)p 483 1506
X152 2 v 514 1548 a Fm(j)p Fo(\001)p Fn(\025)p Fm(j)655
X1516 y Fn(;)99 b Fm(k)p Fo(\001)p Fp(x)856 1523 y Fg(k)876
X1516 y Fm(k)899 1523 y Fj(2)931 1516 y Fo(=)984 1486
Xy Fp(u)1013 1469 y Fg(T)1013 1499 y(k)1041 1486 y Fp(b)p
X984 1506 86 2 v 1004 1548 a Fn(\015)1028 1555 y Fg(k)1090
X1516 y Fn(;)f Fo(\001)p Fn(\025)12 b Fo(=)h Fn(\015)1350
X1523 y Fg(k)q Fj(+1)1426 1516 y Fm(\000)d Fn(\015)1495
X1523 y Fg(k)1529 1516 y Fm(\031)j Fn(\015)1601 1523 y
XFg(k)59 1640 y Fo(to)i(obtain)g(the)g(expressions)420
X1769 y Fn(Q)d Fm(\031)521 1738 y Fp(u)550 1722 y Fg(T)550
X1751 y(k)578 1738 y Fp(b)p 521 1758 V 540 1800 a Fn(\033)566
X1807 y Fg(k)657 1769 y Fo(if)50 b Fn(L)12 b Fo(=)h Fn(I)844
X1776 y Fg(n)883 1769 y Fn(;)98 b(Q)13 b Fm(\031)1096
X1738 y Fp(u)1125 1722 y Fg(T)1125 1751 y(k)1152 1738
Xy Fp(b)p 1096 1758 V 1116 1800 a Fn(\015)1140 1807 y
XFg(k)1232 1769 y Fo(if)49 b Fn(L)13 b Fm(6)p Fo(=)g Fn(I)1419
X1776 y Fg(n)1457 1769 y Fn(:)245 b Fo(\(2.65\))130 1890
Xy(The)23 b(discrepancy)h(principle)h(is)e(implemen)o(ted)i(in)e
X(routine)h Fl(discrep)f Fo(describ)q(ed)i(in)f Fm(x)p
XFo(2.7.2)d(in)59 1947 y(connection)e(with)f(direct)g(regularization)h
X(metho)q(ds.)27 b(The)18 b(L-curv)o(e)h(criterion)f(is)g(implemen)o
X(ted)i(in)59 2003 y(the)13 b(t)o(w)o(o)f(routines)i Fl(l)p
X406 2003 14 2 v 16 w(curve)g Fo(and)f Fl(l)p 633 2003
XV 16 w(co)o(rner)p Fo(,)g(while)i(GCV)d(is)i(is)g(pro)o(vided)g(b)o(y)f
X(routine)h Fl(gcv)p Fo(.)19 b(Finally)l(,)c(the)59 2060
Xy(quasi-optimalit)o(y)h(criterion)h(is)e(implemen)o(ted)i(in)f(routine)
Xg Fl(quasiopt)p Fo(.)p eop
X%%Page: 32 34
X32 33 bop 64 159 a Fo(32)951 b(DISCRETE)15 b(ILL-POSED)i(PR)o(OBLEMS)p
X64 178 1767 2 v eop
X%%Page: 33 35
X33 34 bop 59 548 a Fq(3.)35 b(Regulariza)-5 b(tion)27
Xb(Tools)f(Tutorial)59 756 y Fo(The)19 b(purp)q(ose)h(of)e(this)h
X(section)h(is)f(to)g(giv)o(e)g(a)f(brief)i(in)o(tro)q(duction)g(to)e
X(the)h(use)g(of)g(the)g(routines)g(in)59 813 y Ff(Regulariza)m(tion)k
X(Tools)d Fo(b)o(y)h(means)f(of)h(some)f(fairly)h(simple)h(examples.)37
Xb(In)22 b(particular,)g(w)o(e)59 869 y(sho)o(w)13 b(ho)o(w)g(to)f
X(compute)i(regularized)g(solutions)g(and)g(ho)o(w)f(to)f(ev)m(aluate)i
X(these)g(solutions)g(b)o(y)f(v)m(arious)59 925 y(graphical)j(to)q(ols.)
Xj(Although)c(the)g(examples)g(giv)o(en)g(b)q(elo)o(w)g(do)g(not)f(touc)
Xo(h)g(up)q(on)i(all)f(the)g(features)f(of)59 982 y Ff(Regulariza)m
X(tion)19 b(Tools)p Fo(,)d(they)g(illustrate)i(the)f(fundamen)o(tal)g
X(ideas)g(underlying)h(the)f(pac)o(k)m(age,)59 1038 y(namely)l(,)h(mo)q
X(dularit)o(y)g(and)g(regularit)o(y)f(b)q(et)o(w)o(een)h(the)g
X(routines.)27 b(F)l(or)16 b(con)o(v)o(enience,)j(the)f(examples)59
X1095 y(are)h(also)h(a)o(v)m(ailable)h(in)f(the)g(annotated)f(script)h
XFl(regudemo)p Fo(,)g(with)f(appropriate)h Fl(pause)h
XFo(statemen)o(ts)59 1151 y(added.)59 1289 y Fr(3.1.)d(The)g(Discrete)f
X(Picard)i(Condition)59 1395 y Fo(W)l(e)i(shall)h(\014rst)e(illustrate)i
X(the)f(use)g(of)g(the)f(routine)i Fl(pica)o(rd)f Fo(for)f(visually)i(c)
Xo(hec)o(king)g(the)f(discrete)59 1451 y(Picard)14 b(condition,)h(cf.)e
X(Section)i(2.4.)j(First,)13 b(w)o(e)h(generate)f(a)g(discrete)i(ill-p)q
X(osed)h(problem)e(using)h(one)59 1507 y(of)h(the)f(man)o(y)h(built-in)i
X(test)e(problems;)g(the)g(one)g(used)g(here)h(is)f Fl(sha)o(w)h
XFo(whic)o(h)f(is)h(a)e(one-dimensional)59 1564 y(mo)q(del)i(of)e(an)h
X(image)f(restoration)g(problem.)22 b(Then)16 b(w)o(e)g(add)g(white)g
X(noise)g(to)f(the)h(righ)o(t-hand)g(side,)59 1620 y(th)o(us)f(pro)q
X(ducing)i(a)d(more)h(\\realistic")h(problem.)130 1679
Xy(Before)e(p)q(erforming)h(the)g(analysis)g(of)f(the)h(problem,)g(w)o
X(e)f(compute)h(the)f(SVD)h(of)f(the)h(co)q(e\016cien)o(t)59
X1735 y(matrix;)d(this)g(is)g(the)g(t)o(ypical)h(situation)f(in)g
XFf(Regulariza)m(tion)i(Tools)p Fo(,)e(since)g(most)f(of)g(the)h
X(routines)59 1792 y(mak)o(e)i(use)h(of)g(either)g(the)g(SVD)g(\(for)f
X(standard-form)f(problems\))i(or)g(the)f(GSVD)h(\(for)f(general-form)59
X1848 y(problems\).)22 b(W)l(e)16 b(then)g(use)g Fl(pica)o(rd)g
XFo(to)f(plot)h(the)f(singular)i(v)m(alues)g(and)f(the)g(F)l(ourier)g
X(co)q(e\016cien)o(ts)g(for)59 1905 y(b)q(oth)f(the)h(unp)q(erturb)q(ed)
Xh(and)e(the)g(p)q(erturb)q(ed)i(problem,)e(see)h(Fig.)e(3.1.)130
X2022 y Fl([A,b)p 212 2022 14 2 v 17 w(ba)o(r,x])g(=)i(sha)o(w)8
Xb(\(32\);)130 2095 y(randn)g(\('seed',70957\);)130 2168
Xy(e)15 b(=)g(1e-3)p Fm(\003)p Fl(rand)8 b(\(size)g(\(b)p
X549 2168 V 16 w(ba)o(r\)\);)14 b(b)h(=)h(b)p 800 2168
XV 17 w(ba)o(r)e(+)i(e;)130 2241 y([U,s,V])f(=)h(csvd)8
Xb(\(A\);)130 2314 y(subplot)g(\(2,1,1\);)14 b(pica)o(rd)8
Xb(\(U,s,b)p 672 2314 V 16 w(ba)o(r\);)130 2386 y(subplot)g(\(2,2,2\);)
X14 b(pica)o(rd)8 b(\(U,s,b\);)130 2518 y Fo(Clearly)l(,)k(most)d(of)i
X(the)f(F)l(ourier)h(co)q(e\016cien)o(ts)h(for)e(the)g(unp)q(erturb)q
X(ed)j(problem)e(satisfy)f(the)h(discrete)59 2575 y(Picard)h
X(condition|although)h(ev)o(en)o(tually)l(,)g(for)e(large)g
XFn(i)p Fo(,)h(b)q(oth)f(the)h(singular)g(v)m(alues)g(and)g(the)f(F)l
X(ourier)59 2631 y(co)q(e\016cien)o(ts)18 b(b)q(ecome)g(dominated)f(b)o
X(y)g(rounding)h(errors.)24 b(F)l(or)17 b(the)g(\\noisy")g(test)f
X(problem,)i(w)o(e)e(see)59 2688 y(that)c(the)g(F)l(ourier)g(co)q
X(e\016cien)o(ts)h(for)f(the)g(righ)o(t-hand)h(side)g(b)q(ecome)g
X(dominated)g(b)o(y)f(the)g(p)q(erturbation)59 2744 y(for)19
Xb Fn(i)h Fo(m)o(uc)o(h)g(smaller)g(than)g(b)q(efore.)34
Xb(W)l(e)20 b(also)g(see)g(that)f(in)i(the)f(left)g(part)f(of)g(curv)o
X(e)h(the)g(F)l(ourier)59 2801 y(co)q(e\016cien)o(ts)h(still)h(deca)o(y)
Xf(faster)f(than)g(the)h(singular)g(v)m(alues,)i(indicating)f(that)e
X(the)h(unp)q(erturb)q(ed)59 2857 y(righ)o(t-hand)h(side)g(satis\014es)f
X(the)g(discrete)h(Picard)g(condition.)38 b(T)l(o)21 b(regularize)i
X(this)e(problem,)i(w)o(e)p eop
X%%Page: 34 36
X34 35 bop 64 159 a Fo(34)1473 b(TUTORIAL)p 64 178 1767
X2 v 177 259 a
X 22376156 18646798 4341596 13222133 35982622 39469056 startTexFig
X 177 259 a
X%%BeginDocument: tutorial/fig1.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  595   134  5775  4796 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 1782 5356 0 0 -1782 898 2170 4 MP
XPP
X-5356 0 0 1782 5356 0 0 -1782 898 2170 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 2170 mt 6254 2170 L
X 898  388 mt 6254  388 L
X 898 2170 mt  898  388 L
X6254 2170 mt 6254  388 L
X 898 2170 mt 6254 2170 L
X 898 2170 mt  898  388 L
X 898 2170 mt  898 2116 L
X 898  388 mt  898  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 865 2316 mt 
X(0) s
X1663 2170 mt 1663 2116 L
X1663  388 mt 1663  442 L
X1630 2316 mt 
X(5) s
X2428 2170 mt 2428 2116 L
X2428  388 mt 2428  442 L
X2362 2316 mt 
X(10) s
X3193 2170 mt 3193 2116 L
X3193  388 mt 3193  442 L
X3127 2316 mt 
X(15) s
X3959 2170 mt 3959 2116 L
X3959  388 mt 3959  442 L
X3893 2316 mt 
X(20) s
X4724 2170 mt 4724 2116 L
X4724  388 mt 4724  442 L
X4658 2316 mt 
X(25) s
X5489 2170 mt 5489 2116 L
X5489  388 mt 5489  442 L
X5423 2316 mt 
X(30) s
X6254 2170 mt 6254 2116 L
X6254  388 mt 6254  442 L
X6188 2316 mt 
X(35) s
X 898 2170 mt  952 2170 L
X6254 2170 mt 6200 2170 L
X 595 2214 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 2140 mt 
X(-20) s
X 898 2051 mt  925 2051 L
X6254 2051 mt 6227 2051 L
X 898 1932 mt  925 1932 L
X6254 1932 mt 6227 1932 L
X 898 1814 mt  925 1814 L
X6254 1814 mt 6227 1814 L
X 898 1695 mt  925 1695 L
X6254 1695 mt 6227 1695 L
X 898 1576 mt  925 1576 L
X6254 1576 mt 6227 1576 L
X 898 1457 mt  925 1457 L
X6254 1457 mt 6227 1457 L
X 898 1338 mt  925 1338 L
X6254 1338 mt 6227 1338 L
X 898 1220 mt  925 1220 L
X6254 1220 mt 6227 1220 L
X 898 1101 mt  925 1101 L
X6254 1101 mt 6227 1101 L
X 898 1576 mt  952 1576 L
X6254 1576 mt 6200 1576 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 1620 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 1546 mt 
X(-10) s
X 898 1457 mt  925 1457 L
X6254 1457 mt 6227 1457 L
X 898 1338 mt  925 1338 L
X6254 1338 mt 6227 1338 L
X 898 1220 mt  925 1220 L
X6254 1220 mt 6227 1220 L
X 898 1101 mt  925 1101 L
X6254 1101 mt 6227 1101 L
X 898  982 mt  925  982 L
X6254  982 mt 6227  982 L
X 898  863 mt  925  863 L
X6254  863 mt 6227  863 L
X 898  744 mt  925  744 L
X6254  744 mt 6227  744 L
X 898  626 mt  925  626 L
X6254  626 mt 6227  626 L
X 898  507 mt  925  507 L
X6254  507 mt 6227  507 L
X 898  982 mt  952  982 L
X6254  982 mt 6200  982 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 1026 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728  952 mt 
X(0) s
X 898  863 mt  925  863 L
X6254  863 mt 6227  863 L
X 898  744 mt  925  744 L
X6254  744 mt 6227  744 L
X 898  626 mt  925  626 L
X6254  626 mt 6227  626 L
X 898  507 mt  925  507 L
X6254  507 mt 6227  507 L
X 898  388 mt  925  388 L
X6254  388 mt 6227  388 L
X 898  388 mt  952  388 L
X6254  388 mt 6200  388 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595  432 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728  358 mt 
X(10) s
X 898 2170 mt 6254 2170 L
X 898  388 mt 6254  388 L
X 898 2170 mt  898  388 L
X6254 2170 mt 6254  388 L
Xgs 898 388 5357 1783 MR c np
X153 13 153 7 153 11 153 15 153 11 153 1 153 2 153 6 
X153 16 153 3 153 14 153 127 153 32 153 32 154 96 153 55 
X153 70 153 67 153 56 153 42 153 35 153 56 153 74 153 32 
X153 45 153 9 153 14 153 49 153 25 153 15 153 12 1051 954 32 MP stroke
Xgs 978 881 4891 1189 MR c np
X24 w
X1051 954 PD
X1204 966 PD
X1357 981 PD
X1510 1006 PD
X1663 1055 PD
X1816 1069 PD
X1969 1078 PD
X2122 1123 PD
X2275 1155 PD
X2428 1229 PD
X2581 1285 PD
X2734 1320 PD
X2887 1362 PD
X3040 1418 PD
X3193 1485 PD
X3346 1555 PD
X3499 1610 PD
X3653 1706 PD
X3806 1738 PD
X3959 1770 PD
X4112 1897 PD
X4265 1911 PD
X4418 1914 PD
X4571 1930 PD
X4724 1936 PD
X4877 1938 PD
X5030 1939 PD
X5183 1950 PD
X5336 1965 PD
X5489 1976 PD
X5642 1983 PD
X5795 1996 PD
X
Xgr 
X24 w
X6 w
Xgs 978 844 4891 1160 MR c np
X1026  892 mt 1076  942 L
X1076  892 mt 1026  942 L
X1179  939 mt 1229  989 L
X1229  939 mt 1179  989 L
X1332  926 mt 1382  976 L
X1382  926 mt 1332  976 L
X1485  975 mt 1535 1025 L
X1535  975 mt 1485 1025 L
X1638 1049 mt 1688 1099 L
X1688 1049 mt 1638 1099 L
X1791 1059 mt 1841 1109 L
X1841 1059 mt 1791 1109 L
X1944 1068 mt 1994 1118 L
X1994 1068 mt 1944 1118 L
X2097 1188 mt 2147 1238 L
X2147 1188 mt 2097 1238 L
X2250 1172 mt 2300 1222 L
X2300 1172 mt 2250 1222 L
X2403 1253 mt 2453 1303 L
X2453 1253 mt 2403 1303 L
X2556 1354 mt 2606 1404 L
X2606 1354 mt 2556 1404 L
X2709 1357 mt 2759 1407 L
X2759 1357 mt 2709 1407 L
X2862 1422 mt 2912 1472 L
X2912 1422 mt 2862 1472 L
X3015 1569 mt 3065 1619 L
X3065 1569 mt 3015 1619 L
X3168 1565 mt 3218 1615 L
X3218 1565 mt 3168 1615 L
X3321 1664 mt 3371 1714 L
X3371 1664 mt 3321 1714 L
X3474 1745 mt 3524 1795 L
X3524 1745 mt 3474 1795 L
X3628 1841 mt 3678 1891 L
X3678 1841 mt 3628 1891 L
X3781 1887 mt 3831 1937 L
X3831 1887 mt 3781 1937 L
X3934 1833 mt 3984 1883 L
X3984 1833 mt 3934 1883 L
X4087 1876 mt 4137 1926 L
X4137 1876 mt 4087 1926 L
X4240 1863 mt 4290 1913 L
X4290 1863 mt 4240 1913 L
X4393 1867 mt 4443 1917 L
X4443 1867 mt 4393 1917 L
X4546 1905 mt 4596 1955 L
X4596 1905 mt 4546 1955 L
X4699 1837 mt 4749 1887 L
X4749 1837 mt 4699 1887 L
X4852 1851 mt 4902 1901 L
X4902 1851 mt 4852 1901 L
X5005 1837 mt 5055 1887 L
X5055 1837 mt 5005 1887 L
X
Xgr 
Xgs 978 844 4891 1160 MR c np
X5311 1833 mt 5361 1883 L
X5361 1833 mt 5311 1883 L
X5464 1861 mt 5514 1911 L
X5514 1861 mt 5464 1911 L
X5617 1905 mt 5667 1955 L
X5667 1905 mt 5617 1955 L
X5770 1876 mt 5820 1926 L
X5820 1876 mt 5770 1926 L
X
Xgr 
Xgs 978 802 4891 430 MR c np
X  36   36 1051  945 FO
X  36   36 1204  980 FO
X  36   36 1357  952 FO
X  36   36 1510  976 FO
X  36   36 1663 1001 FO
X  36   36 1816  997 FO
X  36   36 1969  997 FO
X  36   36 2122 1072 FO
X  36   36 2275 1024 FO
X  36   36 2428 1031 FO
X  36   36 2581 1077 FO
X  36   36 2734 1045 FO
X  36   36 2887 1067 FO
X  36   36 3040 1158 FO
X  36   36 3193 1087 FO
X  36   36 3346 1117 FO
X  36   36 3499 1142 FO
X  36   36 3653 1142 FO
X  36   36 3806 1156 FO
X  36   36 3959 1070 FO
X  36   36 4112  986 FO
X  36   36 4265  959 FO
X  36   36 4418  959 FO
X  36   36 4571  981 FO
X  36   36 4724  908 FO
X  36   36 4877  920 FO
X  36   36 5030  905 FO
X
Xgr 
Xgs 978 802 4891 430 MR c np
X  36   36 5336  875 FO
X  36   36 5489  892 FO
X  36   36 5642  929 FO
X  36   36 5795  888 FO
X
Xgr 
X
Xgr 
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3562 2459 mt 
X(i) s
X3294  293 mt 
X(Picard plot) s
X1 sg
X0 924 1646 0 0 -924 4470 1416 4 MP
XPP
X-1646 0 0 924 1646 0 0 -924 4470 1416 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X4470 1416 mt 6116 1416 L
X4470  492 mt 6116  492 L
X4470 1416 mt 4470  492 L
X6116 1416 mt 6116  492 L
X4470 1416 mt 6116 1416 L
X4470 1416 mt 4470  492 L
X4470 1416 mt 6116 1416 L
X4470  492 mt 6116  492 L
X4470 1416 mt 4470  492 L
X6116 1416 mt 6116  492 L
X/Symbol /WindowsLatin1Encoding 168 FMSR
X
X5273  751 mt 
X(s) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5374  835 mt 
X(i) s
X/Helvetica /WindowsLatin1Encoding 168 FMSR
X
X5403  751 mt 
X(         ) s
Xgs 4470 492 1647 925 MR c np
X428 0 4577 723 2 MP stroke
Xgs 4504 650 575 147 MR c np
X24 w
X4577 723 PD
X5005 723 PD
X
Xgr 
X24 w
X
Xgr 
X24 w
X5273 1001 mt 
X(|u) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5410 1085 mt 
X(i) s
X5410  917 mt 
X(T) s
X/Helvetica /WindowsLatin1Encoding 168 FMSR
X
X5490 1001 mt 
X(b|         ) s
Xgs 4470 492 1647 925 MR c np
X6 w
Xgs 4504 881 575 147 MR c np
X4552  929 mt 4602  979 L
X4602  929 mt 4552  979 L
X4980  929 mt 5030  979 L
X5030  929 mt 4980  979 L
X
Xgr 
X
Xgr 
X6 w
X5273 1232 mt 
X(|u) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5410 1316 mt 
X(i) s
X5410 1148 mt 
X(T) s
X/Helvetica /WindowsLatin1Encoding 168 FMSR
X
X5490 1232 mt 
X(b|/) s
X/Symbol /WindowsLatin1Encoding 168 FMSR
X
X5673 1232 mt 
X(s) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5774 1316 mt 
X(i) s
Xgs 4470 492 1647 925 MR c np
Xgs 4504 1112 575 147 MR c np
X  36   36 4577 1185 FO
X  36   36 5005 1185 FO
X
Xgr 
X
Xgr 
X1 sg
X0 1782 5356 0 0 -1782 898 4612 4 MP
XPP
X-5356 0 0 1782 5356 0 0 -1782 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 6254 4612 L
X 898 2830 mt 6254 2830 L
X 898 4612 mt  898 2830 L
X6254 4612 mt 6254 2830 L
X 898 4612 mt 6254 4612 L
X 898 4612 mt  898 2830 L
X 898 4612 mt  898 4558 L
X 898 2830 mt  898 2884 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 865 4758 mt 
X(0) s
X1663 4612 mt 1663 4558 L
X1663 2830 mt 1663 2884 L
X1630 4758 mt 
X(5) s
X2428 4612 mt 2428 4558 L
X2428 2830 mt 2428 2884 L
X2362 4758 mt 
X(10) s
X3193 4612 mt 3193 4558 L
X3193 2830 mt 3193 2884 L
X3127 4758 mt 
X(15) s
X3959 4612 mt 3959 4558 L
X3959 2830 mt 3959 2884 L
X3893 4758 mt 
X(20) s
X4724 4612 mt 4724 4558 L
X4724 2830 mt 4724 2884 L
X4658 4758 mt 
X(25) s
X5489 4612 mt 5489 4558 L
X5489 2830 mt 5489 2884 L
X5423 4758 mt 
X(30) s
X6254 4612 mt 6254 4558 L
X6254 2830 mt 6254 2884 L
X6188 4758 mt 
X(35) s
X 898 4612 mt  952 4612 L
X6254 4612 mt 6200 4612 L
X 595 4656 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 4582 mt 
X(-20) s
X 898 4389 mt  925 4389 L
X6254 4389 mt 6227 4389 L
X 898 4167 mt  925 4167 L
X6254 4167 mt 6227 4167 L
X 898 3944 mt  925 3944 L
X6254 3944 mt 6227 3944 L
X 898 3721 mt  925 3721 L
X6254 3721 mt 6227 3721 L
X 898 3498 mt  925 3498 L
X6254 3498 mt 6227 3498 L
X 898 3276 mt  925 3276 L
X6254 3276 mt 6227 3276 L
X 898 3053 mt  925 3053 L
X6254 3053 mt 6227 3053 L
X 898 2830 mt  925 2830 L
X6254 2830 mt 6227 2830 L
X 898 4167 mt  952 4167 L
X6254 4167 mt 6200 4167 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 4211 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 4137 mt 
X(-10) s
X 898 3944 mt  925 3944 L
X6254 3944 mt 6227 3944 L
X 898 3721 mt  925 3721 L
X6254 3721 mt 6227 3721 L
X 898 3498 mt  925 3498 L
X6254 3498 mt 6227 3498 L
X 898 3276 mt  925 3276 L
X6254 3276 mt 6227 3276 L
X 898 3053 mt  925 3053 L
X6254 3053 mt 6227 3053 L
X 898 2830 mt  925 2830 L
X6254 2830 mt 6227 2830 L
X 898 3721 mt  952 3721 L
X6254 3721 mt 6200 3721 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 3765 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 3691 mt 
X(0) s
X 898 3498 mt  925 3498 L
X6254 3498 mt 6227 3498 L
X 898 3276 mt  925 3276 L
X6254 3276 mt 6227 3276 L
X 898 3053 mt  925 3053 L
X6254 3053 mt 6227 3053 L
X 898 2830 mt  925 2830 L
X6254 2830 mt 6227 2830 L
X 898 3276 mt  952 3276 L
X6254 3276 mt 6200 3276 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 3320 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 3246 mt 
X(10) s
X 898 3053 mt  925 3053 L
X6254 3053 mt 6227 3053 L
X 898 2830 mt  925 2830 L
X6254 2830 mt 6227 2830 L
X 898 2830 mt  952 2830 L
X6254 2830 mt 6200 2830 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 2874 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 2800 mt 
X(20) s
X 898 4612 mt 6254 4612 L
X 898 2830 mt 6254 2830 L
X 898 4612 mt  898 2830 L
X6254 4612 mt 6254 2830 L
Xgs 898 2830 5357 1783 MR c np
X153 9 153 6 153 8 153 11 153 9 153 0 153 2 153 4 
X153 12 153 2 153 11 153 95 153 24 153 24 154 72 153 42 
X153 52 153 50 153 42 153 32 153 26 153 42 153 56 153 23 
X153 34 153 7 153 10 153 37 153 19 153 11 153 9 1051 3700 32 MP stroke
Xgs 978 3627 4891 928 MR c np
X24 w
X1051 3700 PD
X1204 3709 PD
X1357 3720 PD
X1510 3739 PD
X1663 3776 PD
X1816 3786 PD
X1969 3793 PD
X2122 3827 PD
X2275 3850 PD
X2428 3906 PD
X2581 3948 PD
X2734 3974 PD
X2887 4006 PD
X3040 4048 PD
X3193 4098 PD
X3346 4150 PD
X3499 4192 PD
X3653 4264 PD
X3806 4288 PD
X3959 4312 PD
X4112 4407 PD
X4265 4418 PD
X4418 4420 PD
X4571 4432 PD
X4724 4436 PD
X4877 4438 PD
X5030 4438 PD
X5183 4447 PD
X5336 4458 PD
X5489 4466 PD
X5642 4472 PD
X5795 4481 PD
X
Xgr 
X24 w
X6 w
Xgs 978 3599 4891 374 MR c np
X1026 3647 mt 1076 3697 L
X1076 3647 mt 1026 3697 L
X1179 3682 mt 1229 3732 L
X1229 3682 mt 1179 3732 L
X1332 3673 mt 1382 3723 L
X1382 3673 mt 1332 3723 L
X1485 3710 mt 1535 3760 L
X1535 3710 mt 1485 3760 L
X1638 3764 mt 1688 3814 L
X1688 3764 mt 1638 3814 L
X1791 3773 mt 1841 3823 L
X1841 3773 mt 1791 3823 L
X1944 3778 mt 1994 3828 L
X1994 3778 mt 1944 3828 L
X2097 3843 mt 2147 3893 L
X2147 3843 mt 2097 3893 L
X2250 3853 mt 2300 3903 L
X2300 3853 mt 2250 3903 L
X2403 3841 mt 2453 3891 L
X2453 3841 mt 2403 3891 L
X2556 3853 mt 2606 3903 L
X2606 3853 mt 2556 3903 L
X2709 3825 mt 2759 3875 L
X2759 3825 mt 2709 3875 L
X2862 3838 mt 2912 3888 L
X2912 3838 mt 2862 3888 L
X3015 3858 mt 3065 3908 L
X3065 3858 mt 3015 3908 L
X3168 3867 mt 3218 3917 L
X3218 3867 mt 3168 3917 L
X3321 3836 mt 3371 3886 L
X3371 3836 mt 3321 3886 L
X3474 3827 mt 3524 3877 L
X3524 3827 mt 3474 3877 L
X3628 3874 mt 3678 3924 L
X3678 3874 mt 3628 3924 L
X3781 3833 mt 3831 3883 L
X3831 3833 mt 3781 3883 L
X3934 3848 mt 3984 3898 L
X3984 3848 mt 3934 3898 L
X4087 3833 mt 4137 3883 L
X4137 3833 mt 4087 3883 L
X4240 3827 mt 4290 3877 L
X4290 3827 mt 4240 3877 L
X4393 3820 mt 4443 3870 L
X4443 3820 mt 4393 3870 L
X4546 3829 mt 4596 3879 L
X4596 3829 mt 4546 3879 L
X4699 3846 mt 4749 3896 L
X4749 3846 mt 4699 3896 L
X4852 3825 mt 4902 3875 L
X4902 3825 mt 4852 3875 L
X5005 3829 mt 5055 3879 L
X5055 3829 mt 5005 3879 L
X5158 3830 mt 5208 3880 L
X5208 3830 mt 5158 3880 L
X5311 3833 mt 5361 3883 L
X5361 3833 mt 5311 3883 L
X5464 3811 mt 5514 3861 L
X5514 3811 mt 5464 3861 L
X5617 3825 mt 5667 3875 L
X5667 3825 mt 5617 3875 L
X5770 3819 mt 5820 3869 L
X5820 3819 mt 5770 3869 L
X
Xgr 
Xgs 978 3011 4891 825 MR c np
X  36   36 1051 3693 FO
X  36   36 1204 3719 FO
X  36   36 1357 3698 FO
X  36   36 1510 3717 FO
X  36   36 1663 3734 FO
X  36   36 1816 3733 FO
X  36   36 1969 3732 FO
X  36   36 2122 3762 FO
X  36   36 2275 3749 FO
X  36   36 2428 3680 FO
X  36   36 2581 3651 FO
X  36   36 2734 3597 FO
X  36   36 2887 3579 FO
X  36   36 3040 3556 FO
X  36   36 3193 3515 FO
X  36   36 3346 3432 FO
X  36   36 3499 3381 FO
X  36   36 3653 3357 FO
X  36   36 3806 3292 FO
X  36   36 3959 3282 FO
X  36   36 4112 3172 FO
X  36   36 4265 3155 FO
X  36   36 4418 3145 FO
X  36   36 4571 3143 FO
X  36   36 4724 3156 FO
X  36   36 4877 3133 FO
X  36   36 5030 3136 FO
X  36   36 5183 3129 FO
X  36   36 5336 3121 FO
X  36   36 5489 3091 FO
X  36   36 5642 3099 FO
X  36   36 5795 3084 FO
X
Xgr 
X
Xgr 
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3562 4901 mt 
X(i) s
X3294 2735 mt 
X(Picard plot) s
X1 sg
X0 925 1646 0 0 -925 4470 3859 4 MP
XPP
X-1646 0 0 925 1646 0 0 -925 4470 3859 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X4470 3859 mt 6116 3859 L
X4470 2934 mt 6116 2934 L
X4470 3859 mt 4470 2934 L
X6116 3859 mt 6116 2934 L
X4470 3859 mt 6116 3859 L
X4470 3859 mt 4470 2934 L
X4470 3859 mt 6116 3859 L
X4470 2934 mt 6116 2934 L
X4470 3859 mt 4470 2934 L
X6116 3859 mt 6116 2934 L
X/Symbol /WindowsLatin1Encoding 168 FMSR
X
X5273 3193 mt 
X(s) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5374 3277 mt 
X(i) s
X/Helvetica /WindowsLatin1Encoding 168 FMSR
X
X5403 3193 mt 
X(         ) s
Xgs 4470 2934 1647 926 MR c np
X428 0 4577 3165 2 MP stroke
Xgs 4504 3092 575 147 MR c np
X24 w
X4577 3165 PD
X5005 3165 PD
X
Xgr 
X24 w
X
Xgr 
X24 w
X5273 3444 mt 
X(|u) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5410 3528 mt 
X(i) s
X5410 3360 mt 
X(T) s
X/Helvetica /WindowsLatin1Encoding 168 FMSR
X
X5490 3444 mt 
X(b|         ) s
Xgs 4470 2934 1647 926 MR c np
X6 w
Xgs 4504 3324 575 147 MR c np
X4552 3372 mt 4602 3422 L
X4602 3372 mt 4552 3422 L
X4980 3372 mt 5030 3422 L
X5030 3372 mt 4980 3422 L
X
Xgr 
X
Xgr 
X6 w
X5273 3675 mt 
X(|u) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5410 3759 mt 
X(i) s
X5410 3591 mt 
X(T) s
X/Helvetica /WindowsLatin1Encoding 168 FMSR
X
X5490 3675 mt 
X(b|/) s
X/Symbol /WindowsLatin1Encoding 168 FMSR
X
X5673 3675 mt 
X(s) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5774 3759 mt 
X(i) s
Xgs 4470 2934 1647 926 MR c np
Xgs 4504 3555 575 147 MR c np
X  36   36 4577 3628 FO
X  36   36 5005 3628 FO
X
Xgr 
X
Xgr 
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 175 1538 a Fo(Figure)15 b(3.1:)k(Output)d(from)e Fl(pica)o(rd)h
XFo(for)g(the)g(\\pure")g(and)h(the)f(\\noisy")g(test)g(problems.)59
X1675 y(should)22 b(preferably)g(damp)q(en)h(the)e(comp)q(onen)o(ts)g
X(for)g(whic)o(h)h(the)g(p)q(erturbation)g(dominates,)g(and)59
X1732 y(lea)o(v)o(e)15 b(the)h(rest)e(of)h(the)h(comp)q(onen)o(ts)f
X(\(for)f(small)i Fn(i)p Fo(\))e(in)o(tact.)59 1858 y
XFr(3.2.)k(Filter)f(F)-5 b(actors)59 1960 y Fo(In)17 b(this)g(part)e(of)
Xh(the)g(tutorial)h(w)o(e)f(consider)h(only)g(the)f(\\noisy")g(test)g
X(problem)h(from)e(Example)i(3.1,)59 2016 y(w)o(e)j(compute)h
X(regularized)h(solutions)g(b)o(y)e(means)h(of)f(Tikhono)o(v's)h(metho)q
X(d)f(and)h(LSQR,)h(and)f(w)o(e)59 2073 y(compute)15 b(the)h(\014lter)f
X(factors)g(for)f(t)o(w)o(o)g(regularization)i(metho)q(ds.)130
X2188 y Fl(lamb)q(da)f(=)g([1,3e-1,1e-1,3e-2,1e-2,3e-3,1e-3,)o(3e-4,1)o
X(e-4,3e-5];)130 2257 y(X)p 163 2257 14 2 v 16 w(tikh)h(=)g(tikhonov)8
Xb(\(U,s,V,b,lamb)q(da\);)130 2326 y(F)p 159 2326 V 16
Xw(tikh)16 b(=)g(\014l)p 349 2326 V 16 w(fac)8 b(\(s,lamb)q(da\);)130
X2395 y(iter)15 b(=)g(30;)g(reo)o(rth)f(=)i(0;)130 2464
Xy([X)p 176 2464 V 16 w(lsqr,rho,eta,F)p 444 2464 V 16
Xw(lsqr])g(=)f(lsqr)8 b(\(A,b,iter,reo)o(rth,s\);)130
X2533 y(subplot)g(\(2,2,1\);)14 b(surf)8 b(\(X)p 561 2533
XV 16 w(tikh\),)15 b(axis)8 b(\('ij'\),)13 b(title)8 b(\('Tikhonov)16
Xb(solutions'\))130 2602 y(subplot)8 b(\(2,2,2\);)14 b(surf)8
Xb(\(log10)g(\(F)p 686 2602 V 13 w(tikh\)\),)16 b(axis)8
Xb(\('ij'\),)13 b(title)8 b(\('Tikh)15 b(\014lter)g(facto)o(rs,)g(log)f
X(scale'\))130 2671 y(subplot)8 b(\(2,2,3\);)14 b(surf)8
Xb(\(X)p 561 2671 V 16 w(lsqr)g(\(:,1:17\)\),)k(axis)c(\('ij'\),)13
Xb(title)8 b(\('LSQR)15 b(solutions'\))130 2740 y(subplot)8
Xb(\(2,2,4\);)14 b(surf)8 b(\(log10)g(\(F)p 686 2740 V
X13 w(lsqr\)\),)15 b(axis)8 b(\('ij'\),)13 b(title)8 b(\('LSQR)15
Xb(\014lter)h(facto)o(rs,)e(log)h(scale'\))p eop
X%%Page: 35 37
X35 36 bop 59 159 a Fo(3.3.)14 b(The)h(L-Curv)o(e)1380
Xb(35)p 59 178 1767 2 v 118 259 a
X 23122024 18646798 4933632 14011514 36706222 39469056 startTexFig
X 118 259 a
X%%BeginDocument: tutorial/fig2.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  701   134  5797  4645 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X-981 -451 1278 -346 981 451 898 734 4 MP
XPP
X-1278 346 -981 -451 1278 -346 981 451 898 734 5 MP stroke
X0 985 981 451 0 -985 898 1719 4 MP
XPP
X-981 -451 0 985 981 451 0 -985 898 1719 5 MP stroke
X0 985 1278 -346 0 -985 1879 2170 4 MP
XPP
X-1278 346 0 985 1278 -346 0 -985 1879 2170 5 MP stroke
X4 w
XDO
X0 sg
X1879 2170 mt  898 1719 L
X 898 1719 mt  898  734 L
X2518 1997 mt 1537 1546 L
X1537 1546 mt 1537  561 L
X3157 1824 mt 2176 1373 L
X2176 1373 mt 2176  388 L
X 898 1719 mt 2176 1373 L
X2176 1373 mt 2176  388 L
X1388 1944 mt 2667 1598 L
X2667 1598 mt 2667  614 L
X1879 2170 mt 3157 1824 L
X3157 1824 mt 3157  839 L
X 898 1719 mt 2176 1373 L
X2176 1373 mt 3157 1824 L
X 898 1391 mt 2176 1045 L
X2176 1045 mt 3157 1496 L
X 898 1062 mt 2176  716 L
X2176  716 mt 3157 1167 L
X 898  734 mt 2176  388 L
X2176  388 mt 3157  839 L
XSO
X6 w
X1879 2170 mt 3157 1824 L
X 898 1719 mt 1879 2170 L
X 898 1719 mt  898  734 L
X1879 2170 mt 1909 2184 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X1940 2309 mt 
X(0) s
X2518 1997 mt 2548 2011 L
X2579 2136 mt 
X(5) s
X3157 1824 mt 3187 1838 L
X3218 1963 mt 
X(10) s
X 898 1719 mt  866 1728 L
X 767 1848 mt 
X(0) s
X1388 1944 mt 1356 1953 L
X1190 2073 mt 
X(20) s
X1879 2170 mt 1847 2179 L
X1680 2299 mt 
X(40) s
X 898 1719 mt  868 1705 L
X 701 1735 mt 
X(-2) s
X 898 1391 mt  868 1377 L
X 771 1406 mt 
X(0) s
X 898 1062 mt  868 1049 L
X 771 1078 mt 
X(2) s
X 898  734 mt  868  720 L
X 771  750 mt 
X(4) s
Xgs 898 388 2260 1783 MR c np
X/c8 { 0.250000 1.000000 0.812500 sr} bdef
Xc8
X25 86 127 126 2809 1363 3 MP
XPP
X0 sg
X2809 1363 mt 2936 1489 L
X2936 1489 mt 2961 1575 L
Xc8
X128 4 24 208 2809 1363 3 MP
XPP
X0 sg
X2809 1363 mt 2833 1571 L
X2833 1571 mt 2961 1575 L
X/c9 { 0.875000 1.000000 0.187500 sr} bdef
Xc9
X24 638 128 -317 2073 891 3 MP
XPP
X0 sg
X2073  891 mt 2201  574 L
X2201  574 mt 2225 1212 L
Xc9
X128 73 24 248 2073 891 3 MP
XPP
X0 sg
X2073  891 mt 2097 1139 L
X2097 1139 mt 2225 1212 L
X/c10 { 0.000000 0.812500 1.000000 sr} bdef
Xc10
X128 -18 25 -92 2146 1157 3 MP
XPP
X0 sg
X2146 1157 mt 2171 1065 L
X2171 1065 mt 2299 1047 L
Xc10
X25 173 128 73 2097 1139 3 MP
XPP
X0 sg
X2097 1139 mt 2225 1212 L
X2225 1212 mt 2250 1385 L
Xc10
X25 -233 128 123 2146 1157 3 MP
XPP
X0 sg
X2146 1157 mt 2274 1280 L
X2274 1280 mt 2299 1047 L
X/c11 { 0.312500 1.000000 0.750000 sr} bdef
Xc11
X24 -229 128 -18 2171 1065 3 MP
XPP
X0 sg
X2171 1065 mt 2299 1047 L
X2299 1047 mt 2323  818 L
X/c12 { 0.687500 1.000000 0.375000 sr} bdef
Xc12
X127 111 25 73 2269 1028 3 MP
XPP
X0 sg
X2269 1028 mt 2294 1101 L
X2294 1101 mt 2421 1212 L
Xc12
X24 233 128 -49 2269 1028 3 MP
XPP
X0 sg
X2269 1028 mt 2397  979 L
X2397  979 mt 2421 1212 L
X/c13 { 0.437500 1.000000 0.625000 sr} bdef
Xc13
X25 -239 127 105 2343 1118 3 MP
XPP
X0 sg
X2343 1118 mt 2470 1223 L
X2470 1223 mt 2495  984 L
Xc12
X24 305 128 -93 2441 1106 3 MP
XPP
X0 sg
X2441 1106 mt 2569 1013 L
X2569 1013 mt 2593 1318 L
Xc12
X128 106 24 106 2441 1106 3 MP
XPP
X0 sg
X2441 1106 mt 2465 1212 L
X2465 1212 mt 2593 1318 L
Xc8
X25 159 128 106 2465 1212 3 MP
XPP
X0 sg
X2465 1212 mt 2593 1318 L
X2593 1318 mt 2618 1477 L
X/c14 { 0.125000 1.000000 0.937500 sr} bdef
Xc14
X25 -288 128 108 2514 1265 3 MP
XPP
X0 sg
X2514 1265 mt 2642 1373 L
X2642 1373 mt 2667 1085 L
Xc14
X128 -91 25 -89 2514 1265 3 MP
XPP
X0 sg
X2514 1265 mt 2539 1176 L
X2539 1176 mt 2667 1085 L
X/c15 { 0.562500 1.000000 0.500000 sr} bdef
Xc15
X24 -268 128 -91 2539 1176 3 MP
XPP
X0 sg
X2539 1176 mt 2667 1085 L
X2667 1085 mt 2691  817 L
X/c16 { 1.000000 0.625000 0.000000 sr} bdef
Xc16
X24 163 128 104 2637 1040 3 MP
XPP
X0 sg
X2637 1040 mt 2765 1144 L
X2765 1144 mt 2789 1307 L
Xc16
X128 193 24 74 2637 1040 3 MP
XPP
X0 sg
X2637 1040 mt 2661 1114 L
X2661 1114 mt 2789 1307 L
X/c17 { 1.000000 0.937500 0.000000 sr} bdef
Xc17
X25 -17 128 193 2661 1114 3 MP
XPP
X0 sg
X2661 1114 mt 2789 1307 L
X2789 1307 mt 2814 1290 L
Xc17
X128 119 25 57 2661 1114 3 MP
XPP
X0 sg
X2661 1114 mt 2686 1171 L
X2686 1171 mt 2814 1290 L
X/c18 { 0.937500 1.000000 0.125000 sr} bdef
Xc18
X24 -156 128 119 2686 1171 3 MP
XPP
X0 sg
X2686 1171 mt 2814 1290 L
X2814 1290 mt 2838 1134 L
X/c19 { 0.750000 1.000000 0.312500 sr} bdef
Xc19
X24 300 128 -59 2784 1248 3 MP
XPP
X0 sg
X2784 1248 mt 2912 1189 L
X2912 1189 mt 2936 1489 L
Xc19
X127 126 25 115 2784 1248 3 MP
XPP
X0 sg
X2784 1248 mt 2809 1363 L
X2809 1363 mt 2936 1489 L
Xc18
X128 -59 25 45 2759 1203 3 MP
XPP
X0 sg
X2759 1203 mt 2784 1248 L
X2784 1248 mt 2912 1189 L
Xc18
X128 -62 24 25 2686 1171 3 MP
XPP
X0 sg
X2686 1171 mt 2710 1196 L
X2710 1196 mt 2838 1134 L
Xc15
X128 -248 24 -111 2539 1176 3 MP
XPP
X0 sg
X2539 1176 mt 2563 1065 L
X2563 1065 mt 2691  817 L
X/c20 { 1.000000 0.437500 0.000000 sr} bdef
Xc20
X128 104 25 53 2612 987 3 MP
XPP
X0 sg
X2612  987 mt 2637 1040 L
X2637 1040 mt 2765 1144 L
Xc20
X25 244 128 -87 2612 987 3 MP
XPP
X0 sg
X2612  987 mt 2740  900 L
X2740  900 mt 2765 1144 L
Xc9
X25 -153 128 -62 2710 1196 3 MP
XPP
X0 sg
X2710 1196 mt 2838 1134 L
X2838 1134 mt 2863  981 L
Xc18
X25 208 128 -222 2759 1203 3 MP
XPP
X0 sg
X2759 1203 mt 2887  981 L
X2887  981 mt 2912 1189 L
Xc9
X128 -222 24 6 2735 1197 3 MP
XPP
X0 sg
X2735 1197 mt 2759 1203 L
X2759 1203 mt 2887  981 L
Xc9
X24 0 128 -216 2735 1197 3 MP
XPP
X0 sg
X2735 1197 mt 2863  981 L
X2863  981 mt 2887  981 L
Xc9
X128 -216 25 1 2710 1196 3 MP
XPP
X0 sg
X2710 1196 mt 2735 1197 L
X2735 1197 mt 2863  981 L
Xc14
X128 76 24 65 2681 1430 3 MP
XPP
X0 sg
X2681 1430 mt 2705 1495 L
X2705 1495 mt 2833 1571 L
Xc14
X24 208 128 -67 2681 1430 3 MP
XPP
X0 sg
X2681 1430 mt 2809 1363 L
X2809 1363 mt 2833 1571 L
X/c21 { 0.375000 1.000000 0.687500 sr} bdef
Xc21
X25 115 128 -120 2656 1368 3 MP
XPP
X0 sg
X2656 1368 mt 2784 1248 L
X2784 1248 mt 2809 1363 L
Xc21
X128 -67 25 62 2656 1368 3 MP
XPP
X0 sg
X2656 1368 mt 2681 1430 L
X2681 1430 mt 2809 1363 L
X/c22 { 0.625000 1.000000 0.437500 sr} bdef
Xc22
X25 45 127 -103 2632 1306 3 MP
XPP
X0 sg
X2632 1306 mt 2759 1203 L
X2759 1203 mt 2784 1248 L
Xc22
X128 -120 24 62 2632 1306 3 MP
XPP
X0 sg
X2632 1306 mt 2656 1368 L
X2656 1368 mt 2784 1248 L
X/c23 { 0.812500 1.000000 0.250000 sr} bdef
Xc23
X127 -103 25 62 2607 1244 3 MP
XPP
X0 sg
X2607 1244 mt 2632 1306 L
X2632 1306 mt 2759 1203 L
Xc23
X24 6 128 -47 2607 1244 3 MP
XPP
X0 sg
X2607 1244 mt 2735 1197 L
X2735 1197 mt 2759 1203 L
Xc17
X25 -69 128 -248 2563 1065 3 MP
XPP
X0 sg
X2563 1065 mt 2691  817 L
X2691  817 mt 2716  748 L
Xc17
X128 -244 25 -73 2563 1065 3 MP
XPP
X0 sg
X2563 1065 mt 2588  992 L
X2588  992 mt 2716  748 L
X/c24 { 1.000000 0.500000 0.000000 sr} bdef
Xc24
X128 -87 24 -5 2588 992 3 MP
XPP
X0 sg
X2588  992 mt 2612  987 L
X2612  987 mt 2740  900 L
Xc24
X24 152 128 -244 2588 992 3 MP
XPP
X0 sg
X2588  992 mt 2716  748 L
X2716  748 mt 2740  900 L
X/c25 { 1.000000 0.750000 0.000000 sr} bdef
Xc25
X127 13 25 56 2558 1127 3 MP
XPP
X0 sg
X2558 1127 mt 2583 1183 L
X2583 1183 mt 2710 1196 L
Xc25
X24 25 128 44 2558 1127 3 MP
XPP
X0 sg
X2558 1127 mt 2686 1171 L
X2686 1171 mt 2710 1196 L
X/c26 { 1.000000 1.000000 0.000000 sr} bdef
Xc26
X25 1 127 13 2583 1183 3 MP
XPP
X0 sg
X2583 1183 mt 2710 1196 L
X2710 1196 mt 2735 1197 L
Xc26
X128 -47 24 61 2583 1183 3 MP
XPP
X0 sg
X2583 1183 mt 2607 1244 L
X2607 1244 mt 2735 1197 L
Xc21
X128 182 24 37 2294 1101 3 MP
XPP
X0 sg
X2294 1101 mt 2318 1138 L
X2318 1138 mt 2446 1320 L
Xc21
X25 108 127 111 2294 1101 3 MP
XPP
X0 sg
X2294 1101 mt 2421 1212 L
X2421 1212 mt 2446 1320 L
Xc8
X127 105 25 -20 2318 1138 3 MP
XPP
X0 sg
X2318 1138 mt 2343 1118 L
X2343 1118 mt 2470 1223 L
Xc8
X24 -97 128 182 2318 1138 3 MP
XPP
X0 sg
X2318 1138 mt 2446 1320 L
X2446 1320 mt 2470 1223 L
Xc8
X128 198 25 67 2465 1212 3 MP
XPP
X0 sg
X2465 1212 mt 2490 1279 L
X2490 1279 mt 2618 1477 L
X/c27 { 0.000000 1.000000 1.000000 sr} bdef
Xc27
X24 -104 128 198 2490 1279 3 MP
XPP
X0 sg
X2490 1279 mt 2618 1477 L
X2618 1477 mt 2642 1373 L
X/c28 { 0.062500 1.000000 1.000000 sr} bdef
Xc28
X24 65 128 -42 2553 1472 3 MP
XPP
X0 sg
X2553 1472 mt 2681 1430 L
X2681 1430 mt 2705 1495 L
Xc28
X128 -20 24 43 2553 1472 3 MP
XPP
X0 sg
X2553 1472 mt 2577 1515 L
X2577 1515 mt 2705 1495 L
Xc15
X128 3 24 39 2313 1170 3 MP
XPP
X0 sg
X2313 1170 mt 2337 1209 L
X2337 1209 mt 2465 1212 L
Xc15
X24 106 128 -64 2313 1170 3 MP
XPP
X0 sg
X2313 1170 mt 2441 1106 L
X2441 1106 mt 2465 1212 L
Xc15
X24 -111 128 -31 2411 1207 3 MP
XPP
X0 sg
X2411 1207 mt 2539 1176 L
X2539 1176 mt 2563 1065 L
Xc15
X128 -92 24 -50 2411 1207 3 MP
XPP
X0 sg
X2411 1207 mt 2435 1157 L
X2435 1157 mt 2563 1065 L
Xc13
X128 -76 24 -58 2343 1118 3 MP
XPP
X0 sg
X2343 1118 mt 2367 1060 L
X2367 1060 mt 2495  984 L
Xc19
X24 -203 128 -76 2367 1060 3 MP
XPP
X0 sg
X2367 1060 mt 2495  984 L
X2495  984 mt 2519  781 L
X/c29 { 1.000000 1.000000 0.062500 sr} bdef
Xc29
X25 230 128 -243 2416 1026 3 MP
XPP
X0 sg
X2416 1026 mt 2544  783 L
X2544  783 mt 2569 1013 L
Xc29
X128 -93 25 80 2416 1026 3 MP
XPP
X0 sg
X2416 1026 mt 2441 1106 L
X2441 1106 mt 2569 1013 L
Xc9
X25 -73 128 -92 2435 1157 3 MP
XPP
X0 sg
X2435 1157 mt 2563 1065 L
X2563 1065 mt 2588  992 L
Xc16
X128 44 24 42 2534 1085 3 MP
XPP
X0 sg
X2534 1085 mt 2558 1127 L
X2558 1127 mt 2686 1171 L
Xc16
X25 57 127 29 2534 1085 3 MP
XPP
X0 sg
X2534 1085 mt 2661 1114 L
X2661 1114 mt 2686 1171 L
Xc11
X128 -42 25 56 2528 1416 3 MP
XPP
X0 sg
X2528 1416 mt 2553 1472 L
X2553 1472 mt 2681 1430 L
Xc27
X128 108 24 -14 2490 1279 3 MP
XPP
X0 sg
X2490 1279 mt 2514 1265 L
X2514 1265 mt 2642 1373 L
Xc11
X25 62 128 -48 2528 1416 3 MP
XPP
X0 sg
X2528 1416 mt 2656 1368 L
X2656 1368 mt 2681 1430 L
Xc9
X128 -114 25 -51 2435 1157 3 MP
XPP
X0 sg
X2435 1157 mt 2460 1106 L
X2460 1106 mt 2588  992 L
X/c30 { 1.000000 0.875000 0.000000 sr} bdef
Xc30
X24 -5 128 -114 2460 1106 3 MP
XPP
X0 sg
X2460 1106 mt 2588  992 L
X2588  992 mt 2612  987 L
Xc30
X127 -85 25 -34 2460 1106 3 MP
XPP
X0 sg
X2460 1106 mt 2485 1072 L
X2485 1072 mt 2612  987 L
X/c31 { 1.000000 0.687500 0.000000 sr} bdef
Xc31
X25 53 127 -85 2485 1072 3 MP
XPP
X0 sg
X2485 1072 mt 2612  987 L
X2612  987 mt 2637 1040 L
Xc31
X128 -24 24 -8 2485 1072 3 MP
XPP
X0 sg
X2485 1072 mt 2509 1064 L
X2509 1064 mt 2637 1040 L
X/c32 { 1.000000 0.562500 0.000000 sr} bdef
Xc32
X127 29 25 21 2509 1064 3 MP
XPP
X0 sg
X2509 1064 mt 2534 1085 L
X2534 1085 mt 2661 1114 L
Xc32
X24 74 128 -24 2509 1064 3 MP
XPP
X0 sg
X2509 1064 mt 2637 1040 L
X2637 1040 mt 2661 1114 L
Xc15
X128 -48 24 67 2504 1349 3 MP
XPP
X0 sg
X2504 1349 mt 2528 1416 L
X2528 1416 mt 2656 1368 L
Xc15
X24 62 128 -43 2504 1349 3 MP
XPP
X0 sg
X2504 1349 mt 2632 1306 L
X2632 1306 mt 2656 1368 L
Xc13
X128 43 25 27 2337 1209 3 MP
XPP
X0 sg
X2337 1209 mt 2362 1236 L
X2362 1236 mt 2490 1279 L
Xc13
X25 67 128 3 2337 1209 3 MP
XPP
X0 sg
X2337 1209 mt 2465 1212 L
X2465 1212 mt 2490 1279 L
Xc21
X24 -14 128 43 2362 1236 3 MP
XPP
X0 sg
X2362 1236 mt 2490 1279 L
X2490 1279 mt 2514 1265 L
Xc9
X25 62 128 -33 2479 1277 3 MP
XPP
X0 sg
X2479 1277 mt 2607 1244 L
X2607 1244 mt 2632 1306 L
Xc9
X128 -43 25 72 2479 1277 3 MP
XPP
X0 sg
X2479 1277 mt 2504 1349 L
X2504 1349 mt 2632 1306 L
Xc21
X128 28 24 1 2362 1236 3 MP
XPP
X0 sg
X2362 1236 mt 2386 1237 L
X2386 1237 mt 2514 1265 L
Xc21
X25 -89 128 28 2386 1237 3 MP
XPP
X0 sg
X2386 1237 mt 2514 1265 L
X2514 1265 mt 2539 1176 L
Xc21
X128 -31 25 -30 2386 1237 3 MP
XPP
X0 sg
X2386 1237 mt 2411 1207 L
X2411 1207 mt 2539 1176 L
Xc17
X128 -33 24 69 2455 1208 3 MP
XPP
X0 sg
X2455 1208 mt 2479 1277 L
X2479 1277 mt 2607 1244 L
Xc17
X24 61 128 -25 2455 1208 3 MP
XPP
X0 sg
X2455 1208 mt 2583 1183 L
X2583 1183 mt 2607 1244 L
Xc10
X128 182 25 64 2097 1139 3 MP
XPP
X0 sg
X2097 1139 mt 2122 1203 L
X2122 1203 mt 2250 1385 L
X/c33 { 0.000000 0.562500 1.000000 sr} bdef
Xc33
X128 123 24 -46 2122 1203 3 MP
XPP
X0 sg
X2122 1203 mt 2146 1157 L
X2146 1157 mt 2274 1280 L
X/c34 { 0.500000 1.000000 0.562500 sr} bdef
Xc34
X24 39 128 -42 2185 1212 3 MP
XPP
X0 sg
X2185 1212 mt 2313 1170 L
X2313 1170 mt 2337 1209 L
Xc34
X127 -31 25 28 2185 1212 3 MP
XPP
X0 sg
X2185 1212 mt 2210 1240 L
X2210 1240 mt 2337 1209 L
Xc13
X128 -23 24 19 2210 1240 3 MP
XPP
X0 sg
X2210 1240 mt 2234 1259 L
X2234 1259 mt 2362 1236 L
Xc13
X25 27 127 -31 2210 1240 3 MP
XPP
X0 sg
X2210 1240 mt 2337 1209 L
X2337 1209 mt 2362 1236 L
Xc22
X127 -42 25 -40 2283 1239 3 MP
XPP
X0 sg
X2283 1239 mt 2308 1199 L
X2308 1199 mt 2435 1157 L
Xc22
X24 -50 128 -32 2283 1239 3 MP
XPP
X0 sg
X2283 1239 mt 2411 1207 L
X2411 1207 mt 2435 1157 L
Xc9
X25 -51 127 -42 2308 1199 3 MP
XPP
X0 sg
X2308 1199 mt 2435 1157 L
X2435 1157 mt 2460 1106 L
Xc25
X128 -25 25 58 2430 1150 3 MP
XPP
X0 sg
X2430 1150 mt 2455 1208 L
X2455 1208 mt 2583 1183 L
Xc25
X25 56 128 -23 2430 1150 3 MP
XPP
X0 sg
X2430 1150 mt 2558 1127 L
X2558 1127 mt 2583 1183 L
Xc28
X127 -38 25 46 2425 1507 3 MP
XPP
X0 sg
X2425 1507 mt 2450 1553 L
X2450 1553 mt 2577 1515 L
Xc28
X24 43 128 -35 2425 1507 3 MP
XPP
X0 sg
X2425 1507 mt 2553 1472 L
X2553 1472 mt 2577 1515 L
Xc8
X24 248 128 -171 1945 1062 3 MP
XPP
X0 sg
X1945 1062 mt 2073  891 L
X2073  891 mt 2097 1139 L
Xc8
X127 22 25 55 1945 1062 3 MP
XPP
X0 sg
X1945 1062 mt 1970 1117 L
X1970 1117 mt 2097 1139 L
Xc28
X25 64 127 22 1970 1117 3 MP
XPP
X0 sg
X1970 1117 mt 2097 1139 L
X2097 1139 mt 2122 1203 L
Xc14
X25 -92 127 33 2019 1124 3 MP
XPP
X0 sg
X2019 1124 mt 2146 1157 L
X2146 1157 mt 2171 1065 L
Xc12
X24 37 128 24 2166 1077 3 MP
XPP
X0 sg
X2166 1077 mt 2294 1101 L
X2294 1101 mt 2318 1138 L
Xc12
X128 46 24 15 2166 1077 3 MP
XPP
X0 sg
X2166 1077 mt 2190 1092 L
X2190 1092 mt 2318 1138 L
Xc22
X25 -20 128 46 2190 1092 3 MP
XPP
X0 sg
X2190 1092 mt 2318 1138 L
X2318 1138 mt 2343 1118 L
Xc12
X128 -64 25 34 2288 1136 3 MP
XPP
X0 sg
X2288 1136 mt 2313 1170 L
X2313 1170 mt 2441 1106 L
Xc22
X128 16 25 10 2190 1092 3 MP
XPP
X0 sg
X2190 1092 mt 2215 1102 L
X2215 1102 mt 2343 1118 L
Xc14
X128 -37 24 -22 2019 1124 3 MP
XPP
X0 sg
X2019 1124 mt 2043 1102 L
X2043 1102 mt 2171 1065 L
Xc11
X25 -84 128 -37 2043 1102 3 MP
XPP
X0 sg
X2043 1102 mt 2171 1065 L
X2171 1065 mt 2196  981 L
Xc12
X128 24 25 15 2141 1062 3 MP
XPP
X0 sg
X2141 1062 mt 2166 1077 L
X2166 1077 mt 2294 1101 L
Xc11
X127 -163 25 -84 2171 1065 3 MP
XPP
X0 sg
X2171 1065 mt 2196  981 L
X2196  981 mt 2323  818 L
Xc12
X25 73 128 -34 2141 1062 3 MP
XPP
X0 sg
X2141 1062 mt 2269 1028 L
X2269 1028 mt 2294 1101 L
Xc12
X24 -58 128 16 2215 1102 3 MP
XPP
X0 sg
X2215 1102 mt 2343 1118 L
X2343 1118 mt 2367 1060 L
Xc12
X25 80 128 -110 2288 1136 3 MP
XPP
X0 sg
X2288 1136 mt 2416 1026 L
X2416 1026 mt 2441 1106 L
Xc9
X128 -47 24 -46 2308 1199 3 MP
XPP
X0 sg
X2308 1199 mt 2332 1153 L
X2332 1153 mt 2460 1106 L
Xc17
X128 -44 25 -37 2332 1153 3 MP
XPP
X0 sg
X2332 1153 mt 2357 1116 L
X2357 1116 mt 2485 1072 L
Xc17
X25 -34 128 -47 2332 1153 3 MP
XPP
X0 sg
X2332 1153 mt 2460 1106 L
X2460 1106 mt 2485 1072 L
Xc32
X24 42 128 -26 2406 1111 3 MP
XPP
X0 sg
X2406 1111 mt 2534 1085 L
X2534 1085 mt 2558 1127 L
Xc32
X128 -23 24 39 2406 1111 3 MP
XPP
X0 sg
X2406 1111 mt 2430 1150 L
X2430 1150 mt 2558 1127 L
Xc11
X25 56 127 -33 2401 1449 3 MP
XPP
X0 sg
X2401 1449 mt 2528 1416 L
X2528 1416 mt 2553 1472 L
Xc11
X128 -35 24 58 2401 1449 3 MP
XPP
X0 sg
X2401 1449 mt 2425 1507 L
X2425 1507 mt 2553 1472 L
Xc19
X127 -232 25 -47 2367 1060 3 MP
XPP
X0 sg
X2367 1060 mt 2392 1013 L
X2392 1013 mt 2519  781 L
Xc29
X25 2 127 -232 2392 1013 3 MP
XPP
X0 sg
X2392 1013 mt 2519  781 L
X2519  781 mt 2544  783 L
Xc29
X128 -243 24 13 2392 1013 3 MP
XPP
X0 sg
X2392 1013 mt 2416 1026 L
X2416 1026 mt 2544  783 L
Xc25
X24 -8 128 -44 2357 1116 3 MP
XPP
X0 sg
X2357 1116 mt 2485 1072 L
X2485 1072 mt 2509 1064 L
Xc25
X128 -36 24 -16 2357 1116 3 MP
XPP
X0 sg
X2357 1116 mt 2381 1100 L
X2381 1100 mt 2509 1064 L
Xc32
X25 21 128 -36 2381 1100 3 MP
XPP
X0 sg
X2381 1100 mt 2509 1064 L
X2509 1064 mt 2534 1085 L
Xc32
X128 -26 25 11 2381 1100 3 MP
XPP
X0 sg
X2381 1100 mt 2406 1111 L
X2406 1111 mt 2534 1085 L
Xc15
X127 -33 25 68 2376 1381 3 MP
XPP
X0 sg
X2376 1381 mt 2401 1449 L
X2401 1449 mt 2528 1416 L
Xc15
X24 67 128 -32 2376 1381 3 MP
XPP
X0 sg
X2376 1381 mt 2504 1349 L
X2504 1349 mt 2528 1416 L
Xc9
X128 -32 25 71 2351 1310 3 MP
XPP
X0 sg
X2351 1310 mt 2376 1381 L
X2376 1381 mt 2504 1349 L
Xc9
X25 72 128 -33 2351 1310 3 MP
XPP
X0 sg
X2351 1310 mt 2479 1277 L
X2479 1277 mt 2504 1349 L
Xc21
X24 1 128 -23 2234 1259 3 MP
XPP
X0 sg
X2234 1259 mt 2362 1236 L
X2362 1236 mt 2386 1237 L
Xc21
X127 -23 25 1 2234 1259 3 MP
XPP
X0 sg
X2234 1259 mt 2259 1260 L
X2259 1260 mt 2386 1237 L
Xc13
X25 -30 127 -23 2259 1260 3 MP
XPP
X0 sg
X2259 1260 mt 2386 1237 L
X2386 1237 mt 2411 1207 L
Xc17
X128 -33 24 68 2327 1242 3 MP
XPP
X0 sg
X2327 1242 mt 2351 1310 L
X2351 1310 mt 2479 1277 L
Xc17
X24 69 128 -34 2327 1242 3 MP
XPP
X0 sg
X2327 1242 mt 2455 1208 L
X2455 1208 mt 2479 1277 L
X
Xgr 
Xgs 898 388 2260 1783 MR c np
Xc33
X24 -105 128 182 2122 1203 3 MP
XPP
X0 sg
X2122 1203 mt 2250 1385 L
X2250 1385 mt 2274 1280 L
Xc34
X25 28 128 -37 2057 1249 3 MP
XPP
X0 sg
X2057 1249 mt 2185 1212 L
X2185 1212 mt 2210 1240 L
Xc22
X25 34 127 -47 2161 1183 3 MP
XPP
X0 sg
X2161 1183 mt 2288 1136 L
X2288 1136 mt 2313 1170 L
Xc22
X128 -42 24 29 2161 1183 3 MP
XPP
X0 sg
X2161 1183 mt 2185 1212 L
X2185 1212 mt 2313 1170 L
Xc9
X24 -46 128 -32 2180 1231 3 MP
XPP
X0 sg
X2180 1231 mt 2308 1199 L
X2308 1199 mt 2332 1153 L
Xc25
X25 58 128 -35 2302 1185 3 MP
XPP
X0 sg
X2302 1185 mt 2430 1150 L
X2430 1150 mt 2455 1208 L
Xc13
X128 -32 24 -21 2259 1260 3 MP
XPP
X0 sg
X2259 1260 mt 2283 1239 L
X2283 1239 mt 2411 1207 L
Xc25
X128 -34 25 57 2302 1185 3 MP
XPP
X0 sg
X2302 1185 mt 2327 1242 L
X2327 1242 mt 2455 1208 L
Xc14
X25 46 128 -27 2297 1534 3 MP
XPP
X0 sg
X2297 1534 mt 2425 1507 L
X2425 1507 mt 2450 1553 L
Xc14
X128 -26 25 45 2297 1534 3 MP
XPP
X0 sg
X2297 1534 mt 2322 1579 L
X2322 1579 mt 2450 1553 L
Xc28
X128 70 24 16 1970 1117 3 MP
XPP
X0 sg
X1970 1117 mt 1994 1133 L
X1994 1133 mt 2122 1203 L
Xc28
X127 33 25 -9 1994 1133 3 MP
XPP
X0 sg
X1994 1133 mt 2019 1124 L
X2019 1124 mt 2146 1157 L
Xc28
X24 -46 128 70 1994 1133 3 MP
XPP
X0 sg
X1994 1133 mt 2122 1203 L
X2122 1203 mt 2146 1157 L
Xc12
X24 20 128 -44 2136 1160 3 MP
XPP
X0 sg
X2136 1160 mt 2264 1116 L
X2264 1116 mt 2288 1136 L
Xc12
X127 -47 25 23 2136 1160 3 MP
XPP
X0 sg
X2136 1160 mt 2161 1183 L
X2161 1183 mt 2288 1136 L
Xc12
X128 -47 24 5 2215 1102 3 MP
XPP
X0 sg
X2215 1102 mt 2239 1107 L
X2239 1107 mt 2367 1060 L
Xc12
X25 -47 128 -47 2239 1107 3 MP
XPP
X0 sg
X2239 1107 mt 2367 1060 L
X2367 1060 mt 2392 1013 L
Xc12
X128 -110 24 20 2264 1116 3 MP
XPP
X0 sg
X2264 1116 mt 2288 1136 L
X2288 1136 mt 2416 1026 L
Xc17
X128 -36 25 -35 2204 1187 3 MP
XPP
X0 sg
X2204 1187 mt 2229 1152 L
X2229 1152 mt 2357 1116 L
Xc17
X25 -37 128 -34 2204 1187 3 MP
XPP
X0 sg
X2204 1187 mt 2332 1153 L
X2332 1153 mt 2357 1116 L
Xc16
X24 39 128 -37 2278 1148 3 MP
XPP
X0 sg
X2278 1148 mt 2406 1111 L
X2406 1111 mt 2430 1150 L
Xc9
X128 -34 24 -44 2180 1231 3 MP
XPP
X0 sg
X2180 1231 mt 2204 1187 L
X2204 1187 mt 2332 1153 L
Xc16
X128 -35 24 37 2278 1148 3 MP
XPP
X0 sg
X2278 1148 mt 2302 1185 L
X2302 1185 mt 2430 1150 L
Xc11
X24 58 128 -29 2273 1478 3 MP
XPP
X0 sg
X2273 1478 mt 2401 1449 L
X2401 1449 mt 2425 1507 L
Xc11
X128 -27 24 56 2273 1478 3 MP
XPP
X0 sg
X2273 1478 mt 2297 1534 L
X2297 1534 mt 2425 1507 L
Xc12
X24 13 128 -103 2264 1116 3 MP
XPP
X0 sg
X2264 1116 mt 2392 1013 L
X2392 1013 mt 2416 1026 L
Xc25
X24 -16 128 -36 2229 1152 3 MP
XPP
X0 sg
X2229 1152 mt 2357 1116 L
X2357 1116 mt 2381 1100 L
Xc25
X128 -37 24 -15 2229 1152 3 MP
XPP
X0 sg
X2229 1152 mt 2253 1137 L
X2253 1137 mt 2381 1100 L
Xc16
X128 -37 25 11 2253 1137 3 MP
XPP
X0 sg
X2253 1137 mt 2278 1148 L
X2278 1148 mt 2406 1111 L
Xc16
X25 11 128 -37 2253 1137 3 MP
XPP
X0 sg
X2253 1137 mt 2381 1100 L
X2381 1100 mt 2406 1111 L
Xc15
X25 68 128 -33 2248 1414 3 MP
XPP
X0 sg
X2248 1414 mt 2376 1381 L
X2376 1381 mt 2401 1449 L
Xc15
X128 -29 25 64 2248 1414 3 MP
XPP
X0 sg
X2248 1414 mt 2273 1478 L
X2273 1478 mt 2401 1449 L
Xc18
X25 209 127 -192 2245 962 3 MP
XPP
X0 sg
X2245  962 mt 2372  770 L
X2372  770 mt 2397  979 L
Xc18
X128 -49 24 66 2245 962 3 MP
XPP
X0 sg
X2245  962 mt 2269 1028 L
X2269 1028 mt 2397  979 L
Xc12
X128 -103 25 9 2239 1107 3 MP
XPP
X0 sg
X2239 1107 mt 2264 1116 L
X2264 1116 mt 2392 1013 L
Xc9
X25 71 127 -36 2224 1346 3 MP
XPP
X0 sg
X2224 1346 mt 2351 1310 L
X2351 1310 mt 2376 1381 L
Xc9
X128 -33 24 68 2224 1346 3 MP
XPP
X0 sg
X2224 1346 mt 2248 1414 L
X2248 1414 mt 2376 1381 L
Xc19
X25 -112 127 -163 2196 981 3 MP
XPP
X0 sg
X2196  981 mt 2323  818 L
X2323  818 mt 2348  706 L
Xc29
X127 -192 25 21 2220 941 3 MP
XPP
X0 sg
X2220  941 mt 2245  962 L
X2245  962 mt 2372  770 L
Xc29
X24 64 128 -235 2220 941 3 MP
XPP
X0 sg
X2220  941 mt 2348  706 L
X2348  706 mt 2372  770 L
Xc17
X24 68 128 -37 2199 1279 3 MP
XPP
X0 sg
X2199 1279 mt 2327 1242 L
X2327 1242 mt 2351 1310 L
Xc17
X127 -36 25 67 2199 1279 3 MP
XPP
X0 sg
X2199 1279 mt 2224 1346 L
X2224 1346 mt 2351 1310 L
Xc19
X128 -235 24 -40 2196 981 3 MP
XPP
X0 sg
X2196  981 mt 2220  941 L
X2220  941 mt 2348  706 L
Xc13
X24 17 128 -37 1954 1314 3 MP
XPP
X0 sg
X1954 1314 mt 2082 1277 L
X2082 1277 mt 2106 1294 L
Xc34
X128 -37 25 28 2057 1249 3 MP
XPP
X0 sg
X2057 1249 mt 2082 1277 L
X2082 1277 mt 2210 1240 L
Xc13
X24 19 128 -37 2082 1277 3 MP
XPP
X0 sg
X2082 1277 mt 2210 1240 L
X2210 1240 mt 2234 1259 L
Xc13
X128 -35 24 17 2082 1277 3 MP
XPP
X0 sg
X2082 1277 mt 2106 1294 L
X2106 1294 mt 2234 1259 L
Xc22
X25 -40 128 -32 2027 1303 3 MP
XPP
X0 sg
X2027 1303 mt 2155 1271 L
X2155 1271 mt 2180 1231 L
Xc34
X128 -37 25 28 1929 1286 3 MP
XPP
X0 sg
X1929 1286 mt 1954 1314 L
X1954 1314 mt 2082 1277 L
Xc34
X25 28 128 -37 1929 1286 3 MP
XPP
X0 sg
X1929 1286 mt 2057 1249 L
X2057 1249 mt 2082 1277 L
Xc22
X128 -32 25 -40 2027 1303 3 MP
XPP
X0 sg
X2027 1303 mt 2052 1263 L
X2052 1263 mt 2180 1231 L
Xc22
X128 -37 24 30 2033 1219 3 MP
XPP
X0 sg
X2033 1219 mt 2057 1249 L
X2057 1249 mt 2185 1212 L
Xc22
X24 29 128 -36 2033 1219 3 MP
XPP
X0 sg
X2033 1219 mt 2161 1183 L
X2161 1183 mt 2185 1212 L
Xc9
X24 -44 128 -32 2052 1263 3 MP
XPP
X0 sg
X2052 1263 mt 2180 1231 L
X2180 1231 mt 2204 1187 L
Xc21
X128 -33 25 -1 2106 1294 3 MP
XPP
X0 sg
X2106 1294 mt 2131 1293 L
X2131 1293 mt 2259 1260 L
Xc21
X25 1 128 -35 2106 1294 3 MP
XPP
X0 sg
X2106 1294 mt 2234 1259 L
X2234 1259 mt 2259 1260 L
Xc13
X24 -21 128 -33 2131 1293 3 MP
XPP
X0 sg
X2131 1293 mt 2259 1260 L
X2259 1260 mt 2283 1239 L
Xc13
X128 -32 24 -22 2131 1293 3 MP
XPP
X0 sg
X2131 1293 mt 2155 1271 L
X2155 1271 mt 2283 1239 L
Xc22
X25 -40 128 -32 2155 1271 3 MP
XPP
X0 sg
X2155 1271 mt 2283 1239 L
X2283 1239 mt 2308 1199 L
Xc22
X128 -32 25 -40 2155 1271 3 MP
XPP
X0 sg
X2155 1271 mt 2180 1231 L
X2180 1231 mt 2308 1199 L
Xc25
X128 -37 24 55 2175 1224 3 MP
XPP
X0 sg
X2175 1224 mt 2199 1279 L
X2199 1279 mt 2327 1242 L
Xc25
X25 57 127 -39 2175 1224 3 MP
XPP
X0 sg
X2175 1224 mt 2302 1185 L
X2302 1185 mt 2327 1242 L
Xc8
X25 45 128 -9 2169 1543 3 MP
XPP
X0 sg
X2169 1543 mt 2297 1534 L
X2297 1534 mt 2322 1579 L
Xc8
X128 -5 25 41 2169 1543 3 MP
XPP
X0 sg
X2169 1543 mt 2194 1584 L
X2194 1584 mt 2322 1579 L
Xc12
X128 -36 25 26 2008 1193 3 MP
XPP
X0 sg
X2008 1193 mt 2033 1219 L
X2033 1219 mt 2161 1183 L
Xc12
X25 23 128 -33 2008 1193 3 MP
XPP
X0 sg
X2008 1193 mt 2136 1160 L
X2136 1160 mt 2161 1183 L
Xc17
X128 -34 24 -34 2077 1220 3 MP
XPP
X0 sg
X2077 1220 mt 2101 1186 L
X2101 1186 mt 2229 1152 L
Xc17
X25 -35 127 -33 2077 1220 3 MP
XPP
X0 sg
X2077 1220 mt 2204 1187 L
X2204 1187 mt 2229 1152 L
Xc16
X24 37 128 -38 2150 1186 3 MP
XPP
X0 sg
X2150 1186 mt 2278 1148 L
X2278 1148 mt 2302 1185 L
Xc9
X127 -33 25 -43 2052 1263 3 MP
XPP
X0 sg
X2052 1263 mt 2077 1220 L
X2077 1220 mt 2204 1187 L
Xc16
X127 -39 25 38 2150 1186 3 MP
XPP
X0 sg
X2150 1186 mt 2175 1224 L
X2175 1224 mt 2302 1185 L
Xc13
X128 -9 24 49 2145 1494 3 MP
XPP
X0 sg
X2145 1494 mt 2169 1543 L
X2169 1543 mt 2297 1534 L
Xc13
X24 56 128 -16 2145 1494 3 MP
XPP
X0 sg
X2145 1494 mt 2273 1478 L
X2273 1478 mt 2297 1534 L
Xc25
X127 -36 25 -13 2101 1186 3 MP
XPP
X0 sg
X2101 1186 mt 2126 1173 L
X2126 1173 mt 2253 1137 L
Xc25
X24 -15 128 -34 2101 1186 3 MP
XPP
X0 sg
X2101 1186 mt 2229 1152 L
X2229 1152 mt 2253 1137 L
Xc16
X25 11 127 -36 2126 1173 3 MP
XPP
X0 sg
X2126 1173 mt 2253 1137 L
X2253 1137 mt 2278 1148 L
Xc16
X128 -38 24 13 2126 1173 3 MP
XPP
X0 sg
X2126 1173 mt 2150 1186 L
X2150 1186 mt 2278 1148 L
Xc22
X128 -16 25 55 2120 1439 3 MP
XPP
X0 sg
X2120 1439 mt 2145 1494 L
X2145 1494 mt 2273 1478 L
Xc22
X25 64 128 -25 2120 1439 3 MP
XPP
X0 sg
X2120 1439 mt 2248 1414 L
X2248 1414 mt 2273 1478 L
Xc12
X24 66 128 -92 2117 1054 3 MP
XPP
X0 sg
X2117 1054 mt 2245  962 L
X2245  962 mt 2269 1028 L
Xc12
X128 -34 24 8 2117 1054 3 MP
XPP
X0 sg
X2117 1054 mt 2141 1062 L
X2141 1062 mt 2269 1028 L
Xc12
X25 9 127 -34 2112 1141 3 MP
XPP
X0 sg
X2112 1141 mt 2239 1107 L
X2239 1107 mt 2264 1116 L
Xc12
X128 -44 24 19 2112 1141 3 MP
XPP
X0 sg
X2112 1141 mt 2136 1160 L
X2136 1160 mt 2264 1116 L
Xc9
X128 -25 24 59 2096 1380 3 MP
XPP
X0 sg
X2096 1380 mt 2120 1439 L
X2120 1439 mt 2248 1414 L
Xc9
X24 68 128 -34 2096 1380 3 MP
XPP
X0 sg
X2096 1380 mt 2224 1346 L
X2224 1346 mt 2248 1414 L
Xc11
X128 -96 25 -25 2043 1102 3 MP
XPP
X0 sg
X2043 1102 mt 2068 1077 L
X2068 1077 mt 2196  981 L
Xc13
X24 -40 128 -96 2068 1077 3 MP
XPP
X0 sg
X2068 1077 mt 2196  981 L
X2196  981 mt 2220  941 L
Xc22
X25 21 128 -118 2092 1059 3 MP
XPP
X0 sg
X2092 1059 mt 2220  941 L
X2220  941 mt 2245  962 L
Xc22
X128 -92 25 -5 2092 1059 3 MP
XPP
X0 sg
X2092 1059 mt 2117 1054 L
X2117 1054 mt 2245  962 L
Xc12
X127 -34 25 15 2087 1126 3 MP
XPP
X0 sg
X2087 1126 mt 2112 1141 L
X2112 1141 mt 2239 1107 L
Xc12
X24 5 128 -24 2087 1126 3 MP
XPP
X0 sg
X2087 1126 mt 2215 1102 L
X2215 1102 mt 2239 1107 L
Xc26
X128 -34 25 58 2071 1322 3 MP
XPP
X0 sg
X2071 1322 mt 2096 1380 L
X2096 1380 mt 2224 1346 L
Xc26
X25 67 128 -43 2071 1322 3 MP
XPP
X0 sg
X2071 1322 mt 2199 1279 L
X2199 1279 mt 2224 1346 L
Xc13
X128 -118 24 -18 2068 1077 3 MP
XPP
X0 sg
X2068 1077 mt 2092 1059 L
X2092 1059 mt 2220  941 L
Xc12
X25 10 128 -21 2062 1113 3 MP
XPP
X0 sg
X2062 1113 mt 2190 1092 L
X2190 1092 mt 2215 1102 L
Xc12
X128 -24 25 13 2062 1113 3 MP
XPP
X0 sg
X2062 1113 mt 2087 1126 L
X2087 1126 mt 2215 1102 L
Xc13
X128 -40 24 26 1802 1328 3 MP
XPP
X0 sg
X1802 1328 mt 1826 1354 L
X1826 1354 mt 1954 1314 L
Xc13
X25 28 127 -42 1802 1328 3 MP
XPP
X0 sg
X1802 1328 mt 1929 1286 L
X1929 1286 mt 1954 1314 L
Xc21
X24 17 128 -40 1826 1354 3 MP
XPP
X0 sg
X1826 1354 mt 1954 1314 L
X1954 1314 mt 1978 1331 L
Xc13
X128 -37 24 17 1954 1314 3 MP
XPP
X0 sg
X1954 1314 mt 1978 1331 L
X1978 1331 mt 2106 1294 L
Xc12
X25 -40 127 -25 1900 1328 3 MP
XPP
X0 sg
X1900 1328 mt 2027 1303 L
X2027 1303 mt 2052 1263 L
Xc21
X25 -1 128 -37 1978 1331 3 MP
XPP
X0 sg
X1978 1331 mt 2106 1294 L
X2106 1294 mt 2131 1293 L
Xc21
X128 -35 25 -3 1978 1331 3 MP
XPP
X0 sg
X1978 1331 mt 2003 1328 L
X2003 1328 mt 2131 1293 L
Xc13
X24 -22 128 -35 2003 1328 3 MP
XPP
X0 sg
X2003 1328 mt 2131 1293 L
X2131 1293 mt 2155 1271 L
Xc13
X128 -32 24 -25 2003 1328 3 MP
XPP
X0 sg
X2003 1328 mt 2027 1303 L
X2027 1303 mt 2155 1271 L
X/c35 { 1.000000 0.812500 0.000000 sr} bdef
Xc35
X128 -43 24 51 2047 1271 3 MP
XPP
X0 sg
X2047 1271 mt 2071 1322 L
X2071 1322 mt 2199 1279 L
Xc35
X24 55 128 -47 2047 1271 3 MP
XPP
X0 sg
X2047 1271 mt 2175 1224 L
X2175 1224 mt 2199 1279 L
Xc21
X128 -8 24 35 2042 1557 3 MP
XPP
X0 sg
X2042 1557 mt 2066 1592 L
X2066 1592 mt 2194 1584 L
Xc21
X25 41 127 -14 2042 1557 3 MP
XPP
X0 sg
X2042 1557 mt 2169 1543 L
X2169 1543 mt 2194 1584 L
Xc14
X128 -15 24 5 1842 1143 3 MP
XPP
X0 sg
X1842 1143 mt 1866 1148 L
X1866 1148 mt 1994 1133 L
Xc14
X24 16 128 -26 1842 1143 3 MP
XPP
X0 sg
X1842 1143 mt 1970 1117 L
X1970 1117 mt 1994 1133 L
Xc14
X25 -9 128 -15 1866 1148 3 MP
XPP
X0 sg
X1866 1148 mt 1994 1133 L
X1994 1133 mt 2019 1124 L
Xc14
X128 -21 25 -3 1866 1148 3 MP
XPP
X0 sg
X1866 1148 mt 1891 1145 L
X1891 1145 mt 2019 1124 L
X/c36 { 0.187500 1.000000 0.875000 sr} bdef
Xc36
X24 -22 128 -21 1891 1145 3 MP
XPP
X0 sg
X1891 1145 mt 2019 1124 L
X2019 1124 mt 2043 1102 L
Xc36
X128 -33 24 -10 1891 1145 3 MP
XPP
X0 sg
X1891 1145 mt 1915 1135 L
X1915 1135 mt 2043 1102 L
Xc12
X24 15 128 -26 2038 1103 3 MP
XPP
X0 sg
X2038 1103 mt 2166 1077 L
X2166 1077 mt 2190 1092 L
Xc12
X128 -21 24 10 2038 1103 3 MP
XPP
X0 sg
X2038 1103 mt 2062 1113 L
X2062 1113 mt 2190 1092 L
Xc22
X24 30 128 -35 1905 1254 3 MP
XPP
X0 sg
X1905 1254 mt 2033 1219 L
X2033 1219 mt 2057 1249 L
Xc15
X127 -42 25 33 1777 1295 3 MP
XPP
X0 sg
X1777 1295 mt 1802 1328 L
X1802 1328 mt 1929 1286 L
Xc15
X24 32 128 -41 1777 1295 3 MP
XPP
X0 sg
X1777 1295 mt 1905 1254 L
X1905 1254 mt 1929 1286 L
Xc22
X128 -37 24 32 1905 1254 3 MP
XPP
X0 sg
X1905 1254 mt 1929 1286 L
X1929 1286 mt 2057 1249 L
Xc18
X128 -31 25 -39 1924 1290 3 MP
XPP
X0 sg
X1924 1290 mt 1949 1251 L
X1949 1251 mt 2077 1220 L
Xc18
X25 -43 128 -27 1924 1290 3 MP
XPP
X0 sg
X1924 1290 mt 2052 1263 L
X2052 1263 mt 2077 1220 L
Xc12
X128 -35 25 28 1880 1226 3 MP
XPP
X0 sg
X1880 1226 mt 1905 1254 L
X1905 1254 mt 2033 1219 L
Xc12
X25 26 128 -33 1880 1226 3 MP
XPP
X0 sg
X1880 1226 mt 2008 1193 L
X2008 1193 mt 2033 1219 L
Xc17
X24 -34 128 -31 1949 1251 3 MP
XPP
X0 sg
X1949 1251 mt 2077 1220 L
X2077 1220 mt 2101 1186 L
Xc31
X25 38 128 -49 2022 1235 3 MP
XPP
X0 sg
X2022 1235 mt 2150 1186 L
X2150 1186 mt 2175 1224 L
Xc12
X128 -27 24 -38 1900 1328 3 MP
XPP
X0 sg
X1900 1328 mt 1924 1290 L
X1924 1290 mt 2052 1263 L
Xc31
X128 -47 25 36 2022 1235 3 MP
XPP
X0 sg
X2022 1235 mt 2047 1271 L
X2047 1271 mt 2175 1224 L
Xc34
X127 -14 25 40 2017 1517 3 MP
XPP
X0 sg
X2017 1517 mt 2042 1557 L
X2042 1557 mt 2169 1543 L
Xc34
X24 49 128 -23 2017 1517 3 MP
XPP
X0 sg
X2017 1517 mt 2145 1494 L
X2145 1494 mt 2169 1543 L
Xc14
X25 55 128 -64 1817 1126 3 MP
XPP
X0 sg
X1817 1126 mt 1945 1062 L
X1945 1062 mt 1970 1117 L
Xc14
X128 -26 25 17 1817 1126 3 MP
XPP
X0 sg
X1817 1126 mt 1842 1143 L
X1842 1143 mt 1970 1117 L
Xc11
X25 -25 128 -33 1915 1135 3 MP
XPP
X0 sg
X1915 1135 mt 2043 1102 L
X2043 1102 mt 2068 1077 L
Xc12
X128 -26 25 4 2013 1099 3 MP
XPP
X0 sg
X2013 1099 mt 2038 1103 L
X2038 1103 mt 2166 1077 L
Xc12
X25 15 128 -37 2013 1099 3 MP
XPP
X0 sg
X2013 1099 mt 2141 1062 L
X2141 1062 mt 2166 1077 L
Xc17
X128 -39 24 -26 1949 1251 3 MP
XPP
X0 sg
X1949 1251 mt 1973 1225 L
X1973 1225 mt 2101 1186 L
Xc25
X25 -13 128 -39 1973 1225 3 MP
XPP
X0 sg
X1973 1225 mt 2101 1186 L
X2101 1186 mt 2126 1173 L
Xc31
X24 13 128 -46 1998 1219 3 MP
XPP
X0 sg
X1998 1219 mt 2126 1173 L
X2126 1173 mt 2150 1186 L
Xc31
X128 -49 24 16 1998 1219 3 MP
XPP
X0 sg
X1998 1219 mt 2022 1235 L
X2022 1235 mt 2150 1186 L
Xc22
X128 -23 24 45 1993 1472 3 MP
XPP
X0 sg
X1993 1472 mt 2017 1517 L
X2017 1517 mt 2145 1494 L
Xc22
X25 55 127 -33 1993 1472 3 MP
XPP
X0 sg
X1993 1472 mt 2120 1439 L
X2120 1439 mt 2145 1494 L
Xc11
X128 -44 25 -14 1915 1135 3 MP
XPP
X0 sg
X1915 1135 mt 1940 1121 L
X1940 1121 mt 2068 1077 L
Xc13
X128 -50 24 -12 1940 1121 3 MP
XPP
X0 sg
X1940 1121 mt 1964 1109 L
X1964 1109 mt 2092 1059 L
Xc13
X24 -18 128 -44 1940 1121 3 MP
XPP
X0 sg
X1940 1121 mt 2068 1077 L
X2068 1077 mt 2092 1059 L
Xc22
X24 8 128 -46 1989 1100 3 MP
XPP
X0 sg
X1989 1100 mt 2117 1054 L
X2117 1054 mt 2141 1062 L
Xc22
X128 -37 24 -1 1989 1100 3 MP
XPP
X0 sg
X1989 1100 mt 2013 1099 L
X2013 1099 mt 2141 1062 L
Xc12
X24 19 128 -32 1984 1173 3 MP
XPP
X0 sg
X1984 1173 mt 2112 1141 L
X2112 1141 mt 2136 1160 L
Xc12
X128 -33 24 20 1984 1173 3 MP
XPP
X0 sg
X1984 1173 mt 2008 1193 L
X2008 1193 mt 2136 1160 L
Xc25
X128 -46 25 -6 1973 1225 3 MP
XPP
X0 sg
X1973 1225 mt 1998 1219 L
X1998 1219 mt 2126 1173 L
Xc23
X127 -33 25 49 1968 1423 3 MP
XPP
X0 sg
X1968 1423 mt 1993 1472 L
X1993 1472 mt 2120 1439 L
Xc23
X24 59 128 -43 1968 1423 3 MP
XPP
X0 sg
X1968 1423 mt 2096 1380 L
X2096 1380 mt 2120 1439 L
Xc34
X25 -5 128 -50 1964 1109 3 MP
XPP
X0 sg
X1964 1109 mt 2092 1059 L
X2092 1059 mt 2117 1054 L
Xc34
X128 -46 25 -9 1964 1109 3 MP
XPP
X0 sg
X1964 1109 mt 1989 1100 L
X1989 1100 mt 2117 1054 L
Xc19
X128 -32 25 15 1959 1158 3 MP
XPP
X0 sg
X1959 1158 mt 1984 1173 L
X1984 1173 mt 2112 1141 L
Xc19
X25 15 128 -32 1959 1158 3 MP
XPP
X0 sg
X1959 1158 mt 2087 1126 L
X2087 1126 mt 2112 1141 L
Xc29
X25 58 128 -52 1943 1374 3 MP
XPP
X0 sg
X1943 1374 mt 2071 1322 L
X2071 1322 mt 2096 1380 L
Xc29
X128 -43 25 49 1943 1374 3 MP
XPP
X0 sg
X1943 1374 mt 1968 1423 L
X1968 1423 mt 2096 1380 L
Xc19
X128 -32 24 11 1935 1147 3 MP
XPP
X0 sg
X1935 1147 mt 1959 1158 L
X1959 1158 mt 2087 1126 L
Xc19
X25 13 127 -34 1935 1147 3 MP
XPP
X0 sg
X1935 1147 mt 2062 1113 L
X2062 1113 mt 2087 1126 L
Xc21
X127 -34 25 11 1826 1354 3 MP
XPP
X0 sg
X1826 1354 mt 1851 1365 L
X1851 1365 mt 1978 1331 L
Xc21
X25 -3 127 -34 1851 1365 3 MP
XPP
X0 sg
X1851 1365 mt 1978 1331 L
X1978 1331 mt 2003 1328 L
Xc21
X128 -28 24 -9 1851 1365 3 MP
XPP
X0 sg
X1851 1365 mt 1875 1356 L
X1875 1356 mt 2003 1328 L
Xc34
X24 -25 128 -28 1875 1356 3 MP
XPP
X0 sg
X1875 1356 mt 2003 1328 L
X2003 1328 mt 2027 1303 L
Xc34
X127 -25 25 -28 1875 1356 3 MP
XPP
X0 sg
X1875 1356 mt 1900 1328 L
X1900 1328 mt 2027 1303 L
Xc30
X128 -52 24 47 1919 1327 3 MP
XPP
X0 sg
X1919 1327 mt 1943 1374 L
X1943 1374 mt 2071 1322 L
Xc30
X24 51 128 -56 1919 1327 3 MP
XPP
X0 sg
X1919 1327 mt 2047 1271 L
X2047 1271 mt 2071 1322 L
Xc11
X128 -37 24 31 1914 1598 3 MP
XPP
X0 sg
X1914 1598 mt 1938 1629 L
X1938 1629 mt 2066 1592 L
Xc11
X24 35 128 -41 1914 1598 3 MP
XPP
X0 sg
X1914 1598 mt 2042 1557 L
X2042 1557 mt 2066 1592 L
Xc12
X127 -34 25 7 1910 1140 3 MP
XPP
X0 sg
X1910 1140 mt 1935 1147 L
X1935 1147 mt 2062 1113 L
Xc12
X24 10 128 -37 1910 1140 3 MP
XPP
X0 sg
X1910 1140 mt 2038 1103 L
X2038 1103 mt 2062 1113 L
Xc29
X25 -39 128 -18 1796 1308 3 MP
XPP
X0 sg
X1796 1308 mt 1924 1290 L
X1924 1290 mt 1949 1251 L
Xc25
X25 36 128 -55 1894 1290 3 MP
XPP
X0 sg
X1894 1290 mt 2022 1235 L
X2022 1235 mt 2047 1271 L
Xc21
X24 26 128 -49 1674 1377 3 MP
XPP
X0 sg
X1674 1377 mt 1802 1328 L
X1802 1328 mt 1826 1354 L
Xc19
X24 -38 128 -18 1772 1346 3 MP
XPP
X0 sg
X1772 1346 mt 1900 1328 L
X1900 1328 mt 1924 1290 L
Xc34
X128 -49 25 35 1649 1342 3 MP
XPP
X0 sg
X1649 1342 mt 1674 1377 L
X1674 1377 mt 1802 1328 L
Xc34
X25 33 128 -47 1649 1342 3 MP
XPP
X0 sg
X1649 1342 mt 1777 1295 L
X1777 1295 mt 1802 1328 L
Xc19
X128 -18 24 -38 1772 1346 3 MP
XPP
X0 sg
X1772 1346 mt 1796 1308 L
X1796 1308 mt 1924 1290 L
Xc25
X128 -56 25 37 1894 1290 3 MP
XPP
X0 sg
X1894 1290 mt 1919 1327 L
X1919 1327 mt 2047 1271 L
Xc13
X25 40 128 -47 1889 1564 3 MP
XPP
X0 sg
X1889 1564 mt 2017 1517 L
X2017 1517 mt 2042 1557 L
Xc13
X128 -41 25 34 1889 1564 3 MP
XPP
X0 sg
X1889 1564 mt 1914 1598 L
X1914 1598 mt 2042 1557 L
Xc14
X128 -30 24 0 1714 1178 3 MP
XPP
X0 sg
X1714 1178 mt 1738 1178 L
X1738 1178 mt 1866 1148 L
Xc14
X24 5 128 -35 1714 1178 3 MP
XPP
X0 sg
X1714 1178 mt 1842 1143 L
X1842 1143 mt 1866 1148 L
Xc14
X25 -3 128 -30 1738 1178 3 MP
XPP
X0 sg
X1738 1178 mt 1866 1148 L
X1866 1148 mt 1891 1145 L
Xc14
X128 -28 25 -5 1738 1178 3 MP
XPP
X0 sg
X1738 1178 mt 1763 1173 L
X1763 1173 mt 1891 1145 L
Xc8
X127 -30 25 -8 1763 1173 3 MP
XPP
X0 sg
X1763 1173 mt 1788 1165 L
X1788 1165 mt 1915 1135 L
Xc8
X24 -10 128 -28 1763 1173 3 MP
XPP
X0 sg
X1763 1173 mt 1891 1145 L
X1891 1145 mt 1915 1135 L
Xc11
X25 -14 127 -30 1788 1165 3 MP
XPP
X0 sg
X1788 1165 mt 1915 1135 L
X1915 1135 mt 1940 1121 L
Xc12
X128 -37 24 3 1886 1137 3 MP
XPP
X0 sg
X1886 1137 mt 1910 1140 L
X1910 1140 mt 2038 1103 L
Xc11
X128 -34 24 -10 1788 1165 3 MP
XPP
X0 sg
X1788 1165 mt 1812 1155 L
X1812 1155 mt 1940 1121 L
Xc13
X24 -12 128 -34 1812 1155 3 MP
XPP
X0 sg
X1812 1155 mt 1940 1121 L
X1940 1121 mt 1964 1109 L
Xc12
X25 4 127 -38 1886 1137 3 MP
XPP
X0 sg
X1886 1137 mt 2013 1099 L
X2013 1099 mt 2038 1103 L
X
Xgr 
X1534  293 mt 
X(Tikhonov solutions) s
Xgs 898 388 2260 1783 MR c np
Xc12
X128 -41 24 33 1753 1262 3 MP
XPP
X0 sg
X1753 1262 mt 1777 1295 L
X1777 1295 mt 1905 1254 L
Xc12
X25 28 127 -36 1753 1262 3 MP
XPP
X0 sg
X1753 1262 mt 1880 1226 L
X1880 1226 mt 1905 1254 L
Xc30
X24 -26 128 -26 1821 1277 3 MP
XPP
X0 sg
X1821 1277 mt 1949 1251 L
X1949 1251 mt 1973 1225 L
Xc25
X24 16 128 -48 1870 1267 3 MP
XPP
X0 sg
X1870 1267 mt 1998 1219 L
X1998 1219 mt 2022 1235 L
Xc29
X128 -26 25 -31 1796 1308 3 MP
XPP
X0 sg
X1796 1308 mt 1821 1277 L
X1821 1277 mt 1949 1251 L
Xc25
X128 -55 24 23 1870 1267 3 MP
XPP
X0 sg
X1870 1267 mt 1894 1290 L
X1894 1290 mt 2022 1235 L
Xc15
X24 45 128 -53 1865 1525 3 MP
XPP
X0 sg
X1865 1525 mt 1993 1472 L
X1993 1472 mt 2017 1517 L
Xc15
X128 -47 24 39 1865 1525 3 MP
XPP
X0 sg
X1865 1525 mt 1889 1564 L
X1889 1564 mt 2017 1517 L
Xc13
X127 -37 25 -9 1812 1155 3 MP
XPP
X0 sg
X1812 1155 mt 1837 1146 L
X1837 1146 mt 1964 1109 L
Xc34
X25 -9 127 -37 1837 1146 3 MP
XPP
X0 sg
X1837 1146 mt 1964 1109 L
X1964 1109 mt 1989 1100 L
Xc22
X24 -1 128 -39 1861 1139 3 MP
XPP
X0 sg
X1861 1139 mt 1989 1100 L
X1989 1100 mt 2013 1099 L
Xc22
X127 -38 25 -2 1861 1139 3 MP
XPP
X0 sg
X1861 1139 mt 1886 1137 L
X1886 1137 mt 2013 1099 L
Xc19
X24 20 128 -32 1856 1205 3 MP
XPP
X0 sg
X1856 1205 mt 1984 1173 L
X1984 1173 mt 2008 1193 L
Xc19
X128 -33 24 21 1856 1205 3 MP
XPP
X0 sg
X1856 1205 mt 1880 1226 L
X1880 1226 mt 2008 1193 L
Xc30
X128 -37 24 -15 1821 1277 3 MP
XPP
X0 sg
X1821 1277 mt 1845 1262 L
X1845 1262 mt 1973 1225 L
Xc25
X128 -48 25 5 1845 1262 3 MP
XPP
X0 sg
X1845 1262 mt 1870 1267 L
X1870 1267 mt 1998 1219 L
Xc25
X25 -6 128 -37 1845 1262 3 MP
XPP
X0 sg
X1845 1262 mt 1973 1225 L
X1973 1225 mt 1998 1219 L
Xc12
X128 -53 25 43 1840 1482 3 MP
XPP
X0 sg
X1840 1482 mt 1865 1525 L
X1865 1525 mt 1993 1472 L
Xc12
X25 49 128 -59 1840 1482 3 MP
XPP
X0 sg
X1840 1482 mt 1968 1423 L
X1968 1423 mt 1993 1472 L
Xc34
X128 -39 24 -7 1837 1146 3 MP
XPP
X0 sg
X1837 1146 mt 1861 1139 L
X1861 1139 mt 1989 1100 L
Xc19
X128 -32 25 14 1831 1191 3 MP
XPP
X0 sg
X1831 1191 mt 1856 1205 L
X1856 1205 mt 1984 1173 L
Xc19
X25 15 128 -33 1831 1191 3 MP
XPP
X0 sg
X1831 1191 mt 1959 1158 L
X1959 1158 mt 1984 1173 L
Xc9
X128 -59 24 46 1816 1436 3 MP
XPP
X0 sg
X1816 1436 mt 1840 1482 L
X1840 1482 mt 1968 1423 L
Xc9
X25 49 127 -62 1816 1436 3 MP
XPP
X0 sg
X1816 1436 mt 1943 1374 L
X1943 1374 mt 1968 1423 L
Xc19
X24 11 128 -34 1807 1181 3 MP
XPP
X0 sg
X1807 1181 mt 1935 1147 L
X1935 1147 mt 1959 1158 L
Xc19
X128 -33 24 10 1807 1181 3 MP
XPP
X0 sg
X1807 1181 mt 1831 1191 L
X1831 1191 mt 1959 1158 L
Xc21
X25 11 128 -45 1698 1399 3 MP
XPP
X0 sg
X1698 1399 mt 1826 1354 L
X1826 1354 mt 1851 1365 L
Xc21
X128 -35 25 1 1698 1399 3 MP
XPP
X0 sg
X1698 1399 mt 1723 1400 L
X1723 1400 mt 1851 1365 L
Xc21
X24 -9 128 -35 1723 1400 3 MP
XPP
X0 sg
X1723 1400 mt 1851 1365 L
X1851 1365 mt 1875 1356 L
Xc21
X128 -45 24 22 1674 1377 3 MP
XPP
X0 sg
X1674 1377 mt 1698 1399 L
X1698 1399 mt 1826 1354 L
Xc21
X128 -24 24 -20 1723 1400 3 MP
XPP
X0 sg
X1723 1400 mt 1747 1380 L
X1747 1380 mt 1875 1356 L
Xc15
X25 -28 128 -24 1747 1380 3 MP
XPP
X0 sg
X1747 1380 mt 1875 1356 L
X1875 1356 mt 1900 1328 L
Xc29
X24 47 128 -65 1791 1392 3 MP
XPP
X0 sg
X1791 1392 mt 1919 1327 L
X1919 1327 mt 1943 1374 L
Xc29
X127 -62 25 44 1791 1392 3 MP
XPP
X0 sg
X1791 1392 mt 1816 1436 L
X1816 1436 mt 1943 1374 L
Xc36
X128 -56 24 22 1786 1663 3 MP
XPP
X0 sg
X1786 1663 mt 1810 1685 L
X1810 1685 mt 1938 1629 L
Xc36
X24 31 128 -65 1786 1663 3 MP
XPP
X0 sg
X1786 1663 mt 1914 1598 L
X1914 1598 mt 1938 1629 L
Xc12
X128 -34 25 5 1782 1176 3 MP
XPP
X0 sg
X1782 1176 mt 1807 1181 L
X1807 1181 mt 1935 1147 L
Xc12
X25 7 128 -36 1782 1176 3 MP
XPP
X0 sg
X1782 1176 mt 1910 1140 L
X1910 1140 mt 1935 1147 L
Xc21
X24 22 128 -37 1546 1414 3 MP
XPP
X0 sg
X1546 1414 mt 1674 1377 L
X1674 1377 mt 1698 1399 L
Xc22
X25 -34 127 -16 1620 1396 3 MP
XPP
X0 sg
X1620 1396 mt 1747 1380 L
X1747 1380 mt 1772 1346 L
Xc15
X128 -18 25 -34 1747 1380 3 MP
XPP
X0 sg
X1747 1380 mt 1772 1346 L
X1772 1346 mt 1900 1328 L
Xc17
X25 37 127 -62 1767 1352 3 MP
XPP
X0 sg
X1767 1352 mt 1894 1290 L
X1894 1290 mt 1919 1327 L
Xc17
X128 -65 24 40 1767 1352 3 MP
XPP
X0 sg
X1767 1352 mt 1791 1392 L
X1791 1392 mt 1919 1327 L
Xc8
X25 34 128 -75 1761 1639 3 MP
XPP
X0 sg
X1761 1639 mt 1889 1564 L
X1889 1564 mt 1914 1598 L
Xc8
X128 -65 25 24 1761 1639 3 MP
XPP
X0 sg
X1761 1639 mt 1786 1663 L
X1786 1663 mt 1914 1598 L
Xc22
X128 -36 24 1 1758 1175 3 MP
XPP
X0 sg
X1758 1175 mt 1782 1176 L
X1782 1176 mt 1910 1140 L
Xc22
X24 3 128 -38 1758 1175 3 MP
XPP
X0 sg
X1758 1175 mt 1886 1137 L
X1886 1137 mt 1910 1140 L
Xc13
X25 35 128 -43 1521 1385 3 MP
XPP
X0 sg
X1521 1385 mt 1649 1342 L
X1649 1342 mt 1674 1377 L
Xc13
X128 -37 25 29 1521 1385 3 MP
XPP
X0 sg
X1521 1385 mt 1546 1414 L
X1546 1414 mt 1674 1377 L
Xc22
X128 -17 24 -33 1620 1396 3 MP
XPP
X0 sg
X1620 1396 mt 1644 1363 L
X1644 1363 mt 1772 1346 L
Xc22
X128 -47 24 41 1625 1301 3 MP
XPP
X0 sg
X1625 1301 mt 1649 1342 L
X1649 1342 mt 1777 1295 L
Xc23
X127 -24 25 -31 1644 1363 3 MP
XPP
X0 sg
X1644 1363 mt 1669 1332 L
X1669 1332 mt 1796 1308 L
Xc23
X24 -38 128 -17 1644 1363 3 MP
XPP
X0 sg
X1644 1363 mt 1772 1346 L
X1772 1346 mt 1796 1308 L
Xc35
X127 -62 25 29 1742 1323 3 MP
XPP
X0 sg
X1742 1323 mt 1767 1352 L
X1767 1352 mt 1894 1290 L
Xc22
X24 33 128 -39 1625 1301 3 MP
XPP
X0 sg
X1625 1301 mt 1753 1262 L
X1753 1262 mt 1777 1295 L
Xc26
X25 -31 127 -24 1669 1332 3 MP
XPP
X0 sg
X1669 1332 mt 1796 1308 L
X1796 1308 mt 1821 1277 L
Xc35
X24 23 128 -56 1742 1323 3 MP
XPP
X0 sg
X1742 1323 mt 1870 1267 L
X1870 1267 mt 1894 1290 L
Xc11
X24 39 128 -86 1737 1611 3 MP
XPP
X0 sg
X1737 1611 mt 1865 1525 L
X1865 1525 mt 1889 1564 L
Xc11
X128 -75 24 28 1737 1611 3 MP
XPP
X0 sg
X1737 1611 mt 1761 1639 L
X1761 1639 mt 1889 1564 L
Xc14
X127 -31 25 -3 1586 1212 3 MP
XPP
X0 sg
X1586 1212 mt 1611 1209 L
X1611 1209 mt 1738 1178 L
Xc14
X24 0 128 -34 1586 1212 3 MP
XPP
X0 sg
X1586 1212 mt 1714 1178 L
X1714 1178 mt 1738 1178 L
Xc11
X128 -33 24 -8 1660 1196 3 MP
XPP
X0 sg
X1660 1196 mt 1684 1188 L
X1684 1188 mt 1812 1155 L
Xc11
X24 -10 128 -31 1660 1196 3 MP
XPP
X0 sg
X1660 1196 mt 1788 1165 L
X1788 1165 mt 1812 1155 L
Xc13
X25 -9 128 -33 1684 1188 3 MP
XPP
X0 sg
X1684 1188 mt 1812 1155 L
X1812 1155 mt 1837 1146 L
Xc15
X25 -2 128 -37 1733 1176 3 MP
XPP
X0 sg
X1733 1176 mt 1861 1139 L
X1861 1139 mt 1886 1137 L
Xc36
X25 -5 127 -31 1611 1209 3 MP
XPP
X0 sg
X1611 1209 mt 1738 1178 L
X1738 1178 mt 1763 1173 L
Xc36
X128 -31 24 -5 1611 1209 3 MP
XPP
X0 sg
X1611 1209 mt 1635 1204 L
X1635 1204 mt 1763 1173 L
Xc8
X128 -31 25 -8 1635 1204 3 MP
XPP
X0 sg
X1635 1204 mt 1660 1196 L
X1660 1196 mt 1788 1165 L
Xc8
X25 -8 128 -31 1635 1204 3 MP
XPP
X0 sg
X1635 1204 mt 1763 1173 L
X1763 1173 mt 1788 1165 L
Xc15
X128 -38 25 -1 1733 1176 3 MP
XPP
X0 sg
X1733 1176 mt 1758 1175 L
X1758 1175 mt 1886 1137 L
Xc19
X127 -36 25 26 1728 1236 3 MP
XPP
X0 sg
X1728 1236 mt 1753 1262 L
X1753 1262 mt 1880 1226 L
Xc19
X24 21 128 -31 1728 1236 3 MP
XPP
X0 sg
X1728 1236 mt 1856 1205 L
X1856 1205 mt 1880 1226 L
Xc26
X128 -35 24 -20 1669 1332 3 MP
XPP
X0 sg
X1669 1332 mt 1693 1312 L
X1693 1312 mt 1821 1277 L
Xc35
X128 -56 24 14 1718 1309 3 MP
XPP
X0 sg
X1718 1309 mt 1742 1323 L
X1742 1323 mt 1870 1267 L
Xc30
X24 -15 128 -35 1693 1312 3 MP
XPP
X0 sg
X1693 1312 mt 1821 1277 L
X1821 1277 mt 1845 1262 L
Xc35
X25 5 127 -47 1718 1309 3 MP
XPP
X0 sg
X1718 1309 mt 1845 1262 L
X1845 1262 mt 1870 1267 L
Xc21
X128 -86 25 31 1712 1580 3 MP
XPP
X0 sg
X1712 1580 mt 1737 1611 L
X1737 1611 mt 1865 1525 L
Xc21
X25 43 128 -98 1712 1580 3 MP
XPP
X0 sg
X1712 1580 mt 1840 1482 L
X1840 1482 mt 1865 1525 L
Xc13
X128 -35 25 -7 1684 1188 3 MP
XPP
X0 sg
X1684 1188 mt 1709 1181 L
X1709 1181 mt 1837 1146 L
Xc34
X128 -37 24 -5 1709 1181 3 MP
XPP
X0 sg
X1709 1181 mt 1733 1176 L
X1733 1176 mt 1861 1139 L
Xc34
X24 -7 128 -35 1709 1181 3 MP
XPP
X0 sg
X1709 1181 mt 1837 1146 L
X1837 1146 mt 1861 1139 L
Xc19
X25 14 127 -28 1704 1219 3 MP
XPP
X0 sg
X1704 1219 mt 1831 1191 L
X1831 1191 mt 1856 1205 L
Xc19
X128 -31 24 17 1704 1219 3 MP
XPP
X0 sg
X1704 1219 mt 1728 1236 L
X1728 1236 mt 1856 1205 L
Xc30
X127 -47 25 -3 1693 1312 3 MP
XPP
X0 sg
X1693 1312 mt 1718 1309 L
X1718 1309 mt 1845 1262 L
Xc28
X128 -35 25 5 1689 1173 3 MP
XPP
X0 sg
X1689 1173 mt 1714 1178 L
X1714 1178 mt 1842 1143 L
Xc28
X25 17 128 -47 1689 1173 3 MP
XPP
X0 sg
X1689 1173 mt 1817 1126 L
X1817 1126 mt 1842 1143 L
Xc34
X128 -98 24 34 1688 1546 3 MP
XPP
X0 sg
X1688 1546 mt 1712 1580 L
X1712 1580 mt 1840 1482 L
Xc34
X24 46 128 -110 1688 1546 3 MP
XPP
X0 sg
X1688 1546 mt 1816 1436 L
X1816 1436 mt 1840 1482 L
Xc19
X24 10 128 -29 1679 1210 3 MP
XPP
X0 sg
X1679 1210 mt 1807 1181 L
X1807 1181 mt 1831 1191 L
Xc19
X127 -28 25 9 1679 1210 3 MP
XPP
X0 sg
X1679 1210 mt 1704 1219 L
X1704 1219 mt 1831 1191 L
Xc22
X25 44 128 -119 1663 1511 3 MP
XPP
X0 sg
X1663 1511 mt 1791 1392 L
X1791 1392 mt 1816 1436 L
Xc22
X128 -110 25 35 1663 1511 3 MP
XPP
X0 sg
X1663 1511 mt 1688 1546 L
X1688 1546 mt 1816 1436 L
Xc12
X25 5 128 -32 1654 1208 3 MP
XPP
X0 sg
X1654 1208 mt 1782 1176 L
X1782 1176 mt 1807 1181 L
Xc12
X128 -29 25 2 1654 1208 3 MP
XPP
X0 sg
X1654 1208 mt 1679 1210 L
X1679 1210 mt 1807 1181 L
Xc21
X25 1 128 -27 1570 1426 3 MP
XPP
X0 sg
X1570 1426 mt 1698 1399 L
X1698 1399 mt 1723 1400 L
Xc21
X128 -27 24 12 1546 1414 3 MP
XPP
X0 sg
X1546 1414 mt 1570 1426 L
X1570 1426 mt 1698 1399 L
Xc21
X128 -19 25 -7 1570 1426 3 MP
XPP
X0 sg
X1570 1426 mt 1595 1419 L
X1595 1419 mt 1723 1400 L
Xc13
X127 -16 25 -23 1595 1419 3 MP
XPP
X0 sg
X1595 1419 mt 1620 1396 L
X1620 1396 mt 1747 1380 L
Xc13
X24 -20 128 -19 1595 1419 3 MP
XPP
X0 sg
X1595 1419 mt 1723 1400 L
X1723 1400 mt 1747 1380 L
Xc19
X24 40 128 -124 1639 1476 3 MP
XPP
X0 sg
X1639 1476 mt 1767 1352 L
X1767 1352 mt 1791 1392 L
Xc19
X128 -119 24 35 1639 1476 3 MP
XPP
X0 sg
X1639 1476 mt 1663 1511 L
X1663 1511 mt 1791 1392 L
Xc22
X24 1 128 -35 1630 1210 3 MP
XPP
X0 sg
X1630 1210 mt 1758 1175 L
X1758 1175 mt 1782 1176 L
Xc22
X128 -32 24 -2 1630 1210 3 MP
XPP
X0 sg
X1630 1210 mt 1654 1208 L
X1654 1208 mt 1782 1176 L
Xc23
X25 29 128 -120 1614 1443 3 MP
XPP
X0 sg
X1614 1443 mt 1742 1323 L
X1742 1323 mt 1767 1352 L
Xc23
X128 -124 25 33 1614 1443 3 MP
XPP
X0 sg
X1614 1443 mt 1639 1476 L
X1639 1476 mt 1767 1352 L
Xc15
X128 -35 25 -5 1605 1215 3 MP
XPP
X0 sg
X1605 1215 mt 1630 1210 L
X1630 1210 mt 1758 1175 L
Xc15
X25 -1 128 -39 1605 1215 3 MP
XPP
X0 sg
X1605 1215 mt 1733 1176 L
X1733 1176 mt 1758 1175 L
Xc19
X25 26 128 -30 1600 1266 3 MP
XPP
X0 sg
X1600 1266 mt 1728 1236 L
X1728 1236 mt 1753 1262 L
Xc19
X128 -39 25 35 1600 1266 3 MP
XPP
X0 sg
X1600 1266 mt 1625 1301 L
X1625 1301 mt 1753 1262 L
Xc34
X25 29 127 -22 1394 1407 3 MP
XPP
X0 sg
X1394 1407 mt 1521 1385 L
X1521 1385 mt 1546 1414 L
Xc34
X128 -2 24 9 1394 1407 3 MP
XPP
X0 sg
X1394 1407 mt 1418 1416 L
X1418 1416 mt 1546 1414 L
Xc12
X128 -7 25 -10 1467 1413 3 MP
XPP
X0 sg
X1467 1413 mt 1492 1403 L
X1492 1403 mt 1620 1396 L
Xc15
X24 12 128 -2 1418 1416 3 MP
XPP
X0 sg
X1418 1416 mt 1546 1414 L
X1546 1414 mt 1570 1426 L
Xc12
X25 -23 128 6 1467 1413 3 MP
XPP
X0 sg
X1467 1413 mt 1595 1419 L
X1595 1419 mt 1620 1396 L
Xc19
X24 -33 128 -7 1492 1403 3 MP
XPP
X0 sg
X1492 1403 mt 1620 1396 L
X1620 1396 mt 1644 1363 L
Xc9
X24 14 128 -108 1590 1417 3 MP
XPP
X0 sg
X1590 1417 mt 1718 1309 L
X1718 1309 mt 1742 1323 L
Xc15
X127 8 25 2 1418 1416 3 MP
XPP
X0 sg
X1418 1416 mt 1443 1418 L
X1443 1418 mt 1570 1426 L
Xc15
X25 -7 127 8 1443 1418 3 MP
XPP
X0 sg
X1443 1418 mt 1570 1426 L
X1570 1426 mt 1595 1419 L
Xc15
X128 6 24 -5 1443 1418 3 MP
XPP
X0 sg
X1443 1418 mt 1467 1413 L
X1467 1413 mt 1595 1419 L
Xc9
X128 -120 24 26 1590 1417 3 MP
XPP
X0 sg
X1590 1417 mt 1614 1443 L
X1614 1443 mt 1742 1323 L
Xc34
X128 -39 24 -7 1581 1222 3 MP
XPP
X0 sg
X1581 1222 mt 1605 1215 L
X1605 1215 mt 1733 1176 L
Xc34
X24 -5 128 -41 1581 1222 3 MP
XPP
X0 sg
X1581 1222 mt 1709 1181 L
X1709 1181 mt 1733 1176 L
Xc23
X24 17 128 -23 1576 1242 3 MP
XPP
X0 sg
X1576 1242 mt 1704 1219 L
X1704 1219 mt 1728 1236 L
Xc23
X128 -30 24 24 1576 1242 3 MP
XPP
X0 sg
X1576 1242 mt 1600 1266 L
X1600 1266 mt 1728 1236 L
Xc19
X128 -32 24 -8 1492 1403 3 MP
XPP
X0 sg
X1492 1403 mt 1516 1395 L
X1516 1395 mt 1644 1363 L
Xc15
X128 -43 24 37 1497 1348 3 MP
XPP
X0 sg
X1497 1348 mt 1521 1385 L
X1521 1385 mt 1649 1342 L
Xc15
X24 41 128 -47 1497 1348 3 MP
XPP
X0 sg
X1497 1348 mt 1625 1301 L
X1625 1301 mt 1649 1342 L
Xc9
X25 -31 128 -32 1516 1395 3 MP
XPP
X0 sg
X1516 1395 mt 1644 1363 L
X1644 1363 mt 1669 1332 L
Xc18
X128 -108 25 17 1565 1400 3 MP
XPP
X0 sg
X1565 1400 mt 1590 1417 L
X1590 1417 mt 1718 1309 L
Xc9
X128 -61 25 -2 1516 1395 3 MP
XPP
X0 sg
X1516 1395 mt 1541 1393 L
X1541 1393 mt 1669 1332 L
Xc18
X24 -20 128 -61 1541 1393 3 MP
XPP
X0 sg
X1541 1393 mt 1669 1332 L
X1669 1332 mt 1693 1312 L
Xc18
X25 -3 128 -88 1565 1400 3 MP
XPP
X0 sg
X1565 1400 mt 1693 1312 L
X1693 1312 mt 1718 1309 L
Xc28
X25 5 127 -38 1562 1211 3 MP
XPP
X0 sg
X1562 1211 mt 1689 1173 L
X1689 1173 mt 1714 1178 L
Xc28
X128 -34 24 1 1562 1211 3 MP
XPP
X0 sg
X1562 1211 mt 1586 1212 L
X1586 1212 mt 1714 1178 L
Xc21
X128 -41 25 -6 1556 1228 3 MP
XPP
X0 sg
X1556 1228 mt 1581 1222 L
X1581 1222 mt 1709 1181 L
Xc36
X24 -5 128 -33 1483 1242 3 MP
XPP
X0 sg
X1483 1242 mt 1611 1209 L
X1611 1209 mt 1635 1204 L
Xc36
X128 -35 24 -3 1483 1242 3 MP
XPP
X0 sg
X1483 1242 mt 1507 1239 L
X1507 1239 mt 1635 1204 L
Xc8
X25 -8 128 -35 1507 1239 3 MP
XPP
X0 sg
X1507 1239 mt 1635 1204 L
X1635 1204 mt 1660 1196 L
Xc8
X128 -39 25 -4 1507 1239 3 MP
XPP
X0 sg
X1507 1239 mt 1532 1235 L
X1532 1235 mt 1660 1196 L
Xc11
X24 -8 128 -39 1532 1235 3 MP
XPP
X0 sg
X1532 1235 mt 1660 1196 L
X1660 1196 mt 1684 1188 L
Xc21
X25 -7 128 -40 1556 1228 3 MP
XPP
X0 sg
X1556 1228 mt 1684 1188 L
X1684 1188 mt 1709 1181 L
Xc8
X127 -46 25 -7 1404 1281 3 MP
XPP
X0 sg
X1404 1281 mt 1429 1274 L
X1429 1274 mt 1556 1228 L
Xc21
X25 -6 127 -46 1429 1274 3 MP
XPP
X0 sg
X1429 1274 mt 1556 1228 L
X1556 1228 mt 1581 1222 L
Xc21
X128 -42 24 -10 1429 1274 3 MP
XPP
X0 sg
X1429 1274 mt 1453 1264 L
X1453 1264 mt 1581 1222 L
Xc13
X24 -7 128 -42 1453 1264 3 MP
XPP
X0 sg
X1453 1264 mt 1581 1222 L
X1581 1222 mt 1605 1215 L
Xc36
X128 -46 24 -3 1380 1284 3 MP
XPP
X0 sg
X1380 1284 mt 1404 1281 L
X1404 1281 mt 1532 1235 L
Xc8
X24 -7 128 -46 1404 1281 3 MP
XPP
X0 sg
X1404 1281 mt 1532 1235 L
X1532 1235 mt 1556 1228 L
Xc13
X127 -37 25 -12 1453 1264 3 MP
XPP
X0 sg
X1453 1264 mt 1478 1252 L
X1478 1252 mt 1605 1215 L
Xc14
X127 -45 25 0 1355 1284 3 MP
XPP
X0 sg
X1355 1284 mt 1380 1284 L
X1380 1284 mt 1507 1239 L
Xc14
X24 -3 128 -42 1355 1284 3 MP
XPP
X0 sg
X1355 1284 mt 1483 1242 L
X1483 1242 mt 1507 1239 L
Xc36
X25 -4 127 -45 1380 1284 3 MP
XPP
X0 sg
X1380 1284 mt 1507 1239 L
X1507 1239 mt 1532 1235 L
Xc15
X25 -5 127 -37 1478 1252 3 MP
XPP
X0 sg
X1478 1252 mt 1605 1215 L
X1605 1215 mt 1630 1210 L
Xc11
X128 -40 24 -7 1532 1235 3 MP
XPP
X0 sg
X1532 1235 mt 1556 1228 L
X1556 1228 mt 1684 1188 L
Xc15
X128 -30 24 -12 1478 1252 3 MP
XPP
X0 sg
X1478 1252 mt 1502 1240 L
X1502 1240 mt 1630 1210 L
Xc23
X128 -23 25 11 1551 1231 3 MP
XPP
X0 sg
X1551 1231 mt 1576 1242 L
X1576 1242 mt 1704 1219 L
Xc23
X25 9 128 -21 1551 1231 3 MP
XPP
X0 sg
X1551 1231 mt 1679 1210 L
X1679 1210 mt 1704 1219 L
Xc18
X128 -88 24 7 1541 1393 3 MP
XPP
X0 sg
X1541 1393 mt 1565 1400 L
X1565 1400 mt 1693 1312 L
Xc12
X24 -2 128 -30 1502 1240 3 MP
XPP
X0 sg
X1502 1240 mt 1630 1210 L
X1630 1210 mt 1654 1208 L
Xc12
X127 -24 25 -8 1502 1240 3 MP
XPP
X0 sg
X1502 1240 mt 1527 1232 L
X1527 1232 mt 1654 1208 L
Xc19
X25 2 127 -24 1527 1232 3 MP
XPP
X0 sg
X1527 1232 mt 1654 1208 L
X1654 1208 mt 1679 1210 L
Xc19
X128 -21 24 -1 1527 1232 3 MP
XPP
X0 sg
X1527 1232 mt 1551 1231 L
X1551 1231 mt 1679 1210 L
Xc12
X25 35 128 -47 1472 1313 3 MP
XPP
X0 sg
X1472 1313 mt 1600 1266 L
X1600 1266 mt 1625 1301 L
Xc12
X128 -47 25 35 1472 1313 3 MP
XPP
X0 sg
X1472 1313 mt 1497 1348 L
X1497 1348 mt 1625 1301 L
Xc14
X128 -33 25 -1 1458 1243 3 MP
XPP
X0 sg
X1458 1243 mt 1483 1242 L
X1483 1242 mt 1611 1209 L
Xc14
X25 -3 128 -31 1458 1243 3 MP
XPP
X0 sg
X1458 1243 mt 1586 1212 L
X1586 1212 mt 1611 1209 L
Xc19
X24 24 128 -44 1448 1286 3 MP
XPP
X0 sg
X1448 1286 mt 1576 1242 L
X1576 1242 mt 1600 1266 L
Xc19
X128 -47 24 27 1448 1286 3 MP
XPP
X0 sg
X1448 1286 mt 1472 1313 L
X1472 1313 mt 1600 1266 L
Xc28
X128 -31 24 2 1434 1241 3 MP
XPP
X0 sg
X1434 1241 mt 1458 1243 L
X1458 1243 mt 1586 1212 L
Xc28
X24 1 128 -30 1434 1241 3 MP
XPP
X0 sg
X1434 1241 mt 1562 1211 L
X1562 1211 mt 1586 1212 L
Xc36
X24 -3 128 -32 1252 1316 3 MP
XPP
X0 sg
X1252 1316 mt 1380 1284 L
X1380 1284 mt 1404 1281 L
Xc36
X128 -31 24 -4 1252 1316 3 MP
XPP
X0 sg
X1252 1316 mt 1276 1312 L
X1276 1312 mt 1404 1281 L
Xc21
X24 -10 128 -31 1301 1305 3 MP
XPP
X0 sg
X1301 1305 mt 1429 1274 L
X1429 1274 mt 1453 1264 L
Xc14
X25 0 128 -33 1227 1317 3 MP
XPP
X0 sg
X1227 1317 mt 1355 1284 L
X1355 1284 mt 1380 1284 L
Xc14
X128 -32 25 -1 1227 1317 3 MP
XPP
X0 sg
X1227 1317 mt 1252 1316 L
X1252 1316 mt 1380 1284 L
Xc21
X128 -31 24 -10 1301 1305 3 MP
XPP
X0 sg
X1301 1305 mt 1325 1295 L
X1325 1295 mt 1453 1264 L
Xc13
X25 -12 128 -31 1325 1295 3 MP
XPP
X0 sg
X1325 1295 mt 1453 1264 L
X1453 1264 mt 1478 1252 L
Xc23
X25 11 128 -40 1423 1271 3 MP
XPP
X0 sg
X1423 1271 mt 1551 1231 L
X1551 1231 mt 1576 1242 L
Xc23
X128 -44 25 15 1423 1271 3 MP
XPP
X0 sg
X1423 1271 mt 1448 1286 L
X1448 1286 mt 1576 1242 L
Xc14
X24 2 128 -32 1203 1314 3 MP
XPP
X0 sg
X1203 1314 mt 1331 1282 L
X1331 1282 mt 1355 1284 L
Xc14
X128 -33 24 3 1203 1314 3 MP
XPP
X0 sg
X1203 1314 mt 1227 1317 L
X1227 1317 mt 1355 1284 L
Xc14
X128 -42 24 2 1331 1282 3 MP
XPP
X0 sg
X1331 1282 mt 1355 1284 L
X1355 1284 mt 1483 1242 L
Xc13
X128 -32 25 -11 1325 1295 3 MP
XPP
X0 sg
X1325 1295 mt 1350 1284 L
X1350 1284 mt 1478 1252 L
Xc15
X128 -33 24 -11 1350 1284 3 MP
XPP
X0 sg
X1350 1284 mt 1374 1273 L
X1374 1273 mt 1502 1240 L
Xc15
X24 -12 128 -32 1350 1284 3 MP
XPP
X0 sg
X1350 1284 mt 1478 1252 L
X1478 1252 mt 1502 1240 L
Xc19
X128 -40 24 3 1399 1268 3 MP
XPP
X0 sg
X1399 1268 mt 1423 1271 L
X1423 1271 mt 1551 1231 L
Xc12
X25 -8 128 -33 1374 1273 3 MP
XPP
X0 sg
X1374 1273 mt 1502 1240 L
X1502 1240 mt 1527 1232 L
Xc19
X24 -1 128 -36 1399 1268 3 MP
XPP
X0 sg
X1399 1268 mt 1527 1232 L
X1527 1232 mt 1551 1231 L
Xc12
X128 -36 25 -5 1374 1273 3 MP
XPP
X0 sg
X1374 1273 mt 1399 1268 L
X1399 1268 mt 1527 1232 L
Xc15
X127 -22 25 15 1369 1392 3 MP
XPP
X0 sg
X1369 1392 mt 1394 1407 L
X1394 1407 mt 1521 1385 L
Xc15
X24 37 128 -44 1369 1392 3 MP
XPP
X0 sg
X1369 1392 mt 1497 1348 L
X1497 1348 mt 1521 1385 L
Xc15
X128 -44 24 17 1345 1375 3 MP
XPP
X0 sg
X1345 1375 mt 1369 1392 L
X1369 1392 mt 1497 1348 L
Xc15
X25 35 127 -62 1345 1375 3 MP
XPP
X0 sg
X1345 1375 mt 1472 1313 L
X1472 1313 mt 1497 1348 L
Xc14
X25 -1 127 -39 1331 1282 3 MP
XPP
X0 sg
X1331 1282 mt 1458 1243 L
X1458 1243 mt 1483 1242 L
Xc15
X24 27 128 -75 1320 1361 3 MP
XPP
X0 sg
X1320 1361 mt 1448 1286 L
X1448 1286 mt 1472 1313 L
Xc15
X127 -62 25 14 1320 1361 3 MP
XPP
X0 sg
X1320 1361 mt 1345 1375 L
X1345 1375 mt 1472 1313 L
Xc28
X24 2 128 -36 1306 1277 3 MP
XPP
X0 sg
X1306 1277 mt 1434 1241 L
X1434 1241 mt 1458 1243 L
Xc28
X127 -39 25 5 1306 1277 3 MP
XPP
X0 sg
X1306 1277 mt 1331 1282 L
X1331 1282 mt 1458 1243 L
Xc15
X128 -75 24 10 1296 1351 3 MP
XPP
X0 sg
X1296 1351 mt 1320 1361 L
X1320 1361 mt 1448 1286 L
Xc8
X25 -7 128 -31 1276 1312 3 MP
XPP
X0 sg
X1276 1312 mt 1404 1281 L
X1404 1281 mt 1429 1274 L
Xc8
X128 -31 25 -7 1276 1312 3 MP
XPP
X0 sg
X1276 1312 mt 1301 1305 L
X1301 1305 mt 1429 1274 L
Xc15
X25 15 127 -80 1296 1351 3 MP
XPP
X0 sg
X1296 1351 mt 1423 1271 L
X1423 1271 mt 1448 1286 L
Xc15
X127 -80 25 5 1271 1346 3 MP
XPP
X0 sg
X1271 1346 mt 1296 1351 L
X1296 1351 mt 1423 1271 L
Xc15
X24 3 128 -78 1271 1346 3 MP
XPP
X0 sg
X1271 1346 mt 1399 1268 L
X1399 1268 mt 1423 1271 L
Xc34
X128 -78 25 0 1246 1346 3 MP
XPP
X0 sg
X1246 1346 mt 1271 1346 L
X1271 1346 mt 1399 1268 L
Xc34
X25 -5 128 -73 1246 1346 3 MP
XPP
X0 sg
X1246 1346 mt 1374 1273 L
X1374 1273 mt 1399 1268 L
Xc13
X24 -11 128 -65 1222 1349 3 MP
XPP
X0 sg
X1222 1349 mt 1350 1284 L
X1350 1284 mt 1374 1273 L
Xc13
X128 -73 24 -3 1222 1349 3 MP
XPP
X0 sg
X1222 1349 mt 1246 1346 L
X1246 1346 mt 1374 1273 L
X
Xgr 
Xgs 898 388 2260 1783 MR c np
Xc8
X128 -52 25 -2 1148 1359 3 MP
XPP
X0 sg
X1148 1359 mt 1173 1357 L
X1173 1357 mt 1301 1305 L
Xc8
X25 -7 128 -47 1148 1359 3 MP
XPP
X0 sg
X1148 1359 mt 1276 1312 L
X1276 1312 mt 1301 1305 L
Xc11
X24 -10 128 -52 1173 1357 3 MP
XPP
X0 sg
X1173 1357 mt 1301 1305 L
X1301 1305 mt 1325 1295 L
Xc11
X128 -58 24 -4 1173 1357 3 MP
XPP
X0 sg
X1173 1357 mt 1197 1353 L
X1197 1353 mt 1325 1295 L
Xc21
X25 -11 128 -58 1197 1353 3 MP
XPP
X0 sg
X1197 1353 mt 1325 1295 L
X1325 1295 mt 1350 1284 L
Xc21
X128 -65 25 -4 1197 1353 3 MP
XPP
X0 sg
X1197 1353 mt 1222 1349 L
X1222 1349 mt 1350 1284 L
Xc28
X25 5 128 -33 1178 1310 3 MP
XPP
X0 sg
X1178 1310 mt 1306 1277 L
X1306 1277 mt 1331 1282 L
Xc28
X128 -32 25 4 1178 1310 3 MP
XPP
X0 sg
X1178 1310 mt 1203 1314 L
X1203 1314 mt 1331 1282 L
Xc36
X128 -47 24 -1 1124 1360 3 MP
XPP
X0 sg
X1124 1360 mt 1148 1359 L
X1148 1359 mt 1276 1312 L
Xc36
X24 -4 128 -44 1124 1360 3 MP
XPP
X0 sg
X1124 1360 mt 1252 1316 L
X1252 1316 mt 1276 1312 L
Xc14
X25 -1 128 -41 1099 1358 3 MP
XPP
X0 sg
X1099 1358 mt 1227 1317 L
X1227 1317 mt 1252 1316 L
Xc14
X128 -44 25 2 1099 1358 3 MP
XPP
X0 sg
X1099 1358 mt 1124 1360 L
X1124 1360 mt 1252 1316 L
Xc28
X24 3 128 -40 1075 1354 3 MP
XPP
X0 sg
X1075 1354 mt 1203 1314 L
X1203 1314 mt 1227 1317 L
Xc28
X128 -41 24 4 1075 1354 3 MP
XPP
X0 sg
X1075 1354 mt 1099 1358 L
X1099 1358 mt 1227 1317 L
Xc28
X25 4 128 -39 1050 1349 3 MP
XPP
X0 sg
X1050 1349 mt 1178 1310 L
X1178 1310 mt 1203 1314 L
Xc28
X128 -40 25 5 1050 1349 3 MP
XPP
X0 sg
X1050 1349 mt 1075 1354 L
X1075 1354 mt 1203 1314 L
X
Xgr 
X1 sg
X-981 -451 1279 -346 981 451 3994 734 4 MP
XPP
X-1279 346 -981 -451 1279 -346 981 451 3994 734 5 MP stroke
X0 985 981 451 0 -985 3994 1719 4 MP
XPP
X-981 -451 0 985 981 451 0 -985 3994 1719 5 MP stroke
X0 985 1279 -346 0 -985 4975 2170 4 MP
XPP
X-1279 346 0 985 1279 -346 0 -985 4975 2170 5 MP stroke
X4 w
XDO
X0 sg
X4975 2170 mt 3994 1719 L
X3994 1719 mt 3994  734 L
X5615 1997 mt 4633 1546 L
X4633 1546 mt 4633  561 L
X6254 1824 mt 5273 1373 L
X5273 1373 mt 5273  388 L
X3994 1719 mt 5273 1373 L
X5273 1373 mt 5273  388 L
X4485 1944 mt 5763 1598 L
X5763 1598 mt 5763  614 L
X4975 2170 mt 6254 1824 L
X6254 1824 mt 6254  839 L
X3994 1719 mt 5273 1373 L
X5273 1373 mt 6254 1824 L
X3994 1227 mt 5273  880 L
X5273  880 mt 6254 1331 L
X3994  734 mt 5273  388 L
X5273  388 mt 6254  839 L
XSO
X6 w
X4975 2170 mt 6254 1824 L
X3994 1719 mt 4975 2170 L
X3994 1719 mt 3994  734 L
X4975 2170 mt 5005 2184 L
X5037 2309 mt 
X(0) s
X5615 1997 mt 5645 2011 L
X5676 2136 mt 
X(5) s
X6254 1824 mt 6284 1838 L
X6316 1963 mt 
X(10) s
X3994 1719 mt 3962 1728 L
X3863 1848 mt 
X(0) s
X4485 1944 mt 4453 1953 L
X4286 2073 mt 
X(20) s
X4975 2170 mt 4943 2179 L
X4777 2299 mt 
X(40) s
X3994 1719 mt 3964 1705 L
X3729 1735 mt 
X(-40) s
X3994 1227 mt 3964 1213 L
X3729 1242 mt 
X(-20) s
X3994  734 mt 3964  720 L
X3866  750 mt 
X(0) s
Xgs 3994 388 2261 1783 MR c np
X/c37 { 0.000000 0.500000 1.000000 sr} bdef
Xc37
X25 22 128 -60 5905 1405 3 MP
XPP
X0 sg
X5905 1405 mt 6033 1345 L
X6033 1345 mt 6058 1367 L
Xc37
X128 -60 25 22 5905 1405 3 MP
XPP
X0 sg
X5905 1405 mt 5930 1427 L
X5930 1427 mt 6058 1367 L
Xc33
X24 18 128 -61 5881 1388 3 MP
XPP
X0 sg
X5881 1388 mt 6009 1327 L
X6009 1327 mt 6033 1345 L
Xc33
X128 -60 24 17 5881 1388 3 MP
XPP
X0 sg
X5881 1388 mt 5905 1405 L
X5905 1405 mt 6033 1345 L
Xc33
X128 -61 25 20 5856 1368 3 MP
XPP
X0 sg
X5856 1368 mt 5881 1388 L
X5881 1388 mt 6009 1327 L
Xc33
X25 20 128 -61 5856 1368 3 MP
XPP
X0 sg
X5856 1368 mt 5984 1307 L
X5984 1307 mt 6009 1327 L
X/c38 { 0.000000 0.625000 1.000000 sr} bdef
Xc38
X128 -61 24 24 5832 1344 3 MP
XPP
X0 sg
X5832 1344 mt 5856 1368 L
X5856 1368 mt 5984 1307 L
Xc38
X24 24 128 -61 5832 1344 3 MP
XPP
X0 sg
X5832 1344 mt 5960 1283 L
X5960 1283 mt 5984 1307 L
X/c39 { 0.000000 0.687500 1.000000 sr} bdef
Xc39
X25 20 128 -60 5807 1323 3 MP
XPP
X0 sg
X5807 1323 mt 5935 1263 L
X5935 1263 mt 5960 1283 L
Xc39
X128 -61 25 21 5807 1323 3 MP
XPP
X0 sg
X5807 1323 mt 5832 1344 L
X5832 1344 mt 5960 1283 L
Xc39
X24 12 128 -60 5783 1311 3 MP
XPP
X0 sg
X5783 1311 mt 5911 1251 L
X5911 1251 mt 5935 1263 L
Xc39
X128 -60 24 12 5783 1311 3 MP
XPP
X0 sg
X5783 1311 mt 5807 1323 L
X5807 1323 mt 5935 1263 L
X/c40 { 0.000000 0.437500 1.000000 sr} bdef
Xc40
X128 -58 25 22 5777 1463 3 MP
XPP
X0 sg
X5777 1463 mt 5802 1485 L
X5802 1485 mt 5930 1427 L
Xc40
X25 22 128 -58 5777 1463 3 MP
XPP
X0 sg
X5777 1463 mt 5905 1405 L
X5905 1405 mt 5930 1427 L
Xc39
X128 -60 25 13 5758 1298 3 MP
XPP
X0 sg
X5758 1298 mt 5783 1311 L
X5783 1311 mt 5911 1251 L
Xc39
X25 13 128 -60 5758 1298 3 MP
XPP
X0 sg
X5758 1298 mt 5886 1238 L
X5886 1238 mt 5911 1251 L
Xc40
X24 17 128 -58 5753 1446 3 MP
XPP
X0 sg
X5753 1446 mt 5881 1388 L
X5881 1388 mt 5905 1405 L
Xc40
X128 -58 24 17 5753 1446 3 MP
XPP
X0 sg
X5753 1446 mt 5777 1463 L
X5777 1463 mt 5905 1405 L
X/c41 { 0.000000 0.750000 1.000000 sr} bdef
Xc41
X128 -60 24 15 5734 1283 3 MP
XPP
X0 sg
X5734 1283 mt 5758 1298 L
X5758 1298 mt 5886 1238 L
Xc41
X24 16 128 -61 5734 1283 3 MP
XPP
X0 sg
X5734 1283 mt 5862 1222 L
X5862 1222 mt 5886 1238 L
Xc37
X25 20 128 -58 5728 1426 3 MP
XPP
X0 sg
X5728 1426 mt 5856 1368 L
X5856 1368 mt 5881 1388 L
Xc37
X128 -58 25 20 5728 1426 3 MP
XPP
X0 sg
X5728 1426 mt 5753 1446 L
X5753 1446 mt 5881 1388 L
Xc10
X25 25 128 -61 5709 1258 3 MP
XPP
X0 sg
X5709 1258 mt 5837 1197 L
X5837 1197 mt 5862 1222 L
Xc10
X128 -61 25 25 5709 1258 3 MP
XPP
X0 sg
X5709 1258 mt 5734 1283 L
X5734 1283 mt 5862 1222 L
Xc33
X128 -58 24 24 5704 1402 3 MP
XPP
X0 sg
X5704 1402 mt 5728 1426 L
X5728 1426 mt 5856 1368 L
Xc33
X24 24 128 -58 5704 1402 3 MP
XPP
X0 sg
X5704 1402 mt 5832 1344 L
X5832 1344 mt 5856 1368 L
Xc10
X128 -61 24 14 5685 1244 3 MP
XPP
X0 sg
X5685 1244 mt 5709 1258 L
X5709 1258 mt 5837 1197 L
Xc10
X25 13 127 -60 5685 1244 3 MP
XPP
X0 sg
X5685 1244 mt 5812 1184 L
X5812 1184 mt 5837 1197 L
Xc33
X128 -58 25 21 5679 1381 3 MP
XPP
X0 sg
X5679 1381 mt 5704 1402 L
X5704 1402 mt 5832 1344 L
Xc33
X25 21 128 -58 5679 1381 3 MP
XPP
X0 sg
X5679 1381 mt 5807 1323 L
X5807 1323 mt 5832 1344 L
X/c42 { 0.000000 0.875000 1.000000 sr} bdef
Xc42
X127 -60 25 23 5660 1221 3 MP
XPP
X0 sg
X5660 1221 mt 5685 1244 L
X5685 1244 mt 5812 1184 L
Xc42
X24 23 128 -60 5660 1221 3 MP
XPP
X0 sg
X5660 1221 mt 5788 1161 L
X5788 1161 mt 5812 1184 L
Xc33
X24 12 128 -58 5655 1369 3 MP
XPP
X0 sg
X5655 1369 mt 5783 1311 L
X5783 1311 mt 5807 1323 L
Xc33
X128 -58 24 12 5655 1369 3 MP
XPP
X0 sg
X5655 1369 mt 5679 1381 L
X5679 1381 mt 5807 1323 L
X/c43 { 0.000000 0.312500 1.000000 sr} bdef
Xc43
X25 22 127 -60 5650 1523 3 MP
XPP
X0 sg
X5650 1523 mt 5777 1463 L
X5777 1463 mt 5802 1485 L
Xc43
X128 -60 24 22 5650 1523 3 MP
XPP
X0 sg
X5650 1523 mt 5674 1545 L
X5674 1545 mt 5802 1485 L
Xc21
X128 -60 24 117 5636 1104 3 MP
XPP
X0 sg
X5636 1104 mt 5660 1221 L
X5660 1221 mt 5788 1161 L
Xc21
X25 117 127 -60 5636 1104 3 MP
XPP
X0 sg
X5636 1104 mt 5763 1044 L
X5763 1044 mt 5788 1161 L
Xc38
X128 -58 25 13 5630 1356 3 MP
XPP
X0 sg
X5630 1356 mt 5655 1369 L
X5655 1369 mt 5783 1311 L
Xc38
X25 13 128 -58 5630 1356 3 MP
XPP
X0 sg
X5630 1356 mt 5758 1298 L
X5758 1298 mt 5783 1311 L
Xc43
X127 -60 25 17 5625 1506 3 MP
XPP
X0 sg
X5625 1506 mt 5650 1523 L
X5650 1523 mt 5777 1463 L
Xc43
X24 17 128 -60 5625 1506 3 MP
XPP
X0 sg
X5625 1506 mt 5753 1446 L
X5753 1446 mt 5777 1463 L
Xc34
X24 38 128 -60 5611 1066 3 MP
XPP
X0 sg
X5611 1066 mt 5739 1006 L
X5739 1006 mt 5763 1044 L
Xc34
X127 -60 25 38 5611 1066 3 MP
XPP
X0 sg
X5611 1066 mt 5636 1104 L
X5636 1104 mt 5763 1044 L
Xc38
X128 -58 24 15 5606 1341 3 MP
XPP
X0 sg
X5606 1341 mt 5630 1356 L
X5630 1356 mt 5758 1298 L
Xc38
X24 15 128 -58 5606 1341 3 MP
XPP
X0 sg
X5606 1341 mt 5734 1283 L
X5734 1283 mt 5758 1298 L
X/c44 { 0.000000 0.375000 1.000000 sr} bdef
Xc44
X128 -60 24 20 5601 1486 3 MP
XPP
X0 sg
X5601 1486 mt 5625 1506 L
X5625 1506 mt 5753 1446 L
Xc44
X25 20 127 -60 5601 1486 3 MP
XPP
X0 sg
X5601 1486 mt 5728 1426 L
X5728 1426 mt 5753 1446 L
Xc22
X25 38 128 -61 5586 1029 3 MP
XPP
X0 sg
X5586 1029 mt 5714  968 L
X5714  968 mt 5739 1006 L
Xc22
X128 -60 25 37 5586 1029 3 MP
XPP
X0 sg
X5586 1029 mt 5611 1066 L
X5611 1066 mt 5739 1006 L
Xc39
X128 -58 25 25 5581 1316 3 MP
XPP
X0 sg
X5581 1316 mt 5606 1341 L
X5606 1341 mt 5734 1283 L
Xc39
X25 25 128 -58 5581 1316 3 MP
XPP
X0 sg
X5581 1316 mt 5709 1258 L
X5709 1258 mt 5734 1283 L
Xc40
X24 24 128 -60 5576 1462 3 MP
XPP
X0 sg
X5576 1462 mt 5704 1402 L
X5704 1402 mt 5728 1426 L
Xc40
X127 -60 25 24 5576 1462 3 MP
XPP
X0 sg
X5576 1462 mt 5601 1486 L
X5601 1486 mt 5728 1426 L
Xc29
X128 -61 24 91 5562 938 3 MP
XPP
X0 sg
X5562  938 mt 5586 1029 L
X5586 1029 mt 5714  968 L
Xc29
X24 90 128 -60 5562 938 3 MP
XPP
X0 sg
X5562  938 mt 5690  878 L
X5690  878 mt 5714  968 L
Xc39
X24 14 128 -58 5557 1302 3 MP
XPP
X0 sg
X5557 1302 mt 5685 1244 L
X5685 1244 mt 5709 1258 L
Xc39
X128 -58 24 14 5557 1302 3 MP
XPP
X0 sg
X5557 1302 mt 5581 1316 L
X5581 1316 mt 5709 1258 L
Xc40
X128 -60 25 20 5551 1442 3 MP
XPP
X0 sg
X5551 1442 mt 5576 1462 L
X5576 1462 mt 5704 1402 L
Xc40
X25 21 128 -61 5551 1442 3 MP
XPP
X0 sg
X5551 1442 mt 5679 1381 L
X5679 1381 mt 5704 1402 L
Xc30
X128 -60 25 57 5537 881 3 MP
XPP
X0 sg
X5537  881 mt 5562  938 L
X5562  938 mt 5690  878 L
Xc30
X25 58 128 -61 5537 881 3 MP
XPP
X0 sg
X5537  881 mt 5665  820 L
X5665  820 mt 5690  878 L
Xc41
X128 -58 25 23 5532 1279 3 MP
XPP
X0 sg
X5532 1279 mt 5557 1302 L
X5557 1302 mt 5685 1244 L
Xc41
X25 23 128 -58 5532 1279 3 MP
XPP
X0 sg
X5532 1279 mt 5660 1221 L
X5660 1221 mt 5685 1244 L
Xc40
X128 -61 24 12 5527 1430 3 MP
XPP
X0 sg
X5527 1430 mt 5551 1442 L
X5551 1442 mt 5679 1381 L
Xc40
X24 12 128 -61 5527 1430 3 MP
XPP
X0 sg
X5527 1430 mt 5655 1369 L
X5655 1369 mt 5679 1381 L
X/c45 { 0.000000 0.187500 1.000000 sr} bdef
Xc45
X128 -59 24 22 5522 1582 3 MP
XPP
X0 sg
X5522 1582 mt 5546 1604 L
X5546 1604 mt 5674 1545 L
Xc45
X24 22 128 -59 5522 1582 3 MP
XPP
X0 sg
X5522 1582 mt 5650 1523 L
X5650 1523 mt 5674 1545 L
Xc32
X128 -61 24 70 5513 811 3 MP
XPP
X0 sg
X5513  811 mt 5537  881 L
X5537  881 mt 5665  820 L
Xc32
X24 69 128 -60 5513 811 3 MP
XPP
X0 sg
X5513  811 mt 5641  751 L
X5641  751 mt 5665  820 L
Xc8
X128 -58 24 117 5508 1162 3 MP
XPP
X0 sg
X5508 1162 mt 5532 1279 L
X5532 1279 mt 5660 1221 L
Xc8
X24 117 128 -58 5508 1162 3 MP
XPP
X0 sg
X5508 1162 mt 5636 1104 L
X5636 1104 mt 5660 1221 L
Xc37
X25 13 128 -61 5502 1417 3 MP
XPP
X0 sg
X5502 1417 mt 5630 1356 L
X5630 1356 mt 5655 1369 L
Xc37
X128 -61 25 13 5502 1417 3 MP
XPP
X0 sg
X5502 1417 mt 5527 1430 L
X5527 1430 mt 5655 1369 L
Xc45
X25 17 128 -58 5497 1564 3 MP
XPP
X0 sg
X5497 1564 mt 5625 1506 L
X5625 1506 mt 5650 1523 L
Xc45
X128 -59 25 18 5497 1564 3 MP
XPP
X0 sg
X5497 1564 mt 5522 1582 L
X5522 1582 mt 5650 1523 L
X/c46 { 1.000000 0.312500 0.000000 sr} bdef
Xc46
X25 66 128 -60 5488 745 3 MP
XPP
X0 sg
X5488  745 mt 5616  685 L
X5616  685 mt 5641  751 L
Xc46
X128 -60 25 66 5488 745 3 MP
XPP
X0 sg
X5488  745 mt 5513  811 L
X5513  811 mt 5641  751 L
Xc21
X128 -58 25 38 5483 1124 3 MP
XPP
X0 sg
X5483 1124 mt 5508 1162 L
X5508 1162 mt 5636 1104 L
Xc21
X25 38 128 -58 5483 1124 3 MP
XPP
X0 sg
X5483 1124 mt 5611 1066 L
X5611 1066 mt 5636 1104 L
Xc37
X24 15 128 -60 5478 1401 3 MP
XPP
X0 sg
X5478 1401 mt 5606 1341 L
X5606 1341 mt 5630 1356 L
Xc37
X128 -61 24 16 5478 1401 3 MP
XPP
X0 sg
X5478 1401 mt 5502 1417 L
X5502 1417 mt 5630 1356 L
X/c47 { 0.000000 0.250000 1.000000 sr} bdef
Xc47
X128 -58 24 20 5473 1544 3 MP
XPP
X0 sg
X5473 1544 mt 5497 1564 L
X5497 1564 mt 5625 1506 L
Xc47
X24 20 128 -58 5473 1544 3 MP
XPP
X0 sg
X5473 1544 mt 5601 1486 L
X5601 1486 mt 5625 1506 L
X/c48 { 1.000000 0.062500 0.000000 sr} bdef
Xc48
X128 -60 24 58 5464 687 3 MP
XPP
X0 sg
X5464  687 mt 5488  745 L
X5488  745 mt 5616  685 L
Xc48
X24 58 128 -60 5464 687 3 MP
XPP
X0 sg
X5464  687 mt 5592  627 L
X5592  627 mt 5616  685 L
Xc34
X128 -58 24 37 5459 1087 3 MP
XPP
X0 sg
X5459 1087 mt 5483 1124 L
X5483 1124 mt 5611 1066 L
Xc34
X25 37 127 -58 5459 1087 3 MP
XPP
X0 sg
X5459 1087 mt 5586 1029 L
X5586 1029 mt 5611 1066 L
Xc33
X128 -60 25 25 5453 1376 3 MP
XPP
X0 sg
X5453 1376 mt 5478 1401 L
X5478 1401 mt 5606 1341 L
Xc33
X25 25 128 -60 5453 1376 3 MP
XPP
X0 sg
X5453 1376 mt 5581 1316 L
X5581 1316 mt 5606 1341 L
Xc43
X128 -58 25 24 5448 1520 3 MP
XPP
X0 sg
X5448 1520 mt 5473 1544 L
X5473 1544 mt 5601 1486 L
Xc43
X25 24 128 -58 5448 1520 3 MP
XPP
X0 sg
X5448 1520 mt 5576 1462 L
X5576 1462 mt 5601 1486 L
X/c49 { 0.937500 0.000000 0.000000 sr} bdef
Xc49
X25 46 128 -60 5439 641 3 MP
XPP
X0 sg
X5439  641 mt 5567  581 L
X5567  581 mt 5592  627 L
Xc49
X128 -60 25 46 5439 641 3 MP
XPP
X0 sg
X5439  641 mt 5464  687 L
X5464  687 mt 5592  627 L
Xc9
X24 91 128 -58 5434 996 3 MP
XPP
X0 sg
X5434  996 mt 5562  938 L
X5562  938 mt 5586 1029 L
Xc9
X127 -58 25 91 5434 996 3 MP
XPP
X0 sg
X5434  996 mt 5459 1087 L
X5459 1087 mt 5586 1029 L
Xc33
X24 14 128 -61 5429 1363 3 MP
XPP
X0 sg
X5429 1363 mt 5557 1302 L
X5557 1302 mt 5581 1316 L
Xc33
X128 -60 24 13 5429 1363 3 MP
XPP
X0 sg
X5429 1363 mt 5453 1376 L
X5453 1376 mt 5581 1316 L
Xc44
X128 -58 24 20 5424 1500 3 MP
XPP
X0 sg
X5424 1500 mt 5448 1520 L
X5448 1520 mt 5576 1462 L
Xc44
X25 20 127 -58 5424 1500 3 MP
XPP
X0 sg
X5424 1500 mt 5551 1442 L
X5551 1442 mt 5576 1462 L
X/c50 { 0.812500 0.000000 0.000000 sr} bdef
Xc50
X24 40 128 -60 5415 601 3 MP
XPP
X0 sg
X5415  601 mt 5543  541 L
X5543  541 mt 5567  581 L
Xc50
X128 -60 24 40 5415 601 3 MP
XPP
X0 sg
X5415  601 mt 5439  641 L
X5439  641 mt 5567  581 L
Xc17
X25 57 127 -58 5410 939 3 MP
XPP
X0 sg
X5410  939 mt 5537  881 L
X5537  881 mt 5562  938 L
Xc17
X128 -58 24 57 5410 939 3 MP
XPP
X0 sg
X5410  939 mt 5434  996 L
X5434  996 mt 5562  938 L
Xc38
X128 -61 25 24 5404 1339 3 MP
XPP
X0 sg
X5404 1339 mt 5429 1363 L
X5429 1363 mt 5557 1302 L
Xc38
X25 23 128 -60 5404 1339 3 MP
XPP
X0 sg
X5404 1339 mt 5532 1279 L
X5532 1279 mt 5557 1302 L
X
Xgr 
Xgs 3994 388 2261 1783 MR c np
Xc44
X24 12 128 -58 5399 1488 3 MP
XPP
X0 sg
X5399 1488 mt 5527 1430 L
X5527 1430 mt 5551 1442 L
Xc44
X127 -58 25 12 5399 1488 3 MP
XPP
X0 sg
X5399 1488 mt 5424 1500 L
X5424 1500 mt 5551 1442 L
X/c51 { 0.000000 0.062500 1.000000 sr} bdef
Xc51
X24 22 128 -60 5394 1642 3 MP
XPP
X0 sg
X5394 1642 mt 5522 1582 L
X5522 1582 mt 5546 1604 L
Xc51
X128 -60 24 22 5394 1642 3 MP
XPP
X0 sg
X5394 1642 mt 5418 1664 L
X5418 1664 mt 5546 1604 L
X/c52 { 0.562500 0.000000 0.000000 sr} bdef
Xc52
X25 38 128 -44 5390 547 3 MP
XPP
X0 sg
X5390  547 mt 5518  503 L
X5518  503 mt 5543  541 L
Xc52
X128 -60 25 54 5390 547 3 MP
XPP
X0 sg
X5390  547 mt 5415  601 L
X5415  601 mt 5543  541 L
Xc31
X24 70 128 -59 5385 870 3 MP
XPP
X0 sg
X5385  870 mt 5513  811 L
X5513  811 mt 5537  881 L
Xc31
X127 -58 25 69 5385 870 3 MP
XPP
X0 sg
X5385  870 mt 5410  939 L
X5410  939 mt 5537  881 L
Xc14
X24 117 128 -61 5380 1223 3 MP
XPP
X0 sg
X5380 1223 mt 5508 1162 L
X5508 1162 mt 5532 1279 L
Xc14
X128 -60 24 116 5380 1223 3 MP
XPP
X0 sg
X5380 1223 mt 5404 1339 L
X5404 1339 mt 5532 1279 L
Xc44
X25 13 127 -58 5375 1475 3 MP
XPP
X0 sg
X5375 1475 mt 5502 1417 L
X5502 1417 mt 5527 1430 L
Xc44
X128 -58 24 13 5375 1475 3 MP
XPP
X0 sg
X5375 1475 mt 5399 1488 L
X5399 1488 mt 5527 1430 L
Xc51
X25 18 128 -61 5369 1625 3 MP
XPP
X0 sg
X5369 1625 mt 5497 1564 L
X5497 1564 mt 5522 1582 L
Xc51
X128 -60 25 17 5369 1625 3 MP
XPP
X0 sg
X5369 1625 mt 5394 1642 L
X5394 1642 mt 5522 1582 L
Xc52
X24 14 128 -35 5366 524 3 MP
XPP
X0 sg
X5366  524 mt 5494  489 L
X5494  489 mt 5518  503 L
Xc52
X128 -44 24 23 5366 524 3 MP
XPP
X0 sg
X5366  524 mt 5390  547 L
X5390  547 mt 5518  503 L
Xc20
X128 -59 25 67 5360 803 3 MP
XPP
X0 sg
X5360  803 mt 5385  870 L
X5385  870 mt 5513  811 L
Xc20
X25 66 128 -58 5360 803 3 MP
XPP
X0 sg
X5360  803 mt 5488  745 L
X5488  745 mt 5513  811 L
Xc8
X128 -61 25 38 5355 1185 3 MP
XPP
X0 sg
X5355 1185 mt 5380 1223 L
X5380 1223 mt 5508 1162 L
Xc8
X25 38 128 -61 5355 1185 3 MP
XPP
X0 sg
X5355 1185 mt 5483 1124 L
X5483 1124 mt 5508 1162 L
Xc44
X127 -58 25 16 5350 1459 3 MP
XPP
X0 sg
X5350 1459 mt 5375 1475 L
X5375 1475 mt 5502 1417 L
Xc44
X24 16 128 -58 5350 1459 3 MP
XPP
X0 sg
X5350 1459 mt 5478 1401 L
X5478 1401 mt 5502 1417 L
X/c53 { 0.000000 0.125000 1.000000 sr} bdef
Xc53
X24 20 128 -60 5345 1604 3 MP
XPP
X0 sg
X5345 1604 mt 5473 1544 L
X5473 1544 mt 5497 1564 L
Xc53
X128 -61 24 21 5345 1604 3 MP
XPP
X0 sg
X5345 1604 mt 5369 1625 L
X5369 1625 mt 5497 1564 L
Xc52
X25 11 128 -35 5341 513 3 MP
XPP
X0 sg
X5341  513 mt 5469  478 L
X5469  478 mt 5494  489 L
Xc52
X128 -35 25 11 5341 513 3 MP
XPP
X0 sg
X5341  513 mt 5366  524 L
X5366  524 mt 5494  489 L
X/c54 { 1.000000 0.187500 0.000000 sr} bdef
Xc54
X128 -58 24 58 5336 745 3 MP
XPP
X0 sg
X5336  745 mt 5360  803 L
X5360  803 mt 5488  745 L
Xc54
X24 58 128 -58 5336 745 3 MP
XPP
X0 sg
X5336  745 mt 5464  687 L
X5464  687 mt 5488  745 L
Xc21
X128 -61 24 38 5331 1147 3 MP
XPP
X0 sg
X5331 1147 mt 5355 1185 L
X5355 1185 mt 5483 1124 L
Xc21
X24 37 128 -60 5331 1147 3 MP
XPP
X0 sg
X5331 1147 mt 5459 1087 L
X5459 1087 mt 5483 1124 L
Xc40
X128 -58 25 25 5325 1434 3 MP
XPP
X0 sg
X5325 1434 mt 5350 1459 L
X5350 1459 mt 5478 1401 L
Xc40
X25 25 128 -58 5325 1434 3 MP
XPP
X0 sg
X5325 1434 mt 5453 1376 L
X5453 1376 mt 5478 1401 L
Xc45
X25 24 128 -61 5320 1581 3 MP
XPP
X0 sg
X5320 1581 mt 5448 1520 L
X5448 1520 mt 5473 1544 L
Xc45
X128 -60 25 23 5320 1581 3 MP
XPP
X0 sg
X5320 1581 mt 5345 1604 L
X5345 1604 mt 5473 1544 L
Xc52
X128 -35 24 11 5317 502 3 MP
XPP
X0 sg
X5317  502 mt 5341  513 L
X5341  513 mt 5469  478 L
Xc52
X25 11 127 -35 5317 502 3 MP
XPP
X0 sg
X5317  502 mt 5444  467 L
X5444  467 mt 5469  478 L
Xc48
X25 46 128 -58 5311 699 3 MP
XPP
X0 sg
X5311  699 mt 5439  641 L
X5439  641 mt 5464  687 L
Xc48
X128 -58 25 46 5311 699 3 MP
XPP
X0 sg
X5311  699 mt 5336  745 L
X5336  745 mt 5464  687 L
Xc19
X25 91 128 -61 5306 1057 3 MP
XPP
X0 sg
X5306 1057 mt 5434  996 L
X5434  996 mt 5459 1087 L
Xc19
X128 -60 25 90 5306 1057 3 MP
XPP
X0 sg
X5306 1057 mt 5331 1147 L
X5331 1147 mt 5459 1087 L
Xc40
X24 13 128 -58 5301 1421 3 MP
XPP
X0 sg
X5301 1421 mt 5429 1363 L
X5429 1363 mt 5453 1376 L
Xc40
X128 -58 24 13 5301 1421 3 MP
XPP
X0 sg
X5301 1421 mt 5325 1434 L
X5325 1434 mt 5453 1376 L
Xc47
X24 20 128 -60 5296 1560 3 MP
XPP
X0 sg
X5296 1560 mt 5424 1500 L
X5424 1500 mt 5448 1520 L
Xc47
X128 -61 24 21 5296 1560 3 MP
XPP
X0 sg
X5296 1560 mt 5320 1581 L
X5320 1581 mt 5448 1520 L
Xc52
X127 -35 25 12 5292 490 3 MP
XPP
X0 sg
X5292  490 mt 5317  502 L
X5317  502 mt 5444  467 L
Xc52
X24 11 128 -34 5292 490 3 MP
XPP
X0 sg
X5292  490 mt 5420  456 L
X5420  456 mt 5444  467 L
X/c55 { 0.875000 0.000000 0.000000 sr} bdef
Xc55
X24 40 128 -58 5287 659 3 MP
XPP
X0 sg
X5287  659 mt 5415  601 L
X5415  601 mt 5439  641 L
Xc55
X128 -58 24 40 5287 659 3 MP
XPP
X0 sg
X5287  659 mt 5311  699 L
X5311  699 mt 5439  641 L
Xc29
X128 -61 24 58 5282 999 3 MP
XPP
X0 sg
X5282  999 mt 5306 1057 L
X5306 1057 mt 5434  996 L
Xc29
X24 57 128 -60 5282 999 3 MP
XPP
X0 sg
X5282  999 mt 5410  939 L
X5410  939 mt 5434  996 L
Xc37
X128 -58 25 23 5276 1398 3 MP
XPP
X0 sg
X5276 1398 mt 5301 1421 L
X5301 1421 mt 5429 1363 L
Xc37
X25 24 128 -59 5276 1398 3 MP
XPP
X0 sg
X5276 1398 mt 5404 1339 L
X5404 1339 mt 5429 1363 L
Xc47
X128 -60 25 12 5271 1548 3 MP
XPP
X0 sg
X5271 1548 mt 5296 1560 L
X5296 1560 mt 5424 1500 L
Xc47
X25 12 128 -60 5271 1548 3 MP
XPP
X0 sg
X5271 1548 mt 5399 1488 L
X5399 1488 mt 5424 1500 L
Xc52
X25 12 127 -35 5268 479 3 MP
XPP
X0 sg
X5268  479 mt 5395  444 L
X5395  444 mt 5420  456 L
Xc52
X128 -34 24 11 5268 479 3 MP
XPP
X0 sg
X5268  479 mt 5292  490 L
X5292  490 mt 5420  456 L
X/c56 { 0.000000 0.000000 0.937500 sr} bdef
Xc56
X24 22 128 -58 5266 1700 3 MP
XPP
X0 sg
X5266 1700 mt 5394 1642 L
X5394 1642 mt 5418 1664 L
Xc56
X128 -58 24 22 5266 1700 3 MP
XPP
X0 sg
X5266 1700 mt 5290 1722 L
X5290 1722 mt 5418 1664 L
X/c57 { 0.687500 0.000000 0.000000 sr} bdef
Xc57
X128 -58 25 57 5262 602 3 MP
XPP
X0 sg
X5262  602 mt 5287  659 L
X5287  659 mt 5415  601 L
Xc57
X25 54 128 -55 5262 602 3 MP
XPP
X0 sg
X5262  602 mt 5390  547 L
X5390  547 mt 5415  601 L
Xc35
X128 -60 25 69 5257 930 3 MP
XPP
X0 sg
X5257  930 mt 5282  999 L
X5282  999 mt 5410  939 L
Xc35
X25 69 128 -60 5257 930 3 MP
XPP
X0 sg
X5257  930 mt 5385  870 L
X5385  870 mt 5410  939 L
Xc27
X128 -59 24 117 5252 1281 3 MP
XPP
X0 sg
X5252 1281 mt 5276 1398 L
X5276 1398 mt 5404 1339 L
Xc27
X24 116 128 -58 5252 1281 3 MP
XPP
X0 sg
X5252 1281 mt 5380 1223 L
X5380 1223 mt 5404 1339 L
Xc47
X24 13 128 -60 5247 1535 3 MP
XPP
X0 sg
X5247 1535 mt 5375 1475 L
X5375 1475 mt 5399 1488 L
Xc47
X128 -60 24 13 5247 1535 3 MP
XPP
X0 sg
X5247 1535 mt 5271 1548 L
X5271 1548 mt 5399 1488 L
Xc52
X24 11 128 -35 5243 468 3 MP
XPP
X0 sg
X5243  468 mt 5371  433 L
X5371  433 mt 5395  444 L
Xc52
X127 -35 25 11 5243 468 3 MP
XPP
X0 sg
X5243  468 mt 5268  479 L
X5268  479 mt 5395  444 L
Xc56
X128 -58 25 17 5241 1683 3 MP
XPP
X0 sg
X5241 1683 mt 5266 1700 L
X5266 1700 mt 5394 1642 L
Xc56
X25 17 128 -58 5241 1683 3 MP
XPP
X0 sg
X5241 1683 mt 5369 1625 L
X5369 1625 mt 5394 1642 L
Xc52
X24 23 128 -35 5238 559 3 MP
XPP
X0 sg
X5238  559 mt 5366  524 L
X5366  524 mt 5390  547 L
Xc52
X128 -55 24 43 5238 559 3 MP
XPP
X0 sg
X5238  559 mt 5262  602 L
X5262  602 mt 5390  547 L
Xc32
X128 -60 24 66 5233 864 3 MP
XPP
X0 sg
X5233  864 mt 5257  930 L
X5257  930 mt 5385  870 L
Xc32
X25 67 127 -61 5233 864 3 MP
XPP
X0 sg
X5233  864 mt 5360  803 L
X5360  803 mt 5385  870 L
Xc14
X128 -58 25 38 5227 1243 3 MP
XPP
X0 sg
X5227 1243 mt 5252 1281 L
X5252 1281 mt 5380 1223 L
Xc14
X25 38 128 -58 5227 1243 3 MP
XPP
X0 sg
X5227 1243 mt 5355 1185 L
X5355 1185 mt 5380 1223 L
Xc47
X25 16 128 -60 5222 1519 3 MP
XPP
X0 sg
X5222 1519 mt 5350 1459 L
X5350 1459 mt 5375 1475 L
Xc47
X128 -60 25 16 5222 1519 3 MP
XPP
X0 sg
X5222 1519 mt 5247 1535 L
X5247 1535 mt 5375 1475 L
Xc52
X128 -35 25 12 5218 456 3 MP
XPP
X0 sg
X5218  456 mt 5243  468 L
X5243  468 mt 5371  433 L
Xc52
X25 11 128 -34 5218 456 3 MP
XPP
X0 sg
X5218  456 mt 5346  422 L
X5346  422 mt 5371  433 L
X/c58 { 0.000000 0.000000 1.000000 sr} bdef
Xc58
X128 -58 24 20 5217 1663 3 MP
XPP
X0 sg
X5217 1663 mt 5241 1683 L
X5241 1683 mt 5369 1625 L
Xc58
X24 21 128 -59 5217 1663 3 MP
XPP
X0 sg
X5217 1663 mt 5345 1604 L
X5345 1604 mt 5369 1625 L
Xc52
X25 11 128 -34 5213 547 3 MP
XPP
X0 sg
X5213  547 mt 5341  513 L
X5341  513 mt 5366  524 L
Xc52
X128 -35 25 12 5213 547 3 MP
XPP
X0 sg
X5213  547 mt 5238  559 L
X5238  559 mt 5366  524 L
Xc46
X24 58 128 -60 5208 805 3 MP
XPP
X0 sg
X5208  805 mt 5336  745 L
X5336  745 mt 5360  803 L
Xc46
X127 -61 25 59 5208 805 3 MP
XPP
X0 sg
X5208  805 mt 5233  864 L
X5233  864 mt 5360  803 L
Xc8
X24 38 128 -58 5203 1205 3 MP
XPP
X0 sg
X5203 1205 mt 5331 1147 L
X5331 1147 mt 5355 1185 L
Xc8
X128 -58 24 38 5203 1205 3 MP
XPP
X0 sg
X5203 1205 mt 5227 1243 L
X5227 1243 mt 5355 1185 L
Xc43
X25 25 127 -61 5198 1495 3 MP
XPP
X0 sg
X5198 1495 mt 5325 1434 L
X5325 1434 mt 5350 1459 L
Xc43
X128 -60 24 24 5198 1495 3 MP
XPP
X0 sg
X5198 1495 mt 5222 1519 L
X5222 1519 mt 5350 1459 L
Xc52
X24 11 128 -34 5194 445 3 MP
XPP
X0 sg
X5194  445 mt 5322  411 L
X5322  411 mt 5346  422 L
Xc52
X128 -34 24 11 5194 445 3 MP
XPP
X0 sg
X5194  445 mt 5218  456 L
X5218  456 mt 5346  422 L
Xc51
X128 -59 25 24 5192 1639 3 MP
XPP
X0 sg
X5192 1639 mt 5217 1663 L
X5217 1663 mt 5345 1604 L
Xc51
X25 23 128 -58 5192 1639 3 MP
XPP
X0 sg
X5192 1639 mt 5320 1581 L
X5320 1581 mt 5345 1604 L
Xc52
X24 11 128 -34 5189 536 3 MP
XPP
X0 sg
X5189  536 mt 5317  502 L
X5317  502 mt 5341  513 L
Xc52
X128 -34 24 11 5189 536 3 MP
XPP
X0 sg
X5189  536 mt 5213  547 L
X5213  547 mt 5341  513 L
Xc54
X128 -60 24 46 5184 759 3 MP
XPP
X0 sg
X5184  759 mt 5208  805 L
X5208  805 mt 5336  745 L
Xc54
X25 46 127 -60 5184 759 3 MP
XPP
X0 sg
X5184  759 mt 5311  699 L
X5311  699 mt 5336  745 L
Xc22
X128 -58 25 90 5178 1115 3 MP
XPP
X0 sg
X5178 1115 mt 5203 1205 L
X5203 1205 mt 5331 1147 L
Xc22
X25 90 128 -58 5178 1115 3 MP
XPP
X0 sg
X5178 1115 mt 5306 1057 L
X5306 1057 mt 5331 1147 L
Xc43
X24 13 128 -60 5173 1481 3 MP
XPP
X0 sg
X5173 1481 mt 5301 1421 L
X5301 1421 mt 5325 1434 L
Xc43
X127 -61 25 14 5173 1481 3 MP
XPP
X0 sg
X5173 1481 mt 5198 1495 L
X5198 1495 mt 5325 1434 L
Xc52
X128 -34 25 11 5169 434 3 MP
XPP
X0 sg
X5169  434 mt 5194  445 L
X5194  445 mt 5322  411 L
Xc52
X25 12 128 -35 5169 434 3 MP
XPP
X0 sg
X5169  434 mt 5297  399 L
X5297  399 mt 5322  411 L
Xc53
X128 -58 24 21 5168 1618 3 MP
XPP
X0 sg
X5168 1618 mt 5192 1639 L
X5192 1639 mt 5320 1581 L
Xc53
X24 21 128 -58 5168 1618 3 MP
XPP
X0 sg
X5168 1618 mt 5296 1560 L
X5296 1560 mt 5320 1581 L
Xc52
X128 -34 25 11 5164 525 3 MP
XPP
X0 sg
X5164  525 mt 5189  536 L
X5189  536 mt 5317  502 L
Xc52
X25 12 128 -35 5164 525 3 MP
XPP
X0 sg
X5164  525 mt 5292  490 L
X5292  490 mt 5317  502 L
X/c59 { 1.000000 0.000000 0.000000 sr} bdef
Xc59
X24 40 128 -60 5159 719 3 MP
XPP
X0 sg
X5159  719 mt 5287  659 L
X5287  659 mt 5311  699 L
Xc59
X127 -60 25 40 5159 719 3 MP
XPP
X0 sg
X5159  719 mt 5184  759 L
X5184  759 mt 5311  699 L
Xc9
X128 -58 24 58 5154 1057 3 MP
XPP
X0 sg
X5154 1057 mt 5178 1115 L
X5178 1115 mt 5306 1057 L
Xc9
X24 58 128 -58 5154 1057 3 MP
XPP
X0 sg
X5154 1057 mt 5282  999 L
X5282  999 mt 5306 1057 L
Xc44
X128 -60 24 23 5149 1458 3 MP
XPP
X0 sg
X5149 1458 mt 5173 1481 L
X5173 1481 mt 5301 1421 L
Xc44
X25 23 127 -60 5149 1458 3 MP
XPP
X0 sg
X5149 1458 mt 5276 1398 L
X5276 1398 mt 5301 1421 L
Xc53
X128 -58 25 12 5143 1606 3 MP
XPP
X0 sg
X5143 1606 mt 5168 1618 L
X5168 1618 mt 5296 1560 L
Xc53
X25 12 128 -58 5143 1606 3 MP
XPP
X0 sg
X5143 1606 mt 5271 1548 L
X5271 1548 mt 5296 1560 L
Xc52
X24 11 128 -35 5140 514 3 MP
XPP
X0 sg
X5140  514 mt 5268  479 L
X5268  479 mt 5292  490 L
Xc52
X128 -35 24 11 5140 514 3 MP
XPP
X0 sg
X5140  514 mt 5164  525 L
X5164  525 mt 5292  490 L
X/c60 { 0.000000 0.000000 0.812500 sr} bdef
Xc60
X127 -60 25 22 5138 1760 3 MP
XPP
X0 sg
X5138 1760 mt 5163 1782 L
X5163 1782 mt 5290 1722 L
Xc60
X24 22 128 -60 5138 1760 3 MP
XPP
X0 sg
X5138 1760 mt 5266 1700 L
X5266 1700 mt 5290 1722 L
Xc50
X25 57 128 -60 5134 662 3 MP
XPP
X0 sg
X5134  662 mt 5262  602 L
X5262  602 mt 5287  659 L
Xc50
X128 -60 25 57 5134 662 3 MP
XPP
X0 sg
X5134  662 mt 5159  719 L
X5159  719 mt 5287  659 L
Xc17
X25 69 128 -58 5129 988 3 MP
XPP
X0 sg
X5129  988 mt 5257  930 L
X5257  930 mt 5282  999 L
Xc17
X128 -58 25 69 5129 988 3 MP
XPP
X0 sg
X5129  988 mt 5154 1057 L
X5154 1057 mt 5282  999 L
Xc42
X127 -60 25 117 5124 1341 3 MP
XPP
X0 sg
X5124 1341 mt 5149 1458 L
X5149 1458 mt 5276 1398 L
Xc42
X24 117 128 -60 5124 1341 3 MP
XPP
X0 sg
X5124 1341 mt 5252 1281 L
X5252 1281 mt 5276 1398 L
Xc53
X24 13 128 -58 5119 1593 3 MP
XPP
X0 sg
X5119 1593 mt 5247 1535 L
X5247 1535 mt 5271 1548 L
Xc53
X128 -58 24 13 5119 1593 3 MP
XPP
X0 sg
X5119 1593 mt 5143 1606 L
X5143 1606 mt 5271 1548 L
Xc52
X128 -35 25 12 5115 502 3 MP
XPP
X0 sg
X5115  502 mt 5140  514 L
X5140  514 mt 5268  479 L
Xc52
X25 11 128 -34 5115 502 3 MP
XPP
X0 sg
X5115  502 mt 5243  468 L
X5243  468 mt 5268  479 L
X/c61 { 0.000000 0.000000 0.875000 sr} bdef
Xc61
X128 -60 24 17 5114 1743 3 MP
XPP
X0 sg
X5114 1743 mt 5138 1760 L
X5138 1760 mt 5266 1700 L
Xc61
X25 17 127 -60 5114 1743 3 MP
XPP
X0 sg
X5114 1743 mt 5241 1683 L
X5241 1683 mt 5266 1700 L
Xc52
X128 -60 24 63 5110 599 3 MP
XPP
X0 sg
X5110  599 mt 5134  662 L
X5134  662 mt 5262  602 L
Xc52
X24 43 128 -40 5110 599 3 MP
XPP
X0 sg
X5110  599 mt 5238  559 L
X5238  559 mt 5262  602 L
Xc31
X24 66 128 -58 5105 922 3 MP
XPP
X0 sg
X5105  922 mt 5233  864 L
X5233  864 mt 5257  930 L
Xc31
X128 -58 24 66 5105 922 3 MP
XPP
X0 sg
X5105  922 mt 5129  988 L
X5129  988 mt 5257  930 L
Xc27
X128 -60 25 38 5099 1303 3 MP
XPP
X0 sg
X5099 1303 mt 5124 1341 L
X5124 1341 mt 5252 1281 L
Xc27
X25 38 128 -60 5099 1303 3 MP
XPP
X0 sg
X5099 1303 mt 5227 1243 L
X5227 1243 mt 5252 1281 L
Xc53
X25 16 128 -59 5094 1578 3 MP
XPP
X0 sg
X5094 1578 mt 5222 1519 L
X5222 1519 mt 5247 1535 L
Xc53
X128 -58 25 15 5094 1578 3 MP
XPP
X0 sg
X5094 1578 mt 5119 1593 L
X5119 1593 mt 5247 1535 L
Xc52
X25 12 127 -35 5091 491 3 MP
XPP
X0 sg
X5091  491 mt 5218  456 L
X5218  456 mt 5243  468 L
Xc52
X128 -34 24 11 5091 491 3 MP
XPP
X0 sg
X5091  491 mt 5115  502 L
X5115  502 mt 5243  468 L
Xc61
X127 -60 25 20 5089 1723 3 MP
XPP
X0 sg
X5089 1723 mt 5114 1743 L
X5114 1743 mt 5241 1683 L
Xc61
X24 20 128 -60 5089 1723 3 MP
XPP
X0 sg
X5089 1723 mt 5217 1663 L
X5217 1663 mt 5241 1683 L
Xc52
X25 12 128 -36 5085 583 3 MP
XPP
X0 sg
X5085  583 mt 5213  547 L
X5213  547 mt 5238  559 L
Xc52
X128 -40 25 16 5085 583 3 MP
XPP
X0 sg
X5085  583 mt 5110  599 L
X5110  599 mt 5238  559 L
Xc20
X25 59 128 -58 5080 863 3 MP
XPP
X0 sg
X5080  863 mt 5208  805 L
X5208  805 mt 5233  864 L
Xc20
X128 -58 25 59 5080 863 3 MP
XPP
X0 sg
X5080  863 mt 5105  922 L
X5105  922 mt 5233  864 L
Xc14
X128 -60 24 37 5075 1266 3 MP
XPP
X0 sg
X5075 1266 mt 5099 1303 L
X5099 1303 mt 5227 1243 L
Xc14
X24 38 128 -61 5075 1266 3 MP
XPP
X0 sg
X5075 1266 mt 5203 1205 L
X5203 1205 mt 5227 1243 L
Xc45
X24 24 128 -58 5070 1553 3 MP
XPP
X0 sg
X5070 1553 mt 5198 1495 L
X5198 1495 mt 5222 1519 L
Xc45
X128 -59 24 25 5070 1553 3 MP
XPP
X0 sg
X5070 1553 mt 5094 1578 L
X5094 1578 mt 5222 1519 L
Xc52
X24 11 128 -35 5066 480 3 MP
XPP
X0 sg
X5066  480 mt 5194  445 L
X5194  445 mt 5218  456 L
Xc52
X127 -35 25 11 5066 480 3 MP
XPP
X0 sg
X5066  480 mt 5091  491 L
X5091  491 mt 5218  456 L
Xc56
X128 -60 25 24 5064 1699 3 MP
XPP
X0 sg
X5064 1699 mt 5089 1723 L
X5089 1723 mt 5217 1663 L
Xc56
X25 24 128 -60 5064 1699 3 MP
XPP
X0 sg
X5064 1699 mt 5192 1639 L
X5192 1639 mt 5217 1663 L
Xc52
X24 11 128 -35 5061 571 3 MP
XPP
X0 sg
X5061  571 mt 5189  536 L
X5189  536 mt 5213  547 L
Xc52
X128 -36 24 12 5061 571 3 MP
XPP
X0 sg
X5061  571 mt 5085  583 L
X5085  583 mt 5213  547 L
X/c62 { 1.000000 0.250000 0.000000 sr} bdef
Xc62
X128 -58 24 46 5056 817 3 MP
XPP
X0 sg
X5056  817 mt 5080  863 L
X5080  863 mt 5208  805 L
Xc62
X24 46 128 -58 5056 817 3 MP
XPP
X0 sg
X5056  817 mt 5184  759 L
X5184  759 mt 5208  805 L
Xc34
X25 90 128 -60 5050 1175 3 MP
XPP
X0 sg
X5050 1175 mt 5178 1115 L
X5178 1115 mt 5203 1205 L
Xc34
X128 -61 25 91 5050 1175 3 MP
XPP
X0 sg
X5050 1175 mt 5075 1266 L
X5075 1266 mt 5203 1205 L
Xc47
X25 14 128 -58 5045 1539 3 MP
XPP
X0 sg
X5045 1539 mt 5173 1481 L
X5173 1481 mt 5198 1495 L
Xc47
X128 -58 25 14 5045 1539 3 MP
XPP
X0 sg
X5045 1539 mt 5070 1553 L
X5070 1553 mt 5198 1495 L
Xc52
X128 -35 24 11 5042 469 3 MP
XPP
X0 sg
X5042  469 mt 5066  480 L
X5066  480 mt 5194  445 L
Xc52
X25 11 127 -35 5042 469 3 MP
XPP
X0 sg
X5042  469 mt 5169  434 L
X5169  434 mt 5194  445 L
Xc58
X24 21 128 -61 5040 1679 3 MP
XPP
X0 sg
X5040 1679 mt 5168 1618 L
X5168 1618 mt 5192 1639 L
Xc58
X128 -60 24 20 5040 1679 3 MP
XPP
X0 sg
X5040 1679 mt 5064 1699 L
X5064 1699 mt 5192 1639 L
Xc52
X25 11 128 -35 5036 560 3 MP
XPP
X0 sg
X5036  560 mt 5164  525 L
X5164  525 mt 5189  536 L
Xc52
X128 -35 25 11 5036 560 3 MP
XPP
X0 sg
X5036  560 mt 5061  571 L
X5061  571 mt 5189  536 L
X/c63 { 1.000000 0.125000 0.000000 sr} bdef
Xc63
X128 -58 25 40 5031 777 3 MP
XPP
X0 sg
X5031  777 mt 5056  817 L
X5056  817 mt 5184  759 L
Xc63
X25 40 128 -58 5031 777 3 MP
XPP
X0 sg
X5031  777 mt 5159  719 L
X5159  719 mt 5184  759 L
Xc19
X24 58 128 -61 5026 1118 3 MP
XPP
X0 sg
X5026 1118 mt 5154 1057 L
X5154 1057 mt 5178 1115 L
Xc19
X128 -60 24 57 5026 1118 3 MP
XPP
X0 sg
X5026 1118 mt 5050 1175 L
X5050 1175 mt 5178 1115 L
Xc47
X24 23 128 -58 5021 1516 3 MP
XPP
X0 sg
X5021 1516 mt 5149 1458 L
X5149 1458 mt 5173 1481 L
Xc47
X128 -58 24 23 5021 1516 3 MP
XPP
X0 sg
X5021 1516 mt 5045 1539 L
X5045 1539 mt 5173 1481 L
Xc58
X128 -61 25 12 5015 1667 3 MP
XPP
X0 sg
X5015 1667 mt 5040 1679 L
X5040 1679 mt 5168 1618 L
Xc58
X25 12 128 -61 5015 1667 3 MP
XPP
X0 sg
X5015 1667 mt 5143 1606 L
X5143 1606 mt 5168 1618 L
Xc52
X128 -35 24 12 5012 548 3 MP
XPP
X0 sg
X5012  548 mt 5036  560 L
X5036  560 mt 5164  525 L
Xc52
X24 11 128 -34 5012 548 3 MP
XPP
X0 sg
X5012  548 mt 5140  514 L
X5140  514 mt 5164  525 L
X/c64 { 0.000000 0.000000 0.687500 sr} bdef
Xc64
X128 -58 25 22 5010 1818 3 MP
XPP
X0 sg
X5010 1818 mt 5035 1840 L
X5035 1840 mt 5163 1782 L
Xc64
X25 22 128 -58 5010 1818 3 MP
XPP
X0 sg
X5010 1818 mt 5138 1760 L
X5138 1760 mt 5163 1782 L
Xc49
X128 -58 24 57 5007 720 3 MP
XPP
X0 sg
X5007  720 mt 5031  777 L
X5031  777 mt 5159  719 L
Xc49
X25 57 127 -58 5007 720 3 MP
XPP
X0 sg
X5007  720 mt 5134  662 L
X5134  662 mt 5159  719 L
Xc29
X128 -61 25 70 5001 1048 3 MP
XPP
X0 sg
X5001 1048 mt 5026 1118 L
X5026 1118 mt 5154 1057 L
Xc29
X25 69 128 -60 5001 1048 3 MP
XPP
X0 sg
X5001 1048 mt 5129  988 L
X5129  988 mt 5154 1057 L
Xc41
X128 -58 25 117 4996 1399 3 MP
XPP
X0 sg
X4996 1399 mt 5021 1516 L
X5021 1516 mt 5149 1458 L
Xc41
X25 117 128 -58 4996 1399 3 MP
XPP
X0 sg
X4996 1399 mt 5124 1341 L
X5124 1341 mt 5149 1458 L
Xc58
X24 13 128 -61 4991 1654 3 MP
XPP
X0 sg
X4991 1654 mt 5119 1593 L
X5119 1593 mt 5143 1606 L
Xc58
X128 -61 24 13 4991 1654 3 MP
XPP
X0 sg
X4991 1654 mt 5015 1667 L
X5015 1667 mt 5143 1606 L
Xc52
X128 -34 25 11 4987 537 3 MP
XPP
X0 sg
X4987  537 mt 5012  548 L
X5012  548 mt 5140  514 L
Xc52
X25 12 128 -35 4987 537 3 MP
XPP
X0 sg
X4987  537 mt 5115  502 L
X5115  502 mt 5140  514 L
X/c65 { 0.000000 0.000000 0.750000 sr} bdef
Xc65
X24 17 128 -58 4986 1801 3 MP
XPP
X0 sg
X4986 1801 mt 5114 1743 L
X5114 1743 mt 5138 1760 L
Xc65
X128 -58 24 17 4986 1801 3 MP
XPP
X0 sg
X4986 1801 mt 5010 1818 L
X5010 1818 mt 5138 1760 L
X/c66 { 0.625000 0.000000 0.000000 sr} bdef
Xc66
X127 -58 25 72 4982 648 3 MP
XPP
X0 sg
X4982  648 mt 5007  720 L
X5007  720 mt 5134  662 L
Xc66
X24 63 128 -49 4982 648 3 MP
XPP
X0 sg
X4982  648 mt 5110  599 L
X5110  599 mt 5134  662 L
Xc35
X24 66 128 -60 4977 982 3 MP
XPP
X0 sg
X4977  982 mt 5105  922 L
X5105  922 mt 5129  988 L
Xc35
X128 -60 24 66 4977 982 3 MP
XPP
X0 sg
X4977  982 mt 5001 1048 L
X5001 1048 mt 5129  988 L
X/c67 { 0.000000 0.937500 1.000000 sr} bdef
Xc67
X128 -58 24 38 4972 1361 3 MP
XPP
X0 sg
X4972 1361 mt 4996 1399 L
X4996 1399 mt 5124 1341 L
Xc67
X25 38 127 -58 4972 1361 3 MP
XPP
X0 sg
X4972 1361 mt 5099 1303 L
X5099 1303 mt 5124 1341 L
X
Xgr 
X4420  293 mt 
X(Tikh filter factors, log scale) s
Xgs 3994 388 2261 1783 MR c np
Xc58
X25 15 128 -60 4966 1638 3 MP
XPP
X0 sg
X4966 1638 mt 5094 1578 L
X5094 1578 mt 5119 1593 L
Xc58
X128 -61 25 16 4966 1638 3 MP
XPP
X0 sg
X4966 1638 mt 4991 1654 L
X4991 1654 mt 5119 1593 L
Xc52
X24 11 128 -35 4963 526 3 MP
XPP
X0 sg
X4963  526 mt 5091  491 L
X5091  491 mt 5115  502 L
Xc52
X128 -35 24 11 4963 526 3 MP
XPP
X0 sg
X4963  526 mt 4987  537 L
X4987  537 mt 5115  502 L
Xc65
X25 20 128 -58 4961 1781 3 MP
XPP
X0 sg
X4961 1781 mt 5089 1723 L
X5089 1723 mt 5114 1743 L
Xc65
X128 -58 25 20 4961 1781 3 MP
XPP
X0 sg
X4961 1781 mt 4986 1801 L
X4986 1801 mt 5114 1743 L
Xc52
X25 16 127 -38 4958 621 3 MP
XPP
X0 sg
X4958  621 mt 5085  583 L
X5085  583 mt 5110  599 L
Xc52
X128 -49 24 27 4958 621 3 MP
XPP
X0 sg
X4958  621 mt 4982  648 L
X4982  648 mt 5110  599 L
Xc32
X25 59 128 -61 4952 924 3 MP
XPP
X0 sg
X4952  924 mt 5080  863 L
X5080  863 mt 5105  922 L
Xc32
X128 -60 25 58 4952 924 3 MP
XPP
X0 sg
X4952  924 mt 4977  982 L
X4977  982 mt 5105  922 L
Xc28
X24 37 128 -58 4947 1324 3 MP
XPP
X0 sg
X4947 1324 mt 5075 1266 L
X5075 1266 mt 5099 1303 L
Xc28
X127 -58 25 37 4947 1324 3 MP
XPP
X0 sg
X4947 1324 mt 4972 1361 L
X4972 1361 mt 5099 1303 L
Xc51
X128 -60 24 25 4942 1613 3 MP
XPP
X0 sg
X4942 1613 mt 4966 1638 L
X4966 1638 mt 5094 1578 L
Xc51
X24 25 128 -60 4942 1613 3 MP
XPP
X0 sg
X4942 1613 mt 5070 1553 L
X5070 1553 mt 5094 1578 L
Xc52
X25 11 128 -34 4938 514 3 MP
XPP
X0 sg
X4938  514 mt 5066  480 L
X5066  480 mt 5091  491 L
Xc52
X128 -35 25 12 4938 514 3 MP
XPP
X0 sg
X4938  514 mt 4963  526 L
X4963  526 mt 5091  491 L
Xc60
X128 -58 24 24 4937 1757 3 MP
XPP
X0 sg
X4937 1757 mt 4961 1781 L
X4961 1781 mt 5089 1723 L
Xc60
X25 24 127 -58 4937 1757 3 MP
XPP
X0 sg
X4937 1757 mt 5064 1699 L
X5064 1699 mt 5089 1723 L
Xc52
X24 12 128 -35 4933 606 3 MP
XPP
X0 sg
X4933  606 mt 5061  571 L
X5061  571 mt 5085  583 L
Xc52
X127 -38 25 15 4933 606 3 MP
XPP
X0 sg
X4933  606 mt 4958  621 L
X4958  621 mt 5085  583 L
X/c68 { 1.000000 0.375000 0.000000 sr} bdef
Xc68
X128 -61 24 46 4928 878 3 MP
XPP
X0 sg
X4928  878 mt 4952  924 L
X4952  924 mt 5080  863 L
Xc68
X24 46 128 -61 4928 878 3 MP
XPP
X0 sg
X4928  878 mt 5056  817 L
X5056  817 mt 5080  863 L
Xc13
X25 91 127 -58 4923 1233 3 MP
XPP
X0 sg
X4923 1233 mt 5050 1175 L
X5050 1175 mt 5075 1266 L
Xc13
X128 -58 24 91 4923 1233 3 MP
XPP
X0 sg
X4923 1233 mt 4947 1324 L
X4947 1324 mt 5075 1266 L
Xc53
X25 14 128 -61 4917 1600 3 MP
XPP
X0 sg
X4917 1600 mt 5045 1539 L
X5045 1539 mt 5070 1553 L
Xc53
X128 -60 25 13 4917 1600 3 MP
XPP
X0 sg
X4917 1600 mt 4942 1613 L
X4942 1613 mt 5070 1553 L
Xc52
X128 -34 24 11 4914 503 3 MP
XPP
X0 sg
X4914  503 mt 4938  514 L
X4938  514 mt 5066  480 L
Xc52
X24 11 128 -34 4914 503 3 MP
XPP
X0 sg
X4914  503 mt 5042  469 L
X5042  469 mt 5066  480 L
Xc61
X127 -58 25 20 4912 1737 3 MP
XPP
X0 sg
X4912 1737 mt 4937 1757 L
X4937 1757 mt 5064 1699 L
Xc61
X24 20 128 -58 4912 1737 3 MP
XPP
X0 sg
X4912 1737 mt 5040 1679 L
X5040 1679 mt 5064 1699 L
Xc52
X128 -35 25 12 4908 594 3 MP
XPP
X0 sg
X4908  594 mt 4933  606 L
X4933  606 mt 5061  571 L
Xc52
X25 11 128 -34 4908 594 3 MP
XPP
X0 sg
X4908  594 mt 5036  560 L
X5036  560 mt 5061  571 L
Xc62
X25 40 128 -61 4903 838 3 MP
XPP
X0 sg
X4903  838 mt 5031  777 L
X5031  777 mt 5056  817 L
Xc62
X128 -61 25 40 4903 838 3 MP
XPP
X0 sg
X4903  838 mt 4928  878 L
X4928  878 mt 5056  817 L
Xc22
X24 57 128 -58 4898 1176 3 MP
XPP
X0 sg
X4898 1176 mt 5026 1118 L
X5026 1118 mt 5050 1175 L
Xc22
X127 -58 25 57 4898 1176 3 MP
XPP
X0 sg
X4898 1176 mt 4923 1233 L
X4923 1233 mt 5050 1175 L
Xc53
X128 -61 24 24 4893 1576 3 MP
XPP
X0 sg
X4893 1576 mt 4917 1600 L
X4917 1600 mt 5045 1539 L
Xc53
X24 23 128 -60 4893 1576 3 MP
XPP
X0 sg
X4893 1576 mt 5021 1516 L
X5021 1516 mt 5045 1539 L
Xc61
X25 12 127 -58 4888 1725 3 MP
XPP
X0 sg
X4888 1725 mt 5015 1667 L
X5015 1667 mt 5040 1679 L
Xc61
X128 -58 24 12 4888 1725 3 MP
XPP
X0 sg
X4888 1725 mt 4912 1737 L
X4912 1737 mt 5040 1679 L
Xc52
X24 12 128 -35 4884 583 3 MP
XPP
X0 sg
X4884  583 mt 5012  548 L
X5012  548 mt 5036  560 L
Xc52
X128 -34 24 11 4884 583 3 MP
XPP
X0 sg
X4884  583 mt 4908  594 L
X4908  594 mt 5036  560 L
X/c69 { 0.000000 0.000000 0.562500 sr} bdef
Xc69
X128 -61 25 22 4882 1879 3 MP
XPP
X0 sg
X4882 1879 mt 4907 1901 L
X4907 1901 mt 5035 1840 L
Xc69
X25 22 128 -61 4882 1879 3 MP
XPP
X0 sg
X4882 1879 mt 5010 1818 L
X5010 1818 mt 5035 1840 L
Xc48
X128 -61 24 58 4879 780 3 MP
XPP
X0 sg
X4879  780 mt 4903  838 L
X4903  838 mt 5031  777 L
Xc48
X24 57 128 -60 4879 780 3 MP
XPP
X0 sg
X4879  780 mt 5007  720 L
X5007  720 mt 5031  777 L
Xc9
X25 70 128 -58 4873 1106 3 MP
XPP
X0 sg
X4873 1106 mt 5001 1048 L
X5001 1048 mt 5026 1118 L
Xc9
X128 -58 25 70 4873 1106 3 MP
XPP
X0 sg
X4873 1106 mt 4898 1176 L
X4898 1176 mt 5026 1118 L
Xc39
X128 -60 25 116 4868 1460 3 MP
XPP
X0 sg
X4868 1460 mt 4893 1576 L
X4893 1576 mt 5021 1516 L
Xc39
X25 117 128 -61 4868 1460 3 MP
XPP
X0 sg
X4868 1460 mt 4996 1399 L
X4996 1399 mt 5021 1516 L
Xc61
X24 13 128 -58 4863 1712 3 MP
XPP
X0 sg
X4863 1712 mt 4991 1654 L
X4991 1654 mt 5015 1667 L
Xc61
X127 -58 25 13 4863 1712 3 MP
XPP
X0 sg
X4863 1712 mt 4888 1725 L
X4888 1725 mt 5015 1667 L
Xc52
X25 11 128 -35 4859 572 3 MP
XPP
X0 sg
X4859  572 mt 4987  537 L
X4987  537 mt 5012  548 L
Xc52
X128 -35 25 11 4859 572 3 MP
XPP
X0 sg
X4859  572 mt 4884  583 L
X4884  583 mt 5012  548 L
X/c70 { 0.000000 0.000000 0.625000 sr} bdef
Xc70
X24 17 128 -60 4858 1861 3 MP
XPP
X0 sg
X4858 1861 mt 4986 1801 L
X4986 1801 mt 5010 1818 L
Xc70
X128 -61 24 18 4858 1861 3 MP
XPP
X0 sg
X4858 1861 mt 4882 1879 L
X4882 1879 mt 5010 1818 L
X/c71 { 0.750000 0.000000 0.000000 sr} bdef
Xc71
X128 -60 25 73 4854 707 3 MP
XPP
X0 sg
X4854  707 mt 4879  780 L
X4879  780 mt 5007  720 L
Xc71
X25 72 128 -59 4854 707 3 MP
XPP
X0 sg
X4854  707 mt 4982  648 L
X4982  648 mt 5007  720 L
Xc30
X24 66 128 -58 4849 1040 3 MP
XPP
X0 sg
X4849 1040 mt 4977  982 L
X4977  982 mt 5001 1048 L
Xc30
X128 -58 24 66 4849 1040 3 MP
XPP
X0 sg
X4849 1040 mt 4873 1106 L
X4873 1106 mt 5001 1048 L
Xc10
X24 38 128 -61 4844 1422 3 MP
XPP
X0 sg
X4844 1422 mt 4972 1361 L
X4972 1361 mt 4996 1399 L
Xc10
X128 -61 24 38 4844 1422 3 MP
XPP
X0 sg
X4844 1422 mt 4868 1460 L
X4868 1460 mt 4996 1399 L
Xc56
X128 -58 25 16 4838 1696 3 MP
XPP
X0 sg
X4838 1696 mt 4863 1712 L
X4863 1712 mt 4991 1654 L
Xc56
X25 16 128 -58 4838 1696 3 MP
XPP
X0 sg
X4838 1696 mt 4966 1638 L
X4966 1638 mt 4991 1654 L
Xc52
X128 -35 24 12 4835 560 3 MP
XPP
X0 sg
X4835  560 mt 4859  572 L
X4859  572 mt 4987  537 L
Xc52
X24 11 128 -34 4835 560 3 MP
XPP
X0 sg
X4835  560 mt 4963  526 L
X4963  526 mt 4987  537 L
Xc70
X25 20 128 -60 4833 1841 3 MP
XPP
X0 sg
X4833 1841 mt 4961 1781 L
X4961 1781 mt 4986 1801 L
Xc70
X128 -60 25 20 4833 1841 3 MP
XPP
X0 sg
X4833 1841 mt 4858 1861 L
X4858 1861 mt 4986 1801 L
Xc66
X24 27 128 -50 4830 671 3 MP
XPP
X0 sg
X4830  671 mt 4958  621 L
X4958  621 mt 4982  648 L
Xc66
X128 -59 24 36 4830 671 3 MP
XPP
X0 sg
X4830  671 mt 4854  707 L
X4854  707 mt 4982  648 L
Xc31
X128 -58 25 58 4824 982 3 MP
XPP
X0 sg
X4824  982 mt 4849 1040 L
X4849 1040 mt 4977  982 L
Xc31
X25 58 128 -58 4824 982 3 MP
XPP
X0 sg
X4824  982 mt 4952  924 L
X4952  924 mt 4977  982 L
Xc67
X128 -61 25 38 4819 1384 3 MP
XPP
X0 sg
X4819 1384 mt 4844 1422 L
X4844 1422 mt 4972 1361 L
Xc67
X25 37 128 -60 4819 1384 3 MP
XPP
X0 sg
X4819 1384 mt 4947 1324 L
X4947 1324 mt 4972 1361 L
Xc58
X128 -58 24 25 4814 1671 3 MP
XPP
X0 sg
X4814 1671 mt 4838 1696 L
X4838 1696 mt 4966 1638 L
Xc58
X24 25 128 -58 4814 1671 3 MP
XPP
X0 sg
X4814 1671 mt 4942 1613 L
X4942 1613 mt 4966 1638 L
Xc52
X25 12 128 -35 4810 549 3 MP
XPP
X0 sg
X4810  549 mt 4938  514 L
X4938  514 mt 4963  526 L
Xc52
X128 -34 25 11 4810 549 3 MP
XPP
X0 sg
X4810  549 mt 4835  560 L
X4835  560 mt 4963  526 L
Xc64
X128 -60 24 23 4809 1818 3 MP
XPP
X0 sg
X4809 1818 mt 4833 1841 L
X4833 1841 mt 4961 1781 L
Xc64
X24 24 128 -61 4809 1818 3 MP
XPP
X0 sg
X4809 1818 mt 4937 1757 L
X4937 1757 mt 4961 1781 L
Xc52
X128 -50 25 29 4805 642 3 MP
XPP
X0 sg
X4805  642 mt 4830  671 L
X4830  671 mt 4958  621 L
Xc52
X25 15 128 -36 4805 642 3 MP
XPP
X0 sg
X4805  642 mt 4933  606 L
X4933  606 mt 4958  621 L
Xc24
X24 46 128 -58 4800 936 3 MP
XPP
X0 sg
X4800  936 mt 4928  878 L
X4928  878 mt 4952  924 L
Xc24
X128 -58 24 46 4800 936 3 MP
XPP
X0 sg
X4800  936 mt 4824  982 L
X4824  982 mt 4952  924 L
Xc11
X128 -60 24 90 4795 1294 3 MP
XPP
X0 sg
X4795 1294 mt 4819 1384 L
X4819 1384 mt 4947 1324 L
Xc11
X24 91 128 -61 4795 1294 3 MP
XPP
X0 sg
X4795 1294 mt 4923 1233 L
X4923 1233 mt 4947 1324 L
Xc58
X128 -58 25 13 4789 1658 3 MP
XPP
X0 sg
X4789 1658 mt 4814 1671 L
X4814 1671 mt 4942 1613 L
Xc58
X25 13 128 -58 4789 1658 3 MP
XPP
X0 sg
X4789 1658 mt 4917 1600 L
X4917 1600 mt 4942 1613 L
Xc52
X128 -35 24 11 4786 538 3 MP
XPP
X0 sg
X4786  538 mt 4810  549 L
X4810  549 mt 4938  514 L
Xc52
X24 11 128 -35 4786 538 3 MP
XPP
X0 sg
X4786  538 mt 4914  503 L
X4914  503 mt 4938  514 L
Xc65
X128 -61 25 21 4784 1797 3 MP
XPP
X0 sg
X4784 1797 mt 4809 1818 L
X4809 1818 mt 4937 1757 L
Xc65
X25 20 128 -60 4784 1797 3 MP
XPP
X0 sg
X4784 1797 mt 4912 1737 L
X4912 1737 mt 4937 1757 L
Xc52
X25 12 127 -36 4781 630 3 MP
XPP
X0 sg
X4781  630 mt 4908  594 L
X4908  594 mt 4933  606 L
Xc52
X128 -36 24 12 4781 630 3 MP
XPP
X0 sg
X4781  630 mt 4805  642 L
X4805  642 mt 4933  606 L
Xc68
X25 40 128 -58 4775 896 3 MP
XPP
X0 sg
X4775  896 mt 4903  838 L
X4903  838 mt 4928  878 L
Xc68
X128 -58 25 40 4775 896 3 MP
XPP
X0 sg
X4775  896 mt 4800  936 L
X4800  936 mt 4928  878 L
Xc34
X25 57 128 -60 4770 1236 3 MP
XPP
X0 sg
X4770 1236 mt 4898 1176 L
X4898 1176 mt 4923 1233 L
Xc34
X128 -61 25 58 4770 1236 3 MP
XPP
X0 sg
X4770 1236 mt 4795 1294 L
X4795 1294 mt 4923 1233 L
Xc51
X24 24 128 -58 4765 1634 3 MP
XPP
X0 sg
X4765 1634 mt 4893 1576 L
X4893 1576 mt 4917 1600 L
Xc51
X128 -58 24 24 4765 1634 3 MP
XPP
X0 sg
X4765 1634 mt 4789 1658 L
X4789 1658 mt 4917 1600 L
Xc65
X24 12 128 -60 4760 1785 3 MP
XPP
X0 sg
X4760 1785 mt 4888 1725 L
X4888 1725 mt 4912 1737 L
Xc65
X128 -60 24 12 4760 1785 3 MP
XPP
X0 sg
X4760 1785 mt 4784 1797 L
X4784 1797 mt 4912 1737 L
Xc52
X24 11 128 -35 4756 618 3 MP
XPP
X0 sg
X4756  618 mt 4884  583 L
X4884  583 mt 4908  594 L
Xc52
X127 -36 25 12 4756 618 3 MP
XPP
X0 sg
X4756  618 mt 4781  630 L
X4781  630 mt 4908  594 L
Xc63
X24 58 128 -58 4751 838 3 MP
XPP
X0 sg
X4751  838 mt 4879  780 L
X4879  780 mt 4903  838 L
Xc63
X128 -58 24 58 4751 838 3 MP
XPP
X0 sg
X4751  838 mt 4775  896 L
X4775  896 mt 4903  838 L
Xc23
X25 70 127 -61 4746 1167 3 MP
XPP
X0 sg
X4746 1167 mt 4873 1106 L
X4873 1106 mt 4898 1176 L
Xc23
X128 -60 24 69 4746 1167 3 MP
XPP
X0 sg
X4746 1167 mt 4770 1236 L
X4770 1236 mt 4898 1176 L
Xc33
X25 116 128 -58 4740 1518 3 MP
XPP
X0 sg
X4740 1518 mt 4868 1460 L
X4868 1460 mt 4893 1576 L
Xc33
X128 -58 25 116 4740 1518 3 MP
XPP
X0 sg
X4740 1518 mt 4765 1634 L
X4765 1634 mt 4893 1576 L
Xc65
X25 13 128 -60 4735 1772 3 MP
XPP
X0 sg
X4735 1772 mt 4863 1712 L
X4863 1712 mt 4888 1725 L
Xc65
X128 -60 25 13 4735 1772 3 MP
XPP
X0 sg
X4735 1772 mt 4760 1785 L
X4760 1785 mt 4888 1725 L
Xc52
X25 11 127 -34 4732 606 3 MP
XPP
X0 sg
X4732  606 mt 4859  572 L
X4859  572 mt 4884  583 L
Xc52
X128 -35 24 12 4732 606 3 MP
XPP
X0 sg
X4732  606 mt 4756  618 L
X4756  618 mt 4884  583 L
Xc55
X25 73 128 -58 4726 765 3 MP
XPP
X0 sg
X4726  765 mt 4854  707 L
X4854  707 mt 4879  780 L
Xc55
X128 -58 25 73 4726 765 3 MP
XPP
X0 sg
X4726  765 mt 4751  838 L
X4751  838 mt 4879  780 L
Xc26
X24 66 128 -61 4721 1101 3 MP
XPP
X0 sg
X4721 1101 mt 4849 1040 L
X4849 1040 mt 4873 1106 L
Xc26
X127 -61 25 66 4721 1101 3 MP
XPP
X0 sg
X4721 1101 mt 4746 1167 L
X4746 1167 mt 4873 1106 L
Xc39
X24 38 128 -58 4716 1480 3 MP
XPP
X0 sg
X4716 1480 mt 4844 1422 L
X4844 1422 mt 4868 1460 L
Xc39
X128 -58 24 38 4716 1480 3 MP
XPP
X0 sg
X4716 1480 mt 4740 1518 L
X4740 1518 mt 4868 1460 L
Xc60
X25 16 127 -60 4711 1756 3 MP
XPP
X0 sg
X4711 1756 mt 4838 1696 L
X4838 1696 mt 4863 1712 L
Xc60
X128 -60 24 16 4711 1756 3 MP
XPP
X0 sg
X4711 1756 mt 4735 1772 L
X4735 1772 mt 4863 1712 L
Xc52
X127 -34 25 11 4707 595 3 MP
XPP
X0 sg
X4707  595 mt 4732  606 L
X4732  606 mt 4859  572 L
Xc52
X24 12 128 -35 4707 595 3 MP
XPP
X0 sg
X4707  595 mt 4835  560 L
X4835  560 mt 4859  572 L
Xc71
X128 -58 24 37 4702 728 3 MP
XPP
X0 sg
X4702  728 mt 4726  765 L
X4726  765 mt 4854  707 L
Xc71
X24 36 128 -57 4702 728 3 MP
XPP
X0 sg
X4702  728 mt 4830  671 L
X4830  671 mt 4854  707 L
Xc35
X25 58 127 -60 4697 1042 3 MP
XPP
X0 sg
X4697 1042 mt 4824  982 L
X4824  982 mt 4849 1040 L
Xc35
X128 -61 24 59 4697 1042 3 MP
XPP
X0 sg
X4697 1042 mt 4721 1101 L
X4721 1101 mt 4849 1040 L
Xc10
X25 38 128 -58 4691 1442 3 MP
XPP
X0 sg
X4691 1442 mt 4819 1384 L
X4819 1384 mt 4844 1422 L
Xc10
X128 -58 25 38 4691 1442 3 MP
XPP
X0 sg
X4691 1442 mt 4716 1480 L
X4716 1480 mt 4844 1422 L
Xc61
X24 25 128 -61 4686 1732 3 MP
XPP
X0 sg
X4686 1732 mt 4814 1671 L
X4814 1671 mt 4838 1696 L
Xc61
X127 -60 25 24 4686 1732 3 MP
XPP
X0 sg
X4686 1732 mt 4711 1756 L
X4711 1756 mt 4838 1696 L
Xc52
X25 11 128 -35 4682 584 3 MP
XPP
X0 sg
X4682  584 mt 4810  549 L
X4810  549 mt 4835  560 L
Xc52
X128 -35 25 11 4682 584 3 MP
XPP
X0 sg
X4682  584 mt 4707  595 L
X4707  595 mt 4835  560 L
Xc52
X128 -57 25 44 4677 684 3 MP
XPP
X0 sg
X4677  684 mt 4702  728 L
X4702  728 mt 4830  671 L
Xc52
X25 29 128 -42 4677 684 3 MP
XPP
X0 sg
X4677  684 mt 4805  642 L
X4805  642 mt 4830  671 L
Xc16
X24 46 128 -60 4672 996 3 MP
XPP
X0 sg
X4672  996 mt 4800  936 L
X4800  936 mt 4824  982 L
Xc16
X127 -60 25 46 4672 996 3 MP
XPP
X0 sg
X4672  996 mt 4697 1042 L
X4697 1042 mt 4824  982 L
Xc36
X128 -58 24 90 4667 1352 3 MP
XPP
X0 sg
X4667 1352 mt 4691 1442 L
X4691 1442 mt 4819 1384 L
Xc36
X24 90 128 -58 4667 1352 3 MP
XPP
X0 sg
X4667 1352 mt 4795 1294 L
X4795 1294 mt 4819 1384 L
Xc61
X128 -61 24 14 4662 1718 3 MP
XPP
X0 sg
X4662 1718 mt 4686 1732 L
X4686 1732 mt 4814 1671 L
Xc61
X25 13 127 -60 4662 1718 3 MP
XPP
X0 sg
X4662 1718 mt 4789 1658 L
X4789 1658 mt 4814 1671 L
Xc52
X24 11 128 -34 4658 572 3 MP
XPP
X0 sg
X4658  572 mt 4786  538 L
X4786  538 mt 4810  549 L
Xc52
X128 -35 24 12 4658 572 3 MP
XPP
X0 sg
X4658  572 mt 4682  584 L
X4682  584 mt 4810  549 L
Xc52
X128 -42 24 15 4653 669 3 MP
XPP
X0 sg
X4653  669 mt 4677  684 L
X4677  684 mt 4805  642 L
Xc52
X24 12 128 -39 4653 669 3 MP
XPP
X0 sg
X4653  669 mt 4781  630 L
X4781  630 mt 4805  642 L
Xc24
X128 -60 25 40 4647 956 3 MP
XPP
X0 sg
X4647  956 mt 4672  996 L
X4672  996 mt 4800  936 L
Xc24
X25 40 128 -60 4647 956 3 MP
XPP
X0 sg
X4647  956 mt 4775  896 L
X4775  896 mt 4800  936 L
Xc21
X128 -58 25 58 4642 1294 3 MP
XPP
X0 sg
X4642 1294 mt 4667 1352 L
X4667 1352 mt 4795 1294 L
Xc21
X25 58 128 -58 4642 1294 3 MP
XPP
X0 sg
X4642 1294 mt 4770 1236 L
X4770 1236 mt 4795 1294 L
Xc56
X24 24 128 -61 4637 1695 3 MP
XPP
X0 sg
X4637 1695 mt 4765 1634 L
X4765 1634 mt 4789 1658 L
Xc56
X127 -60 25 23 4637 1695 3 MP
XPP
X0 sg
X4637 1695 mt 4662 1718 L
X4662 1718 mt 4789 1658 L
Xc52
X25 12 128 -37 4628 655 3 MP
XPP
X0 sg
X4628  655 mt 4756  618 L
X4756  618 mt 4781  630 L
Xc52
X128 -39 25 14 4628 655 3 MP
XPP
X0 sg
X4628  655 mt 4653  669 L
X4653  669 mt 4781  630 L
Xc62
X24 58 128 -61 4623 899 3 MP
XPP
X0 sg
X4623  899 mt 4751  838 L
X4751  838 mt 4775  896 L
Xc62
X128 -60 24 57 4623 899 3 MP
XPP
X0 sg
X4623  899 mt 4647  956 L
X4647  956 mt 4775  896 L
Xc12
X128 -58 24 69 4618 1225 3 MP
XPP
X0 sg
X4618 1225 mt 4642 1294 L
X4642 1294 mt 4770 1236 L
Xc12
X24 69 128 -58 4618 1225 3 MP
XPP
X0 sg
X4618 1225 mt 4746 1167 L
X4746 1167 mt 4770 1236 L
Xc40
X128 -61 25 117 4612 1578 3 MP
XPP
X0 sg
X4612 1578 mt 4637 1695 L
X4637 1695 mt 4765 1634 L
Xc40
X25 116 128 -60 4612 1578 3 MP
XPP
X0 sg
X4612 1578 mt 4740 1518 L
X4740 1518 mt 4765 1634 L
Xc52
X128 -37 24 14 4604 641 3 MP
XPP
X0 sg
X4604  641 mt 4628  655 L
X4628  655 mt 4756  618 L
Xc52
X24 12 128 -35 4604 641 3 MP
XPP
X0 sg
X4604  641 mt 4732  606 L
X4732  606 mt 4756  618 L
Xc59
X25 73 128 -61 4598 826 3 MP
XPP
X0 sg
X4598  826 mt 4726  765 L
X4726  765 mt 4751  838 L
Xc59
X128 -61 25 73 4598 826 3 MP
XPP
X0 sg
X4598  826 mt 4623  899 L
X4623  899 mt 4751  838 L
Xc18
X25 66 128 -58 4593 1159 3 MP
XPP
X0 sg
X4593 1159 mt 4721 1101 L
X4721 1101 mt 4746 1167 L
Xc18
X128 -58 25 66 4593 1159 3 MP
XPP
X0 sg
X4593 1159 mt 4618 1225 L
X4618 1225 mt 4746 1167 L
Xc33
X128 -60 24 38 4588 1540 3 MP
XPP
X0 sg
X4588 1540 mt 4612 1578 L
X4612 1578 mt 4740 1518 L
Xc33
X24 38 128 -60 4588 1540 3 MP
XPP
X0 sg
X4588 1540 mt 4716 1480 L
X4716 1480 mt 4740 1518 L
Xc52
X128 -35 25 11 4579 630 3 MP
XPP
X0 sg
X4579  630 mt 4604  641 L
X4604  641 mt 4732  606 L
Xc52
X25 11 128 -35 4579 630 3 MP
XPP
X0 sg
X4579  630 mt 4707  595 L
X4707  595 mt 4732  606 L
Xc55
X24 37 128 -60 4574 788 3 MP
XPP
X0 sg
X4574  788 mt 4702  728 L
X4702  728 mt 4726  765 L
Xc55
X128 -61 24 38 4574 788 3 MP
XPP
X0 sg
X4574  788 mt 4598  826 L
X4598  826 mt 4726  765 L
Xc30
X24 59 128 -58 4569 1100 3 MP
XPP
X0 sg
X4569 1100 mt 4697 1042 L
X4697 1042 mt 4721 1101 L
Xc30
X128 -58 24 59 4569 1100 3 MP
XPP
X0 sg
X4569 1100 mt 4593 1159 L
X4593 1159 mt 4721 1101 L
Xc39
X25 38 128 -61 4563 1503 3 MP
XPP
X0 sg
X4563 1503 mt 4691 1442 L
X4691 1442 mt 4716 1480 L
Xc39
X128 -60 25 37 4563 1503 3 MP
XPP
X0 sg
X4563 1503 mt 4588 1540 L
X4588 1540 mt 4716 1480 L
Xc52
X128 -35 24 12 4555 618 3 MP
XPP
X0 sg
X4555  618 mt 4579  630 L
X4579  630 mt 4707  595 L
Xc52
X25 11 127 -34 4555 618 3 MP
XPP
X0 sg
X4555  618 mt 4682  584 L
X4682  584 mt 4707  595 L
Xc57
X128 -60 25 48 4549 740 3 MP
XPP
X0 sg
X4549  740 mt 4574  788 L
X4574  788 mt 4702  728 L
Xc57
X25 44 128 -56 4549 740 3 MP
XPP
X0 sg
X4549  740 mt 4677  684 L
X4677  684 mt 4702  728 L
Xc25
X25 46 128 -58 4544 1054 3 MP
XPP
X0 sg
X4544 1054 mt 4672  996 L
X4672  996 mt 4697 1042 L
Xc25
X128 -58 25 46 4544 1054 3 MP
XPP
X0 sg
X4544 1054 mt 4569 1100 L
X4569 1100 mt 4697 1042 L
Xc28
X128 -61 24 91 4539 1412 3 MP
XPP
X0 sg
X4539 1412 mt 4563 1503 L
X4563 1503 mt 4691 1442 L
Xc28
X24 90 128 -60 4539 1412 3 MP
XPP
X0 sg
X4539 1412 mt 4667 1352 L
X4667 1352 mt 4691 1442 L
Xc52
X127 -34 25 11 4530 607 3 MP
XPP
X0 sg
X4530  607 mt 4555  618 L
X4555  618 mt 4682  584 L
Xc52
X24 12 128 -35 4530 607 3 MP
XPP
X0 sg
X4530  607 mt 4658  572 L
X4658  572 mt 4682  584 L
Xc66
X24 15 128 -53 4525 722 3 MP
XPP
X0 sg
X4525  722 mt 4653  669 L
X4653  669 mt 4677  684 L
Xc66
X128 -56 24 18 4525 722 3 MP
XPP
X0 sg
X4525  722 mt 4549  740 L
X4549  740 mt 4677  684 L
Xc16
X25 40 127 -58 4520 1014 3 MP
XPP
X0 sg
X4520 1014 mt 4647  956 L
X4647  956 mt 4672  996 L
Xc16
X128 -58 24 40 4520 1014 3 MP
XPP
X0 sg
X4520 1014 mt 4544 1054 L
X4544 1054 mt 4672  996 L
Xc8
X25 58 128 -61 4514 1355 3 MP
XPP
X0 sg
X4514 1355 mt 4642 1294 L
X4642 1294 mt 4667 1352 L
Xc8
X128 -60 25 57 4514 1355 3 MP
XPP
X0 sg
X4514 1355 mt 4539 1412 L
X4539 1412 mt 4667 1352 L
Xc66
X25 14 128 -46 4500 701 3 MP
XPP
X0 sg
X4500  701 mt 4628  655 L
X4628  655 mt 4653  669 L
Xc66
X128 -53 25 21 4500 701 3 MP
XPP
X0 sg
X4500  701 mt 4525  722 L
X4525  722 mt 4653  669 L
Xc68
X127 -58 25 57 4495 957 3 MP
XPP
X0 sg
X4495  957 mt 4520 1014 L
X4520 1014 mt 4647  956 L
Xc68
X24 57 128 -58 4495 957 3 MP
XPP
X0 sg
X4495  957 mt 4623  899 L
X4623  899 mt 4647  956 L
Xc15
X128 -61 24 70 4490 1285 3 MP
XPP
X0 sg
X4490 1285 mt 4514 1355 L
X4514 1355 mt 4642 1294 L
Xc15
X24 69 128 -60 4490 1285 3 MP
XPP
X0 sg
X4490 1285 mt 4618 1225 L
X4618 1225 mt 4642 1294 L
Xc52
X24 14 128 -35 4476 676 3 MP
XPP
X0 sg
X4476  676 mt 4604  641 L
X4604  641 mt 4628  655 L
Xc52
X128 -46 24 25 4476 676 3 MP
XPP
X0 sg
X4476  676 mt 4500  701 L
X4500  701 mt 4628  655 L
Xc48
X128 -58 24 73 4471 884 3 MP
XPP
X0 sg
X4471  884 mt 4495  957 L
X4495  957 mt 4623  899 L
Xc48
X25 73 127 -58 4471 884 3 MP
XPP
X0 sg
X4471  884 mt 4598  826 L
X4598  826 mt 4623  899 L
Xc23
X128 -60 25 66 4465 1219 3 MP
XPP
X0 sg
X4465 1219 mt 4490 1285 L
X4490 1285 mt 4618 1225 L
Xc23
X25 66 128 -60 4465 1219 3 MP
XPP
X0 sg
X4465 1219 mt 4593 1159 L
X4593 1159 mt 4618 1225 L
Xc52
X25 11 128 -34 4451 664 3 MP
XPP
X0 sg
X4451  664 mt 4579  630 L
X4579  630 mt 4604  641 L
Xc52
X128 -35 25 12 4451 664 3 MP
XPP
X0 sg
X4451  664 mt 4476  676 L
X4476  676 mt 4604  641 L
Xc49
X24 38 128 -58 4446 846 3 MP
XPP
X0 sg
X4446  846 mt 4574  788 L
X4574  788 mt 4598  826 L
Xc49
X127 -58 25 38 4446 846 3 MP
XPP
X0 sg
X4446  846 mt 4471  884 L
X4471  884 mt 4598  826 L
Xc26
X128 -60 24 58 4441 1161 3 MP
XPP
X0 sg
X4441 1161 mt 4465 1219 L
X4465 1219 mt 4593 1159 L
Xc26
X24 59 128 -61 4441 1161 3 MP
XPP
X0 sg
X4441 1161 mt 4569 1100 L
X4569 1100 mt 4593 1159 L
Xc52
X24 12 128 -35 4427 653 3 MP
XPP
X0 sg
X4427  653 mt 4555  618 L
X4555  618 mt 4579  630 L
Xc52
X128 -34 24 11 4427 653 3 MP
XPP
X0 sg
X4427  653 mt 4451  664 L
X4451  664 mt 4579  630 L
Xc50
X128 -58 25 49 4421 797 3 MP
XPP
X0 sg
X4421  797 mt 4446  846 L
X4446  846 mt 4574  788 L
Xc50
X25 48 128 -57 4421 797 3 MP
XPP
X0 sg
X4421  797 mt 4549  740 L
X4549  740 mt 4574  788 L
Xc30
X25 46 128 -61 4416 1115 3 MP
XPP
X0 sg
X4416 1115 mt 4544 1054 L
X4544 1054 mt 4569 1100 L
Xc30
X128 -61 25 46 4416 1115 3 MP
XPP
X0 sg
X4416 1115 mt 4441 1161 L
X4441 1161 mt 4569 1100 L
Xc52
X25 11 128 -35 4402 642 3 MP
XPP
X0 sg
X4402  642 mt 4530  607 L
X4530  607 mt 4555  618 L
Xc52
X128 -35 25 11 4402 642 3 MP
XPP
X0 sg
X4402  642 mt 4427  653 L
X4427  653 mt 4555  618 L
Xc71
X128 -57 24 18 4397 779 3 MP
XPP
X0 sg
X4397  779 mt 4421  797 L
X4421  797 mt 4549  740 L
Xc71
X24 18 128 -57 4397 779 3 MP
XPP
X0 sg
X4397  779 mt 4525  722 L
X4525  722 mt 4549  740 L
Xc25
X128 -61 24 41 4392 1074 3 MP
XPP
X0 sg
X4392 1074 mt 4416 1115 L
X4416 1115 mt 4544 1054 L
Xc25
X24 40 128 -60 4392 1074 3 MP
XPP
X0 sg
X4392 1074 mt 4520 1014 L
X4520 1014 mt 4544 1054 L
Xc57
X128 -57 25 23 4372 756 3 MP
XPP
X0 sg
X4372  756 mt 4397  779 L
X4397  779 mt 4525  722 L
Xc57
X25 21 128 -55 4372 756 3 MP
XPP
X0 sg
X4372  756 mt 4500  701 L
X4500  701 mt 4525  722 L
Xc24
X128 -60 25 57 4367 1017 3 MP
XPP
X0 sg
X4367 1017 mt 4392 1074 L
X4392 1074 mt 4520 1014 L
Xc24
X25 57 128 -60 4367 1017 3 MP
XPP
X0 sg
X4367 1017 mt 4495  957 L
X4495  957 mt 4520 1014 L
Xc52
X128 -55 24 41 4348 715 3 MP
XPP
X0 sg
X4348  715 mt 4372  756 L
X4372  756 mt 4500  701 L
Xc52
X24 25 128 -39 4348 715 3 MP
XPP
X0 sg
X4348  715 mt 4476  676 L
X4476  676 mt 4500  701 L
Xc54
X128 -60 24 73 4343 944 3 MP
XPP
X0 sg
X4343  944 mt 4367 1017 L
X4367 1017 mt 4495  957 L
Xc54
X24 73 128 -60 4343 944 3 MP
XPP
X0 sg
X4343  944 mt 4471  884 L
X4471  884 mt 4495  957 L
Xc52
X128 -39 25 15 4323 700 3 MP
XPP
X0 sg
X4323  700 mt 4348  715 L
X4348  715 mt 4476  676 L
Xc52
X25 12 128 -36 4323 700 3 MP
XPP
X0 sg
X4323  700 mt 4451  664 L
X4451  664 mt 4476  676 L
Xc48
X25 38 128 -61 4318 907 3 MP
XPP
X0 sg
X4318  907 mt 4446  846 L
X4446  846 mt 4471  884 L
Xc48
X128 -60 25 37 4318 907 3 MP
XPP
X0 sg
X4318  907 mt 4343  944 L
X4343  944 mt 4471  884 L
X
Xgr 
Xgs 3994 388 2261 1783 MR c np
Xc52
X128 -36 24 12 4299 688 3 MP
XPP
X0 sg
X4299  688 mt 4323  700 L
X4323  700 mt 4451  664 L
Xc52
X24 11 128 -35 4299 688 3 MP
XPP
X0 sg
X4299  688 mt 4427  653 L
X4427  653 mt 4451  664 L
Xc49
X128 -61 24 49 4294 858 3 MP
XPP
X0 sg
X4294  858 mt 4318  907 L
X4318  907 mt 4446  846 L
Xc49
X25 49 127 -61 4294 858 3 MP
XPP
X0 sg
X4294  858 mt 4421  797 L
X4421  797 mt 4446  846 L
Xc52
X25 11 128 -34 4274 676 3 MP
XPP
X0 sg
X4274  676 mt 4402  642 L
X4402  642 mt 4427  653 L
Xc52
X128 -35 25 12 4274 676 3 MP
XPP
X0 sg
X4274  676 mt 4299  688 L
X4299  688 mt 4427  653 L
Xc55
X127 -61 25 19 4269 839 3 MP
XPP
X0 sg
X4269  839 mt 4294  858 L
X4294  858 mt 4421  797 L
Xc55
X24 18 128 -60 4269 839 3 MP
XPP
X0 sg
X4269  839 mt 4397  779 L
X4397  779 mt 4421  797 L
Xc50
X25 23 127 -60 4245 816 3 MP
XPP
X0 sg
X4245  816 mt 4372  756 L
X4372  756 mt 4397  779 L
Xc50
X128 -60 24 23 4245 816 3 MP
XPP
X0 sg
X4245  816 mt 4269  839 L
X4269  839 mt 4397  779 L
Xc66
X127 -60 25 50 4220 766 3 MP
XPP
X0 sg
X4220  766 mt 4245  816 L
X4245  816 mt 4372  756 L
Xc66
X24 41 128 -51 4220 766 3 MP
XPP
X0 sg
X4220  766 mt 4348  715 L
X4348  715 mt 4372  756 L
Xc52
X25 15 128 -40 4195 740 3 MP
XPP
X0 sg
X4195  740 mt 4323  700 L
X4323  700 mt 4348  715 L
Xc52
X128 -51 25 26 4195 740 3 MP
XPP
X0 sg
X4195  740 mt 4220  766 L
X4220  766 mt 4348  715 L
Xc52
X24 12 128 -37 4171 725 3 MP
XPP
X0 sg
X4171  725 mt 4299  688 L
X4299  688 mt 4323  700 L
Xc52
X128 -40 24 15 4171 725 3 MP
XPP
X0 sg
X4171  725 mt 4195  740 L
X4195  740 mt 4323  700 L
Xc52
X25 12 128 -36 4146 712 3 MP
XPP
X0 sg
X4146  712 mt 4274  676 L
X4274  676 mt 4299  688 L
Xc52
X128 -37 25 13 4146 712 3 MP
XPP
X0 sg
X4146  712 mt 4171  725 L
X4171  725 mt 4299  688 L
X
Xgr 
X1 sg
X-981 -451 1278 -346 981 451 898 3176 4 MP
XPP
X-1278 346 -981 -451 1278 -346 981 451 898 3176 5 MP stroke
X0 985 981 451 0 -985 898 4161 4 MP
XPP
X-981 -451 0 985 981 451 0 -985 898 4161 5 MP stroke
X0 985 1278 -346 0 -985 1879 4612 4 MP
XPP
X-1278 346 0 985 1278 -346 0 -985 1879 4612 5 MP stroke
X4 w
XDO
X0 sg
X1879 4612 mt  898 4161 L
X 898 4161 mt  898 3176 L
X2518 4439 mt 1537 3988 L
X1537 3988 mt 1537 3003 L
X3157 4266 mt 2176 3815 L
X2176 3815 mt 2176 2830 L
X 898 4161 mt 2176 3815 L
X2176 3815 mt 2176 2830 L
X1388 4386 mt 2667 4040 L
X2667 4040 mt 2667 3056 L
X1879 4612 mt 3157 4266 L
X3157 4266 mt 3157 3281 L
X 898 4161 mt 2176 3815 L
X2176 3815 mt 3157 4266 L
X 898 3669 mt 2176 3322 L
X2176 3322 mt 3157 3773 L
X 898 3176 mt 2176 2830 L
X2176 2830 mt 3157 3281 L
XSO
X6 w
X1879 4612 mt 3157 4266 L
X 898 4161 mt 1879 4612 L
X 898 4161 mt  898 3176 L
X1879 4612 mt 1909 4626 L
X1940 4751 mt 
X(0) s
X2518 4439 mt 2548 4453 L
X2579 4578 mt 
X(10) s
X3157 4266 mt 3187 4280 L
X3218 4405 mt 
X(20) s
X 898 4161 mt  866 4170 L
X 767 4290 mt 
X(0) s
X1388 4386 mt 1356 4395 L
X1190 4515 mt 
X(20) s
X1879 4612 mt 1847 4621 L
X1680 4741 mt 
X(40) s
X 898 4161 mt  868 4147 L
X 701 4177 mt 
X(-5) s
X 898 3669 mt  868 3655 L
X 771 3684 mt 
X(0) s
X 898 3176 mt  868 3162 L
X 771 3192 mt 
X(5) s
Xgs 898 2830 2260 1783 MR c np
Xc13
X24 373 64 -105 2681 3725 3 MP
XPP
X0 sg
X2681 3725 mt 2745 3620 L
X2745 3620 mt 2769 3993 L
Xc13
X64 241 24 27 2681 3725 3 MP
XPP
X0 sg
X2681 3725 mt 2705 3752 L
X2705 3752 mt 2769 3993 L
Xc22
X25 146 64 -215 2656 3689 3 MP
XPP
X0 sg
X2656 3689 mt 2720 3474 L
X2720 3474 mt 2745 3620 L
Xc22
X64 -105 25 36 2656 3689 3 MP
XPP
X0 sg
X2656 3689 mt 2681 3725 L
X2681 3725 mt 2745 3620 L
Xc24
X25 120 63 -129 2485 3475 3 MP
XPP
X0 sg
X2485 3475 mt 2548 3346 L
X2548 3346 mt 2573 3466 L
Xc24
X64 -3 24 -6 2485 3475 3 MP
XPP
X0 sg
X2485 3475 mt 2509 3469 L
X2509 3469 mt 2573 3466 L
Xc68
X24 128 64 -3 2509 3469 3 MP
XPP
X0 sg
X2509 3469 mt 2573 3466 L
X2573 3466 mt 2597 3594 L
Xc68
X63 114 25 11 2509 3469 3 MP
XPP
X0 sg
X2509 3469 mt 2534 3480 L
X2534 3480 mt 2597 3594 L
Xc68
X25 69 63 114 2534 3480 3 MP
XPP
X0 sg
X2534 3480 mt 2597 3594 L
X2597 3594 mt 2622 3663 L
Xc24
X25 -17 64 154 2558 3509 3 MP
XPP
X0 sg
X2558 3509 mt 2622 3663 L
X2622 3663 mt 2647 3646 L
Xc24
X64 97 25 40 2558 3509 3 MP
XPP
X0 sg
X2558 3509 mt 2583 3549 L
X2583 3549 mt 2647 3646 L
Xc31
X24 -80 64 97 2583 3549 3 MP
XPP
X0 sg
X2583 3549 mt 2647 3646 L
X2647 3646 mt 2671 3566 L
Xc31
X64 -31 24 48 2583 3549 3 MP
XPP
X0 sg
X2583 3549 mt 2607 3597 L
X2607 3597 mt 2671 3566 L
Xc17
X25 -83 64 -31 2607 3597 3 MP
XPP
X0 sg
X2607 3597 mt 2671 3566 L
X2671 3566 mt 2696 3483 L
Xc23
X24 -9 64 -162 2632 3645 3 MP
XPP
X0 sg
X2632 3645 mt 2696 3483 L
X2696 3483 mt 2720 3474 L
Xc23
X64 -215 24 44 2632 3645 3 MP
XPP
X0 sg
X2632 3645 mt 2656 3689 L
X2656 3689 mt 2720 3474 L
Xc13
X64 -17 24 26 2617 3743 3 MP
XPP
X0 sg
X2617 3743 mt 2641 3769 L
X2641 3769 mt 2705 3752 L
Xc13
X24 27 64 -18 2617 3743 3 MP
XPP
X0 sg
X2617 3743 mt 2681 3725 L
X2681 3725 mt 2705 3752 L
Xc17
X64 -162 25 48 2607 3597 3 MP
XPP
X0 sg
X2607 3597 mt 2632 3645 L
X2632 3645 mt 2696 3483 L
Xc22
X64 -18 25 37 2592 3706 3 MP
XPP
X0 sg
X2592 3706 mt 2617 3743 L
X2617 3743 mt 2681 3725 L
Xc22
X25 36 64 -17 2592 3706 3 MP
XPP
X0 sg
X2592 3706 mt 2656 3689 L
X2656 3689 mt 2681 3725 L
Xc68
X64 154 24 29 2534 3480 3 MP
XPP
X0 sg
X2534 3480 mt 2558 3509 L
X2558 3509 mt 2622 3663 L
Xc23
X24 44 64 -18 2568 3663 3 MP
XPP
X0 sg
X2568 3663 mt 2632 3645 L
X2632 3645 mt 2656 3689 L
Xc23
X64 -17 24 43 2568 3663 3 MP
XPP
X0 sg
X2568 3663 mt 2592 3706 L
X2592 3706 mt 2656 3689 L
Xc13
X24 26 64 -17 2553 3760 3 MP
XPP
X0 sg
X2553 3760 mt 2617 3743 L
X2617 3743 mt 2641 3769 L
Xc13
X64 -17 24 26 2553 3760 3 MP
XPP
X0 sg
X2553 3760 mt 2577 3786 L
X2577 3786 mt 2641 3769 L
Xc17
X25 48 64 -17 2543 3614 3 MP
XPP
X0 sg
X2543 3614 mt 2607 3597 L
X2607 3597 mt 2632 3645 L
Xc17
X64 -18 25 49 2543 3614 3 MP
XPP
X0 sg
X2543 3614 mt 2568 3663 L
X2568 3663 mt 2632 3645 L
Xc22
X25 37 64 -18 2528 3724 3 MP
XPP
X0 sg
X2528 3724 mt 2592 3706 L
X2592 3706 mt 2617 3743 L
Xc22
X64 -17 25 36 2528 3724 3 MP
XPP
X0 sg
X2528 3724 mt 2553 3760 L
X2553 3760 mt 2617 3743 L
Xc31
X24 48 64 -18 2519 3567 3 MP
XPP
X0 sg
X2519 3567 mt 2583 3549 L
X2583 3549 mt 2607 3597 L
Xc31
X64 -17 24 47 2519 3567 3 MP
XPP
X0 sg
X2519 3567 mt 2543 3614 L
X2543 3614 mt 2607 3597 L
Xc23
X64 -18 24 44 2504 3680 3 MP
XPP
X0 sg
X2504 3680 mt 2528 3724 L
X2528 3724 mt 2592 3706 L
Xc23
X24 43 64 -17 2504 3680 3 MP
XPP
X0 sg
X2504 3680 mt 2568 3663 L
X2568 3663 mt 2592 3706 L
Xc24
X25 40 64 -17 2494 3526 3 MP
XPP
X0 sg
X2494 3526 mt 2558 3509 L
X2558 3509 mt 2583 3549 L
Xc24
X64 -18 25 41 2494 3526 3 MP
XPP
X0 sg
X2494 3526 mt 2519 3567 L
X2519 3567 mt 2583 3549 L
Xc13
X24 26 64 -19 2489 3779 3 MP
XPP
X0 sg
X2489 3779 mt 2553 3760 L
X2553 3760 mt 2577 3786 L
Xc13
X64 -27 24 34 2489 3779 3 MP
XPP
X0 sg
X2489 3779 mt 2513 3813 L
X2513 3813 mt 2577 3786 L
Xc17
X25 49 64 -18 2479 3632 3 MP
XPP
X0 sg
X2479 3632 mt 2543 3614 L
X2543 3614 mt 2568 3663 L
Xc17
X64 -17 25 48 2479 3632 3 MP
XPP
X0 sg
X2479 3632 mt 2504 3680 L
X2504 3680 mt 2568 3663 L
Xc9
X24 -149 64 -4 2411 3537 3 MP
XPP
X0 sg
X2411 3537 mt 2475 3533 L
X2475 3533 mt 2499 3384 L
Xc68
X64 -17 24 28 2470 3498 3 MP
XPP
X0 sg
X2470 3498 mt 2494 3526 L
X2494 3526 mt 2558 3509 L
Xc68
X24 29 64 -18 2470 3498 3 MP
XPP
X0 sg
X2470 3498 mt 2534 3480 L
X2534 3480 mt 2558 3509 L
Xc22
X64 -19 25 41 2464 3738 3 MP
XPP
X0 sg
X2464 3738 mt 2489 3779 L
X2489 3779 mt 2553 3760 L
Xc22
X25 36 64 -14 2464 3738 3 MP
XPP
X0 sg
X2464 3738 mt 2528 3724 L
X2528 3724 mt 2553 3760 L
Xc25
X63 -129 25 -19 2460 3494 3 MP
XPP
X0 sg
X2460 3494 mt 2485 3475 L
X2485 3475 mt 2548 3346 L
Xc9
X64 -134 24 -19 2411 3537 3 MP
XPP
X0 sg
X2411 3537 mt 2435 3518 L
X2435 3518 mt 2499 3384 L
Xc17
X25 -75 64 -134 2435 3518 3 MP
XPP
X0 sg
X2435 3518 mt 2499 3384 L
X2499 3384 mt 2524 3309 L
Xc25
X24 37 64 -185 2460 3494 3 MP
XPP
X0 sg
X2460 3494 mt 2524 3309 L
X2524 3309 mt 2548 3346 L
Xc23
X24 161 64 -82 2313 3501 3 MP
XPP
X0 sg
X2313 3501 mt 2377 3419 L
X2377 3419 mt 2401 3580 L
Xc19
X25 -128 64 116 2386 3545 3 MP
XPP
X0 sg
X2386 3545 mt 2450 3661 L
X2450 3661 mt 2475 3533 L
Xc31
X24 47 64 -17 2455 3584 3 MP
XPP
X0 sg
X2455 3584 mt 2519 3567 L
X2519 3567 mt 2543 3614 L
Xc31
X64 -18 24 48 2455 3584 3 MP
XPP
X0 sg
X2455 3584 mt 2479 3632 L
X2479 3632 mt 2543 3614 L
Xc17
X64 -185 25 -24 2435 3518 3 MP
XPP
X0 sg
X2435 3518 mt 2460 3494 L
X2460 3494 mt 2524 3309 L
Xc25
X64 -18 25 -19 2396 3512 3 MP
XPP
X0 sg
X2396 3512 mt 2421 3493 L
X2421 3493 mt 2485 3475 L
Xc25
X25 -19 64 -18 2396 3512 3 MP
XPP
X0 sg
X2396 3512 mt 2460 3494 L
X2460 3494 mt 2485 3475 L
Xc68
X25 11 64 -17 2445 3486 3 MP
XPP
X0 sg
X2445 3486 mt 2509 3469 L
X2509 3469 mt 2534 3480 L
Xc68
X64 -18 25 12 2445 3486 3 MP
XPP
X0 sg
X2445 3486 mt 2470 3498 L
X2470 3498 mt 2534 3480 L
Xc9
X24 44 64 -12 2440 3692 3 MP
XPP
X0 sg
X2440 3692 mt 2504 3680 L
X2504 3680 mt 2528 3724 L
Xc9
X64 -14 24 46 2440 3692 3 MP
XPP
X0 sg
X2440 3692 mt 2464 3738 L
X2464 3738 mt 2528 3724 L
Xc24
X64 -17 25 41 2430 3543 3 MP
XPP
X0 sg
X2430 3543 mt 2455 3584 L
X2455 3584 mt 2519 3567 L
Xc19
X64 -4 25 -8 2386 3545 3 MP
XPP
X0 sg
X2386 3545 mt 2411 3537 L
X2411 3537 mt 2475 3533 L
Xc24
X25 41 64 -17 2430 3543 3 MP
XPP
X0 sg
X2430 3543 mt 2494 3526 L
X2494 3526 mt 2519 3567 L
Xc13
X24 34 64 -17 2425 3796 3 MP
XPP
X0 sg
X2425 3796 mt 2489 3779 L
X2489 3779 mt 2513 3813 L
Xc13
X63 -17 25 34 2425 3796 3 MP
XPP
X0 sg
X2425 3796 mt 2450 3830 L
X2450 3830 mt 2513 3813 L
Xc24
X24 -6 64 -18 2421 3493 3 MP
XPP
X0 sg
X2421 3493 mt 2485 3475 L
X2485 3475 mt 2509 3469 L
Xc24
X64 -17 24 -7 2421 3493 3 MP
XPP
X0 sg
X2421 3493 mt 2445 3486 L
X2445 3486 mt 2509 3469 L
Xc23
X64 58 24 21 2313 3501 3 MP
XPP
X0 sg
X2313 3501 mt 2337 3522 L
X2337 3522 mt 2401 3580 L
Xc19
X25 103 64 58 2337 3522 3 MP
XPP
X0 sg
X2337 3522 mt 2401 3580 L
X2401 3580 mt 2426 3683 L
Xc19
X64 116 24 7 2362 3538 3 MP
XPP
X0 sg
X2362 3538 mt 2386 3545 L
X2386 3545 mt 2450 3661 L
Xc19
X24 -22 64 145 2362 3538 3 MP
XPP
X0 sg
X2362 3538 mt 2426 3683 L
X2426 3683 mt 2450 3661 L
Xc17
X25 48 64 -13 2415 3645 3 MP
XPP
X0 sg
X2415 3645 mt 2479 3632 L
X2479 3632 mt 2504 3680 L
Xc17
X64 -12 25 47 2415 3645 3 MP
XPP
X0 sg
X2415 3645 mt 2440 3692 L
X2440 3692 mt 2504 3680 L
Xc19
X64 145 25 16 2337 3522 3 MP
XPP
X0 sg
X2337 3522 mt 2362 3538 L
X2362 3538 mt 2426 3683 L
Xc19
X24 7 64 -18 2298 3556 3 MP
XPP
X0 sg
X2298 3556 mt 2362 3538 L
X2362 3538 mt 2386 3545 L
Xc19
X63 -17 25 6 2298 3556 3 MP
XPP
X0 sg
X2298 3556 mt 2323 3562 L
X2323 3562 mt 2386 3545 L
Xc9
X24 -19 64 -18 2347 3555 3 MP
XPP
X0 sg
X2347 3555 mt 2411 3537 L
X2411 3537 mt 2435 3518 L
Xc9
X63 -18 25 -19 2347 3555 3 MP
XPP
X0 sg
X2347 3555 mt 2372 3536 L
X2372 3536 mt 2435 3518 L
Xc17
X64 -18 24 -24 2372 3536 3 MP
XPP
X0 sg
X2372 3536 mt 2396 3512 L
X2396 3512 mt 2460 3494 L
Xc17
X25 -24 63 -18 2372 3536 3 MP
XPP
X0 sg
X2372 3536 mt 2435 3518 L
X2435 3518 mt 2460 3494 L
Xc68
X24 28 64 -17 2406 3515 3 MP
XPP
X0 sg
X2406 3515 mt 2470 3498 L
X2470 3498 mt 2494 3526 L
Xc68
X64 -17 24 28 2406 3515 3 MP
XPP
X0 sg
X2406 3515 mt 2430 3543 L
X2430 3543 mt 2494 3526 L
Xc22
X25 41 63 -17 2401 3755 3 MP
XPP
X0 sg
X2401 3755 mt 2464 3738 L
X2464 3738 mt 2489 3779 L
Xc22
X64 -17 24 41 2401 3755 3 MP
XPP
X0 sg
X2401 3755 mt 2425 3796 L
X2425 3796 mt 2489 3779 L
Xc31
X24 48 64 -16 2391 3600 3 MP
XPP
X0 sg
X2391 3600 mt 2455 3584 L
X2455 3584 mt 2479 3632 L
Xc31
X64 -13 24 45 2391 3600 3 MP
XPP
X0 sg
X2391 3600 mt 2415 3645 L
X2415 3645 mt 2479 3632 L
Xc19
X25 16 64 -17 2273 3539 3 MP
XPP
X0 sg
X2273 3539 mt 2337 3522 L
X2337 3522 mt 2362 3538 L
Xc25
X64 -17 25 -19 2332 3529 3 MP
XPP
X0 sg
X2332 3529 mt 2357 3510 L
X2357 3510 mt 2421 3493 L
Xc25
X25 -19 64 -17 2332 3529 3 MP
XPP
X0 sg
X2332 3529 mt 2396 3512 L
X2396 3512 mt 2421 3493 L
Xc68
X25 12 64 -18 2381 3504 3 MP
XPP
X0 sg
X2381 3504 mt 2445 3486 L
X2445 3486 mt 2470 3498 L
Xc68
X64 -17 25 11 2381 3504 3 MP
XPP
X0 sg
X2381 3504 mt 2406 3515 L
X2406 3515 mt 2470 3498 L
Xc9
X24 46 64 -18 2376 3710 3 MP
XPP
X0 sg
X2376 3710 mt 2440 3692 L
X2440 3692 mt 2464 3738 L
Xc9
X63 -17 25 45 2376 3710 3 MP
XPP
X0 sg
X2376 3710 mt 2401 3755 L
X2401 3755 mt 2464 3738 L
X
Xgr 
Xgs 898 2830 2260 1783 MR c np
Xc24
X25 41 64 -19 2366 3562 3 MP
XPP
X0 sg
X2366 3562 mt 2430 3543 L
X2430 3543 mt 2455 3584 L
Xc24
X64 -16 25 38 2366 3562 3 MP
XPP
X0 sg
X2366 3562 mt 2391 3600 L
X2391 3600 mt 2455 3584 L
Xc13
X64 -17 25 34 2361 3813 3 MP
XPP
X0 sg
X2361 3813 mt 2386 3847 L
X2386 3847 mt 2450 3830 L
Xc13
X25 34 64 -17 2361 3813 3 MP
XPP
X0 sg
X2361 3813 mt 2425 3796 L
X2425 3796 mt 2450 3830 L
Xc24
X64 -18 24 -6 2357 3510 3 MP
XPP
X0 sg
X2357 3510 mt 2381 3504 L
X2381 3504 mt 2445 3486 L
Xc24
X24 -7 64 -17 2357 3510 3 MP
XPP
X0 sg
X2357 3510 mt 2421 3493 L
X2421 3493 mt 2445 3486 L
Xc17
X64 -18 25 48 2351 3662 3 MP
XPP
X0 sg
X2351 3662 mt 2376 3710 L
X2376 3710 mt 2440 3692 L
Xc17
X25 47 64 -17 2351 3662 3 MP
XPP
X0 sg
X2351 3662 mt 2415 3645 L
X2415 3645 mt 2440 3692 L
Xc29
X25 130 64 -15 2141 3401 3 MP
XPP
X0 sg
X2141 3401 mt 2205 3386 L
X2205 3386 mt 2230 3516 L
Xc29
X64 107 25 8 2141 3401 3 MP
XPP
X0 sg
X2141 3401 mt 2166 3409 L
X2166 3409 mt 2230 3516 L
Xc29
X24 56 64 107 2166 3409 3 MP
XPP
X0 sg
X2166 3409 mt 2230 3516 L
X2230 3516 mt 2254 3572 L
Xc29
X64 152 24 11 2166 3409 3 MP
XPP
X0 sg
X2166 3409 mt 2190 3420 L
X2190 3420 mt 2254 3572 L
Xc29
X25 -48 64 152 2190 3420 3 MP
XPP
X0 sg
X2190 3420 mt 2254 3572 L
X2254 3572 mt 2279 3524 L
Xc19
X64 -17 25 6 2234 3573 3 MP
XPP
X0 sg
X2234 3573 mt 2259 3579 L
X2259 3579 mt 2323 3562 L
Xc19
X25 6 64 -17 2234 3573 3 MP
XPP
X0 sg
X2234 3573 mt 2298 3556 L
X2298 3556 mt 2323 3562 L
Xc19
X64 -18 25 17 2273 3539 3 MP
XPP
X0 sg
X2273 3539 mt 2298 3556 L
X2298 3556 mt 2362 3538 L
Xc9
X64 -17 25 -19 2283 3572 3 MP
XPP
X0 sg
X2283 3572 mt 2308 3553 L
X2308 3553 mt 2372 3536 L
Xc9
X25 -19 64 -17 2283 3572 3 MP
XPP
X0 sg
X2283 3572 mt 2347 3555 L
X2347 3555 mt 2372 3536 L
Xc17
X24 -24 64 -17 2308 3553 3 MP
XPP
X0 sg
X2308 3553 mt 2372 3536 L
X2372 3536 mt 2396 3512 L
Xc17
X64 -17 24 -24 2308 3553 3 MP
XPP
X0 sg
X2308 3553 mt 2332 3529 L
X2332 3529 mt 2396 3512 L
Xc19
X25 -8 63 -17 2323 3562 3 MP
XPP
X0 sg
X2323 3562 mt 2386 3545 L
X2386 3545 mt 2411 3537 L
Xc19
X64 -18 24 -7 2323 3562 3 MP
XPP
X0 sg
X2323 3562 mt 2347 3555 L
X2347 3555 mt 2411 3537 L
Xc20
X24 28 64 -21 2342 3536 3 MP
XPP
X0 sg
X2342 3536 mt 2406 3515 L
X2406 3515 mt 2430 3543 L
Xc20
X64 -19 24 26 2342 3536 3 MP
XPP
X0 sg
X2342 3536 mt 2366 3562 L
X2366 3562 mt 2430 3543 L
Xc22
X64 -17 24 40 2337 3773 3 MP
XPP
X0 sg
X2337 3773 mt 2361 3813 L
X2361 3813 mt 2425 3796 L
Xc22
X24 41 64 -18 2337 3773 3 MP
XPP
X0 sg
X2337 3773 mt 2401 3755 L
X2401 3755 mt 2425 3796 L
Xc31
X64 -17 24 45 2327 3617 3 MP
XPP
X0 sg
X2327 3617 mt 2351 3662 L
X2351 3662 mt 2415 3645 L
Xc31
X24 45 64 -17 2327 3617 3 MP
XPP
X0 sg
X2327 3617 mt 2391 3600 L
X2391 3600 mt 2415 3645 L
Xc29
X64 90 25 14 2190 3420 3 MP
XPP
X0 sg
X2190 3420 mt 2215 3434 L
X2215 3434 mt 2279 3524 L
Xc29
X24 -119 64 90 2215 3434 3 MP
XPP
X0 sg
X2215 3434 mt 2279 3524 L
X2279 3524 mt 2303 3405 L
Xc23
X24 21 64 -17 2249 3518 3 MP
XPP
X0 sg
X2249 3518 mt 2313 3501 L
X2313 3501 mt 2337 3522 L
Xc23
X64 -17 24 21 2249 3518 3 MP
XPP
X0 sg
X2249 3518 mt 2273 3539 L
X2273 3539 mt 2337 3522 L
Xc19
X25 17 63 -17 2210 3556 3 MP
XPP
X0 sg
X2210 3556 mt 2273 3539 L
X2273 3539 mt 2298 3556 L
Xc31
X25 -19 64 -17 2268 3546 3 MP
XPP
X0 sg
X2268 3546 mt 2332 3529 L
X2332 3529 mt 2357 3510 L
Xc31
X64 -19 25 -17 2268 3546 3 MP
XPP
X0 sg
X2268 3546 mt 2293 3529 L
X2293 3529 mt 2357 3510 L
Xc20
X25 11 64 -21 2317 3525 3 MP
XPP
X0 sg
X2317 3525 mt 2381 3504 L
X2381 3504 mt 2406 3515 L
Xc19
X64 -17 24 17 2210 3556 3 MP
XPP
X0 sg
X2210 3556 mt 2234 3573 L
X2234 3573 mt 2298 3556 L
Xc17
X24 -24 64 -15 2244 3568 3 MP
XPP
X0 sg
X2244 3568 mt 2308 3553 L
X2308 3553 mt 2332 3529 L
Xc17
X64 -17 24 -22 2244 3568 3 MP
XPP
X0 sg
X2244 3568 mt 2268 3546 L
X2268 3546 mt 2332 3529 L
Xc20
X64 -21 25 11 2317 3525 3 MP
XPP
X0 sg
X2317 3525 mt 2342 3536 L
X2342 3536 mt 2406 3515 L
Xc9
X64 -18 25 46 2312 3727 3 MP
XPP
X0 sg
X2312 3727 mt 2337 3773 L
X2337 3773 mt 2401 3755 L
Xc9
X25 45 64 -17 2312 3727 3 MP
XPP
X0 sg
X2312 3727 mt 2376 3710 L
X2376 3710 mt 2401 3755 L
Xc24
X64 -17 25 38 2302 3579 3 MP
XPP
X0 sg
X2302 3579 mt 2327 3617 L
X2327 3617 mt 2391 3600 L
Xc24
X25 38 64 -17 2302 3579 3 MP
XPP
X0 sg
X2302 3579 mt 2366 3562 L
X2366 3562 mt 2391 3600 L
Xc13
X25 34 64 -16 2297 3829 3 MP
XPP
X0 sg
X2297 3829 mt 2361 3813 L
X2361 3813 mt 2386 3847 L
Xc13
X64 -14 25 32 2297 3829 3 MP
XPP
X0 sg
X2297 3829 mt 2322 3861 L
X2322 3861 mt 2386 3847 L
Xc24
X64 -21 24 -4 2293 3529 3 MP
XPP
X0 sg
X2293 3529 mt 2317 3525 L
X2317 3525 mt 2381 3504 L
Xc24
X24 -6 64 -19 2293 3529 3 MP
XPP
X0 sg
X2293 3529 mt 2357 3510 L
X2357 3510 mt 2381 3504 L
Xc9
X64 -82 25 21 2288 3480 3 MP
XPP
X0 sg
X2288 3480 mt 2313 3501 L
X2313 3501 mt 2377 3419 L
Xc9
X25 115 64 -176 2288 3480 3 MP
XPP
X0 sg
X2288 3480 mt 2352 3304 L
X2352 3304 mt 2377 3419 L
Xc17
X25 48 63 -17 2288 3679 3 MP
XPP
X0 sg
X2288 3679 mt 2351 3662 L
X2351 3662 mt 2376 3710 L
Xc17
X64 -17 24 48 2288 3679 3 MP
XPP
X0 sg
X2288 3679 mt 2312 3727 L
X2312 3727 mt 2376 3710 L
Xc12
X64 -16 25 4 2170 3591 3 MP
XPP
X0 sg
X2170 3591 mt 2195 3595 L
X2195 3595 mt 2259 3579 L
Xc12
X25 6 64 -18 2170 3591 3 MP
XPP
X0 sg
X2170 3591 mt 2234 3573 L
X2234 3573 mt 2259 3579 L
Xc18
X25 -19 64 -14 2219 3586 3 MP
XPP
X0 sg
X2219 3586 mt 2283 3572 L
X2283 3572 mt 2308 3553 L
Xc18
X64 -15 25 -18 2219 3586 3 MP
XPP
X0 sg
X2219 3586 mt 2244 3568 L
X2244 3568 mt 2308 3553 L
Xc19
X24 -7 64 -17 2259 3579 3 MP
XPP
X0 sg
X2259 3579 mt 2323 3562 L
X2323 3562 mt 2347 3555 L
Xc19
X64 -17 24 -7 2259 3579 3 MP
XPP
X0 sg
X2259 3579 mt 2283 3572 L
X2283 3572 mt 2347 3555 L
Xc20
X64 -17 24 26 2278 3553 3 MP
XPP
X0 sg
X2278 3553 mt 2302 3579 L
X2302 3579 mt 2366 3562 L
Xc20
X24 26 64 -17 2278 3553 3 MP
XPP
X0 sg
X2278 3553 mt 2342 3536 L
X2342 3536 mt 2366 3562 L
Xc22
X24 40 64 -18 2273 3791 3 MP
XPP
X0 sg
X2273 3791 mt 2337 3773 L
X2337 3773 mt 2361 3813 L
Xc22
X64 -16 24 38 2273 3791 3 MP
XPP
X0 sg
X2273 3791 mt 2297 3829 L
X2297 3829 mt 2361 3813 L
Xc29
X64 -43 24 14 2215 3434 3 MP
XPP
X0 sg
X2215 3434 mt 2239 3448 L
X2239 3448 mt 2303 3405 L
Xc18
X25 -101 64 -43 2239 3448 3 MP
XPP
X0 sg
X2239 3448 mt 2303 3405 L
X2303 3405 mt 2328 3304 L
Xc18
X24 0 64 -159 2264 3463 3 MP
XPP
X0 sg
X2264 3463 mt 2328 3304 L
X2328 3304 mt 2352 3304 L
Xc18
X64 -176 24 17 2264 3463 3 MP
XPP
X0 sg
X2264 3463 mt 2288 3480 L
X2288 3480 mt 2352 3304 L
Xc31
X63 -17 25 45 2263 3634 3 MP
XPP
X0 sg
X2263 3634 mt 2288 3679 L
X2288 3679 mt 2351 3662 L
Xc31
X24 45 64 -17 2263 3634 3 MP
XPP
X0 sg
X2263 3634 mt 2327 3617 L
X2327 3617 mt 2351 3662 L
Xc19
X64 -18 24 14 2146 3577 3 MP
XPP
X0 sg
X2146 3577 mt 2170 3591 L
X2170 3591 mt 2234 3573 L
Xc19
X24 17 64 -21 2146 3577 3 MP
XPP
X0 sg
X2146 3577 mt 2210 3556 L
X2210 3556 mt 2234 3573 L
Xc17
X24 -22 64 -17 2180 3585 3 MP
XPP
X0 sg
X2180 3585 mt 2244 3568 L
X2244 3568 mt 2268 3546 L
Xc17
X64 -17 24 -22 2180 3585 3 MP
XPP
X0 sg
X2180 3585 mt 2204 3563 L
X2204 3563 mt 2268 3546 L
Xc23
X63 -17 25 21 2185 3535 3 MP
XPP
X0 sg
X2185 3535 mt 2210 3556 L
X2210 3556 mt 2273 3539 L
Xc23
X24 21 64 -17 2185 3535 3 MP
XPP
X0 sg
X2185 3535 mt 2249 3518 L
X2249 3518 mt 2273 3539 L
Xc31
X25 -17 64 -17 2204 3563 3 MP
XPP
X0 sg
X2204 3563 mt 2268 3546 L
X2268 3546 mt 2293 3529 L
Xc31
X64 -18 25 -16 2204 3563 3 MP
XPP
X0 sg
X2204 3563 mt 2229 3547 L
X2229 3547 mt 2293 3529 L
Xc20
X64 -17 25 11 2253 3542 3 MP
XPP
X0 sg
X2253 3542 mt 2278 3553 L
X2278 3553 mt 2342 3536 L
Xc20
X25 11 64 -17 2253 3542 3 MP
XPP
X0 sg
X2253 3542 mt 2317 3525 L
X2317 3525 mt 2342 3536 L
Xc9
X25 46 64 -19 2248 3746 3 MP
XPP
X0 sg
X2248 3746 mt 2312 3727 L
X2312 3727 mt 2337 3773 L
Xc9
X64 -18 25 45 2248 3746 3 MP
XPP
X0 sg
X2248 3746 mt 2273 3791 L
X2273 3791 mt 2337 3773 L
Xc18
X64 -159 25 15 2239 3448 3 MP
XPP
X0 sg
X2239 3448 mt 2264 3463 L
X2264 3463 mt 2328 3304 L
Xc24
X64 -17 24 38 2239 3596 3 MP
XPP
X0 sg
X2239 3596 mt 2263 3634 L
X2263 3634 mt 2327 3617 L
Xc24
X25 38 63 -17 2239 3596 3 MP
XPP
X0 sg
X2239 3596 mt 2302 3579 L
X2302 3579 mt 2327 3617 L
Xc13
X64 -17 25 31 2233 3847 3 MP
XPP
X0 sg
X2233 3847 mt 2258 3878 L
X2258 3878 mt 2322 3861 L
Xc13
X25 32 64 -18 2233 3847 3 MP
XPP
X0 sg
X2233 3847 mt 2297 3829 L
X2297 3829 mt 2322 3861 L
Xc24
X24 -4 64 -18 2229 3547 3 MP
XPP
X0 sg
X2229 3547 mt 2293 3529 L
X2293 3529 mt 2317 3525 L
Xc24
X64 -17 24 -5 2229 3547 3 MP
XPP
X0 sg
X2229 3547 mt 2253 3542 L
X2253 3542 mt 2317 3525 L
Xc9
X64 -17 25 21 2224 3497 3 MP
XPP
X0 sg
X2224 3497 mt 2249 3518 L
X2249 3518 mt 2313 3501 L
Xc9
X25 21 64 -17 2224 3497 3 MP
XPP
X0 sg
X2224 3497 mt 2288 3480 L
X2288 3480 mt 2313 3501 L
Xc17
X24 48 64 -20 2224 3699 3 MP
XPP
X0 sg
X2224 3699 mt 2288 3679 L
X2288 3679 mt 2312 3727 L
Xc17
X64 -19 24 47 2224 3699 3 MP
XPP
X0 sg
X2224 3699 mt 2248 3746 L
X2248 3746 mt 2312 3727 L
Xc12
X64 -17 25 4 2106 3608 3 MP
XPP
X0 sg
X2106 3608 mt 2131 3612 L
X2131 3612 mt 2195 3595 L
Xc12
X25 4 64 -17 2106 3608 3 MP
XPP
X0 sg
X2106 3608 mt 2170 3591 L
X2170 3591 mt 2195 3595 L
Xc18
X64 -17 25 -18 2155 3603 3 MP
XPP
X0 sg
X2155 3603 mt 2180 3585 L
X2180 3585 mt 2244 3568 L
Xc18
X25 -18 64 -17 2155 3603 3 MP
XPP
X0 sg
X2155 3603 mt 2219 3586 L
X2219 3586 mt 2244 3568 L
Xc19
X24 -7 64 -16 2195 3595 3 MP
XPP
X0 sg
X2195 3595 mt 2259 3579 L
X2259 3579 mt 2283 3572 L
Xc19
X64 -14 24 -9 2195 3595 3 MP
XPP
X0 sg
X2195 3595 mt 2219 3586 L
X2219 3586 mt 2283 3572 L
Xc20
X63 -17 25 26 2214 3570 3 MP
XPP
X0 sg
X2214 3570 mt 2239 3596 L
X2239 3596 mt 2302 3579 L
Xc20
X24 26 64 -17 2214 3570 3 MP
XPP
X0 sg
X2214 3570 mt 2278 3553 L
X2278 3553 mt 2302 3579 L
Xc22
X24 38 64 -17 2209 3808 3 MP
XPP
X0 sg
X2209 3808 mt 2273 3791 L
X2273 3791 mt 2297 3829 L
Xc22
X64 -18 24 39 2209 3808 3 MP
XPP
X0 sg
X2209 3808 mt 2233 3847 L
X2233 3847 mt 2297 3829 L
Xc18
X64 -17 24 17 2200 3480 3 MP
XPP
X0 sg
X2200 3480 mt 2224 3497 L
X2224 3497 mt 2288 3480 L
Xc18
X24 17 64 -17 2200 3480 3 MP
XPP
X0 sg
X2200 3480 mt 2264 3463 L
X2264 3463 mt 2288 3480 L
Xc31
X25 45 64 -20 2199 3654 3 MP
XPP
X0 sg
X2199 3654 mt 2263 3634 L
X2263 3634 mt 2288 3679 L
Xc31
X64 -20 25 45 2199 3654 3 MP
XPP
X0 sg
X2199 3654 mt 2224 3699 L
X2224 3699 mt 2288 3679 L
Xc23
X25 21 64 -21 2121 3556 3 MP
XPP
X0 sg
X2121 3556 mt 2185 3535 L
X2185 3535 mt 2210 3556 L
Xc23
X64 -21 25 21 2121 3556 3 MP
XPP
X0 sg
X2121 3556 mt 2146 3577 L
X2146 3577 mt 2210 3556 L
Xc19
X24 14 64 -17 2082 3594 3 MP
XPP
X0 sg
X2082 3594 mt 2146 3577 L
X2146 3577 mt 2170 3591 L
Xc31
X25 -16 64 -18 2140 3581 3 MP
XPP
X0 sg
X2140 3581 mt 2204 3563 L
X2204 3563 mt 2229 3547 L
Xc31
X64 -17 25 -17 2140 3581 3 MP
XPP
X0 sg
X2140 3581 mt 2165 3564 L
X2165 3564 mt 2229 3547 L
Xc20
X25 11 64 -17 2189 3559 3 MP
XPP
X0 sg
X2189 3559 mt 2253 3542 L
X2253 3542 mt 2278 3553 L
Xc19
X64 -17 24 14 2082 3594 3 MP
XPP
X0 sg
X2082 3594 mt 2106 3608 L
X2106 3608 mt 2170 3591 L
Xc17
X24 -22 64 -17 2116 3602 3 MP
XPP
X0 sg
X2116 3602 mt 2180 3585 L
X2180 3585 mt 2204 3563 L
Xc17
X64 -18 24 -21 2116 3602 3 MP
XPP
X0 sg
X2116 3602 mt 2140 3581 L
X2140 3581 mt 2204 3563 L
Xc20
X64 -17 25 11 2189 3559 3 MP
XPP
X0 sg
X2189 3559 mt 2214 3570 L
X2214 3570 mt 2278 3553 L
Xc9
X25 45 64 -18 2184 3764 3 MP
XPP
X0 sg
X2184 3764 mt 2248 3746 L
X2248 3746 mt 2273 3791 L
Xc9
X64 -17 25 44 2184 3764 3 MP
XPP
X0 sg
X2184 3764 mt 2209 3808 L
X2209 3808 mt 2273 3791 L
Xc18
X25 15 64 -17 2175 3465 3 MP
XPP
X0 sg
X2175 3465 mt 2239 3448 L
X2239 3448 mt 2264 3463 L
Xc18
X64 -17 25 15 2175 3465 3 MP
XPP
X0 sg
X2175 3465 mt 2200 3480 L
X2200 3480 mt 2264 3463 L
Xc24
X24 38 64 -19 2175 3615 3 MP
XPP
X0 sg
X2175 3615 mt 2239 3596 L
X2239 3596 mt 2263 3634 L
Xc24
X64 -20 24 39 2175 3615 3 MP
XPP
X0 sg
X2175 3615 mt 2199 3654 L
X2199 3654 mt 2263 3634 L
Xc13
X64 -17 25 31 2169 3864 3 MP
XPP
X0 sg
X2169 3864 mt 2194 3895 L
X2194 3895 mt 2258 3878 L
Xc13
X25 31 64 -17 2169 3864 3 MP
XPP
X0 sg
X2169 3864 mt 2233 3847 L
X2233 3847 mt 2258 3878 L
Xc24
X24 -5 64 -17 2165 3564 3 MP
XPP
X0 sg
X2165 3564 mt 2229 3547 L
X2229 3547 mt 2253 3542 L
Xc24
X64 -17 24 -5 2165 3564 3 MP
XPP
X0 sg
X2165 3564 mt 2189 3559 L
X2189 3559 mt 2253 3542 L
Xc9
X64 -17 24 20 2161 3515 3 MP
XPP
X0 sg
X2161 3515 mt 2185 3535 L
X2185 3535 mt 2249 3518 L
Xc9
X25 21 63 -18 2161 3515 3 MP
XPP
X0 sg
X2161 3515 mt 2224 3497 L
X2224 3497 mt 2249 3518 L
Xc17
X24 47 64 -18 2160 3717 3 MP
XPP
X0 sg
X2160 3717 mt 2224 3699 L
X2224 3699 mt 2248 3746 L
Xc17
X64 -18 24 47 2160 3717 3 MP
XPP
X0 sg
X2160 3717 mt 2184 3764 L
X2184 3764 mt 2248 3746 L
Xc29
X24 14 64 -17 2151 3451 3 MP
XPP
X0 sg
X2151 3451 mt 2215 3434 L
X2215 3434 mt 2239 3448 L
Xc29
X64 -17 24 14 2151 3451 3 MP
XPP
X0 sg
X2151 3451 mt 2175 3465 L
X2175 3465 mt 2239 3448 L
Xc12
X64 -17 25 3 2042 3626 3 MP
XPP
X0 sg
X2042 3626 mt 2067 3629 L
X2067 3629 mt 2131 3612 L
Xc12
X25 4 64 -18 2042 3626 3 MP
XPP
X0 sg
X2042 3626 mt 2106 3608 L
X2106 3608 mt 2131 3612 L
Xc18
X64 -17 25 -19 2091 3621 3 MP
XPP
X0 sg
X2091 3621 mt 2116 3602 L
X2116 3602 mt 2180 3585 L
Xc18
X25 -18 64 -18 2091 3621 3 MP
XPP
X0 sg
X2091 3621 mt 2155 3603 L
X2155 3603 mt 2180 3585 L
Xc19
X24 -9 64 -17 2131 3612 3 MP
XPP
X0 sg
X2131 3612 mt 2195 3595 L
X2195 3595 mt 2219 3586 L
Xc19
X64 -17 24 -9 2131 3612 3 MP
XPP
X0 sg
X2131 3612 mt 2155 3603 L
X2155 3603 mt 2219 3586 L
Xc20
X64 -19 25 28 2150 3587 3 MP
XPP
X0 sg
X2150 3587 mt 2175 3615 L
X2175 3615 mt 2239 3596 L
Xc20
X25 26 64 -17 2150 3587 3 MP
XPP
X0 sg
X2150 3587 mt 2214 3570 L
X2214 3570 mt 2239 3596 L
Xc22
X64 -17 24 39 2145 3825 3 MP
XPP
X0 sg
X2145 3825 mt 2169 3864 L
X2169 3864 mt 2233 3847 L
Xc22
X24 39 64 -17 2145 3825 3 MP
XPP
X0 sg
X2145 3825 mt 2209 3808 L
X2209 3808 mt 2233 3847 L
Xc18
X24 17 64 -17 2136 3497 3 MP
XPP
X0 sg
X2136 3497 mt 2200 3480 L
X2200 3480 mt 2224 3497 L
Xc18
X63 -18 25 18 2136 3497 3 MP
XPP
X0 sg
X2136 3497 mt 2161 3515 L
X2161 3515 mt 2224 3497 L
Xc31
X25 45 64 -17 2135 3671 3 MP
XPP
X0 sg
X2135 3671 mt 2199 3654 L
X2199 3654 mt 2224 3699 L
Xc31
X64 -18 25 46 2135 3671 3 MP
XPP
X0 sg
X2135 3671 mt 2160 3717 L
X2160 3717 mt 2224 3699 L
Xc29
X64 -17 25 13 2126 3438 3 MP
XPP
X0 sg
X2126 3438 mt 2151 3451 L
X2151 3451 mt 2215 3434 L
Xc29
X25 14 64 -18 2126 3438 3 MP
XPP
X0 sg
X2126 3438 mt 2190 3420 L
X2190 3420 mt 2215 3434 L
Xc34
X25 433 64 -308 1945 3378 3 MP
XPP
X0 sg
X1945 3378 mt 2009 3070 L
X2009 3070 mt 2034 3503 L
Xc34
X64 107 25 18 1945 3378 3 MP
XPP
X0 sg
X1945 3378 mt 1970 3396 L
X1970 3396 mt 2034 3503 L
Xc13
X24 109 64 107 1970 3396 3 MP
XPP
X0 sg
X1970 3396 mt 2034 3503 L
X2034 3503 mt 2058 3612 L
Xc13
X25 -78 64 205 1994 3407 3 MP
XPP
X0 sg
X1994 3407 mt 2058 3612 L
X2058 3612 mt 2083 3534 L
Xc23
X25 21 64 -17 2057 3573 3 MP
XPP
X0 sg
X2057 3573 mt 2121 3556 L
X2121 3556 mt 2146 3577 L
Xc13
X64 205 24 11 1970 3396 3 MP
XPP
X0 sg
X1970 3396 mt 1994 3407 L
X1994 3407 mt 2058 3612 L
Xc23
X25 21 64 -17 1993 3590 3 MP
XPP
X0 sg
X1993 3590 mt 2057 3573 L
X2057 3573 mt 2082 3594 L
Xc23
X64 -17 25 21 1993 3590 3 MP
XPP
X0 sg
X1993 3590 mt 2018 3611 L
X2018 3611 mt 2082 3594 L
Xc19
X24 14 64 -17 2018 3611 3 MP
XPP
X0 sg
X2018 3611 mt 2082 3594 L
X2082 3594 mt 2106 3608 L
Xc23
X64 -17 25 21 2057 3573 3 MP
XPP
X0 sg
X2057 3573 mt 2082 3594 L
X2082 3594 mt 2146 3577 L
Xc31
X64 -15 24 -17 2077 3596 3 MP
XPP
X0 sg
X2077 3596 mt 2101 3579 L
X2101 3579 mt 2165 3564 L
Xc31
X25 -17 63 -15 2077 3596 3 MP
XPP
X0 sg
X2077 3596 mt 2140 3581 L
X2140 3581 mt 2165 3564 L
Xc68
X25 11 63 -16 2126 3575 3 MP
XPP
X0 sg
X2126 3575 mt 2189 3559 L
X2189 3559 mt 2214 3570 L
Xc19
X64 -18 24 15 2018 3611 3 MP
XPP
X0 sg
X2018 3611 mt 2042 3626 L
X2042 3626 mt 2106 3608 L
Xc17
X63 -15 25 -23 2052 3619 3 MP
XPP
X0 sg
X2052 3619 mt 2077 3596 L
X2077 3596 mt 2140 3581 L
Xc17
X24 -21 64 -17 2052 3619 3 MP
XPP
X0 sg
X2052 3619 mt 2116 3602 L
X2116 3602 mt 2140 3581 L
Xc68
X64 -17 24 12 2126 3575 3 MP
XPP
X0 sg
X2126 3575 mt 2150 3587 L
X2150 3587 mt 2214 3570 L
Xc9
X64 -17 25 44 2120 3781 3 MP
XPP
X0 sg
X2120 3781 mt 2145 3825 L
X2145 3825 mt 2209 3808 L
Xc9
X25 44 64 -17 2120 3781 3 MP
XPP
X0 sg
X2120 3781 mt 2184 3764 L
X2184 3764 mt 2209 3808 L
Xc18
X24 127 64 -138 2117 3397 3 MP
XPP
X0 sg
X2117 3397 mt 2181 3259 L
X2181 3259 mt 2205 3386 L
Xc18
X64 -15 24 4 2117 3397 3 MP
XPP
X0 sg
X2117 3397 mt 2141 3401 L
X2141 3401 mt 2205 3386 L
Xc18
X64 -17 24 15 2112 3482 3 MP
XPP
X0 sg
X2112 3482 mt 2136 3497 L
X2136 3497 mt 2200 3480 L
Xc18
X25 15 63 -17 2112 3482 3 MP
XPP
X0 sg
X2112 3482 mt 2175 3465 L
X2175 3465 mt 2200 3480 L
Xc24
X24 39 64 -17 2111 3632 3 MP
XPP
X0 sg
X2111 3632 mt 2175 3615 L
X2175 3615 mt 2199 3654 L
Xc24
X64 -17 24 39 2111 3632 3 MP
XPP
X0 sg
X2111 3632 mt 2135 3671 L
X2135 3671 mt 2199 3654 L
Xc34
X25 31 64 -13 2105 3877 3 MP
XPP
X0 sg
X2105 3877 mt 2169 3864 L
X2169 3864 mt 2194 3895 L
Xc34
X64 -13 25 31 2105 3877 3 MP
XPP
X0 sg
X2105 3877 mt 2130 3908 L
X2130 3908 mt 2194 3895 L
Xc29
X24 11 64 -17 2102 3426 3 MP
XPP
X0 sg
X2102 3426 mt 2166 3409 L
X2166 3409 mt 2190 3420 L
Xc29
X64 -18 24 12 2102 3426 3 MP
XPP
X0 sg
X2102 3426 mt 2126 3438 L
X2126 3438 mt 2190 3420 L
Xc24
X24 -5 64 -15 2101 3579 3 MP
XPP
X0 sg
X2101 3579 mt 2165 3564 L
X2165 3564 mt 2189 3559 L
Xc24
X63 -16 25 -4 2101 3579 3 MP
XPP
X0 sg
X2101 3579 mt 2126 3575 L
X2126 3575 mt 2189 3559 L
Xc9
X24 20 64 -19 2097 3534 3 MP
XPP
X0 sg
X2097 3534 mt 2161 3515 L
X2161 3515 mt 2185 3535 L
Xc9
X64 -21 24 22 2097 3534 3 MP
XPP
X0 sg
X2097 3534 mt 2121 3556 L
X2121 3556 mt 2185 3535 L
Xc17
X64 -17 24 47 2096 3734 3 MP
XPP
X0 sg
X2096 3734 mt 2120 3781 L
X2120 3781 mt 2184 3764 L
Xc17
X24 47 64 -17 2096 3734 3 MP
XPP
X0 sg
X2096 3734 mt 2160 3717 L
X2160 3717 mt 2184 3764 L
Xc34
X24 -151 64 124 2019 3410 3 MP
XPP
X0 sg
X2019 3410 mt 2083 3534 L
X2083 3534 mt 2107 3383 L
Xc34
X64 -25 24 -2 2019 3410 3 MP
XPP
X0 sg
X2019 3410 mt 2043 3408 L
X2043 3408 mt 2107 3383 L
Xc22
X25 -131 64 -25 2043 3408 3 MP
XPP
X0 sg
X2043 3408 mt 2107 3383 L
X2107 3383 mt 2132 3252 L
Xc23
X64 -138 25 -2 2092 3399 3 MP
XPP
X0 sg
X2092 3399 mt 2117 3397 L
X2117 3397 mt 2181 3259 L
Xc23
X25 55 64 -195 2092 3399 3 MP
XPP
X0 sg
X2092 3399 mt 2156 3204 L
X2156 3204 mt 2181 3259 L
Xc29
X24 14 64 -17 2087 3468 3 MP
XPP
X0 sg
X2087 3468 mt 2151 3451 L
X2151 3451 mt 2175 3465 L
Xc29
X63 -17 25 14 2087 3468 3 MP
XPP
X0 sg
X2087 3468 mt 2112 3482 L
X2112 3482 mt 2175 3465 L
Xc12
X25 3 64 -19 1978 3645 3 MP
XPP
X0 sg
X1978 3645 mt 2042 3626 L
X2042 3626 mt 2067 3629 L
Xc12
X64 -19 25 3 1978 3645 3 MP
XPP
X0 sg
X1978 3645 mt 2003 3648 L
X2003 3648 mt 2067 3629 L
Xc9
X64 -17 24 -20 2028 3639 3 MP
XPP
X0 sg
X2028 3639 mt 2052 3619 L
X2052 3619 mt 2116 3602 L
Xc9
X25 -19 63 -18 2028 3639 3 MP
XPP
X0 sg
X2028 3639 mt 2091 3621 L
X2091 3621 mt 2116 3602 L
Xc19
X24 -9 64 -17 2067 3629 3 MP
XPP
X0 sg
X2067 3629 mt 2131 3612 L
X2131 3612 mt 2155 3603 L
Xc19
X64 -18 24 -8 2067 3629 3 MP
XPP
X0 sg
X2067 3629 mt 2091 3621 L
X2091 3621 mt 2155 3603 L
Xc20
X64 -17 25 27 2086 3605 3 MP
XPP
X0 sg
X2086 3605 mt 2111 3632 L
X2111 3632 mt 2175 3615 L
Xc20
X25 28 64 -18 2086 3605 3 MP
XPP
X0 sg
X2086 3605 mt 2150 3587 L
X2150 3587 mt 2175 3615 L
Xc22
X24 39 64 -14 2081 3839 3 MP
XPP
X0 sg
X2081 3839 mt 2145 3825 L
X2145 3825 mt 2169 3864 L
Xc22
X64 -13 24 38 2081 3839 3 MP
XPP
X0 sg
X2081 3839 mt 2105 3877 L
X2105 3877 mt 2169 3864 L
Xc29
X25 8 64 -17 2077 3418 3 MP
XPP
X0 sg
X2077 3418 mt 2141 3401 L
X2141 3401 mt 2166 3409 L
Xc29
X64 -17 25 8 2077 3418 3 MP
XPP
X0 sg
X2077 3418 mt 2102 3426 L
X2102 3426 mt 2166 3409 L
Xc18
X64 -19 25 21 2072 3513 3 MP
XPP
X0 sg
X2072 3513 mt 2097 3534 L
X2097 3534 mt 2161 3515 L
Xc18
X25 18 64 -16 2072 3513 3 MP
XPP
X0 sg
X2072 3513 mt 2136 3497 L
X2136 3497 mt 2161 3515 L
Xc31
X64 -17 25 46 2071 3688 3 MP
XPP
X0 sg
X2071 3688 mt 2096 3734 L
X2096 3734 mt 2160 3717 L
Xc31
X25 46 64 -17 2071 3688 3 MP
XPP
X0 sg
X2071 3688 mt 2135 3671 L
X2135 3671 mt 2160 3717 L
Xc19
X24 -48 64 -151 2068 3403 3 MP
XPP
X0 sg
X2068 3403 mt 2132 3252 L
X2132 3252 mt 2156 3204 L
Xc19
X64 -195 24 -4 2068 3403 3 MP
XPP
X0 sg
X2068 3403 mt 2092 3399 L
X2092 3399 mt 2156 3204 L
Xc29
X25 13 64 -17 2062 3455 3 MP
XPP
X0 sg
X2062 3455 mt 2126 3438 L
X2126 3438 mt 2151 3451 L
Xc29
X64 -17 25 13 2062 3455 3 MP
XPP
X0 sg
X2062 3455 mt 2087 3468 L
X2087 3468 mt 2151 3451 L
Xc19
X24 15 64 -19 1954 3630 3 MP
XPP
X0 sg
X1954 3630 mt 2018 3611 L
X2018 3611 mt 2042 3626 L
Xc31
X24 -17 64 -17 2013 3613 3 MP
XPP
X0 sg
X2013 3613 mt 2077 3596 L
X2077 3596 mt 2101 3579 L
Xc23
X64 -19 25 23 1929 3607 3 MP
XPP
X0 sg
X1929 3607 mt 1954 3630 L
X1954 3630 mt 2018 3611 L
Xc23
X25 21 64 -17 1929 3607 3 MP
XPP
X0 sg
X1929 3607 mt 1993 3590 L
X1993 3590 mt 2018 3611 L
Xc31
X64 -18 24 -16 2013 3613 3 MP
XPP
X0 sg
X2013 3613 mt 2037 3597 L
X2037 3597 mt 2101 3579 L
Xc68
X24 12 64 -18 2062 3593 3 MP
XPP
X0 sg
X2062 3593 mt 2126 3575 L
X2126 3575 mt 2150 3587 L
Xc19
X64 -19 24 15 1954 3630 3 MP
XPP
X0 sg
X1954 3630 mt 1978 3645 L
X1978 3645 mt 2042 3626 L
Xc17
X25 -23 64 -17 1988 3636 3 MP
XPP
X0 sg
X1988 3636 mt 2052 3619 L
X2052 3619 mt 2077 3596 L
Xc17
X64 -17 25 -23 1988 3636 3 MP
XPP
X0 sg
X1988 3636 mt 2013 3613 L
X2013 3613 mt 2077 3596 L
Xc68
X64 -18 24 12 2062 3593 3 MP
XPP
X0 sg
X2062 3593 mt 2086 3605 L
X2086 3605 mt 2150 3587 L
Xc9
X25 44 64 -15 2056 3796 3 MP
XPP
X0 sg
X2056 3796 mt 2120 3781 L
X2120 3781 mt 2145 3825 L
Xc9
X64 -14 25 43 2056 3796 3 MP
XPP
X0 sg
X2056 3796 mt 2081 3839 L
X2081 3839 mt 2145 3825 L
Xc18
X24 4 64 -18 2053 3415 3 MP
XPP
X0 sg
X2053 3415 mt 2117 3397 L
X2117 3397 mt 2141 3401 L
Xc18
X64 -17 24 3 2053 3415 3 MP
XPP
X0 sg
X2053 3415 mt 2077 3418 L
X2077 3418 mt 2141 3401 L
Xc13
X64 124 25 3 1994 3407 3 MP
XPP
X0 sg
X1994 3407 mt 2019 3410 L
X2019 3410 mt 2083 3534 L
Xc29
X64 -16 24 17 2048 3496 3 MP
XPP
X0 sg
X2048 3496 mt 2072 3513 L
X2072 3513 mt 2136 3497 L
Xc29
X24 15 64 -14 2048 3496 3 MP
XPP
X0 sg
X2048 3496 mt 2112 3482 L
X2112 3482 mt 2136 3497 L
Xc24
X24 39 64 -17 2047 3649 3 MP
XPP
X0 sg
X2047 3649 mt 2111 3632 L
X2111 3632 mt 2135 3671 L
Xc24
X64 -17 24 39 2047 3649 3 MP
XPP
X0 sg
X2047 3649 mt 2071 3688 L
X2071 3688 mt 2135 3671 L
Xc22
X64 -151 25 -5 2043 3408 3 MP
XPP
X0 sg
X2043 3408 mt 2068 3403 L
X2068 3403 mt 2132 3252 L
Xc34
X25 31 63 -17 2042 3894 3 MP
XPP
X0 sg
X2042 3894 mt 2105 3877 L
X2105 3877 mt 2130 3908 L
Xc34
X64 -17 24 31 2042 3894 3 MP
XPP
X0 sg
X2042 3894 mt 2066 3925 L
X2066 3925 mt 2130 3908 L
Xc29
X64 -17 24 12 2038 3443 3 MP
XPP
X0 sg
X2038 3443 mt 2062 3455 L
X2062 3455 mt 2126 3438 L
Xc29
X24 12 64 -17 2038 3443 3 MP
XPP
X0 sg
X2038 3443 mt 2102 3426 L
X2102 3426 mt 2126 3438 L
Xc24
X25 -4 64 -18 2037 3597 3 MP
XPP
X0 sg
X2037 3597 mt 2101 3579 L
X2101 3579 mt 2126 3575 L
Xc24
X64 -18 25 -4 2037 3597 3 MP
XPP
X0 sg
X2037 3597 mt 2062 3593 L
X2062 3593 mt 2126 3575 L
Xc9
X24 22 64 -17 2033 3551 3 MP
XPP
X0 sg
X2033 3551 mt 2097 3534 L
X2097 3534 mt 2121 3556 L
Xc9
X64 -17 24 22 2033 3551 3 MP
XPP
X0 sg
X2033 3551 mt 2057 3573 L
X2057 3573 mt 2121 3556 L
Xc17
X24 47 64 -17 2032 3751 3 MP
XPP
X0 sg
X2032 3751 mt 2096 3734 L
X2096 3734 mt 2120 3781 L
Xc17
X64 -15 24 45 2032 3751 3 MP
XPP
X0 sg
X2032 3751 mt 2056 3796 L
X2056 3796 mt 2120 3781 L
Xc23
X25 -2 64 -17 2028 3416 3 MP
XPP
X0 sg
X2028 3416 mt 2092 3399 L
X2092 3399 mt 2117 3397 L
Xc23
X64 -18 25 -1 2028 3416 3 MP
XPP
X0 sg
X2028 3416 mt 2053 3415 L
X2053 3415 mt 2117 3397 L
Xc29
X64 -14 25 14 2023 3482 3 MP
XPP
X0 sg
X2023 3482 mt 2048 3496 L
X2048 3496 mt 2112 3482 L
Xc29
X25 14 64 -14 2023 3482 3 MP
XPP
X0 sg
X2023 3482 mt 2087 3468 L
X2087 3468 mt 2112 3482 L
Xc19
X24 15 64 -17 1890 3647 3 MP
XPP
X0 sg
X1890 3647 mt 1954 3630 L
X1954 3630 mt 1978 3645 L
Xc19
X63 -17 25 15 1890 3647 3 MP
XPP
X0 sg
X1890 3647 mt 1915 3662 L
X1915 3662 mt 1978 3645 L
Xc12
X25 3 63 -17 1915 3662 3 MP
XPP
X0 sg
X1915 3662 mt 1978 3645 L
X1978 3645 mt 2003 3648 L
Xc12
X64 -18 24 4 1915 3662 3 MP
XPP
X0 sg
X1915 3662 mt 1939 3666 L
X1939 3666 mt 2003 3648 L
Xc9
X64 -17 24 -20 1964 3656 3 MP
XPP
X0 sg
X1964 3656 mt 1988 3636 L
X1988 3636 mt 2052 3619 L
Xc9
X24 -20 64 -17 1964 3656 3 MP
XPP
X0 sg
X1964 3656 mt 2028 3639 L
X2028 3639 mt 2052 3619 L
Xc19
X63 -18 25 -9 2003 3648 3 MP
XPP
X0 sg
X2003 3648 mt 2028 3639 L
X2028 3639 mt 2091 3621 L
Xc19
X24 -8 64 -19 2003 3648 3 MP
XPP
X0 sg
X2003 3648 mt 2067 3629 L
X2067 3629 mt 2091 3621 L
Xc20
X25 27 64 -17 2022 3622 3 MP
XPP
X0 sg
X2022 3622 mt 2086 3605 L
X2086 3605 mt 2111 3632 L
Xc20
X64 -17 25 27 2022 3622 3 MP
XPP
X0 sg
X2022 3622 mt 2047 3649 L
X2047 3649 mt 2111 3632 L
Xc22
X24 38 64 -17 2017 3856 3 MP
XPP
X0 sg
X2017 3856 mt 2081 3839 L
X2081 3839 mt 2105 3877 L
Xc22
X63 -17 25 38 2017 3856 3 MP
XPP
X0 sg
X2017 3856 mt 2042 3894 L
X2042 3894 mt 2105 3877 L
Xc29
X25 8 64 -17 2013 3435 3 MP
XPP
X0 sg
X2013 3435 mt 2077 3418 L
X2077 3418 mt 2102 3426 L
Xc29
X64 -17 25 8 2013 3435 3 MP
XPP
X0 sg
X2013 3435 mt 2038 3443 L
X2038 3443 mt 2102 3426 L
Xc18
X64 -17 25 20 2008 3531 3 MP
XPP
X0 sg
X2008 3531 mt 2033 3551 L
X2033 3551 mt 2097 3534 L
Xc18
X25 21 64 -18 2008 3531 3 MP
XPP
X0 sg
X2008 3531 mt 2072 3513 L
X2072 3513 mt 2097 3534 L
Xc25
X64 -17 25 44 2007 3707 3 MP
XPP
X0 sg
X2007 3707 mt 2032 3751 L
X2032 3751 mt 2096 3734 L
Xc25
X25 46 64 -19 2007 3707 3 MP
XPP
X0 sg
X2007 3707 mt 2071 3688 L
X2071 3688 mt 2096 3734 L
Xc19
X64 -17 24 -5 2004 3421 3 MP
XPP
X0 sg
X2004 3421 mt 2028 3416 L
X2028 3416 mt 2092 3399 L
Xc19
X24 -4 64 -18 2004 3421 3 MP
XPP
X0 sg
X2004 3421 mt 2068 3403 L
X2068 3403 mt 2092 3399 L
Xc29
X64 -14 24 11 1999 3471 3 MP
XPP
X0 sg
X1999 3471 mt 2023 3482 L
X2023 3482 mt 2087 3468 L
Xc29
X25 13 63 -16 1999 3471 3 MP
XPP
X0 sg
X1999 3471 mt 2062 3455 L
X2062 3455 mt 2087 3468 L
Xc23
X25 23 63 -18 1866 3625 3 MP
XPP
X0 sg
X1866 3625 mt 1929 3607 L
X1929 3607 mt 1954 3630 L
Xc23
X64 -17 24 22 1866 3625 3 MP
XPP
X0 sg
X1866 3625 mt 1890 3647 L
X1890 3647 mt 1954 3630 L
Xc31
X64 -17 24 -17 1949 3631 3 MP
XPP
X0 sg
X1949 3631 mt 1973 3614 L
X1973 3614 mt 2037 3597 L
Xc31
X24 -16 64 -18 1949 3631 3 MP
XPP
X0 sg
X1949 3631 mt 2013 3613 L
X2013 3613 mt 2037 3597 L
Xc68
X24 12 64 -17 1998 3610 3 MP
XPP
X0 sg
X1998 3610 mt 2062 3593 L
X2062 3593 mt 2086 3605 L
Xc17
X64 -18 25 -22 1924 3653 3 MP
XPP
X0 sg
X1924 3653 mt 1949 3631 L
X1949 3631 mt 2013 3613 L
Xc17
X25 -23 64 -17 1924 3653 3 MP
XPP
X0 sg
X1924 3653 mt 1988 3636 L
X1988 3636 mt 2013 3613 L
Xc68
X64 -17 24 12 1998 3610 3 MP
XPP
X0 sg
X1998 3610 mt 2022 3622 L
X2022 3622 mt 2086 3605 L
Xc9
X64 -17 24 42 1993 3814 3 MP
XPP
X0 sg
X1993 3814 mt 2017 3856 L
X2017 3856 mt 2081 3839 L
Xc9
X25 43 63 -18 1993 3814 3 MP
XPP
X0 sg
X1993 3814 mt 2056 3796 L
X2056 3796 mt 2081 3839 L
Xc18
X24 3 64 -17 1989 3432 3 MP
XPP
X0 sg
X1989 3432 mt 2053 3415 L
X2053 3415 mt 2077 3418 L
Xc18
X64 -17 24 3 1989 3432 3 MP
XPP
X0 sg
X1989 3432 mt 2013 3435 L
X2013 3435 mt 2077 3418 L
Xc29
X64 -18 24 17 1984 3514 3 MP
XPP
X0 sg
X1984 3514 mt 2008 3531 L
X2008 3531 mt 2072 3513 L
Xc29
X24 17 64 -18 1984 3514 3 MP
XPP
X0 sg
X1984 3514 mt 2048 3496 L
X2048 3496 mt 2072 3513 L
Xc32
X64 -19 24 38 1983 3669 3 MP
XPP
X0 sg
X1983 3669 mt 2007 3707 L
X2007 3707 mt 2071 3688 L
Xc32
X24 39 64 -20 1983 3669 3 MP
XPP
X0 sg
X1983 3669 mt 2047 3649 L
X2047 3649 mt 2071 3688 L
Xc22
X64 -18 25 -4 1979 3425 3 MP
XPP
X0 sg
X1979 3425 mt 2004 3421 L
X2004 3421 mt 2068 3403 L
Xc22
X25 -5 64 -17 1979 3425 3 MP
XPP
X0 sg
X1979 3425 mt 2043 3408 L
X2043 3408 mt 2068 3403 L
Xc22
X64 8 24 29 1978 3888 3 MP
XPP
X0 sg
X1978 3888 mt 2002 3917 L
X2002 3917 mt 2066 3925 L
Xc22
X24 31 64 6 1978 3888 3 MP
XPP
X0 sg
X1978 3888 mt 2042 3894 L
X2042 3894 mt 2066 3925 L
Xc29
X63 -16 25 9 1974 3462 3 MP
XPP
X0 sg
X1974 3462 mt 1999 3471 L
X1999 3471 mt 2062 3455 L
Xc29
X24 12 64 -19 1974 3462 3 MP
XPP
X0 sg
X1974 3462 mt 2038 3443 L
X2038 3443 mt 2062 3455 L
Xc24
X64 -17 25 -4 1973 3614 3 MP
XPP
X0 sg
X1973 3614 mt 1998 3610 L
X1998 3610 mt 2062 3593 L
Xc24
X25 -4 64 -17 1973 3614 3 MP
XPP
X0 sg
X1973 3614 mt 2037 3597 L
X2037 3597 mt 2062 3593 L
Xc9
X24 22 64 -17 1969 3568 3 MP
XPP
X0 sg
X1969 3568 mt 2033 3551 L
X2033 3551 mt 2057 3573 L
Xc9
X64 -17 24 22 1969 3568 3 MP
XPP
X0 sg
X1969 3568 mt 1993 3590 L
X1993 3590 mt 2057 3573 L
Xc17
X63 -18 25 46 1968 3768 3 MP
XPP
X0 sg
X1968 3768 mt 1993 3814 L
X1993 3814 mt 2056 3796 L
Xc17
X24 45 64 -17 1968 3768 3 MP
XPP
X0 sg
X1968 3768 mt 2032 3751 L
X2032 3751 mt 2056 3796 L
Xc23
X64 -17 25 -2 1964 3434 3 MP
XPP
X0 sg
X1964 3434 mt 1989 3432 L
X1989 3432 mt 2053 3415 L
Xc23
X25 -1 64 -18 1964 3434 3 MP
XPP
X0 sg
X1964 3434 mt 2028 3416 L
X2028 3416 mt 2053 3415 L
Xc29
X25 14 64 -18 1959 3500 3 MP
XPP
X0 sg
X1959 3500 mt 2023 3482 L
X2023 3482 mt 2048 3496 L
Xc29
X64 -18 25 14 1959 3500 3 MP
XPP
X0 sg
X1959 3500 mt 1984 3514 L
X1984 3514 mt 2048 3496 L
Xc12
X24 4 64 -17 1851 3679 3 MP
XPP
X0 sg
X1851 3679 mt 1915 3662 L
X1915 3662 mt 1939 3666 L
Xc12
X64 -17 24 4 1851 3679 3 MP
XPP
X0 sg
X1851 3679 mt 1875 3683 L
X1875 3683 mt 1939 3666 L
Xc9
X24 -20 64 -17 1900 3673 3 MP
XPP
X0 sg
X1900 3673 mt 1964 3656 L
X1964 3656 mt 1988 3636 L
Xc19
X25 15 64 -17 1826 3664 3 MP
XPP
X0 sg
X1826 3664 mt 1890 3647 L
X1890 3647 mt 1915 3662 L
Xc19
X64 -17 25 15 1826 3664 3 MP
XPP
X0 sg
X1826 3664 mt 1851 3679 L
X1851 3679 mt 1915 3662 L
Xc9
X64 -17 24 -20 1900 3673 3 MP
XPP
X0 sg
X1900 3673 mt 1924 3653 L
X1924 3653 mt 1988 3636 L
Xc19
X64 -17 25 -10 1939 3666 3 MP
XPP
X0 sg
X1939 3666 mt 1964 3656 L
X1964 3656 mt 2028 3639 L
Xc19
X25 -9 64 -18 1939 3666 3 MP
XPP
X0 sg
X1939 3666 mt 2003 3648 L
X2003 3648 mt 2028 3639 L
Xc20
X25 27 64 -19 1958 3641 3 MP
XPP
X0 sg
X1958 3641 mt 2022 3622 L
X2022 3622 mt 2047 3649 L
Xc20
X64 -20 25 28 1958 3641 3 MP
XPP
X0 sg
X1958 3641 mt 1983 3669 L
X1983 3669 mt 2047 3649 L
Xc34
X24 -2 64 -17 1955 3427 3 MP
XPP
X0 sg
X1955 3427 mt 2019 3410 L
X2019 3410 mt 2043 3408 L
Xc34
X64 -17 24 -2 1955 3427 3 MP
XPP
X0 sg
X1955 3427 mt 1979 3425 L
X1979 3425 mt 2043 3408 L
Xc23
X64 6 25 34 1953 3854 3 MP
XPP
X0 sg
X1953 3854 mt 1978 3888 L
X1978 3888 mt 2042 3894 L
Xc23
X25 38 64 2 1953 3854 3 MP
XPP
X0 sg
X1953 3854 mt 2017 3856 L
X2017 3856 mt 2042 3894 L
Xc18
X64 -19 24 6 1950 3456 3 MP
XPP
X0 sg
X1950 3456 mt 1974 3462 L
X1974 3462 mt 2038 3443 L
Xc18
X25 8 63 -21 1950 3456 3 MP
XPP
X0 sg
X1950 3456 mt 2013 3435 L
X2013 3435 mt 2038 3443 L
Xc18
X25 20 64 -17 1944 3548 3 MP
XPP
X0 sg
X1944 3548 mt 2008 3531 L
X2008 3531 mt 2033 3551 L
Xc18
X64 -17 25 20 1944 3548 3 MP
XPP
X0 sg
X1944 3548 mt 1969 3568 L
X1969 3568 mt 2033 3551 L
Xc25
X64 -17 25 44 1943 3724 3 MP
XPP
X0 sg
X1943 3724 mt 1968 3768 L
X1968 3768 mt 2032 3751 L
Xc25
X25 44 64 -17 1943 3724 3 MP
XPP
X0 sg
X1943 3724 mt 2007 3707 L
X2007 3707 mt 2032 3751 L
Xc19
X64 -18 24 -4 1940 3438 3 MP
XPP
X0 sg
X1940 3438 mt 1964 3434 L
X1964 3434 mt 2028 3416 L
Xc19
X24 -5 64 -17 1940 3438 3 MP
XPP
X0 sg
X1940 3438 mt 2004 3421 L
X2004 3421 mt 2028 3416 L
X
Xgr 
X1613 2735 mt 
X(LSQR solutions) s
Xgs 898 2830 2260 1783 MR c np
Xc29
X64 -18 24 12 1935 3488 3 MP
XPP
X0 sg
X1935 3488 mt 1959 3500 L
X1959 3500 mt 2023 3482 L
Xc29
X24 11 64 -17 1935 3488 3 MP
XPP
X0 sg
X1935 3488 mt 1999 3471 L
X1999 3471 mt 2023 3482 L
Xc23
X24 22 64 -17 1802 3642 3 MP
XPP
X0 sg
X1802 3642 mt 1866 3625 L
X1866 3625 mt 1890 3647 L
Xc23
X64 -17 24 22 1802 3642 3 MP
XPP
X0 sg
X1802 3642 mt 1826 3664 L
X1826 3664 mt 1890 3647 L
Xc31
X24 -17 64 -16 1885 3647 3 MP
XPP
X0 sg
X1885 3647 mt 1949 3631 L
X1949 3631 mt 1973 3614 L
Xc31
X64 -17 24 -16 1885 3647 3 MP
XPP
X0 sg
X1885 3647 mt 1909 3631 L
X1909 3631 mt 1973 3614 L
Xc20
X24 12 64 -19 1934 3629 3 MP
XPP
X0 sg
X1934 3629 mt 1998 3610 L
X1998 3610 mt 2022 3622 L
Xc17
X25 -22 64 -16 1860 3669 3 MP
XPP
X0 sg
X1860 3669 mt 1924 3653 L
X1924 3653 mt 1949 3631 L
Xc17
X64 -16 25 -22 1860 3669 3 MP
XPP
X0 sg
X1860 3669 mt 1885 3647 L
X1885 3647 mt 1949 3631 L
Xc20
X64 -19 24 12 1934 3629 3 MP
XPP
X0 sg
X1934 3629 mt 1958 3641 L
X1958 3641 mt 2022 3622 L
Xc13
X25 3 64 -17 1930 3424 3 MP
XPP
X0 sg
X1930 3424 mt 1994 3407 L
X1994 3407 mt 2019 3410 L
Xc13
X64 -17 25 3 1930 3424 3 MP
XPP
X0 sg
X1930 3424 mt 1955 3427 L
X1955 3427 mt 2019 3410 L
Xc29
X24 42 64 -3 1929 3817 3 MP
XPP
X0 sg
X1929 3817 mt 1993 3814 L
X1993 3814 mt 2017 3856 L
Xc29
X64 2 24 37 1929 3817 3 MP
XPP
X0 sg
X1929 3817 mt 1953 3854 L
X1953 3854 mt 2017 3856 L
Xc9
X24 3 64 -21 1925 3453 3 MP
XPP
X0 sg
X1925 3453 mt 1989 3432 L
X1989 3432 mt 2013 3435 L
Xc9
X63 -21 25 3 1925 3453 3 MP
XPP
X0 sg
X1925 3453 mt 1950 3456 L
X1950 3456 mt 2013 3435 L
Xc29
X24 17 64 -17 1920 3531 3 MP
XPP
X0 sg
X1920 3531 mt 1984 3514 L
X1984 3514 mt 2008 3531 L
Xc29
X64 -17 24 17 1920 3531 3 MP
XPP
X0 sg
X1920 3531 mt 1944 3548 L
X1944 3548 mt 2008 3531 L
Xc32
X24 38 64 -17 1919 3686 3 MP
XPP
X0 sg
X1919 3686 mt 1983 3669 L
X1983 3669 mt 2007 3707 L
Xc32
X64 -17 24 38 1919 3686 3 MP
XPP
X0 sg
X1919 3686 mt 1943 3724 L
X1943 3724 mt 2007 3707 L
Xc22
X25 -4 64 -17 1915 3442 3 MP
XPP
X0 sg
X1915 3442 mt 1979 3425 L
X1979 3425 mt 2004 3421 L
Xc22
X64 -17 25 -4 1915 3442 3 MP
XPP
X0 sg
X1915 3442 mt 1940 3438 L
X1940 3438 mt 2004 3421 L
Xc12
X24 29 64 -10 1914 3898 3 MP
XPP
X0 sg
X1914 3898 mt 1978 3888 L
X1978 3888 mt 2002 3917 L
Xc12
X64 -6 24 25 1914 3898 3 MP
XPP
X0 sg
X1914 3898 mt 1938 3923 L
X1938 3923 mt 2002 3917 L
Xc29
X64 -17 25 9 1910 3479 3 MP
XPP
X0 sg
X1910 3479 mt 1935 3488 L
X1935 3488 mt 1999 3471 L
Xc29
X25 9 64 -17 1910 3479 3 MP
XPP
X0 sg
X1910 3479 mt 1974 3462 L
X1974 3462 mt 1999 3471 L
Xc24
X64 -19 25 -2 1909 3631 3 MP
XPP
X0 sg
X1909 3631 mt 1934 3629 L
X1934 3629 mt 1998 3610 L
Xc24
X25 -4 64 -17 1909 3631 3 MP
XPP
X0 sg
X1909 3631 mt 1973 3614 L
X1973 3614 mt 1998 3610 L
Xc13
X24 11 64 -18 1906 3414 3 MP
XPP
X0 sg
X1906 3414 mt 1970 3396 L
X1970 3396 mt 1994 3407 L
Xc13
X64 -17 24 10 1906 3414 3 MP
XPP
X0 sg
X1906 3414 mt 1930 3424 L
X1930 3424 mt 1994 3407 L
Xc9
X24 22 64 -16 1905 3584 3 MP
XPP
X0 sg
X1905 3584 mt 1969 3568 L
X1969 3568 mt 1993 3590 L
Xc9
X64 -17 24 23 1905 3584 3 MP
XPP
X0 sg
X1905 3584 mt 1929 3607 L
X1929 3607 mt 1993 3590 L
Xc30
X64 -3 25 38 1904 3779 3 MP
XPP
X0 sg
X1904 3779 mt 1929 3817 L
X1929 3817 mt 1993 3814 L
Xc30
X25 46 64 -11 1904 3779 3 MP
XPP
X0 sg
X1904 3779 mt 1968 3768 L
X1968 3768 mt 1993 3814 L
Xc23
X64 -21 25 0 1900 3453 3 MP
XPP
X0 sg
X1900 3453 mt 1925 3453 L
X1925 3453 mt 1989 3432 L
Xc23
X25 -2 64 -19 1900 3453 3 MP
XPP
X0 sg
X1900 3453 mt 1964 3434 L
X1964 3434 mt 1989 3432 L
Xc29
X25 14 64 -17 1895 3517 3 MP
XPP
X0 sg
X1895 3517 mt 1959 3500 L
X1959 3500 mt 1984 3514 L
Xc29
X64 -17 25 14 1895 3517 3 MP
XPP
X0 sg
X1895 3517 mt 1920 3531 L
X1920 3531 mt 1984 3514 L
Xc12
X24 4 64 -19 1787 3698 3 MP
XPP
X0 sg
X1787 3698 mt 1851 3679 L
X1851 3679 mt 1875 3683 L
Xc18
X24 -20 64 -16 1836 3689 3 MP
XPP
X0 sg
X1836 3689 mt 1900 3673 L
X1900 3673 mt 1924 3653 L
Xc19
X64 -19 25 15 1762 3683 3 MP
XPP
X0 sg
X1762 3683 mt 1787 3698 L
X1787 3698 mt 1851 3679 L
Xc19
X25 15 64 -19 1762 3683 3 MP
XPP
X0 sg
X1762 3683 mt 1826 3664 L
X1826 3664 mt 1851 3679 L
Xc18
X64 -16 24 -20 1836 3689 3 MP
XPP
X0 sg
X1836 3689 mt 1860 3669 L
X1860 3669 mt 1924 3653 L
Xc19
X25 -10 64 -17 1875 3683 3 MP
XPP
X0 sg
X1875 3683 mt 1939 3666 L
X1939 3666 mt 1964 3656 L
Xc19
X64 -17 25 -10 1875 3683 3 MP
XPP
X0 sg
X1875 3683 mt 1900 3673 L
X1900 3673 mt 1964 3656 L
Xc20
X64 -17 25 27 1894 3659 3 MP
XPP
X0 sg
X1894 3659 mt 1919 3686 L
X1919 3686 mt 1983 3669 L
Xc20
X25 28 64 -18 1894 3659 3 MP
XPP
X0 sg
X1894 3659 mt 1958 3641 L
X1958 3641 mt 1983 3669 L
Xc34
X64 -17 24 -2 1891 3444 3 MP
XPP
X0 sg
X1891 3444 mt 1915 3442 L
X1915 3442 mt 1979 3425 L
Xc34
X24 -2 64 -17 1891 3444 3 MP
XPP
X0 sg
X1891 3444 mt 1955 3427 L
X1955 3427 mt 1979 3425 L
Xc23
X25 34 64 -17 1889 3871 3 MP
XPP
X0 sg
X1889 3871 mt 1953 3854 L
X1953 3854 mt 1978 3888 L
Xc23
X64 -10 25 27 1889 3871 3 MP
XPP
X0 sg
X1889 3871 mt 1914 3898 L
X1914 3898 mt 1978 3888 L
Xc18
X64 -17 24 6 1886 3473 3 MP
XPP
X0 sg
X1886 3473 mt 1910 3479 L
X1910 3479 mt 1974 3462 L
Xc18
X24 6 64 -17 1886 3473 3 MP
XPP
X0 sg
X1886 3473 mt 1950 3456 L
X1950 3456 mt 1974 3462 L
Xc34
X25 18 64 -18 1881 3396 3 MP
XPP
X0 sg
X1881 3396 mt 1945 3378 L
X1945 3378 mt 1970 3396 L
Xc34
X64 -18 25 18 1881 3396 3 MP
XPP
X0 sg
X1881 3396 mt 1906 3414 L
X1906 3414 mt 1970 3396 L
Xc18
X64 -16 25 21 1880 3563 3 MP
XPP
X0 sg
X1880 3563 mt 1905 3584 L
X1905 3584 mt 1969 3568 L
Xc18
X25 20 64 -15 1880 3563 3 MP
XPP
X0 sg
X1880 3563 mt 1944 3548 L
X1944 3548 mt 1969 3568 L
Xc25
X64 -11 24 37 1880 3742 3 MP
XPP
X0 sg
X1880 3742 mt 1904 3779 L
X1904 3779 mt 1968 3768 L
Xc25
X25 44 63 -18 1880 3742 3 MP
XPP
X0 sg
X1880 3742 mt 1943 3724 L
X1943 3724 mt 1968 3768 L
Xc19
X64 -19 24 -1 1876 3454 3 MP
XPP
X0 sg
X1876 3454 mt 1900 3453 L
X1900 3453 mt 1964 3434 L
Xc19
X24 -4 64 -16 1876 3454 3 MP
XPP
X0 sg
X1876 3454 mt 1940 3438 L
X1940 3438 mt 1964 3434 L
Xc29
X64 -17 24 12 1871 3505 3 MP
XPP
X0 sg
X1871 3505 mt 1895 3517 L
X1895 3517 mt 1959 3500 L
Xc29
X24 12 64 -17 1871 3505 3 MP
XPP
X0 sg
X1871 3505 mt 1935 3488 L
X1935 3488 mt 1959 3500 L
Xc23
X64 -19 24 23 1738 3660 3 MP
XPP
X0 sg
X1738 3660 mt 1762 3683 L
X1762 3683 mt 1826 3664 L
Xc23
X24 22 64 -18 1738 3660 3 MP
XPP
X0 sg
X1738 3660 mt 1802 3642 L
X1802 3642 mt 1826 3664 L
Xc17
X64 -17 25 -22 1796 3686 3 MP
XPP
X0 sg
X1796 3686 mt 1821 3664 L
X1821 3664 mt 1885 3647 L
Xc17
X25 -22 64 -17 1796 3686 3 MP
XPP
X0 sg
X1796 3686 mt 1860 3669 L
X1860 3669 mt 1885 3647 L
Xc31
X64 -18 24 -15 1821 3664 3 MP
XPP
X0 sg
X1821 3664 mt 1845 3649 L
X1845 3649 mt 1909 3631 L
Xc31
X24 -16 64 -17 1821 3664 3 MP
XPP
X0 sg
X1821 3664 mt 1885 3647 L
X1885 3647 mt 1909 3631 L
Xc20
X64 -18 24 13 1870 3646 3 MP
XPP
X0 sg
X1870 3646 mt 1894 3659 L
X1894 3659 mt 1958 3641 L
Xc20
X24 12 64 -17 1870 3646 3 MP
XPP
X0 sg
X1870 3646 mt 1934 3629 L
X1934 3629 mt 1958 3641 L
Xc13
X25 3 64 -17 1866 3441 3 MP
XPP
X0 sg
X1866 3441 mt 1930 3424 L
X1930 3424 mt 1955 3427 L
Xc13
X64 -17 25 3 1866 3441 3 MP
XPP
X0 sg
X1866 3441 mt 1891 3444 L
X1891 3444 mt 1955 3427 L
Xc18
X64 -17 24 31 1865 3840 3 MP
XPP
X0 sg
X1865 3840 mt 1889 3871 L
X1889 3871 mt 1953 3854 L
Xc18
X24 37 64 -23 1865 3840 3 MP
XPP
X0 sg
X1865 3840 mt 1929 3817 L
X1929 3817 mt 1953 3854 L
Xc9
X25 3 64 -18 1861 3471 3 MP
XPP
X0 sg
X1861 3471 mt 1925 3453 L
X1925 3453 mt 1950 3456 L
Xc9
X64 -17 25 2 1861 3471 3 MP
XPP
X0 sg
X1861 3471 mt 1886 3473 L
X1886 3473 mt 1950 3456 L
Xc29
X24 17 64 -16 1856 3547 3 MP
XPP
X0 sg
X1856 3547 mt 1920 3531 L
X1920 3531 mt 1944 3548 L
Xc29
X64 -15 24 16 1856 3547 3 MP
XPP
X0 sg
X1856 3547 mt 1880 3563 L
X1880 3563 mt 1944 3548 L
Xc32
X63 -18 25 32 1855 3710 3 MP
XPP
X0 sg
X1855 3710 mt 1880 3742 L
X1880 3742 mt 1943 3724 L
Xc32
X24 38 64 -24 1855 3710 3 MP
XPP
X0 sg
X1855 3710 mt 1919 3686 L
X1919 3686 mt 1943 3724 L
Xc22
X25 -4 64 -14 1851 3456 3 MP
XPP
X0 sg
X1851 3456 mt 1915 3442 L
X1915 3442 mt 1940 3438 L
Xc22
X64 -16 25 -2 1851 3456 3 MP
XPP
X0 sg
X1851 3456 mt 1876 3454 L
X1876 3454 mt 1940 3438 L
Xc22
X64 -25 24 22 1850 3926 3 MP
XPP
X0 sg
X1850 3926 mt 1874 3948 L
X1874 3948 mt 1938 3923 L
Xc22
X24 25 64 -28 1850 3926 3 MP
XPP
X0 sg
X1850 3926 mt 1914 3898 L
X1914 3898 mt 1938 3923 L
Xc29
X64 -17 25 8 1846 3497 3 MP
XPP
X0 sg
X1846 3497 mt 1871 3505 L
X1871 3505 mt 1935 3488 L
Xc29
X25 9 64 -18 1846 3497 3 MP
XPP
X0 sg
X1846 3497 mt 1910 3479 L
X1910 3479 mt 1935 3488 L
Xc24
X64 -17 25 -3 1845 3649 3 MP
XPP
X0 sg
X1845 3649 mt 1870 3646 L
X1870 3646 mt 1934 3629 L
Xc24
X25 -2 64 -18 1845 3649 3 MP
XPP
X0 sg
X1845 3649 mt 1909 3631 L
X1909 3631 mt 1934 3629 L
Xc13
X64 -17 24 10 1842 3431 3 MP
XPP
X0 sg
X1842 3431 mt 1866 3441 L
X1866 3441 mt 1930 3424 L
Xc13
X24 10 64 -17 1842 3431 3 MP
XPP
X0 sg
X1842 3431 mt 1906 3414 L
X1906 3414 mt 1930 3424 L
Xc9
X63 -18 25 24 1841 3601 3 MP
XPP
X0 sg
X1841 3601 mt 1866 3625 L
X1866 3625 mt 1929 3607 L
Xc9
X24 23 64 -17 1841 3601 3 MP
XPP
X0 sg
X1841 3601 mt 1905 3584 L
X1905 3584 mt 1929 3607 L
Xc26
X64 -23 25 33 1840 3807 3 MP
XPP
X0 sg
X1840 3807 mt 1865 3840 L
X1865 3840 mt 1929 3817 L
Xc26
X25 38 64 -28 1840 3807 3 MP
XPP
X0 sg
X1840 3807 mt 1904 3779 L
X1904 3779 mt 1929 3817 L
Xc23
X25 0 63 -17 1837 3470 3 MP
XPP
X0 sg
X1837 3470 mt 1900 3453 L
X1900 3453 mt 1925 3453 L
Xc23
X64 -18 24 1 1837 3470 3 MP
XPP
X0 sg
X1837 3470 mt 1861 3471 L
X1861 3471 mt 1925 3453 L
Xc29
X64 -16 25 13 1831 3534 3 MP
XPP
X0 sg
X1831 3534 mt 1856 3547 L
X1856 3547 mt 1920 3531 L
Xc29
X25 14 64 -17 1831 3534 3 MP
XPP
X0 sg
X1831 3534 mt 1895 3517 L
X1895 3517 mt 1920 3531 L
Xc12
X64 -18 24 3 1723 3715 3 MP
XPP
X0 sg
X1723 3715 mt 1747 3718 L
X1747 3718 mt 1811 3700 L
Xc12
X24 2 64 -17 1723 3715 3 MP
XPP
X0 sg
X1723 3715 mt 1787 3698 L
X1787 3698 mt 1811 3700 L
Xc12
X64 -17 24 2 1787 3698 3 MP
XPP
X0 sg
X1787 3698 mt 1811 3700 L
X1811 3700 mt 1875 3683 L
Xc19
X64 -18 25 -11 1747 3718 3 MP
XPP
X0 sg
X1747 3718 mt 1772 3707 L
X1772 3707 mt 1836 3689 L
Xc19
X25 -11 64 -18 1747 3718 3 MP
XPP
X0 sg
X1747 3718 mt 1811 3700 L
X1811 3700 mt 1836 3689 L
Xc18
X24 -20 64 -18 1772 3707 3 MP
XPP
X0 sg
X1772 3707 mt 1836 3689 L
X1836 3689 mt 1860 3669 L
Xc19
X64 -16 25 -11 1811 3700 3 MP
XPP
X0 sg
X1811 3700 mt 1836 3689 L
X1836 3689 mt 1900 3673 L
Xc19
X25 -10 64 -17 1811 3700 3 MP
XPP
X0 sg
X1811 3700 mt 1875 3683 L
X1875 3683 mt 1900 3673 L
Xc24
X64 -24 24 24 1831 3686 3 MP
XPP
X0 sg
X1831 3686 mt 1855 3710 L
X1855 3710 mt 1919 3686 L
Xc24
X25 27 63 -27 1831 3686 3 MP
XPP
X0 sg
X1831 3686 mt 1894 3659 L
X1894 3659 mt 1919 3686 L
Xc15
X24 -2 64 -12 1827 3456 3 MP
XPP
X0 sg
X1827 3456 mt 1891 3444 L
X1891 3444 mt 1915 3442 L
Xc15
X64 -14 24 0 1827 3456 3 MP
XPP
X0 sg
X1827 3456 mt 1851 3456 L
X1851 3456 mt 1915 3442 L
Xc12
X64 -28 25 24 1825 3902 3 MP
XPP
X0 sg
X1825 3902 mt 1850 3926 L
X1850 3926 mt 1914 3898 L
Xc12
X25 27 64 -31 1825 3902 3 MP
XPP
X0 sg
X1825 3902 mt 1889 3871 L
X1889 3871 mt 1914 3898 L
Xc18
X64 -18 24 6 1822 3491 3 MP
XPP
X0 sg
X1822 3491 mt 1846 3497 L
X1846 3497 mt 1910 3479 L
Xc18
X24 6 64 -18 1822 3491 3 MP
XPP
X0 sg
X1822 3491 mt 1886 3473 L
X1886 3473 mt 1910 3479 L
Xc34
X25 18 64 -17 1817 3413 3 MP
XPP
X0 sg
X1817 3413 mt 1881 3396 L
X1881 3396 mt 1906 3414 L
Xc34
X64 -17 25 18 1817 3413 3 MP
XPP
X0 sg
X1817 3413 mt 1842 3431 L
X1842 3431 mt 1906 3414 L
Xc18
X25 21 64 -18 1816 3581 3 MP
XPP
X0 sg
X1816 3581 mt 1880 3563 L
X1880 3563 mt 1905 3584 L
Xc18
X64 -17 25 20 1816 3581 3 MP
XPP
X0 sg
X1816 3581 mt 1841 3601 L
X1841 3601 mt 1905 3584 L
Xc35
X24 37 64 -32 1816 3774 3 MP
XPP
X0 sg
X1816 3774 mt 1880 3742 L
X1880 3742 mt 1904 3779 L
Xc35
X64 -28 24 33 1816 3774 3 MP
XPP
X0 sg
X1816 3774 mt 1840 3807 L
X1840 3807 mt 1904 3779 L
Xc19
X24 -1 64 -18 1812 3472 3 MP
XPP
X0 sg
X1812 3472 mt 1876 3454 L
X1876 3454 mt 1900 3453 L
Xc19
X63 -17 25 -2 1812 3472 3 MP
XPP
X0 sg
X1812 3472 mt 1837 3470 L
X1837 3470 mt 1900 3453 L
Xc29
X24 12 64 -19 1807 3524 3 MP
XPP
X0 sg
X1807 3524 mt 1871 3505 L
X1871 3505 mt 1895 3517 L
Xc29
X64 -17 24 10 1807 3524 3 MP
XPP
X0 sg
X1807 3524 mt 1831 3534 L
X1831 3534 mt 1895 3517 L
Xc19
X64 -17 25 15 1698 3700 3 MP
XPP
X0 sg
X1698 3700 mt 1723 3715 L
X1723 3715 mt 1787 3698 L
Xc19
X25 15 64 -17 1698 3700 3 MP
XPP
X0 sg
X1698 3700 mt 1762 3683 L
X1762 3683 mt 1787 3698 L
Xc17
X25 -22 64 -16 1732 3702 3 MP
XPP
X0 sg
X1732 3702 mt 1796 3686 L
X1796 3686 mt 1821 3664 L
Xc24
X24 13 64 -28 1806 3674 3 MP
XPP
X0 sg
X1806 3674 mt 1870 3646 L
X1870 3646 mt 1894 3659 L
Xc18
X64 -17 24 -21 1772 3707 3 MP
XPP
X0 sg
X1772 3707 mt 1796 3686 L
X1796 3686 mt 1860 3669 L
Xc24
X63 -27 25 12 1806 3674 3 MP
XPP
X0 sg
X1806 3674 mt 1831 3686 L
X1831 3686 mt 1894 3659 L
Xc34
X25 3 64 -13 1802 3454 3 MP
XPP
X0 sg
X1802 3454 mt 1866 3441 L
X1866 3441 mt 1891 3444 L
Xc34
X64 -12 25 2 1802 3454 3 MP
XPP
X0 sg
X1802 3454 mt 1827 3456 L
X1827 3456 mt 1891 3444 L
Xc23
X64 -31 24 26 1801 3876 3 MP
XPP
X0 sg
X1801 3876 mt 1825 3902 L
X1825 3902 mt 1889 3871 L
Xc23
X24 31 64 -36 1801 3876 3 MP
XPP
X0 sg
X1801 3876 mt 1865 3840 L
X1865 3840 mt 1889 3871 L
Xc9
X25 2 64 -17 1797 3488 3 MP
XPP
X0 sg
X1797 3488 mt 1861 3471 L
X1861 3471 mt 1886 3473 L
Xc9
X64 -18 25 3 1797 3488 3 MP
XPP
X0 sg
X1797 3488 mt 1822 3491 L
X1822 3491 mt 1886 3473 L
Xc29
X24 16 64 -17 1792 3564 3 MP
XPP
X0 sg
X1792 3564 mt 1856 3547 L
X1856 3547 mt 1880 3563 L
Xc29
X64 -18 24 17 1792 3564 3 MP
XPP
X0 sg
X1792 3564 mt 1816 3581 L
X1816 3581 mt 1880 3563 L
Xc31
X25 32 64 -32 1791 3742 3 MP
XPP
X0 sg
X1791 3742 mt 1855 3710 L
X1855 3710 mt 1880 3742 L
Xc31
X64 -32 25 32 1791 3742 3 MP
XPP
X0 sg
X1791 3742 mt 1816 3774 L
X1816 3774 mt 1880 3742 L
Xc22
X25 -2 63 -17 1788 3473 3 MP
XPP
X0 sg
X1788 3473 mt 1851 3456 L
X1851 3456 mt 1876 3454 L
Xc22
X64 -18 24 -1 1788 3473 3 MP
XPP
X0 sg
X1788 3473 mt 1812 3472 L
X1812 3472 mt 1876 3454 L
Xc15
X64 -23 24 19 1786 3952 3 MP
XPP
X0 sg
X1786 3952 mt 1810 3971 L
X1810 3971 mt 1874 3948 L
Xc15
X24 22 64 -26 1786 3952 3 MP
XPP
X0 sg
X1786 3952 mt 1850 3926 L
X1850 3926 mt 1874 3948 L
Xc29
X64 -19 25 8 1782 3516 3 MP
XPP
X0 sg
X1782 3516 mt 1807 3524 L
X1807 3524 mt 1871 3505 L
Xc29
X25 8 64 -19 1782 3516 3 MP
XPP
X0 sg
X1782 3516 mt 1846 3497 L
X1846 3497 mt 1871 3505 L
Xc17
X64 -21 25 -17 1732 3702 3 MP
XPP
X0 sg
X1732 3702 mt 1757 3685 L
X1757 3685 mt 1821 3664 L
Xc23
X64 -17 24 22 1674 3678 3 MP
XPP
X0 sg
X1674 3678 mt 1698 3700 L
X1698 3700 mt 1762 3683 L
Xc23
X24 23 64 -18 1674 3678 3 MP
XPP
X0 sg
X1674 3678 mt 1738 3660 L
X1738 3660 mt 1762 3683 L
Xc25
X63 -25 25 -11 1757 3685 3 MP
XPP
X0 sg
X1757 3685 mt 1782 3674 L
X1782 3674 mt 1845 3649 L
Xc25
X24 -15 64 -21 1757 3685 3 MP
XPP
X0 sg
X1757 3685 mt 1821 3664 L
X1821 3664 mt 1845 3649 L
Xc32
X64 -28 24 0 1782 3674 3 MP
XPP
X0 sg
X1782 3674 mt 1806 3674 L
X1806 3674 mt 1870 3646 L
Xc32
X25 -3 63 -25 1782 3674 3 MP
XPP
X0 sg
X1782 3674 mt 1845 3649 L
X1845 3649 mt 1870 3646 L
Xc13
X24 10 64 -18 1778 3449 3 MP
XPP
X0 sg
X1778 3449 mt 1842 3431 L
X1842 3431 mt 1866 3441 L
Xc13
X64 -13 24 5 1778 3449 3 MP
XPP
X0 sg
X1778 3449 mt 1802 3454 L
X1802 3454 mt 1866 3441 L
Xc9
X64 -17 25 23 1777 3619 3 MP
XPP
X0 sg
X1777 3619 mt 1802 3642 L
X1802 3642 mt 1866 3625 L
Xc9
X25 24 64 -18 1777 3619 3 MP
XPP
X0 sg
X1777 3619 mt 1841 3601 L
X1841 3601 mt 1866 3625 L
Xc18
X64 -36 25 30 1776 3846 3 MP
XPP
X0 sg
X1776 3846 mt 1801 3876 L
X1801 3876 mt 1865 3840 L
Xc18
X25 33 64 -39 1776 3846 3 MP
XPP
X0 sg
X1776 3846 mt 1840 3807 L
X1840 3807 mt 1865 3840 L
Xc23
X24 1 64 -18 1773 3488 3 MP
XPP
X0 sg
X1773 3488 mt 1837 3470 L
X1837 3470 mt 1861 3471 L
Xc23
X64 -17 24 0 1773 3488 3 MP
XPP
X0 sg
X1773 3488 mt 1797 3488 L
X1797 3488 mt 1861 3471 L
Xc29
X64 -17 25 12 1767 3552 3 MP
XPP
X0 sg
X1767 3552 mt 1792 3564 L
X1792 3564 mt 1856 3547 L
Xc29
X25 13 64 -18 1767 3552 3 MP
XPP
X0 sg
X1767 3552 mt 1831 3534 L
X1831 3534 mt 1856 3547 L
Xc32
X64 -32 24 28 1767 3714 3 MP
XPP
X0 sg
X1767 3714 mt 1791 3742 L
X1791 3742 mt 1855 3710 L
Xc32
X24 24 64 -28 1767 3714 3 MP
XPP
X0 sg
X1767 3714 mt 1831 3686 L
X1831 3686 mt 1855 3710 L
Xc15
X24 0 64 -17 1763 3473 3 MP
XPP
X0 sg
X1763 3473 mt 1827 3456 L
X1827 3456 mt 1851 3456 L
Xc15
X63 -17 25 0 1763 3473 3 MP
XPP
X0 sg
X1763 3473 mt 1788 3473 L
X1788 3473 mt 1851 3456 L
Xc22
X64 -26 25 21 1761 3931 3 MP
XPP
X0 sg
X1761 3931 mt 1786 3952 L
X1786 3952 mt 1850 3926 L
Xc22
X25 24 64 -29 1761 3931 3 MP
XPP
X0 sg
X1761 3931 mt 1825 3902 L
X1825 3902 mt 1850 3926 L
Xc18
X24 6 64 -19 1758 3510 3 MP
XPP
X0 sg
X1758 3510 mt 1822 3491 L
X1822 3491 mt 1846 3497 L
Xc18
X64 -19 24 6 1758 3510 3 MP
XPP
X0 sg
X1758 3510 mt 1782 3516 L
X1782 3516 mt 1846 3497 L
Xc13
X64 -18 25 8 1753 3441 3 MP
XPP
X0 sg
X1753 3441 mt 1778 3449 L
X1778 3449 mt 1842 3431 L
Xc13
X25 18 64 -28 1753 3441 3 MP
XPP
X0 sg
X1753 3441 mt 1817 3413 L
X1817 3413 mt 1842 3431 L
Xc18
X64 -18 24 21 1753 3598 3 MP
XPP
X0 sg
X1753 3598 mt 1777 3619 L
X1777 3619 mt 1841 3601 L
Xc18
X25 20 63 -17 1753 3598 3 MP
XPP
X0 sg
X1753 3598 mt 1816 3581 L
X1816 3581 mt 1841 3601 L
Xc26
X24 33 64 -41 1752 3815 3 MP
XPP
X0 sg
X1752 3815 mt 1816 3774 L
X1816 3774 mt 1840 3807 L
Xc26
X64 -39 24 31 1752 3815 3 MP
XPP
X0 sg
X1752 3815 mt 1776 3846 L
X1776 3846 mt 1840 3807 L
Xc19
X25 -2 64 -17 1748 3489 3 MP
XPP
X0 sg
X1748 3489 mt 1812 3472 L
X1812 3472 mt 1837 3470 L
Xc19
X64 -18 25 -1 1748 3489 3 MP
XPP
X0 sg
X1748 3489 mt 1773 3488 L
X1773 3488 mt 1837 3470 L
Xc29
X24 10 64 -18 1743 3542 3 MP
XPP
X0 sg
X1743 3542 mt 1807 3524 L
X1807 3524 mt 1831 3534 L
Xc29
X64 -18 24 10 1743 3542 3 MP
XPP
X0 sg
X1743 3542 mt 1767 3552 L
X1767 3552 mt 1831 3534 L
Xc23
X64 -17 24 20 1610 3697 3 MP
XPP
X0 sg
X1610 3697 mt 1634 3717 L
X1634 3717 mt 1698 3700 L
Xc23
X24 22 64 -19 1610 3697 3 MP
XPP
X0 sg
X1610 3697 mt 1674 3678 L
X1674 3678 mt 1698 3700 L
Xc19
X25 15 64 -17 1634 3717 3 MP
XPP
X0 sg
X1634 3717 mt 1698 3700 L
X1698 3700 mt 1723 3715 L
Xc35
X25 -17 63 -2 1669 3704 3 MP
XPP
X0 sg
X1669 3704 mt 1732 3702 L
X1732 3702 mt 1757 3685 L
Xc19
X64 -13 25 11 1634 3717 3 MP
XPP
X0 sg
X1634 3717 mt 1659 3728 L
X1659 3728 mt 1723 3715 L
Xc19
X24 3 64 -13 1659 3728 3 MP
XPP
X0 sg
X1659 3728 mt 1723 3715 L
X1723 3715 mt 1747 3718 L
Xc18
X64 -16 24 -17 1708 3719 3 MP
XPP
X0 sg
X1708 3719 mt 1732 3702 L
X1732 3702 mt 1796 3686 L
Xc18
X24 -21 64 -12 1708 3719 3 MP
XPP
X0 sg
X1708 3719 mt 1772 3707 L
X1772 3707 mt 1796 3686 L
Xc24
X25 12 64 -20 1742 3694 3 MP
XPP
X0 sg
X1742 3694 mt 1806 3674 L
X1806 3674 mt 1831 3686 L
Xc19
X64 -11 24 1 1659 3728 3 MP
XPP
X0 sg
X1659 3728 mt 1683 3729 L
X1683 3729 mt 1747 3718 L
Xc23
X64 -12 25 -10 1683 3729 3 MP
XPP
X0 sg
X1683 3729 mt 1708 3719 L
X1708 3719 mt 1772 3707 L
Xc23
X25 -11 64 -11 1683 3729 3 MP
XPP
X0 sg
X1683 3729 mt 1747 3718 L
X1747 3718 mt 1772 3707 L
Xc24
X64 -28 25 20 1742 3694 3 MP
XPP
X0 sg
X1742 3694 mt 1767 3714 L
X1767 3714 mt 1831 3686 L
Xc34
X25 2 64 -17 1738 3471 3 MP
XPP
X0 sg
X1738 3471 mt 1802 3454 L
X1802 3454 mt 1827 3456 L
Xc34
X64 -17 25 2 1738 3471 3 MP
XPP
X0 sg
X1738 3471 mt 1763 3473 L
X1763 3473 mt 1827 3456 L
Xc12
X64 -29 24 23 1737 3908 3 MP
XPP
X0 sg
X1737 3908 mt 1761 3931 L
X1761 3931 mt 1825 3902 L
Xc12
X24 26 64 -32 1737 3908 3 MP
XPP
X0 sg
X1737 3908 mt 1801 3876 L
X1801 3876 mt 1825 3902 L
Xc9
X25 3 64 -18 1733 3506 3 MP
XPP
X0 sg
X1733 3506 mt 1797 3488 L
X1797 3488 mt 1822 3491 L
Xc9
X64 -19 25 4 1733 3506 3 MP
XPP
X0 sg
X1733 3506 mt 1758 3510 L
X1758 3510 mt 1822 3491 L
Xc29
X24 17 64 -18 1728 3582 3 MP
XPP
X0 sg
X1728 3582 mt 1792 3564 L
X1792 3564 mt 1816 3581 L
Xc29
X63 -17 25 16 1728 3582 3 MP
XPP
X0 sg
X1728 3582 mt 1753 3598 L
X1753 3598 mt 1816 3581 L
Xc30
X64 -41 25 32 1727 3783 3 MP
XPP
X0 sg
X1727 3783 mt 1752 3815 L
X1752 3815 mt 1816 3774 L
Xc30
X25 32 64 -41 1727 3783 3 MP
XPP
X0 sg
X1727 3783 mt 1791 3742 L
X1791 3742 mt 1816 3774 L
Xc22
X24 -1 64 -17 1724 3490 3 MP
XPP
X0 sg
X1724 3490 mt 1788 3473 L
X1788 3473 mt 1812 3472 L
Xc22
X64 -17 24 -1 1724 3490 3 MP
XPP
X0 sg
X1724 3490 mt 1748 3489 L
X1748 3489 mt 1812 3472 L
Xc13
X63 -31 25 15 1722 3987 3 MP
XPP
X0 sg
X1722 3987 mt 1747 4002 L
X1747 4002 mt 1810 3971 L
Xc13
X24 19 64 -35 1722 3987 3 MP
XPP
X0 sg
X1722 3987 mt 1786 3952 L
X1786 3952 mt 1810 3971 L
Xc29
X64 -18 25 8 1718 3534 3 MP
XPP
X0 sg
X1718 3534 mt 1743 3542 L
X1743 3542 mt 1807 3524 L
Xc29
X25 8 64 -18 1718 3534 3 MP
XPP
X0 sg
X1718 3534 mt 1782 3516 L
X1782 3516 mt 1807 3524 L
Xc35
X64 -5 24 -14 1669 3704 3 MP
XPP
X0 sg
X1669 3704 mt 1693 3690 L
X1693 3690 mt 1757 3685 L
Xc16
X25 -11 64 -5 1693 3690 3 MP
XPP
X0 sg
X1693 3690 mt 1757 3685 L
X1757 3685 mt 1782 3674 L
Xc24
X64 -20 24 8 1718 3686 3 MP
XPP
X0 sg
X1718 3686 mt 1742 3694 L
X1742 3694 mt 1806 3674 L
Xc24
X24 0 64 -12 1718 3686 3 MP
XPP
X0 sg
X1718 3686 mt 1782 3674 L
X1782 3674 mt 1806 3674 L
Xc13
X24 5 64 -17 1714 3466 3 MP
XPP
X0 sg
X1714 3466 mt 1778 3449 L
X1778 3449 mt 1802 3454 L
Xc13
X64 -17 24 5 1714 3466 3 MP
XPP
X0 sg
X1714 3466 mt 1738 3471 L
X1738 3471 mt 1802 3454 L
Xc9
X25 23 64 -17 1713 3636 3 MP
XPP
X0 sg
X1713 3636 mt 1777 3619 L
X1777 3619 mt 1802 3642 L
Xc9
X64 -18 25 24 1713 3636 3 MP
XPP
X0 sg
X1713 3636 mt 1738 3660 L
X1738 3660 mt 1802 3642 L
Xc23
X25 30 64 -36 1712 3882 3 MP
XPP
X0 sg
X1712 3882 mt 1776 3846 L
X1776 3846 mt 1801 3876 L
Xc23
X64 -32 25 26 1712 3882 3 MP
XPP
X0 sg
X1712 3882 mt 1737 3908 L
X1737 3908 mt 1801 3876 L
Xc23
X24 0 64 -16 1709 3504 3 MP
XPP
X0 sg
X1709 3504 mt 1773 3488 L
X1773 3488 mt 1797 3488 L
Xc23
X64 -18 24 2 1709 3504 3 MP
XPP
X0 sg
X1709 3504 mt 1733 3506 L
X1733 3506 mt 1797 3488 L
Xc29
X25 12 63 -17 1704 3569 3 MP
XPP
X0 sg
X1704 3569 mt 1767 3552 L
X1767 3552 mt 1792 3564 L
Xc29
X64 -18 24 13 1704 3569 3 MP
XPP
X0 sg
X1704 3569 mt 1728 3582 L
X1728 3582 mt 1792 3564 L
Xc31
X24 28 64 -38 1703 3752 3 MP
XPP
X0 sg
X1703 3752 mt 1767 3714 L
X1767 3714 mt 1791 3742 L
Xc31
X64 -41 24 31 1703 3752 3 MP
XPP
X0 sg
X1703 3752 mt 1727 3783 L
X1727 3783 mt 1791 3742 L
Xc15
X64 -17 25 -1 1699 3491 3 MP
XPP
X0 sg
X1699 3491 mt 1724 3490 L
X1724 3490 mt 1788 3473 L
Xc15
X25 0 64 -18 1699 3491 3 MP
XPP
X0 sg
X1699 3491 mt 1763 3473 L
X1763 3473 mt 1788 3473 L
Xc13
X64 -35 24 15 1698 3972 3 MP
XPP
X0 sg
X1698 3972 mt 1722 3987 L
X1722 3987 mt 1786 3952 L
Xc13
X25 21 63 -41 1698 3972 3 MP
XPP
X0 sg
X1698 3972 mt 1761 3931 L
X1761 3931 mt 1786 3952 L
Xc18
X24 6 64 -17 1694 3527 3 MP
XPP
X0 sg
X1694 3527 mt 1758 3510 L
X1758 3510 mt 1782 3516 L
Xc18
X64 -18 24 7 1694 3527 3 MP
XPP
X0 sg
X1694 3527 mt 1718 3534 L
X1718 3534 mt 1782 3516 L
Xc16
X64 -12 25 -4 1693 3690 3 MP
XPP
X0 sg
X1693 3690 mt 1718 3686 L
X1718 3686 mt 1782 3674 L
Xc13
X25 8 64 -17 1689 3458 3 MP
XPP
X0 sg
X1689 3458 mt 1753 3441 L
X1753 3441 mt 1778 3449 L
Xc13
X64 -17 25 8 1689 3458 3 MP
XPP
X0 sg
X1689 3458 mt 1714 3466 L
X1714 3466 mt 1778 3449 L
Xc29
X24 21 64 -15 1689 3613 3 MP
XPP
X0 sg
X1689 3613 mt 1753 3598 L
X1753 3598 mt 1777 3619 L
Xc29
X64 -17 24 23 1689 3613 3 MP
XPP
X0 sg
X1689 3613 mt 1713 3636 L
X1713 3636 mt 1777 3619 L
Xc18
X24 31 64 -39 1688 3854 3 MP
XPP
X0 sg
X1688 3854 mt 1752 3815 L
X1752 3815 mt 1776 3846 L
Xc18
X64 -36 24 28 1688 3854 3 MP
XPP
X0 sg
X1688 3854 mt 1712 3882 L
X1712 3882 mt 1776 3846 L
Xc19
X25 -1 64 -15 1684 3504 3 MP
XPP
X0 sg
X1684 3504 mt 1748 3489 L
X1748 3489 mt 1773 3488 L
Xc19
X64 -16 25 0 1684 3504 3 MP
XPP
X0 sg
X1684 3504 mt 1709 3504 L
X1709 3504 mt 1773 3488 L
Xc29
X24 10 64 -17 1679 3559 3 MP
XPP
X0 sg
X1679 3559 mt 1743 3542 L
X1743 3542 mt 1767 3552 L
Xc29
X63 -17 25 10 1679 3559 3 MP
XPP
X0 sg
X1679 3559 mt 1704 3569 L
X1704 3569 mt 1767 3552 L
Xc22
X64 -23 25 4 1570 3747 3 MP
XPP
X0 sg
X1570 3747 mt 1595 3751 L
X1595 3751 mt 1659 3728 L
Xc12
X24 1 64 -23 1595 3751 3 MP
XPP
X0 sg
X1595 3751 mt 1659 3728 L
X1659 3728 mt 1683 3729 L
Xc12
X63 -13 25 -9 1595 3751 3 MP
XPP
X0 sg
X1595 3751 mt 1620 3742 L
X1620 3742 mt 1683 3729 L
Xc23
X25 -10 63 -13 1620 3742 3 MP
XPP
X0 sg
X1620 3742 mt 1683 3729 L
X1683 3729 mt 1708 3719 L
Xc22
X25 11 64 -30 1570 3747 3 MP
XPP
X0 sg
X1570 3747 mt 1634 3717 L
X1634 3717 mt 1659 3728 L
Xc23
X64 -5 24 -18 1620 3742 3 MP
XPP
X0 sg
X1620 3742 mt 1644 3724 L
X1644 3724 mt 1708 3719 L
Xc16
X64 -38 25 26 1678 3726 3 MP
XPP
X0 sg
X1678 3726 mt 1703 3752 L
X1703 3752 mt 1767 3714 L
Xc26
X24 -17 64 -5 1644 3724 3 MP
XPP
X0 sg
X1644 3724 mt 1708 3719 L
X1708 3719 mt 1732 3702 L
Xc26
X63 -2 25 -20 1644 3724 3 MP
XPP
X0 sg
X1644 3724 mt 1669 3704 L
X1669 3704 mt 1732 3702 L
Xc16
X25 20 64 -32 1678 3726 3 MP
XPP
X0 sg
X1678 3726 mt 1742 3694 L
X1742 3694 mt 1767 3714 L
Xc34
X25 2 63 -18 1675 3489 3 MP
XPP
X0 sg
X1675 3489 mt 1738 3471 L
X1738 3471 mt 1763 3473 L
Xc34
X64 -18 24 2 1675 3489 3 MP
XPP
X0 sg
X1675 3489 mt 1699 3491 L
X1699 3491 mt 1763 3473 L
Xc34
X24 23 64 -47 1673 3955 3 MP
XPP
X0 sg
X1673 3955 mt 1737 3908 L
X1737 3908 mt 1761 3931 L
Xc34
X63 -41 25 17 1673 3955 3 MP
XPP
X0 sg
X1673 3955 mt 1698 3972 L
X1698 3972 mt 1761 3931 L
Xc9
X64 -17 25 4 1669 3523 3 MP
XPP
X0 sg
X1669 3523 mt 1694 3527 L
X1694 3527 mt 1758 3510 L
Xc9
X25 4 64 -17 1669 3523 3 MP
XPP
X0 sg
X1669 3523 mt 1733 3506 L
X1733 3506 mt 1758 3510 L
Xc29
X25 16 64 -14 1664 3596 3 MP
XPP
X0 sg
X1664 3596 mt 1728 3582 L
X1728 3582 mt 1753 3598 L
Xc29
X64 -15 25 17 1664 3596 3 MP
XPP
X0 sg
X1664 3596 mt 1689 3613 L
X1689 3613 mt 1753 3598 L
Xc26
X64 -39 25 30 1663 3824 3 MP
XPP
X0 sg
X1663 3824 mt 1688 3854 L
X1688 3854 mt 1752 3815 L
Xc26
X25 32 64 -41 1663 3824 3 MP
XPP
X0 sg
X1663 3824 mt 1727 3783 L
X1727 3783 mt 1752 3815 L
Xc12
X24 -1 64 -15 1660 3505 3 MP
XPP
X0 sg
X1660 3505 mt 1724 3490 L
X1724 3490 mt 1748 3489 L
Xc12
X64 -15 24 -1 1660 3505 3 MP
XPP
X0 sg
X1660 3505 mt 1684 3504 L
X1684 3504 mt 1748 3489 L
Xc29
X25 8 64 -17 1654 3551 3 MP
XPP
X0 sg
X1654 3551 mt 1718 3534 L
X1718 3534 mt 1743 3542 L
Xc29
X64 -17 25 8 1654 3551 3 MP
XPP
X0 sg
X1654 3551 mt 1679 3559 L
X1679 3559 mt 1743 3542 L
Xc12
X64 -30 24 18 1546 3729 3 MP
XPP
X0 sg
X1546 3729 mt 1570 3747 L
X1570 3747 mt 1634 3717 L
Xc12
X24 20 64 -32 1546 3729 3 MP
XPP
X0 sg
X1546 3729 mt 1610 3697 L
X1610 3697 mt 1634 3717 L
Xc30
X25 -20 64 7 1580 3717 3 MP
XPP
X0 sg
X1580 3717 mt 1644 3724 L
X1644 3724 mt 1669 3704 L
Xc32
X64 -32 24 18 1654 3708 3 MP
XPP
X0 sg
X1654 3708 mt 1678 3726 L
X1678 3726 mt 1742 3694 L
Xc30
X64 0 25 -13 1580 3717 3 MP
XPP
X0 sg
X1580 3717 mt 1605 3704 L
X1605 3704 mt 1669 3704 L
Xc31
X24 -14 64 0 1605 3704 3 MP
XPP
X0 sg
X1605 3704 mt 1669 3704 L
X1669 3704 mt 1693 3690 L
Xc32
X24 8 64 -22 1654 3708 3 MP
XPP
X0 sg
X1654 3708 mt 1718 3686 L
X1718 3686 mt 1742 3694 L
Xc13
X24 5 64 -18 1650 3484 3 MP
XPP
X0 sg
X1650 3484 mt 1714 3466 L
X1714 3466 mt 1738 3471 L
Xc13
X63 -18 25 5 1650 3484 3 MP
XPP
X0 sg
X1650 3484 mt 1675 3489 L
X1675 3489 mt 1738 3471 L
Xc9
X25 24 64 -17 1649 3653 3 MP
XPP
X0 sg
X1649 3653 mt 1713 3636 L
X1713 3636 mt 1738 3660 L
Xc9
X64 -18 25 25 1649 3653 3 MP
XPP
X0 sg
X1649 3653 mt 1674 3678 L
X1674 3678 mt 1738 3660 L
Xc15
X25 26 64 -55 1648 3937 3 MP
XPP
X0 sg
X1648 3937 mt 1712 3882 L
X1712 3882 mt 1737 3908 L
Xc15
X64 -47 25 18 1648 3937 3 MP
XPP
X0 sg
X1648 3937 mt 1673 3955 L
X1673 3955 mt 1737 3908 L
Xc23
X24 2 64 -17 1645 3521 3 MP
XPP
X0 sg
X1645 3521 mt 1709 3504 L
X1709 3504 mt 1733 3506 L
Xc23
X64 -17 24 2 1645 3521 3 MP
XPP
X0 sg
X1645 3521 mt 1669 3523 L
X1669 3523 mt 1733 3506 L
Xc29
X24 13 64 -15 1640 3584 3 MP
XPP
X0 sg
X1640 3584 mt 1704 3569 L
X1704 3569 mt 1728 3582 L
Xc29
X64 -14 24 12 1640 3584 3 MP
XPP
X0 sg
X1640 3584 mt 1664 3596 L
X1664 3596 mt 1728 3582 L
Xc30
X64 -41 24 30 1639 3794 3 MP
XPP
X0 sg
X1639 3794 mt 1663 3824 L
X1663 3824 mt 1727 3783 L
Xc30
X24 31 64 -42 1639 3794 3 MP
XPP
X0 sg
X1639 3794 mt 1703 3752 L
X1703 3752 mt 1727 3783 L
Xc15
X25 -1 64 -14 1635 3505 3 MP
XPP
X0 sg
X1635 3505 mt 1699 3491 L
X1699 3491 mt 1724 3490 L
Xc15
X64 -15 25 0 1635 3505 3 MP
XPP
X0 sg
X1635 3505 mt 1660 3505 L
X1660 3505 mt 1724 3490 L
Xc18
X24 7 64 -18 1630 3545 3 MP
XPP
X0 sg
X1630 3545 mt 1694 3527 L
X1694 3527 mt 1718 3534 L
Xc18
X64 -17 24 6 1630 3545 3 MP
XPP
X0 sg
X1630 3545 mt 1654 3551 L
X1654 3551 mt 1718 3534 L
Xc32
X25 -4 64 -11 1629 3701 3 MP
XPP
X0 sg
X1629 3701 mt 1693 3690 L
X1693 3690 mt 1718 3686 L
Xc32
X64 -22 25 7 1629 3701 3 MP
XPP
X0 sg
X1629 3701 mt 1654 3708 L
X1654 3708 mt 1718 3686 L
Xc13
X25 8 63 -17 1626 3475 3 MP
XPP
X0 sg
X1626 3475 mt 1689 3458 L
X1689 3458 mt 1714 3466 L
Xc13
X64 -18 24 9 1626 3475 3 MP
XPP
X0 sg
X1626 3475 mt 1650 3484 L
X1650 3484 mt 1714 3466 L
Xc29
X24 23 64 -18 1625 3631 3 MP
XPP
X0 sg
X1625 3631 mt 1689 3613 L
X1689 3613 mt 1713 3636 L
Xc29
X64 -17 24 22 1625 3631 3 MP
XPP
X0 sg
X1625 3631 mt 1649 3653 L
X1649 3653 mt 1713 3636 L
Xc22
X24 28 64 -63 1624 3917 3 MP
XPP
X0 sg
X1624 3917 mt 1688 3854 L
X1688 3854 mt 1712 3882 L
Xc22
X64 -55 24 20 1624 3917 3 MP
XPP
X0 sg
X1624 3917 mt 1648 3937 L
X1648 3937 mt 1712 3882 L
Xc19
X25 0 64 -17 1620 3521 3 MP
XPP
X0 sg
X1620 3521 mt 1684 3504 L
X1684 3504 mt 1709 3504 L
Xc19
X64 -17 25 0 1620 3521 3 MP
XPP
X0 sg
X1620 3521 mt 1645 3521 L
X1645 3521 mt 1709 3504 L
Xc29
X25 10 64 -17 1615 3576 3 MP
XPP
X0 sg
X1615 3576 mt 1679 3559 L
X1679 3559 mt 1704 3569 L
Xc29
X64 -15 25 8 1615 3576 3 MP
XPP
X0 sg
X1615 3576 mt 1640 3584 L
X1640 3584 mt 1704 3569 L
Xc25
X64 -42 25 28 1614 3766 3 MP
XPP
X0 sg
X1614 3766 mt 1639 3794 L
X1639 3794 mt 1703 3752 L
Xc25
X25 26 64 -40 1614 3766 3 MP
XPP
X0 sg
X1614 3766 mt 1678 3726 L
X1678 3726 mt 1703 3752 L
Xc34
X24 2 64 -16 1611 3505 3 MP
XPP
X0 sg
X1611 3505 mt 1675 3489 L
X1675 3489 mt 1699 3491 L
Xc34
X64 -14 24 0 1611 3505 3 MP
XPP
X0 sg
X1611 3505 mt 1635 3505 L
X1635 3505 mt 1699 3491 L
Xc9
X64 -18 25 4 1605 3541 3 MP
XPP
X0 sg
X1605 3541 mt 1630 3545 L
X1630 3545 mt 1694 3527 L
Xc9
X25 4 64 -18 1605 3541 3 MP
XPP
X0 sg
X1605 3541 mt 1669 3523 L
X1669 3523 mt 1694 3527 L
Xc31
X64 -11 24 -3 1605 3704 3 MP
XPP
X0 sg
X1605 3704 mt 1629 3701 L
X1629 3701 mt 1693 3690 L
Xc29
X25 17 64 -18 1600 3614 3 MP
XPP
X0 sg
X1600 3614 mt 1664 3596 L
X1664 3596 mt 1689 3613 L
Xc29
X64 -18 25 17 1600 3614 3 MP
XPP
X0 sg
X1600 3614 mt 1625 3631 L
X1625 3631 mt 1689 3613 L
Xc12
X25 30 64 -72 1599 3896 3 MP
XPP
X0 sg
X1599 3896 mt 1663 3824 L
X1663 3824 mt 1688 3854 L
Xc12
X64 -63 25 21 1599 3896 3 MP
XPP
X0 sg
X1599 3896 mt 1624 3917 L
X1624 3917 mt 1688 3854 L
Xc12
X24 -1 64 -17 1596 3522 3 MP
XPP
X0 sg
X1596 3522 mt 1660 3505 L
X1660 3505 mt 1684 3504 L
Xc12
X64 -17 24 -1 1596 3522 3 MP
XPP
X0 sg
X1596 3522 mt 1620 3521 L
X1620 3521 mt 1684 3504 L
Xc18
X64 -17 24 6 1591 3570 3 MP
XPP
X0 sg
X1591 3570 mt 1615 3576 L
X1615 3576 mt 1679 3559 L
Xc18
X25 8 63 -19 1591 3570 3 MP
XPP
X0 sg
X1591 3570 mt 1654 3551 L
X1654 3551 mt 1679 3559 L
Xc22
X63 -11 25 4 1482 3754 3 MP
XPP
X0 sg
X1482 3754 mt 1507 3758 L
X1507 3758 mt 1570 3747 L
Xc22
X24 18 64 -25 1482 3754 3 MP
XPP
X0 sg
X1482 3754 mt 1546 3729 L
X1546 3729 mt 1570 3747 L
Xc23
X64 7 25 -16 1531 3751 3 MP
XPP
X0 sg
X1531 3751 mt 1556 3735 L
X1556 3735 mt 1620 3742 L
Xc29
X64 7 24 -18 1556 3735 3 MP
XPP
X0 sg
X1556 3735 mt 1580 3717 L
X1580 3717 mt 1644 3724 L
Xc29
X24 -18 64 7 1556 3735 3 MP
XPP
X0 sg
X1556 3735 mt 1620 3742 L
X1620 3742 mt 1644 3724 L
Xc31
X24 18 64 -34 1590 3742 3 MP
XPP
X0 sg
X1590 3742 mt 1654 3708 L
X1654 3708 mt 1678 3726 L
Xc12
X25 4 63 -11 1507 3758 3 MP
XPP
X0 sg
X1507 3758 mt 1570 3747 L
X1570 3747 mt 1595 3751 L
Xc23
X25 -9 64 0 1531 3751 3 MP
XPP
X0 sg
X1531 3751 mt 1595 3751 L
X1595 3751 mt 1620 3742 L
Xc31
X64 -40 24 24 1590 3742 3 MP
XPP
X0 sg
X1590 3742 mt 1614 3766 L
X1614 3766 mt 1678 3726 L
Xc13
X25 5 64 -19 1586 3503 3 MP
XPP
X0 sg
X1586 3503 mt 1650 3484 L
X1650 3484 mt 1675 3489 L
Xc13
X64 -16 25 2 1586 3503 3 MP
XPP
X0 sg
X1586 3503 mt 1611 3505 L
X1611 3505 mt 1675 3489 L
Xc9
X25 25 64 -21 1585 3674 3 MP
XPP
X0 sg
X1585 3674 mt 1649 3653 L
X1649 3653 mt 1674 3678 L
Xc9
X64 -19 25 23 1585 3674 3 MP
XPP
X0 sg
X1585 3674 mt 1610 3697 L
X1610 3697 mt 1674 3678 L
Xc23
X64 -18 24 2 1581 3539 3 MP
XPP
X0 sg
X1581 3539 mt 1605 3541 L
X1605 3541 mt 1669 3523 L
Xc23
X24 2 64 -18 1581 3539 3 MP
XPP
X0 sg
X1581 3539 mt 1645 3521 L
X1645 3521 mt 1669 3523 L
Xc29
X64 -18 24 12 1576 3602 3 MP
XPP
X0 sg
X1576 3602 mt 1600 3614 L
X1600 3614 mt 1664 3596 L
Xc29
X24 12 64 -18 1576 3602 3 MP
XPP
X0 sg
X1576 3602 mt 1640 3584 L
X1640 3584 mt 1664 3596 L
Xc19
X24 30 64 -79 1575 3873 3 MP
XPP
X0 sg
X1575 3873 mt 1639 3794 L
X1639 3794 mt 1663 3824 L
Xc19
X64 -72 24 23 1575 3873 3 MP
XPP
X0 sg
X1575 3873 mt 1599 3896 L
X1599 3896 mt 1663 3824 L
Xc15
X25 0 64 -17 1571 3522 3 MP
XPP
X0 sg
X1571 3522 mt 1635 3505 L
X1635 3505 mt 1660 3505 L
Xc15
X64 -17 25 0 1571 3522 3 MP
XPP
X0 sg
X1571 3522 mt 1596 3522 L
X1596 3522 mt 1660 3505 L
Xc18
X63 -19 25 4 1566 3566 3 MP
XPP
X0 sg
X1566 3566 mt 1591 3570 L
X1591 3570 mt 1654 3551 L
Xc18
X24 6 64 -21 1566 3566 3 MP
XPP
X0 sg
X1566 3566 mt 1630 3545 L
X1630 3545 mt 1654 3551 L
Xc12
X25 28 63 -37 1458 3738 3 MP
XPP
X0 sg
X1458 3738 mt 1521 3701 L
X1521 3701 mt 1546 3729 L
Xc12
X64 -25 24 16 1458 3738 3 MP
XPP
X0 sg
X1458 3738 mt 1482 3754 L
X1482 3754 mt 1546 3729 L
Xc23
X64 -32 25 28 1521 3701 3 MP
XPP
X0 sg
X1521 3701 mt 1546 3729 L
X1546 3729 mt 1610 3697 L
Xc30
X24 -18 64 12 1492 3723 3 MP
XPP
X0 sg
X1492 3723 mt 1556 3735 L
X1556 3735 mt 1580 3717 L
Xc16
X25 7 64 -24 1565 3725 3 MP
XPP
X0 sg
X1565 3725 mt 1629 3701 L
X1629 3701 mt 1654 3708 L
Xc16
X64 -34 25 17 1565 3725 3 MP
XPP
X0 sg
X1565 3725 mt 1590 3742 L
X1590 3742 mt 1654 3708 L
Xc21
X64 -19 24 4 1562 3499 3 MP
XPP
X0 sg
X1562 3499 mt 1586 3503 L
X1586 3503 mt 1650 3484 L
Xc21
X24 9 64 -24 1562 3499 3 MP
XPP
X0 sg
X1562 3499 mt 1626 3475 L
X1626 3475 mt 1650 3484 L
Xc18
X64 -21 24 22 1561 3652 3 MP
XPP
X0 sg
X1561 3652 mt 1585 3674 L
X1585 3674 mt 1649 3653 L
Xc18
X24 22 64 -21 1561 3652 3 MP
XPP
X0 sg
X1561 3652 mt 1625 3631 L
X1625 3631 mt 1649 3653 L
Xc19
X25 0 64 -17 1556 3538 3 MP
XPP
X0 sg
X1556 3538 mt 1620 3521 L
X1620 3521 mt 1645 3521 L
Xc19
X64 -18 25 1 1556 3538 3 MP
XPP
X0 sg
X1556 3538 mt 1581 3539 L
X1581 3539 mt 1645 3521 L
Xc29
X64 -18 25 8 1551 3594 3 MP
XPP
X0 sg
X1551 3594 mt 1576 3602 L
X1576 3602 mt 1640 3584 L
Xc29
X25 8 64 -18 1551 3594 3 MP
XPP
X0 sg
X1551 3594 mt 1615 3576 L
X1615 3576 mt 1640 3584 L
Xc23
X25 28 64 -83 1550 3849 3 MP
XPP
X0 sg
X1550 3849 mt 1614 3766 L
X1614 3766 mt 1639 3794 L
Xc23
X64 -79 25 24 1550 3849 3 MP
XPP
X0 sg
X1550 3849 mt 1575 3873 L
X1575 3873 mt 1639 3794 L
Xc34
X24 0 64 -17 1547 3522 3 MP
XPP
X0 sg
X1547 3522 mt 1611 3505 L
X1611 3505 mt 1635 3505 L
Xc34
X64 -17 24 0 1547 3522 3 MP
XPP
X0 sg
X1547 3522 mt 1571 3522 L
X1571 3522 mt 1635 3505 L
Xc9
X64 -21 24 4 1542 3562 3 MP
XPP
X0 sg
X1542 3562 mt 1566 3566 L
X1566 3566 mt 1630 3545 L
Xc9
X25 4 63 -21 1542 3562 3 MP
XPP
X0 sg
X1542 3562 mt 1605 3541 L
X1605 3541 mt 1630 3545 L
Xc30
X64 0 24 -6 1492 3723 3 MP
XPP
X0 sg
X1492 3723 mt 1516 3717 L
X1516 3717 mt 1580 3717 L
Xc25
X25 -13 64 0 1516 3717 3 MP
XPP
X0 sg
X1516 3717 mt 1580 3717 L
X1580 3717 mt 1605 3704 L
Xc31
X24 -3 64 -13 1541 3717 3 MP
XPP
X0 sg
X1541 3717 mt 1605 3704 L
X1605 3704 mt 1629 3701 L
Xc31
X64 -24 24 8 1541 3717 3 MP
XPP
X0 sg
X1541 3717 mt 1565 3725 L
X1565 3725 mt 1629 3701 L
Xc29
X64 -21 25 19 1536 3633 3 MP
XPP
X0 sg
X1536 3633 mt 1561 3652 L
X1561 3652 mt 1625 3631 L
Xc29
X25 17 64 -19 1536 3633 3 MP
XPP
X0 sg
X1536 3633 mt 1600 3614 L
X1600 3614 mt 1625 3631 L
Xc12
X24 -1 64 -17 1532 3539 3 MP
XPP
X0 sg
X1532 3539 mt 1596 3522 L
X1596 3522 mt 1620 3521 L
Xc12
X64 -17 24 -1 1532 3539 3 MP
XPP
X0 sg
X1532 3539 mt 1556 3538 L
X1556 3538 mt 1620 3521 L
Xc18
X24 6 64 -18 1527 3588 3 MP
XPP
X0 sg
X1527 3588 mt 1591 3570 L
X1591 3570 mt 1615 3576 L
Xc18
X64 -18 24 6 1527 3588 3 MP
XPP
X0 sg
X1527 3588 mt 1551 3594 L
X1551 3594 mt 1615 3576 L
Xc12
X64 0 24 -7 1507 3758 3 MP
XPP
X0 sg
X1507 3758 mt 1531 3751 L
X1531 3751 mt 1595 3751 L
Xc18
X24 24 64 -83 1526 3825 3 MP
XPP
X0 sg
X1526 3825 mt 1590 3742 L
X1590 3742 mt 1614 3766 L
Xc18
X64 -83 24 24 1526 3825 3 MP
XPP
X0 sg
X1526 3825 mt 1550 3849 L
X1550 3849 mt 1614 3766 L
Xc13
X64 -17 25 2 1522 3520 3 MP
XPP
X0 sg
X1522 3520 mt 1547 3522 L
X1547 3522 mt 1611 3505 L
Xc13
X25 2 64 -17 1522 3520 3 MP
XPP
X0 sg
X1522 3520 mt 1586 3503 L
X1586 3503 mt 1611 3505 L
Xc23
X25 23 64 -27 1521 3701 3 MP
XPP
X0 sg
X1521 3701 mt 1585 3674 L
X1585 3674 mt 1610 3697 L
Xc23
X24 2 64 -20 1517 3559 3 MP
XPP
X0 sg
X1517 3559 mt 1581 3539 L
X1581 3539 mt 1605 3541 L
Xc23
X63 -21 25 3 1517 3559 3 MP
XPP
X0 sg
X1517 3559 mt 1542 3562 L
X1542 3562 mt 1605 3541 L
Xc25
X64 -13 25 0 1516 3717 3 MP
XPP
X0 sg
X1516 3717 mt 1541 3717 L
X1541 3717 mt 1605 3704 L
Xc29
X24 12 64 -17 1512 3619 3 MP
XPP
X0 sg
X1512 3619 mt 1576 3602 L
X1576 3602 mt 1600 3614 L
Xc29
X64 -19 24 14 1512 3619 3 MP
XPP
X0 sg
X1512 3619 mt 1536 3633 L
X1536 3633 mt 1600 3614 L
Xc15
X64 -17 25 -1 1507 3540 3 MP
XPP
X0 sg
X1507 3540 mt 1532 3539 L
X1532 3539 mt 1596 3522 L
Xc15
X25 0 64 -18 1507 3540 3 MP
XPP
X0 sg
X1507 3540 mt 1571 3522 L
X1571 3522 mt 1596 3522 L
Xc18
X64 -18 25 5 1502 3583 3 MP
XPP
X0 sg
X1502 3583 mt 1527 3588 L
X1527 3588 mt 1591 3570 L
Xc18
X25 4 64 -17 1502 3583 3 MP
XPP
X0 sg
X1502 3583 mt 1566 3566 L
X1566 3566 mt 1591 3570 L
Xc29
X25 17 64 -76 1501 3801 3 MP
XPP
X0 sg
X1501 3801 mt 1565 3725 L
X1565 3725 mt 1590 3742 L
Xc29
X64 -83 25 24 1501 3801 3 MP
XPP
X0 sg
X1501 3801 mt 1526 3825 L
X1526 3825 mt 1590 3742 L
Xc21
X24 4 64 -17 1498 3516 3 MP
XPP
X0 sg
X1498 3516 mt 1562 3499 L
X1562 3499 mt 1586 3503 L
Xc21
X64 -17 24 4 1498 3516 3 MP
XPP
X0 sg
X1498 3516 mt 1522 3520 L
X1522 3520 mt 1586 3503 L
Xc18
X64 -27 24 31 1497 3670 3 MP
XPP
X0 sg
X1497 3670 mt 1521 3701 L
X1521 3701 mt 1585 3674 L
Xc18
X24 22 64 -18 1497 3670 3 MP
XPP
X0 sg
X1497 3670 mt 1561 3652 L
X1561 3652 mt 1585 3674 L
Xc19
X25 1 64 -19 1492 3557 3 MP
XPP
X0 sg
X1492 3557 mt 1556 3538 L
X1556 3538 mt 1581 3539 L
Xc19
X64 -20 25 2 1492 3557 3 MP
XPP
X0 sg
X1492 3557 mt 1517 3559 L
X1517 3559 mt 1581 3539 L
Xc29
X64 -17 25 10 1487 3609 3 MP
XPP
X0 sg
X1487 3609 mt 1512 3619 L
X1512 3619 mt 1576 3602 L
Xc29
X25 8 64 -15 1487 3609 3 MP
XPP
X0 sg
X1487 3609 mt 1551 3594 L
X1551 3594 mt 1576 3602 L
Xc34
X64 -18 24 1 1483 3539 3 MP
XPP
X0 sg
X1483 3539 mt 1507 3540 L
X1507 3540 mt 1571 3522 L
Xc34
X24 0 64 -17 1483 3539 3 MP
XPP
X0 sg
X1483 3539 mt 1547 3522 L
X1547 3522 mt 1571 3522 L
Xc9
X64 -17 24 3 1478 3580 3 MP
XPP
X0 sg
X1478 3580 mt 1502 3583 L
X1502 3583 mt 1566 3566 L
Xc9
X24 4 64 -18 1478 3580 3 MP
XPP
X0 sg
X1478 3580 mt 1542 3562 L
X1542 3562 mt 1566 3566 L
Xc19
X64 1 25 9 1369 3728 3 MP
XPP
X0 sg
X1369 3728 mt 1394 3737 L
X1394 3737 mt 1458 3738 L
Xc19
X25 26 64 -16 1369 3728 3 MP
XPP
X0 sg
X1369 3728 mt 1433 3712 L
X1433 3712 mt 1458 3738 L
Xc23
X24 16 64 1 1394 3737 3 MP
XPP
X0 sg
X1394 3737 mt 1458 3738 L
X1458 3738 mt 1482 3754 L
Xc19
X63 -37 25 26 1433 3712 3 MP
XPP
X0 sg
X1433 3712 mt 1458 3738 L
X1458 3738 mt 1521 3701 L
Xc18
X64 20 24 -7 1443 3738 3 MP
XPP
X0 sg
X1443 3738 mt 1467 3731 L
X1467 3731 mt 1531 3751 L
Xc18
X24 -7 64 20 1443 3738 3 MP
XPP
X0 sg
X1443 3738 mt 1507 3758 L
X1507 3758 mt 1531 3751 L
Xc26
X25 -16 64 20 1467 3731 3 MP
XPP
X0 sg
X1467 3731 mt 1531 3751 L
X1531 3751 mt 1556 3735 L
Xc26
X64 12 25 -8 1467 3731 3 MP
XPP
X0 sg
X1467 3731 mt 1492 3723 L
X1492 3723 mt 1556 3735 L
Xc17
X64 -76 24 23 1477 3778 3 MP
XPP
X0 sg
X1477 3778 mt 1501 3801 L
X1501 3801 mt 1565 3725 L
Xc9
X25 4 64 13 1418 3741 3 MP
XPP
X0 sg
X1418 3741 mt 1482 3754 L
X1482 3754 mt 1507 3758 L
Xc9
X64 20 25 -3 1418 3741 3 MP
XPP
X0 sg
X1418 3741 mt 1443 3738 L
X1443 3738 mt 1507 3758 L
Xc17
X24 8 64 -61 1477 3778 3 MP
XPP
X0 sg
X1477 3778 mt 1541 3717 L
X1541 3717 mt 1565 3725 L
Xc26
X25 19 64 -9 1472 3642 3 MP
XPP
X0 sg
X1472 3642 mt 1536 3633 L
X1536 3633 mt 1561 3652 L
Xc26
X64 -18 25 28 1472 3642 3 MP
XPP
X0 sg
X1472 3642 mt 1497 3670 L
X1497 3670 mt 1561 3652 L
Xc12
X64 -19 24 2 1468 3555 3 MP
XPP
X0 sg
X1468 3555 mt 1492 3557 L
X1492 3557 mt 1556 3538 L
Xc12
X24 -1 64 -16 1468 3555 3 MP
XPP
X0 sg
X1468 3555 mt 1532 3539 L
X1532 3539 mt 1556 3538 L
Xc29
X24 6 64 -14 1463 3602 3 MP
XPP
X0 sg
X1463 3602 mt 1527 3588 L
X1527 3588 mt 1551 3594 L
Xc29
X64 -15 24 7 1463 3602 3 MP
XPP
X0 sg
X1463 3602 mt 1487 3609 L
X1487 3609 mt 1551 3594 L
Xc13
X64 -17 25 2 1458 3537 3 MP
XPP
X0 sg
X1458 3537 mt 1483 3539 L
X1483 3539 mt 1547 3522 L
Xc13
X25 2 64 -17 1458 3537 3 MP
XPP
X0 sg
X1458 3537 mt 1522 3520 L
X1522 3520 mt 1547 3522 L
Xc23
X64 -18 25 3 1453 3577 3 MP
XPP
X0 sg
X1453 3577 mt 1478 3580 L
X1478 3580 mt 1542 3562 L
Xc23
X25 3 64 -18 1453 3577 3 MP
XPP
X0 sg
X1453 3577 mt 1517 3559 L
X1517 3559 mt 1542 3562 L
Xc23
X64 13 24 4 1394 3737 3 MP
XPP
X0 sg
X1394 3737 mt 1418 3741 L
X1418 3741 mt 1482 3754 L
Xc30
X25 0 64 -41 1452 3758 3 MP
XPP
X0 sg
X1452 3758 mt 1516 3717 L
X1516 3717 mt 1541 3717 L
Xc30
X64 -61 25 20 1452 3758 3 MP
XPP
X0 sg
X1452 3758 mt 1477 3778 L
X1477 3778 mt 1541 3717 L
Xc17
X64 -9 24 20 1448 3622 3 MP
XPP
X0 sg
X1448 3622 mt 1472 3642 L
X1472 3642 mt 1536 3633 L
Xc17
X24 14 64 -3 1448 3622 3 MP
XPP
X0 sg
X1448 3622 mt 1512 3619 L
X1512 3619 mt 1536 3633 L
Xc22
X64 -16 25 3 1443 3552 3 MP
XPP
X0 sg
X1443 3552 mt 1468 3555 L
X1468 3555 mt 1532 3539 L
Xc22
X25 -1 64 -12 1443 3552 3 MP
XPP
X0 sg
X1443 3552 mt 1507 3540 L
X1507 3540 mt 1532 3539 L
Xc18
X64 -14 25 4 1438 3598 3 MP
XPP
X0 sg
X1438 3598 mt 1463 3602 L
X1463 3602 mt 1527 3588 L
Xc18
X25 5 64 -15 1438 3598 3 MP
XPP
X0 sg
X1438 3598 mt 1502 3583 L
X1502 3583 mt 1527 3588 L
Xc21
X64 -17 24 4 1434 3533 3 MP
XPP
X0 sg
X1434 3533 mt 1458 3537 L
X1458 3537 mt 1522 3520 L
Xc21
X24 4 64 -17 1434 3533 3 MP
XPP
X0 sg
X1434 3533 mt 1498 3516 L
X1498 3516 mt 1522 3520 L
Xc19
X24 31 64 -42 1433 3712 3 MP
XPP
X0 sg
X1433 3712 mt 1497 3670 L
X1497 3670 mt 1521 3701 L
Xc19
X64 -18 24 3 1429 3574 3 MP
XPP
X0 sg
X1429 3574 mt 1453 3577 L
X1453 3577 mt 1517 3559 L
Xc19
X25 2 63 -17 1429 3574 3 MP
XPP
X0 sg
X1429 3574 mt 1492 3557 L
X1492 3557 mt 1517 3559 L
Xc23
X63 -32 25 14 1320 3701 3 MP
XPP
X0 sg
X1320 3701 mt 1345 3715 L
X1345 3715 mt 1408 3683 L
Xc23
X64 -16 24 13 1345 3715 3 MP
XPP
X0 sg
X1345 3715 mt 1369 3728 L
X1369 3728 mt 1433 3712 L
Xc23
X25 29 63 -32 1345 3715 3 MP
XPP
X0 sg
X1345 3715 mt 1408 3683 L
X1408 3683 mt 1433 3712 L
Xc30
X25 -3 64 32 1354 3709 3 MP
XPP
X0 sg
X1354 3709 mt 1418 3741 L
X1418 3741 mt 1443 3738 L
Xc30
X64 21 25 8 1354 3709 3 MP
XPP
X0 sg
X1354 3709 mt 1379 3717 L
X1379 3717 mt 1443 3738 L
Xc30
X24 -7 64 21 1379 3717 3 MP
XPP
X0 sg
X1379 3717 mt 1443 3738 L
X1443 3738 mt 1467 3731 L
Xc30
X64 4 24 10 1379 3717 3 MP
XPP
X0 sg
X1379 3717 mt 1403 3727 L
X1403 3727 mt 1467 3731 L
Xc30
X25 -8 64 4 1403 3727 3 MP
XPP
X0 sg
X1403 3727 mt 1467 3731 L
X1467 3731 mt 1492 3723 L
Xc30
X24 -6 64 -18 1428 3741 3 MP
XPP
X0 sg
X1428 3741 mt 1492 3723 L
X1492 3723 mt 1516 3717 L
Xc30
X64 -41 24 17 1428 3741 3 MP
XPP
X0 sg
X1428 3741 mt 1452 3758 L
X1452 3758 mt 1516 3717 L
Xc17
X64 -3 25 11 1423 3611 3 MP
XPP
X0 sg
X1423 3611 mt 1448 3622 L
X1448 3622 mt 1512 3619 L
Xc17
X25 10 64 -2 1423 3611 3 MP
XPP
X0 sg
X1423 3611 mt 1487 3609 L
X1487 3609 mt 1512 3619 L
Xc15
X24 1 64 -10 1419 3549 3 MP
XPP
X0 sg
X1419 3549 mt 1483 3539 L
X1483 3539 mt 1507 3540 L
Xc15
X64 -12 24 3 1419 3549 3 MP
XPP
X0 sg
X1419 3549 mt 1443 3552 L
X1443 3552 mt 1507 3540 L
Xc9
X24 3 64 -15 1414 3595 3 MP
XPP
X0 sg
X1414 3595 mt 1478 3580 L
X1478 3580 mt 1502 3583 L
Xc9
X64 -15 24 3 1414 3595 3 MP
XPP
X0 sg
X1414 3595 mt 1438 3598 L
X1438 3598 mt 1502 3583 L
Xc9
X64 -42 25 29 1408 3683 3 MP
XPP
X0 sg
X1408 3683 mt 1433 3712 L
X1433 3712 mt 1497 3670 L
Xc9
X25 28 64 -41 1408 3683 3 MP
XPP
X0 sg
X1408 3683 mt 1472 3642 L
X1472 3642 mt 1497 3670 L
Xc12
X63 -17 25 2 1404 3572 3 MP
XPP
X0 sg
X1404 3572 mt 1429 3574 L
X1429 3574 mt 1492 3557 L
Xc12
X24 2 64 -17 1404 3572 3 MP
XPP
X0 sg
X1404 3572 mt 1468 3555 L
X1468 3555 mt 1492 3557 L
Xc30
X64 -18 25 14 1403 3727 3 MP
XPP
X0 sg
X1403 3727 mt 1428 3741 L
X1428 3741 mt 1492 3723 L
Xc18
X25 4 64 -14 1374 3612 3 MP
XPP
X0 sg
X1374 3612 mt 1438 3598 L
X1438 3598 mt 1463 3602 L
Xc18
X64 -7 25 -3 1374 3612 3 MP
XPP
X0 sg
X1374 3612 mt 1399 3609 L
X1399 3609 mt 1463 3602 L
Xc26
X64 -2 24 2 1399 3609 3 MP
XPP
X0 sg
X1399 3609 mt 1423 3611 L
X1423 3611 mt 1487 3609 L
Xc26
X24 7 64 -7 1399 3609 3 MP
XPP
X0 sg
X1399 3609 mt 1463 3602 L
X1463 3602 mt 1487 3609 L
Xc34
X25 2 64 -9 1394 3546 3 MP
XPP
X0 sg
X1394 3546 mt 1458 3537 L
X1458 3537 mt 1483 3539 L
Xc34
X64 -10 25 3 1394 3546 3 MP
XPP
X0 sg
X1394 3546 mt 1419 3549 L
X1419 3549 mt 1483 3539 L
Xc23
X25 3 64 -16 1389 3593 3 MP
XPP
X0 sg
X1389 3593 mt 1453 3577 L
X1453 3577 mt 1478 3580 L
Xc23
X64 -15 25 2 1389 3593 3 MP
XPP
X0 sg
X1389 3593 mt 1414 3595 L
X1414 3595 mt 1478 3580 L
Xc29
X64 -41 24 28 1384 3655 3 MP
XPP
X0 sg
X1384 3655 mt 1408 3683 L
X1408 3683 mt 1472 3642 L
Xc29
X24 20 64 -33 1384 3655 3 MP
XPP
X0 sg
X1384 3655 mt 1448 3622 L
X1448 3622 mt 1472 3642 L
Xc22
X25 3 63 -18 1380 3570 3 MP
XPP
X0 sg
X1380 3570 mt 1443 3552 L
X1443 3552 mt 1468 3555 L
Xc22
X64 -17 24 2 1380 3570 3 MP
XPP
X0 sg
X1380 3570 mt 1404 3572 L
X1404 3572 mt 1468 3555 L
Xc13
X24 4 64 -8 1370 3541 3 MP
XPP
X0 sg
X1370 3541 mt 1434 3533 L
X1434 3533 mt 1458 3537 L
Xc13
X64 -9 24 5 1370 3541 3 MP
XPP
X0 sg
X1370 3541 mt 1394 3546 L
X1394 3546 mt 1458 3537 L
Xc19
X64 -16 24 1 1365 3592 3 MP
XPP
X0 sg
X1365 3592 mt 1389 3593 L
X1389 3593 mt 1453 3577 L
Xc19
X24 3 64 -18 1365 3592 3 MP
XPP
X0 sg
X1365 3592 mt 1429 3574 L
X1429 3574 mt 1453 3577 L
Xc26
X25 11 64 -23 1359 3634 3 MP
XPP
X0 sg
X1359 3634 mt 1423 3611 L
X1423 3611 mt 1448 3622 L
Xc26
X64 -33 25 21 1359 3634 3 MP
XPP
X0 sg
X1359 3634 mt 1384 3655 L
X1384 3655 mt 1448 3622 L
Xc15
X63 -18 25 3 1355 3567 3 MP
XPP
X0 sg
X1355 3567 mt 1380 3570 L
X1380 3570 mt 1443 3552 L
Xc15
X24 3 64 -18 1355 3567 3 MP
XPP
X0 sg
X1355 3567 mt 1419 3549 L
X1419 3549 mt 1443 3552 L
Xc23
X24 3 64 -21 1350 3616 3 MP
XPP
X0 sg
X1350 3616 mt 1414 3595 L
X1414 3595 mt 1438 3598 L
Xc23
X64 -14 24 -4 1350 3616 3 MP
XPP
X0 sg
X1350 3616 mt 1374 3612 L
X1374 3612 mt 1438 3598 L
Xc12
X25 2 64 -18 1340 3590 3 MP
XPP
X0 sg
X1340 3590 mt 1404 3572 L
X1404 3572 mt 1429 3574 L
Xc12
X64 -18 25 2 1340 3590 3 MP
XPP
X0 sg
X1340 3590 mt 1365 3592 L
X1365 3592 mt 1429 3574 L
Xc26
X24 2 64 -11 1335 3620 3 MP
XPP
X0 sg
X1335 3620 mt 1399 3609 L
X1399 3609 mt 1423 3611 L
Xc26
X64 -23 24 14 1335 3620 3 MP
XPP
X0 sg
X1335 3620 mt 1359 3634 L
X1359 3634 mt 1423 3611 L
Xc34
X25 3 63 -17 1331 3563 3 MP
XPP
X0 sg
X1331 3563 mt 1394 3546 L
X1394 3546 mt 1419 3549 L
Xc34
X64 -18 24 4 1331 3563 3 MP
XPP
X0 sg
X1331 3563 mt 1355 3567 L
X1355 3567 mt 1419 3549 L
Xc17
X24 4 64 33 1330 3704 3 MP
XPP
X0 sg
X1330 3704 mt 1394 3737 L
X1394 3737 mt 1418 3741 L
Xc17
X64 32 24 5 1330 3704 3 MP
XPP
X0 sg
X1330 3704 mt 1354 3709 L
X1354 3709 mt 1418 3741 L
Xc19
X64 -21 25 -5 1325 3621 3 MP
XPP
X0 sg
X1325 3621 mt 1350 3616 L
X1350 3616 mt 1414 3595 L
Xc19
X25 2 64 -28 1325 3621 3 MP
XPP
X0 sg
X1325 3621 mt 1389 3593 L
X1389 3593 mt 1414 3595 L
Xc23
X24 28 64 -46 1320 3701 3 MP
XPP
X0 sg
X1320 3701 mt 1384 3655 L
X1384 3655 mt 1408 3683 L
Xc22
X24 2 64 -19 1316 3589 3 MP
XPP
X0 sg
X1316 3589 mt 1380 3570 L
X1380 3570 mt 1404 3572 L
Xc22
X64 -18 24 1 1316 3589 3 MP
XPP
X0 sg
X1316 3589 mt 1340 3590 L
X1340 3590 mt 1404 3572 L
Xc13
X64 -31 25 6 1227 3614 3 MP
XPP
X0 sg
X1227 3614 mt 1252 3620 L
X1252 3620 mt 1316 3589 L
Xc34
X24 1 64 -31 1252 3620 3 MP
XPP
X0 sg
X1252 3620 mt 1316 3589 L
X1316 3589 mt 1340 3590 L
Xc34
X64 -33 24 3 1252 3620 3 MP
XPP
X0 sg
X1252 3620 mt 1276 3623 L
X1276 3623 mt 1340 3590 L
Xc15
X64 -31 25 0 1276 3623 3 MP
XPP
X0 sg
X1276 3623 mt 1301 3623 L
X1301 3623 mt 1365 3592 L
Xc15
X25 2 64 -33 1276 3623 3 MP
XPP
X0 sg
X1276 3623 mt 1340 3590 L
X1340 3590 mt 1365 3592 L
Xc22
X64 -28 24 -2 1301 3623 3 MP
XPP
X0 sg
X1301 3623 mt 1325 3621 L
X1325 3621 mt 1389 3593 L
Xc22
X24 1 64 -31 1301 3623 3 MP
XPP
X0 sg
X1301 3623 mt 1365 3592 L
X1365 3592 mt 1389 3593 L
Xc9
X64 4 25 -2 1261 3614 3 MP
XPP
X0 sg
X1261 3614 mt 1286 3612 L
X1286 3612 mt 1350 3616 L
Xc9
X25 -5 64 7 1261 3614 3 MP
XPP
X0 sg
X1261 3614 mt 1325 3621 L
X1325 3621 mt 1350 3616 L
Xc29
X24 -4 64 4 1286 3612 3 MP
XPP
X0 sg
X1286 3612 mt 1350 3616 L
X1350 3616 mt 1374 3612 L
Xc29
X64 -2 24 2 1286 3612 3 MP
XPP
X0 sg
X1286 3612 mt 1310 3614 L
X1310 3614 mt 1374 3612 L
Xc26
X25 -3 64 -2 1310 3614 3 MP
XPP
X0 sg
X1310 3614 mt 1374 3612 L
X1374 3612 mt 1399 3609 L
Xc26
X64 -11 25 6 1310 3614 3 MP
XPP
X0 sg
X1310 3614 mt 1335 3620 L
X1335 3620 mt 1399 3609 L
Xc13
X63 -17 25 5 1306 3558 3 MP
XPP
X0 sg
X1306 3558 mt 1331 3563 L
X1331 3563 mt 1394 3546 L
Xc13
X24 5 64 -17 1306 3558 3 MP
XPP
X0 sg
X1306 3558 mt 1370 3541 L
X1370 3541 mt 1394 3546 L
Xc9
X24 12 64 -11 1232 3700 3 MP
XPP
X0 sg
X1232 3700 mt 1296 3689 L
X1296 3689 mt 1320 3701 L
Xc9
X64 1 24 0 1232 3700 3 MP
XPP
X0 sg
X1232 3700 mt 1256 3700 L
X1256 3700 mt 1320 3701 L
Xc18
X25 14 64 1 1256 3700 3 MP
XPP
X0 sg
X1256 3700 mt 1320 3701 L
X1320 3701 mt 1345 3715 L
Xc18
X64 15 25 0 1256 3700 3 MP
XPP
X0 sg
X1256 3700 mt 1281 3700 L
X1281 3700 mt 1345 3715 L
Xc29
X24 13 64 15 1281 3700 3 MP
XPP
X0 sg
X1281 3700 mt 1345 3715 L
X1345 3715 mt 1369 3728 L
Xc26
X25 9 64 27 1305 3701 3 MP
XPP
X0 sg
X1305 3701 mt 1369 3728 L
X1369 3728 mt 1394 3737 L
Xc26
X64 33 25 3 1305 3701 3 MP
XPP
X0 sg
X1305 3701 mt 1330 3704 L
X1330 3704 mt 1394 3737 L
Xc23
X25 21 63 -55 1296 3689 3 MP
XPP
X0 sg
X1296 3689 mt 1359 3634 L
X1359 3634 mt 1384 3655 L
Xc23
X64 -46 24 12 1296 3689 3 MP
XPP
X0 sg
X1296 3689 mt 1320 3701 L
X1320 3701 mt 1384 3655 L
Xc15
X25 3 64 -20 1291 3587 3 MP
XPP
X0 sg
X1291 3587 mt 1355 3567 L
X1355 3567 mt 1380 3570 L
Xc15
X64 -19 25 2 1291 3587 3 MP
XPP
X0 sg
X1291 3587 mt 1316 3589 L
X1316 3589 mt 1380 3570 L
X
Xgr 
Xgs 898 2830 2260 1783 MR c np
Xc29
X64 27 24 1 1281 3700 3 MP
XPP
X0 sg
X1281 3700 mt 1305 3701 L
X1305 3701 mt 1369 3728 L
Xc23
X24 14 64 -59 1271 3679 3 MP
XPP
X0 sg
X1271 3679 mt 1335 3620 L
X1335 3620 mt 1359 3634 L
Xc23
X63 -55 25 10 1271 3679 3 MP
XPP
X0 sg
X1271 3679 mt 1296 3689 L
X1296 3689 mt 1359 3634 L
Xc34
X64 -20 24 4 1267 3583 3 MP
XPP
X0 sg
X1267 3583 mt 1291 3587 L
X1291 3587 mt 1355 3567 L
Xc34
X24 4 64 -20 1267 3583 3 MP
XPP
X0 sg
X1267 3583 mt 1331 3563 L
X1331 3563 mt 1355 3567 L
Xc15
X25 6 64 -3 1163 3617 3 MP
XPP
X0 sg
X1163 3617 mt 1227 3614 L
X1227 3614 mt 1252 3620 L
Xc15
X64 1 25 2 1163 3617 3 MP
XPP
X0 sg
X1163 3617 mt 1188 3619 L
X1188 3619 mt 1252 3620 L
Xc22
X24 3 64 1 1188 3619 3 MP
XPP
X0 sg
X1188 3619 mt 1252 3620 L
X1252 3620 mt 1276 3623 L
Xc12
X25 0 64 5 1212 3618 3 MP
XPP
X0 sg
X1212 3618 mt 1276 3623 L
X1276 3623 mt 1301 3623 L
Xc12
X64 6 25 -1 1212 3618 3 MP
XPP
X0 sg
X1212 3618 mt 1237 3617 L
X1237 3617 mt 1301 3623 L
Xc23
X24 -2 64 6 1237 3617 3 MP
XPP
X0 sg
X1237 3617 mt 1301 3623 L
X1301 3623 mt 1325 3621 L
Xc23
X64 7 24 -3 1237 3617 3 MP
XPP
X0 sg
X1237 3617 mt 1261 3614 L
X1261 3614 mt 1325 3621 L
Xc19
X25 6 64 -59 1246 3673 3 MP
XPP
X0 sg
X1246 3673 mt 1310 3614 L
X1310 3614 mt 1335 3620 L
Xc19
X64 -59 25 6 1246 3673 3 MP
XPP
X0 sg
X1246 3673 mt 1271 3679 L
X1271 3679 mt 1335 3620 L
Xc13
X25 5 64 -21 1242 3579 3 MP
XPP
X0 sg
X1242 3579 mt 1306 3558 L
X1306 3558 mt 1331 3563 L
Xc13
X64 -20 25 4 1242 3579 3 MP
XPP
X0 sg
X1242 3579 mt 1267 3583 L
X1267 3583 mt 1331 3563 L
Xc13
X25 2 64 -27 1227 3614 3 MP
XPP
X0 sg
X1227 3614 mt 1291 3587 L
X1291 3587 mt 1316 3589 L
Xc22
X64 5 24 -1 1188 3619 3 MP
XPP
X0 sg
X1188 3619 mt 1212 3618 L
X1212 3618 mt 1276 3623 L
Xc19
X24 2 64 -56 1222 3668 3 MP
XPP
X0 sg
X1222 3668 mt 1286 3612 L
X1286 3612 mt 1310 3614 L
Xc19
X64 -59 24 5 1222 3668 3 MP
XPP
X0 sg
X1222 3668 mt 1246 3673 L
X1246 3673 mt 1310 3614 L
Xc19
X64 -11 25 0 1207 3700 3 MP
XPP
X0 sg
X1207 3700 mt 1232 3700 L
X1232 3700 mt 1296 3689 L
Xc19
X25 10 64 -21 1207 3700 3 MP
XPP
X0 sg
X1207 3700 mt 1271 3679 L
X1271 3679 mt 1296 3689 L
Xc13
X64 -27 24 7 1203 3607 3 MP
XPP
X0 sg
X1203 3607 mt 1227 3614 L
X1227 3614 mt 1291 3587 L
Xc13
X24 4 64 -24 1203 3607 3 MP
XPP
X0 sg
X1203 3607 mt 1267 3583 L
X1267 3583 mt 1291 3587 L
Xc12
X64 -56 25 3 1197 3665 3 MP
XPP
X0 sg
X1197 3665 mt 1222 3668 L
X1222 3668 mt 1286 3612 L
Xc12
X25 -2 64 -51 1197 3665 3 MP
XPP
X0 sg
X1197 3665 mt 1261 3614 L
X1261 3614 mt 1286 3612 L
Xc12
X64 -21 24 0 1183 3700 3 MP
XPP
X0 sg
X1183 3700 mt 1207 3700 L
X1207 3700 mt 1271 3679 L
Xc12
X25 6 63 -27 1183 3700 3 MP
XPP
X0 sg
X1183 3700 mt 1246 3673 L
X1246 3673 mt 1271 3679 L
Xc13
X64 -24 25 8 1178 3599 3 MP
XPP
X0 sg
X1178 3599 mt 1203 3607 L
X1203 3607 mt 1267 3583 L
Xc13
X25 4 64 -20 1178 3599 3 MP
XPP
X0 sg
X1178 3599 mt 1242 3579 L
X1242 3579 mt 1267 3583 L
Xc22
X24 -3 64 -45 1173 3662 3 MP
XPP
X0 sg
X1173 3662 mt 1237 3617 L
X1237 3617 mt 1261 3614 L
Xc22
X64 -51 24 3 1173 3662 3 MP
XPP
X0 sg
X1173 3662 mt 1197 3665 L
X1197 3665 mt 1261 3614 L
Xc22
X63 -27 25 1 1158 3699 3 MP
XPP
X0 sg
X1158 3699 mt 1183 3700 L
X1183 3700 mt 1246 3673 L
Xc22
X24 5 64 -31 1158 3699 3 MP
XPP
X0 sg
X1158 3699 mt 1222 3668 L
X1222 3668 mt 1246 3673 L
Xc15
X64 -45 25 4 1148 3658 3 MP
XPP
X0 sg
X1148 3658 mt 1173 3662 L
X1173 3662 mt 1237 3617 L
Xc15
X25 -1 64 -40 1148 3658 3 MP
XPP
X0 sg
X1148 3658 mt 1212 3618 L
X1212 3618 mt 1237 3617 L
Xc34
X64 -3 24 3 1139 3614 3 MP
XPP
X0 sg
X1139 3614 mt 1163 3617 L
X1163 3617 mt 1227 3614 L
Xc34
X24 7 64 -7 1139 3614 3 MP
XPP
X0 sg
X1139 3614 mt 1203 3607 L
X1203 3607 mt 1227 3614 L
Xc15
X25 3 63 -31 1134 3696 3 MP
XPP
X0 sg
X1134 3696 mt 1197 3665 L
X1197 3665 mt 1222 3668 L
Xc15
X64 -31 24 3 1134 3696 3 MP
XPP
X0 sg
X1134 3696 mt 1158 3699 L
X1158 3699 mt 1222 3668 L
Xc34
X64 -40 24 4 1124 3654 3 MP
XPP
X0 sg
X1124 3654 mt 1148 3658 L
X1148 3658 mt 1212 3618 L
Xc34
X24 -1 64 -35 1124 3654 3 MP
XPP
X0 sg
X1124 3654 mt 1188 3619 L
X1188 3619 mt 1212 3618 L
Xc13
X25 8 64 -10 1114 3609 3 MP
XPP
X0 sg
X1114 3609 mt 1178 3599 L
X1178 3599 mt 1203 3607 L
Xc13
X64 -7 25 5 1114 3609 3 MP
XPP
X0 sg
X1114 3609 mt 1139 3614 L
X1139 3614 mt 1203 3607 L
Xc34
X24 3 64 -30 1109 3692 3 MP
XPP
X0 sg
X1109 3692 mt 1173 3662 L
X1173 3662 mt 1197 3665 L
Xc34
X63 -31 25 4 1109 3692 3 MP
XPP
X0 sg
X1109 3692 mt 1134 3696 L
X1134 3696 mt 1197 3665 L
Xc13
X64 -35 25 6 1099 3648 3 MP
XPP
X0 sg
X1099 3648 mt 1124 3654 L
X1124 3654 mt 1188 3619 L
Xc13
X25 2 64 -31 1099 3648 3 MP
XPP
X0 sg
X1099 3648 mt 1163 3617 L
X1163 3617 mt 1188 3619 L
Xc34
X64 -30 24 5 1085 3687 3 MP
XPP
X0 sg
X1085 3687 mt 1109 3692 L
X1109 3692 mt 1173 3662 L
Xc34
X25 4 63 -29 1085 3687 3 MP
XPP
X0 sg
X1085 3687 mt 1148 3658 L
X1148 3658 mt 1173 3662 L
Xc13
X24 3 64 -27 1075 3641 3 MP
XPP
X0 sg
X1075 3641 mt 1139 3614 L
X1139 3614 mt 1163 3617 L
Xc13
X64 -31 24 7 1075 3641 3 MP
XPP
X0 sg
X1075 3641 mt 1099 3648 L
X1099 3648 mt 1163 3617 L
Xc13
X63 -29 25 7 1060 3680 3 MP
XPP
X0 sg
X1060 3680 mt 1085 3687 L
X1085 3687 mt 1148 3658 L
Xc13
X24 4 64 -26 1060 3680 3 MP
XPP
X0 sg
X1060 3680 mt 1124 3654 L
X1124 3654 mt 1148 3658 L
Xc13
X25 5 64 -25 1050 3634 3 MP
XPP
X0 sg
X1050 3634 mt 1114 3609 L
X1114 3609 mt 1139 3614 L
Xc13
X64 -27 25 7 1050 3634 3 MP
XPP
X0 sg
X1050 3634 mt 1075 3641 L
X1075 3641 mt 1139 3614 L
Xc13
X64 -26 25 7 1035 3673 3 MP
XPP
X0 sg
X1035 3673 mt 1060 3680 L
X1060 3680 mt 1124 3654 L
Xc13
X25 6 64 -25 1035 3673 3 MP
XPP
X0 sg
X1035 3673 mt 1099 3648 L
X1099 3648 mt 1124 3654 L
Xc21
X24 7 64 -23 1011 3664 3 MP
XPP
X0 sg
X1011 3664 mt 1075 3641 L
X1075 3641 mt 1099 3648 L
Xc21
X64 -25 24 9 1011 3664 3 MP
XPP
X0 sg
X1011 3664 mt 1035 3673 L
X1035 3673 mt 1099 3648 L
Xc21
X25 7 64 -21 986 3655 3 MP
XPP
X0 sg
X 986 3655 mt 1050 3634 L
X1050 3634 mt 1075 3641 L
Xc21
X64 -23 25 9 986 3655 3 MP
XPP
X0 sg
X 986 3655 mt 1011 3664 L
X1011 3664 mt 1075 3641 L
X
Xgr 
X1 sg
X-981 -451 1279 -346 981 451 3994 3176 4 MP
XPP
X-1279 346 -981 -451 1279 -346 981 451 3994 3176 5 MP stroke
X0 985 981 451 0 -985 3994 4161 4 MP
XPP
X-981 -451 0 985 981 451 0 -985 3994 4161 5 MP stroke
X0 985 1279 -346 0 -985 4975 4612 4 MP
XPP
X-1279 346 0 985 1279 -346 0 -985 4975 4612 5 MP stroke
X4 w
XDO
X0 sg
X4975 4612 mt 3994 4161 L
X3994 4161 mt 3994 3176 L
X5615 4439 mt 4633 3988 L
X4633 3988 mt 4633 3003 L
X6254 4266 mt 5273 3815 L
X5273 3815 mt 5273 2830 L
X3994 4161 mt 5273 3815 L
X5273 3815 mt 5273 2830 L
X4485 4386 mt 5763 4040 L
X5763 4040 mt 5763 3056 L
X4975 4612 mt 6254 4266 L
X6254 4266 mt 6254 3281 L
X3994 4161 mt 5273 3815 L
X5273 3815 mt 6254 4266 L
X3994 3833 mt 5273 3487 L
X5273 3487 mt 6254 3938 L
X3994 3504 mt 5273 3158 L
X5273 3158 mt 6254 3609 L
X3994 3176 mt 5273 2830 L
X5273 2830 mt 6254 3281 L
XSO
X6 w
X4975 4612 mt 6254 4266 L
X3994 4161 mt 4975 4612 L
X3994 4161 mt 3994 3176 L
X4975 4612 mt 5005 4626 L
X5037 4751 mt 
X(0) s
X5615 4439 mt 5645 4453 L
X5676 4578 mt 
X(10) s
X6254 4266 mt 6284 4280 L
X6316 4405 mt 
X(20) s
X3994 4161 mt 3962 4170 L
X3863 4290 mt 
X(0) s
X4485 4386 mt 4453 4395 L
X4286 4515 mt 
X(20) s
X4975 4612 mt 4943 4621 L
X4777 4741 mt 
X(40) s
X3994 4161 mt 3964 4147 L
X3729 4177 mt 
X(-40) s
X3994 3833 mt 3964 3819 L
X3729 3848 mt 
X(-20) s
X3994 3504 mt 3964 3491 L
X3866 3520 mt 
X(0) s
X3994 3176 mt 3964 3162 L
X3799 3192 mt 
X(20) s
Xgs 3994 2830 2261 1783 MR c np
Xc44
X25 19 64 -58 5777 4034 3 MP
XPP
X0 sg
X5777 4034 mt 5841 3976 L
X5841 3976 mt 5866 3995 L
Xc44
X64 -57 25 18 5777 4034 3 MP
XPP
X0 sg
X5777 4034 mt 5802 4052 L
X5802 4052 mt 5866 3995 L
Xc44
X24 15 64 -58 5753 4019 3 MP
XPP
X0 sg
X5753 4019 mt 5817 3961 L
X5817 3961 mt 5841 3976 L
Xc44
X64 -58 24 15 5753 4019 3 MP
XPP
X0 sg
X5753 4019 mt 5777 4034 L
X5777 4034 mt 5841 3976 L
Xc40
X25 17 64 -58 5728 4002 3 MP
XPP
X0 sg
X5728 4002 mt 5792 3944 L
X5792 3944 mt 5817 3961 L
Xc40
X64 -58 25 17 5728 4002 3 MP
XPP
X0 sg
X5728 4002 mt 5753 4019 L
X5753 4019 mt 5817 3961 L
Xc44
X64 -18 24 19 5714 4051 3 MP
XPP
X0 sg
X5714 4051 mt 5738 4070 L
X5738 4070 mt 5802 4052 L
Xc44
X25 18 63 -17 5714 4051 3 MP
XPP
X0 sg
X5714 4051 mt 5777 4034 L
X5777 4034 mt 5802 4052 L
Xc37
X64 -58 24 20 5704 3982 3 MP
XPP
X0 sg
X5704 3982 mt 5728 4002 L
X5728 4002 mt 5792 3944 L
Xc37
X24 20 64 -58 5704 3982 3 MP
XPP
X0 sg
X5704 3982 mt 5768 3924 L
X5768 3924 mt 5792 3944 L
Xc44
X63 -17 25 15 5689 4036 3 MP
XPP
X0 sg
X5689 4036 mt 5714 4051 L
X5714 4051 mt 5777 4034 L
Xc44
X24 15 64 -17 5689 4036 3 MP
XPP
X0 sg
X5689 4036 mt 5753 4019 L
X5753 4019 mt 5777 4034 L
Xc37
X64 -58 25 18 5679 3964 3 MP
XPP
X0 sg
X5679 3964 mt 5704 3982 L
X5704 3982 mt 5768 3924 L
Xc37
X25 17 64 -57 5679 3964 3 MP
XPP
X0 sg
X5679 3964 mt 5743 3907 L
X5743 3907 mt 5768 3924 L
Xc40
X25 17 64 -17 5664 4019 3 MP
XPP
X0 sg
X5664 4019 mt 5728 4002 L
X5728 4002 mt 5753 4019 L
Xc40
X64 -17 25 17 5664 4019 3 MP
XPP
X0 sg
X5664 4019 mt 5689 4036 L
X5689 4036 mt 5753 4019 L
Xc37
X24 12 64 -58 5655 3953 3 MP
XPP
X0 sg
X5655 3953 mt 5719 3895 L
X5719 3895 mt 5743 3907 L
Xc37
X64 -57 24 11 5655 3953 3 MP
XPP
X0 sg
X5655 3953 mt 5679 3964 L
X5679 3964 mt 5743 3907 L
Xc44
X24 19 64 -18 5650 4069 3 MP
XPP
X0 sg
X5650 4069 mt 5714 4051 L
X5714 4051 mt 5738 4070 L
Xc44
X64 -17 24 18 5650 4069 3 MP
XPP
X0 sg
X5650 4069 mt 5674 4087 L
X5674 4087 mt 5738 4070 L
Xc37
X24 20 64 -17 5640 3999 3 MP
XPP
X0 sg
X5640 3999 mt 5704 3982 L
X5704 3982 mt 5728 4002 L
Xc37
X64 -17 24 20 5640 3999 3 MP
XPP
X0 sg
X5640 3999 mt 5664 4019 L
X5664 4019 mt 5728 4002 L
Xc33
X64 -58 25 13 5630 3940 3 MP
XPP
X0 sg
X5630 3940 mt 5655 3953 L
X5655 3953 mt 5719 3895 L
Xc33
X25 12 64 -57 5630 3940 3 MP
XPP
X0 sg
X5630 3940 mt 5694 3883 L
X5694 3883 mt 5719 3895 L
Xc44
X25 15 64 -17 5625 4053 3 MP
XPP
X0 sg
X5625 4053 mt 5689 4036 L
X5689 4036 mt 5714 4051 L
Xc44
X64 -18 25 16 5625 4053 3 MP
XPP
X0 sg
X5625 4053 mt 5650 4069 L
X5650 4069 mt 5714 4051 L
Xc37
X25 18 64 -18 5615 3982 3 MP
XPP
X0 sg
X5615 3982 mt 5679 3964 L
X5679 3964 mt 5704 3982 L
Xc37
X64 -17 25 17 5615 3982 3 MP
XPP
X0 sg
X5615 3982 mt 5640 3999 L
X5640 3999 mt 5704 3982 L
Xc33
X24 15 64 -58 5606 3926 3 MP
XPP
X0 sg
X5606 3926 mt 5670 3868 L
X5670 3868 mt 5694 3883 L
Xc33
X64 -57 24 14 5606 3926 3 MP
XPP
X0 sg
X5606 3926 mt 5630 3940 L
X5630 3940 mt 5694 3883 L
Xc40
X64 -17 24 17 5601 4036 3 MP
XPP
X0 sg
X5601 4036 mt 5625 4053 L
X5625 4053 mt 5689 4036 L
Xc40
X25 17 63 -17 5601 4036 3 MP
XPP
X0 sg
X5601 4036 mt 5664 4019 L
X5664 4019 mt 5689 4036 L
Xc37
X24 11 64 -17 5591 3970 3 MP
XPP
X0 sg
X5591 3970 mt 5655 3953 L
X5655 3953 mt 5679 3964 L
Xc37
X64 -18 24 12 5591 3970 3 MP
XPP
X0 sg
X5591 3970 mt 5615 3982 L
X5615 3982 mt 5679 3964 L
Xc47
X24 18 64 -35 5586 4104 3 MP
XPP
X0 sg
X5586 4104 mt 5650 4069 L
X5650 4069 mt 5674 4087 L
Xc47
X64 -35 24 18 5586 4104 3 MP
XPP
X0 sg
X5586 4104 mt 5610 4122 L
X5610 4122 mt 5674 4087 L
Xc38
X64 -58 25 20 5581 3906 3 MP
XPP
X0 sg
X5581 3906 mt 5606 3926 L
X5606 3926 mt 5670 3868 L
Xc38
X25 20 64 -58 5581 3906 3 MP
XPP
X0 sg
X5581 3906 mt 5645 3848 L
X5645 3848 mt 5670 3868 L
Xc37
X24 20 64 -18 5576 4017 3 MP
XPP
X0 sg
X5576 4017 mt 5640 3999 L
X5640 3999 mt 5664 4019 L
Xc37
X63 -17 25 19 5576 4017 3 MP
XPP
X0 sg
X5576 4017 mt 5601 4036 L
X5601 4036 mt 5664 4019 L
Xc33
X64 -17 25 12 5566 3958 3 MP
XPP
X0 sg
X5566 3958 mt 5591 3970 L
X5591 3970 mt 5655 3953 L
Xc33
X25 13 64 -18 5566 3958 3 MP
XPP
X0 sg
X5566 3958 mt 5630 3940 L
X5630 3940 mt 5655 3953 L
Xc47
X64 -35 25 16 5561 4088 3 MP
XPP
X0 sg
X5561 4088 mt 5586 4104 L
X5586 4104 mt 5650 4069 L
Xc47
X25 16 64 -35 5561 4088 3 MP
XPP
X0 sg
X5561 4088 mt 5625 4053 L
X5625 4053 mt 5650 4069 L
Xc38
X64 -58 24 13 5557 3893 3 MP
XPP
X0 sg
X5557 3893 mt 5581 3906 L
X5581 3906 mt 5645 3848 L
Xc38
X24 13 64 -58 5557 3893 3 MP
XPP
X0 sg
X5557 3893 mt 5621 3835 L
X5621 3835 mt 5645 3848 L
Xc37
X25 17 64 -17 5551 3999 3 MP
XPP
X0 sg
X5551 3999 mt 5615 3982 L
X5615 3982 mt 5640 3999 L
Xc37
X64 -18 25 18 5551 3999 3 MP
XPP
X0 sg
X5551 3999 mt 5576 4017 L
X5576 4017 mt 5640 3999 L
Xc33
X24 14 64 -17 5542 3943 3 MP
XPP
X0 sg
X5542 3943 mt 5606 3926 L
X5606 3926 mt 5630 3940 L
Xc33
X64 -18 24 15 5542 3943 3 MP
XPP
X0 sg
X5542 3943 mt 5566 3958 L
X5566 3958 mt 5630 3940 L
Xc43
X24 17 64 -35 5537 4071 3 MP
XPP
X0 sg
X5537 4071 mt 5601 4036 L
X5601 4036 mt 5625 4053 L
Xc43
X64 -35 24 17 5537 4071 3 MP
XPP
X0 sg
X5537 4071 mt 5561 4088 L
X5561 4088 mt 5625 4053 L
Xc39
X25 19 64 -58 5532 3874 3 MP
XPP
X0 sg
X5532 3874 mt 5596 3816 L
X5596 3816 mt 5621 3835 L
Xc39
X64 -58 25 19 5532 3874 3 MP
XPP
X0 sg
X5532 3874 mt 5557 3893 L
X5557 3893 mt 5621 3835 L
Xc37
X64 -17 24 11 5527 3988 3 MP
XPP
X0 sg
X5527 3988 mt 5551 3999 L
X5551 3999 mt 5615 3982 L
Xc37
X24 12 64 -18 5527 3988 3 MP
XPP
X0 sg
X5527 3988 mt 5591 3970 L
X5591 3970 mt 5615 3982 L
Xc47
X24 18 64 -17 5522 4121 3 MP
XPP
X0 sg
X5522 4121 mt 5586 4104 L
X5586 4104 mt 5610 4122 L
Xc47
X64 -17 24 18 5522 4121 3 MP
XPP
X0 sg
X5522 4121 mt 5546 4139 L
X5546 4139 mt 5610 4122 L
Xc38
X25 20 64 -17 5517 3923 3 MP
XPP
X0 sg
X5517 3923 mt 5581 3906 L
X5581 3906 mt 5606 3926 L
Xc38
X64 -17 25 20 5517 3923 3 MP
XPP
X0 sg
X5517 3923 mt 5542 3943 L
X5542 3943 mt 5606 3926 L
Xc44
X25 19 64 -35 5512 4052 3 MP
XPP
X0 sg
X5512 4052 mt 5576 4017 L
X5576 4017 mt 5601 4036 L
Xc44
X64 -35 25 19 5512 4052 3 MP
XPP
X0 sg
X5512 4052 mt 5537 4071 L
X5537 4071 mt 5601 4036 L
Xc36
X64 -58 24 82 5508 3792 3 MP
XPP
X0 sg
X5508 3792 mt 5532 3874 L
X5532 3874 mt 5596 3816 L
Xc36
X24 82 64 -58 5508 3792 3 MP
XPP
X0 sg
X5508 3792 mt 5572 3734 L
X5572 3734 mt 5596 3816 L
Xc33
X25 12 64 -17 5502 3975 3 MP
XPP
X0 sg
X5502 3975 mt 5566 3958 L
X5566 3958 mt 5591 3970 L
Xc33
X64 -18 25 13 5502 3975 3 MP
XPP
X0 sg
X5502 3975 mt 5527 3988 L
X5527 3988 mt 5591 3970 L
Xc47
X25 16 64 -18 5497 4106 3 MP
XPP
X0 sg
X5497 4106 mt 5561 4088 L
X5561 4088 mt 5586 4104 L
Xc47
X64 -17 25 15 5497 4106 3 MP
XPP
X0 sg
X5497 4106 mt 5522 4121 L
X5522 4121 mt 5586 4104 L
Xc38
X24 13 64 -17 5493 3910 3 MP
XPP
X0 sg
X5493 3910 mt 5557 3893 L
X5557 3893 mt 5581 3906 L
Xc38
X64 -17 24 13 5493 3910 3 MP
XPP
X0 sg
X5493 3910 mt 5517 3923 L
X5517 3923 mt 5581 3906 L
Xc44
X25 18 63 -35 5488 4034 3 MP
XPP
X0 sg
X5488 4034 mt 5551 3999 L
X5551 3999 mt 5576 4017 L
Xc44
X64 -35 24 18 5488 4034 3 MP
XPP
X0 sg
X5488 4034 mt 5512 4052 L
X5512 4052 mt 5576 4017 L
Xc11
X25 29 64 -58 5483 3763 3 MP
XPP
X0 sg
X5483 3763 mt 5547 3705 L
X5547 3705 mt 5572 3734 L
Xc11
X64 -58 25 29 5483 3763 3 MP
XPP
X0 sg
X5483 3763 mt 5508 3792 L
X5508 3792 mt 5572 3734 L
Xc33
X24 15 64 -18 5478 3961 3 MP
XPP
X0 sg
X5478 3961 mt 5542 3943 L
X5542 3943 mt 5566 3958 L
Xc33
X64 -17 24 14 5478 3961 3 MP
XPP
X0 sg
X5478 3961 mt 5502 3975 L
X5502 3975 mt 5566 3958 L
Xc43
X24 17 64 -17 5473 4088 3 MP
XPP
X0 sg
X5473 4088 mt 5537 4071 L
X5537 4071 mt 5561 4088 L
Xc43
X64 -18 24 18 5473 4088 3 MP
XPP
X0 sg
X5473 4088 mt 5497 4106 L
X5497 4106 mt 5561 4088 L
Xc39
X25 19 64 -17 5468 3891 3 MP
XPP
X0 sg
X5468 3891 mt 5532 3874 L
X5532 3874 mt 5557 3893 L
Xc39
X64 -17 25 19 5468 3891 3 MP
XPP
X0 sg
X5468 3891 mt 5493 3910 L
X5493 3910 mt 5557 3893 L
X
Xgr 
Xgs 3994 2830 2261 1783 MR c np
Xc44
X24 11 64 -34 5463 4022 3 MP
XPP
X0 sg
X5463 4022 mt 5527 3988 L
X5527 3988 mt 5551 3999 L
Xc44
X63 -35 25 12 5463 4022 3 MP
XPP
X0 sg
X5463 4022 mt 5488 4034 L
X5488 4034 mt 5551 3999 L
Xc13
X24 28 64 -57 5459 3734 3 MP
XPP
X0 sg
X5459 3734 mt 5523 3677 L
X5523 3677 mt 5547 3705 L
Xc13
X64 -58 24 29 5459 3734 3 MP
XPP
X0 sg
X5459 3734 mt 5483 3763 L
X5483 3763 mt 5547 3705 L
Xc47
X64 -18 24 19 5458 4138 3 MP
XPP
X0 sg
X5458 4138 mt 5482 4157 L
X5482 4157 mt 5546 4139 L
Xc47
X24 18 64 -17 5458 4138 3 MP
XPP
X0 sg
X5458 4138 mt 5522 4121 L
X5522 4121 mt 5546 4139 L
Xc38
X64 -18 25 20 5453 3941 3 MP
XPP
X0 sg
X5453 3941 mt 5478 3961 L
X5478 3961 mt 5542 3943 L
Xc38
X25 20 64 -18 5453 3941 3 MP
XPP
X0 sg
X5453 3941 mt 5517 3923 L
X5517 3923 mt 5542 3943 L
Xc44
X64 -17 25 19 5448 4069 3 MP
XPP
X0 sg
X5448 4069 mt 5473 4088 L
X5473 4088 mt 5537 4071 L
Xc44
X25 19 64 -17 5448 4069 3 MP
XPP
X0 sg
X5448 4069 mt 5512 4052 L
X5512 4052 mt 5537 4071 L
Xc36
X64 -17 24 81 5444 3810 3 MP
XPP
X0 sg
X5444 3810 mt 5468 3891 L
X5468 3891 mt 5532 3874 L
Xc36
X24 82 64 -18 5444 3810 3 MP
XPP
X0 sg
X5444 3810 mt 5508 3792 L
X5508 3792 mt 5532 3874 L
Xc40
X25 13 64 -35 5438 4010 3 MP
XPP
X0 sg
X5438 4010 mt 5502 3975 L
X5502 3975 mt 5527 3988 L
Xc40
X64 -34 25 12 5438 4010 3 MP
XPP
X0 sg
X5438 4010 mt 5463 4022 L
X5463 4022 mt 5527 3988 L
Xc19
X25 64 64 -57 5434 3670 3 MP
XPP
X0 sg
X5434 3670 mt 5498 3613 L
X5498 3613 mt 5523 3677 L
Xc19
X64 -57 25 64 5434 3670 3 MP
XPP
X0 sg
X5434 3670 mt 5459 3734 L
X5459 3734 mt 5523 3677 L
Xc47
X64 -17 25 15 5433 4123 3 MP
XPP
X0 sg
X5433 4123 mt 5458 4138 L
X5458 4138 mt 5522 4121 L
Xc47
X25 15 64 -17 5433 4123 3 MP
XPP
X0 sg
X5433 4123 mt 5497 4106 L
X5497 4106 mt 5522 4121 L
Xc38
X24 13 64 -18 5429 3928 3 MP
XPP
X0 sg
X5429 3928 mt 5493 3910 L
X5493 3910 mt 5517 3923 L
Xc38
X64 -18 24 13 5429 3928 3 MP
XPP
X0 sg
X5429 3928 mt 5453 3941 L
X5453 3941 mt 5517 3923 L
Xc44
X64 -17 24 18 5424 4051 3 MP
XPP
X0 sg
X5424 4051 mt 5448 4069 L
X5448 4069 mt 5512 4052 L
Xc44
X24 18 64 -17 5424 4051 3 MP
XPP
X0 sg
X5424 4051 mt 5488 4034 L
X5488 4034 mt 5512 4052 L
Xc11
X64 -18 25 29 5419 3781 3 MP
XPP
X0 sg
X5419 3781 mt 5444 3810 L
X5444 3810 mt 5508 3792 L
Xc11
X25 29 64 -18 5419 3781 3 MP
XPP
X0 sg
X5419 3781 mt 5483 3763 L
X5483 3763 mt 5508 3792 L
Xc40
X24 14 64 -35 5414 3996 3 MP
XPP
X0 sg
X5414 3996 mt 5478 3961 L
X5478 3961 mt 5502 3975 L
Xc40
X64 -35 24 14 5414 3996 3 MP
XPP
X0 sg
X5414 3996 mt 5438 4010 L
X5438 4010 mt 5502 3975 L
Xc29
X64 -57 24 42 5410 3628 3 MP
XPP
X0 sg
X5410 3628 mt 5434 3670 L
X5434 3670 mt 5498 3613 L
Xc29
X25 42 63 -57 5410 3628 3 MP
XPP
X0 sg
X5410 3628 mt 5473 3571 L
X5473 3571 mt 5498 3613 L
Xc43
X64 -17 24 17 5409 4106 3 MP
XPP
X0 sg
X5409 4106 mt 5433 4123 L
X5433 4123 mt 5497 4106 L
Xc43
X24 18 64 -18 5409 4106 3 MP
XPP
X0 sg
X5409 4106 mt 5473 4088 L
X5473 4088 mt 5497 4106 L
Xc39
X64 -18 25 20 5404 3908 3 MP
XPP
X0 sg
X5404 3908 mt 5429 3928 L
X5429 3928 mt 5493 3910 L
Xc39
X25 19 64 -17 5404 3908 3 MP
XPP
X0 sg
X5404 3908 mt 5468 3891 L
X5468 3891 mt 5493 3910 L
Xc44
X64 -17 25 11 5399 4040 3 MP
XPP
X0 sg
X5399 4040 mt 5424 4051 L
X5424 4051 mt 5488 4034 L
Xc44
X25 12 64 -18 5399 4040 3 MP
XPP
X0 sg
X5399 4040 mt 5463 4022 L
X5463 4022 mt 5488 4034 L
Xc13
X64 -18 24 29 5395 3752 3 MP
XPP
X0 sg
X5395 3752 mt 5419 3781 L
X5419 3781 mt 5483 3763 L
Xc13
X24 29 64 -18 5395 3752 3 MP
XPP
X0 sg
X5395 3752 mt 5459 3734 L
X5459 3734 mt 5483 3763 L
Xc51
X24 19 64 -40 5394 4178 3 MP
XPP
X0 sg
X5394 4178 mt 5458 4138 L
X5458 4138 mt 5482 4157 L
Xc51
X64 -39 24 18 5394 4178 3 MP
XPP
X0 sg
X5394 4178 mt 5418 4196 L
X5418 4196 mt 5482 4157 L
Xc37
X64 -35 25 21 5389 3975 3 MP
XPP
X0 sg
X5389 3975 mt 5414 3996 L
X5414 3996 mt 5478 3961 L
Xc37
X25 20 64 -34 5389 3975 3 MP
XPP
X0 sg
X5389 3975 mt 5453 3941 L
X5453 3941 mt 5478 3961 L
Xc35
X63 -57 25 50 5385 3578 3 MP
XPP
X0 sg
X5385 3578 mt 5410 3628 L
X5410 3628 mt 5473 3571 L
Xc35
X24 50 64 -57 5385 3578 3 MP
XPP
X0 sg
X5385 3578 mt 5449 3521 L
X5449 3521 mt 5473 3571 L
Xc44
X25 19 64 -17 5384 4086 3 MP
XPP
X0 sg
X5384 4086 mt 5448 4069 L
X5448 4069 mt 5473 4088 L
Xc44
X64 -18 25 20 5384 4086 3 MP
XPP
X0 sg
X5384 4086 mt 5409 4106 L
X5409 4106 mt 5473 4088 L
Xc36
X24 81 64 -17 5380 3827 3 MP
XPP
X0 sg
X5380 3827 mt 5444 3810 L
X5444 3810 mt 5468 3891 L
Xc36
X64 -17 24 81 5380 3827 3 MP
XPP
X0 sg
X5380 3827 mt 5404 3908 L
X5404 3908 mt 5468 3891 L
Xc40
X64 -18 24 13 5375 4027 3 MP
XPP
X0 sg
X5375 4027 mt 5399 4040 L
X5399 4040 mt 5463 4022 L
Xc40
X25 12 63 -17 5375 4027 3 MP
XPP
X0 sg
X5375 4027 mt 5438 4010 L
X5438 4010 mt 5463 4022 L
Xc19
X64 -18 25 64 5370 3688 3 MP
XPP
X0 sg
X5370 3688 mt 5395 3752 L
X5395 3752 mt 5459 3734 L
Xc19
X25 64 64 -18 5370 3688 3 MP
XPP
X0 sg
X5370 3688 mt 5434 3670 L
X5434 3670 mt 5459 3734 L
Xc53
X25 15 64 -39 5369 4162 3 MP
XPP
X0 sg
X5369 4162 mt 5433 4123 L
X5433 4123 mt 5458 4138 L
Xc53
X64 -40 25 16 5369 4162 3 MP
XPP
X0 sg
X5369 4162 mt 5394 4178 L
X5394 4178 mt 5458 4138 L
Xc37
X64 -34 24 12 5365 3963 3 MP
XPP
X0 sg
X5365 3963 mt 5389 3975 L
X5389 3975 mt 5453 3941 L
Xc37
X24 13 64 -35 5365 3963 3 MP
XPP
X0 sg
X5365 3963 mt 5429 3928 L
X5429 3928 mt 5453 3941 L
Xc32
X25 48 64 -57 5360 3530 3 MP
XPP
X0 sg
X5360 3530 mt 5424 3473 L
X5424 3473 mt 5449 3521 L
Xc32
X64 -57 25 48 5360 3530 3 MP
XPP
X0 sg
X5360 3530 mt 5385 3578 L
X5385 3578 mt 5449 3521 L
Xc44
X64 -17 24 17 5360 4069 3 MP
XPP
X0 sg
X5360 4069 mt 5384 4086 L
X5384 4086 mt 5448 4069 L
Xc44
X24 18 64 -18 5360 4069 3 MP
XPP
X0 sg
X5360 4069 mt 5424 4051 L
X5424 4051 mt 5448 4069 L
Xc11
X64 -17 25 29 5355 3798 3 MP
XPP
X0 sg
X5355 3798 mt 5380 3827 L
X5380 3827 mt 5444 3810 L
Xc11
X25 29 64 -17 5355 3798 3 MP
XPP
X0 sg
X5355 3798 mt 5419 3781 L
X5419 3781 mt 5444 3810 L
Xc40
X63 -17 25 14 5350 4013 3 MP
XPP
X0 sg
X5350 4013 mt 5375 4027 L
X5375 4027 mt 5438 4010 L
Xc40
X24 14 64 -17 5350 4013 3 MP
XPP
X0 sg
X5350 4013 mt 5414 3996 L
X5414 3996 mt 5438 4010 L
Xc29
X64 -18 24 42 5346 3646 3 MP
XPP
X0 sg
X5346 3646 mt 5370 3688 L
X5370 3688 mt 5434 3670 L
Xc29
X24 42 64 -18 5346 3646 3 MP
XPP
X0 sg
X5346 3646 mt 5410 3628 L
X5410 3628 mt 5434 3670 L
Xc53
X24 17 64 -39 5345 4145 3 MP
XPP
X0 sg
X5345 4145 mt 5409 4106 L
X5409 4106 mt 5433 4123 L
Xc53
X64 -39 24 17 5345 4145 3 MP
XPP
X0 sg
X5345 4145 mt 5369 4162 L
X5369 4162 mt 5433 4123 L
Xc33
X64 -35 25 20 5340 3943 3 MP
XPP
X0 sg
X5340 3943 mt 5365 3963 L
X5365 3963 mt 5429 3928 L
Xc33
X25 20 64 -35 5340 3943 3 MP
XPP
X0 sg
X5340 3943 mt 5404 3908 L
X5404 3908 mt 5429 3928 L
Xc46
X24 43 64 -58 5336 3488 3 MP
XPP
X0 sg
X5336 3488 mt 5400 3430 L
X5400 3430 mt 5424 3473 L
Xc46
X64 -57 24 42 5336 3488 3 MP
XPP
X0 sg
X5336 3488 mt 5360 3530 L
X5360 3530 mt 5424 3473 L
Xc44
X64 -18 25 12 5335 4057 3 MP
XPP
X0 sg
X5335 4057 mt 5360 4069 L
X5360 4069 mt 5424 4051 L
Xc44
X25 11 64 -17 5335 4057 3 MP
XPP
X0 sg
X5335 4057 mt 5399 4040 L
X5399 4040 mt 5424 4051 L
Xc13
X24 29 64 -17 5331 3769 3 MP
XPP
X0 sg
X5331 3769 mt 5395 3752 L
X5395 3752 mt 5419 3781 L
Xc13
X64 -17 24 29 5331 3769 3 MP
XPP
X0 sg
X5331 3769 mt 5355 3798 L
X5355 3798 mt 5419 3781 L
Xc51
X64 -17 24 18 5330 4195 3 MP
XPP
X0 sg
X5330 4195 mt 5354 4213 L
X5354 4213 mt 5418 4196 L
Xc51
X24 18 64 -17 5330 4195 3 MP
XPP
X0 sg
X5330 4195 mt 5394 4178 L
X5394 4178 mt 5418 4196 L
Xc37
X25 21 64 -18 5325 3993 3 MP
XPP
X0 sg
X5325 3993 mt 5389 3975 L
X5389 3975 mt 5414 3996 L
Xc37
X64 -17 25 20 5325 3993 3 MP
XPP
X0 sg
X5325 3993 mt 5350 4013 L
X5350 4013 mt 5414 3996 L
Xc35
X64 -18 25 50 5321 3596 3 MP
XPP
X0 sg
X5321 3596 mt 5346 3646 L
X5346 3646 mt 5410 3628 L
Xc35
X25 50 64 -18 5321 3596 3 MP
XPP
X0 sg
X5321 3596 mt 5385 3578 L
X5385 3578 mt 5410 3628 L
Xc45
X25 20 64 -39 5320 4125 3 MP
XPP
X0 sg
X5320 4125 mt 5384 4086 L
X5384 4086 mt 5409 4106 L
Xc45
X64 -39 25 20 5320 4125 3 MP
XPP
X0 sg
X5320 4125 mt 5345 4145 L
X5345 4145 mt 5409 4106 L
Xc28
X64 -35 24 81 5316 3862 3 MP
XPP
X0 sg
X5316 3862 mt 5340 3943 L
X5340 3943 mt 5404 3908 L
Xc28
X24 81 64 -35 5316 3862 3 MP
XPP
X0 sg
X5316 3862 mt 5380 3827 L
X5380 3827 mt 5404 3908 L
Xc54
X25 34 64 -57 5311 3453 3 MP
XPP
X0 sg
X5311 3453 mt 5375 3396 L
X5375 3396 mt 5400 3430 L
Xc54
X64 -58 25 35 5311 3453 3 MP
XPP
X0 sg
X5311 3453 mt 5336 3488 L
X5336 3488 mt 5400 3430 L
Xc40
X64 -17 24 13 5311 4044 3 MP
XPP
X0 sg
X5311 4044 mt 5335 4057 L
X5335 4057 mt 5399 4040 L
Xc40
X24 13 64 -17 5311 4044 3 MP
XPP
X0 sg
X5311 4044 mt 5375 4027 L
X5375 4027 mt 5399 4040 L
Xc19
X25 64 64 -17 5306 3705 3 MP
XPP
X0 sg
X5306 3705 mt 5370 3688 L
X5370 3688 mt 5395 3752 L
Xc19
X64 -17 25 64 5306 3705 3 MP
XPP
X0 sg
X5306 3705 mt 5331 3769 L
X5331 3769 mt 5395 3752 L
Xc53
X25 16 64 -17 5305 4179 3 MP
XPP
X0 sg
X5305 4179 mt 5369 4162 L
X5369 4162 mt 5394 4178 L
Xc53
X64 -17 25 16 5305 4179 3 MP
XPP
X0 sg
X5305 4179 mt 5330 4195 L
X5330 4195 mt 5394 4178 L
Xc37
X64 -18 24 13 5301 3980 3 MP
XPP
X0 sg
X5301 3980 mt 5325 3993 L
X5325 3993 mt 5389 3975 L
Xc37
X24 12 64 -17 5301 3980 3 MP
XPP
X0 sg
X5301 3980 mt 5365 3963 L
X5365 3963 mt 5389 3975 L
Xc32
X64 -18 24 48 5297 3548 3 MP
XPP
X0 sg
X5297 3548 mt 5321 3596 L
X5321 3596 mt 5385 3578 L
Xc32
X25 48 63 -18 5297 3548 3 MP
XPP
X0 sg
X5297 3548 mt 5360 3530 L
X5360 3530 mt 5385 3578 L
Xc47
X24 17 64 -39 5296 4108 3 MP
XPP
X0 sg
X5296 4108 mt 5360 4069 L
X5360 4069 mt 5384 4086 L
Xc47
X64 -39 24 17 5296 4108 3 MP
XPP
X0 sg
X5296 4108 mt 5320 4125 L
X5320 4125 mt 5384 4086 L
Xc36
X64 -35 25 29 5291 3833 3 MP
XPP
X0 sg
X5291 3833 mt 5316 3862 L
X5316 3862 mt 5380 3827 L
Xc36
X25 29 64 -35 5291 3833 3 MP
XPP
X0 sg
X5291 3833 mt 5355 3798 L
X5355 3798 mt 5380 3827 L
Xc48
X64 -57 24 30 5287 3423 3 MP
XPP
X0 sg
X5287 3423 mt 5311 3453 L
X5311 3453 mt 5375 3396 L
Xc48
X24 31 64 -58 5287 3423 3 MP
XPP
X0 sg
X5287 3423 mt 5351 3365 L
X5351 3365 mt 5375 3396 L
Xc40
X25 14 64 -17 5286 4030 3 MP
XPP
X0 sg
X5286 4030 mt 5350 4013 L
X5350 4013 mt 5375 4027 L
Xc40
X64 -17 25 14 5286 4030 3 MP
XPP
X0 sg
X5286 4030 mt 5311 4044 L
X5311 4044 mt 5375 4027 L
Xc29
X64 -17 24 42 5282 3663 3 MP
XPP
X0 sg
X5282 3663 mt 5306 3705 L
X5306 3705 mt 5370 3688 L
Xc29
X24 42 64 -17 5282 3663 3 MP
XPP
X0 sg
X5282 3663 mt 5346 3646 L
X5346 3646 mt 5370 3688 L
Xc53
X24 17 64 -17 5281 4162 3 MP
XPP
X0 sg
X5281 4162 mt 5345 4145 L
X5345 4145 mt 5369 4162 L
Xc53
X64 -17 24 17 5281 4162 3 MP
XPP
X0 sg
X5281 4162 mt 5305 4179 L
X5305 4179 mt 5369 4162 L
Xc33
X64 -17 25 19 5276 3961 3 MP
XPP
X0 sg
X5276 3961 mt 5301 3980 L
X5301 3980 mt 5365 3963 L
Xc33
X25 20 64 -18 5276 3961 3 MP
XPP
X0 sg
X5276 3961 mt 5340 3943 L
X5340 3943 mt 5365 3963 L
Xc46
X24 42 64 -17 5272 3505 3 MP
XPP
X0 sg
X5272 3505 mt 5336 3488 L
X5336 3488 mt 5360 3530 L
Xc46
X63 -18 25 43 5272 3505 3 MP
XPP
X0 sg
X5272 3505 mt 5297 3548 L
X5297 3548 mt 5360 3530 L
Xc47
X25 12 64 -39 5271 4096 3 MP
XPP
X0 sg
X5271 4096 mt 5335 4057 L
X5335 4057 mt 5360 4069 L
Xc47
X64 -39 25 12 5271 4096 3 MP
XPP
X0 sg
X5271 4096 mt 5296 4108 L
X5296 4108 mt 5360 4069 L
Xc11
X24 29 64 -35 5267 3804 3 MP
XPP
X0 sg
X5267 3804 mt 5331 3769 L
X5331 3769 mt 5355 3798 L
Xc11
X64 -35 24 29 5267 3804 3 MP
XPP
X0 sg
X5267 3804 mt 5291 3833 L
X5291 3833 mt 5355 3798 L
Xc51
X64 -18 24 19 5266 4212 3 MP
XPP
X0 sg
X5266 4212 mt 5290 4231 L
X5290 4231 mt 5354 4213 L
Xc51
X24 18 64 -17 5266 4212 3 MP
XPP
X0 sg
X5266 4212 mt 5330 4195 L
X5330 4195 mt 5354 4213 L
Xc50
X25 42 64 -58 5262 3381 3 MP
XPP
X0 sg
X5262 3381 mt 5326 3323 L
X5326 3323 mt 5351 3365 L
Xc50
X64 -58 25 42 5262 3381 3 MP
XPP
X0 sg
X5262 3381 mt 5287 3423 L
X5287 3423 mt 5351 3365 L
Xc37
X25 20 63 -17 5262 4010 3 MP
XPP
X0 sg
X5262 4010 mt 5325 3993 L
X5325 3993 mt 5350 4013 L
Xc37
X64 -17 24 20 5262 4010 3 MP
XPP
X0 sg
X5262 4010 mt 5286 4030 L
X5286 4030 mt 5350 4013 L
Xc35
X64 -17 25 50 5257 3613 3 MP
XPP
X0 sg
X5257 3613 mt 5282 3663 L
X5282 3663 mt 5346 3646 L
Xc35
X25 50 64 -17 5257 3613 3 MP
XPP
X0 sg
X5257 3613 mt 5321 3596 L
X5321 3596 mt 5346 3646 L
Xc45
X25 20 64 -18 5256 4143 3 MP
XPP
X0 sg
X5256 4143 mt 5320 4125 L
X5320 4125 mt 5345 4145 L
Xc45
X64 -17 25 19 5256 4143 3 MP
XPP
X0 sg
X5256 4143 mt 5281 4162 L
X5281 4162 mt 5345 4145 L
Xc28
X24 81 64 -17 5252 3879 3 MP
XPP
X0 sg
X5252 3879 mt 5316 3862 L
X5316 3862 mt 5340 3943 L
Xc28
X64 -18 24 82 5252 3879 3 MP
XPP
X0 sg
X5252 3879 mt 5276 3961 L
X5276 3961 mt 5340 3943 L
Xc54
X25 35 64 -18 5247 3471 3 MP
XPP
X0 sg
X5247 3471 mt 5311 3453 L
X5311 3453 mt 5336 3488 L
Xc54
X64 -17 25 34 5247 3471 3 MP
XPP
X0 sg
X5247 3471 mt 5272 3505 L
X5272 3505 mt 5336 3488 L
Xc47
X64 -39 24 12 5247 4084 3 MP
XPP
X0 sg
X5247 4084 mt 5271 4096 L
X5271 4096 mt 5335 4057 L
Xc47
X24 13 64 -40 5247 4084 3 MP
XPP
X0 sg
X5247 4084 mt 5311 4044 L
X5311 4044 mt 5335 4057 L
Xc22
X25 64 64 -35 5242 3740 3 MP
XPP
X0 sg
X5242 3740 mt 5306 3705 L
X5306 3705 mt 5331 3769 L
Xc22
X64 -35 25 64 5242 3740 3 MP
XPP
X0 sg
X5242 3740 mt 5267 3804 L
X5267 3804 mt 5331 3769 L
Xc53
X64 -17 25 15 5241 4197 3 MP
XPP
X0 sg
X5241 4197 mt 5266 4212 L
X5266 4212 mt 5330 4195 L
Xc53
X25 16 64 -18 5241 4197 3 MP
XPP
X0 sg
X5241 4197 mt 5305 4179 L
X5305 4179 mt 5330 4195 L
Xc52
X64 -58 24 52 5238 3329 3 MP
XPP
X0 sg
X5238 3329 mt 5262 3381 L
X5262 3381 mt 5326 3323 L
Xc52
X24 11 64 -17 5238 3329 3 MP
XPP
X0 sg
X5238 3329 mt 5302 3312 L
X5302 3312 mt 5326 3323 L
Xc37
X63 -17 25 13 5237 3997 3 MP
XPP
X0 sg
X5237 3997 mt 5262 4010 L
X5262 4010 mt 5325 3993 L
Xc37
X24 13 64 -17 5237 3997 3 MP
XPP
X0 sg
X5237 3997 mt 5301 3980 L
X5301 3980 mt 5325 3993 L
Xc32
X24 48 64 -17 5233 3565 3 MP
XPP
X0 sg
X5233 3565 mt 5297 3548 L
X5297 3548 mt 5321 3596 L
Xc32
X64 -17 24 48 5233 3565 3 MP
XPP
X0 sg
X5233 3565 mt 5257 3613 L
X5257 3613 mt 5321 3596 L
Xc47
X24 17 64 -17 5232 4125 3 MP
XPP
X0 sg
X5232 4125 mt 5296 4108 L
X5296 4108 mt 5320 4125 L
Xc47
X64 -18 24 18 5232 4125 3 MP
XPP
X0 sg
X5232 4125 mt 5256 4143 L
X5256 4143 mt 5320 4125 L
Xc36
X64 -17 25 29 5227 3850 3 MP
XPP
X0 sg
X5227 3850 mt 5252 3879 L
X5252 3879 mt 5316 3862 L
Xc36
X25 29 64 -17 5227 3850 3 MP
XPP
X0 sg
X5227 3850 mt 5291 3833 L
X5291 3833 mt 5316 3862 L
Xc48
X64 -18 24 31 5223 3440 3 MP
XPP
X0 sg
X5223 3440 mt 5247 3471 L
X5247 3471 mt 5311 3453 L
Xc48
X24 30 64 -17 5223 3440 3 MP
XPP
X0 sg
X5223 3440 mt 5287 3423 L
X5287 3423 mt 5311 3453 L
Xc47
X25 14 64 -40 5222 4070 3 MP
XPP
X0 sg
X5222 4070 mt 5286 4030 L
X5286 4030 mt 5311 4044 L
Xc47
X64 -40 25 14 5222 4070 3 MP
XPP
X0 sg
X5222 4070 mt 5247 4084 L
X5247 4084 mt 5311 4044 L
Xc9
X64 -35 24 42 5218 3698 3 MP
XPP
X0 sg
X5218 3698 mt 5242 3740 L
X5242 3740 mt 5306 3705 L
Xc9
X24 42 64 -35 5218 3698 3 MP
XPP
X0 sg
X5218 3698 mt 5282 3663 L
X5282 3663 mt 5306 3705 L
Xc53
X64 -18 24 17 5217 4180 3 MP
XPP
X0 sg
X5217 4180 mt 5241 4197 L
X5241 4197 mt 5305 4179 L
Xc53
X24 17 64 -18 5217 4180 3 MP
XPP
X0 sg
X5217 4180 mt 5281 4162 L
X5281 4162 mt 5305 4179 L
Xc52
X25 12 64 -18 5213 3318 3 MP
XPP
X0 sg
X5213 3318 mt 5277 3300 L
X5277 3300 mt 5302 3312 L
Xc52
X64 -17 25 11 5213 3318 3 MP
XPP
X0 sg
X5213 3318 mt 5238 3329 L
X5238 3329 mt 5302 3312 L
Xc33
X64 -17 25 19 5212 3978 3 MP
XPP
X0 sg
X5212 3978 mt 5237 3997 L
X5237 3997 mt 5301 3980 L
Xc33
X25 19 64 -17 5212 3978 3 MP
XPP
X0 sg
X5212 3978 mt 5276 3961 L
X5276 3961 mt 5301 3980 L
Xc46
X64 -17 25 43 5208 3522 3 MP
XPP
X0 sg
X5208 3522 mt 5233 3565 L
X5233 3565 mt 5297 3548 L
Xc46
X25 43 64 -17 5208 3522 3 MP
XPP
X0 sg
X5208 3522 mt 5272 3505 L
X5272 3505 mt 5297 3548 L
Xc47
X25 12 64 -18 5207 4114 3 MP
XPP
X0 sg
X5207 4114 mt 5271 4096 L
X5271 4096 mt 5296 4108 L
Xc47
X64 -17 25 11 5207 4114 3 MP
XPP
X0 sg
X5207 4114 mt 5232 4125 L
X5232 4125 mt 5296 4108 L
Xc11
X24 29 64 -17 5203 3821 3 MP
XPP
X0 sg
X5203 3821 mt 5267 3804 L
X5267 3804 mt 5291 3833 L
Xc11
X64 -17 24 29 5203 3821 3 MP
XPP
X0 sg
X5203 3821 mt 5227 3850 L
X5227 3850 mt 5291 3833 L
Xc51
X24 19 64 -23 5202 4235 3 MP
XPP
X0 sg
X5202 4235 mt 5266 4212 L
X5266 4212 mt 5290 4231 L
Xc51
X63 -22 25 18 5202 4235 3 MP
XPP
X0 sg
X5202 4235 mt 5227 4253 L
X5227 4253 mt 5290 4231 L
Xc50
X25 42 64 -17 5198 3398 3 MP
XPP
X0 sg
X5198 3398 mt 5262 3381 L
X5262 3381 mt 5287 3423 L
Xc50
X64 -17 25 42 5198 3398 3 MP
XPP
X0 sg
X5198 3398 mt 5223 3440 L
X5223 3440 mt 5287 3423 L
Xc43
X24 20 64 -39 5198 4049 3 MP
XPP
X0 sg
X5198 4049 mt 5262 4010 L
X5262 4010 mt 5286 4030 L
Xc43
X64 -40 24 21 5198 4049 3 MP
XPP
X0 sg
X5198 4049 mt 5222 4070 L
X5222 4070 mt 5286 4030 L
Xc17
X25 50 64 -35 5193 3648 3 MP
XPP
X0 sg
X5193 3648 mt 5257 3613 L
X5257 3613 mt 5282 3663 L
Xc17
X64 -35 25 50 5193 3648 3 MP
XPP
X0 sg
X5193 3648 mt 5218 3698 L
X5218 3698 mt 5282 3663 L
Xc45
X64 -18 25 20 5192 4160 3 MP
XPP
X0 sg
X5192 4160 mt 5217 4180 L
X5217 4180 mt 5281 4162 L
Xc45
X25 19 64 -17 5192 4160 3 MP
XPP
X0 sg
X5192 4160 mt 5256 4143 L
X5256 4143 mt 5281 4162 L
Xc52
X64 -18 24 12 5189 3306 3 MP
XPP
X0 sg
X5189 3306 mt 5213 3318 L
X5213 3318 mt 5277 3300 L
Xc52
X24 11 64 -17 5189 3306 3 MP
XPP
X0 sg
X5189 3306 mt 5253 3289 L
X5253 3289 mt 5277 3300 L
Xc28
X24 82 64 -17 5188 3896 3 MP
XPP
X0 sg
X5188 3896 mt 5252 3879 L
X5252 3879 mt 5276 3961 L
Xc28
X64 -17 24 82 5188 3896 3 MP
XPP
X0 sg
X5188 3896 mt 5212 3978 L
X5212 3978 mt 5276 3961 L
Xc54
X25 34 63 -17 5184 3488 3 MP
XPP
X0 sg
X5184 3488 mt 5247 3471 L
X5247 3471 mt 5272 3505 L
Xc54
X64 -17 24 34 5184 3488 3 MP
XPP
X0 sg
X5184 3488 mt 5208 3522 L
X5208 3522 mt 5272 3505 L
Xc47
X64 -18 24 13 5183 4101 3 MP
XPP
X0 sg
X5183 4101 mt 5207 4114 L
X5207 4114 mt 5271 4096 L
Xc47
X24 12 64 -17 5183 4101 3 MP
XPP
X0 sg
X5183 4101 mt 5247 4084 L
X5247 4084 mt 5271 4096 L
Xc22
X64 -17 25 64 5178 3757 3 MP
XPP
X0 sg
X5178 3757 mt 5203 3821 L
X5203 3821 mt 5267 3804 L
Xc22
X25 64 64 -17 5178 3757 3 MP
XPP
X0 sg
X5178 3757 mt 5242 3740 L
X5242 3740 mt 5267 3804 L
Xc51
X25 15 64 -23 5177 4220 3 MP
XPP
X0 sg
X5177 4220 mt 5241 4197 L
X5241 4197 mt 5266 4212 L
Xc51
X64 -23 25 15 5177 4220 3 MP
XPP
X0 sg
X5177 4220 mt 5202 4235 L
X5202 4235 mt 5266 4212 L
Xc52
X24 52 64 -17 5174 3346 3 MP
XPP
X0 sg
X5174 3346 mt 5238 3329 L
X5238 3329 mt 5262 3381 L
Xc52
X64 -17 24 52 5174 3346 3 MP
XPP
X0 sg
X5174 3346 mt 5198 3398 L
X5198 3398 mt 5262 3381 L
Xc44
X25 13 64 -39 5173 4036 3 MP
XPP
X0 sg
X5173 4036 mt 5237 3997 L
X5237 3997 mt 5262 4010 L
Xc44
X64 -39 25 13 5173 4036 3 MP
XPP
X0 sg
X5173 4036 mt 5198 4049 L
X5198 4049 mt 5262 4010 L
Xc31
X64 -35 24 48 5169 3600 3 MP
XPP
X0 sg
X5169 3600 mt 5193 3648 L
X5193 3648 mt 5257 3613 L
Xc31
X24 48 64 -35 5169 3600 3 MP
XPP
X0 sg
X5169 3600 mt 5233 3565 L
X5233 3565 mt 5257 3613 L
Xc47
X64 -17 24 17 5168 4143 3 MP
XPP
X0 sg
X5168 4143 mt 5192 4160 L
X5192 4160 mt 5256 4143 L
Xc47
X24 18 64 -18 5168 4143 3 MP
XPP
X0 sg
X5168 4143 mt 5232 4125 L
X5232 4125 mt 5256 4143 L
Xc52
X25 11 64 -17 5164 3295 3 MP
XPP
X0 sg
X5164 3295 mt 5228 3278 L
X5228 3278 mt 5253 3289 L
Xc52
X64 -17 25 11 5164 3295 3 MP
XPP
X0 sg
X5164 3295 mt 5189 3306 L
X5189 3306 mt 5253 3289 L
Xc36
X64 -17 25 29 5163 3867 3 MP
XPP
X0 sg
X5163 3867 mt 5188 3896 L
X5188 3896 mt 5252 3879 L
Xc36
X25 29 64 -17 5163 3867 3 MP
XPP
X0 sg
X5163 3867 mt 5227 3850 L
X5227 3850 mt 5252 3879 L
Xc48
X24 31 64 -17 5159 3457 3 MP
XPP
X0 sg
X5159 3457 mt 5223 3440 L
X5223 3440 mt 5247 3471 L
Xc48
X63 -17 25 31 5159 3457 3 MP
XPP
X0 sg
X5159 3457 mt 5184 3488 L
X5184 3488 mt 5247 3471 L
Xc47
X25 14 64 -17 5158 4087 3 MP
XPP
X0 sg
X5158 4087 mt 5222 4070 L
X5222 4070 mt 5247 4084 L
Xc47
X64 -17 25 14 5158 4087 3 MP
XPP
X0 sg
X5158 4087 mt 5183 4101 L
X5183 4101 mt 5247 4084 L
Xc9
X64 -17 24 42 5154 3715 3 MP
XPP
X0 sg
X5154 3715 mt 5178 3757 L
X5178 3757 mt 5242 3740 L
Xc9
X24 42 64 -17 5154 3715 3 MP
XPP
X0 sg
X5154 3715 mt 5218 3698 L
X5218 3698 mt 5242 3740 L
Xc53
X24 17 64 -22 5153 4202 3 MP
XPP
X0 sg
X5153 4202 mt 5217 4180 L
X5217 4180 mt 5241 4197 L
Xc53
X64 -23 24 18 5153 4202 3 MP
XPP
X0 sg
X5153 4202 mt 5177 4220 L
X5177 4220 mt 5241 4197 L
Xc52
X25 11 64 -17 5149 3335 3 MP
XPP
X0 sg
X5149 3335 mt 5213 3318 L
X5213 3318 mt 5238 3329 L
Xc52
X64 -17 25 11 5149 3335 3 MP
XPP
X0 sg
X5149 3335 mt 5174 3346 L
X5174 3346 mt 5238 3329 L
Xc40
X25 19 63 -39 5149 4017 3 MP
XPP
X0 sg
X5149 4017 mt 5212 3978 L
X5212 3978 mt 5237 3997 L
Xc40
X64 -39 24 19 5149 4017 3 MP
XPP
X0 sg
X5149 4017 mt 5173 4036 L
X5173 4036 mt 5237 3997 L
Xc20
X64 -35 25 43 5144 3557 3 MP
XPP
X0 sg
X5144 3557 mt 5169 3600 L
X5169 3600 mt 5233 3565 L
Xc20
X25 43 64 -35 5144 3557 3 MP
XPP
X0 sg
X5144 3557 mt 5208 3522 L
X5208 3522 mt 5233 3565 L
Xc47
X25 11 64 -17 5143 4131 3 MP
XPP
X0 sg
X5143 4131 mt 5207 4114 L
X5207 4114 mt 5232 4125 L
Xc47
X64 -18 25 12 5143 4131 3 MP
XPP
X0 sg
X5143 4131 mt 5168 4143 L
X5168 4143 mt 5232 4125 L
Xc52
X64 -17 24 11 5140 3284 3 MP
XPP
X0 sg
X5140 3284 mt 5164 3295 L
X5164 3295 mt 5228 3278 L
Xc52
X24 11 64 -17 5140 3284 3 MP
XPP
X0 sg
X5140 3284 mt 5204 3267 L
X5204 3267 mt 5228 3278 L
Xc11
X24 29 64 -18 5139 3839 3 MP
XPP
X0 sg
X5139 3839 mt 5203 3821 L
X5203 3821 mt 5227 3850 L
Xc11
X64 -17 24 28 5139 3839 3 MP
XPP
X0 sg
X5139 3839 mt 5163 3867 L
X5163 3867 mt 5227 3850 L
Xc51
X25 18 64 -17 5138 4252 3 MP
XPP
X0 sg
X5138 4252 mt 5202 4235 L
X5202 4235 mt 5227 4253 L
Xc51
X64 -18 25 19 5138 4252 3 MP
XPP
X0 sg
X5138 4252 mt 5163 4271 L
X5163 4271 mt 5227 4253 L
Xc50
X64 -17 25 42 5134 3415 3 MP
XPP
X0 sg
X5134 3415 mt 5159 3457 L
X5159 3457 mt 5223 3440 L
Xc50
X25 42 64 -17 5134 3415 3 MP
XPP
X0 sg
X5134 3415 mt 5198 3398 L
X5198 3398 mt 5223 3440 L
Xc43
X24 21 64 -18 5134 4067 3 MP
XPP
X0 sg
X5134 4067 mt 5198 4049 L
X5198 4049 mt 5222 4070 L
Xc43
X64 -17 24 20 5134 4067 3 MP
XPP
X0 sg
X5134 4067 mt 5158 4087 L
X5158 4087 mt 5222 4070 L
Xc17
X25 50 64 -17 5129 3665 3 MP
XPP
X0 sg
X5129 3665 mt 5193 3648 L
X5193 3648 mt 5218 3698 L
Xc17
X64 -17 25 50 5129 3665 3 MP
XPP
X0 sg
X5129 3665 mt 5154 3715 L
X5154 3715 mt 5218 3698 L
Xc45
X25 20 64 -23 5128 4183 3 MP
XPP
X0 sg
X5128 4183 mt 5192 4160 L
X5192 4160 mt 5217 4180 L
Xc45
X64 -22 25 19 5128 4183 3 MP
XPP
X0 sg
X5128 4183 mt 5153 4202 L
X5153 4202 mt 5217 4180 L
Xc52
X24 12 64 -18 5125 3324 3 MP
XPP
X0 sg
X5125 3324 mt 5189 3306 L
X5189 3306 mt 5213 3318 L
Xc52
X64 -17 24 11 5125 3324 3 MP
XPP
X0 sg
X5125 3324 mt 5149 3335 L
X5149 3335 mt 5213 3318 L
Xc42
X24 82 64 -40 5124 3936 3 MP
XPP
X0 sg
X5124 3936 mt 5188 3896 L
X5188 3896 mt 5212 3978 L
Xc42
X63 -39 25 81 5124 3936 3 MP
XPP
X0 sg
X5124 3936 mt 5149 4017 L
X5149 4017 mt 5212 3978 L
Xc46
X64 -35 24 34 5120 3523 3 MP
XPP
X0 sg
X5120 3523 mt 5144 3557 L
X5144 3557 mt 5208 3522 L
Xc46
X24 34 64 -35 5120 3523 3 MP
XPP
X0 sg
X5120 3523 mt 5184 3488 L
X5184 3488 mt 5208 3522 L
Xc47
X24 13 64 -17 5119 4118 3 MP
XPP
X0 sg
X5119 4118 mt 5183 4101 L
X5183 4101 mt 5207 4114 L
Xc47
X64 -17 24 13 5119 4118 3 MP
XPP
X0 sg
X5119 4118 mt 5143 4131 L
X5143 4131 mt 5207 4114 L
Xc52
X64 -17 25 11 5115 3273 3 MP
XPP
X0 sg
X5115 3273 mt 5140 3284 L
X5140 3284 mt 5204 3267 L
Xc52
X25 12 64 -18 5115 3273 3 MP
XPP
X0 sg
X5115 3273 mt 5179 3255 L
X5179 3255 mt 5204 3267 L
Xc22
X25 64 64 -18 5114 3775 3 MP
XPP
X0 sg
X5114 3775 mt 5178 3757 L
X5178 3757 mt 5203 3821 L
Xc22
X64 -18 25 64 5114 3775 3 MP
XPP
X0 sg
X5114 3775 mt 5139 3839 L
X5139 3839 mt 5203 3821 L
Xc51
X25 15 63 -17 5114 4237 3 MP
XPP
X0 sg
X5114 4237 mt 5177 4220 L
X5177 4220 mt 5202 4235 L
Xc51
X64 -17 24 15 5114 4237 3 MP
XPP
X0 sg
X5114 4237 mt 5138 4252 L
X5138 4252 mt 5202 4235 L
Xc52
X24 52 64 -18 5110 3364 3 MP
XPP
X0 sg
X5110 3364 mt 5174 3346 L
X5174 3346 mt 5198 3398 L
Xc52
X64 -17 24 51 5110 3364 3 MP
XPP
X0 sg
X5110 3364 mt 5134 3415 L
X5134 3415 mt 5198 3398 L
Xc44
X64 -18 25 13 5109 4054 3 MP
XPP
X0 sg
X5109 4054 mt 5134 4067 L
X5134 4067 mt 5198 4049 L
Xc44
X25 13 64 -18 5109 4054 3 MP
XPP
X0 sg
X5109 4054 mt 5173 4036 L
X5173 4036 mt 5198 4049 L
Xc31
X64 -17 24 48 5105 3617 3 MP
XPP
X0 sg
X5105 3617 mt 5129 3665 L
X5129 3665 mt 5193 3648 L
Xc31
X24 48 64 -17 5105 3617 3 MP
XPP
X0 sg
X5105 3617 mt 5169 3600 L
X5169 3600 mt 5193 3648 L
Xc45
X64 -23 24 18 5104 4165 3 MP
XPP
X0 sg
X5104 4165 mt 5128 4183 L
X5128 4183 mt 5192 4160 L
Xc45
X24 17 64 -22 5104 4165 3 MP
XPP
X0 sg
X5104 4165 mt 5168 4143 L
X5168 4143 mt 5192 4160 L
Xc52
X64 -18 25 12 5100 3312 3 MP
XPP
X0 sg
X5100 3312 mt 5125 3324 L
X5125 3324 mt 5189 3306 L
Xc52
X25 11 64 -17 5100 3312 3 MP
XPP
X0 sg
X5100 3312 mt 5164 3295 L
X5164 3295 mt 5189 3306 L
Xc27
X25 29 64 -40 5099 3907 3 MP
XPP
X0 sg
X5099 3907 mt 5163 3867 L
X5163 3867 mt 5188 3896 L
Xc27
X64 -40 25 29 5099 3907 3 MP
XPP
X0 sg
X5099 3907 mt 5124 3936 L
X5124 3936 mt 5188 3896 L
Xc54
X64 -35 25 31 5095 3492 3 MP
XPP
X0 sg
X5095 3492 mt 5120 3523 L
X5120 3523 mt 5184 3488 L
Xc54
X25 31 64 -35 5095 3492 3 MP
XPP
X0 sg
X5095 3492 mt 5159 3457 L
X5159 3457 mt 5184 3488 L
Xc47
X25 14 64 -17 5094 4104 3 MP
XPP
X0 sg
X5094 4104 mt 5158 4087 L
X5158 4087 mt 5183 4101 L
Xc47
X64 -17 25 14 5094 4104 3 MP
XPP
X0 sg
X5094 4104 mt 5119 4118 L
X5119 4118 mt 5183 4101 L
Xc52
X24 11 64 -17 5091 3261 3 MP
XPP
X0 sg
X5091 3261 mt 5155 3244 L
X5155 3244 mt 5179 3255 L
Xc52
X64 -18 24 12 5091 3261 3 MP
XPP
X0 sg
X5091 3261 mt 5115 3273 L
X5115 3273 mt 5179 3255 L
Xc9
X64 -18 24 43 5090 3732 3 MP
XPP
X0 sg
X5090 3732 mt 5114 3775 L
X5114 3775 mt 5178 3757 L
Xc9
X24 42 64 -17 5090 3732 3 MP
XPP
X0 sg
X5090 3732 mt 5154 3715 L
X5154 3715 mt 5178 3757 L
Xc53
X63 -17 25 17 5089 4220 3 MP
XPP
X0 sg
X5089 4220 mt 5114 4237 L
X5114 4237 mt 5177 4220 L
Xc53
X24 18 64 -18 5089 4220 3 MP
XPP
X0 sg
X5089 4220 mt 5153 4202 L
X5153 4202 mt 5177 4220 L
Xc52
X25 11 64 -17 5085 3352 3 MP
XPP
X0 sg
X5085 3352 mt 5149 3335 L
X5149 3335 mt 5174 3346 L
Xc52
X64 -18 25 12 5085 3352 3 MP
XPP
X0 sg
X5085 3352 mt 5110 3364 L
X5110 3364 mt 5174 3346 L
Xc40
X64 -18 24 19 5085 4035 3 MP
XPP
X0 sg
X5085 4035 mt 5109 4054 L
X5109 4054 mt 5173 4036 L
Xc40
X24 19 64 -18 5085 4035 3 MP
XPP
X0 sg
X5085 4035 mt 5149 4017 L
X5149 4017 mt 5173 4036 L
Xc20
X64 -17 25 42 5080 3575 3 MP
XPP
X0 sg
X5080 3575 mt 5105 3617 L
X5105 3617 mt 5169 3600 L
Xc20
X25 43 64 -18 5080 3575 3 MP
XPP
X0 sg
X5080 3575 mt 5144 3557 L
X5144 3557 mt 5169 3600 L
Xc45
X64 -22 25 11 5079 4154 3 MP
XPP
X0 sg
X5079 4154 mt 5104 4165 L
X5104 4165 mt 5168 4143 L
Xc45
X25 12 64 -23 5079 4154 3 MP
XPP
X0 sg
X5079 4154 mt 5143 4131 L
X5143 4131 mt 5168 4143 L
Xc52
X64 -17 24 11 5076 3301 3 MP
XPP
X0 sg
X5076 3301 mt 5100 3312 L
X5100 3312 mt 5164 3295 L
Xc52
X24 11 64 -17 5076 3301 3 MP
XPP
X0 sg
X5076 3301 mt 5140 3284 L
X5140 3284 mt 5164 3295 L
Xc14
X64 -40 24 29 5075 3878 3 MP
XPP
X0 sg
X5075 3878 mt 5099 3907 L
X5099 3907 mt 5163 3867 L
Xc14
X24 28 64 -39 5075 3878 3 MP
XPP
X0 sg
X5075 3878 mt 5139 3839 L
X5139 3839 mt 5163 3867 L
Xc58
X64 -27 25 19 5074 4279 3 MP
XPP
X0 sg
X5074 4279 mt 5099 4298 L
X5099 4298 mt 5163 4271 L
Xc58
X25 19 64 -27 5074 4279 3 MP
XPP
X0 sg
X5074 4279 mt 5138 4252 L
X5138 4252 mt 5163 4271 L
Xc49
X64 -35 24 42 5071 3450 3 MP
XPP
X0 sg
X5071 3450 mt 5095 3492 L
X5095 3492 mt 5159 3457 L
Xc49
X25 42 63 -35 5071 3450 3 MP
XPP
X0 sg
X5071 3450 mt 5134 3415 L
X5134 3415 mt 5159 3457 L
Xc43
X64 -17 24 20 5070 4084 3 MP
XPP
X0 sg
X5070 4084 mt 5094 4104 L
X5094 4104 mt 5158 4087 L
Xc43
X24 20 64 -17 5070 4084 3 MP
XPP
X0 sg
X5070 4084 mt 5134 4067 L
X5134 4067 mt 5158 4087 L
Xc52
X25 11 64 -17 5066 3250 3 MP
XPP
X0 sg
X5066 3250 mt 5130 3233 L
X5130 3233 mt 5155 3244 L
Xc52
X64 -17 25 11 5066 3250 3 MP
XPP
X0 sg
X5066 3250 mt 5091 3261 L
X5091 3261 mt 5155 3244 L
Xc17
X25 50 64 -17 5065 3682 3 MP
XPP
X0 sg
X5065 3682 mt 5129 3665 L
X5129 3665 mt 5154 3715 L
Xc17
X64 -17 25 50 5065 3682 3 MP
XPP
X0 sg
X5065 3682 mt 5090 3732 L
X5090 3732 mt 5154 3715 L
Xc45
X64 -18 25 20 5064 4200 3 MP
XPP
X0 sg
X5064 4200 mt 5089 4220 L
X5089 4220 mt 5153 4202 L
Xc45
X25 19 64 -17 5064 4200 3 MP
XPP
X0 sg
X5064 4200 mt 5128 4183 L
X5128 4183 mt 5153 4202 L
Xc52
X64 -17 24 11 5061 3341 3 MP
XPP
X0 sg
X5061 3341 mt 5085 3352 L
X5085 3352 mt 5149 3335 L
Xc52
X24 11 64 -17 5061 3341 3 MP
XPP
X0 sg
X5061 3341 mt 5125 3324 L
X5125 3324 mt 5149 3335 L
Xc42
X25 81 64 -17 5060 3953 3 MP
XPP
X0 sg
X5060 3953 mt 5124 3936 L
X5124 3936 mt 5149 4017 L
Xc42
X64 -18 25 82 5060 3953 3 MP
XPP
X0 sg
X5060 3953 mt 5085 4035 L
X5085 4035 mt 5149 4017 L
Xc46
X24 34 64 -17 5056 3540 3 MP
XPP
X0 sg
X5056 3540 mt 5120 3523 L
X5120 3523 mt 5144 3557 L
Xc46
X64 -18 24 35 5056 3540 3 MP
XPP
X0 sg
X5056 3540 mt 5080 3575 L
X5080 3575 mt 5144 3557 L
Xc47
X24 13 64 -23 5055 4141 3 MP
XPP
X0 sg
X5055 4141 mt 5119 4118 L
X5119 4118 mt 5143 4131 L
Xc47
X64 -23 24 13 5055 4141 3 MP
XPP
X0 sg
X5055 4141 mt 5079 4154 L
X5079 4154 mt 5143 4131 L
Xc52
X25 11 64 -17 5051 3290 3 MP
XPP
X0 sg
X5051 3290 mt 5115 3273 L
X5115 3273 mt 5140 3284 L
Xc52
X64 -17 25 11 5051 3290 3 MP
XPP
X0 sg
X5051 3290 mt 5076 3301 L
X5076 3301 mt 5140 3284 L
Xc34
X64 -39 25 64 5050 3814 3 MP
XPP
X0 sg
X5050 3814 mt 5075 3878 L
X5075 3878 mt 5139 3839 L
Xc34
X25 64 64 -39 5050 3814 3 MP
XPP
X0 sg
X5050 3814 mt 5114 3775 L
X5114 3775 mt 5139 3839 L
Xc58
X64 -27 24 15 5050 4264 3 MP
XPP
X0 sg
X5050 4264 mt 5074 4279 L
X5074 4279 mt 5138 4252 L
Xc58
X24 15 64 -27 5050 4264 3 MP
XPP
X0 sg
X5050 4264 mt 5114 4237 L
X5114 4237 mt 5138 4252 L
Xc57
X63 -35 25 52 5046 3398 3 MP
XPP
X0 sg
X5046 3398 mt 5071 3450 L
X5071 3450 mt 5134 3415 L
Xc57
X24 51 64 -34 5046 3398 3 MP
XPP
X0 sg
X5046 3398 mt 5110 3364 L
X5110 3364 mt 5134 3415 L
Xc44
X25 13 64 -17 5045 4071 3 MP
XPP
X0 sg
X5045 4071 mt 5109 4054 L
X5109 4054 mt 5134 4067 L
Xc44
X64 -17 25 13 5045 4071 3 MP
XPP
X0 sg
X5045 4071 mt 5070 4084 L
X5070 4084 mt 5134 4067 L
Xc52
X64 -17 24 11 5042 3239 3 MP
XPP
X0 sg
X5042 3239 mt 5066 3250 L
X5066 3250 mt 5130 3233 L
Xc52
X25 12 63 -18 5042 3239 3 MP
XPP
X0 sg
X5042 3239 mt 5105 3221 L
X5105 3221 mt 5130 3233 L
Xc31
X24 48 64 -18 5041 3635 3 MP
XPP
X0 sg
X5041 3635 mt 5105 3617 L
X5105 3617 mt 5129 3665 L
Xc31
X64 -17 24 47 5041 3635 3 MP
XPP
X0 sg
X5041 3635 mt 5065 3682 L
X5065 3682 mt 5129 3665 L
Xc45
X64 -17 24 17 5040 4183 3 MP
XPP
X0 sg
X5040 4183 mt 5064 4200 L
X5064 4200 mt 5128 4183 L
Xc45
X24 18 64 -18 5040 4183 3 MP
XPP
X0 sg
X5040 4183 mt 5104 4165 L
X5104 4165 mt 5128 4183 L
Xc52
X64 -17 25 11 5036 3330 3 MP
XPP
X0 sg
X5036 3330 mt 5061 3341 L
X5061 3341 mt 5125 3324 L
Xc52
X25 12 64 -18 5036 3330 3 MP
XPP
X0 sg
X5036 3330 mt 5100 3312 L
X5100 3312 mt 5125 3324 L
Xc27
X25 29 63 -17 5036 3924 3 MP
XPP
X0 sg
X5036 3924 mt 5099 3907 L
X5099 3907 mt 5124 3936 L
Xc27
X64 -17 24 29 5036 3924 3 MP
XPP
X0 sg
X5036 3924 mt 5060 3953 L
X5060 3953 mt 5124 3936 L
X
Xgr 
X4370 2735 mt 
X(LSQR filter factors, log scale) s
Xgs 3994 2830 2261 1783 MR c np
Xc54
X64 -17 25 30 5031 3510 3 MP
XPP
X0 sg
X5031 3510 mt 5056 3540 L
X5056 3540 mt 5120 3523 L
Xc54
X25 31 64 -18 5031 3510 3 MP
XPP
X0 sg
X5031 3510 mt 5095 3492 L
X5095 3492 mt 5120 3523 L
Xc47
X25 14 64 -23 5030 4127 3 MP
XPP
X0 sg
X5030 4127 mt 5094 4104 L
X5094 4104 mt 5119 4118 L
Xc47
X64 -23 25 14 5030 4127 3 MP
XPP
X0 sg
X5030 4127 mt 5055 4141 L
X5055 4141 mt 5119 4118 L
Xc52
X24 12 64 -18 5027 3279 3 MP
XPP
X0 sg
X5027 3279 mt 5091 3261 L
X5091 3261 mt 5115 3273 L
Xc52
X64 -17 24 11 5027 3279 3 MP
XPP
X0 sg
X5027 3279 mt 5051 3290 L
X5051 3290 mt 5115 3273 L
Xc12
X24 43 64 -40 5026 3772 3 MP
XPP
X0 sg
X5026 3772 mt 5090 3732 L
X5090 3732 mt 5114 3775 L
Xc12
X64 -39 24 42 5026 3772 3 MP
XPP
X0 sg
X5026 3772 mt 5050 3814 L
X5050 3814 mt 5114 3775 L
Xc51
X25 17 64 -27 5025 4247 3 MP
XPP
X0 sg
X5025 4247 mt 5089 4220 L
X5089 4220 mt 5114 4237 L
Xc51
X64 -27 25 17 5025 4247 3 MP
XPP
X0 sg
X5025 4247 mt 5050 4264 L
X5050 4264 mt 5114 4237 L
Xc52
X25 12 64 -17 5021 3369 3 MP
XPP
X0 sg
X5021 3369 mt 5085 3352 L
X5085 3352 mt 5110 3364 L
Xc52
X64 -34 25 29 5021 3369 3 MP
XPP
X0 sg
X5021 3369 mt 5046 3398 L
X5046 3398 mt 5110 3364 L
Xc40
X24 19 64 -17 5021 4052 3 MP
XPP
X0 sg
X5021 4052 mt 5085 4035 L
X5085 4035 mt 5109 4054 L
Xc40
X64 -17 24 19 5021 4052 3 MP
XPP
X0 sg
X5021 4052 mt 5045 4071 L
X5045 4071 mt 5109 4054 L
Xc20
X25 42 64 -17 5016 3592 3 MP
XPP
X0 sg
X5016 3592 mt 5080 3575 L
X5080 3575 mt 5105 3617 L
Xc20
X64 -18 25 43 5016 3592 3 MP
XPP
X0 sg
X5016 3592 mt 5041 3635 L
X5041 3635 mt 5105 3617 L
Xc45
X25 11 64 -17 5015 4171 3 MP
XPP
X0 sg
X5015 4171 mt 5079 4154 L
X5079 4154 mt 5104 4165 L
Xc45
X64 -18 25 12 5015 4171 3 MP
XPP
X0 sg
X5015 4171 mt 5040 4183 L
X5040 4183 mt 5104 4165 L
Xc52
X24 11 64 -17 5012 3318 3 MP
XPP
X0 sg
X5012 3318 mt 5076 3301 L
X5076 3301 mt 5100 3312 L
Xc52
X64 -18 24 12 5012 3318 3 MP
XPP
X0 sg
X5012 3318 mt 5036 3330 L
X5036 3330 mt 5100 3312 L
Xc14
X63 -17 25 29 5011 3895 3 MP
XPP
X0 sg
X5011 3895 mt 5036 3924 L
X5036 3924 mt 5099 3907 L
Xc14
X24 29 64 -17 5011 3895 3 MP
XPP
X0 sg
X5011 3895 mt 5075 3878 L
X5075 3878 mt 5099 3907 L
Xc60
X25 19 64 -44 5010 4323 3 MP
XPP
X0 sg
X5010 4323 mt 5074 4279 L
X5074 4279 mt 5099 4298 L
Xc60
X64 -44 25 19 5010 4323 3 MP
XPP
X0 sg
X5010 4323 mt 5035 4342 L
X5035 4342 mt 5099 4298 L
Xc49
X64 -18 24 42 5007 3468 3 MP
XPP
X0 sg
X5007 3468 mt 5031 3510 L
X5031 3510 mt 5095 3492 L
Xc49
X24 42 64 -18 5007 3468 3 MP
XPP
X0 sg
X5007 3468 mt 5071 3450 L
X5071 3450 mt 5095 3492 L
Xc43
X64 -23 24 20 5006 4107 3 MP
XPP
X0 sg
X5006 4107 mt 5030 4127 L
X5030 4127 mt 5094 4104 L
Xc43
X24 20 64 -23 5006 4107 3 MP
XPP
X0 sg
X5006 4107 mt 5070 4084 L
X5070 4084 mt 5094 4104 L
Xc52
X25 11 64 -17 5002 3267 3 MP
XPP
X0 sg
X5002 3267 mt 5066 3250 L
X5066 3250 mt 5091 3261 L
Xc52
X64 -18 25 12 5002 3267 3 MP
XPP
X0 sg
X5002 3267 mt 5027 3279 L
X5027 3279 mt 5091 3261 L
Xc29
X25 50 64 -40 5001 3722 3 MP
XPP
X0 sg
X5001 3722 mt 5065 3682 L
X5065 3682 mt 5090 3732 L
Xc29
X64 -40 25 50 5001 3722 3 MP
XPP
X0 sg
X5001 3722 mt 5026 3772 L
X5026 3772 mt 5090 3732 L
Xc53
X64 -27 24 20 5001 4227 3 MP
XPP
X0 sg
X5001 4227 mt 5025 4247 L
X5025 4247 mt 5089 4220 L
Xc53
X25 20 63 -27 5001 4227 3 MP
XPP
X0 sg
X5001 4227 mt 5064 4200 L
X5064 4200 mt 5089 4220 L
Xc52
X64 -17 24 11 4997 3358 3 MP
XPP
X0 sg
X4997 3358 mt 5021 3369 L
X5021 3369 mt 5085 3352 L
Xc52
X24 11 64 -17 4997 3358 3 MP
XPP
X0 sg
X4997 3358 mt 5061 3341 L
X5061 3341 mt 5085 3352 L
Xc42
X64 -17 25 82 4996 3970 3 MP
XPP
X0 sg
X4996 3970 mt 5021 4052 L
X5021 4052 mt 5085 4035 L
Xc42
X25 82 64 -17 4996 3970 3 MP
XPP
X0 sg
X4996 3970 mt 5060 3953 L
X5060 3953 mt 5085 4035 L
Xc46
X24 35 64 -17 4992 3557 3 MP
XPP
X0 sg
X4992 3557 mt 5056 3540 L
X5056 3540 mt 5080 3575 L
Xc46
X64 -17 24 35 4992 3557 3 MP
XPP
X0 sg
X4992 3557 mt 5016 3592 L
X5016 3592 mt 5080 3575 L
Xc47
X64 -17 24 13 4991 4158 3 MP
XPP
X0 sg
X4991 4158 mt 5015 4171 L
X5015 4171 mt 5079 4154 L
Xc47
X24 13 64 -17 4991 4158 3 MP
XPP
X0 sg
X4991 4158 mt 5055 4141 L
X5055 4141 mt 5079 4154 L
Xc52
X64 -17 25 11 4987 3307 3 MP
XPP
X0 sg
X4987 3307 mt 5012 3318 L
X5012 3318 mt 5076 3301 L
Xc52
X25 11 64 -17 4987 3307 3 MP
XPP
X0 sg
X4987 3307 mt 5051 3290 L
X5051 3290 mt 5076 3301 L
Xc34
X64 -17 25 64 4986 3831 3 MP
XPP
X0 sg
X4986 3831 mt 5011 3895 L
X5011 3895 mt 5075 3878 L
Xc34
X25 64 64 -17 4986 3831 3 MP
XPP
X0 sg
X4986 3831 mt 5050 3814 L
X5050 3814 mt 5075 3878 L
Xc60
X24 15 64 -44 4986 4308 3 MP
XPP
X0 sg
X4986 4308 mt 5050 4264 L
X5050 4264 mt 5074 4279 L
Xc60
X64 -44 24 15 4986 4308 3 MP
XPP
X0 sg
X4986 4308 mt 5010 4323 L
X5010 4323 mt 5074 4279 L
Xc57
X64 -18 25 53 4982 3415 3 MP
XPP
X0 sg
X4982 3415 mt 5007 3468 L
X5007 3468 mt 5071 3450 L
Xc57
X25 52 64 -17 4982 3415 3 MP
XPP
X0 sg
X4982 3415 mt 5046 3398 L
X5046 3398 mt 5071 3450 L
Xc43
X64 -23 25 13 4981 4094 3 MP
XPP
X0 sg
X4981 4094 mt 5006 4107 L
X5006 4107 mt 5070 4084 L
Xc43
X25 13 64 -23 4981 4094 3 MP
XPP
X0 sg
X4981 4094 mt 5045 4071 L
X5045 4071 mt 5070 4084 L
Xc52
X24 11 64 -17 4978 3256 3 MP
XPP
X0 sg
X4978 3256 mt 5042 3239 L
X5042 3239 mt 5066 3250 L
Xc52
X64 -17 24 11 4978 3256 3 MP
XPP
X0 sg
X4978 3256 mt 5002 3267 L
X5002 3267 mt 5066 3250 L
Xc35
X64 -40 24 48 4977 3674 3 MP
XPP
X0 sg
X4977 3674 mt 5001 3722 L
X5001 3722 mt 5065 3682 L
Xc35
X24 47 64 -39 4977 3674 3 MP
XPP
X0 sg
X4977 3674 mt 5041 3635 L
X5041 3635 mt 5065 3682 L
Xc53
X63 -27 25 17 4976 4210 3 MP
XPP
X0 sg
X4976 4210 mt 5001 4227 L
X5001 4227 mt 5064 4200 L
Xc53
X24 17 64 -27 4976 4210 3 MP
XPP
X0 sg
X4976 4210 mt 5040 4183 L
X5040 4183 mt 5064 4200 L
Xc52
X64 -17 25 11 4972 3347 3 MP
XPP
X0 sg
X4972 3347 mt 4997 3358 L
X4997 3358 mt 5061 3341 L
Xc52
X25 11 64 -17 4972 3347 3 MP
XPP
X0 sg
X4972 3347 mt 5036 3330 L
X5036 3330 mt 5061 3341 L
Xc27
X64 -17 24 29 4972 3941 3 MP
XPP
X0 sg
X4972 3941 mt 4996 3970 L
X4996 3970 mt 5060 3953 L
Xc27
X24 29 64 -17 4972 3941 3 MP
XPP
X0 sg
X4972 3941 mt 5036 3924 L
X5036 3924 mt 5060 3953 L
Xc54
X64 -17 25 30 4967 3527 3 MP
XPP
X0 sg
X4967 3527 mt 4992 3557 L
X4992 3557 mt 5056 3540 L
Xc54
X25 30 64 -17 4967 3527 3 MP
XPP
X0 sg
X4967 3527 mt 5031 3510 L
X5031 3510 mt 5056 3540 L
Xc47
X64 -17 25 14 4966 4144 3 MP
XPP
X0 sg
X4966 4144 mt 4991 4158 L
X4991 4158 mt 5055 4141 L
Xc47
X25 14 64 -17 4966 4144 3 MP
XPP
X0 sg
X4966 4144 mt 5030 4127 L
X5030 4127 mt 5055 4141 L
Xc52
X24 11 64 -17 4963 3296 3 MP
XPP
X0 sg
X4963 3296 mt 5027 3279 L
X5027 3279 mt 5051 3290 L
Xc52
X64 -17 24 11 4963 3296 3 MP
XPP
X0 sg
X4963 3296 mt 4987 3307 L
X4987 3307 mt 5051 3290 L
Xc12
X64 -17 24 42 4962 3789 3 MP
XPP
X0 sg
X4962 3789 mt 4986 3831 L
X4986 3831 mt 5050 3814 L
Xc12
X24 42 64 -17 4962 3789 3 MP
XPP
X0 sg
X4962 3789 mt 5026 3772 L
X5026 3772 mt 5050 3814 L
Xc61
X64 -44 25 17 4961 4291 3 MP
XPP
X0 sg
X4961 4291 mt 4986 4308 L
X4986 4308 mt 5050 4264 L
Xc61
X25 17 64 -44 4961 4291 3 MP
XPP
X0 sg
X4961 4291 mt 5025 4247 L
X5025 4247 mt 5050 4264 L
Xc52
X25 29 63 -18 4958 3387 3 MP
XPP
X0 sg
X4958 3387 mt 5021 3369 L
X5021 3369 mt 5046 3398 L
Xc52
X64 -17 24 28 4958 3387 3 MP
XPP
X0 sg
X4958 3387 mt 4982 3415 L
X4982 3415 mt 5046 3398 L
Xc44
X64 -23 24 19 4957 4075 3 MP
XPP
X0 sg
X4957 4075 mt 4981 4094 L
X4981 4094 mt 5045 4071 L
Xc44
X24 19 64 -23 4957 4075 3 MP
XPP
X0 sg
X4957 4075 mt 5021 4052 L
X5021 4052 mt 5045 4071 L
Xc16
X25 43 64 -39 4952 3631 3 MP
XPP
X0 sg
X4952 3631 mt 5016 3592 L
X5016 3592 mt 5041 3635 L
Xc16
X64 -39 25 43 4952 3631 3 MP
XPP
X0 sg
X4952 3631 mt 4977 3674 L
X4977 3674 mt 5041 3635 L
Xc53
X64 -27 25 12 4951 4198 3 MP
XPP
X0 sg
X4951 4198 mt 4976 4210 L
X4976 4210 mt 5040 4183 L
Xc53
X25 12 64 -27 4951 4198 3 MP
XPP
X0 sg
X4951 4198 mt 5015 4171 L
X5015 4171 mt 5040 4183 L
Xc52
X24 12 64 -18 4948 3336 3 MP
XPP
X0 sg
X4948 3336 mt 5012 3318 L
X5012 3318 mt 5036 3330 L
Xc52
X64 -17 24 11 4948 3336 3 MP
XPP
X0 sg
X4948 3336 mt 4972 3347 L
X4972 3347 mt 5036 3330 L
Xc14
X64 -17 25 29 4947 3912 3 MP
XPP
X0 sg
X4947 3912 mt 4972 3941 L
X4972 3941 mt 5036 3924 L
Xc14
X25 29 64 -17 4947 3912 3 MP
XPP
X0 sg
X4947 3912 mt 5011 3895 L
X5011 3895 mt 5036 3924 L
Xc64
X64 -30 25 19 4946 4353 3 MP
XPP
X0 sg
X4946 4353 mt 4971 4372 L
X4971 4372 mt 5035 4342 L
Xc64
X25 19 64 -30 4946 4353 3 MP
XPP
X0 sg
X4946 4353 mt 5010 4323 L
X5010 4323 mt 5035 4342 L
Xc49
X64 -17 24 42 4943 3485 3 MP
XPP
X0 sg
X4943 3485 mt 4967 3527 L
X4967 3527 mt 5031 3510 L
Xc49
X24 42 64 -17 4943 3485 3 MP
XPP
X0 sg
X4943 3485 mt 5007 3468 L
X5007 3468 mt 5031 3510 L
Xc43
X64 -17 24 20 4942 4124 3 MP
XPP
X0 sg
X4942 4124 mt 4966 4144 L
X4966 4144 mt 5030 4127 L
Xc43
X24 20 64 -17 4942 4124 3 MP
XPP
X0 sg
X4942 4124 mt 5006 4107 L
X5006 4107 mt 5030 4127 L
Xc52
X64 -17 25 11 4938 3285 3 MP
XPP
X0 sg
X4938 3285 mt 4963 3296 L
X4963 3296 mt 5027 3279 L
Xc52
X25 12 64 -18 4938 3285 3 MP
XPP
X0 sg
X4938 3285 mt 5002 3267 L
X5002 3267 mt 5027 3279 L
Xc29
X64 -17 25 50 4937 3739 3 MP
XPP
X0 sg
X4937 3739 mt 4962 3789 L
X4962 3789 mt 5026 3772 L
Xc29
X25 50 64 -17 4937 3739 3 MP
XPP
X0 sg
X4937 3739 mt 5001 3722 L
X5001 3722 mt 5026 3772 L
Xc56
X64 -44 24 20 4937 4271 3 MP
XPP
X0 sg
X4937 4271 mt 4961 4291 L
X4961 4291 mt 5025 4247 L
Xc56
X24 20 64 -44 4937 4271 3 MP
XPP
X0 sg
X4937 4271 mt 5001 4227 L
X5001 4227 mt 5025 4247 L
Xc52
X24 11 64 -18 4933 3376 3 MP
XPP
X0 sg
X4933 3376 mt 4997 3358 L
X4997 3358 mt 5021 3369 L
Xc52
X63 -18 25 11 4933 3376 3 MP
XPP
X0 sg
X4933 3376 mt 4958 3387 L
X4958 3387 mt 5021 3369 L
Xc42
X64 -23 25 82 4932 3993 3 MP
XPP
X0 sg
X4932 3993 mt 4957 4075 L
X4957 4075 mt 5021 4052 L
Xc42
X25 82 64 -23 4932 3993 3 MP
XPP
X0 sg
X4932 3993 mt 4996 3970 L
X4996 3970 mt 5021 4052 L
Xc20
X64 -39 24 34 4928 3597 3 MP
XPP
X0 sg
X4928 3597 mt 4952 3631 L
X4952 3631 mt 5016 3592 L
Xc20
X24 35 64 -40 4928 3597 3 MP
XPP
X0 sg
X4928 3597 mt 4992 3557 L
X4992 3557 mt 5016 3592 L
Xc53
X64 -27 24 12 4927 4186 3 MP
XPP
X0 sg
X4927 4186 mt 4951 4198 L
X4951 4198 mt 5015 4171 L
Xc53
X24 13 64 -28 4927 4186 3 MP
XPP
X0 sg
X4927 4186 mt 4991 4158 L
X4991 4158 mt 5015 4171 L
Xc52
X25 11 64 -18 4923 3325 3 MP
XPP
X0 sg
X4923 3325 mt 4987 3307 L
X4987 3307 mt 5012 3318 L
Xc52
X64 -18 25 11 4923 3325 3 MP
XPP
X0 sg
X4923 3325 mt 4948 3336 L
X4948 3336 mt 5012 3318 L
Xc34
X64 -17 24 64 4923 3848 3 MP
XPP
X0 sg
X4923 3848 mt 4947 3912 L
X4947 3912 mt 5011 3895 L
Xc34
X25 64 63 -17 4923 3848 3 MP
XPP
X0 sg
X4923 3848 mt 4986 3831 L
X4986 3831 mt 5011 3895 L
Xc65
X64 -30 24 15 4922 4338 3 MP
XPP
X0 sg
X4922 4338 mt 4946 4353 L
X4946 4353 mt 5010 4323 L
Xc65
X24 15 64 -30 4922 4338 3 MP
XPP
X0 sg
X4922 4338 mt 4986 4308 L
X4986 4308 mt 5010 4323 L
Xc57
X64 -17 25 53 4918 3432 3 MP
XPP
X0 sg
X4918 3432 mt 4943 3485 L
X4943 3485 mt 5007 3468 L
Xc57
X25 53 64 -17 4918 3432 3 MP
XPP
X0 sg
X4918 3432 mt 4982 3415 L
X4982 3415 mt 5007 3468 L
Xc43
X25 13 64 -17 4917 4111 3 MP
XPP
X0 sg
X4917 4111 mt 4981 4094 L
X4981 4094 mt 5006 4107 L
Xc43
X64 -17 25 13 4917 4111 3 MP
XPP
X0 sg
X4917 4111 mt 4942 4124 L
X4942 4124 mt 5006 4107 L
Xc52
X24 11 64 -17 4914 3273 3 MP
XPP
X0 sg
X4914 3273 mt 4978 3256 L
X4978 3256 mt 5002 3267 L
Xc52
X64 -18 24 12 4914 3273 3 MP
XPP
X0 sg
X4914 3273 mt 4938 3285 L
X4938 3285 mt 5002 3267 L
Xc35
X24 48 64 -17 4913 3691 3 MP
XPP
X0 sg
X4913 3691 mt 4977 3674 L
X4977 3674 mt 5001 3722 L
Xc35
X64 -17 24 48 4913 3691 3 MP
XPP
X0 sg
X4913 3691 mt 4937 3739 L
X4937 3739 mt 5001 3722 L
Xc56
X25 17 64 -44 4912 4254 3 MP
XPP
X0 sg
X4912 4254 mt 4976 4210 L
X4976 4210 mt 5001 4227 L
Xc56
X64 -44 25 17 4912 4254 3 MP
XPP
X0 sg
X4912 4254 mt 4937 4271 L
X4937 4271 mt 5001 4227 L
Xc52
X25 11 64 -17 4908 3364 3 MP
XPP
X0 sg
X4908 3364 mt 4972 3347 L
X4972 3347 mt 4997 3358 L
Xc52
X64 -18 25 12 4908 3364 3 MP
XPP
X0 sg
X4908 3364 mt 4933 3376 L
X4933 3376 mt 4997 3358 L
Xc27
X24 29 64 -23 4908 3964 3 MP
XPP
X0 sg
X4908 3964 mt 4972 3941 L
X4972 3941 mt 4996 3970 L
Xc27
X64 -23 24 29 4908 3964 3 MP
XPP
X0 sg
X4908 3964 mt 4932 3993 L
X4932 3993 mt 4996 3970 L
Xc46
X25 30 64 -39 4903 3566 3 MP
XPP
X0 sg
X4903 3566 mt 4967 3527 L
X4967 3527 mt 4992 3557 L
Xc46
X64 -40 25 31 4903 3566 3 MP
XPP
X0 sg
X4903 3566 mt 4928 3597 L
X4928 3597 mt 4992 3557 L
Xc45
X25 14 64 -27 4902 4171 3 MP
XPP
X0 sg
X4902 4171 mt 4966 4144 L
X4966 4144 mt 4991 4158 L
Xc45
X64 -28 25 15 4902 4171 3 MP
XPP
X0 sg
X4902 4171 mt 4927 4186 L
X4927 4186 mt 4991 4158 L
Xc52
X24 11 64 -17 4899 3313 3 MP
XPP
X0 sg
X4899 3313 mt 4963 3296 L
X4963 3296 mt 4987 3307 L
Xc52
X64 -18 24 12 4899 3313 3 MP
XPP
X0 sg
X4899 3313 mt 4923 3325 L
X4923 3325 mt 4987 3307 L
Xc12
X63 -17 25 42 4898 3806 3 MP
XPP
X0 sg
X4898 3806 mt 4923 3848 L
X4923 3848 mt 4986 3831 L
Xc12
X24 42 64 -17 4898 3806 3 MP
XPP
X0 sg
X4898 3806 mt 4962 3789 L
X4962 3789 mt 4986 3831 L
Xc65
X64 -30 25 17 4897 4321 3 MP
XPP
X0 sg
X4897 4321 mt 4922 4338 L
X4922 4338 mt 4986 4308 L
Xc65
X25 17 64 -30 4897 4321 3 MP
XPP
X0 sg
X4897 4321 mt 4961 4291 L
X4961 4291 mt 4986 4308 L
Xc52
X24 28 64 -17 4894 3404 3 MP
XPP
X0 sg
X4894 3404 mt 4958 3387 L
X4958 3387 mt 4982 3415 L
Xc52
X64 -17 24 28 4894 3404 3 MP
XPP
X0 sg
X4894 3404 mt 4918 3432 L
X4918 3432 mt 4982 3415 L
Xc44
X24 19 64 -17 4893 4092 3 MP
XPP
X0 sg
X4893 4092 mt 4957 4075 L
X4957 4075 mt 4981 4094 L
Xc44
X64 -17 24 19 4893 4092 3 MP
XPP
X0 sg
X4893 4092 mt 4917 4111 L
X4917 4111 mt 4981 4094 L
Xc16
X25 43 64 -17 4888 3648 3 MP
XPP
X0 sg
X4888 3648 mt 4952 3631 L
X4952 3631 mt 4977 3674 L
Xc16
X64 -17 25 43 4888 3648 3 MP
XPP
X0 sg
X4888 3648 mt 4913 3691 L
X4913 3691 mt 4977 3674 L
Xc56
X25 12 63 -44 4888 4242 3 MP
XPP
X0 sg
X4888 4242 mt 4951 4198 L
X4951 4198 mt 4976 4210 L
Xc56
X64 -44 24 12 4888 4242 3 MP
XPP
X0 sg
X4888 4242 mt 4912 4254 L
X4912 4254 mt 4976 4210 L
Xc52
X24 11 64 -17 4884 3353 3 MP
XPP
X0 sg
X4884 3353 mt 4948 3336 L
X4948 3336 mt 4972 3347 L
Xc52
X64 -17 24 11 4884 3353 3 MP
XPP
X0 sg
X4884 3353 mt 4908 3364 L
X4908 3364 mt 4972 3347 L
Xc14
X25 29 64 -23 4883 3935 3 MP
XPP
X0 sg
X4883 3935 mt 4947 3912 L
X4947 3912 mt 4972 3941 L
Xc14
X64 -23 25 29 4883 3935 3 MP
XPP
X0 sg
X4883 3935 mt 4908 3964 L
X4908 3964 mt 4972 3941 L
Xc64
X64 -22 25 18 4882 4376 3 MP
XPP
X0 sg
X4882 4376 mt 4907 4394 L
X4907 4394 mt 4971 4372 L
Xc64
X25 19 64 -23 4882 4376 3 MP
XPP
X0 sg
X4882 4376 mt 4946 4353 L
X4946 4353 mt 4971 4372 L
Xc63
X64 -39 24 42 4879 3524 3 MP
XPP
X0 sg
X4879 3524 mt 4903 3566 L
X4903 3566 mt 4967 3527 L
Xc63
X24 42 64 -39 4879 3524 3 MP
XPP
X0 sg
X4879 3524 mt 4943 3485 L
X4943 3485 mt 4967 3527 L
Xc47
X64 -27 24 20 4878 4151 3 MP
XPP
X0 sg
X4878 4151 mt 4902 4171 L
X4902 4171 mt 4966 4144 L
Xc47
X24 20 64 -27 4878 4151 3 MP
XPP
X0 sg
X4878 4151 mt 4942 4124 L
X4942 4124 mt 4966 4144 L
Xc52
X25 11 64 -17 4874 3302 3 MP
XPP
X0 sg
X4874 3302 mt 4938 3285 L
X4938 3285 mt 4963 3296 L
Xc52
X64 -17 25 11 4874 3302 3 MP
XPP
X0 sg
X4874 3302 mt 4899 3313 L
X4899 3313 mt 4963 3296 L
Xc29
X64 -17 25 50 4873 3756 3 MP
XPP
X0 sg
X4873 3756 mt 4898 3806 L
X4898 3806 mt 4962 3789 L
Xc29
X25 50 64 -17 4873 3756 3 MP
XPP
X0 sg
X4873 3756 mt 4937 3739 L
X4937 3739 mt 4962 3789 L
Xc60
X64 -30 24 20 4873 4301 3 MP
XPP
X0 sg
X4873 4301 mt 4897 4321 L
X4897 4321 mt 4961 4291 L
Xc60
X24 20 64 -30 4873 4301 3 MP
XPP
X0 sg
X4873 4301 mt 4937 4271 L
X4937 4271 mt 4961 4291 L
Xc52
X25 11 64 -17 4869 3393 3 MP
XPP
X0 sg
X4869 3393 mt 4933 3376 L
X4933 3376 mt 4958 3387 L
Xc52
X64 -17 25 11 4869 3393 3 MP
XPP
X0 sg
X4869 3393 mt 4894 3404 L
X4894 3404 mt 4958 3387 L
Xc42
X25 82 64 -17 4868 4010 3 MP
XPP
X0 sg
X4868 4010 mt 4932 3993 L
X4932 3993 mt 4957 4075 L
Xc42
X64 -17 25 82 4868 4010 3 MP
XPP
X0 sg
X4868 4010 mt 4893 4092 L
X4893 4092 mt 4957 4075 L
Xc20
X64 -17 24 34 4864 3614 3 MP
XPP
X0 sg
X4864 3614 mt 4888 3648 L
X4888 3648 mt 4952 3631 L
Xc20
X24 34 64 -17 4864 3614 3 MP
XPP
X0 sg
X4864 3614 mt 4928 3597 L
X4928 3597 mt 4952 3631 L
Xc58
X63 -44 25 13 4863 4229 3 MP
XPP
X0 sg
X4863 4229 mt 4888 4242 L
X4888 4242 mt 4951 4198 L
Xc58
X24 12 64 -43 4863 4229 3 MP
XPP
X0 sg
X4863 4229 mt 4927 4186 L
X4927 4186 mt 4951 4198 L
Xc52
X25 11 64 -17 4859 3342 3 MP
XPP
X0 sg
X4859 3342 mt 4923 3325 L
X4923 3325 mt 4948 3336 L
Xc52
X64 -17 25 11 4859 3342 3 MP
XPP
X0 sg
X4859 3342 mt 4884 3353 L
X4884 3353 mt 4948 3336 L
Xc13
X24 64 64 -23 4859 3871 3 MP
XPP
X0 sg
X4859 3871 mt 4923 3848 L
X4923 3848 mt 4947 3912 L
Xc13
X64 -23 24 64 4859 3871 3 MP
XPP
X0 sg
X4859 3871 mt 4883 3935 L
X4883 3935 mt 4947 3912 L
Xc64
X64 -23 24 15 4858 4361 3 MP
XPP
X0 sg
X4858 4361 mt 4882 4376 L
X4882 4376 mt 4946 4353 L
Xc64
X24 15 64 -23 4858 4361 3 MP
XPP
X0 sg
X4858 4361 mt 4922 4338 L
X4922 4338 mt 4946 4353 L
Xc50
X25 53 64 -40 4854 3472 3 MP
XPP
X0 sg
X4854 3472 mt 4918 3432 L
X4918 3432 mt 4943 3485 L
Xc50
X64 -39 25 52 4854 3472 3 MP
XPP
X0 sg
X4854 3472 mt 4879 3524 L
X4879 3524 mt 4943 3485 L
Xc47
X25 13 64 -27 4853 4138 3 MP
XPP
X0 sg
X4853 4138 mt 4917 4111 L
X4917 4111 mt 4942 4124 L
Xc47
X64 -27 25 13 4853 4138 3 MP
XPP
X0 sg
X4853 4138 mt 4878 4151 L
X4878 4151 mt 4942 4124 L
Xc52
X64 -17 24 11 4850 3291 3 MP
XPP
X0 sg
X4850 3291 mt 4874 3302 L
X4874 3302 mt 4938 3285 L
Xc52
X24 12 64 -18 4850 3291 3 MP
XPP
X0 sg
X4850 3291 mt 4914 3273 L
X4914 3273 mt 4938 3285 L
Xc35
X64 -17 24 48 4849 3708 3 MP
XPP
X0 sg
X4849 3708 mt 4873 3756 L
X4873 3756 mt 4937 3739 L
Xc35
X24 48 64 -17 4849 3708 3 MP
XPP
X0 sg
X4849 3708 mt 4913 3691 L
X4913 3691 mt 4937 3739 L
Xc61
X25 17 64 -30 4848 4284 3 MP
XPP
X0 sg
X4848 4284 mt 4912 4254 L
X4912 4254 mt 4937 4271 L
Xc61
X64 -30 25 17 4848 4284 3 MP
XPP
X0 sg
X4848 4284 mt 4873 4301 L
X4873 4301 mt 4937 4271 L
Xc52
X25 12 63 -18 4845 3382 3 MP
XPP
X0 sg
X4845 3382 mt 4908 3364 L
X4908 3364 mt 4933 3376 L
Xc52
X64 -17 24 11 4845 3382 3 MP
XPP
X0 sg
X4845 3382 mt 4869 3393 L
X4869 3393 mt 4933 3376 L
Xc27
X24 29 64 -17 4844 3981 3 MP
XPP
X0 sg
X4844 3981 mt 4908 3964 L
X4908 3964 mt 4932 3993 L
Xc27
X64 -17 24 29 4844 3981 3 MP
XPP
X0 sg
X4844 3981 mt 4868 4010 L
X4868 4010 mt 4932 3993 L
Xc46
X25 31 64 -17 4839 3583 3 MP
XPP
X0 sg
X4839 3583 mt 4903 3566 L
X4903 3566 mt 4928 3597 L
Xc46
X64 -17 25 31 4839 3583 3 MP
XPP
X0 sg
X4839 3583 mt 4864 3614 L
X4864 3614 mt 4928 3597 L
Xc58
X25 15 64 -44 4838 4215 3 MP
XPP
X0 sg
X4838 4215 mt 4902 4171 L
X4902 4171 mt 4927 4186 L
Xc58
X64 -43 25 14 4838 4215 3 MP
XPP
X0 sg
X4838 4215 mt 4863 4229 L
X4863 4229 mt 4927 4186 L
Xc52
X24 12 64 -18 4835 3331 3 MP
XPP
X0 sg
X4835 3331 mt 4899 3313 L
X4899 3313 mt 4923 3325 L
Xc52
X64 -17 24 11 4835 3331 3 MP
XPP
X0 sg
X4835 3331 mt 4859 3342 L
X4859 3342 mt 4923 3325 L
Xc12
X25 42 64 -23 4834 3829 3 MP
XPP
X0 sg
X4834 3829 mt 4898 3806 L
X4898 3806 mt 4923 3848 L
Xc12
X64 -23 25 42 4834 3829 3 MP
XPP
X0 sg
X4834 3829 mt 4859 3871 L
X4859 3871 mt 4923 3848 L
Xc65
X64 -23 25 18 4833 4343 3 MP
XPP
X0 sg
X4833 4343 mt 4858 4361 L
X4858 4361 mt 4922 4338 L
Xc65
X25 17 64 -22 4833 4343 3 MP
XPP
X0 sg
X4833 4343 mt 4897 4321 L
X4897 4321 mt 4922 4338 L
Xc57
X24 28 64 -39 4830 3443 3 MP
XPP
X0 sg
X4830 3443 mt 4894 3404 L
X4894 3404 mt 4918 3432 L
Xc57
X64 -40 24 29 4830 3443 3 MP
XPP
X0 sg
X4830 3443 mt 4854 3472 L
X4854 3472 mt 4918 3432 L
Xc43
X24 19 64 -27 4829 4119 3 MP
XPP
X0 sg
X4829 4119 mt 4893 4092 L
X4893 4092 mt 4917 4111 L
Xc43
X64 -27 24 19 4829 4119 3 MP
XPP
X0 sg
X4829 4119 mt 4853 4138 L
X4853 4138 mt 4917 4111 L
Xc16
X25 43 64 -18 4824 3666 3 MP
XPP
X0 sg
X4824 3666 mt 4888 3648 L
X4888 3648 mt 4913 3691 L
Xc16
X64 -17 25 42 4824 3666 3 MP
XPP
X0 sg
X4824 3666 mt 4849 3708 L
X4849 3708 mt 4913 3691 L
Xc61
X64 -30 24 12 4824 4272 3 MP
XPP
X0 sg
X4824 4272 mt 4848 4284 L
X4848 4284 mt 4912 4254 L
Xc61
X24 12 64 -30 4824 4272 3 MP
XPP
X0 sg
X4824 4272 mt 4888 4242 L
X4888 4242 mt 4912 4254 L
Xc52
X24 11 64 -17 4820 3370 3 MP
XPP
X0 sg
X4820 3370 mt 4884 3353 L
X4884 3353 mt 4908 3364 L
Xc52
X63 -18 25 12 4820 3370 3 MP
XPP
X0 sg
X4820 3370 mt 4845 3382 L
X4845 3382 mt 4908 3364 L
Xc14
X25 29 64 -17 4819 3952 3 MP
XPP
X0 sg
X4819 3952 mt 4883 3935 L
X4883 3935 mt 4908 3964 L
Xc14
X64 -17 25 29 4819 3952 3 MP
XPP
X0 sg
X4819 3952 mt 4844 3981 L
X4844 3981 mt 4908 3964 L
Xc69
X64 -30 25 19 4818 4405 3 MP
XPP
X0 sg
X4818 4405 mt 4843 4424 L
X4843 4424 mt 4907 4394 L
Xc69
X25 18 64 -29 4818 4405 3 MP
XPP
X0 sg
X4818 4405 mt 4882 4376 L
X4882 4376 mt 4907 4394 L
Xc63
X64 -17 24 42 4815 3541 3 MP
XPP
X0 sg
X4815 3541 mt 4839 3583 L
X4839 3583 mt 4903 3566 L
Xc63
X24 42 64 -17 4815 3541 3 MP
XPP
X0 sg
X4815 3541 mt 4879 3524 L
X4879 3524 mt 4903 3566 L
Xc51
X64 -44 24 20 4814 4195 3 MP
XPP
X0 sg
X4814 4195 mt 4838 4215 L
X4838 4215 mt 4902 4171 L
Xc51
X24 20 64 -44 4814 4195 3 MP
XPP
X0 sg
X4814 4195 mt 4878 4151 L
X4878 4151 mt 4902 4171 L
Xc52
X25 11 64 -17 4810 3319 3 MP
XPP
X0 sg
X4810 3319 mt 4874 3302 L
X4874 3302 mt 4899 3313 L
Xc52
X64 -18 25 12 4810 3319 3 MP
XPP
X0 sg
X4810 3319 mt 4835 3331 L
X4835 3331 mt 4899 3313 L
Xc18
X25 50 63 -23 4810 3779 3 MP
XPP
X0 sg
X4810 3779 mt 4873 3756 L
X4873 3756 mt 4898 3806 L
Xc18
X64 -23 24 50 4810 3779 3 MP
XPP
X0 sg
X4810 3779 mt 4834 3829 L
X4834 3829 mt 4898 3806 L
Xc60
X24 20 64 -23 4809 4324 3 MP
XPP
X0 sg
X4809 4324 mt 4873 4301 L
X4873 4301 mt 4897 4321 L
Xc60
X64 -22 24 19 4809 4324 3 MP
XPP
X0 sg
X4809 4324 mt 4833 4343 L
X4833 4343 mt 4897 4321 L
Xc52
X25 11 64 -17 4805 3410 3 MP
XPP
X0 sg
X4805 3410 mt 4869 3393 L
X4869 3393 mt 4894 3404 L
Xc52
X64 -39 25 33 4805 3410 3 MP
XPP
X0 sg
X4805 3410 mt 4830 3443 L
X4830 3443 mt 4894 3404 L
Xc10
X25 82 64 -27 4804 4037 3 MP
XPP
X0 sg
X4804 4037 mt 4868 4010 L
X4868 4010 mt 4893 4092 L
Xc10
X64 -27 25 82 4804 4037 3 MP
XPP
X0 sg
X4804 4037 mt 4829 4119 L
X4829 4119 mt 4893 4092 L
Xc20
X24 34 64 -17 4800 3631 3 MP
XPP
X0 sg
X4800 3631 mt 4864 3614 L
X4864 3614 mt 4888 3648 L
Xc20
X64 -18 24 35 4800 3631 3 MP
XPP
X0 sg
X4800 3631 mt 4824 3666 L
X4824 3666 mt 4888 3648 L
Xc61
X25 13 64 -30 4799 4259 3 MP
XPP
X0 sg
X4799 4259 mt 4863 4229 L
X4863 4229 mt 4888 4242 L
Xc61
X64 -30 25 13 4799 4259 3 MP
XPP
X0 sg
X4799 4259 mt 4824 4272 L
X4824 4272 mt 4888 4242 L
Xc52
X64 -17 25 11 4795 3359 3 MP
XPP
X0 sg
X4795 3359 mt 4820 3370 L
X4820 3370 mt 4884 3353 L
Xc52
X25 11 64 -17 4795 3359 3 MP
XPP
X0 sg
X4795 3359 mt 4859 3342 L
X4859 3342 mt 4884 3353 L
Xc13
X24 64 64 -17 4795 3888 3 MP
XPP
X0 sg
X4795 3888 mt 4859 3871 L
X4859 3871 mt 4883 3935 L
Xc13
X64 -17 24 64 4795 3888 3 MP
XPP
X0 sg
X4795 3888 mt 4819 3952 L
X4819 3952 mt 4883 3935 L
Xc70
X64 -29 24 15 4794 4390 3 MP
XPP
X0 sg
X4794 4390 mt 4818 4405 L
X4818 4405 mt 4882 4376 L
Xc70
X24 15 64 -29 4794 4390 3 MP
XPP
X0 sg
X4794 4390 mt 4858 4361 L
X4858 4361 mt 4882 4376 L
Xc50
X25 52 64 -17 4790 3489 3 MP
XPP
X0 sg
X4790 3489 mt 4854 3472 L
X4854 3472 mt 4879 3524 L
Xc50
X64 -17 25 52 4790 3489 3 MP
XPP
X0 sg
X4790 3489 mt 4815 3541 L
X4815 3541 mt 4879 3524 L
Xc51
X64 -44 25 13 4789 4182 3 MP
XPP
X0 sg
X4789 4182 mt 4814 4195 L
X4814 4195 mt 4878 4151 L
Xc51
X25 13 64 -44 4789 4182 3 MP
XPP
X0 sg
X4789 4182 mt 4853 4138 L
X4853 4138 mt 4878 4151 L
Xc52
X24 11 64 -17 4786 3308 3 MP
XPP
X0 sg
X4786 3308 mt 4850 3291 L
X4850 3291 mt 4874 3302 L
Xc52
X64 -17 24 11 4786 3308 3 MP
XPP
X0 sg
X4786 3308 mt 4810 3319 L
X4810 3319 mt 4874 3302 L
Xc30
X24 48 64 -23 4785 3731 3 MP
XPP
X0 sg
X4785 3731 mt 4849 3708 L
X4849 3708 mt 4873 3756 L
Xc30
X63 -23 25 48 4785 3731 3 MP
XPP
X0 sg
X4785 3731 mt 4810 3779 L
X4810 3779 mt 4873 3756 L
Xc60
X25 17 64 -22 4784 4306 3 MP
XPP
X0 sg
X4784 4306 mt 4848 4284 L
X4848 4284 mt 4873 4301 L
Xc60
X64 -23 25 18 4784 4306 3 MP
XPP
X0 sg
X4784 4306 mt 4809 4324 L
X4809 4324 mt 4873 4301 L
Xc52
X24 11 64 -17 4781 3399 3 MP
XPP
X0 sg
X4781 3399 mt 4845 3382 L
X4845 3382 mt 4869 3393 L
Xc52
X64 -17 24 11 4781 3399 3 MP
XPP
X0 sg
X4781 3399 mt 4805 3410 L
X4805 3410 mt 4869 3393 L
Xc67
X24 29 64 -27 4780 4008 3 MP
XPP
X0 sg
X4780 4008 mt 4844 3981 L
X4844 3981 mt 4868 4010 L
Xc67
X64 -27 24 29 4780 4008 3 MP
XPP
X0 sg
X4780 4008 mt 4804 4037 L
X4804 4037 mt 4868 4010 L
Xc46
X25 31 64 -18 4775 3601 3 MP
XPP
X0 sg
X4775 3601 mt 4839 3583 L
X4839 3583 mt 4864 3614 L
Xc46
X64 -17 25 30 4775 3601 3 MP
XPP
X0 sg
X4775 3601 mt 4800 3631 L
X4800 3631 mt 4864 3614 L
Xc61
X64 -30 24 14 4775 4245 3 MP
XPP
X0 sg
X4775 4245 mt 4799 4259 L
X4799 4259 mt 4863 4229 L
Xc61
X25 14 63 -30 4775 4245 3 MP
XPP
X0 sg
X4775 4245 mt 4838 4215 L
X4838 4215 mt 4863 4229 L
Xc52
X24 11 64 -17 4771 3348 3 MP
XPP
X0 sg
X4771 3348 mt 4835 3331 L
X4835 3331 mt 4859 3342 L
Xc52
X64 -17 24 11 4771 3348 3 MP
XPP
X0 sg
X4771 3348 mt 4795 3359 L
X4795 3359 mt 4859 3342 L
Xc12
X25 42 64 -17 4770 3846 3 MP
XPP
X0 sg
X4770 3846 mt 4834 3829 L
X4834 3829 mt 4859 3871 L
Xc12
X64 -17 25 42 4770 3846 3 MP
XPP
X0 sg
X4770 3846 mt 4795 3888 L
X4795 3888 mt 4859 3871 L
Xc70
X25 18 64 -30 4769 4373 3 MP
XPP
X0 sg
X4769 4373 mt 4833 4343 L
X4833 4343 mt 4858 4361 L
Xc70
X64 -29 25 17 4769 4373 3 MP
XPP
X0 sg
X4769 4373 mt 4794 4390 L
X4794 4390 mt 4858 4361 L
Xc57
X64 -17 24 29 4766 3460 3 MP
XPP
X0 sg
X4766 3460 mt 4790 3489 L
X4790 3489 mt 4854 3472 L
Xc57
X24 29 64 -17 4766 3460 3 MP
XPP
X0 sg
X4766 3460 mt 4830 3443 L
X4830 3443 mt 4854 3472 L
Xc53
X24 19 64 -44 4765 4163 3 MP
XPP
X0 sg
X4765 4163 mt 4829 4119 L
X4829 4119 mt 4853 4138 L
Xc53
X64 -44 24 19 4765 4163 3 MP
XPP
X0 sg
X4765 4163 mt 4789 4182 L
X4789 4182 mt 4853 4138 L
Xc16
X25 42 64 -23 4760 3689 3 MP
XPP
X0 sg
X4760 3689 mt 4824 3666 L
X4824 3666 mt 4849 3708 L
Xc16
X64 -23 25 42 4760 3689 3 MP
XPP
X0 sg
X4760 3689 mt 4785 3731 L
X4785 3731 mt 4849 3708 L
Xc60
X64 -22 24 11 4760 4295 3 MP
XPP
X0 sg
X4760 4295 mt 4784 4306 L
X4784 4306 mt 4848 4284 L
Xc60
X24 12 64 -23 4760 4295 3 MP
XPP
X0 sg
X4760 4295 mt 4824 4272 L
X4824 4272 mt 4848 4284 L
Xc52
X25 12 64 -18 4756 3388 3 MP
XPP
X0 sg
X4756 3388 mt 4820 3370 L
X4820 3370 mt 4845 3382 L
Xc52
X64 -17 25 11 4756 3388 3 MP
XPP
X0 sg
X4756 3388 mt 4781 3399 L
X4781 3399 mt 4845 3382 L
Xc28
X64 -27 25 28 4755 3980 3 MP
XPP
X0 sg
X4755 3980 mt 4780 4008 L
X4780 4008 mt 4844 3981 L
Xc28
X25 29 64 -28 4755 3980 3 MP
XPP
X0 sg
X4755 3980 mt 4819 3952 L
X4819 3952 mt 4844 3981 L
Xc63
X24 42 64 -18 4751 3559 3 MP
XPP
X0 sg
X4751 3559 mt 4815 3541 L
X4815 3541 mt 4839 3583 L
Xc63
X64 -18 24 42 4751 3559 3 MP
XPP
X0 sg
X4751 3559 mt 4775 3601 L
X4775 3601 mt 4839 3583 L
Xc56
X63 -30 25 20 4750 4225 3 MP
XPP
X0 sg
X4750 4225 mt 4775 4245 L
X4775 4245 mt 4838 4215 L
Xc56
X24 20 64 -30 4750 4225 3 MP
XPP
X0 sg
X4750 4225 mt 4814 4195 L
X4814 4195 mt 4838 4215 L
Xc52
X25 12 64 -18 4746 3337 3 MP
XPP
X0 sg
X4746 3337 mt 4810 3319 L
X4810 3319 mt 4835 3331 L
Xc52
X64 -17 25 11 4746 3337 3 MP
XPP
X0 sg
X4746 3337 mt 4771 3348 L
X4771 3348 mt 4835 3331 L
Xc18
X24 50 64 -17 4746 3796 3 MP
XPP
X0 sg
X4746 3796 mt 4810 3779 L
X4810 3779 mt 4834 3829 L
Xc18
X64 -17 24 50 4746 3796 3 MP
XPP
X0 sg
X4746 3796 mt 4770 3846 L
X4770 3846 mt 4834 3829 L
Xc64
X24 19 64 -29 4745 4353 3 MP
XPP
X0 sg
X4745 4353 mt 4809 4324 L
X4809 4324 mt 4833 4343 L
Xc64
X64 -30 24 20 4745 4353 3 MP
XPP
X0 sg
X4745 4353 mt 4769 4373 L
X4769 4373 mt 4833 4343 L
Xc52
X25 33 64 -18 4741 3428 3 MP
XPP
X0 sg
X4741 3428 mt 4805 3410 L
X4805 3410 mt 4830 3443 L
Xc52
X64 -17 25 32 4741 3428 3 MP
XPP
X0 sg
X4741 3428 mt 4766 3460 L
X4766 3460 mt 4830 3443 L
Xc38
X64 -44 25 82 4740 4081 3 MP
XPP
X0 sg
X4740 4081 mt 4765 4163 L
X4765 4163 mt 4829 4119 L
Xc38
X25 82 64 -44 4740 4081 3 MP
XPP
X0 sg
X4740 4081 mt 4804 4037 L
X4804 4037 mt 4829 4119 L
Xc24
X24 35 64 -23 4736 3654 3 MP
XPP
X0 sg
X4736 3654 mt 4800 3631 L
X4800 3631 mt 4824 3666 L
Xc24
X64 -23 24 35 4736 3654 3 MP
XPP
X0 sg
X4736 3654 mt 4760 3689 L
X4760 3689 mt 4824 3666 L
Xc61
X64 -23 25 13 4735 4282 3 MP
XPP
X0 sg
X4735 4282 mt 4760 4295 L
X4760 4295 mt 4824 4272 L
Xc61
X25 13 64 -23 4735 4282 3 MP
XPP
X0 sg
X4735 4282 mt 4799 4259 L
X4799 4259 mt 4824 4272 L
Xc52
X25 11 63 -17 4732 3376 3 MP
XPP
X0 sg
X4732 3376 mt 4795 3359 L
X4795 3359 mt 4820 3370 L
Xc52
X64 -18 24 12 4732 3376 3 MP
XPP
X0 sg
X4732 3376 mt 4756 3388 L
X4756 3388 mt 4820 3370 L
Xc21
X64 -28 24 64 4731 3916 3 MP
XPP
X0 sg
X4731 3916 mt 4755 3980 L
X4755 3980 mt 4819 3952 L
Xc21
X24 64 64 -28 4731 3916 3 MP
XPP
X0 sg
X4731 3916 mt 4795 3888 L
X4795 3888 mt 4819 3952 L
Xc50
X25 52 64 -17 4726 3506 3 MP
XPP
X0 sg
X4726 3506 mt 4790 3489 L
X4790 3489 mt 4815 3541 L
Xc50
X64 -18 25 53 4726 3506 3 MP
XPP
X0 sg
X4726 3506 mt 4751 3559 L
X4751 3559 mt 4815 3541 L
Xc58
X25 13 64 -30 4725 4212 3 MP
XPP
X0 sg
X4725 4212 mt 4789 4182 L
X4789 4182 mt 4814 4195 L
Xc58
X64 -30 25 13 4725 4212 3 MP
XPP
X0 sg
X4725 4212 mt 4750 4225 L
X4750 4225 mt 4814 4195 L
Xc52
X24 11 64 -17 4722 3325 3 MP
XPP
X0 sg
X4722 3325 mt 4786 3308 L
X4786 3308 mt 4810 3319 L
Xc52
X64 -18 24 12 4722 3325 3 MP
XPP
X0 sg
X4722 3325 mt 4746 3337 L
X4746 3337 mt 4810 3319 L
Xc30
X25 48 64 -18 4721 3749 3 MP
XPP
X0 sg
X4721 3749 mt 4785 3731 L
X4785 3731 mt 4810 3779 L
Xc30
X64 -17 25 47 4721 3749 3 MP
XPP
X0 sg
X4721 3749 mt 4746 3796 L
X4746 3796 mt 4810 3779 L
Xc65
X25 18 64 -30 4720 4336 3 MP
XPP
X0 sg
X4720 4336 mt 4784 4306 L
X4784 4306 mt 4809 4324 L
Xc65
X64 -29 25 17 4720 4336 3 MP
XPP
X0 sg
X4720 4336 mt 4745 4353 L
X4745 4353 mt 4809 4324 L
Xc52
X24 11 64 -17 4717 3416 3 MP
XPP
X0 sg
X4717 3416 mt 4781 3399 L
X4781 3399 mt 4805 3410 L
Xc52
X64 -18 24 12 4717 3416 3 MP
XPP
X0 sg
X4717 3416 mt 4741 3428 L
X4741 3428 mt 4805 3410 L
Xc41
X64 -44 24 29 4716 4052 3 MP
XPP
X0 sg
X4716 4052 mt 4740 4081 L
X4740 4081 mt 4804 4037 L
Xc41
X24 29 64 -44 4716 4052 3 MP
XPP
X0 sg
X4716 4052 mt 4780 4008 L
X4780 4008 mt 4804 4037 L
Xc68
X25 30 64 -23 4711 3624 3 MP
XPP
X0 sg
X4711 3624 mt 4775 3601 L
X4775 3601 mt 4800 3631 L
Xc68
X64 -23 25 30 4711 3624 3 MP
XPP
X0 sg
X4711 3624 mt 4736 3654 L
X4736 3654 mt 4800 3631 L
Xc61
X64 -23 24 14 4711 4268 3 MP
XPP
X0 sg
X4711 4268 mt 4735 4282 L
X4735 4282 mt 4799 4259 L
Xc61
X24 14 64 -23 4711 4268 3 MP
XPP
X0 sg
X4711 4268 mt 4775 4245 L
X4775 4245 mt 4799 4259 L
Xc52
X24 11 64 -17 4707 3365 3 MP
XPP
X0 sg
X4707 3365 mt 4771 3348 L
X4771 3348 mt 4795 3359 L
Xc52
X63 -17 25 11 4707 3365 3 MP
XPP
X0 sg
X4707 3365 mt 4732 3376 L
X4732 3376 mt 4795 3359 L
Xc22
X25 42 64 -27 4706 3873 3 MP
XPP
X0 sg
X4706 3873 mt 4770 3846 L
X4770 3846 mt 4795 3888 L
Xc22
X64 -28 25 43 4706 3873 3 MP
XPP
X0 sg
X4706 3873 mt 4731 3916 L
X4731 3916 mt 4795 3888 L
Xc57
X64 -17 24 28 4702 3478 3 MP
XPP
X0 sg
X4702 3478 mt 4726 3506 L
X4726 3506 mt 4790 3489 L
Xc57
X24 29 64 -18 4702 3478 3 MP
XPP
X0 sg
X4702 3478 mt 4766 3460 L
X4766 3460 mt 4790 3489 L
Xc58
X64 -30 24 19 4701 4193 3 MP
XPP
X0 sg
X4701 4193 mt 4725 4212 L
X4725 4212 mt 4789 4182 L
Xc58
X24 19 64 -30 4701 4193 3 MP
XPP
X0 sg
X4701 4193 mt 4765 4163 L
X4765 4163 mt 4789 4182 L
Xc16
X25 42 63 -17 4697 3706 3 MP
XPP
X0 sg
X4697 3706 mt 4760 3689 L
X4760 3689 mt 4785 3731 L
Xc16
X64 -18 24 43 4697 3706 3 MP
XPP
X0 sg
X4697 3706 mt 4721 3749 L
X4721 3749 mt 4785 3731 L
Xc65
X24 11 64 -29 4696 4324 3 MP
XPP
X0 sg
X4696 4324 mt 4760 4295 L
X4760 4295 mt 4784 4306 L
Xc65
X64 -30 24 12 4696 4324 3 MP
XPP
X0 sg
X4696 4324 mt 4720 4336 L
X4720 4336 mt 4784 4306 L
Xc52
X25 11 64 -17 4692 3405 3 MP
XPP
X0 sg
X4692 3405 mt 4756 3388 L
X4756 3388 mt 4781 3399 L
Xc52
X64 -17 25 11 4692 3405 3 MP
XPP
X0 sg
X4692 3405 mt 4717 3416 L
X4717 3416 mt 4781 3399 L
Xc42
X25 28 64 -44 4691 4024 3 MP
XPP
X0 sg
X4691 4024 mt 4755 3980 L
X4755 3980 mt 4780 4008 L
Xc42
X64 -44 25 28 4691 4024 3 MP
XPP
X0 sg
X4691 4024 mt 4716 4052 L
X4716 4052 mt 4780 4008 L
Xc63
X64 -23 24 43 4687 3581 3 MP
XPP
X0 sg
X4687 3581 mt 4711 3624 L
X4711 3624 mt 4775 3601 L
Xc63
X24 42 64 -22 4687 3581 3 MP
XPP
X0 sg
X4687 3581 mt 4751 3559 L
X4751 3559 mt 4775 3601 L
Xc56
X25 20 64 -23 4686 4248 3 MP
XPP
X0 sg
X4686 4248 mt 4750 4225 L
X4750 4225 mt 4775 4245 L
Xc56
X64 -23 25 20 4686 4248 3 MP
XPP
X0 sg
X4686 4248 mt 4711 4268 L
X4711 4268 mt 4775 4245 L
Xc52
X25 11 64 -17 4682 3354 3 MP
XPP
X0 sg
X4682 3354 mt 4746 3337 L
X4746 3337 mt 4771 3348 L
Xc52
X64 -17 25 11 4682 3354 3 MP
XPP
X0 sg
X4682 3354 mt 4707 3365 L
X4707 3365 mt 4771 3348 L
Xc9
X24 50 64 -27 4682 3823 3 MP
XPP
X0 sg
X4682 3823 mt 4746 3796 L
X4746 3796 mt 4770 3846 L
Xc9
X64 -27 24 50 4682 3823 3 MP
XPP
X0 sg
X4682 3823 mt 4706 3873 L
X4706 3873 mt 4770 3846 L
Xc52
X64 -18 25 33 4677 3445 3 MP
XPP
X0 sg
X4677 3445 mt 4702 3478 L
X4702 3478 mt 4766 3460 L
Xc52
X25 32 64 -17 4677 3445 3 MP
XPP
X0 sg
X4677 3445 mt 4741 3428 L
X4741 3428 mt 4766 3460 L
Xc37
X25 82 64 -30 4676 4111 3 MP
XPP
X0 sg
X4676 4111 mt 4740 4081 L
X4740 4081 mt 4765 4163 L
Xc37
X64 -30 25 82 4676 4111 3 MP
XPP
X0 sg
X4676 4111 mt 4701 4193 L
X4701 4193 mt 4765 4163 L
Xc24
X63 -17 25 35 4672 3671 3 MP
XPP
X0 sg
X4672 3671 mt 4697 3706 L
X4697 3706 mt 4760 3689 L
Xc24
X24 35 64 -17 4672 3671 3 MP
XPP
X0 sg
X4672 3671 mt 4736 3654 L
X4736 3654 mt 4760 3689 L
Xc65
X25 13 64 -30 4671 4312 3 MP
XPP
X0 sg
X4671 4312 mt 4735 4282 L
X4735 4282 mt 4760 4295 L
Xc65
X64 -29 25 12 4671 4312 3 MP
XPP
X0 sg
X4671 4312 mt 4696 4324 L
X4696 4324 mt 4760 4295 L
Xc52
X24 12 64 -18 4668 3394 3 MP
XPP
X0 sg
X4668 3394 mt 4732 3376 L
X4732 3376 mt 4756 3388 L
Xc52
X64 -17 24 11 4668 3394 3 MP
XPP
X0 sg
X4668 3394 mt 4692 3405 L
X4692 3405 mt 4756 3388 L
Xc36
X24 64 64 -44 4667 3960 3 MP
XPP
X0 sg
X4667 3960 mt 4731 3916 L
X4731 3916 mt 4755 3980 L
Xc36
X64 -44 24 64 4667 3960 3 MP
XPP
X0 sg
X4667 3960 mt 4691 4024 L
X4691 4024 mt 4755 3980 L
Xc55
X64 -22 25 52 4662 3529 3 MP
XPP
X0 sg
X4662 3529 mt 4687 3581 L
X4687 3581 mt 4751 3559 L
Xc55
X25 53 64 -23 4662 3529 3 MP
XPP
X0 sg
X4662 3529 mt 4726 3506 L
X4726 3506 mt 4751 3559 L
Xc56
X25 13 63 -23 4662 4235 3 MP
XPP
X0 sg
X4662 4235 mt 4725 4212 L
X4725 4212 mt 4750 4225 L
Xc56
X64 -23 24 13 4662 4235 3 MP
XPP
X0 sg
X4662 4235 mt 4686 4248 L
X4686 4248 mt 4750 4225 L
Xc52
X64 -17 24 11 4658 3343 3 MP
XPP
X0 sg
X4658 3343 mt 4682 3354 L
X4682 3354 mt 4746 3337 L
Xc52
X24 12 64 -18 4658 3343 3 MP
XPP
X0 sg
X4658 3343 mt 4722 3325 L
X4722 3325 mt 4746 3337 L
Xc17
X64 -27 25 47 4657 3776 3 MP
XPP
X0 sg
X4657 3776 mt 4682 3823 L
X4682 3823 mt 4746 3796 L
Xc17
X25 47 64 -27 4657 3776 3 MP
XPP
X0 sg
X4657 3776 mt 4721 3749 L
X4721 3749 mt 4746 3796 L
Xc52
X24 12 64 -18 4653 3434 3 MP
XPP
X0 sg
X4653 3434 mt 4717 3416 L
X4717 3416 mt 4741 3428 L
Xc52
X64 -17 24 11 4653 3434 3 MP
XPP
X0 sg
X4653 3434 mt 4677 3445 L
X4677 3445 mt 4741 3428 L
Xc38
X24 29 64 -30 4652 4082 3 MP
XPP
X0 sg
X4652 4082 mt 4716 4052 L
X4716 4052 mt 4740 4081 L
Xc38
X64 -30 24 29 4652 4082 3 MP
XPP
X0 sg
X4652 4082 mt 4676 4111 L
X4676 4111 mt 4740 4081 L
Xc68
X64 -17 25 30 4647 3641 3 MP
XPP
X0 sg
X4647 3641 mt 4672 3671 L
X4672 3671 mt 4736 3654 L
Xc68
X25 30 64 -17 4647 3641 3 MP
XPP
X0 sg
X4647 3641 mt 4711 3624 L
X4711 3624 mt 4736 3654 L
Xc65
X24 14 64 -29 4647 4297 3 MP
XPP
X0 sg
X4647 4297 mt 4711 4268 L
X4711 4268 mt 4735 4282 L
Xc65
X64 -30 24 15 4647 4297 3 MP
XPP
X0 sg
X4647 4297 mt 4671 4312 L
X4671 4312 mt 4735 4282 L
Xc52
X25 11 64 -17 4643 3382 3 MP
XPP
X0 sg
X4643 3382 mt 4707 3365 L
X4707 3365 mt 4732 3376 L
Xc52
X64 -18 25 12 4643 3382 3 MP
XPP
X0 sg
X4643 3382 mt 4668 3394 L
X4668 3394 mt 4732 3376 L
Xc13
X25 43 64 -44 4642 3917 3 MP
XPP
X0 sg
X4642 3917 mt 4706 3873 L
X4706 3873 mt 4731 3916 L
Xc13
X64 -44 25 43 4642 3917 3 MP
XPP
X0 sg
X4642 3917 mt 4667 3960 L
X4667 3960 mt 4731 3916 L
Xc71
X64 -23 24 29 4638 3500 3 MP
XPP
X0 sg
X4638 3500 mt 4662 3529 L
X4662 3529 mt 4726 3506 L
Xc71
X24 28 64 -22 4638 3500 3 MP
XPP
X0 sg
X4638 3500 mt 4702 3478 L
X4702 3478 mt 4726 3506 L
Xc58
X24 19 64 -23 4637 4216 3 MP
XPP
X0 sg
X4637 4216 mt 4701 4193 L
X4701 4193 mt 4725 4212 L
Xc58
X63 -23 25 19 4637 4216 3 MP
XPP
X0 sg
X4637 4216 mt 4662 4235 L
X4662 4235 mt 4725 4212 L
Xc31
X64 -27 24 43 4633 3733 3 MP
XPP
X0 sg
X4633 3733 mt 4657 3776 L
X4657 3776 mt 4721 3749 L
Xc31
X24 43 64 -27 4633 3733 3 MP
XPP
X0 sg
X4633 3733 mt 4697 3706 L
X4697 3706 mt 4721 3749 L
Xc52
X25 11 64 -17 4628 3422 3 MP
XPP
X0 sg
X4628 3422 mt 4692 3405 L
X4692 3405 mt 4717 3416 L
Xc52
X64 -18 25 12 4628 3422 3 MP
XPP
X0 sg
X4628 3422 mt 4653 3434 L
X4653 3434 mt 4717 3416 L
Xc41
X25 28 64 -29 4627 4053 3 MP
XPP
X0 sg
X4627 4053 mt 4691 4024 L
X4691 4024 mt 4716 4052 L
Xc41
X64 -30 25 29 4627 4053 3 MP
XPP
X0 sg
X4627 4053 mt 4652 4082 L
X4652 4082 mt 4716 4052 L
Xc63
X24 43 64 -18 4623 3599 3 MP
XPP
X0 sg
X4623 3599 mt 4687 3581 L
X4687 3581 mt 4711 3624 L
Xc63
X64 -17 24 42 4623 3599 3 MP
XPP
X0 sg
X4623 3599 mt 4647 3641 L
X4647 3641 mt 4711 3624 L
Xc60
X25 20 64 -29 4622 4277 3 MP
XPP
X0 sg
X4622 4277 mt 4686 4248 L
X4686 4248 mt 4711 4268 L
Xc60
X64 -29 25 20 4622 4277 3 MP
XPP
X0 sg
X4622 4277 mt 4647 4297 L
X4647 4297 mt 4711 4268 L
Xc52
X64 -17 24 11 4619 3371 3 MP
XPP
X0 sg
X4619 3371 mt 4643 3382 L
X4643 3382 mt 4707 3365 L
Xc52
X25 11 63 -17 4619 3371 3 MP
XPP
X0 sg
X4619 3371 mt 4682 3354 L
X4682 3354 mt 4707 3365 L
Xc12
X24 50 64 -44 4618 3867 3 MP
XPP
X0 sg
X4618 3867 mt 4682 3823 L
X4682 3823 mt 4706 3873 L
Xc12
X64 -44 24 50 4618 3867 3 MP
XPP
X0 sg
X4618 3867 mt 4642 3917 L
X4642 3917 mt 4706 3873 L
Xc52
X25 33 64 -20 4613 3465 3 MP
XPP
X0 sg
X4613 3465 mt 4677 3445 L
X4677 3445 mt 4702 3478 L
Xc52
X64 -22 25 35 4613 3465 3 MP
XPP
X0 sg
X4613 3465 mt 4638 3500 L
X4638 3500 mt 4702 3478 L
Xc37
X64 -23 25 82 4612 4134 3 MP
XPP
X0 sg
X4612 4134 mt 4637 4216 L
X4637 4216 mt 4701 4193 L
Xc37
X25 82 64 -23 4612 4134 3 MP
XPP
X0 sg
X4612 4134 mt 4676 4111 L
X4676 4111 mt 4701 4193 L
Xc32
X25 35 64 -27 4608 3698 3 MP
XPP
X0 sg
X4608 3698 mt 4672 3671 L
X4672 3671 mt 4697 3706 L
Xc32
X64 -27 25 35 4608 3698 3 MP
XPP
X0 sg
X4608 3698 mt 4633 3733 L
X4633 3733 mt 4697 3706 L
Xc52
X64 -17 24 11 4604 3411 3 MP
XPP
X0 sg
X4604 3411 mt 4628 3422 L
X4628 3422 mt 4692 3405 L
Xc52
X24 11 64 -17 4604 3411 3 MP
XPP
X0 sg
X4604 3411 mt 4668 3394 L
X4668 3394 mt 4692 3405 L
Xc14
X24 64 64 -29 4603 3989 3 MP
XPP
X0 sg
X4603 3989 mt 4667 3960 L
X4667 3960 mt 4691 4024 L
Xc14
X64 -29 24 64 4603 3989 3 MP
XPP
X0 sg
X4603 3989 mt 4627 4053 L
X4627 4053 mt 4691 4024 L
Xc55
X64 -18 25 53 4598 3546 3 MP
XPP
X0 sg
X4598 3546 mt 4623 3599 L
X4623 3599 mt 4687 3581 L
Xc55
X25 52 64 -17 4598 3546 3 MP
XPP
X0 sg
X4598 3546 mt 4662 3529 L
X4662 3529 mt 4687 3581 L
Xc61
X24 13 64 -29 4598 4264 3 MP
XPP
X0 sg
X4598 4264 mt 4662 4235 L
X4662 4235 mt 4686 4248 L
Xc61
X64 -29 24 13 4598 4264 3 MP
XPP
X0 sg
X4598 4264 mt 4622 4277 L
X4622 4277 mt 4686 4248 L
Xc52
X24 11 64 -17 4594 3360 3 MP
XPP
X0 sg
X4594 3360 mt 4658 3343 L
X4658 3343 mt 4682 3354 L
Xc52
X63 -17 25 11 4594 3360 3 MP
XPP
X0 sg
X4594 3360 mt 4619 3371 L
X4619 3371 mt 4682 3354 L
Xc18
X64 -44 25 47 4593 3820 3 MP
XPP
X0 sg
X4593 3820 mt 4618 3867 L
X4618 3867 mt 4682 3823 L
Xc18
X25 47 64 -44 4593 3820 3 MP
XPP
X0 sg
X4593 3820 mt 4657 3776 L
X4657 3776 mt 4682 3823 L
Xc52
X24 11 64 -16 4589 3450 3 MP
XPP
X0 sg
X4589 3450 mt 4653 3434 L
X4653 3434 mt 4677 3445 L
Xc52
X64 -20 24 15 4589 3450 3 MP
XPP
X0 sg
X4589 3450 mt 4613 3465 L
X4613 3465 mt 4677 3445 L
Xc38
X24 29 64 -23 4588 4105 3 MP
XPP
X0 sg
X4588 4105 mt 4652 4082 L
X4652 4082 mt 4676 4111 L
Xc38
X64 -23 24 29 4588 4105 3 MP
XPP
X0 sg
X4588 4105 mt 4612 4134 L
X4612 4134 mt 4676 4111 L
Xc20
X64 -27 24 30 4584 3668 3 MP
XPP
X0 sg
X4584 3668 mt 4608 3698 L
X4608 3698 mt 4672 3671 L
Xc20
X25 30 63 -27 4584 3668 3 MP
XPP
X0 sg
X4584 3668 mt 4647 3641 L
X4647 3641 mt 4672 3671 L
Xc52
X64 -17 25 11 4579 3400 3 MP
XPP
X0 sg
X4579 3400 mt 4604 3411 L
X4604 3411 mt 4668 3394 L
Xc52
X25 12 64 -18 4579 3400 3 MP
XPP
X0 sg
X4579 3400 mt 4643 3382 L
X4643 3382 mt 4668 3394 L
Xc11
X25 43 64 -30 4578 3947 3 MP
XPP
X0 sg
X4578 3947 mt 4642 3917 L
X4642 3917 mt 4667 3960 L
Xc11
X64 -29 25 42 4578 3947 3 MP
XPP
X0 sg
X4578 3947 mt 4603 3989 L
X4603 3989 mt 4667 3960 L
Xc71
X64 -17 24 28 4574 3518 3 MP
XPP
X0 sg
X4574 3518 mt 4598 3546 L
X4598 3546 mt 4662 3529 L
Xc71
X24 29 64 -18 4574 3518 3 MP
XPP
X0 sg
X4574 3518 mt 4638 3500 L
X4638 3500 mt 4662 3529 L
Xc56
X64 -29 25 19 4573 4245 3 MP
XPP
X0 sg
X4573 4245 mt 4598 4264 L
X4598 4264 mt 4662 4235 L
Xc56
X25 19 64 -29 4573 4245 3 MP
XPP
X0 sg
X4573 4245 mt 4637 4216 L
X4637 4216 mt 4662 4235 L
Xc30
X24 43 64 -44 4569 3777 3 MP
XPP
X0 sg
X4569 3777 mt 4633 3733 L
X4633 3733 mt 4657 3776 L
Xc30
X64 -44 24 43 4569 3777 3 MP
XPP
X0 sg
X4569 3777 mt 4593 3820 L
X4593 3820 mt 4657 3776 L
Xc52
X64 -16 25 10 4564 3440 3 MP
XPP
X0 sg
X4564 3440 mt 4589 3450 L
X4589 3450 mt 4653 3434 L
Xc52
X25 12 64 -18 4564 3440 3 MP
XPP
X0 sg
X4564 3440 mt 4628 3422 L
X4628 3422 mt 4653 3434 L
Xc41
X64 -23 25 29 4563 4076 3 MP
XPP
X0 sg
X4563 4076 mt 4588 4105 L
X4588 4105 mt 4652 4082 L
Xc41
X25 29 64 -23 4563 4076 3 MP
XPP
X0 sg
X4563 4076 mt 4627 4053 L
X4627 4053 mt 4652 4082 L
Xc54
X24 42 64 -27 4559 3626 3 MP
XPP
X0 sg
X4559 3626 mt 4623 3599 L
X4623 3599 mt 4647 3641 L
Xc54
X63 -27 25 42 4559 3626 3 MP
XPP
X0 sg
X4559 3626 mt 4584 3668 L
X4584 3668 mt 4647 3641 L
Xc52
X64 -18 24 12 4555 3388 3 MP
XPP
X0 sg
X4555 3388 mt 4579 3400 L
X4579 3400 mt 4643 3382 L
Xc52
X24 11 64 -17 4555 3388 3 MP
XPP
X0 sg
X4555 3388 mt 4619 3371 L
X4619 3371 mt 4643 3382 L
Xc22
X64 -30 24 50 4554 3897 3 MP
XPP
X0 sg
X4554 3897 mt 4578 3947 L
X4578 3947 mt 4642 3917 L
Xc22
X24 50 64 -30 4554 3897 3 MP
XPP
X0 sg
X4554 3897 mt 4618 3867 L
X4618 3867 mt 4642 3917 L
Xc52
X64 -18 25 36 4549 3482 3 MP
XPP
X0 sg
X4549 3482 mt 4574 3518 L
X4574 3518 mt 4638 3500 L
Xc52
X25 35 64 -17 4549 3482 3 MP
XPP
X0 sg
X4549 3482 mt 4613 3465 L
X4613 3465 mt 4638 3500 L
Xc44
X25 82 63 -29 4549 4163 3 MP
XPP
X0 sg
X4549 4163 mt 4612 4134 L
X4612 4134 mt 4637 4216 L
Xc44
X64 -29 24 82 4549 4163 3 MP
XPP
X0 sg
X4549 4163 mt 4573 4245 L
X4573 4245 mt 4637 4216 L
Xc25
X64 -44 25 35 4544 3742 3 MP
XPP
X0 sg
X4544 3742 mt 4569 3777 L
X4569 3777 mt 4633 3733 L
Xc25
X25 35 64 -44 4544 3742 3 MP
XPP
X0 sg
X4544 3742 mt 4608 3698 L
X4608 3698 mt 4633 3733 L
Xc52
X64 -18 24 12 4540 3428 3 MP
XPP
X0 sg
X4540 3428 mt 4564 3440 L
X4564 3440 mt 4628 3422 L
Xc52
X24 11 64 -17 4540 3428 3 MP
XPP
X0 sg
X4540 3428 mt 4604 3411 L
X4604 3411 mt 4628 3422 L
Xc28
X24 64 64 -23 4539 4012 3 MP
XPP
X0 sg
X4539 4012 mt 4603 3989 L
X4603 3989 mt 4627 4053 L
Xc28
X64 -23 24 64 4539 4012 3 MP
XPP
X0 sg
X4539 4012 mt 4563 4076 L
X4563 4076 mt 4627 4053 L
Xc49
X64 -27 25 53 4534 3573 3 MP
XPP
X0 sg
X4534 3573 mt 4559 3626 L
X4559 3626 mt 4623 3599 L
Xc49
X25 53 64 -27 4534 3573 3 MP
XPP
X0 sg
X4534 3573 mt 4598 3546 L
X4598 3546 mt 4623 3599 L
Xc52
X64 -17 25 11 4530 3377 3 MP
XPP
X0 sg
X4530 3377 mt 4555 3388 L
X4555 3388 mt 4619 3371 L
Xc52
X25 11 64 -17 4530 3377 3 MP
XPP
X0 sg
X4530 3377 mt 4594 3360 L
X4594 3360 mt 4619 3371 L
Xc9
X64 -30 25 48 4529 3849 3 MP
XPP
X0 sg
X4529 3849 mt 4554 3897 L
X4554 3897 mt 4618 3867 L
Xc9
X25 47 64 -29 4529 3849 3 MP
XPP
X0 sg
X4529 3849 mt 4593 3820 L
X4593 3820 mt 4618 3867 L
Xc52
X64 -17 24 15 4525 3467 3 MP
XPP
X0 sg
X4525 3467 mt 4549 3482 L
X4549 3482 mt 4613 3465 L
Xc52
X24 15 64 -17 4525 3467 3 MP
XPP
X0 sg
X4525 3467 mt 4589 3450 L
X4589 3450 mt 4613 3465 L
Xc37
X24 29 64 -29 4524 4134 3 MP
XPP
X0 sg
X4524 4134 mt 4588 4105 L
X4588 4105 mt 4612 4134 L
Xc37
X63 -29 25 29 4524 4134 3 MP
XPP
X0 sg
X4524 4134 mt 4549 4163 L
X4549 4163 mt 4612 4134 L
Xc16
X64 -44 24 30 4520 3712 3 MP
XPP
X0 sg
X4520 3712 mt 4544 3742 L
X4544 3742 mt 4608 3698 L
Xc16
X24 30 64 -44 4520 3712 3 MP
XPP
X0 sg
X4520 3712 mt 4584 3668 L
X4584 3668 mt 4608 3698 L
Xc52
X25 11 64 -17 4515 3417 3 MP
XPP
X0 sg
X4515 3417 mt 4579 3400 L
X4579 3400 mt 4604 3411 L
Xc52
X64 -17 25 11 4515 3417 3 MP
XPP
X0 sg
X4515 3417 mt 4540 3428 L
X4540 3428 mt 4604 3411 L
Xc11
X64 -23 25 42 4514 3970 3 MP
XPP
X0 sg
X4514 3970 mt 4539 4012 L
X4539 4012 mt 4603 3989 L
Xc11
X25 42 64 -23 4514 3970 3 MP
XPP
X0 sg
X4514 3970 mt 4578 3947 L
X4578 3947 mt 4603 3989 L
Xc50
X24 28 64 -27 4510 3545 3 MP
XPP
X0 sg
X4510 3545 mt 4574 3518 L
X4574 3518 mt 4598 3546 L
Xc50
X64 -27 24 28 4510 3545 3 MP
XPP
X0 sg
X4510 3545 mt 4534 3573 L
X4534 3573 mt 4598 3546 L
Xc26
X64 -29 24 42 4505 3807 3 MP
XPP
X0 sg
X4505 3807 mt 4529 3849 L
X4529 3849 mt 4593 3820 L
Xc26
X24 43 64 -30 4505 3807 3 MP
XPP
X0 sg
X4505 3807 mt 4569 3777 L
X4569 3777 mt 4593 3820 L
Xc52
X64 -17 25 10 4500 3457 3 MP
XPP
X0 sg
X4500 3457 mt 4525 3467 L
X4525 3467 mt 4589 3450 L
Xc52
X25 10 64 -17 4500 3457 3 MP
XPP
X0 sg
X4500 3457 mt 4564 3440 L
X4564 3440 mt 4589 3450 L
Xc38
X25 29 64 -30 4499 4106 3 MP
XPP
X0 sg
X4499 4106 mt 4563 4076 L
X4563 4076 mt 4588 4105 L
Xc38
X64 -29 25 28 4499 4106 3 MP
XPP
X0 sg
X4499 4106 mt 4524 4134 L
X4524 4134 mt 4588 4105 L
Xc68
X64 -44 25 42 4495 3670 3 MP
XPP
X0 sg
X4495 3670 mt 4520 3712 L
X4520 3712 mt 4584 3668 L
Xc68
X25 42 64 -44 4495 3670 3 MP
XPP
X0 sg
X4495 3670 mt 4559 3626 L
X4559 3626 mt 4584 3668 L
Xc52
X24 12 64 -18 4491 3406 3 MP
XPP
X0 sg
X4491 3406 mt 4555 3388 L
X4555 3388 mt 4579 3400 L
Xc52
X64 -17 24 11 4491 3406 3 MP
XPP
X0 sg
X4491 3406 mt 4515 3417 L
X4515 3417 mt 4579 3400 L
Xc15
X24 50 64 -23 4490 3920 3 MP
XPP
X0 sg
X4490 3920 mt 4554 3897 L
X4554 3897 mt 4578 3947 L
Xc15
X64 -23 24 50 4490 3920 3 MP
XPP
X0 sg
X4490 3920 mt 4514 3970 L
X4514 3970 mt 4578 3947 L
Xc66
X25 36 64 -26 4485 3508 3 MP
XPP
X0 sg
X4485 3508 mt 4549 3482 L
X4549 3482 mt 4574 3518 L
Xc66
X64 -27 25 37 4485 3508 3 MP
XPP
X0 sg
X4485 3508 mt 4510 3545 L
X4510 3545 mt 4574 3518 L
Xc35
X64 -30 25 35 4480 3772 3 MP
XPP
X0 sg
X4480 3772 mt 4505 3807 L
X4505 3807 mt 4569 3777 L
Xc35
X25 35 64 -30 4480 3772 3 MP
XPP
X0 sg
X4480 3772 mt 4544 3742 L
X4544 3742 mt 4569 3777 L
Xc52
X24 12 64 -18 4476 3446 3 MP
XPP
X0 sg
X4476 3446 mt 4540 3428 L
X4540 3428 mt 4564 3440 L
Xc52
X64 -17 24 11 4476 3446 3 MP
XPP
X0 sg
X4476 3446 mt 4500 3457 L
X4500 3457 mt 4564 3440 L
Xc27
X24 64 64 -30 4475 4042 3 MP
XPP
X0 sg
X4475 4042 mt 4539 4012 L
X4539 4012 mt 4563 4076 L
Xc27
X64 -30 24 64 4475 4042 3 MP
XPP
X0 sg
X4475 4042 mt 4499 4106 L
X4499 4106 mt 4563 4076 L
Xc63
X64 -44 24 53 4471 3617 3 MP
XPP
X0 sg
X4471 3617 mt 4495 3670 L
X4495 3670 mt 4559 3626 L
Xc63
X25 53 63 -44 4471 3617 3 MP
XPP
X0 sg
X4471 3617 mt 4534 3573 L
X4534 3573 mt 4559 3626 L
Xc52
X25 11 64 -18 4466 3395 3 MP
XPP
X0 sg
X4466 3395 mt 4530 3377 L
X4530 3377 mt 4555 3388 L
Xc52
X64 -18 25 11 4466 3395 3 MP
XPP
X0 sg
X4466 3395 mt 4491 3406 L
X4491 3406 mt 4555 3388 L
Xc23
X25 48 64 -23 4465 3872 3 MP
XPP
X0 sg
X4465 3872 mt 4529 3849 L
X4529 3849 mt 4554 3897 L
Xc23
X64 -23 25 48 4465 3872 3 MP
XPP
X0 sg
X4465 3872 mt 4490 3920 L
X4490 3920 mt 4554 3897 L
Xc66
X64 -26 24 16 4461 3492 3 MP
XPP
X0 sg
X4461 3492 mt 4485 3508 L
X4485 3508 mt 4549 3482 L
Xc66
X24 15 64 -25 4461 3492 3 MP
XPP
X0 sg
X4461 3492 mt 4525 3467 L
X4525 3467 mt 4549 3482 L
Xc31
X24 30 64 -30 4456 3742 3 MP
XPP
X0 sg
X4456 3742 mt 4520 3712 L
X4520 3712 mt 4544 3742 L
Xc31
X64 -30 24 30 4456 3742 3 MP
XPP
X0 sg
X4456 3742 mt 4480 3772 L
X4480 3772 mt 4544 3742 L
Xc52
X64 -18 25 12 4451 3434 3 MP
XPP
X0 sg
X4451 3434 mt 4476 3446 L
X4476 3446 mt 4540 3428 L
Xc52
X25 11 64 -17 4451 3434 3 MP
XPP
X0 sg
X4451 3434 mt 4515 3417 L
X4515 3417 mt 4540 3428 L
Xc36
X64 -30 25 43 4450 3999 3 MP
XPP
X0 sg
X4450 3999 mt 4475 4042 L
X4475 4042 mt 4539 4012 L
Xc36
X25 42 64 -29 4450 3999 3 MP
XPP
X0 sg
X4450 3999 mt 4514 3970 L
X4514 3970 mt 4539 4012 L
Xc59
X24 28 64 -44 4446 3589 3 MP
XPP
X0 sg
X4446 3589 mt 4510 3545 L
X4510 3545 mt 4534 3573 L
Xc59
X63 -44 25 28 4446 3589 3 MP
XPP
X0 sg
X4446 3589 mt 4471 3617 L
X4471 3617 mt 4534 3573 L
Xc26
X24 42 64 -22 4441 3829 3 MP
XPP
X0 sg
X4441 3829 mt 4505 3807 L
X4505 3807 mt 4529 3849 L
Xc26
X64 -23 24 43 4441 3829 3 MP
XPP
X0 sg
X4441 3829 mt 4465 3872 L
X4465 3872 mt 4529 3849 L
Xc52
X25 10 64 -16 4436 3473 3 MP
XPP
X0 sg
X4436 3473 mt 4500 3457 L
X4500 3457 mt 4525 3467 L
Xc52
X64 -25 25 19 4436 3473 3 MP
XPP
X0 sg
X4436 3473 mt 4461 3492 L
X4461 3492 mt 4525 3467 L
Xc24
X25 42 64 -30 4431 3700 3 MP
XPP
X0 sg
X4431 3700 mt 4495 3670 L
X4495 3670 mt 4520 3712 L
Xc24
X64 -30 25 42 4431 3700 3 MP
XPP
X0 sg
X4431 3700 mt 4456 3742 L
X4456 3742 mt 4520 3712 L
Xc52
X24 11 64 -17 4427 3423 3 MP
XPP
X0 sg
X4427 3423 mt 4491 3406 L
X4491 3406 mt 4515 3417 L
Xc52
X64 -17 24 11 4427 3423 3 MP
XPP
X0 sg
X4427 3423 mt 4451 3434 L
X4451 3434 mt 4515 3417 L
Xc34
X24 50 64 -30 4426 3950 3 MP
XPP
X0 sg
X4426 3950 mt 4490 3920 L
X4490 3920 mt 4514 3970 L
Xc34
X64 -29 24 49 4426 3950 3 MP
XPP
X0 sg
X4426 3950 mt 4450 3999 L
X4450 3999 mt 4514 3970 L
Xc50
X64 -44 25 37 4421 3552 3 MP
XPP
X0 sg
X4421 3552 mt 4446 3589 L
X4446 3589 mt 4510 3545 L
Xc50
X25 37 64 -44 4421 3552 3 MP
XPP
X0 sg
X4421 3552 mt 4485 3508 L
X4485 3508 mt 4510 3545 L
Xc30
X25 35 64 -23 4416 3795 3 MP
XPP
X0 sg
X4416 3795 mt 4480 3772 L
X4480 3772 mt 4505 3807 L
Xc30
X64 -22 25 34 4416 3795 3 MP
XPP
X0 sg
X4416 3795 mt 4441 3829 L
X4441 3829 mt 4505 3807 L
Xc52
X24 11 64 -17 4412 3463 3 MP
XPP
X0 sg
X4412 3463 mt 4476 3446 L
X4476 3446 mt 4500 3457 L
Xc52
X64 -16 24 10 4412 3463 3 MP
XPP
X0 sg
X4412 3463 mt 4436 3473 L
X4436 3473 mt 4500 3457 L
Xc54
X64 -30 24 53 4407 3647 3 MP
XPP
X0 sg
X4407 3647 mt 4431 3700 L
X4431 3700 mt 4495 3670 L
Xc54
X24 53 64 -30 4407 3647 3 MP
XPP
X0 sg
X4407 3647 mt 4471 3617 L
X4471 3617 mt 4495 3670 L
Xc52
X64 -17 25 11 4402 3412 3 MP
XPP
X0 sg
X4402 3412 mt 4427 3423 L
X4427 3423 mt 4491 3406 L
Xc52
X25 11 64 -17 4402 3412 3 MP
XPP
X0 sg
X4402 3412 mt 4466 3395 L
X4466 3395 mt 4491 3406 L
Xc19
X25 48 64 -30 4401 3902 3 MP
XPP
X0 sg
X4401 3902 mt 4465 3872 L
X4465 3872 mt 4490 3920 L
Xc19
X64 -30 25 48 4401 3902 3 MP
XPP
X0 sg
X4401 3902 mt 4426 3950 L
X4426 3950 mt 4490 3920 L
Xc71
X24 16 64 -44 4397 3536 3 MP
XPP
X0 sg
X4397 3536 mt 4461 3492 L
X4461 3492 mt 4485 3508 L
Xc71
X64 -44 24 16 4397 3536 3 MP
XPP
X0 sg
X4397 3536 mt 4421 3552 L
X4421 3552 mt 4485 3508 L
Xc25
X24 30 64 -22 4392 3764 3 MP
XPP
X0 sg
X4392 3764 mt 4456 3742 L
X4456 3742 mt 4480 3772 L
Xc25
X64 -23 24 31 4392 3764 3 MP
XPP
X0 sg
X4392 3764 mt 4416 3795 L
X4416 3795 mt 4480 3772 L
Xc52
X25 12 64 -18 4387 3452 3 MP
XPP
X0 sg
X4387 3452 mt 4451 3434 L
X4451 3434 mt 4476 3446 L
Xc52
X64 -17 25 11 4387 3452 3 MP
XPP
X0 sg
X4387 3452 mt 4412 3463 L
X4412 3463 mt 4476 3446 L
Xc48
X64 -30 25 28 4382 3619 3 MP
XPP
X0 sg
X4382 3619 mt 4407 3647 L
X4407 3647 mt 4471 3617 L
Xc48
X25 28 64 -30 4382 3619 3 MP
XPP
X0 sg
X4382 3619 mt 4446 3589 L
X4446 3589 mt 4471 3617 L
X
Xgr 
Xgs 3994 2830 2261 1783 MR c np
Xc18
X24 43 64 -30 4377 3859 3 MP
XPP
X0 sg
X4377 3859 mt 4441 3829 L
X4441 3829 mt 4465 3872 L
Xc18
X64 -30 24 43 4377 3859 3 MP
XPP
X0 sg
X4377 3859 mt 4401 3902 L
X4401 3902 mt 4465 3872 L
Xc71
X25 19 64 -44 4372 3517 3 MP
XPP
X0 sg
X4372 3517 mt 4436 3473 L
X4436 3473 mt 4461 3492 L
Xc71
X64 -44 25 19 4372 3517 3 MP
XPP
X0 sg
X4372 3517 mt 4397 3536 L
X4397 3536 mt 4461 3492 L
Xc24
X25 42 64 -22 4367 3722 3 MP
XPP
X0 sg
X4367 3722 mt 4431 3700 L
X4431 3700 mt 4456 3742 L
Xc24
X64 -22 25 42 4367 3722 3 MP
XPP
X0 sg
X4367 3722 mt 4392 3764 L
X4392 3764 mt 4456 3742 L
Xc52
X64 -18 24 12 4363 3440 3 MP
XPP
X0 sg
X4363 3440 mt 4387 3452 L
X4387 3452 mt 4451 3434 L
Xc52
X24 11 64 -17 4363 3440 3 MP
XPP
X0 sg
X4363 3440 mt 4427 3423 L
X4427 3423 mt 4451 3434 L
Xc55
X25 37 63 -30 4358 3582 3 MP
XPP
X0 sg
X4358 3582 mt 4421 3552 L
X4421 3552 mt 4446 3589 L
Xc55
X64 -30 24 37 4358 3582 3 MP
XPP
X0 sg
X4358 3582 mt 4382 3619 L
X4382 3619 mt 4446 3589 L
Xc17
X25 34 64 -30 4352 3825 3 MP
XPP
X0 sg
X4352 3825 mt 4416 3795 L
X4416 3795 mt 4441 3829 L
Xc17
X64 -30 25 34 4352 3825 3 MP
XPP
X0 sg
X4352 3825 mt 4377 3859 L
X4377 3859 mt 4441 3829 L
Xc52
X64 -44 24 37 4348 3480 3 MP
XPP
X0 sg
X4348 3480 mt 4372 3517 L
X4372 3517 mt 4436 3473 L
Xc52
X24 10 64 -17 4348 3480 3 MP
XPP
X0 sg
X4348 3480 mt 4412 3463 L
X4412 3463 mt 4436 3473 L
Xc62
X24 53 64 -23 4343 3670 3 MP
XPP
X0 sg
X4343 3670 mt 4407 3647 L
X4407 3647 mt 4431 3700 L
Xc62
X64 -22 24 52 4343 3670 3 MP
XPP
X0 sg
X4343 3670 mt 4367 3722 L
X4367 3722 mt 4431 3700 L
Xc52
X25 11 64 -17 4338 3429 3 MP
XPP
X0 sg
X4338 3429 mt 4402 3412 L
X4402 3412 mt 4427 3423 L
Xc52
X64 -17 25 11 4338 3429 3 MP
XPP
X0 sg
X4338 3429 mt 4363 3440 L
X4363 3440 mt 4427 3423 L
Xc55
X63 -30 25 16 4333 3566 3 MP
XPP
X0 sg
X4333 3566 mt 4358 3582 L
X4358 3582 mt 4421 3552 L
Xc55
X24 16 64 -30 4333 3566 3 MP
XPP
X0 sg
X4333 3566 mt 4397 3536 L
X4397 3536 mt 4421 3552 L
Xc35
X64 -30 24 31 4328 3794 3 MP
XPP
X0 sg
X4328 3794 mt 4352 3825 L
X4352 3825 mt 4416 3795 L
Xc35
X24 31 64 -30 4328 3794 3 MP
XPP
X0 sg
X4328 3794 mt 4392 3764 L
X4392 3764 mt 4416 3795 L
Xc52
X25 11 64 -17 4323 3469 3 MP
XPP
X0 sg
X4323 3469 mt 4387 3452 L
X4387 3452 mt 4412 3463 L
Xc52
X64 -17 25 11 4323 3469 3 MP
XPP
X0 sg
X4323 3469 mt 4348 3480 L
X4348 3480 mt 4412 3463 L
Xc63
X25 28 64 -22 4318 3641 3 MP
XPP
X0 sg
X4318 3641 mt 4382 3619 L
X4382 3619 mt 4407 3647 L
Xc63
X64 -23 25 29 4318 3641 3 MP
XPP
X0 sg
X4318 3641 mt 4343 3670 L
X4343 3670 mt 4407 3647 L
Xc50
X64 -30 25 19 4308 3547 3 MP
XPP
X0 sg
X4308 3547 mt 4333 3566 L
X4333 3566 mt 4397 3536 L
Xc50
X25 19 64 -30 4308 3547 3 MP
XPP
X0 sg
X4308 3547 mt 4372 3517 L
X4372 3517 mt 4397 3536 L
Xc16
X64 -30 25 42 4303 3752 3 MP
XPP
X0 sg
X4303 3752 mt 4328 3794 L
X4328 3794 mt 4392 3764 L
Xc16
X25 42 64 -30 4303 3752 3 MP
XPP
X0 sg
X4303 3752 mt 4367 3722 L
X4367 3722 mt 4392 3764 L
Xc52
X64 -17 24 11 4299 3458 3 MP
XPP
X0 sg
X4299 3458 mt 4323 3469 L
X4323 3469 mt 4387 3452 L
Xc52
X24 12 64 -18 4299 3458 3 MP
XPP
X0 sg
X4299 3458 mt 4363 3440 L
X4363 3440 mt 4387 3452 L
Xc49
X64 -22 24 36 4294 3605 3 MP
XPP
X0 sg
X4294 3605 mt 4318 3641 L
X4318 3641 mt 4382 3619 L
Xc49
X24 37 64 -23 4294 3605 3 MP
XPP
X0 sg
X4294 3605 mt 4358 3582 L
X4358 3582 mt 4382 3619 L
Xc66
X64 -30 24 38 4284 3509 3 MP
XPP
X0 sg
X4284 3509 mt 4308 3547 L
X4308 3547 mt 4372 3517 L
Xc66
X24 37 64 -29 4284 3509 3 MP
XPP
X0 sg
X4284 3509 mt 4348 3480 L
X4348 3480 mt 4372 3517 L
Xc46
X64 -30 24 52 4279 3700 3 MP
XPP
X0 sg
X4279 3700 mt 4303 3752 L
X4303 3752 mt 4367 3722 L
Xc46
X24 52 64 -30 4279 3700 3 MP
XPP
X0 sg
X4279 3700 mt 4343 3670 L
X4343 3670 mt 4367 3722 L
Xc52
X64 -18 25 12 4274 3446 3 MP
XPP
X0 sg
X4274 3446 mt 4299 3458 L
X4299 3458 mt 4363 3440 L
Xc52
X25 11 64 -17 4274 3446 3 MP
XPP
X0 sg
X4274 3446 mt 4338 3429 L
X4338 3429 mt 4363 3440 L
Xc55
X25 16 64 -23 4269 3589 3 MP
XPP
X0 sg
X4269 3589 mt 4333 3566 L
X4333 3566 mt 4358 3582 L
Xc55
X64 -23 25 16 4269 3589 3 MP
XPP
X0 sg
X4269 3589 mt 4294 3605 L
X4294 3605 mt 4358 3582 L
Xc52
X64 -29 25 23 4259 3486 3 MP
XPP
X0 sg
X4259 3486 mt 4284 3509 L
X4284 3509 mt 4348 3480 L
Xc52
X25 11 64 -17 4259 3486 3 MP
XPP
X0 sg
X4259 3486 mt 4323 3469 L
X4323 3469 mt 4348 3480 L
Xc54
X64 -30 25 29 4254 3671 3 MP
XPP
X0 sg
X4254 3671 mt 4279 3700 L
X4279 3700 mt 4343 3670 L
Xc54
X25 29 64 -30 4254 3671 3 MP
XPP
X0 sg
X4254 3671 mt 4318 3641 L
X4318 3641 mt 4343 3670 L
Xc55
X64 -23 24 19 4245 3570 3 MP
XPP
X0 sg
X4245 3570 mt 4269 3589 L
X4269 3589 mt 4333 3566 L
Xc55
X25 19 63 -23 4245 3570 3 MP
XPP
X0 sg
X4245 3570 mt 4308 3547 L
X4308 3547 mt 4333 3566 L
Xc52
X64 -17 24 11 4235 3475 3 MP
XPP
X0 sg
X4235 3475 mt 4259 3486 L
X4259 3486 mt 4323 3469 L
Xc52
X24 11 64 -17 4235 3475 3 MP
XPP
X0 sg
X4235 3475 mt 4299 3458 L
X4299 3458 mt 4323 3469 L
Xc59
X24 36 64 -29 4230 3634 3 MP
XPP
X0 sg
X4230 3634 mt 4294 3605 L
X4294 3605 mt 4318 3641 L
Xc59
X64 -30 24 37 4230 3634 3 MP
XPP
X0 sg
X4230 3634 mt 4254 3671 L
X4254 3671 mt 4318 3641 L
Xc57
X63 -23 25 38 4220 3532 3 MP
XPP
X0 sg
X4220 3532 mt 4245 3570 L
X4245 3570 mt 4308 3547 L
Xc57
X24 38 64 -23 4220 3532 3 MP
XPP
X0 sg
X4220 3532 mt 4284 3509 L
X4284 3509 mt 4308 3547 L
Xc52
X25 12 64 -18 4210 3464 3 MP
XPP
X0 sg
X4210 3464 mt 4274 3446 L
X4274 3446 mt 4299 3458 L
Xc52
X64 -17 25 11 4210 3464 3 MP
XPP
X0 sg
X4210 3464 mt 4235 3475 L
X4235 3475 mt 4299 3458 L
Xc59
X25 16 64 -29 4205 3618 3 MP
XPP
X0 sg
X4205 3618 mt 4269 3589 L
X4269 3589 mt 4294 3605 L
Xc59
X64 -29 25 16 4205 3618 3 MP
XPP
X0 sg
X4205 3618 mt 4230 3634 L
X4230 3634 mt 4294 3605 L
Xc52
X64 -23 25 25 4195 3507 3 MP
XPP
X0 sg
X4195 3507 mt 4220 3532 L
X4220 3532 mt 4284 3509 L
Xc52
X25 23 64 -21 4195 3507 3 MP
XPP
X0 sg
X4195 3507 mt 4259 3486 L
X4259 3486 mt 4284 3509 L
Xc49
X64 -29 24 19 4181 3599 3 MP
XPP
X0 sg
X4181 3599 mt 4205 3618 L
X4205 3618 mt 4269 3589 L
Xc49
X24 19 64 -29 4181 3599 3 MP
XPP
X0 sg
X4181 3599 mt 4245 3570 L
X4245 3570 mt 4269 3589 L
Xc52
X24 11 64 -15 4171 3490 3 MP
XPP
X0 sg
X4171 3490 mt 4235 3475 L
X4235 3475 mt 4259 3486 L
Xc52
X64 -21 24 17 4171 3490 3 MP
XPP
X0 sg
X4171 3490 mt 4195 3507 L
X4195 3507 mt 4259 3486 L
Xc71
X64 -29 25 38 4156 3561 3 MP
XPP
X0 sg
X4156 3561 mt 4181 3599 L
X4181 3599 mt 4245 3570 L
Xc71
X25 38 64 -29 4156 3561 3 MP
XPP
X0 sg
X4156 3561 mt 4220 3532 L
X4220 3532 mt 4245 3570 L
Xc52
X25 11 64 -17 4146 3481 3 MP
XPP
X0 sg
X4146 3481 mt 4210 3464 L
X4210 3464 mt 4235 3475 L
Xc52
X64 -15 25 9 4146 3481 3 MP
XPP
X0 sg
X4146 3481 mt 4171 3490 L
X4171 3490 mt 4235 3475 L
Xc66
X64 -29 24 25 4132 3536 3 MP
XPP
X0 sg
X4132 3536 mt 4156 3561 L
X4156 3561 mt 4220 3532 L
Xc66
X25 25 63 -29 4132 3536 3 MP
XPP
X0 sg
X4132 3536 mt 4195 3507 L
X4195 3507 mt 4220 3532 L
Xc66
X24 17 64 -26 4107 3516 3 MP
XPP
X0 sg
X4107 3516 mt 4171 3490 L
X4171 3490 mt 4195 3507 L
Xc66
X63 -29 25 20 4107 3516 3 MP
XPP
X0 sg
X4107 3516 mt 4132 3536 L
X4132 3536 mt 4195 3507 L
Xc52
X25 9 64 -17 4082 3498 3 MP
XPP
X0 sg
X4082 3498 mt 4146 3481 L
X4146 3481 mt 4171 3490 L
Xc52
X64 -26 25 18 4082 3498 3 MP
XPP
X0 sg
X4082 3498 mt 4107 3516 L
X4107 3516 mt 4171 3490 L
X
Xgr 
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 149 1538 a Fo(Figure)15 b(3.2:)k(Regularized)f(solutions)e(and)f
X(\014lter)h(factors)e(for)g(the)i(\\noisy")f(test)f(problem.)130
X1675 y(W)l(e)j(use)h(the)g(command)f Fl(mesh)h Fo(to)f(plot)h(all)g
X(the)g(regularized)h(solutions,)f(cf.)g(Fig.)f(3.2.)26
Xb(This)18 b(is)59 1732 y(a)g(v)o(ery)h(con)o(v)o(enien)o(t)g(to)f(sho)o
X(w)g(the)h(dep)q(endence)i(of)e(the)g(solution)g(on)g(the)g
X(regularization)g(param-)59 1788 y(eter.)38 b(The)22
Xb(same)f(tec)o(hnique)i(is)f(used)g(to)e(displa)o(y)j(the)e(the)h
X(corresp)q(onding)g(\014lter)g(factors.)38 b(W)l(e)59
X1845 y(see)18 b(the)f(t)o(ypical)i(situation)f(for)e(regularization)j
X(metho)q(ds:)24 b(\014rst,)18 b(when)f(w)o(e)h(apply)g(m)o(uc)o(h)f
X(regular-)59 1901 y(ization,)k(the)f(solution)h(is)f(o)o(v)o
X(erregularized,)h(i.e.,)f(it)g(is)h(to)q(o)e(smo)q(oth;)i(then)f(it)g
X(b)q(ecomes)g(a)g(b)q(etter)59 1958 y(appro)o(ximation)e(to)f(the)i
X(underlying,)h(unp)q(erturb)q(ed)g(solution;)g(and)e(ev)o(en)o(tually)h
X(the)f(solution)h(b)q(e-)59 2014 y(comes)g(underregularized)i(and)e
X(starts)f(to)h(b)q(e)g(dominated)h(b)o(y)f(the)g(p)q(erturbation)g
X(errors,)g(and)g(its)59 2070 y(\(semi\)norm)c(\\explo)q(des".)59
X2197 y Fr(3.3.)j(The)g(L-Curv)n(e)59 2299 y Fo(The)c(L-curv)o(e)h
X(analysis)g(pla)o(ys)f(an)g(imp)q(ortan)o(t)g(role)g(in)h(the)f
X(analysis)h(phase)f(of)g(regularization)h(prob-)59 2355
Xy(lems.)36 b(The)21 b(L-curv)o(e)g(displa)o(ys)g(the)g(tradeo\013)e(b)q
X(et)o(w)o(een)i(minimizing)i(the)d(t)o(w)o(o)f(quan)o(tities)i(in)h
X(the)59 2411 y(regularization)e(problem,)h(namely)l(,)g(the)e(residual)
Xi(norm)e(and)g(the)g(solution)h(\(semi\)norm,)g(and)f(it)59
X2468 y(sho)o(ws)i(ho)o(w)g(these)h(quan)o(tities)g(dep)q(end)i(on)d
X(the)h(regularization)h(parameter.)38 b(In)23 b(addition,)h(the)59
X2524 y(L-curv)o(e)18 b(can)f(b)q(e)h(used)g(to)f(compute)g(the)h
X(\\optimal")f(regularization)h(parameter)f(as)f(explained)k(in)59
X2581 y(Section)c(2.9)e(\(w)o(e)h(return)g(to)g(this)h(asp)q(ect)f(in)h
X(the)f(next)h(example\).)k(The)c(L-curv)o(e)g(can)f(also)g(b)q(e)h
X(used)59 2637 y(to)i(in)o(v)o(estigate)i(the)f(similarit)o(y)h(b)q(et)o
X(w)o(een)f(di\013eren)o(t)g(regularization)h(metho)q(ds|if)g(their)g
X(L-curv)o(es)59 2694 y(are)15 b(close,)g(then)h(the)f(regularized)i
X(solutions)f(are)f(similar,)h(cf.)e([45].)p eop
X%%Page: 36 38
X36 37 bop 64 159 a Fo(36)1473 b(TUTORIAL)p 64 178 1767
X2 v 177 259 a
X 22935557 18646798 3881123 12695879 38153420 40521564 startTexFig
X 177 259 a
X%%BeginDocument: tutorial/fig3.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  515   -48  6246  5069 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 4224 2259 0 0 -4224 898 4612 4 MP
XPP
X-2259 0 0 4224 2259 0 0 -4224 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 3157 4612 L
X 898  388 mt 3157  388 L
X 898 4612 mt  898  388 L
X3157 4612 mt 3157  388 L
X 898 4612 mt 3157 4612 L
X 898 4612 mt  898  388 L
X 898 4612 mt  898 4591 L
X 898  388 mt  898  409 L
X 898 4612 mt  898 4570 L
X 898  388 mt  898  430 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 786 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 919 4721 mt 
X(-3) s
X1125 4612 mt 1125 4591 L
X1125  388 mt 1125  409 L
X1257 4612 mt 1257 4591 L
X1257  388 mt 1257  409 L
X1351 4612 mt 1351 4591 L
X1351  388 mt 1351  409 L
X1424 4612 mt 1424 4591 L
X1424  388 mt 1424  409 L
X1484 4612 mt 1484 4591 L
X1484  388 mt 1484  409 L
X1534 4612 mt 1534 4591 L
X1534  388 mt 1534  409 L
X1578 4612 mt 1578 4591 L
X1578  388 mt 1578  409 L
X1617 4612 mt 1617 4591 L
X1617  388 mt 1617  409 L
X1651 4612 mt 1651 4591 L
X1651  388 mt 1651  409 L
X1651 4612 mt 1651 4570 L
X1651  388 mt 1651  430 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X1539 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X1672 4721 mt 
X(-2) s
X1878 4612 mt 1878 4591 L
X1878  388 mt 1878  409 L
X2010 4612 mt 2010 4591 L
X2010  388 mt 2010  409 L
X2104 4612 mt 2104 4591 L
X2104  388 mt 2104  409 L
X2177 4612 mt 2177 4591 L
X2177  388 mt 2177  409 L
X2237 4612 mt 2237 4591 L
X2237  388 mt 2237  409 L
X2287 4612 mt 2287 4591 L
X2287  388 mt 2287  409 L
X2331 4612 mt 2331 4591 L
X2331  388 mt 2331  409 L
X2370 4612 mt 2370 4591 L
X2370  388 mt 2370  409 L
X2404 4612 mt 2404 4591 L
X2404  388 mt 2404  409 L
X2404 4612 mt 2404 4570 L
X2404  388 mt 2404  430 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X2292 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X2425 4721 mt 
X(-1) s
X2631 4612 mt 2631 4591 L
X2631  388 mt 2631  409 L
X2763 4612 mt 2763 4591 L
X2763  388 mt 2763  409 L
X2857 4612 mt 2857 4591 L
X2857  388 mt 2857  409 L
X2930 4612 mt 2930 4591 L
X2930  388 mt 2930  409 L
X2990 4612 mt 2990 4591 L
X2990  388 mt 2990  409 L
X3040 4612 mt 3040 4591 L
X3040  388 mt 3040  409 L
X3084 4612 mt 3084 4591 L
X3084  388 mt 3084  409 L
X3123 4612 mt 3123 4591 L
X3123  388 mt 3123  409 L
X3157 4612 mt 3157 4591 L
X3157  388 mt 3157  409 L
X3157 4612 mt 3157 4570 L
X3157  388 mt 3157  430 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3069 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X3202 4721 mt 
X(0) s
X 898 4612 mt  919 4612 L
X3157 4612 mt 3136 4612 L
X 898 4612 mt  940 4612 L
X3157 4612 mt 3115 4612 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686 4656 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819 4582 mt 
X(0) s
X 898 4188 mt  919 4188 L
X3157 4188 mt 3136 4188 L
X 898 3940 mt  919 3940 L
X3157 3940 mt 3136 3940 L
X 898 3764 mt  919 3764 L
X3157 3764 mt 3136 3764 L
X 898 3628 mt  919 3628 L
X3157 3628 mt 3136 3628 L
X 898 3516 mt  919 3516 L
X3157 3516 mt 3136 3516 L
X 898 3422 mt  919 3422 L
X3157 3422 mt 3136 3422 L
X 898 3340 mt  919 3340 L
X3157 3340 mt 3136 3340 L
X 898 3268 mt  919 3268 L
X3157 3268 mt 3136 3268 L
X 898 3204 mt  919 3204 L
X3157 3204 mt 3136 3204 L
X 898 3204 mt  940 3204 L
X3157 3204 mt 3115 3204 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686 3248 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819 3174 mt 
X(1) s
X 898 2780 mt  919 2780 L
X3157 2780 mt 3136 2780 L
X 898 2532 mt  919 2532 L
X3157 2532 mt 3136 2532 L
X 898 2356 mt  919 2356 L
X3157 2356 mt 3136 2356 L
X 898 2220 mt  919 2220 L
X3157 2220 mt 3136 2220 L
X 898 2108 mt  919 2108 L
X3157 2108 mt 3136 2108 L
X 898 2014 mt  919 2014 L
X3157 2014 mt 3136 2014 L
X 898 1932 mt  919 1932 L
X3157 1932 mt 3136 1932 L
X 898 1860 mt  919 1860 L
X3157 1860 mt 3136 1860 L
X 898 1796 mt  919 1796 L
X3157 1796 mt 3136 1796 L
X 898 1796 mt  940 1796 L
X3157 1796 mt 3115 1796 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686 1840 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819 1766 mt 
X(2) s
X 898 1372 mt  919 1372 L
X3157 1372 mt 3136 1372 L
X 898 1124 mt  919 1124 L
X3157 1124 mt 3136 1124 L
X 898  948 mt  919  948 L
X3157  948 mt 3136  948 L
X 898  812 mt  919  812 L
X3157  812 mt 3136  812 L
X 898  700 mt  919  700 L
X3157  700 mt 3136  700 L
X 898  606 mt  919  606 L
X3157  606 mt 3136  606 L
X 898  524 mt  919  524 L
X3157  524 mt 3136  524 L
X 898  452 mt  919  452 L
X3157  452 mt 3136  452 L
X 898  388 mt  919  388 L
X3157  388 mt 3136  388 L
X 898  388 mt  940  388 L
X3157  388 mt 3115  388 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686  432 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819  358 mt 
X(3) s
X 898 4612 mt 3157 4612 L
X 898  388 mt 3157  388 L
X 898 4612 mt  898  388 L
X3157 4612 mt 3157  388 L
Xgs 898 388 2260 4225 MR c np
X0 -15 -1 -62 0 -50 0 -42 0 -35 0 -32 0 -35 0 -39 
X0 -46 0 -55 0 -63 0 -69 -1 -71 0 -71 0 -67 -1 -63 
X0 -62 0 -64 -1 -70 -1 -82 -1 -94 0 -110 -1 -124 -1 -138 
X-1 -149 -1 -158 -1 -163 -1 -166 0 -167 0 -165 -1 -160 0 -152 
X0 -138 0 -118 -1 -95 0 -72 0 -55 0 -45 0 -39 0 -38 
X0 -39 0 -38 0 -35 -1 -31 0 -25 0 -17 0 -12 0 -7 
X0 -5 -1 -2 0 -2 0 -1 -1 -1 -2 0 -1 0 -4 0 
X-6 -1 -10 0 -17 0 -26 -1 -37 0 -46 -1 -52 -1 -57 -1 
X-58 0 -56 -1 -56 -1 -54 -1 -54 -1 -57 0 -62 -1 -68 -2 
X-77 -1 -84 -2 -90 -2 -94 -3 -94 -5 -95 -5 -94 -7 -91 -9 
X-90 -11 -87 -13 -85 -17 -81 -21 -78 -25 -74 -29 -71 -35 -67 -40 
X-64 -48 -62 -57 -58 -68 -54 -82 -49 -97 3800 4143 94 MP stroke
X
Xgr 
Xgs 1349 0 1047 3816 MR c np
X2297 3544 mt 2347 3594 L
X2347 3544 mt 2297 3594 L
X1415 3529 mt 1465 3579 L
X1465 3529 mt 1415 3579 L
X1411 3511 mt 1461 3561 L
X1461 3511 mt 1411 3561 L
X1407 1904 mt 1457 1954 L
X1457 1904 mt 1407 1954 L
X
Xgr 
Xgs 898 388 2260 4225 MR c np
X
Xgr 
Xgs 1349 0 1047 3816 MR c np
X
Xgr 
Xgs 898 388 2260 4225 MR c np
X
Xgr 
Xgs 1349 0 1047 3816 MR c np
X
Xgr 
Xgs 898 388 2260 4225 MR c np
X
Xgr 
Xgs 1349 0 1047 3816 MR c np
X
Xgr 
Xgs 898 388 2260 4225 MR c np
X
Xgr 
Xgs 1349 0 1047 3816 MR c np
X
Xgr 
Xgs 898 388 2260 4225 MR c np
X
Xgr 
Xgs 1349 0 1047 3816 MR c np
X
Xgr 
Xgs 898 388 2260 4225 MR c np
X
Xgr 
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X2322 3611 mt 
X(0.1249) s
X1440 3596 mt 
X(0.0044091) s
X1436 3578 mt 
X(0.00015565) s
X1432 1971 mt 
X(5.4947e-006) s
X1422  213 mt 
X(           ) s
X1342 4938 mt 
X(residual norm || A x - b ||) s
X/Helvetica /WindowsLatin1Encoding 96 FMSR
X
X2673 4998 mt 
X(2) s
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 631 3025 mt  -90 rotate
X(solution norm || x ||) s
X90 rotate
X/Helvetica /WindowsLatin1Encoding 96 FMSR
X
X 691 2017 mt  -90 rotate
X(2) s
X90 rotate
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X1813  293 mt 
X(L-curve) s
X1 sg
X0 4224 2260 0 0 -4224 3994 4612 4 MP
XPP
X-2260 0 0 4224 2260 0 0 -4224 3994 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X3994 4612 mt 6254 4612 L
X3994  388 mt 6254  388 L
X3994 4612 mt 3994  388 L
X6254 4612 mt 6254  388 L
X3994 4612 mt 6254 4612 L
X3994 4612 mt 3994  388 L
X3994 4612 mt 3994 4591 L
X3994  388 mt 3994  409 L
X3994 4612 mt 3994 4570 L
X3994  388 mt 3994  430 L
X3882 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X4015 4721 mt 
X(-3) s
X4221 4612 mt 4221 4591 L
X4221  388 mt 4221  409 L
X4353 4612 mt 4353 4591 L
X4353  388 mt 4353  409 L
X4448 4612 mt 4448 4591 L
X4448  388 mt 4448  409 L
X4521 4612 mt 4521 4591 L
X4521  388 mt 4521  409 L
X4580 4612 mt 4580 4591 L
X4580  388 mt 4580  409 L
X4631 4612 mt 4631 4591 L
X4631  388 mt 4631  409 L
X4674 4612 mt 4674 4591 L
X4674  388 mt 4674  409 L
X4713 4612 mt 4713 4591 L
X4713  388 mt 4713  409 L
X4747 4612 mt 4747 4591 L
X4747  388 mt 4747  409 L
X4747 4612 mt 4747 4570 L
X4747  388 mt 4747  430 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X4635 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X4768 4721 mt 
X(-2) s
X4974 4612 mt 4974 4591 L
X4974  388 mt 4974  409 L
X5107 4612 mt 5107 4591 L
X5107  388 mt 5107  409 L
X5201 4612 mt 5201 4591 L
X5201  388 mt 5201  409 L
X5274 4612 mt 5274 4591 L
X5274  388 mt 5274  409 L
X5334 4612 mt 5334 4591 L
X5334  388 mt 5334  409 L
X5384 4612 mt 5384 4591 L
X5384  388 mt 5384  409 L
X5428 4612 mt 5428 4591 L
X5428  388 mt 5428  409 L
X5466 4612 mt 5466 4591 L
X5466  388 mt 5466  409 L
X5501 4612 mt 5501 4591 L
X5501  388 mt 5501  409 L
X5501 4612 mt 5501 4570 L
X5501  388 mt 5501  430 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X5389 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X5522 4721 mt 
X(-1) s
X5727 4612 mt 5727 4591 L
X5727  388 mt 5727  409 L
X5860 4612 mt 5860 4591 L
X5860  388 mt 5860  409 L
X5954 4612 mt 5954 4591 L
X5954  388 mt 5954  409 L
X6027 4612 mt 6027 4591 L
X6027  388 mt 6027  409 L
X6087 4612 mt 6087 4591 L
X6087  388 mt 6087  409 L
X6137 4612 mt 6137 4591 L
X6137  388 mt 6137  409 L
X6181 4612 mt 6181 4591 L
X6181  388 mt 6181  409 L
X6220 4612 mt 6220 4591 L
X6220  388 mt 6220  409 L
X6254 4612 mt 6254 4591 L
X6254  388 mt 6254  409 L
X6254 4612 mt 6254 4570 L
X6254  388 mt 6254  430 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X6166 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X6299 4721 mt 
X(0) s
X3994 4612 mt 4015 4612 L
X6254 4612 mt 6233 4612 L
X3994 4612 mt 4036 4612 L
X6254 4612 mt 6212 4612 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3782 4656 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X3915 4582 mt 
X(0) s
X3994 4188 mt 4015 4188 L
X6254 4188 mt 6233 4188 L
X3994 3940 mt 4015 3940 L
X6254 3940 mt 6233 3940 L
X3994 3764 mt 4015 3764 L
X6254 3764 mt 6233 3764 L
X3994 3628 mt 4015 3628 L
X6254 3628 mt 6233 3628 L
X3994 3516 mt 4015 3516 L
X6254 3516 mt 6233 3516 L
X3994 3422 mt 4015 3422 L
X6254 3422 mt 6233 3422 L
X3994 3340 mt 4015 3340 L
X6254 3340 mt 6233 3340 L
X3994 3268 mt 4015 3268 L
X6254 3268 mt 6233 3268 L
X3994 3204 mt 4015 3204 L
X6254 3204 mt 6233 3204 L
X3994 3204 mt 4036 3204 L
X6254 3204 mt 6212 3204 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3782 3248 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X3915 3174 mt 
X(1) s
X3994 2780 mt 4015 2780 L
X6254 2780 mt 6233 2780 L
X3994 2532 mt 4015 2532 L
X6254 2532 mt 6233 2532 L
X3994 2356 mt 4015 2356 L
X6254 2356 mt 6233 2356 L
X3994 2220 mt 4015 2220 L
X6254 2220 mt 6233 2220 L
X3994 2108 mt 4015 2108 L
X6254 2108 mt 6233 2108 L
X3994 2014 mt 4015 2014 L
X6254 2014 mt 6233 2014 L
X3994 1932 mt 4015 1932 L
X6254 1932 mt 6233 1932 L
X3994 1860 mt 4015 1860 L
X6254 1860 mt 6233 1860 L
X3994 1796 mt 4015 1796 L
X6254 1796 mt 6233 1796 L
X3994 1796 mt 4036 1796 L
X6254 1796 mt 6212 1796 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3782 1840 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X3915 1766 mt 
X(2) s
X3994 1372 mt 4015 1372 L
X6254 1372 mt 6233 1372 L
X3994 1124 mt 4015 1124 L
X6254 1124 mt 6233 1124 L
X3994  948 mt 4015  948 L
X6254  948 mt 6233  948 L
X3994  812 mt 4015  812 L
X6254  812 mt 6233  812 L
X3994  700 mt 4015  700 L
X6254  700 mt 6233  700 L
X3994  606 mt 4015  606 L
X6254  606 mt 6233  606 L
X3994  524 mt 4015  524 L
X6254  524 mt 6233  524 L
X3994  452 mt 4015  452 L
X6254  452 mt 6233  452 L
X3994  388 mt 4015  388 L
X6254  388 mt 6233  388 L
X3994  388 mt 4036  388 L
X6254  388 mt 6212  388 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3782  432 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X3915  358 mt 
X(3) s
X3994 4612 mt 6254 4612 L
X3994  388 mt 6254  388 L
X3994 4612 mt 3994  388 L
X6254 4612 mt 6254  388 L
Xgs 3994 388 2261 4225 MR c np
Xgs 4456 1650 2257 2144 MR c np
X  36   36 5952 3577 FO
X  36   36 5184 3562 FO
X  36   36 4926 3559 FO
X  36   36 4648 3555 FO
X  36   36 4648 3555 FO
X  36   36 4535 3554 FO
X  36   36 4535 3554 FO
X  36   36 4535 3554 FO
X  36   36 4533 3554 FO
X  36   36 4533 3554 FO
X  36   36 4533 3554 FO
X  36   36 4533 3553 FO
X  36   36 4533 3553 FO
X  36   36 4533 3553 FO
X  36   36 4531 3209 FO
X  36   36 4531 3208 FO
X  36   36 4531 3204 FO
X  36   36 4531 3204 FO
X  36   36 4531 3204 FO
X  36   36 4531 3204 FO
X  36   36 4531 3204 FO
X  36   36 4531 3204 FO
X  36   36 4531 3204 FO
X  36   36 4529 1725 FO
X  36   36 4529 1723 FO
X  36   36 4529 1723 FO
X  36   36 4529 1723 FO
X  36   36 4529 1723 FO
X
Xgr 
X
Xgr 
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X4438 4938 mt 
X(residual norm || A x - b ||) s
X/Helvetica /WindowsLatin1Encoding 96 FMSR
X
X5769 4998 mt 
X(2) s
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3727 3025 mt  -90 rotate
X(solution norm || x ||) s
X90 rotate
X/Helvetica /WindowsLatin1Encoding 96 FMSR
X
X3787 2017 mt  -90 rotate
X(2) s
X90 rotate
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X4909  293 mt 
X(L-curve) s
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 263 1538 a Fo(Figure)15 b(3.3:)k(The)c(L-curv)o(es)h(for)f(Tikhono)o
X(v)g(regularization)h(and)g(for)e(LSQR.)130 1675 y Fl(subplot)8
Xb(\(1,2,1\);)14 b(l)p 446 1675 14 2 v 16 w(curve)8 b(\(U,s,b\);)14
Xb(axis)8 b(\([1e-3,1,1,1e3]\))130 1744 y(subplot)g(\(1,2,2\);)14
Xb(plot)p 508 1744 V 16 w(lc)8 b(\(rho,eta,'o'\),)13 b(axis)8
Xb(\([1e-3,1,1,1e3])130 1872 y Fo(F)l(or)17 b(the)h(particular)h
X(problem)g(considered)g(here,)g(the)f(\\noisy")g(test)g(problem)h(from)
Xe(Example)59 1929 y(3.1,)c(the)i(L-curv)o(es)g(for)f(b)q(oth)g(Tikhono)
Xo(v)g(regularization)i(and)e(for)g(LSQR,)i(sho)o(wn)e(in)h(Fig.)f(3.3,)
Xf(ha)o(v)o(e)59 1985 y(a)j(particularly)i(sharp)f(corner.)25
Xb(This)17 b(corner)f(corresp)q(onds)i(to)e(a)g(regularized)i(solution)g
X(where)f(the)59 2042 y(p)q(erturbation)11 b(error)g(and)g(the)f
X(regularization)i(error)e(are)h(balanced.)20 b(The)11
Xb(similarit)o(y)h(of)e(the)h(L-curv)o(es)59 2098 y(for)k(the)g(t)o(w)o
X(o)f(metho)q(ds)h(indicate)i(the)e(similarit)o(y)i(b)q(et)o(w)o(een)e
X(the)g(metho)q(ds.)59 2225 y Fr(3.4.)j(Regularization)f(P)n(arameters)
X59 2326 y Fo(W)l(e)d(shall)i(no)o(w)d(use)i(the)f(L-curv)o(e)h
X(criterion)g(and)f(the)h(GCV)e(metho)q(d)i(to)e(compute)h(\\optimal")h
X(regu-)59 2383 y(larization)e(parameters)f(for)g(t)o(w)o(o)f(metho)q
X(ds:)18 b(Tikhono)o(v)13 b(regularization)g(and)g(truncated)f(SVD.)19
Xb(This)59 2439 y(is)e(v)o(ery)f(easy)h(to)f(do)g(b)o(y)h(means)f(of)h
X(the)f(routines)h Fl(l)p 958 2439 V 17 w(curve)g Fo(and)f
XFl(gcv)p Fo(.)24 b(W)l(e)17 b(then)g(use)g(our)f(kno)o(wledge)59
X2495 y(ab)q(out)g(the)h(exact)f(solution)h(to)f(compute)h(the)f
X(relativ)o(e)h(errors)f(in)h(the)f(four)h(regularized)g(solutions.)59
X2552 y(The)h(b)q(est)g(result)g(ma)o(y)f(dep)q(end)i(on)e(the)h
X(particular)g(computer's)g(\015oating)f(p)q(oin)o(t)h(arithmetic|for)59
X2608 y(the)f(T)l(oshiba)h(PC)f(used)g(here,)h(the)f(com)o(bination)h
X(of)e(truncated)h(SVD)h(and)f(the)g(L-curv)o(e)h(criterion)59
X2665 y(giv)o(es)d(the)h(b)q(est)f(result.)130 2721 y(If)g(the)g(Spline)
Xj(T)l(o)q(olb)q(o)o(x)d(is)h(not)f(a)o(v)m(ailable,)h(then)g
XFl(k)p 1020 2721 V 16 w(l)f Fo(=)h Fl(NaN)f Fo(and)h
XFl(x)p 1324 2721 V 16 w(tsvd)p 1417 2721 V 18 w(l)f Fo(is)g(set)g(to)g
XFp(0)p Fo(.)p eop
X%%Page: 37 39
X37 38 bop 59 159 a Fo(3.4.)14 b(Regularization)j(P)o(arameters)1105
Xb(37)p 59 178 1767 2 v 107 259 a
X 13938479 12120418 3881123 12695879 36114186 40521564 startTexFig
X 107 259 a
X%%BeginDocument: tutorial/fig4a.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  515   -48  5877  5069 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 4224 5356 0 0 -4224 898 4612 4 MP
XPP
X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
X 898 4612 mt 6254 4612 L
X 898 4612 mt  898  388 L
X 898 4612 mt  898 4585 L
X 898  388 mt  898  415 L
X 898 4612 mt  898 4558 L
X 898  388 mt  898  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 786 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 919 4721 mt 
X(-3) s
X1435 4612 mt 1435 4585 L
X1435  388 mt 1435  415 L
X1750 4612 mt 1750 4585 L
X1750  388 mt 1750  415 L
X1973 4612 mt 1973 4585 L
X1973  388 mt 1973  415 L
X2146 4612 mt 2146 4585 L
X2146  388 mt 2146  415 L
X2287 4612 mt 2287 4585 L
X2287  388 mt 2287  415 L
X2407 4612 mt 2407 4585 L
X2407  388 mt 2407  415 L
X2510 4612 mt 2510 4585 L
X2510  388 mt 2510  415 L
X2602 4612 mt 2602 4585 L
X2602  388 mt 2602  415 L
X2683 4612 mt 2683 4585 L
X2683  388 mt 2683  415 L
X2683 4612 mt 2683 4558 L
X2683  388 mt 2683  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X2571 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X2704 4721 mt 
X(-2) s
X3221 4612 mt 3221 4585 L
X3221  388 mt 3221  415 L
X3535 4612 mt 3535 4585 L
X3535  388 mt 3535  415 L
X3758 4612 mt 3758 4585 L
X3758  388 mt 3758  415 L
X3931 4612 mt 3931 4585 L
X3931  388 mt 3931  415 L
X4073 4612 mt 4073 4585 L
X4073  388 mt 4073  415 L
X4192 4612 mt 4192 4585 L
X4192  388 mt 4192  415 L
X4296 4612 mt 4296 4585 L
X4296  388 mt 4296  415 L
X4387 4612 mt 4387 4585 L
X4387  388 mt 4387  415 L
X4469 4612 mt 4469 4585 L
X4469  388 mt 4469  415 L
X4469 4612 mt 4469 4558 L
X4469  388 mt 4469  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X4357 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X4490 4721 mt 
X(-1) s
X5006 4612 mt 5006 4585 L
X5006  388 mt 5006  415 L
X5320 4612 mt 5320 4585 L
X5320  388 mt 5320  415 L
X5544 4612 mt 5544 4585 L
X5544  388 mt 5544  415 L
X5717 4612 mt 5717 4585 L
X5717  388 mt 5717  415 L
X5858 4612 mt 5858 4585 L
X5858  388 mt 5858  415 L
X5977 4612 mt 5977 4585 L
X5977  388 mt 5977  415 L
X6081 4612 mt 6081 4585 L
X6081  388 mt 6081  415 L
X6172 4612 mt 6172 4585 L
X6172  388 mt 6172  415 L
X6254 4612 mt 6254 4585 L
X6254  388 mt 6254  415 L
X6254 4612 mt 6254 4558 L
X6254  388 mt 6254  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X6166 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X6299 4721 mt 
X(0) s
X 898 4612 mt  925 4612 L
X6254 4612 mt 6227 4612 L
X 898 4612 mt  952 4612 L
X6254 4612 mt 6200 4612 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686 4656 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819 4582 mt 
X(0) s
X 898 4188 mt  925 4188 L
X6254 4188 mt 6227 4188 L
X 898 3940 mt  925 3940 L
X6254 3940 mt 6227 3940 L
X 898 3764 mt  925 3764 L
X6254 3764 mt 6227 3764 L
X 898 3628 mt  925 3628 L
X6254 3628 mt 6227 3628 L
X 898 3516 mt  925 3516 L
X6254 3516 mt 6227 3516 L
X 898 3422 mt  925 3422 L
X6254 3422 mt 6227 3422 L
X 898 3340 mt  925 3340 L
X6254 3340 mt 6227 3340 L
X 898 3268 mt  925 3268 L
X6254 3268 mt 6227 3268 L
X 898 3204 mt  925 3204 L
X6254 3204 mt 6227 3204 L
X 898 3204 mt  952 3204 L
X6254 3204 mt 6200 3204 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686 3248 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819 3174 mt 
X(1) s
X 898 2780 mt  925 2780 L
X6254 2780 mt 6227 2780 L
X 898 2532 mt  925 2532 L
X6254 2532 mt 6227 2532 L
X 898 2356 mt  925 2356 L
X6254 2356 mt 6227 2356 L
X 898 2220 mt  925 2220 L
X6254 2220 mt 6227 2220 L
X 898 2108 mt  925 2108 L
X6254 2108 mt 6227 2108 L
X 898 2014 mt  925 2014 L
X6254 2014 mt 6227 2014 L
X 898 1932 mt  925 1932 L
X6254 1932 mt 6227 1932 L
X 898 1860 mt  925 1860 L
X6254 1860 mt 6227 1860 L
X 898 1796 mt  925 1796 L
X6254 1796 mt 6227 1796 L
X 898 1796 mt  952 1796 L
X6254 1796 mt 6200 1796 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686 1840 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819 1766 mt 
X(2) s
X 898 1372 mt  925 1372 L
X6254 1372 mt 6227 1372 L
X 898 1124 mt  925 1124 L
X6254 1124 mt 6227 1124 L
X 898  948 mt  925  948 L
X6254  948 mt 6227  948 L
X 898  812 mt  925  812 L
X6254  812 mt 6227  812 L
X 898  700 mt  925  700 L
X6254  700 mt 6227  700 L
X 898  606 mt  925  606 L
X6254  606 mt 6227  606 L
X 898  524 mt  925  524 L
X6254  524 mt 6227  524 L
X 898  452 mt  925  452 L
X6254  452 mt 6227  452 L
X 898  388 mt  925  388 L
X6254  388 mt 6227  388 L
X 898  388 mt  952  388 L
X6254  388 mt 6200  388 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686  432 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819  358 mt 
X(3) s
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
Xgs 898 388 5357 4225 MR c np
X0 -15 0 -62 0 -50 0 -42 -1 -35 0 -32 0 -35 0 -39 
X0 -46 0 -55 -1 -63 0 -69 -1 -71 -1 -71 -1 -67 0 -63 
X-1 -62 -1 -64 -2 -70 -1 -82 -2 -94 -2 -110 -3 -124 -2 -138 
X-2 -149 -2 -158 -2 -163 -2 -166 -1 -167 -1 -165 0 -160 -1 -152 
X0 -138 -1 -118 0 -95 0 -72 0 -55 -1 -45 0 -39 0 -38 
X0 -39 -1 -38 0 -35 -1 -31 0 -25 -1 -17 0 -12 0 -7 
X-1 -5 0 -2 0 -2 -1 -1 -1 -1 -1 0 -1 0 -3 0 
X-5 0 -8 0 -14 -1 -25 0 -40 0 -62 -1 -86 0 -109 -1 
X-125 -1 -134 -1 -137 0 -134 -1 -131 -1 -129 -1 -129 -1 -135 0 
X-146 -1 -162 -2 -182 -1 -199 -2 -214 -2 -221 -3 -225 -5 -225 -5 
X-221 -7 -218 -9 -212 -11 -207 -13 -201 -17 -193 -21 -185 -25 -176 -29 
X-167 -35 -159 -40 -14 -4 7112 3795 92 MP stroke
X
Xgr 
Xgs 2066 0 2282 3816 MR c np
X4249 3544 mt 4299 3594 L
X4299 3544 mt 4249 3594 L
X2157 3529 mt 2207 3579 L
X2207 3529 mt 2157 3579 L
X2149 3511 mt 2199 3561 L
X2199 3511 mt 2149 3561 L
X2139 1904 mt 2189 1954 L
X2189 1904 mt 2139 1954 L
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 2282 3816 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 2282 3816 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 2282 3816 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 2282 3816 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 2282 3816 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X4274 3611 mt 
X(0.1249) s
X2182 3596 mt 
X(0.0044091) s
X2174 3578 mt 
X(0.00015565) s
X2164 1971 mt 
X(5.4947e-006) s
X2140  213 mt 
X(           ) s
X2890 4938 mt 
X(residual norm || A x - b ||) s
X/Helvetica /WindowsLatin1Encoding 96 FMSR
X
X4221 4998 mt 
X(2) s
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 631 3025 mt  -90 rotate
X(solution norm || x ||) s
X90 rotate
X/Helvetica /WindowsLatin1Encoding 96 FMSR
X
X 691 2017 mt  -90 rotate
X(2) s
X90 rotate
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X2619  293 mt 
X(L-curve, Tikh. corner at 0.00087288) s
Xgs 898 388 5357 4225 MR c np
XDA
X2275 0 -100 3553 2 MP stroke
X0 -1831 2175 5384 2 MP stroke
X
Xgr 
XDA
XSO
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 1093 259 a
X 15392928 12120418 3881123 12695879 39271710 40521564 startTexFig
X 1093 259 a
X%%BeginDocument: tutorial/fig4b.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  515   -48  6445  5069 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 4224 5356 0 0 -4224 898 4612 4 MP
XPP
X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
X 898 4612 mt 6254 4612 L
X 898 4612 mt  898  388 L
X 898 4612 mt  898 4585 L
X 898  388 mt  898  415 L
X 898 4612 mt  898 4558 L
X 898  388 mt  898  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 786 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 919 4721 mt 
X(-3) s
X1435 4612 mt 1435 4585 L
X1435  388 mt 1435  415 L
X1750 4612 mt 1750 4585 L
X1750  388 mt 1750  415 L
X1973 4612 mt 1973 4585 L
X1973  388 mt 1973  415 L
X2146 4612 mt 2146 4585 L
X2146  388 mt 2146  415 L
X2287 4612 mt 2287 4585 L
X2287  388 mt 2287  415 L
X2407 4612 mt 2407 4585 L
X2407  388 mt 2407  415 L
X2510 4612 mt 2510 4585 L
X2510  388 mt 2510  415 L
X2602 4612 mt 2602 4585 L
X2602  388 mt 2602  415 L
X2683 4612 mt 2683 4585 L
X2683  388 mt 2683  415 L
X2683 4612 mt 2683 4558 L
X2683  388 mt 2683  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X2571 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X2704 4721 mt 
X(-2) s
X3221 4612 mt 3221 4585 L
X3221  388 mt 3221  415 L
X3535 4612 mt 3535 4585 L
X3535  388 mt 3535  415 L
X3758 4612 mt 3758 4585 L
X3758  388 mt 3758  415 L
X3931 4612 mt 3931 4585 L
X3931  388 mt 3931  415 L
X4073 4612 mt 4073 4585 L
X4073  388 mt 4073  415 L
X4192 4612 mt 4192 4585 L
X4192  388 mt 4192  415 L
X4296 4612 mt 4296 4585 L
X4296  388 mt 4296  415 L
X4387 4612 mt 4387 4585 L
X4387  388 mt 4387  415 L
X4469 4612 mt 4469 4585 L
X4469  388 mt 4469  415 L
X4469 4612 mt 4469 4558 L
X4469  388 mt 4469  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X4357 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X4490 4721 mt 
X(-1) s
X5006 4612 mt 5006 4585 L
X5006  388 mt 5006  415 L
X5320 4612 mt 5320 4585 L
X5320  388 mt 5320  415 L
X5544 4612 mt 5544 4585 L
X5544  388 mt 5544  415 L
X5717 4612 mt 5717 4585 L
X5717  388 mt 5717  415 L
X5858 4612 mt 5858 4585 L
X5858  388 mt 5858  415 L
X5977 4612 mt 5977 4585 L
X5977  388 mt 5977  415 L
X6081 4612 mt 6081 4585 L
X6081  388 mt 6081  415 L
X6172 4612 mt 6172 4585 L
X6172  388 mt 6172  415 L
X6254 4612 mt 6254 4585 L
X6254  388 mt 6254  415 L
X6254 4612 mt 6254 4558 L
X6254  388 mt 6254  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X6166 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X6299 4721 mt 
X(0) s
X 898 4612 mt  925 4612 L
X6254 4612 mt 6227 4612 L
X 898 4612 mt  952 4612 L
X6254 4612 mt 6200 4612 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686 4656 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819 4582 mt 
X(0) s
X 898 4188 mt  925 4188 L
X6254 4188 mt 6227 4188 L
X 898 3940 mt  925 3940 L
X6254 3940 mt 6227 3940 L
X 898 3764 mt  925 3764 L
X6254 3764 mt 6227 3764 L
X 898 3628 mt  925 3628 L
X6254 3628 mt 6227 3628 L
X 898 3516 mt  925 3516 L
X6254 3516 mt 6227 3516 L
X 898 3422 mt  925 3422 L
X6254 3422 mt 6227 3422 L
X 898 3340 mt  925 3340 L
X6254 3340 mt 6227 3340 L
X 898 3268 mt  925 3268 L
X6254 3268 mt 6227 3268 L
X 898 3204 mt  925 3204 L
X6254 3204 mt 6227 3204 L
X 898 3204 mt  952 3204 L
X6254 3204 mt 6200 3204 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686 3248 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819 3174 mt 
X(1) s
X 898 2780 mt  925 2780 L
X6254 2780 mt 6227 2780 L
X 898 2532 mt  925 2532 L
X6254 2532 mt 6227 2532 L
X 898 2356 mt  925 2356 L
X6254 2356 mt 6227 2356 L
X 898 2220 mt  925 2220 L
X6254 2220 mt 6227 2220 L
X 898 2108 mt  925 2108 L
X6254 2108 mt 6227 2108 L
X 898 2014 mt  925 2014 L
X6254 2014 mt 6227 2014 L
X 898 1932 mt  925 1932 L
X6254 1932 mt 6227 1932 L
X 898 1860 mt  925 1860 L
X6254 1860 mt 6227 1860 L
X 898 1796 mt  925 1796 L
X6254 1796 mt 6227 1796 L
X 898 1796 mt  952 1796 L
X6254 1796 mt 6200 1796 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686 1840 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819 1766 mt 
X(2) s
X 898 1372 mt  925 1372 L
X6254 1372 mt 6227 1372 L
X 898 1124 mt  925 1124 L
X6254 1124 mt 6227 1124 L
X 898  948 mt  925  948 L
X6254  948 mt 6227  948 L
X 898  812 mt  925  812 L
X6254  812 mt 6227  812 L
X 898  700 mt  925  700 L
X6254  700 mt 6227  700 L
X 898  606 mt  925  606 L
X6254  606 mt 6227  606 L
X 898  524 mt  925  524 L
X6254  524 mt 6227  524 L
X 898  452 mt  925  452 L
X6254  452 mt 6227  452 L
X 898  388 mt  925  388 L
X6254  388 mt 6227  388 L
X 898  388 mt  952  388 L
X6254  388 mt 6200  388 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 686  432 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 819  358 mt 
X(3) s
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X  36   36 5708 3578 FO
X  36   36 3734 3562 FO
X  36   36 3362 3560 FO
X  36   36 3004 3557 FO
X  36   36 2180 3554 FO
X  36   36 2177 3554 FO
X  36   36 2175 3553 FO
X  36   36 2171 3209 FO
X  36   36 2169 2379 FO
X  36   36 2146  694 FO
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2066 0 5120 3953 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2071 0 3711 3825 MR c np
X5683 3553 mt 5733 3603 L
X5733 3553 mt 5683 3603 L
X2979 3532 mt 3029 3582 L
X3029 3532 mt 2979 3582 L
X2150 3528 mt 2200 3578 L
X2200 3528 mt 2150 3578 L
X2121  669 mt 2171  719 L
X2171  669 mt 2121  719 L
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2071 0 3711 3825 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2071 0 3711 3825 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2071 0 3711 3825 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2071 0 3711 3825 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2071 0 3711 3825 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 2071 0 3711 3825 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X5708 3620 mt 
X(3) s
X3004 3599 mt 
X(6) s
X2175 3595 mt 
X(9) s
X2146  736 mt 
X(12) s
X2890 4938 mt 
X(residual norm || A x - b ||) s
X/Helvetica /WindowsLatin1Encoding 96 FMSR
X
X4221 4998 mt 
X(2) s
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 631 3025 mt  -90 rotate
X(solution norm || x ||) s
X90 rotate
X/Helvetica /WindowsLatin1Encoding 96 FMSR
X
X 691 2017 mt  -90 rotate
X(2) s
X90 rotate
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X2869  293 mt 
X(L-curve, TSVD corner at 9) s
Xgs 898 388 5357 4225 MR c np
XDA
X2275 0 -100 3553 2 MP stroke
X0 -1831 2175 5384 2 MP stroke
X
Xgr 
XDA
XSO
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 84 1043 a
X 14665704 12120418 3617996 12959006 36114186 39600619 startTexFig
X 84 1043 a
X%%BeginDocument: tutorial/fig4c.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  458   116  5934  4853 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 4224 5356 0 0 -4224 898 4612 4 MP
XPP
X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
X 898 4612 mt 6254 4612 L
X 898 4612 mt  898  388 L
X 898 4612 mt  898 4585 L
X 898  388 mt  898  415 L
X 898 4612 mt  898 4558 L
X 898  388 mt  898  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 786 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 919 4721 mt 
X(-6) s
X1167 4612 mt 1167 4585 L
X1167  388 mt 1167  415 L
X1324 4612 mt 1324 4585 L
X1324  388 mt 1324  415 L
X1435 4612 mt 1435 4585 L
X1435  388 mt 1435  415 L
X1522 4612 mt 1522 4585 L
X1522  388 mt 1522  415 L
X1593 4612 mt 1593 4585 L
X1593  388 mt 1593  415 L
X1652 4612 mt 1652 4585 L
X1652  388 mt 1652  415 L
X1704 4612 mt 1704 4585 L
X1704  388 mt 1704  415 L
X1750 4612 mt 1750 4585 L
X1750  388 mt 1750  415 L
X1791 4612 mt 1791 4585 L
X1791  388 mt 1791  415 L
X1791 4612 mt 1791 4558 L
X1791  388 mt 1791  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X1679 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X1812 4721 mt 
X(-5) s
X2059 4612 mt 2059 4585 L
X2059  388 mt 2059  415 L
X2217 4612 mt 2217 4585 L
X2217  388 mt 2217  415 L
X2328 4612 mt 2328 4585 L
X2328  388 mt 2328  415 L
X2415 4612 mt 2415 4585 L
X2415  388 mt 2415  415 L
X2485 4612 mt 2485 4585 L
X2485  388 mt 2485  415 L
X2545 4612 mt 2545 4585 L
X2545  388 mt 2545  415 L
X2597 4612 mt 2597 4585 L
X2597  388 mt 2597  415 L
X2642 4612 mt 2642 4585 L
X2642  388 mt 2642  415 L
X2683 4612 mt 2683 4585 L
X2683  388 mt 2683  415 L
X2683 4612 mt 2683 4558 L
X2683  388 mt 2683  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X2571 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X2704 4721 mt 
X(-4) s
X2952 4612 mt 2952 4585 L
X2952  388 mt 2952  415 L
X3109 4612 mt 3109 4585 L
X3109  388 mt 3109  415 L
X3221 4612 mt 3221 4585 L
X3221  388 mt 3221  415 L
X3307 4612 mt 3307 4585 L
X3307  388 mt 3307  415 L
X3378 4612 mt 3378 4585 L
X3378  388 mt 3378  415 L
X3438 4612 mt 3438 4585 L
X3438  388 mt 3438  415 L
X3489 4612 mt 3489 4585 L
X3489  388 mt 3489  415 L
X3535 4612 mt 3535 4585 L
X3535  388 mt 3535  415 L
X3576 4612 mt 3576 4585 L
X3576  388 mt 3576  415 L
X3576 4612 mt 3576 4558 L
X3576  388 mt 3576  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3464 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X3597 4721 mt 
X(-3) s
X3845 4612 mt 3845 4585 L
X3845  388 mt 3845  415 L
X4002 4612 mt 4002 4585 L
X4002  388 mt 4002  415 L
X4113 4612 mt 4113 4585 L
X4113  388 mt 4113  415 L
X4200 4612 mt 4200 4585 L
X4200  388 mt 4200  415 L
X4271 4612 mt 4271 4585 L
X4271  388 mt 4271  415 L
X4330 4612 mt 4330 4585 L
X4330  388 mt 4330  415 L
X4382 4612 mt 4382 4585 L
X4382  388 mt 4382  415 L
X4428 4612 mt 4428 4585 L
X4428  388 mt 4428  415 L
X4469 4612 mt 4469 4585 L
X4469  388 mt 4469  415 L
X4469 4612 mt 4469 4558 L
X4469  388 mt 4469  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X4357 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X4490 4721 mt 
X(-2) s
X4737 4612 mt 4737 4585 L
X4737  388 mt 4737  415 L
X4895 4612 mt 4895 4585 L
X4895  388 mt 4895  415 L
X5006 4612 mt 5006 4585 L
X5006  388 mt 5006  415 L
X5093 4612 mt 5093 4585 L
X5093  388 mt 5093  415 L
X5163 4612 mt 5163 4585 L
X5163  388 mt 5163  415 L
X5223 4612 mt 5223 4585 L
X5223  388 mt 5223  415 L
X5275 4612 mt 5275 4585 L
X5275  388 mt 5275  415 L
X5320 4612 mt 5320 4585 L
X5320  388 mt 5320  415 L
X5361 4612 mt 5361 4585 L
X5361  388 mt 5361  415 L
X5361 4612 mt 5361 4558 L
X5361  388 mt 5361  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X5249 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X5382 4721 mt 
X(-1) s
X5630 4612 mt 5630 4585 L
X5630  388 mt 5630  415 L
X5787 4612 mt 5787 4585 L
X5787  388 mt 5787  415 L
X5899 4612 mt 5899 4585 L
X5899  388 mt 5899  415 L
X5985 4612 mt 5985 4585 L
X5985  388 mt 5985  415 L
X6056 4612 mt 6056 4585 L
X6056  388 mt 6056  415 L
X6116 4612 mt 6116 4585 L
X6116  388 mt 6116  415 L
X6167 4612 mt 6167 4585 L
X6167  388 mt 6167  415 L
X6213 4612 mt 6213 4585 L
X6213  388 mt 6213  415 L
X6254 4612 mt 6254 4585 L
X6254  388 mt 6254  415 L
X6254 4612 mt 6254 4558 L
X6254  388 mt 6254  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X6166 4795 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X6299 4721 mt 
X(0) s
X 898 4612 mt  925 4612 L
X6254 4612 mt 6227 4612 L
X 898 4612 mt  952 4612 L
X6254 4612 mt 6200 4612 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 4656 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 4582 mt 
X(-9) s
X 898 4453 mt  925 4453 L
X6254 4453 mt 6227 4453 L
X 898 4360 mt  925 4360 L
X6254 4360 mt 6227 4360 L
X 898 4294 mt  925 4294 L
X6254 4294 mt 6227 4294 L
X 898 4243 mt  925 4243 L
X6254 4243 mt 6227 4243 L
X 898 4201 mt  925 4201 L
X6254 4201 mt 6227 4201 L
X 898 4166 mt  925 4166 L
X6254 4166 mt 6227 4166 L
X 898 4135 mt  925 4135 L
X6254 4135 mt 6227 4135 L
X 898 4108 mt  925 4108 L
X6254 4108 mt 6227 4108 L
X 898 4084 mt  925 4084 L
X6254 4084 mt 6227 4084 L
X 898 4084 mt  952 4084 L
X6254 4084 mt 6200 4084 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 4128 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 4054 mt 
X(-8) s
X 898 3925 mt  925 3925 L
X6254 3925 mt 6227 3925 L
X 898 3832 mt  925 3832 L
X6254 3832 mt 6227 3832 L
X 898 3766 mt  925 3766 L
X6254 3766 mt 6227 3766 L
X 898 3715 mt  925 3715 L
X6254 3715 mt 6227 3715 L
X 898 3673 mt  925 3673 L
X6254 3673 mt 6227 3673 L
X 898 3638 mt  925 3638 L
X6254 3638 mt 6227 3638 L
X 898 3607 mt  925 3607 L
X6254 3607 mt 6227 3607 L
X 898 3580 mt  925 3580 L
X6254 3580 mt 6227 3580 L
X 898 3556 mt  925 3556 L
X6254 3556 mt 6227 3556 L
X 898 3556 mt  952 3556 L
X6254 3556 mt 6200 3556 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 3600 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 3526 mt 
X(-7) s
X 898 3397 mt  925 3397 L
X6254 3397 mt 6227 3397 L
X 898 3304 mt  925 3304 L
X6254 3304 mt 6227 3304 L
X 898 3238 mt  925 3238 L
X6254 3238 mt 6227 3238 L
X 898 3187 mt  925 3187 L
X6254 3187 mt 6227 3187 L
X 898 3145 mt  925 3145 L
X6254 3145 mt 6227 3145 L
X 898 3110 mt  925 3110 L
X6254 3110 mt 6227 3110 L
X 898 3079 mt  925 3079 L
X6254 3079 mt 6227 3079 L
X 898 3052 mt  925 3052 L
X6254 3052 mt 6227 3052 L
X 898 3028 mt  925 3028 L
X6254 3028 mt 6227 3028 L
X 898 3028 mt  952 3028 L
X6254 3028 mt 6200 3028 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 3072 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 2998 mt 
X(-6) s
X 898 2869 mt  925 2869 L
X6254 2869 mt 6227 2869 L
X 898 2776 mt  925 2776 L
X6254 2776 mt 6227 2776 L
X 898 2710 mt  925 2710 L
X6254 2710 mt 6227 2710 L
X 898 2659 mt  925 2659 L
X6254 2659 mt 6227 2659 L
X 898 2617 mt  925 2617 L
X6254 2617 mt 6227 2617 L
X 898 2582 mt  925 2582 L
X6254 2582 mt 6227 2582 L
X 898 2551 mt  925 2551 L
X6254 2551 mt 6227 2551 L
X 898 2524 mt  925 2524 L
X6254 2524 mt 6227 2524 L
X 898 2500 mt  925 2500 L
X6254 2500 mt 6227 2500 L
X 898 2500 mt  952 2500 L
X6254 2500 mt 6200 2500 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 2544 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 2470 mt 
X(-5) s
X 898 2341 mt  925 2341 L
X6254 2341 mt 6227 2341 L
X 898 2248 mt  925 2248 L
X6254 2248 mt 6227 2248 L
X 898 2182 mt  925 2182 L
X6254 2182 mt 6227 2182 L
X 898 2131 mt  925 2131 L
X6254 2131 mt 6227 2131 L
X 898 2089 mt  925 2089 L
X6254 2089 mt 6227 2089 L
X 898 2054 mt  925 2054 L
X6254 2054 mt 6227 2054 L
X 898 2023 mt  925 2023 L
X6254 2023 mt 6227 2023 L
X 898 1996 mt  925 1996 L
X6254 1996 mt 6227 1996 L
X 898 1972 mt  925 1972 L
X6254 1972 mt 6227 1972 L
X 898 1972 mt  952 1972 L
X6254 1972 mt 6200 1972 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 2016 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 1942 mt 
X(-4) s
X 898 1813 mt  925 1813 L
X6254 1813 mt 6227 1813 L
X 898 1720 mt  925 1720 L
X6254 1720 mt 6227 1720 L
X 898 1654 mt  925 1654 L
X6254 1654 mt 6227 1654 L
X 898 1603 mt  925 1603 L
X6254 1603 mt 6227 1603 L
X 898 1561 mt  925 1561 L
X6254 1561 mt 6227 1561 L
X 898 1526 mt  925 1526 L
X6254 1526 mt 6227 1526 L
X 898 1495 mt  925 1495 L
X6254 1495 mt 6227 1495 L
X 898 1468 mt  925 1468 L
X6254 1468 mt 6227 1468 L
X 898 1444 mt  925 1444 L
X6254 1444 mt 6227 1444 L
X 898 1444 mt  952 1444 L
X6254 1444 mt 6200 1444 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 1488 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 1414 mt 
X(-3) s
X 898 1285 mt  925 1285 L
X6254 1285 mt 6227 1285 L
X 898 1192 mt  925 1192 L
X6254 1192 mt 6227 1192 L
X 898 1126 mt  925 1126 L
X6254 1126 mt 6227 1126 L
X 898 1075 mt  925 1075 L
X6254 1075 mt 6227 1075 L
X 898 1033 mt  925 1033 L
X6254 1033 mt 6227 1033 L
X 898  998 mt  925  998 L
X6254  998 mt 6227  998 L
X 898  967 mt  925  967 L
X6254  967 mt 6227  967 L
X 898  940 mt  925  940 L
X6254  940 mt 6227  940 L
X 898  916 mt  925  916 L
X6254  916 mt 6227  916 L
X 898  916 mt  952  916 L
X6254  916 mt 6200  916 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639  960 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772  886 mt 
X(-2) s
X 898  757 mt  925  757 L
X6254  757 mt 6227  757 L
X 898  664 mt  925  664 L
X6254  664 mt 6227  664 L
X 898  598 mt  925  598 L
X6254  598 mt 6227  598 L
X 898  547 mt  925  547 L
X6254  547 mt 6227  547 L
X 898  505 mt  925  505 L
X6254  505 mt 6227  505 L
X 898  470 mt  925  470 L
X6254  470 mt 6227  470 L
X 898  439 mt  925  439 L
X6254  439 mt 6227  439 L
X 898  412 mt  925  412 L
X6254  412 mt 6227  412 L
X 898  388 mt  925  388 L
X6254  388 mt 6227  388 L
X 898  388 mt  952  388 L
X6254  388 mt 6200  388 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639  432 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772  358 mt 
X(-1) s
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
Xgs 898 388 5357 4225 MR c np
X-113 -3 -136 -3 -135 -3 -136 -4 -135 -4 -136 -4 -135 -4 -136 -3 
X-135 -4 -136 -2 -135 -3 -136 -2 -135 -4 -136 -3 -135 -4 -136 -2 
X-135 -3 -136 -3 -135 -3 -136 -3 -135 -3 -136 -2 -135 -2 -136 -1 
X-135 -2 -136 -2 -135 -3 -136 -4 -135 -5 -136 -4 -135 -4 -136 0 
X-135 9 -136 38 -135 92 -136 144 -135 160 -136 154 -135 153 -136 178 
X-135 225 -136 263 -135 274 -136 267 -135 253 -136 236 -135 214 -136 191 
X-135 173 -136 151 -135 116 -136 78 -135 47 -53 10 7112 309 55 MP stroke
X
Xgr 
X/Symbol /WindowsLatin1Encoding 120 FMSR
X
X3542 4932 mt 
X(l) s
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 584 2619 mt  -90 rotate
X(G\() s
X90 rotate
X/Symbol /WindowsLatin1Encoding 120 FMSR
X
X 584 2486 mt  -90 rotate
X(l) s
X90 rotate
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 584 2421 mt  -90 rotate
X(\)) s
X90 rotate
X2517  285 mt 
X(GCV function, minimum at ) s
X/Symbol /WindowsLatin1Encoding 120 FMSR
X
X3949  285 mt 
X(l) s
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X4014  285 mt 
X( = 0.004616) s
Xgs 898 388 5357 4225 MR c np
Xgs 4096 3663 147 147 MR c np
X4133 3736 mt 4205 3736 L
X4169 3700 mt 4169 3772 L
X4144 3711 mt 4194 3761 L
X4194 3711 mt 4144 3761 L
X
Xgr 
XDO
X0 -1584 4169 5320 2 MP stroke
X
Xgr 
XDO
XSO
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 1063 1043 a
X 16362561 12120418 3683778 13222133 39271710 39469056 startTexFig
X 1063 1043 a
X%%BeginDocument: tutorial/fig4d.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  468   134  6492  4796 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 4224 5356 0 0 -4224 898 4612 4 MP
XPP
X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
X 898 4612 mt 6254 4612 L
X 898 4612 mt  898  388 L
X 898 4612 mt  898 4558 L
X 898  388 mt  898  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 865 4758 mt 
X(0) s
X1434 4612 mt 1434 4558 L
X1434  388 mt 1434  442 L
X1401 4758 mt 
X(2) s
X1969 4612 mt 1969 4558 L
X1969  388 mt 1969  442 L
X1936 4758 mt 
X(4) s
X2505 4612 mt 2505 4558 L
X2505  388 mt 2505  442 L
X2472 4758 mt 
X(6) s
X3040 4612 mt 3040 4558 L
X3040  388 mt 3040  442 L
X3007 4758 mt 
X(8) s
X3576 4612 mt 3576 4558 L
X3576  388 mt 3576  442 L
X3510 4758 mt 
X(10) s
X4112 4612 mt 4112 4558 L
X4112  388 mt 4112  442 L
X4046 4758 mt 
X(12) s
X4647 4612 mt 4647 4558 L
X4647  388 mt 4647  442 L
X4581 4758 mt 
X(14) s
X5183 4612 mt 5183 4558 L
X5183  388 mt 5183  442 L
X5117 4758 mt 
X(16) s
X5718 4612 mt 5718 4558 L
X5718  388 mt 5718  442 L
X5652 4758 mt 
X(18) s
X6254 4612 mt 6254 4558 L
X6254  388 mt 6254  442 L
X6188 4758 mt 
X(20) s
X 898 4612 mt  925 4612 L
X6254 4612 mt 6227 4612 L
X 898 4612 mt  952 4612 L
X6254 4612 mt 6200 4612 L
X 639 4656 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 4582 mt 
X(-9) s
X 898 4453 mt  925 4453 L
X6254 4453 mt 6227 4453 L
X 898 4360 mt  925 4360 L
X6254 4360 mt 6227 4360 L
X 898 4294 mt  925 4294 L
X6254 4294 mt 6227 4294 L
X 898 4243 mt  925 4243 L
X6254 4243 mt 6227 4243 L
X 898 4201 mt  925 4201 L
X6254 4201 mt 6227 4201 L
X 898 4166 mt  925 4166 L
X6254 4166 mt 6227 4166 L
X 898 4135 mt  925 4135 L
X6254 4135 mt 6227 4135 L
X 898 4108 mt  925 4108 L
X6254 4108 mt 6227 4108 L
X 898 4084 mt  925 4084 L
X6254 4084 mt 6227 4084 L
X 898 4084 mt  952 4084 L
X6254 4084 mt 6200 4084 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 4128 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 4054 mt 
X(-8) s
X 898 3925 mt  925 3925 L
X6254 3925 mt 6227 3925 L
X 898 3832 mt  925 3832 L
X6254 3832 mt 6227 3832 L
X 898 3766 mt  925 3766 L
X6254 3766 mt 6227 3766 L
X 898 3715 mt  925 3715 L
X6254 3715 mt 6227 3715 L
X 898 3673 mt  925 3673 L
X6254 3673 mt 6227 3673 L
X 898 3638 mt  925 3638 L
X6254 3638 mt 6227 3638 L
X 898 3607 mt  925 3607 L
X6254 3607 mt 6227 3607 L
X 898 3580 mt  925 3580 L
X6254 3580 mt 6227 3580 L
X 898 3556 mt  925 3556 L
X6254 3556 mt 6227 3556 L
X 898 3556 mt  952 3556 L
X6254 3556 mt 6200 3556 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 3600 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 3526 mt 
X(-7) s
X 898 3397 mt  925 3397 L
X6254 3397 mt 6227 3397 L
X 898 3304 mt  925 3304 L
X6254 3304 mt 6227 3304 L
X 898 3238 mt  925 3238 L
X6254 3238 mt 6227 3238 L
X 898 3187 mt  925 3187 L
X6254 3187 mt 6227 3187 L
X 898 3145 mt  925 3145 L
X6254 3145 mt 6227 3145 L
X 898 3110 mt  925 3110 L
X6254 3110 mt 6227 3110 L
X 898 3079 mt  925 3079 L
X6254 3079 mt 6227 3079 L
X 898 3052 mt  925 3052 L
X6254 3052 mt 6227 3052 L
X 898 3028 mt  925 3028 L
X6254 3028 mt 6227 3028 L
X 898 3028 mt  952 3028 L
X6254 3028 mt 6200 3028 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 3072 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 2998 mt 
X(-6) s
X 898 2869 mt  925 2869 L
X6254 2869 mt 6227 2869 L
X 898 2776 mt  925 2776 L
X6254 2776 mt 6227 2776 L
X 898 2710 mt  925 2710 L
X6254 2710 mt 6227 2710 L
X 898 2659 mt  925 2659 L
X6254 2659 mt 6227 2659 L
X 898 2617 mt  925 2617 L
X6254 2617 mt 6227 2617 L
X 898 2582 mt  925 2582 L
X6254 2582 mt 6227 2582 L
X 898 2551 mt  925 2551 L
X6254 2551 mt 6227 2551 L
X 898 2524 mt  925 2524 L
X6254 2524 mt 6227 2524 L
X 898 2500 mt  925 2500 L
X6254 2500 mt 6227 2500 L
X 898 2500 mt  952 2500 L
X6254 2500 mt 6200 2500 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 2544 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 2470 mt 
X(-5) s
X 898 2341 mt  925 2341 L
X6254 2341 mt 6227 2341 L
X 898 2248 mt  925 2248 L
X6254 2248 mt 6227 2248 L
X 898 2182 mt  925 2182 L
X6254 2182 mt 6227 2182 L
X 898 2131 mt  925 2131 L
X6254 2131 mt 6227 2131 L
X 898 2089 mt  925 2089 L
X6254 2089 mt 6227 2089 L
X 898 2054 mt  925 2054 L
X6254 2054 mt 6227 2054 L
X 898 2023 mt  925 2023 L
X6254 2023 mt 6227 2023 L
X 898 1996 mt  925 1996 L
X6254 1996 mt 6227 1996 L
X 898 1972 mt  925 1972 L
X6254 1972 mt 6227 1972 L
X 898 1972 mt  952 1972 L
X6254 1972 mt 6200 1972 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 2016 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 1942 mt 
X(-4) s
X 898 1813 mt  925 1813 L
X6254 1813 mt 6227 1813 L
X 898 1720 mt  925 1720 L
X6254 1720 mt 6227 1720 L
X 898 1654 mt  925 1654 L
X6254 1654 mt 6227 1654 L
X 898 1603 mt  925 1603 L
X6254 1603 mt 6227 1603 L
X 898 1561 mt  925 1561 L
X6254 1561 mt 6227 1561 L
X 898 1526 mt  925 1526 L
X6254 1526 mt 6227 1526 L
X 898 1495 mt  925 1495 L
X6254 1495 mt 6227 1495 L
X 898 1468 mt  925 1468 L
X6254 1468 mt 6227 1468 L
X 898 1444 mt  925 1444 L
X6254 1444 mt 6227 1444 L
X 898 1444 mt  952 1444 L
X6254 1444 mt 6200 1444 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639 1488 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772 1414 mt 
X(-3) s
X 898 1285 mt  925 1285 L
X6254 1285 mt 6227 1285 L
X 898 1192 mt  925 1192 L
X6254 1192 mt 6227 1192 L
X 898 1126 mt  925 1126 L
X6254 1126 mt 6227 1126 L
X 898 1075 mt  925 1075 L
X6254 1075 mt 6227 1075 L
X 898 1033 mt  925 1033 L
X6254 1033 mt 6227 1033 L
X 898  998 mt  925  998 L
X6254  998 mt 6227  998 L
X 898  967 mt  925  967 L
X6254  967 mt 6227  967 L
X 898  940 mt  925  940 L
X6254  940 mt 6227  940 L
X 898  916 mt  925  916 L
X6254  916 mt 6227  916 L
X 898  916 mt  952  916 L
X6254  916 mt 6200  916 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639  960 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772  886 mt 
X(-2) s
X 898  757 mt  925  757 L
X6254  757 mt 6227  757 L
X 898  664 mt  925  664 L
X6254  664 mt 6227  664 L
X 898  598 mt  925  598 L
X6254  598 mt 6227  598 L
X 898  547 mt  925  547 L
X6254  547 mt 6227  547 L
X 898  505 mt  925  505 L
X6254  505 mt 6227  505 L
X 898  470 mt  925  470 L
X6254  470 mt 6227  470 L
X 898  439 mt  925  439 L
X6254  439 mt 6227  439 L
X 898  412 mt  925  412 L
X6254  412 mt 6227  412 L
X 898  388 mt  925  388 L
X6254  388 mt 6227  388 L
X 898  388 mt  952  388 L
X6254  388 mt 6200  388 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 639  432 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 772  358 mt 
X(-1) s
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 1093 731 6093 3089 MR c np
X  36   36 1166  804 FO
X  36   36 1434  860 FO
X  36   36 1701 1727 FO
X  36   36 1969 2879 FO
X  36   36 2237 3082 FO
X  36   36 2505 3277 FO
X  36   36 2773 3746 FO
X  36   36 3040 3729 FO
X  36   36 3308 3710 FO
X  36   36 3576 3693 FO
X  36   36 3844 3672 FO
X  36   36 4112 3664 FO
X  36   36 4379 3644 FO
X  36   36 4647 3620 FO
X  36   36 4915 3594 FO
X  36   36 5183 3571 FO
X  36   36 5451 3554 FO
X  36   36 5718 3523 FO
X  36   36 5986 3496 FO
X  36   36 6254 3461 FO
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 1093 731 6093 3089 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 1093 731 6093 3089 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 1093 731 6093 3089 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 1093 731 6093 3089 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 1093 731 6093 3089 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 1093 731 6093 3089 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 1093 731 6093 3089 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
Xgs 1093 731 6093 3089 MR c np
X
Xgr 
Xgs 898 388 5357 4225 MR c np
X
Xgr 
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3545 4901 mt 
X(k) s
X 584 2617 mt  -90 rotate
X(G\(k\)) s
X90 rotate
X2734  293 mt 
X(GCV function, minimum at k = 7) s
Xgs 898 388 5357 4225 MR c np
Xgs 2700 3673 147 147 MR c np
X2737 3746 mt 2809 3746 L
X2773 3710 mt 2773 3782 L
X2748 3721 mt 2798 3771 L
X2798 3721 mt 2748 3771 L
X
Xgr 
XDA
X0 -1584 2773 5330 2 MP stroke
X
Xgr 
XDA
XSO
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 59 1905 a Fo(Figure)15 b(3.4:)k(Comparison)c(of)g(the)g(L-curv)o(e)h
X(criterion)g(and)g(the)f(GCV)g(metho)q(d)g(for)g(computing)h(the)59
X1962 y(\\optimal")f(regularization)h(parameter)f(for)f(Tikhono)o(v's)h
X(metho)q(d)h(and)f(for)g(truncated)g(SVD.)130 2099 y
XFl(lamb)q(da)p 272 2099 14 2 v 16 w(l)g(=)g(l)p 375 2099
XV 17 w(curve)8 b(\(U,s,b\);)14 b(axis)8 b(\([1e-3,1,1,1e3]\))130
X2168 y(k)p 155 2168 V 16 w(l)15 b(=)h(l)p 259 2168 V
X16 w(curve)8 b(\(U,s,b,'tsvd'\);)15 b(axis)8 b(\([1e-3,1,1,1e3]\))130
X2237 y(lamb)q(da)p 272 2237 V 16 w(gcv)15 b(=)g(gcv)8
Xb(\(U,s,b\);)14 b(axis)8 b(\([-6,0,-9,-1]\))130 2306
Xy(k)p 155 2306 V 16 w(gcv)15 b(=)h(gcv)8 b(\(U,s,b,'tsvd'\);)14
Xb(axis)8 b(\([0,20,1e-9,1e-1]\))130 2412 y(x)p 154 2412
XV 16 w(tikh)p 242 2412 V 17 w(l)15 b(=)h(tikhonov)8 b(\(U,s,V,b,lamb)q
X(da)p 816 2412 V 16 w(l\);)130 2481 y(x)p 154 2481 V
X16 w(tikh)p 242 2481 V 17 w(gcv)15 b(=)h(tikhonov)8 b(\(U,s,V,b,lamb)q
X(da)p 869 2481 V 16 w(gcv\);)130 2550 y(x)p 154 2550
XV 16 w(tsvd)p 247 2550 V 18 w(l)15 b(=)g(tsvd)8 b(\(U,s,V,b,k)p
X619 2550 V 17 w(l\);)130 2619 y(x)p 154 2619 V 16 w(tsvd)p
X247 2619 V 18 w(gcv)15 b(=)g(tsvd)8 b(\(U,s,V,b,k)p 672
X2619 V 17 w(gcv\);)130 2688 y([no)o(rm)g(\(x)p Fm(\000)p
XFl(x)p 347 2688 V 14 w(tikh)p 433 2688 V 18 w(l\),no)o(rm)g(\(x)p
XFm(\000)p Fl(x)p 694 2688 V 13 w(tikh)p 779 2688 V 18
Xw(gcv\),)p Fn(:)g(:)g(:)221 2757 y Fl(no)o(rm)g(\(x)p
XFm(\000)p Fl(x)p 425 2757 V 14 w(tsvd)p 516 2757 V 18
Xw(l\),no)o(rm)g(\(x)p Fm(\000)p Fl(x)p 777 2757 V 13
Xw(tsvd)p 867 2757 V 18 w(gcv\)]/no)o(rm)g(\(x\))p eop
X%%Page: 38 40
X38 39 bop 64 159 a Fo(38)1473 b(TUTORIAL)p 64 178 1767
X2 v 59 304 a Fr(3.5.)18 b(Standard)h(F)-5 b(orm)18 b(V)-5
Xb(ersus)19 b(General)f(F)-5 b(orm)59 406 y Fo(In)13 b(this)h(example)f
X(w)o(e)g(illustrate)h(the)e(di\013erence)i(b)q(et)o(w)o(een)g
X(regularization)f(in)h(standard)e(and)h(general)59 462
Xy(form.)19 b(In)13 b(particular,)h(w)o(e)f(sho)o(w)g(that)g
X(regularization)h(in)g(general)g(form)f(is)g(sometimes)h
XFk(ne)n(c)n(essary)d Fo(to)59 519 y(ensure)17 b(the)g(computation)f(of)
Xg(a)h(satisfactory)e(solution.)25 b(Unfortunately)l(,)16
Xb(this)h(judgemen)o(t)g(cannot)59 575 y(b)q(e)f(automated,)e(but)h
X(requires)h(insigh)o(t)g(from)f(the)g(user)g(ab)q(out)g(the)h(desired)g
X(solution.)130 632 y(The)g(test)g(problem)h(used)g(here)g(is)g(the)f
X(in)o(v)o(erse)h(Laplace)g(transformation,)e(and)i(w)o(e)f(generate)g
X(a)59 688 y(problem)i(whose)f(exact)g(solution)i(is)e
XFn(f)5 b Fo(\()p Fn(t)p Fo(\))17 b(=)f(1)11 b Fm(\000)h
XFo(exp)c(\()p Fm(\000)p Fn(t=)p Fo(2\).)26 b(This)18
Xb(solution)g(ob)o(viously)g(satis\014es)59 745 y Fn(f)g
XFm(!)13 b Fo(1)f(for)f Fn(t)i Fm(!)h(1)p Fo(,)e(and)h(the)f(horizon)o
X(tal)h(asymptotic)f(part)f(in)i(the)g(discretized)h(solution)f(for)e
XFn(n)i Fo(=)g(16)59 801 y(is)j(visible)h(for)e(indices)i
XFn(i)12 b(>)h Fo(8.)130 917 y Fl(n)i(=)h(16;)e([A,b,x])h(=)h(ilaplace)8
Xb(\(n,2\);)130 985 y(b)15 b(=)h(b)f(+)h(1e-4)p Fm(\003)p
XFl(randn)8 b(\(b\);)130 1053 y(L)14 b(=)i(get)p 282 1053
X14 2 v 17 w(l)8 b(\(n,1\);)130 1121 y([U,s,V])15 b(=)h(csvd)8
Xb(\(A\);)15 b([UU,sm,XX])g(=)h(cgsvd)8 b(\(A,L\);)130
X1189 y(I)14 b(=)i(1;)e(fo)o(r)g(i=[3,6,9,12])221 1257
Xy(subplot)8 b(\(2,2,I\);)13 b(plot)8 b(\(1:n,V\(:,i\)\);)13
Xb(axis)8 b(\([1,n,-1,1]\))221 1325 y(xlab)q(el)g(\(['i)14
Xb(=)i(',num2str\(i\)]\),)d(I)i(=)g(I)g(+)g(1;)130 1393
Xy(end)130 1461 y(subplot)8 b(\(2,2,1\),)14 b(text)8 b(\(12,1.2,'Right)
X13 b(singula)o(r)i(vecto)o(rs)h(V\(:,i\)'\))130 1529
Xy(I)e(=)i(1;)e(fo)o(r)g(i=[n-2,n-5,n-8,n-11])221 1597
Xy(subplot)8 b(\(2,2,I\);)13 b(plot)8 b(\(1:n,XX\(:,i\)\);)13
Xb(axis)8 b(\([1,n,-1,1]\))221 1666 y(xlab)q(el)g(\(['i)14
Xb(=)i(',num2str\(i\)]\),)d(I)i(=)g(I)g(+)g(1;)130 1734
Xy(end)130 1802 y(subplot)8 b(\(2,2,1\),)14 b(text)8 b(\(10,1.2,'Right)
X13 b(generalized)j(singula)o(r)f(vecto)o(rs)g(XX\(:,i\)'\))130
X1905 y(k)p 155 1905 V 16 w(tsvd)i(=)e(7;)g(k)p 388 1905
XV 16 w(tgsvd)h(=)g(6;)130 1973 y(X)p 163 1973 V 16 w(I)f(=)h(tsvd)8
Xb(\(U,s,V,b,1:k)p 572 1973 V 16 w(tsvd\);)130 2041 y(X)p
X163 2041 V 16 w(L)15 b(=)h(tgsvd)8 b(\(UU,sm,XX,b,1:k)p
X705 2041 V 15 w(tgsvd\);)130 2109 y(subplot)g(\(2,1,1\);)14
Xb(plot)8 b(\(1:n,X)p 636 2109 V 16 w(I,1:n,x,'x'\),)j(axis)d
X(\([1,n,0,1.2]\),)k(xlab)q(el)c(\('L)15 b(=)g(I'\))130
X2177 y(subplot)8 b(\(2,2,2\),)14 b(plot)8 b(\(1:n,X)p
X636 2177 V 16 w(L,1:n,x,'x'\),)j(axis)d(\([1,n,0,1.2]\),)k(xlab)q(el)c
X(\('L)15 b Fc(\\)p Fl(neq)h(I'\))130 2293 y Fo(In)e(this)h(example)f(w)
Xo(e)g(c)o(ho)q(ose)g(minimization)i(of)d(the)h(\014rst)g(deriv)m(ativ)o
X(e)h(as)e(side)i(constrain)o(t)f(in)h(the)59 2349 y(general-form)i
X(regularization,)h(i.e.,)f(w)o(e)f(use)i Fn(L)d Fo(=)h(tridiag)q(\()p
XFm(\000)p Fo(1)p Fn(;)8 b Fo(1\).)23 b(It)17 b(is)g(v)o(ery)g
X(instructiv)o(e)h(to)e(\014rst)59 2406 y(insp)q(ect)f(the)f(righ)o(t)f
X(singular)i(v)o(ectors)e Fp(v)750 2413 y Fg(i)777 2406
Xy Fo(and)h Fp(x)892 2413 y Fg(i)919 2406 y Fo(from)f(the)g(SVD)h(and)g
X(the)g(GSVD,)f(resp)q(ectiv)o(ely)l(,)i(cf.)59 2462 y(Fig.)g(3.5.)k
X(Notice)c(that)g(none)g(of)g(the)g(SVD)h(v)o(ectors)e
XFp(v)1014 2469 y Fg(i)1043 2462 y Fo(include)j(the)e(ab)q(o)o(v)o(emen)
Xo(tioned)h(asymptotic)59 2518 y(part;)h(hence,)h(these)f(v)o(ectors)g
X(are)f(not)h(suited)h(as)e(basis)i(v)o(ectors)e(for)g(a)h(regularized)h
X(solution.)26 b(The)59 2575 y(GSVD)18 b(v)o(ectors)f
XFp(x)392 2582 y Fg(i)405 2575 y Fo(,)h(on)g(the)g(other)f(hand,)i(do)f
X(p)q(osess)g(the)g(the)g(necessary)g(asymptotic)f(part,)g(and)59
X2631 y(they)e(are)f(therefore)g(m)o(uc)o(h)h(b)q(etter)g(suited)g(as)g
X(basis)g(v)o(ectors.)k(F)l(or)14 b(a)g(thorough)g(discussion)i(of)e
X(these)59 2688 y(asp)q(ects,)h(cf.)g([74)o(].)130 2744
Xy(Let)h(us)h(no)o(w)f(use)h(the)g(truncated)f(SVD)h(and)f(the)h
X(truncated)g(GSVD)f(to)g(compute)g(regularized)59 2801
Xy(solutions)i(to)f(this)h(problem.)27 b(The)18 b(\014rst)f(7)g(TSVD)g
X(solutions)h(and)f(the)h(\014rst)f(6)g(TGSVD)g(solutions)59
X2857 y(are)c(sho)o(wn)f(in)i(Fig.)f(3.6.)18 b(F)l(rom)12
Xb(our)h(in)o(v)o(estigation)g(of)g(the)g(righ)o(t)f(singular)i(v)o
X(ectors,)e(it)i(is)f(no)g(surprise)p eop
X%%Page: 39 41
X39 40 bop 59 159 a Fo(3.5.)14 b(Standard)h(F)l(orm)f(V)l(ersus)i
X(General)g(F)l(orm)899 b(39)p 59 178 1767 2 v 177 293
Xa
X 21816746 18646798 4538941 13222133 35653713 39732183 startTexFig
X 177 293 a
X%%BeginDocument: tutorial/fig5a.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  627    93  5677  4837 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 1782 2259 0 0 -1782 898 2170 4 MP
XPP
X-2259 0 0 1782 2259 0 0 -1782 898 2170 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 2170 mt 3157 2170 L
X 898  388 mt 3157  388 L
X 898 2170 mt  898  388 L
X3157 2170 mt 3157  388 L
X 898 2170 mt 3157 2170 L
X 898 2170 mt  898  388 L
X1500 2170 mt 1500 2147 L
X1500  388 mt 1500  411 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X1467 2316 mt 
X(5) s
X2253 2170 mt 2253 2147 L
X2253  388 mt 2253  411 L
X2187 2316 mt 
X(10) s
X3006 2170 mt 3006 2147 L
X3006  388 mt 3006  411 L
X2940 2316 mt 
X(15) s
X 898 2170 mt  921 2170 L
X3157 2170 mt 3134 2170 L
X 727 2214 mt 
X(-1) s
X 898 1725 mt  921 1725 L
X3157 1725 mt 3134 1725 L
X 627 1769 mt 
X(-0.5) s
X 898 1279 mt  921 1279 L
X3157 1279 mt 3134 1279 L
X 797 1323 mt 
X(0) s
X 898  834 mt  921  834 L
X3157  834 mt 3134  834 L
X 697  878 mt 
X(0.5) s
X 898  388 mt  921  388 L
X3157  388 mt 3134  388 L
X 797  432 mt 
X(1) s
X 898 2170 mt 3157 2170 L
X 898  388 mt 3157  388 L
X 898 2170 mt  898  388 L
X3157 2170 mt 3157  388 L
Xgs 898 388 2260 1783 MR c np
X151 0 150 0 151 0 150 0 151 0 151 1 150 2 151 13 
X150 44 151 107 151 169 150 79 151 -366 150 -653 151 936 898 947 16 MP stroke
X
Xgr 
X1913 2459 mt 
X(i = 3) s
X2555  252 mt 
X(Right singular vectors V\(:,i\)) s
X1 sg
X0 1782 2260 0 0 -1782 3994 2170 4 MP
XPP
X-2260 0 0 1782 2260 0 0 -1782 3994 2170 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X3994 2170 mt 6254 2170 L
X3994  388 mt 6254  388 L
X3994 2170 mt 3994  388 L
X6254 2170 mt 6254  388 L
X3994 2170 mt 6254 2170 L
X3994 2170 mt 3994  388 L
X4597 2170 mt 4597 2147 L
X4597  388 mt 4597  411 L
X4564 2316 mt 
X(5) s
X5350 2170 mt 5350 2147 L
X5350  388 mt 5350  411 L
X5284 2316 mt 
X(10) s
X6103 2170 mt 6103 2147 L
X6103  388 mt 6103  411 L
X6037 2316 mt 
X(15) s
X3994 2170 mt 4017 2170 L
X6254 2170 mt 6231 2170 L
X3823 2214 mt 
X(-1) s
X3994 1725 mt 4017 1725 L
X6254 1725 mt 6231 1725 L
X3723 1769 mt 
X(-0.5) s
X3994 1279 mt 4017 1279 L
X6254 1279 mt 6231 1279 L
X3893 1323 mt 
X(0) s
X3994  834 mt 4017  834 L
X6254  834 mt 6231  834 L
X3793  878 mt 
X(0.5) s
X3994  388 mt 4017  388 L
X6254  388 mt 6231  388 L
X3893  432 mt 
X(1) s
X3994 2170 mt 6254 2170 L
X3994  388 mt 6254  388 L
X3994 2170 mt 3994  388 L
X6254 2170 mt 6254  388 L
Xgs 3994 388 2261 1783 MR c np
X151 0 150 0 151 0 151 0 150 0 151 4 151 23 150 97 
X151 260 151 137 150 -1084 151 764 151 -242 150 47 151 -7 3994 1280 16 MP stroke
X
Xgr 
X5009 2459 mt 
X(i = 6) s
X1 sg
X0 1782 2259 0 0 -1782 898 4612 4 MP
XPP
X-2259 0 0 1782 2259 0 0 -1782 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 3157 4612 L
X 898 2830 mt 3157 2830 L
X 898 4612 mt  898 2830 L
X3157 4612 mt 3157 2830 L
X 898 4612 mt 3157 4612 L
X 898 4612 mt  898 2830 L
X1500 4612 mt 1500 4589 L
X1500 2830 mt 1500 2853 L
X1467 4758 mt 
X(5) s
X2253 4612 mt 2253 4589 L
X2253 2830 mt 2253 2853 L
X2187 4758 mt 
X(10) s
X3006 4612 mt 3006 4589 L
X3006 2830 mt 3006 2853 L
X2940 4758 mt 
X(15) s
X 898 4612 mt  921 4612 L
X3157 4612 mt 3134 4612 L
X 727 4656 mt 
X(-1) s
X 898 4167 mt  921 4167 L
X3157 4167 mt 3134 4167 L
X 627 4211 mt 
X(-0.5) s
X 898 3721 mt  921 3721 L
X3157 3721 mt 3134 3721 L
X 797 3765 mt 
X(0) s
X 898 3276 mt  921 3276 L
X3157 3276 mt 3134 3276 L
X 697 3320 mt 
X(0.5) s
X 898 2830 mt  921 2830 L
X3157 2830 mt 3134 2830 L
X 797 2874 mt 
X(1) s
X 898 4612 mt 3157 4612 L
X 898 2830 mt 3157 2830 L
X 898 4612 mt  898 2830 L
X3157 4612 mt 3157 2830 L
Xgs 898 2830 2260 1783 MR c np
X151 0 150 0 151 0 150 1 151 18 151 145 150 677 151 -1084 
X150 262 151 -20 151 1 150 0 151 0 150 0 151 0 898 3721 16 MP stroke
X
Xgr 
X1913 4901 mt 
X(i = 9) s
X1 sg
X0 1782 2260 0 0 -1782 3994 4612 4 MP
XPP
X-2260 0 0 1782 2260 0 0 -1782 3994 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X3994 4612 mt 6254 4612 L
X3994 2830 mt 6254 2830 L
X3994 4612 mt 3994 2830 L
X6254 4612 mt 6254 2830 L
X3994 4612 mt 6254 4612 L
X3994 4612 mt 3994 2830 L
X4597 4612 mt 4597 4589 L
X4597 2830 mt 4597 2853 L
X4564 4758 mt 
X(5) s
X5350 4612 mt 5350 4589 L
X5350 2830 mt 5350 2853 L
X5284 4758 mt 
X(10) s
X6103 4612 mt 6103 4589 L
X6103 2830 mt 6103 2853 L
X6037 4758 mt 
X(15) s
X3994 4612 mt 4017 4612 L
X6254 4612 mt 6231 4612 L
X3823 4656 mt 
X(-1) s
X3994 4167 mt 4017 4167 L
X6254 4167 mt 6231 4167 L
X3723 4211 mt 
X(-0.5) s
X3994 3721 mt 4017 3721 L
X6254 3721 mt 6231 3721 L
X3893 3765 mt 
X(0) s
X3994 3276 mt 4017 3276 L
X6254 3276 mt 6231 3276 L
X3793 3320 mt 
X(0.5) s
X3994 2830 mt 4017 2830 L
X6254 2830 mt 6231 2830 L
X3893 2874 mt 
X(1) s
X3994 4612 mt 6254 4612 L
X3994 2830 mt 6254 2830 L
X3994 4612 mt 3994 2830 L
X6254 4612 mt 6254 2830 L
Xgs 3994 2830 2261 1783 MR c np
X151 0 150 1 151 27 151 859 150 -964 151 78 151 -1 150 0 
X151 0 151 0 150 0 151 0 151 0 150 0 151 0 3994 3721 16 MP stroke
X
Xgr 
X4976 4901 mt 
X(i = 12) s
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 177 1478 a
X 21816746 18646798 4538941 13222133 35653713 39732183 startTexFig
X 177 1478 a
X%%BeginDocument: tutorial/fig5b.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  627    93  5677  4837 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 1782 2259 0 0 -1782 898 2170 4 MP
XPP
X-2259 0 0 1782 2259 0 0 -1782 898 2170 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 2170 mt 3157 2170 L
X 898  388 mt 3157  388 L
X 898 2170 mt  898  388 L
X3157 2170 mt 3157  388 L
X 898 2170 mt 3157 2170 L
X 898 2170 mt  898  388 L
X1500 2170 mt 1500 2147 L
X1500  388 mt 1500  411 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X1467 2316 mt 
X(5) s
X2253 2170 mt 2253 2147 L
X2253  388 mt 2253  411 L
X2187 2316 mt 
X(10) s
X3006 2170 mt 3006 2147 L
X3006  388 mt 3006  411 L
X2940 2316 mt 
X(15) s
X 898 2170 mt  921 2170 L
X3157 2170 mt 3134 2170 L
X 727 2214 mt 
X(-1) s
X 898 1725 mt  921 1725 L
X3157 1725 mt 3134 1725 L
X 627 1769 mt 
X(-0.5) s
X 898 1279 mt  921 1279 L
X3157 1279 mt 3134 1279 L
X 797 1323 mt 
X(0) s
X 898  834 mt  921  834 L
X3157  834 mt 3134  834 L
X 697  878 mt 
X(0.5) s
X 898  388 mt  921  388 L
X3157  388 mt 3134  388 L
X 797  432 mt 
X(1) s
X 898 2170 mt 3157 2170 L
X 898  388 mt 3157  388 L
X 898 2170 mt  898  388 L
X3157 2170 mt 3157  388 L
Xgs 898 388 2260 1783 MR c np
X151 0 150 0 151 0 150 0 151 0 151 0 150 1 151 2 
X150 14 151 51 151 154 150 334 151 448 150 93 151 -657 898 1575 16 MP stroke
X
Xgr 
X1880 2459 mt 
X(i = 14) s
X2253  252 mt 
X(Right generalized singular vectors XX\(:,i\)) s
X1 sg
X0 1782 2260 0 0 -1782 3994 2170 4 MP
XPP
X-2260 0 0 1782 2260 0 0 -1782 3994 2170 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X3994 2170 mt 6254 2170 L
X3994  388 mt 6254  388 L
X3994 2170 mt 3994  388 L
X6254 2170 mt 6254  388 L
X3994 2170 mt 6254 2170 L
X3994 2170 mt 3994  388 L
X4597 2170 mt 4597 2147 L
X4597  388 mt 4597  411 L
X4564 2316 mt 
X(5) s
X5350 2170 mt 5350 2147 L
X5350  388 mt 5350  411 L
X5284 2316 mt 
X(10) s
X6103 2170 mt 6103 2147 L
X6103  388 mt 6103  411 L
X6037 2316 mt 
X(15) s
X3994 2170 mt 4017 2170 L
X6254 2170 mt 6231 2170 L
X3823 2214 mt 
X(-1) s
X3994 1725 mt 4017 1725 L
X6254 1725 mt 6231 1725 L
X3723 1769 mt 
X(-0.5) s
X3994 1279 mt 4017 1279 L
X6254 1279 mt 6231 1279 L
X3893 1323 mt 
X(0) s
X3994  834 mt 4017  834 L
X6254  834 mt 6231  834 L
X3793  878 mt 
X(0.5) s
X3994  388 mt 4017  388 L
X6254  388 mt 6231  388 L
X3893  432 mt 
X(1) s
X3994 2170 mt 6254 2170 L
X3994  388 mt 6254  388 L
X3994 2170 mt 3994  388 L
X6254 2170 mt 6254  388 L
Xgs 3994 388 2261 1783 MR c np
X151 0 150 0 151 0 151 0 150 0 151 1 151 3 150 24 
X151 115 151 378 150 550 151 -546 151 188 150 -38 151 6 3994 1278 16 MP stroke
X
Xgr 
X4976 2459 mt 
X(i = 11) s
X1 sg
X0 1782 2259 0 0 -1782 898 4612 4 MP
XPP
X-2259 0 0 1782 2259 0 0 -1782 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 3157 4612 L
X 898 2830 mt 3157 2830 L
X 898 4612 mt  898 2830 L
X3157 4612 mt 3157 2830 L
X 898 4612 mt 3157 4612 L
X 898 4612 mt  898 2830 L
X1500 4612 mt 1500 4589 L
X1500 2830 mt 1500 2853 L
X1467 4758 mt 
X(5) s
X2253 4612 mt 2253 4589 L
X2253 2830 mt 2253 2853 L
X2187 4758 mt 
X(10) s
X3006 4612 mt 3006 4589 L
X3006 2830 mt 3006 2853 L
X2940 4758 mt 
X(15) s
X 898 4612 mt  921 4612 L
X3157 4612 mt 3134 4612 L
X 727 4656 mt 
X(-1) s
X 898 4167 mt  921 4167 L
X3157 4167 mt 3134 4167 L
X 627 4211 mt 
X(-0.5) s
X 898 3721 mt  921 3721 L
X3157 3721 mt 3134 3721 L
X 797 3765 mt 
X(0) s
X 898 3276 mt  921 3276 L
X3157 3276 mt 3134 3276 L
X 697 3320 mt 
X(0.5) s
X 898 2830 mt  921 2830 L
X3157 2830 mt 3134 2830 L
X 797 2874 mt 
X(1) s
X 898 4612 mt 3157 4612 L
X 898 2830 mt 3157 2830 L
X 898 4612 mt  898 2830 L
X3157 4612 mt 3157 2830 L
Xgs 898 2830 2260 1783 MR c np
X151 0 150 0 151 0 150 0 151 2 151 17 150 159 151 845 
X150 -234 151 19 151 -1 150 0 151 0 150 0 151 0 898 3721 16 MP stroke
X
Xgr 
X1913 4901 mt 
X(i = 8) s
X1 sg
X0 1782 2260 0 0 -1782 3994 4612 4 MP
XPP
X-2260 0 0 1782 2260 0 0 -1782 3994 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X3994 4612 mt 6254 4612 L
X3994 2830 mt 6254 2830 L
X3994 4612 mt 3994 2830 L
X6254 4612 mt 6254 2830 L
X3994 4612 mt 6254 4612 L
X3994 4612 mt 3994 2830 L
X4597 4612 mt 4597 4589 L
X4597 2830 mt 4597 2853 L
X4564 4758 mt 
X(5) s
X5350 4612 mt 5350 4589 L
X5350 2830 mt 5350 2853 L
X5284 4758 mt 
X(10) s
X6103 4612 mt 6103 4589 L
X6103 2830 mt 6103 2853 L
X6037 4758 mt 
X(15) s
X3994 4612 mt 4017 4612 L
X6254 4612 mt 6231 4612 L
X3823 4656 mt 
X(-1) s
X3994 4167 mt 4017 4167 L
X6254 4167 mt 6231 4167 L
X3723 4211 mt 
X(-0.5) s
X3994 3721 mt 4017 3721 L
X6254 3721 mt 6231 3721 L
X3893 3765 mt 
X(0) s
X3994 3276 mt 4017 3276 L
X6254 3276 mt 6231 3276 L
X3793 3320 mt 
X(0.5) s
X3994 2830 mt 4017 2830 L
X6254 2830 mt 6231 2830 L
X3893 2874 mt 
X(1) s
X3994 4612 mt 6254 4612 L
X3994 2830 mt 6254 2830 L
X3994 4612 mt 3994 2830 L
X6254 4612 mt 6254 2830 L
Xgs 3994 2830 2261 1783 MR c np
X151 -529 150 -290 151 -351 151 -176 150 284 151 442 151 -2 150 -9 
X151 0 151 0 150 0 151 0 151 0 150 0 151 0 3994 3721 16 MP stroke
X
Xgr 
X5009 4901 mt 
X(i = 5) s
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 59 2757 a Fo(Figure)17 b(3.5:)22 b(Comparison)16 b(of)h(the)f(righ)o
X(t)h(singular)g(v)o(ectors)f(for)g(SVD)h(and)g(GSVD)f(for)g(the)h(in)o
X(v)o(erse)59 2814 y(Laplace)f(transformation)e(test-problem.)p
Xeop
X%%Page: 40 42
X40 41 bop 64 159 a Fo(40)1473 b(TUTORIAL)p 64 178 1767
X2 v 177 259 a
X 22935557 18646798 4933632 13156352 36048404 38350766 startTexFig
X 177 259 a
X%%BeginDocument: tutorial/fig6.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  697   340  5679  4598 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 1782 5356 0 0 -1782 898 2170 4 MP
XPP
X-5356 0 0 1782 5356 0 0 -1782 898 2170 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 2170 mt 6254 2170 L
X 898  388 mt 6254  388 L
X 898 2170 mt  898  388 L
X6254 2170 mt 6254  388 L
X 898 2170 mt 6254 2170 L
X 898 2170 mt  898  388 L
X1255 2170 mt 1255 2116 L
X1255  388 mt 1255  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X1222 2316 mt 
X(2) s
X1969 2170 mt 1969 2116 L
X1969  388 mt 1969  442 L
X1936 2316 mt 
X(4) s
X2683 2170 mt 2683 2116 L
X2683  388 mt 2683  442 L
X2650 2316 mt 
X(6) s
X3397 2170 mt 3397 2116 L
X3397  388 mt 3397  442 L
X3364 2316 mt 
X(8) s
X4112 2170 mt 4112 2116 L
X4112  388 mt 4112  442 L
X4046 2316 mt 
X(10) s
X4826 2170 mt 4826 2116 L
X4826  388 mt 4826  442 L
X4760 2316 mt 
X(12) s
X5540 2170 mt 5540 2116 L
X5540  388 mt 5540  442 L
X5474 2316 mt 
X(14) s
X6254 2170 mt 6254 2116 L
X6254  388 mt 6254  442 L
X6188 2316 mt 
X(16) s
X 898 2170 mt  952 2170 L
X6254 2170 mt 6200 2170 L
X 797 2214 mt 
X(0) s
X 898 1873 mt  952 1873 L
X6254 1873 mt 6200 1873 L
X 697 1917 mt 
X(0.2) s
X 898 1576 mt  952 1576 L
X6254 1576 mt 6200 1576 L
X 697 1620 mt 
X(0.4) s
X 898 1279 mt  952 1279 L
X6254 1279 mt 6200 1279 L
X 697 1323 mt 
X(0.6) s
X 898  982 mt  952  982 L
X6254  982 mt 6200  982 L
X 697 1026 mt 
X(0.8) s
X 898  685 mt  952  685 L
X6254  685 mt 6200  685 L
X 797  729 mt 
X(1) s
X 898 2170 mt 6254 2170 L
X 898  388 mt 6254  388 L
X 898 2170 mt  898  388 L
X6254 2170 mt 6254  388 L
Xgs 898 388 5357 1783 MR c np
X357 0 357 0 357 0 357 0 357 0 357 0 357 1 358 5 
X357 15 357 42 357 88 357 145 357 194 357 183 357 -79 898 1576 16 MP stroke
X357 0 357 0 357 0 357 0 357 0 357 1 357 2 358 14 
X357 46 357 122 357 240 357 343 357 266 357 -277 357 -1027 898 2440 16 MP stroke
X357 0 357 0 357 0 357 0 357 0 357 1 357 7 358 30 
X357 103 357 259 357 458 357 444 357 -206 357 -1116 357 177 898 2013 16 MP stroke
X357 0 357 0 357 0 357 0 357 0 357 2 357 14 358 60 
X357 201 357 473 357 654 357 71 357 -1134 357 51 357 -346 898 2124 16 MP stroke
X357 0 357 0 357 0 357 0 357 1 357 4 357 25 358 113 
X357 366 357 746 357 512 357 -998 357 -94 357 -366 357 -248 898 2109 16 MP stroke
X328 -1775 357 728 357 -641 357 -259 357 -264 898 2111 6 MP stroke
X357 0 357 0 357 0 357 0 357 2 357 12 357 76 358 333 
X357 953 303 894 2737 -100 11 MP stroke
X295 -1840 357 -93 357 -279 898 2112 4 MP stroke
X158 5484 1980 -100 2 MP stroke
X-35 5484 2403 -100 2 MP stroke
X17 5484 2826 -100 2 MP stroke
X357 0 357 0 357 0 357 -9 357 -106 357 -909 143 -2190 3969 5384 8 MP stroke
X
Xgr 
Xgs 825 612 5503 1568 MR c np
X 873 2081 mt  923 2131 L
X 923 2081 mt  873 2131 L
X1230 1838 mt 1280 1888 L
X1280 1838 mt 1230 1888 L
X1587 1499 mt 1637 1549 L
X1637 1499 mt 1587 1549 L
X1944 1172 mt 1994 1222 L
X1994 1172 mt 1944 1222 L
X2301  926 mt 2351  976 L
X2351  926 mt 2301  976 L
X2658  777 mt 2708  827 L
X2708  777 mt 2658  827 L
X3015  703 mt 3065  753 L
X3065  703 mt 3015  753 L
X3372  673 mt 3422  723 L
X3422  673 mt 3372  723 L
X3730  663 mt 3780  713 L
X3780  663 mt 3730  713 L
X4087  661 mt 4137  711 L
X4137  661 mt 4087  711 L
X4444  660 mt 4494  710 L
X4494  660 mt 4444  710 L
X4801  660 mt 4851  710 L
X4851  660 mt 4801  710 L
X5158  660 mt 5208  710 L
X5208  660 mt 5158  710 L
X5515  660 mt 5565  710 L
X5565  660 mt 5515  710 L
X5872  660 mt 5922  710 L
X5922  660 mt 5872  710 L
X6229  660 mt 6279  710 L
X6279  660 mt 6229  710 L
X
Xgr 
Xgs 898 388 5357 1783 MR c np
X
Xgr 
X3457 2459 mt 
X(L = I) s
X1 sg
X0 1782 5356 0 0 -1782 898 4612 4 MP
XPP
X-5356 0 0 1782 5356 0 0 -1782 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 6254 4612 L
X 898 2830 mt 6254 2830 L
X 898 4612 mt  898 2830 L
X6254 4612 mt 6254 2830 L
X 898 4612 mt 6254 4612 L
X 898 4612 mt  898 2830 L
X1255 4612 mt 1255 4558 L
X1255 2830 mt 1255 2884 L
X1222 4758 mt 
X(2) s
X1969 4612 mt 1969 4558 L
X1969 2830 mt 1969 2884 L
X1936 4758 mt 
X(4) s
X2683 4612 mt 2683 4558 L
X2683 2830 mt 2683 2884 L
X2650 4758 mt 
X(6) s
X3397 4612 mt 3397 4558 L
X3397 2830 mt 3397 2884 L
X3364 4758 mt 
X(8) s
X4112 4612 mt 4112 4558 L
X4112 2830 mt 4112 2884 L
X4046 4758 mt 
X(10) s
X4826 4612 mt 4826 4558 L
X4826 2830 mt 4826 2884 L
X4760 4758 mt 
X(12) s
X5540 4612 mt 5540 4558 L
X5540 2830 mt 5540 2884 L
X5474 4758 mt 
X(14) s
X6254 4612 mt 6254 4558 L
X6254 2830 mt 6254 2884 L
X6188 4758 mt 
X(16) s
X 898 4612 mt  952 4612 L
X6254 4612 mt 6200 4612 L
X 797 4656 mt 
X(0) s
X 898 4315 mt  952 4315 L
X6254 4315 mt 6200 4315 L
X 697 4359 mt 
X(0.2) s
X 898 4018 mt  952 4018 L
X6254 4018 mt 6200 4018 L
X 697 4062 mt 
X(0.4) s
X 898 3721 mt  952 3721 L
X6254 3721 mt 6200 3721 L
X 697 3765 mt 
X(0.6) s
X 898 3424 mt  952 3424 L
X6254 3424 mt 6200 3424 L
X 697 3468 mt 
X(0.8) s
X 898 3127 mt  952 3127 L
X6254 3127 mt 6200 3127 L
X 797 3171 mt 
X(1) s
X 898 4612 mt 6254 4612 L
X 898 2830 mt 6254 2830 L
X 898 4612 mt  898 2830 L
X6254 4612 mt 6254 2830 L
Xgs 898 2830 5357 1783 MR c np
X357 0 357 0 357 0 357 0 357 0 357 0 357 -1 358 0 
X357 -5 357 -17 357 -54 357 -135 357 -263 357 -379 357 -316 898 4589 16 MP stroke
X357 0 357 0 357 0 357 0 357 0 357 0 357 0 358 -2 
X357 -6 357 -25 357 -79 357 -189 357 -335 357 -394 357 -210 898 4541 16 MP stroke
X357 0 357 0 357 0 357 0 357 0 357 0 357 0 358 -2 
X357 -10 357 -38 357 -116 357 -249 357 -359 357 -312 357 -256 898 4552 16 MP stroke
X357 0 357 0 357 0 357 0 357 0 357 0 357 -1 358 -2 
X357 -10 357 -39 357 -118 357 -251 357 -356 357 -313 357 -256 898 4552 16 MP stroke
X357 0 357 0 357 0 357 0 357 0 357 -1 357 -5 358 -32 
X357 -160 357 -532 357 -834 357 460 357 -601 357 -264 357 -263 898 4553 16 MP stroke
X101 3413 357 -2211 357 -93 357 -279 898 4554 5 MP stroke
X-38 5484 2424 -100 2 MP stroke
X24 5484 2850 -100 2 MP stroke
X
Xgr 
Xgs 825 3054 5503 1568 MR c np
X 873 4523 mt  923 4573 L
X 923 4523 mt  873 4573 L
X1230 4280 mt 1280 4330 L
X1280 4280 mt 1230 4330 L
X1587 3941 mt 1637 3991 L
X1637 3941 mt 1587 3991 L
X1944 3614 mt 1994 3664 L
X1994 3614 mt 1944 3664 L
X2301 3368 mt 2351 3418 L
X2351 3368 mt 2301 3418 L
X2658 3219 mt 2708 3269 L
X2708 3219 mt 2658 3269 L
X3015 3145 mt 3065 3195 L
X3065 3145 mt 3015 3195 L
X3372 3115 mt 3422 3165 L
X3422 3115 mt 3372 3165 L
X3730 3105 mt 3780 3155 L
X3780 3105 mt 3730 3155 L
X4087 3103 mt 4137 3153 L
X4137 3103 mt 4087 3153 L
X4444 3102 mt 4494 3152 L
X4494 3102 mt 4444 3152 L
X4801 3102 mt 4851 3152 L
X4851 3102 mt 4801 3152 L
X5158 3102 mt 5208 3152 L
X5208 3102 mt 5158 3152 L
X5515 3102 mt 5565 3152 L
X5565 3102 mt 5515 3152 L
X5872 3102 mt 5922 3152 L
X5922 3102 mt 5872 3152 L
X6229 3102 mt 6279 3152 L
X6279 3102 mt 6229 3152 L
X
Xgr 
Xgs 898 2830 5357 1783 MR c np
X
Xgr 
X3460 4901 mt 
X(L ) s
X/Symbol /WindowsLatin1Encoding 120 FMSR
X
X3560 4901 mt 
X(\271) s
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3625 4901 mt 
X( I) s
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 59 1538 a Fo(Figure)14 b(3.6:)k(The)c(\014rst)g(7)f(TSVD)h(solutions)h
X(and)f(the)g(\014rst)f(6)h(TGSVD)f(solutions)i(for)e(the)h(same)f(test)
X59 1594 y(problem)j(as)f(in)h(Fig.)f(3.5.)j(The)e(exact)f(solution)h
X(is)g(sho)o(wn)e(with)i Fm(\002)p Fo(-mark)o(ers.)59
X1723 y(that)c(TSVD)g(cannot)h(repro)q(duce)g(the)g(desired)h(solution,)
Xf(while)h(TGSVD)f(indeed)h(succeeds)g(in)f(doing)59 1780
Xy(so.)20 b(The)15 b(optimal)h(regularization)g(parameter)e(for)h(TGSVD)
Xf(is)i Fn(k)e Fo(=)f(5.)130 1836 y(W)l(e)21 b(notice)i(that)e(without)g
X(our)h(a)f(priori)h(kno)o(wledge)g(part)f(of)h(the)f(solution,)j(w)o(e)
Xd(could)i(not)59 1892 y(immediately)17 b(discard)f(the)f(TSVD)g
X(solutions!)59 2017 y Fr(3.6.)j(No)g(Square)h(In)n(tegrable)f(Solution)
X59 2118 y Fo(In)g(this)g(tutorial's)f(\014nal)h(example)g(w)o(e)f(use)g
X(the)h(routine)g Fl(ursell)f Fo(to)g(generate)g(a)g(test)f(problem)i
X(aris-)59 2175 y(ing)j(from)f(discretization)j(of)d(a)g(F)l(redholm)i
X(in)o(tegral)f(equation)g(of)f(the)h(\014rst)g(kind)g(\(2.1\))f(with)h
X(no)59 2231 y(square)15 b(in)o(tegrable)g(solution)h([18)o(,)f(p.)f
X(6],)g(i.e.,)h(the)g(in)o(tegral)g(equation)g(do)q(es)g(not)g(satisfy)f
X(the)h(Picard)59 2288 y(condition.)21 b(The)16 b(in)o(tegral)f
X(equation)h(is)540 2342 y Fh(Z)581 2355 y Fj(1)563 2436
Xy(0)688 2368 y Fo(1)p 614 2389 172 2 v 614 2430 a Fn(s)10
Xb Fo(+)h Fn(t)f Fo(+)h(1)798 2399 y Fn(f)5 b Fo(\()p
XFn(t)p Fo(\))j Fn(dt)k Fo(=)h(1)i Fn(;)98 b Fo(0)12 b
XFm(\024)h Fn(s)g Fm(\024)g Fo(1)i Fn(:)59 2504 y Fo(When)f(w)o(e)f(use)
Xh Fl(pica)o(rd)g Fo(to)f(plot)h(the)f(singular)i(v)m(alues)g(and)e(the)
Xh(F)l(ourier)g(co)q(e\016cien)o(ts)g(for)f(the)h(discrete)59
X2561 y(problem,)h(see)h(Fig.)e(3.7,)g(w)o(e)h(immediately)h(see)g(that)
Xe(discrete)i(ill-p)q(osed)h(problem)f(do)q(es)f(not)g(satisfy)59
X2617 y(the)i(discrete)h(Picard)f(condition,)h(whic)o(h)g(indicates)g
X(trouble!)25 b(W)l(e)17 b(stress,)f(ho)o(w)o(ev)o(er,)g(that)h(suc)o(h)
Xg(an)59 2674 y(analysis)j(cannot)e(sho)o(w)g(whether)h(the)g(trouble)g
X(comes)g(from)f(the)h(in)o(tegral)g(equation)g(itself,)h(from)59
X2730 y(the)15 b(discretization,)i(or)d(p)q(ossibly)j(from)e(other)f
X(sources.)130 2846 y Fl([A,b])h(=)h(ursell)8 b(\(32\);)13
Xb([U,s,V])j(=)g(csvd)8 b(\(A\);)15 b(pica)o(rd)8 b(\(U,s,b\);)p
Xeop
X%%Page: 41 43
X41 42 bop 59 159 a Fo(3.6.)14 b(No)h(Square)g(In)o(tegrable)h(Solution)
X1035 b(41)p 59 178 1767 2 v 177 890 a
X 22376156 18646798 4341596 13222133 35982622 39469056 startTexFig
X 177 890 a
X%%BeginDocument: tutorial/fig7.eps
X
X
X% MathWorks dictionary
X/MathWorks 160 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/ISOLatin1Encoding where
X{pop
X/WindowsLatin1Encoding 256 array bdef
XISOLatin1Encoding WindowsLatin1Encoding copy pop
X/.notdef/.notdef/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl
X/circumflex/perthousand/Scaron/guilsinglleft/OE/.notdef/.notdef/.notdef
X/.notdef/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash
X/tilde/trademark/scaron/guilsinglright/oe/.notdef/.notdef/Ydieresis
XWindowsLatin1Encoding 128 32 getinterval astore pop}
X{/WindowsLatin1Encoding StandardEncoding bdef} ifelse
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X/MRR {
X	/vradius xdef
X	/hradius xdef
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	newpath
X	tMatrix currentmatrix pop
X	ulx hradius add uly vradius add translate
X	hradius vradius scale
X	0 0 1 180 270 arc 
X	tMatrix setmatrix
X	lrx hradius sub uly vradius add translate
X	hradius vradius scale
X	0 0 1 270 360 arc
X	tMatrix setmatrix
X	lrx hradius sub lry vradius sub translate
X	hradius vradius scale
X	0 0 1 0 90 arc
X	tMatrix setmatrix
X	ulx hradius add lry vradius sub translate
X	hradius vradius scale
X	0 0 1 90 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FRR {
X	MRR stroke } bdef
X/PRR {
X	MRR fill } bdef
X
X/MlrRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lry uly sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 90 270 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 270 90 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FlrRR {
X	MlrRR stroke } bdef
X/PlrRR {
X	MlrRR fill } bdef
X
X/MtbRR {
X	/lry xdef
X	/lrx xdef
X	/uly xdef
X	/ulx xdef
X	/rad lrx ulx sub 2 div def
X	newpath
X	tMatrix currentmatrix pop
X	ulx rad add uly rad add translate
X	rad rad scale
X	0 0 1 180 360 arc
X	tMatrix setmatrix
X	lrx rad sub lry rad sub translate
X	rad rad scale
X	0 0 1 0 180 arc
X	tMatrix setmatrix
X	closepath
X	} bdef
X/FtbRR {
X	MtbRR stroke } bdef
X/PtbRR {
X	MtbRR fill } bdef
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0204 7344 csm
X
X  595   134  5775  4796 MR c np
X85 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6913 5185 PR
X6 w
X0 4224 5356 0 0 -4224 898 4612 4 MP
XPP
X-5356 0 0 4224 5356 0 0 -4224 898 4612 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
X 898 4612 mt 6254 4612 L
X 898 4612 mt  898  388 L
X 898 4612 mt  898 4558 L
X 898  388 mt  898  442 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 865 4758 mt 
X(0) s
X1663 4612 mt 1663 4558 L
X1663  388 mt 1663  442 L
X1630 4758 mt 
X(5) s
X2428 4612 mt 2428 4558 L
X2428  388 mt 2428  442 L
X2362 4758 mt 
X(10) s
X3193 4612 mt 3193 4558 L
X3193  388 mt 3193  442 L
X3127 4758 mt 
X(15) s
X3959 4612 mt 3959 4558 L
X3959  388 mt 3959  442 L
X3893 4758 mt 
X(20) s
X4724 4612 mt 4724 4558 L
X4724  388 mt 4724  442 L
X4658 4758 mt 
X(25) s
X5489 4612 mt 5489 4558 L
X5489  388 mt 5489  442 L
X5423 4758 mt 
X(30) s
X6254 4612 mt 6254 4558 L
X6254  388 mt 6254  442 L
X6188 4758 mt 
X(35) s
X 898 4612 mt  952 4612 L
X6254 4612 mt 6200 4612 L
X 595 4656 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 4582 mt 
X(-15) s
X 898 4443 mt  925 4443 L
X6254 4443 mt 6227 4443 L
X 898 4274 mt  925 4274 L
X6254 4274 mt 6227 4274 L
X 898 4105 mt  925 4105 L
X6254 4105 mt 6227 4105 L
X 898 3936 mt  925 3936 L
X6254 3936 mt 6227 3936 L
X 898 3767 mt  925 3767 L
X6254 3767 mt 6227 3767 L
X 898 3598 mt  925 3598 L
X6254 3598 mt 6227 3598 L
X 898 3429 mt  925 3429 L
X6254 3429 mt 6227 3429 L
X 898 3260 mt  925 3260 L
X6254 3260 mt 6227 3260 L
X 898 3091 mt  925 3091 L
X6254 3091 mt 6227 3091 L
X 898 3767 mt  952 3767 L
X6254 3767 mt 6200 3767 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 3811 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 3737 mt 
X(-10) s
X 898 3598 mt  925 3598 L
X6254 3598 mt 6227 3598 L
X 898 3429 mt  925 3429 L
X6254 3429 mt 6227 3429 L
X 898 3260 mt  925 3260 L
X6254 3260 mt 6227 3260 L
X 898 3091 mt  925 3091 L
X6254 3091 mt 6227 3091 L
X 898 2922 mt  925 2922 L
X6254 2922 mt 6227 2922 L
X 898 2753 mt  925 2753 L
X6254 2753 mt 6227 2753 L
X 898 2584 mt  925 2584 L
X6254 2584 mt 6227 2584 L
X 898 2416 mt  925 2416 L
X6254 2416 mt 6227 2416 L
X 898 2247 mt  925 2247 L
X6254 2247 mt 6227 2247 L
X 898 2922 mt  952 2922 L
X6254 2922 mt 6200 2922 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 2966 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 2892 mt 
X(-5) s
X 898 2753 mt  925 2753 L
X6254 2753 mt 6227 2753 L
X 898 2584 mt  925 2584 L
X6254 2584 mt 6227 2584 L
X 898 2416 mt  925 2416 L
X6254 2416 mt 6227 2416 L
X 898 2247 mt  925 2247 L
X6254 2247 mt 6227 2247 L
X 898 2078 mt  925 2078 L
X6254 2078 mt 6227 2078 L
X 898 1909 mt  925 1909 L
X6254 1909 mt 6227 1909 L
X 898 1740 mt  925 1740 L
X6254 1740 mt 6227 1740 L
X 898 1571 mt  925 1571 L
X6254 1571 mt 6227 1571 L
X 898 1402 mt  925 1402 L
X6254 1402 mt 6227 1402 L
X 898 2078 mt  952 2078 L
X6254 2078 mt 6200 2078 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 2122 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 2048 mt 
X(0) s
X 898 1909 mt  925 1909 L
X6254 1909 mt 6227 1909 L
X 898 1740 mt  925 1740 L
X6254 1740 mt 6227 1740 L
X 898 1571 mt  925 1571 L
X6254 1571 mt 6227 1571 L
X 898 1402 mt  925 1402 L
X6254 1402 mt 6227 1402 L
X 898 1233 mt  925 1233 L
X6254 1233 mt 6227 1233 L
X 898 1064 mt  925 1064 L
X6254 1064 mt 6227 1064 L
X 898  895 mt  925  895 L
X6254  895 mt 6227  895 L
X 898  726 mt  925  726 L
X6254  726 mt 6227  726 L
X 898  557 mt  925  557 L
X6254  557 mt 6227  557 L
X 898 1233 mt  952 1233 L
X6254 1233 mt 6200 1233 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595 1277 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728 1203 mt 
X(5) s
X 898 1064 mt  925 1064 L
X6254 1064 mt 6227 1064 L
X 898  895 mt  925  895 L
X6254  895 mt 6227  895 L
X 898  726 mt  925  726 L
X6254  726 mt 6227  726 L
X 898  557 mt  925  557 L
X6254  557 mt 6227  557 L
X 898  388 mt  925  388 L
X6254  388 mt 6227  388 L
X 898  388 mt  952  388 L
X6254  388 mt 6200  388 L
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X 595  432 mt 
X(10) s
X/Helvetica /WindowsLatin1Encoding 80 FMSR
X
X 728  358 mt 
X(10) s
X 898 4612 mt 6254 4612 L
X 898  388 mt 6254  388 L
X 898 4612 mt  898  388 L
X6254 4612 mt 6254  388 L
Xgs 898 388 5357 4225 MR c np
X153 185 153 3 153 13 153 1 153 4 153 4 153 19 153 6 
X153 21 153 1 153 1 153 4 153 15 153 7 154 1 153 9 
X153 1 153 4 153 0 153 17 153 2 153 33 153 9 153 74 
X153 299 153 299 153 297 153 295 153 294 153 291 153 274 1051 2123 32 MP stroke
Xgs 978 2050 4891 2630 MR c np
X24 w
X1051 2123 PD
X1204 2397 PD
X1357 2688 PD
X1510 2982 PD
X1663 3277 PD
X1816 3574 PD
X1969 3873 PD
X2122 4172 PD
X2275 4246 PD
X2428 4255 PD
X2581 4288 PD
X2734 4290 PD
X2887 4307 PD
X3040 4307 PD
X3193 4311 PD
X3346 4312 PD
X3499 4321 PD
X3653 4322 PD
X3806 4329 PD
X3959 4344 PD
X4112 4348 PD
X4265 4349 PD
X4418 4350 PD
X4571 4371 PD
X4724 4377 PD
X4877 4396 PD
X5030 4400 PD
X5183 4404 PD
X5336 4405 PD
X5489 4418 PD
X5642 4421 PD
X5795 4606 PD
X
Xgr 
X24 w
X6 w
Xgs 978 2006 4891 1664 MR c np
X1026 2054 mt 1076 2104 L
X1076 2054 mt 1026 2104 L
X1179 2189 mt 1229 2239 L
X1229 2189 mt 1179 2239 L
X1332 2335 mt 1382 2385 L
X1382 2335 mt 1332 2385 L
X1485 2482 mt 1535 2532 L
X1535 2482 mt 1485 2532 L
X1638 2629 mt 1688 2679 L
X1688 2629 mt 1638 2679 L
X1791 2778 mt 1841 2828 L
X1841 2778 mt 1791 2828 L
X1944 2927 mt 1994 2977 L
X1994 2927 mt 1944 2977 L
X2097 3077 mt 2147 3127 L
X2147 3077 mt 2097 3127 L
X2250 3399 mt 2300 3449 L
X2300 3399 mt 2250 3449 L
X2403 3344 mt 2453 3394 L
X2453 3344 mt 2403 3394 L
X2556 3369 mt 2606 3419 L
X2606 3369 mt 2556 3419 L
X2709 3494 mt 2759 3544 L
X2759 3494 mt 2709 3544 L
X2862 3571 mt 2912 3621 L
X2912 3571 mt 2862 3621 L
X3015 3517 mt 3065 3567 L
X3065 3517 mt 3015 3567 L
X3168 3250 mt 3218 3300 L
X3218 3250 mt 3168 3300 L
X3321 3318 mt 3371 3368 L
X3371 3318 mt 3321 3368 L
X3474 3316 mt 3524 3366 L
X3524 3316 mt 3474 3366 L
X3628 3353 mt 3678 3403 L
X3678 3353 mt 3628 3403 L
X3781 3324 mt 3831 3374 L
X3831 3324 mt 3781 3374 L
X3934 3409 mt 3984 3459 L
X3984 3409 mt 3934 3459 L
X4087 3479 mt 4137 3529 L
X4137 3479 mt 4087 3529 L
X4240 3401 mt 4290 3451 L
X4290 3401 mt 4240 3451 L
X4393 3414 mt 4443 3464 L
X4443 3414 mt 4393 3464 L
X4546 3352 mt 4596 3402 L
X4596 3352 mt 4546 3402 L
X4699 3515 mt 4749 3565 L
X4749 3515 mt 4699 3565 L
X4852 3423 mt 4902 3473 L
X4902 3423 mt 4852 3473 L
X5005 3309 mt 5055 3359 L
X5055 3309 mt 5005 3359 L
X5158 3364 mt 5208 3414 L
X5208 3364 mt 5158 3414 L
X5311 3346 mt 5361 3396 L
X5361 3346 mt 5311 3396 L
X5464 3348 mt 5514 3398 L
X5514 3348 mt 5464 3398 L
X5617 3368 mt 5667 3418 L
X5667 3368 mt 5617 3418 L
X5770 3318 mt 5820 3368 L
X5820 3318 mt 5770 3368 L
X
Xgr 
Xgs 978 742 4891 1365 MR c np
X  36   36 1051 2033 FO
X  36   36 1204 1894 FO
X  36   36 1357 1749 FO
X  36   36 1510 1603 FO
X  36   36 1663 1455 FO
X  36   36 1816 1306 FO
X  36   36 1969 1157 FO
X  36   36 2122 1008 FO
X  36   36 2275 1255 FO
X  36   36 2428 1191 FO
X  36   36 2581 1184 FO
X  36   36 2734 1306 FO
X  36   36 2887 1367 FO
X  36   36 3040 1312 FO
X  36   36 3193 1042 FO
X  36   36 3346 1109 FO
X  36   36 3499 1097 FO
X  36   36 3653 1133 FO
X  36   36 3806 1098 FO
X  36   36 3959 1169 FO
X  36   36 4112 1233 FO
X  36   36 4265 1154 FO
X  36   36 4418 1167 FO
X  36   36 4571 1083 FO
X  36   36 4724 1240 FO
X  36   36 4877 1130 FO
X  36   36 5030 1011 FO
X  36   36 5183 1063 FO
X  36   36 5336 1044 FO
X  36   36 5489 1033 FO
X  36   36 5642 1049 FO
X  36   36 5795  815 FO
X
Xgr 
X
Xgr 
X/Helvetica /WindowsLatin1Encoding 120 FMSR
X
X3562 4901 mt 
X(i) s
X3294  293 mt 
X(Picard plot) s
X1 sg
X0 922 1646 0 0 -922 4470 1414 4 MP
XPP
X-1646 0 0 922 1646 0 0 -922 4470 1414 5 MP stroke
X4 w
XDO
XSO
X6 w
X0 sg
X4470 1414 mt 6116 1414 L
X4470  492 mt 6116  492 L
X4470 1414 mt 4470  492 L
X6116 1414 mt 6116  492 L
X4470 1414 mt 6116 1414 L
X4470 1414 mt 4470  492 L
X4470 1414 mt 6116 1414 L
X4470  492 mt 6116  492 L
X4470 1414 mt 4470  492 L
X6116 1414 mt 6116  492 L
X/Symbol /WindowsLatin1Encoding 168 FMSR
X
X5273  751 mt 
X(s) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5374  835 mt 
X(i) s
X/Helvetica /WindowsLatin1Encoding 168 FMSR
X
X5403  751 mt 
X(         ) s
Xgs 4470 492 1647 923 MR c np
X428 0 4577 723 2 MP stroke
Xgs 4504 650 575 147 MR c np
X24 w
X4577 723 PD
X5005 723 PD
X
Xgr 
X24 w
X
Xgr 
X24 w
X5273 1000 mt 
X(|u) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5410 1084 mt 
X(i) s
X5410  916 mt 
X(T) s
X/Helvetica /WindowsLatin1Encoding 168 FMSR
X
X5490 1000 mt 
X(b|         ) s
Xgs 4470 492 1647 923 MR c np
X6 w
Xgs 4504 880 575 147 MR c np
X4552  928 mt 4602  978 L
X4602  928 mt 4552  978 L
X4980  928 mt 5030  978 L
X5030  928 mt 4980  978 L
X
Xgr 
X
Xgr 
X6 w
X5273 1231 mt 
X(|u) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5410 1315 mt 
X(i) s
X5410 1147 mt 
X(T) s
X/Helvetica /WindowsLatin1Encoding 168 FMSR
X
X5490 1231 mt 
X(b|/) s
X/Symbol /WindowsLatin1Encoding 168 FMSR
X
X5673 1231 mt 
X(s) s
X/Helvetica /WindowsLatin1Encoding 132 FMSR
X
X5774 1315 mt 
X(i) s
Xgs 4470 492 1647 923 MR c np
Xgs 4504 1111 575 147 MR c np
X  36   36 4577 1184 FO
X  36   36 5005 1184 FO
X
Xgr 
X
Xgr 
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X 59 2169 a Fo(Figure)15 b(3.7:)j(The)d(output)g(from)e
XFl(pica)o(rd)i Fo(for)f(the)h(test)f(problem)h(that)f(do)q(es)h(not)f
X(satisfy)g(the)h(discrete)59 2226 y(Picard)h(condition.)p
Xeop
X%%Page: 42 44
X42 43 bop 64 159 a Fo(42)1473 b(TUTORIAL)p 64 178 1767
X2 v eop
X%%Page: 43 45
X43 44 bop 59 546 a Fq(4.)35 b(Regulariza)-5 b(tion)27
Xb(Tools)f(Reference)59 752 y Fo(This)20 b(section)g(con)o(tains)f
X(detailed)i(descriptions)f(of)f(all)h Ff(Regulariza)m(tion)i(Tools)c
XFo(routines.)33 b(It)59 809 y(b)q(egins)14 b(with)g(a)e(list)i(of)f
X(the)g(routines)h(group)q(ed)f(b)o(y)g(sub)s(ject)g(area)g(and)g(con)o
X(tin)o(ues)g(with)h(the)f(reference)59 865 y(en)o(tries)f(en)g(alphab)q
X(etical)h(order.)19 b(Information)11 b(is)h(also)f(a)o(v)m(ailable)i
X(through)e(the)h(on-line)h(help)g(facilit)o(y)l(.)p 256
X951 1378 2 v 255 1007 2 57 v 605 991 a(REGULARIZA)l(TION)18
Xb(R)o(OUTINES)p 1633 1007 V 256 1009 1378 2 v 255 1066
X2 57 v 281 1049 a Fl(cgls)142 b Fo(Computes)15 b(the)g(least)g(squares)
Xg(solution)h(based)g(on)f Fn(k)h Fo(steps)p 1633 1066
XV 255 1122 V 494 1105 a(of)f(the)g(conjugate)g(gradien)o(t)g(algorithm)
Xp 1633 1122 V 255 1179 V 281 1162 a Fl(discrep)83 b Fo(Minimizes)17
Xb(the)e(solution)h(\(semi\)norm)f(sub)s(ject)g(to)g(an)g(upp)q(er)p
X1633 1179 V 255 1235 V 494 1218 a(b)q(ound)h(on)f(the)g(residual)i
X(norm)e(\(discrepancy)h(principle\))p 1633 1235 V 255
X1291 V 281 1274 a Fl(dsvd)129 b Fo(Computes)15 b(a)g(damp)q(ed)h
XFk(SVD)t Fo(/)p Fk(GSVD)e Fo(solution)p 1633 1291 V 255
X1348 V 281 1331 a Fl(lsqi)151 b Fo(Minimizes)17 b(the)e(residual)i
X(norm)e(sub)s(ject)g(to)f(an)h(upp)q(er)i(b)q(ound)p
X1633 1348 V 255 1404 V 494 1387 a(on)e(the)g(\(semi\)norm)g(of)g(the)g
X(solution)p 1633 1404 V 255 1461 V 281 1444 a Fl(lsqr)146
Xb Fo(Computes)15 b(the)g(least)g(squares)g(solution)h(based)g(on)f
XFn(k)h Fo(steps)p 1633 1461 V 255 1517 V 494 1500 a(of)f(the)g
XFk(LSQR)f Fo(algorithm)p 1633 1517 V 255 1574 V 281 1557
Xa Fl(maxent)74 b Fo(Computes)15 b(the)g(maxim)o(um)g(en)o(trop)o(y)g
X(regularized)h(solution)p 1633 1574 V 255 1630 V 281
X1613 a Fl(mtsvd)99 b Fo(Computes)15 b(the)g(mo)q(di\014ed)i
XFk(TSVD)d Fo(solution)p 1633 1630 V 255 1687 V 281 1670
Xa Fl(nu)167 b Fo(Computes)15 b(the)g(solution)h(based)g(on)f
XFn(k)h Fo(steps)f(of)g(Brakhage's)p 1633 1687 V 255 1743
XV 494 1726 a(iterativ)o(e)g Fn(\027)s Fo(-metho)q(d)p
X1633 1743 V 255 1800 V 281 1783 a Fl(p)q(cgls)118 b Fo(Same)15
Xb(as)g Fl(cgls)p Fo(,)g(but)g(for)g(general-form)g(regularization)p
X1633 1800 V 255 1856 V 281 1839 a Fl(plsqr)123 b Fo(Same)15
Xb(as)g Fl(lsqr)p Fo(,)g(but)g(for)g(general-form)g(regularization)p
X1633 1856 V 255 1912 V 281 1896 a Fl(pnu)144 b Fo(Same)15
Xb(as)g Fl(nu)p Fo(,)h(but)f(for)g(general-form)g(regularization)p
X1633 1912 V 255 1969 V 281 1952 a Fl(tgsvd)113 b Fo(Computes)15
Xb(the)g(truncated)g Fk(GSVD)g Fo(solution)p 1633 1969
XV 255 2025 V 281 2008 a Fl(tikhonov)51 b Fo(Computes)15
Xb(the)g(Tikhono)o(v)g(regularized)i(solution)p 1633 2025
XV 255 2082 V 281 2065 a Fl(tsvd)136 b Fo(Computes)15
Xb(the)g(truncated)g Fk(SVD)g Fo(solution)p 1633 2082
XV 255 2138 V 281 2121 a Fl(ttls)153 b Fo(Computes)15
Xb(the)g(truncated)g Fk(TLS)f Fo(solution)p 1633 2138
XV 256 2140 1378 2 v 189 2193 1513 2 v 188 2249 2 57 v
X703 2232 a(ANAL)l(YSIS)j(R)o(OUTINES)p 1700 2249 V 189
X2251 1513 2 v 188 2308 2 57 v 214 2291 a Fl(\014l)p 252
X2291 14 2 v 16 w(fac)102 b Fo(Computes)15 b(\014lter)h(factors)e(for)g
X(some)h(regularization)i(metho)q(ds)p 1700 2308 2 57
Xv 188 2364 V 214 2347 a Fl(gcv)145 b Fo(Plots)15 b(the)h
XFk(GCV)e Fo(function)i(and)g(computes)f(its)g(minim)o(um)p
X1700 2364 V 188 2420 V 214 2404 a Fl(lagrange)49 b Fo(Plots)15
Xb(the)h(Lagrange)e(function)i Fm(k)p Fn(A)8 b Fp(x)h
XFm(\000)i Fp(b)p Fm(k)1194 2387 y Fj(2)1194 2415 y(2)1223
X2404 y Fo(+)g Fn(\025)1296 2387 y Fj(2)1323 2404 y Fm(k)p
XFn(L)d Fp(x)p Fm(k)1436 2387 y Fj(2)1436 2415 y(2)1469
X2404 y Fo(and)15 b(its)p 1700 2420 V 188 2477 V 423 2460
Xa(deriv)m(ativ)o(e)p 1700 2477 V 188 2533 V 214 2516
Xa Fl(l)p 228 2516 14 2 v 16 w(co)o(rner)65 b Fo(Lo)q(cates)15
Xb(the)h(L-shap)q(ed)g(corner)g(of)e(the)i(L-curv)o(e)p
X1700 2533 2 57 v 188 2590 V 214 2573 a Fl(l)p 228 2573
X14 2 v 16 w(curve)82 b Fo(Computes)15 b(the)g(L-curv)o(e,)h(plots)f
X(it,)g(and)h(computes)f(its)g(corner)p 1700 2590 2 57
Xv 188 2646 V 214 2629 a Fl(pica)o(rd)95 b Fo(Plots)15
Xb(the)h(\(generalized\))g(singular)g(v)m(alues,)g(the)f(F)l(ourier)h
X(co)q(e\016cien)o(ts)p 1700 2646 V 188 2703 V 423 2686
Xa(for)f(the)g(righ)o(t-hand)h(side,)f(and)h(a)f(p)q(ossibly)h(smo)q
X(othed)g(curv)o(e)f(of)g(the)p 1700 2703 V 188 2759 V
X423 2742 a(solution's)h(F)l(ourier-co)q(e\016cien)o(ts)p
X1700 2759 V 188 2816 V 214 2799 a Fl(plot)p 290 2799
X14 2 v 17 w(lc)88 b Fo(Plots)15 b(an)g(L-curv)o(e)p 1700
X2816 2 57 v 188 2872 V 214 2855 a Fl(quasiopt)51 b Fo(Plots)15
Xb(the)h(quasi-optimalit)o(y)g(function)g(and)f(computes)h(its)f(minim)o
X(um)p 1700 2872 V 189 2874 1513 2 v eop
X%%Page: 44 46
X44 45 bop 64 159 a Fo(44)877 b(Chapter)15 b(4.)f(Regularization)j(T)l
X(o)q(ols)e(Reference)p 64 178 1767 2 v 304 260 1283 2
Xv 303 317 2 57 v 748 300 a(TEST)g(PR)o(OBLEMS)p 1585
X317 V 304 318 1283 2 v 303 375 2 57 v 328 358 a Fl(baa)o(rt)103
Xb Fo(First)15 b(kind)h(F)l(redholm)g(in)o(tegral)f(equation)p
X1585 375 V 303 431 V 328 414 a Fl(blur)128 b Fo(Image)15
Xb(deblurring)i(test)e(problem)p 1585 431 V 303 488 V
X328 471 a Fl(deriv2)87 b Fo(Computation)15 b(of)f(second)i(deriv)m
X(ativ)o(e)p 1585 488 V 303 544 V 328 527 a Fl(fo)o(xgo)q(o)q(d)50
Xb Fo(Sev)o(erely)16 b(ill-p)q(osed)i(test)c(problem)p
X1585 544 V 303 601 V 328 584 a Fl(heat)120 b Fo(In)o(v)o(erse)15
Xb(heat)g(equation)p 1585 601 V 303 657 V 328 640 a Fl(ilaplace)61
Xb Fo(In)o(v)o(erse)15 b(Laplace)i(transformation)p 1585
X657 V 303 714 V 328 697 a Fl(pa)o(rallax)54 b Fo(Stellar)16
Xb(parallax)g(problem)f(with)h(real)f(observ)m(ations)p
X1585 714 V 303 770 V 328 753 a Fl(phillips)71 b Fo(Phillips')17
Xb(\\famous")d(test)h(problem)p 1585 770 V 303 827 V 328
X810 a Fl(sha)o(w)109 b Fo(One-dimensional)18 b(image)d(restoration)g
X(mo)q(del)p 1585 827 V 303 883 V 328 866 a Fl(spik)o(es)92
Xb Fo(T)l(est)15 b(problem)h(with)f(a)g(\\spiky")h(solution)p
X1585 883 V 303 940 V 328 923 a Fl(ursell)103 b Fo(In)o(tegral)15
Xb(equation)h(with)f(no)g(square)g(in)o(tegrable)h(solution)p
X1585 940 V 303 996 V 328 979 a Fl(wing)113 b Fo(T)l(est)15
Xb(problem)h(with)f(a)g(discon)o(tin)o(uous)h(solution)p
X1585 996 V 304 998 1283 2 v 307 1062 1276 2 v 306 1119
X2 57 v 507 1102 a(ST)l(AND)o(ARD-F)o(ORM)g(TRANSF)o(ORMA)l(TION)p
X1582 1119 V 307 1121 1276 2 v 306 1177 2 57 v 332 1160
Xa Fl(gen)p 401 1160 14 2 v 17 w(fo)o(rm)47 b Fo(T)l(ransforms)15
Xb(a)f(standard-form)h(solution)h(bac)o(k)f(in)o(to)g(the)p
X1582 1177 2 57 v 306 1234 V 551 1217 a(general-form)h(setting)p
X1582 1234 V 306 1290 V 332 1273 a Fl(std)p 391 1273 14
X2 v 17 w(fo)o(rm)57 b Fo(T)l(ransforms)15 b(a)f(general-form)i(problem)
Xf(in)o(to)h(one)f(in)p 1582 1290 2 57 v 306 1346 V 551
X1329 a(standard)g(form)p 1582 1346 V 307 1348 1276 2
Xv 211 1413 1468 2 v 210 1469 2 57 v 719 1452 a(UTILITY)h(R)o(OUTINES)p
X1678 1469 V 211 1471 1468 2 v 210 1528 2 57 v 236 1511
Xa Fl(bidiag)72 b Fo(Bidiagonalization)17 b(of)e(a)g(matrix)g(b)o(y)g
X(Householder)h(transformations)p 1678 1528 V 210 1584
XV 236 1567 a Fl(cgsvd)81 b Fo(Computes)14 b(the)i(compact)f
X(generalized)i Fk(SVD)d Fo(of)h(a)g(matrix)g(pair)p 1678
X1584 V 210 1640 V 236 1623 a Fl(csvd)104 b Fo(Computes)14
Xb(the)i(compact)f Fk(SVD)f Fo(of)h(an)g Fn(m)10 b Fm(\002)h
XFn(n)k Fo(matrix)p 1678 1640 V 210 1697 V 236 1680 a
XFl(get)p 298 1680 14 2 v 17 w(l)98 b Fo(Pro)q(duces)15
Xb(a)g(\()p Fn(n)10 b Fm(\000)h Fn(d)p Fo(\))e Fm(\002)i
XFn(n)k Fo(matrix)g(whic)o(h)h(is)g(the)f(discrete)p 1678
X1697 2 57 v 210 1753 V 421 1736 a(appro)o(ximation)g(to)f(the)i
XFn(d)p Fo(th)e(order)h(deriv)m(ativ)o(e)i(op)q(erator)p
X1678 1753 V 210 1810 V 236 1793 a Fl(lanc)p 315 1793
X14 2 v 17 w(b)69 b Fo(P)o(erforms)14 b Fn(k)i Fo(steps)f(of)g(the)g
X(Lanczos)h(bidiagonalization)p 1678 1810 2 57 v 210 1866
XV 421 1849 a(pro)q(cess)f(with/without)g(reorthogonalization)p
X1678 1866 V 210 1923 V 236 1906 a Fl(regutm)50 b Fo(Generates)14
Xb(random)h(test)g(matrices)g(for)g(regularization)h(metho)q(ds)p
X1678 1923 V 211 1924 1468 2 v 186 1989 1519 2 v 185 2046
X2 57 v 687 2029 a(A)o(UXILIAR)l(Y)h(R)o(OUTINES)p 1703
X2046 V 186 2047 1519 2 v 185 2104 2 57 v 211 2087 a Fl(app)p
X282 2087 14 2 v 17 w(hh)p 345 2087 V 17 w(l)75 b Fo(Applies)17
Xb(a)e(Householder)h(transformation)e(from)g(the)i(left)p
X1703 2104 2 57 v 185 2160 V 211 2143 a Fl(gen)p 280 2143
X14 2 v 16 w(hh)106 b Fo(Generates)15 b(a)f(Householder)j
X(transformation)p 1703 2160 2 57 v 185 2217 V 211 2200
Xa Fl(heb)p 280 2200 14 2 v 17 w(new)77 b Fo(Newton-Raphson)15
Xb(iteration)h(with)f(Heb)q(den's)i(rational)p 1703 2217
X2 57 v 185 2273 V 445 2256 a(appro)o(ximation,)e(used)g(in)h
XFl(lsqi)p 1703 2273 V 185 2330 V 211 2313 a(lsolve)131
Xb Fo(In)o(v)o(ersion)16 b(with)f Fn(A)p Fo(-w)o(eigh)o(ted)h
X(generalized)h(in)o(v)o(erse)e(of)g Fn(L)p 1703 2330
XV 185 2386 V 211 2369 a Fl(ltsolve)115 b Fo(In)o(v)o(ersion)16
Xb(with)f(transp)q(osed)g Fn(A)p Fo(-w)o(eigh)o(ted)h(generalized)h(in)o
X(v)o(erse)f(of)e Fn(L)p 1703 2386 V 185 2443 V 211 2426
Xa Fl(newton)98 b Fo(Newton-Raphson)15 b(iteration,)h(used)f(in)h
XFl(discrep)p 1703 2443 V 185 2499 V 211 2482 a(pinit)150
Xb Fo(Initialization)18 b(for)c(treating)h(general-form)g(problems)p
X1703 2499 V 185 2558 2 59 v 211 2541 a Fl(p)o(ythag)107
Xb Fo(Computes)660 2503 y Fm(p)p 698 2503 139 2 v 38 x
XFn(a)722 2528 y Fj(2)751 2541 y Fo(+)11 b Fn(b)817 2528
Xy Fj(2)p 1703 2558 2 59 v 185 2614 2 57 v 211 2597 a
XFl(regudemo)49 b Fo(T)l(utorial)15 b(in)o(tro)q(duction)i(to)d
XFf(Regulariza)m(tion)j(Tools)p 1703 2614 V 185 2671 V
X211 2654 a Fl(spleval)109 b Fo(Computes)15 b(p)q(oin)o(ts)g(on)g(a)g
X(spline)i(or)e(spline)i(curv)o(e)p 1703 2671 V 186 2672
X1519 2 v eop
X%%Page: 45 47
X45 46 bop 59 159 a Fo(Regularization)17 b(T)l(o)q(ols)e(Reference)1106
Xb(45)p 59 178 1767 2 v 59 304 a Fr(The)18 b(T)-5 b(est)19
Xb(Problems)59 406 y Fo(There)e(are)f(12)g(built-in)j(test)d(problems)h
X(in)g Ff(Regulariza)m(tion)i(Tools)p Fo(.)k(T)l(en)17
Xb(of)f(them)h(are)f(tak)o(en)59 462 y(from)j(the)g(literature)h(\(cf.)f
X(the)g(follo)o(wing)h(man)o(ual)f(pages)g(for)g(references\))h(while)h
X(the)e(remaining,)59 519 y Fl(spik)o(es)p Fo(,)g(is)f(\\co)q(ok)o(ed)f
X(up")g(for)g(this)g(pac)o(k)m(age.)26 b(All)19 b(of)e(them)g(ha)o(v)o
X(e)g(in)h(common)f(that)g(they)g(are)g(easy)59 575 y(to)d(generate,)g
X(and)g(they)h(share)f(the)g(c)o(haracteristic)h(features)f(of)g
X(discrete)h(ill-p)q(osed)i(problems)e(men-)59 632 y(tioned)h(in)g
X(Section)g(2.3.)130 688 y(All)g(the)f(test)f(problems)h(are)g(deriv)o
X(ed)h(from)e(discretizations)i(of)e(a)h(F)l(redholm)g(in)o(tegral)g
X(equation)59 745 y(of)e(the)h(\014rst)f(kind.)21 b(Tw)o(o)12
Xb(di\013eren)o(t)i(discretization)h(tec)o(hniques)g(are)f(used:)19
Xb(the)14 b(quadrature)f(metho)q(d)59 801 y(and)g(the)h(Galerkin)g
X(metho)q(d)f(with)h(orthonormal)e(basis)i(functions.)20
Xb(In)13 b(the)h Fk(quadr)n(atur)n(e)h(metho)n(d)f Fo([18)o(,)59
X857 y(Chapter)h(6],)f(the)h(in)o(tegral)h(is)g(appro)o(ximated)f(b)o(y)
Xg(a)g(w)o(eigh)o(ted)g(sum,)g(i.e.,)455 927 y Fh(Z)497
X940 y Fg(b)479 1021 y(a)522 984 y Fn(K)s Fo(\()p Fn(s;)8
Xb(t)p Fo(\))g Fn(f)d Fo(\()p Fn(t)p Fo(\))j Fn(dt)j Fm(\031)i
XFn(I)872 991 y Fg(n)895 984 y Fo(\()p Fn(s)p Fo(\))f(=)1032
X931 y Fg(n)1012 944 y Fh(X)1014 1035 y Fg(i)p Fj(=1)1080
X984 y Fn(w)1113 991 y Fg(j)1138 984 y Fn(K)s Fo(\()p
XFn(s;)c(t)1256 991 y Fg(j)1274 984 y Fo(\))g Fn(f)d Fo(\()p
XFn(T)1372 991 y Fg(j)1389 984 y Fo(\))15 b Fn(:)59 1122
Xy Fo(In)20 b(particular,)g(for)f(the)g(midp)q(oin)o(t)h(rule)g(w)o(e)f
X(use)g Fn(w)982 1129 y Fg(j)1019 1122 y Fo(=)h(\()p Fn(b)12
Xb Fm(\000)h Fn(a)p Fo(\))p Fn(=n)19 b Fo(and)g Fn(t)1391
X1129 y Fg(j)1429 1122 y Fo(=)g(\()p Fn(j)c Fm(\000)1588
X1105 y Fj(1)p 1588 1112 18 2 v 1588 1138 a(2)1611 1122
Xy Fo(\)\()p Fn(b)c Fm(\000)i Fn(a)p Fo(\))p Fn(=n)p Fo(,)59
X1179 y Fn(j)i Fo(=)e(1)p Fn(;)8 b(:)g(:)g(:)d(;)j(n)p
XFo(.)18 b(Collo)q(cation)13 b(in)g(the)g Fn(n)g Fo(p)q(oin)o(ts)f
XFn(s)882 1186 y Fj(1)902 1179 y Fn(;)c(:)g(:)g(:)d(;)j(s)1025
X1186 y Fg(n)1061 1179 y Fo(then)k(leads)h(to)f(the)h(requiremen)o(ts)g
XFn(I)1689 1186 y Fg(n)1712 1179 y Fo(\()p Fn(s)1751 1186
Xy Fg(i)1765 1179 y Fo(\))f(=)59 1235 y Fn(g)r Fo(\()p
XFn(s)122 1242 y Fg(i)135 1235 y Fo(\),)j Fn(i)e Fo(=)h(1)p
XFn(;)8 b(:)g(:)g(:)d(;)j(n)p Fo(.)20 b(Hence,)c(w)o(e)g(obtain)g(a)f
X(system)g(of)g(linear)i(algebraic)g(equations)e Fn(A)8
Xb Fp(x)13 b Fo(=)h Fp(b)h Fo(with)59 1292 y(elemen)o(ts)i(giv)o(en)f(b)
Xo(y)g Fn(a)453 1299 y Fg(ij)497 1292 y Fo(=)e Fn(w)579
X1299 y Fg(j)604 1292 y Fn(K)s Fo(\()p Fn(s)685 1299 y
XFg(i)699 1292 y Fn(;)8 b(t)736 1299 y Fg(j)754 1292 y
XFo(\))16 b(and)g Fn(b)897 1299 y Fg(i)924 1292 y Fo(=)e
XFn(g)r Fo(\()p Fn(s)1036 1299 y Fg(i)1050 1292 y Fo(\))h(for)g
XFn(i;)8 b(j)15 b Fo(=)f(1)p Fn(;)8 b(:)g(:)g(:)d(;)j(n)p
XFo(.)21 b(If)c(the)f(solution)g Fn(f)21 b Fo(is)59 1348
Xy(kno)o(wn)16 b(then)g(w)o(e)g(represen)o(t)g(it)g(b)o(y)g
XFp(x)g Fo(with)h(elemen)o(ts)f Fn(x)1044 1355 y Fg(j)1077
X1348 y Fo(=)e Fn(f)5 b Fo(\()p Fn(t)1187 1355 y Fg(j)1206
X1348 y Fo(\),)15 b Fn(j)h Fo(=)f(1)p Fn(;)8 b(:)g(:)g(:)t(;)g(n)p
XFo(.)22 b(In)17 b(the)f Fk(Galerkin)59 1405 y(metho)n(d)p
XFo(,)f(w)o(e)g(c)o(ho)q(ose)g(the)h(follo)o(wing)g(orthonormal)e(b)q(o)
Xo(x)h(functions)h(as)f(basis)h(functions:)229 1535 y
XFn( )259 1542 y Fg(i)273 1535 y Fo(\()p Fn(s)p Fo(\))c(=)390
X1463 y Fh(\()445 1516 y Fn(h)471 1487 y Fe(\000)503 1474
Xy Fd(1)p 503 1480 16 2 v 503 1500 a(2)471 1521 y Fg(s)567
X1516 y Fn(;)53 b(s)13 b Fm(2)g Fo([)p Fn(s)744 1523 y
XFg(i)p Fe(\000)p Fj(1)803 1516 y Fn(;)8 b(s)845 1523
Xy Fg(i)858 1516 y Fo(])445 1572 y(0)99 b Fn(;)53 b Fo(elsewhere)950
X1535 y Fn(;)f(\036)1042 1542 y Fg(i)1056 1535 y Fo(\()p
XFn(t)p Fo(\))13 b(=)1169 1463 y Fh(\()1223 1516 y Fn(h)1249
X1487 y Fe(\000)1281 1474 y Fd(1)p 1282 1480 V 1282 1500
Xa(2)1249 1527 y Fg(t)1345 1516 y Fn(;)53 b(t)13 b Fm(2)g
XFo([)p Fn(t)1512 1523 y Fg(i)p Fe(\000)p Fj(1)1571 1516
Xy Fn(;)8 b(t)1608 1523 y Fg(i)1622 1516 y Fo(])1223 1572
Xy(0)99 b Fn(;)53 b Fo(elsewhere)59 1668 y(in)21 b(whic)o(h)g
XFn(h)278 1675 y Fg(s)317 1668 y Fo(=)g(\()p Fn(d)13 b
XFm(\000)g Fn(c)p Fo(\))p Fn(=n)p Fo(,)20 b Fn(h)623 1675
Xy Fg(t)659 1668 y Fo(=)h(\()p Fn(b)13 b Fm(\000)g Fn(a)p
XFo(\))p Fn(=n)p Fo(,)21 b(and)f Fn(s)1054 1675 y Fg(i)1089
X1668 y Fo(=)h Fn(ih)1187 1675 y Fg(s)1205 1668 y Fo(,)g
XFn(t)1255 1675 y Fg(i)1290 1668 y Fo(=)g Fn(ih)1388 1675
Xy Fg(t)1403 1668 y Fo(,)g Fn(i)f Fo(=)h(0)p Fn(;)8 b(:)g(:)g(:)t(;)g(n)
Xp Fo(.)34 b(Then)59 1724 y(the)21 b(Galerkin)g(metho)q(d)g([3])f(leads)
Xi(to)e(a)g(linear)i(system)e(of)h(equations)g Fn(A)8
Xb Fp(x)21 b Fo(=)h Fp(b)f Fo(with)g(elemen)o(ts)59 1780
Xy(giv)o(en)c(b)o(y)g(Eq.)f(\(2.4\).)24 b(Similarly)l(,)19
Xb(w)o(e)d(represen)o(t)h(the)g(solution)h Fn(f)k Fo(b)o(y)16
Xb(the)h(v)o(ector)f Fp(x)h Fo(with)g(elemen)o(ts)59 1837
Xy Fn(x)85 1844 y Fg(j)120 1837 y Fo(=)173 1802 y Fh(R)200
X1816 y Fg(b)192 1851 y(a)225 1837 y Fn(\036)252 1844
Xy Fg(j)270 1837 y Fo(\()p Fn(t)p Fo(\))8 b Fn(f)d Fo(\()p
XFn(t)p Fo(\))j Fn(dt)p Fo(,)17 b Fn(j)i Fo(=)f(1)p Fn(;)8
Xb(:)g(:)g(:)t(;)g(n)p Fo(.)27 b(W)l(e)18 b(stress)f(that)h(for)f(b)q
X(oth)h(metho)q(ds)f(the)h(pro)q(duct)h Fn(A)8 b Fp(x)17
Xb Fo(is,)59 1893 y(in)h(general,)g Fk(di\013er)n(ent)e
XFo(from)g Fp(b)p Fo(.)25 b(The)18 b(table)f(b)q(elo)o(w)h(giv)o(es)f
X(an)g(o)o(v)o(erview)g(of)f(the)i(12)e(test)g(problems,)59
X1950 y(while)h(graphs)e(of)f Fp(x)h Fo(for)g Fn(n)e Fo(=)g(100)h(are)h
X(giv)o(en)g(in)h(the)g(individual)i(man)o(ual)e(pages.)p
X486 2068 918 2 v 485 2124 2 57 v 511 2107 a(test)f(problem)p
X785 2124 V 50 w(discretization)p 1101 2124 V 51 w Fn(A)8
Xb Fp(x)k Fo(=)h Fp(b)p 1403 2124 V 486 2126 918 2 v 486
X2134 V 485 2190 2 57 v 511 2173 a Fl(baa)o(rt)p 785 2190
XV 202 w Fo(Galerkin)p 1101 2190 V 145 w(no)p 1403 2190
XV 485 2247 V 511 2230 a Fl(blur)p 785 2247 V 227 w Fo({)p
X1101 2247 V 292 w(y)o(es)p 1403 2247 V 485 2303 V 511
X2286 a Fl(deriv2)p 785 2303 V 186 w Fo(Galerkin)p 1101
X2303 V 145 w(y)o(es)p 1403 2303 V 485 2360 V 511 2343
Xa Fl(fo)o(xgo)q(o)q(d)p 785 2360 V 149 w Fo(quadrature)p
X1101 2360 V 96 w(no)p 1403 2360 V 485 2416 V 511 2399
Xa Fl(heat)p 785 2416 V 219 w Fo(quadrature)p 1101 2416
XV 96 w(y)o(es)p 1403 2416 V 485 2473 V 511 2456 a Fl(ilaplace)p
X785 2473 V 160 w Fo(quadrature)p 1101 2473 V 96 w(y)o(es)p
X1403 2473 V 485 2529 V 511 2512 a Fl(pa)o(rallax)p 785
X2529 V 153 w Fo(Galerkin)p 1101 2529 V 145 w Fp(x)i Fo(not)g(kno)o(wn)p
X1403 2529 V 485 2586 V 511 2569 a Fl(phillips)p 785 2586
XV 170 w Fo(Galerkin)p 1101 2586 V 145 w(no)p 1403 2586
XV 485 2642 V 511 2625 a Fl(sha)o(w)p 785 2642 V 208 w
XFo(quadrature)p 1101 2642 V 96 w(y)o(es)p 1403 2642 V
X485 2699 V 511 2682 a Fl(spik)o(es)p 785 2699 V 191 w
XFo(\\co)q(ok)o(ed)g(up")p 1101 2699 V 69 w(y)o(es)p 1403
X2699 V 485 2755 V 511 2738 a Fl(ursell)p 785 2755 V 202
Xw Fo(Galerkin)p 1101 2755 V 145 w(no)h Fp(x)e Fo(exists)p
X1403 2755 V 485 2811 V 511 2794 a Fl(wing)p 785 2811
XV 212 w Fo(Galerkin)p 1101 2811 V 145 w(no)p 1403 2811
XV 486 2813 918 2 v eop
X%%Page: 46 48
X46 47 bop 64 159 a Fo(46)1589 b Fl(app)p 1770 159 14
X2 v 17 w(hh)p 64 178 1767 2 v 59 304 a Fb(app)p 151 304
X18 2 v 21 w(hh)59 406 y Fp(Purp)q(ose:)130 475 y Fo(Apply)16
Xb(a)f(Householder)h(transformation.)59 581 y Fp(Synopsis:)130
X650 y Fl(A)f(=)h(app)p 297 650 14 2 v 17 w(hh)8 b(\(A,b)q(eta,v\))59
X756 y Fp(Description)130 825 y Fl(app)p 201 825 V 17
Xw(hh)15 b Fo(applies)i(the)d(Householder)i(transformation,)d(de\014ned)
Xj(b)o(y)f(the)f(v)o(ector)g Fl(v)h Fo(and)g(the)f(scaler)59
X882 y Fl(b)q(eta)p Fo(,)i(to)f(the)g(matrix)g Fl(A)p
XFo(;)g(i.e.,)710 938 y Fl(A)e Fm( )g Fo(\()p Fn(I)849
X945 y Fg(n)882 938 y Fm(\000)e Fl(b)q(eta)d(v)g(v)1069
X919 y Fg(T)1097 938 y Fo(\))g Fl(A)14 b Fn(:)59 1071
Xy Fp(See)j(also:)130 1140 y Fl(gen)p 199 1140 V 16 w(hh)p
Xeop
X%%Page: 47 49
X47 48 bop 59 159 a Fl(baa)o(rt)1623 b Fo(47)p 59 178
X1767 2 v 59 304 a Fb(baa)n(rt)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(T)l(est)15 b(problem:)20 b(F)l(redholm)c(in)o(tegral)g
X(equation)f(of)g(the)g(\014rst)g(kind.)59 581 y Fp(Synopsis:)130
X650 y Fl([A,b,x])g(=)h(baa)o(rt)8 b(\(n\))59 756 y Fp(Description:)130
X825 y Fo(Discretization)19 b(of)f(an)h(arti\014cial)g(F)l(redholm)g(in)
Xo(tegral)g(equation)g(of)f(the)h(\014rst)f(kind)h(\(2.1\))e(with)59
X882 y(k)o(ernel)f Fn(K)i Fo(and)d(righ)o(t-hand)h(side)g
XFn(g)h Fo(giv)o(en)e(b)o(y)528 1001 y Fn(K)s Fo(\()p
XFn(s;)8 b(t)p Fo(\))k(=)h(exp\()p Fn(s)8 b Fo(cos)f Fn(t)p
XFo(\))15 b Fn(;)98 b(g)r Fo(\()p Fn(s)p Fo(\))12 b(=)h(2)1244
X971 y(sin)c Fn(s)p 1244 991 85 2 v 1276 1033 a(s)1349
X1001 y(;)59 1116 y Fo(and)15 b(with)h(in)o(tegration)f(in)o(terv)m(als)
Xh Fn(s)d Fm(2)g Fo([0)p Fn(;)802 1099 y Fg(\031)p 802
X1106 22 2 v 804 1132 a Fj(2)828 1116 y Fo(])i(and)g Fn(t)e
XFm(2)g Fo([0)p Fn(;)8 b(\031)r Fo(].)18 b(The)d(solution)h(is)g(giv)o
X(en)g(b)o(y)821 1219 y Fn(f)5 b Fo(\()p Fn(t)p Fo(\))13
Xb(=)g(sin)8 b Fn(t)16 b(:)59 1321 y Fo(The)f(size)i(of)d(the)i(matrix)f
XFl(A)g Fo(is)h Fl(n)10 b Fm(\002)h Fl(n)p Fo(.)59 1427
Xy Fp(Examples:)130 1496 y Fo(Generate)k(a)f(\\noisy")i(problem)f(of)g
X(size)h Fl(n)g(=)f(32)p Fo(:)130 1565 y Fl([A,b,x])g(=)h(baa)o(rt)8
Xb(\(32\);)13 b(b)i(=)h(b)f(+)h(1e-3)p Fm(\003)p Fl(randn)8
Xb(\(size\(b\)\);)59 1671 y Fp(Limitations:)130 1740 y
XFo(The)15 b(order)g Fl(n)h Fo(m)o(ust)e(b)q(e)i(ev)o(en.)59
X1846 y Fp(References:)115 1917 y Fo(1.)22 b(M.)13 b(L.)h(Baart,)f
XFk(The)h(use)h(of)g(auto-c)n(orr)n(elation)h(for)f(pseudo-r)n(ank)h
X(determination)f(in)g(noisy)f(il)r(l-)173 1973 y(c)n(onditione)n(d)h
X(line)n(ar)h(le)n(ast-squar)n(es)f(pr)n(oblems)p Fo(,)f(IMA)h(J.)g
X(Numer.)g(Anal.)h Fp(2)f Fo(\(1982\),)e(241{247.)531
X2084 y
X 14432612 11188078 5262540 26773176 34995896 49731010 startTexFig
X 531 2084 a
X%%BeginDocument: testfigs/baart.eps
X
X% MathWorks dictionary
X/mathworks 50 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/xdef {exch def} bdef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot {gsave} bdef
X/eplot {grestore} bdef
X
X% bounding box in default coordinates
X/dx 0 def
X/dy 0 def
X/sides {/dx urx llx sub def /dy ury lly sub def} bdef
X/llx 0 def
X/lly 0 def
X/urx 0 def
X/ury 0 def
X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef
X
X% orientation switch
X/por true def
X/portrait {/por true def} bdef
X/landscape {/por false def} bdef
X
X% coordinate system mappings
X/px 8.5 72 mul def
X/py 11.0 72 mul def
X/port {dx py div dy px div scale} bdef
X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef
X/csm {llx lly translate por {port} {land} ifelse} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { []        0 setdash } bdef
X/DO { [0 4]     0 setdash } bdef
X/DA { [4]       0 setdash } bdef
X/DD { [0 4 3 4] 0 setdash } bdef
X
X% macros for moveto and polyline
X/M {moveto}  bdef
X/L {{lineto} repeat stroke} bdef
X
X% font control
X/font_spec () def
X/lfont currentfont def
X/sfont currentfont def
X/selfont {/font_spec xdef} bdef
X/savefont {font_spec findfont exch scalefont def} bdef
X/LF {lfont setfont} bdef
X/SF {sfont setfont} bdef
X
X% text display
X/sh {show} bdef
X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef
X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef
X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef
X
Xcurrentdict end def %dictionary
X
Xmathworks begin
X
X% fonts for text, standard numbers and exponents
X/Times-Roman selfont
X/lfont 30 savefont
X/sfont 21 savefont
X
X%line width, line cap, and joint spec
X.5 setlinewidth 1 setlinecap 1 setlinejoin
X
Xend
X
Xmathworks begin
Xbpage
X
Xbplot
X80 407 532 756 bbox portrait csm
X
XSO
X 78.09  77.33 757.00  77.33 757.00 570.67  78.09 570.67  78.09  77.33 M 4 L
XLF
X 73.09  71.33 M (0) rsh
X 78.09 132.15  84.83 132.15 M 1 L
X750.27 132.15 757.00 132.15 M 1 L
X 73.09 126.15 M (0.02) rsh
X 78.09 186.96  84.83 186.96 M 1 L
X750.27 186.96 757.00 186.96 M 1 L
X 73.09 180.96 M (0.04) rsh
X 78.09 241.78  84.83 241.78 M 1 L
X750.27 241.78 757.00 241.78 M 1 L
X 73.09 235.78 M (0.06) rsh
X 78.09 296.59  84.83 296.59 M 1 L
X750.27 296.59 757.00 296.59 M 1 L
X 73.09 290.59 M (0.08) rsh
X 78.09 351.41  84.83 351.41 M 1 L
X750.27 351.41 757.00 351.41 M 1 L
X 73.09 345.41 M (0.1) rsh
X 78.09 406.22  84.83 406.22 M 1 L
X750.27 406.22 757.00 406.22 M 1 L
X 73.09 400.22 M (0.12) rsh
X 78.09 461.04  84.83 461.04 M 1 L
X750.27 461.04 757.00 461.04 M 1 L
X 73.09 455.04 M (0.14) rsh
X 78.09 515.85  84.83 515.85 M 1 L
X750.27 515.85 757.00 515.85 M 1 L
X 73.09 509.85 M (0.16) rsh
X 73.09 564.67 M (0.18) rsh
X 78.09  55.33 M (0) csh
X145.98  77.33 145.98  82.53 M 1 L
X145.98 565.47 145.98 570.67 M 1 L
X145.98  55.33 M (10) csh
X213.87  77.33 213.87  82.53 M 1 L
X213.87 565.47 213.87 570.67 M 1 L
X213.87  55.33 M (20) csh
X281.77  77.33 281.77  82.53 M 1 L
X281.77 565.47 281.77 570.67 M 1 L
X281.77  55.33 M (30) csh
X349.66  77.33 349.66  82.53 M 1 L
X349.66 565.47 349.66 570.67 M 1 L
X349.66  55.33 M (40) csh
X417.55  77.33 417.55  82.53 M 1 L
X417.55 565.47 417.55 570.67 M 1 L
X417.55  55.33 M (50) csh
X485.44  77.33 485.44  82.53 M 1 L
X485.44 565.47 485.44 570.67 M 1 L
X485.44  55.33 M (60) csh
X553.33  77.33 553.33  82.53 M 1 L
X553.33 565.47 553.33 570.67 M 1 L
X553.33  55.33 M (70) csh
X621.22  77.33 621.22  82.53 M 1 L
X621.22 565.47 621.22 570.67 M 1 L
X621.22  55.33 M (80) csh
X689.11  77.33 689.11  82.53 M 1 L
X689.11 565.47 689.11 570.67 M 1 L
X689.11  55.33 M (90) csh
X757.00  55.33 M (100) csh
X 84.88  84.96  91.67 100.21  98.46 115.44 105.25 130.64 112.04 145.78 
X118.83 160.85 125.62 175.84 132.41 190.73 139.20 205.51 145.98 220.17 
X152.77 234.68 159.56 249.04 166.35 263.23 173.14 277.23 179.93 291.04 
X186.72 304.64 193.51 318.01 200.30 331.14 207.09 344.03 213.87 356.65 
X220.66 369.00 227.45 381.05 234.24 392.81 241.03 404.26 247.82 415.38 
X254.61 426.17 261.40 436.62 268.19 446.71 274.98 456.44 281.77 465.79 
X288.55 474.76 295.34 483.34 302.13 491.52 308.92 499.28 315.71 506.64 
X322.50 513.56 329.29 520.06 336.08 526.12 342.87 531.74 349.66 536.91 
X356.45 541.62 363.23 545.88 370.02 549.68 376.81 553.01 383.60 555.87 
X390.39 558.25 397.18 560.17 403.97 561.60 410.76 562.56 417.55 563.04 
X424.34 563.04 431.12 562.56 437.91 561.60 444.70 560.17 451.49 558.25 
X458.28 555.87 465.07 553.01 471.86 549.68 478.65 545.88 485.44 541.62 
X492.23 536.91 499.02 531.74 505.80 526.12 512.59 520.06 519.38 513.56 
X526.17 506.64 532.96 499.28 539.75 491.52 546.54 483.34 553.33 474.76 
X560.12 465.79 566.91 456.44 573.70 446.71 580.48 436.62 587.27 426.17 
X594.06 415.38 600.85 404.26 607.64 392.81 614.43 381.05 621.22 369.00 
X628.01 356.65 634.80 344.03 641.59 331.14 648.37 318.01 655.16 304.64 
X661.95 291.04 668.74 277.23 675.53 263.23 682.32 249.04 689.11 234.68 
X695.90 220.17 702.69 205.51 709.48 190.73 716.27 175.84 723.05 160.85 
X729.84 145.78 736.63 130.64 743.42 115.44 750.21 100.21 757.00  84.96 
XM 99 L
Xeplot
X
Xepage
Xend
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 48 50
X48 49 bop 64 159 a Fo(48)1607 b Fl(bidiag)p 64 178 1767
X2 v 59 304 a Fb(bidiag)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Bidiagonalization)17 b(of)e(an)g Fn(m)10 b Fm(\002)g
XFn(n)16 b Fo(matrix)f(with)g Fn(m)e Fm(\025)g Fn(n)p
XFo(.)59 581 y Fp(Synopsis:)130 650 y Fl(B)i(=)h(bidiag)8
Xb(\(A\))130 719 y([U,B,V])15 b(=)h(bidiag)8 b(\(A\))59
X825 y Fp(Description:)130 894 y Fo(If)16 b Fl(A)g Fo(is)h(an)f
XFn(m)11 b Fm(\002)g Fn(n)16 b Fo(matriz)g(with)h Fn(m)d
XFm(\025)h Fn(n)h Fo(then)h Fl(bidiag)f Fo(uses)g(Householder)i
X(transformations)c(to)59 950 y(compute)h(a)g(bidiagonalization)j(of)d
XFl(A)p Fo(:)826 1007 y Fl(A)d Fo(=)h Fl(U)8 b(B)g(V)1024
X988 y Fg(T)1052 1007 y Fn(;)59 1090 y Fo(where)15 b Fl(B)e
XFm(2)g Fp(I)-8 b(R)328 1072 y Fg(n)p Fe(\002)p Fg(n)415
X1090 y Fo(is)16 b(upp)q(er)g(bidiagonal,)660 1277 y Fl(B)d
XFo(=)751 1155 y Fh(0)751 1228 y(B)751 1253 y(B)751 1278
Xy(B)751 1304 y(@)795 1183 y Fn(b)815 1190 y Fj(11)897
X1183 y Fn(b)917 1190 y Fj(12)897 1240 y Fn(b)917 1247
Xy Fj(22)999 1240 y Fn(b)1019 1247 y Fj(23)1004 1284 y
XFo(.)1021 1297 y(.)1039 1309 y(.)1110 1284 y(.)1127 1297
Xy(.)1145 1309 y(.)1102 1370 y Fn(b)1122 1377 y Fg(nn)1173
X1155 y Fh(1)1173 1228 y(C)1173 1253 y(C)1173 1278 y(C)1173
X1304 y(A)1217 1277 y Fn(;)59 1469 y Fo(and)j(the)g(matrices)g
XFl(U)f Fm(2)f Fp(I)-8 b(R)551 1451 y Fg(m)p Fe(\002)p
XFg(n)650 1469 y Fo(and)16 b Fl(V)f Fm(2)f Fp(I)-8 b(R)880
X1451 y Fg(n)p Fe(\002)p Fg(n)968 1469 y Fo(ha)o(v)o(e)15
Xb(orthonormal)h(columns.)23 b(The)16 b(bidiagonal)59
X1526 y(matrix)f Fl(B)g Fo(is)h(stored)f(as)g(a)f(sparse)h(matrix.)59
X1632 y Fp(Examples:)130 1701 y Fo(Compute)e(the)h(bidiagonalization)i
X(of)e Fl(A)g Fo(and)g(compare)f(the)h(singular)h(v)m(alue)g(of)e
XFl(A)h Fo(with)h(those)e(of)59 1757 y Fl(B)j Fo(\(they)e(should)j(b)q
X(e)f(iden)o(tical)h(to)d(ab)q(out)h(mac)o(hine)h(precision\):)130
X1826 y Fl(B)f(=)h(bidiag)8 b(\(A\);)14 b([svd)8 b(\(A\),csvd)g(\(B\)])
X59 1932 y Fp(Algorithm:)130 2001 y Fo(Alternating)17
Xb(left)g(and)g(righ)o(t)g(Householder)h(transformations)d(are)i(used)g
X(to)f(bidiagonalized)k Fl(A)p Fo(.)59 2058 y(If)c Fl(U)f
XFo(and)g Fl(V)h Fo(are)f(also)g(required,)h(then)f(the)h(Householder)g
X(transformations)e(are)g(accum)o(ulated.)59 2164 y Fp(Limitations:)130
X2233 y Fo(The)h(case)g Fn(m)e(<)g(n)i Fo(is)h(not)f(allo)o(w)o(ed.)59
X2339 y Fp(See)i(also:)130 2408 y Fl(bsvd)p Fo(,)f Fl(lanc)p
X322 2408 14 2 v 17 w(b)59 2514 y Fp(References:)115 2585
Xy Fo(1.)22 b(L.)12 b(Eld)o(\023)-21 b(en,)13 b Fk(A)o(lgorithms)g(for)h
X(r)n(e)n(gularization)f(of)g(il)r(l-c)n(onditione)n(d)g(le)n(ast-squar)
Xn(es)f(pr)n(oblems)p Fo(,)g(BIT)173 2642 y Fp(17)j Fo(\(1977\),)e
X(134-145.)p eop
X%%Page: 49 51
X49 50 bop 59 159 a Fl(blur)1648 b Fo(49)p 59 178 1767
X2 v 59 304 a Fb(blur)59 406 y Fp(Purp)q(ose:)130 474
Xy Fo(T)l(est)15 b(problem:)20 b(deblurring)d(of)e(images)g(degraded)h
X(b)o(y)f(atmospheric)g(turbulence)i(blur.)59 580 y Fp(Synopsis:)130
X648 y Fl([A,b,x])e(=)h(blur)8 b(\(N,band,sigma\))59 753
Xy Fp(Description:)130 822 y Fo(This)20 b(image)h(deblurring)h(problem)e
X(arises)h(in)g(connection)g(with)f(the)h(degradation)f(of)f(digital)59
X879 y(images)c(b)o(y)g(atmospheric)h(turbulence)h(blur,)e(mo)q(delled)j
X(b)o(y)d(a)g(Gaussian)g(p)q(oin)o(t-spread)h(function:)556
X1009 y Fn(h)p Fo(\()p Fn(x;)8 b(y)r Fo(\))j(=)838 978
Xy(1)p 753 999 195 2 v 753 1043 a(2)d Fn(\031)g Fl(sigma)927
X1025 y Fj(2)967 1009 y Fo(exp)1044 937 y Fh( )1077 1009
Xy Fm(\000)1124 978 y Fn(x)1150 962 y Fj(2)1180 978 y
XFo(+)j Fn(y)1250 962 y Fj(2)p 1117 999 159 2 v 1117 1043
Xa Fo(2)d Fl(sigma)1256 1025 y Fj(2)1281 937 y Fh(!)1322
X1009 y Fn(:)59 1146 y Fo(The)19 b(matrix)f Fl(A)g Fo(is)h(a)f
X(symmetric)h Fl(N)702 1130 y Fj(2)734 1146 y Fm(\002)12
Xb Fl(N)813 1130 y Fj(2)851 1146 y Fo(doubly)20 b(T)l(o)q(eplitz)g
X(matrix,)e(stored)g(in)h(sparse)f(format,)59 1203 y(and)d(giv)o(en)h(b)
Xo(y)692 1259 y Fl(A)d Fo(=)g(\(2)8 b Fn(\031)g Fl(sigma)975
X1240 y Fj(2)994 1259 y Fo(\))1012 1240 y Fe(\000)p Fj(1)1067
X1259 y Fn(T)16 b Fm(\012)10 b Fn(T)t(;)59 1342 y Fo(where)15
Xb Fn(T)22 b Fo(is)15 b(an)g Fl(N)c Fm(\002)f Fl(N)15
Xb Fo(symmetric)h(banded)g(T)l(o)q(eplitz)h(matrix)e(whose)g(\014rst)f
X(ro)o(w)h(is)g(giv)o(en)h(b)o(y)316 1442 y Fl(z)c Fo(=)h([)p
XFl(exp)p Fo(\()p Fm(\000)p Fo(\([)p Fl(0)f Fo(:)g Fl(band)g
XFm(\000)e Fl(1)p Fo(])p Fn(:)p Fc(^)o Fl(2)p Fo(\))p
XFn(=)p Fo(\()p Fl(2)f Fm(\003)h Fl(sigma)p Fc(^)n Fl(2)p
XFo(\)\);)e Fl(zeros)p Fo(\()p Fl(1)p Fn(;)g Fl(N)f Fm(\000)k
XFl(band)p Fo(\)])p Fn(:)59 1542 y Fo(Only)19 b(elemen)o(ts)f(within)g
X(a)g(distance)g Fl(band)13 b Fm(\000)f Fo(1)17 b(from)g(the)g(diagonal)
Xh(are)f(stored;)h(i.e.,)g Fl(band)h Fo(is)f(the)59 1599
Xy(half-bandwidth)f(of)e(the)g(matrix)g Fn(T)6 b Fo(.)20
Xb(If)15 b Fl(band)h Fo(is)g(not)f(sp)q(eci\014ed,)i(then)e
XFl(band)i Fo(=)e(3)g(is)h(used.)130 1655 y(The)j(parameter)g
XFl(sigma)f Fo(con)o(trols)h(the)g(shap)q(e)h(of)f(the)h(Gaussian)f(p)q
X(oin)o(t)h(spread)f(function)h(and)59 1712 y(th)o(us)c(the)f(amoun)o(t)
Xg(of)h(smo)q(othing)f(\(the)h(larger)g(the)f Fl(sigma)p
XFo(,)g(the)h(wider)g(the)g(function,)g(and)g(the)g(less)59
X1768 y(ill)h(p)q(osed)f(the)f(problem\).)20 b(If)c Fl(sigma)e
XFo(is)i(not)e(sp)q(eci\014ed,)j(then)f Fl(sigma)e Fo(=)i(0.7)e(is)i
X(used.)130 1825 y(The)h(v)o(ector)g Fl(x)g Fo(is)g(a)g(column)o(wise)i
X(stac)o(k)o(ed)d(v)o(ersion)i(of)e(a)h(simple)i(test)d(image,)i(while)g
XFl(b)g Fo(holds)g(a)59 1881 y(column)o(wise)e(stac)o(k)o(ed)f(v)o
X(ersion)g(of)g(the)h(blurrred)g(image;)f(i.e,)g Fl(b)h(=)f(A*x)p
XFo(.)59 1986 y Fp(Limitations:)130 2055 y Fo(The)g(in)o(teger)g
XFl(N)h Fo(should)g(not)f(b)q(e)h(to)q(o)e(small;)i(w)o(e)f(recommend)g
XFl(N)e Fm(\025)g Fo(16.)59 2160 y Fp(Reference:)115 2229
Xy Fo(1.)22 b(M.)c(Hank)o(e)g(&)h(P)l(.)f(C.)g(Hansen,)i
XFk(R)n(e)n(gularization)f(metho)n(ds)g(for)h(lar)n(ge-sc)n(ale)e(pr)n
X(oblems)p Fo(,)h(Surv.)173 2286 y(Math.)14 b(Ind.)h Fp(3)h
XFo(\(1993\),)d(253{315.)354 2395 y
X 16772784 6526379 6051921 27233648 35719495 38745456 startTexFig
X 354 2395 a
X%%BeginDocument: testfigs/blur.eps
X
X
X% MathWorks dictionary
X/MathWorks 150 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/ldef {load def} bind def
X/xdef {exch def} bdef
X/xstore {exch store} bdef
X
X% operator abbreviations
X/c  /clip ldef
X/cc /concat ldef
X/cp /closepath ldef
X/gr /grestore ldef
X/gs /gsave ldef
X/mt /moveto ldef
X/np /newpath ldef
X/cm /currentmatrix ldef
X/sm /setmatrix ldef
X/rc {rectclip} bdef
X/rf {rectfill} bdef
X/rm /rmoveto ldef
X/rl /rlineto ldef
X/s /show ldef
X/sc {setcmykcolor} bdef
X/sr /setrgbcolor ldef
X/sg /setgray ldef
X/w /setlinewidth ldef
X/j /setlinejoin ldef
X/cap /setlinecap ldef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot /gsave ldef
X/eplot {stroke grestore} bdef
X
X% orientation switch
X/portraitMode 	0 def
X/landscapeMode 	1 def
X
X% coordinate system mappings
X/dpi2point 0 def
X
X% font control
X/FontSize 0 def
X/FMS {
X	/FontSize xstore		%save size off stack
X	findfont
X	[FontSize 0 0 FontSize neg 0 0]
X	makefont
X	setfont
X	}bdef
X
X/reencode {
Xexch dup where
X{pop load} {pop StandardEncoding} ifelse
Xexch
Xdup 3 1 roll
Xfindfont dup length dict begin
X  { 1 index /FID ne {def}{pop pop} ifelse } forall
X  /Encoding exch def
X  currentdict
Xend
Xdefinefont pop
X} bdef
X
X/isroman {
Xfindfont /CharStrings get
X/Agrave known
X} bdef
X
X/FMSR {
X3 1 roll 1 index
Xdup isroman
X{reencode} {pop pop} ifelse
Xexch FMS
X} bdef
X
X/csm {
X	1 dpi2point div -1 dpi2point div scale
X	neg translate
X	landscapeMode eq {90 rotate} if
X	} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { [] 0 setdash } bdef
X/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X/DA { [6 dpi2point mul] 0 setdash } bdef
X/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
X
X% macros for lines and objects
X/L {
X	lineto
X	stroke
X	} bdef
X/MP {
X	3 1 roll moveto
X	1 sub {rlineto} repeat
X	} bdef
X/AP {
X	{rlineto} repeat
X	} bdef
X/PP {
X	closepath eofill
X	} bdef
X/DP {
X	closepath stroke
X	} bdef
X/MR {
X	4 -2 roll moveto
X	dup  0 exch rlineto
X	exch 0 rlineto
X	neg  0 exch rlineto
X	closepath
X	} bdef
X/FR {
X	MR stroke
X	} bdef
X/PR {
X	MR fill
X	} bdef
X/L1i {
X	{ currentfile picstr readhexstring pop } image
X	} bdef
X
X/tMatrix matrix def
X/MakeOval {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 0 360 arc
X	tMatrix setmatrix
X	} bdef
X/FO {
X	MakeOval
X	stroke
X	} bdef
X/PO {
X	MakeOval
X	fill
X	} bdef
X
X/PD {
X	currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
X	} bdef
X
X/FA {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arc
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PA {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arc
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X
X/FAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate scale
X	0 0 1 5 -2 roll arcn
X	tMatrix setmatrix
X	stroke
X	} bdef
X/PAn {
X	newpath
X	tMatrix currentmatrix pop
X	translate 0 0 moveto scale
X	0 0 1 5 -2 roll arcn
X	closepath
X	tMatrix setmatrix
X	fill
X	} bdef
X
X
X
Xcurrentdict end def
X
XMathWorks begin
X
X0 cap
X
Xend
X
XMathWorks begin
Xbpage
X
Xbplot
X
X/dpi2point 12 def
XportraitMode 0216 7344 csm
X
X  898   271  5404  2102 MR c np
X88 dict begin %Colortable dictionary
X/c0 { 0 0 0 sr} bdef
X/c1 { 1 1 1 sr} bdef
X/c2 { 1 0 0 sr} bdef
X/c3 { 0 1 0 sr} bdef
X/c4 { 0 0 1 sr} bdef
X/c5 { 1 1 0 sr} bdef
X/c6 { 1 0 1 sr} bdef
X/c7 { 0 1 1 sr} bdef
X1 j
X1 sg
X   0    0 6912 5185 PR
X6 w
X0 -1783 1783 0 0 1783 1136 388 4 MP
XPP
X-1783 0 0 -1783 1783 0 0 1783 1136 388 5 MP stroke
XDO
X4 w
XSO
X6 w
X0 sg
X1136  388 mt 2919  388 L
X1136 2171 mt 2919 2171 L
X2919  388 mt 2919 2171 L
X1136  388 mt 1136 2171 L
X1136 2171 mt 2919 2171 L
X1136  388 mt 1136 2171 L
X1475 2171 mt 1475 2153 L
X1475  388 mt 1475  406 L
X/Helvetica /ISOLatin1Encoding 120 FMSR
X
X1459 2317 mt 
X( ) s
X1831 2171 mt 1831 2153 L
X1831  388 mt 1831  406 L
X1815 2317 mt 
X( ) s
X2188 2171 mt 2188 2153 L
X2188  388 mt 2188  406 L
X2172 2317 mt 
X( ) s
X2545 2171 mt 2545 2153 L
X2545  388 mt 2545  406 L
X2529 2317 mt 
X( ) s
X2901 2171 mt 2901 2153 L
X2901  388 mt 2901  406 L
X2885 2317 mt 
X( ) s
X1136  727 mt 1154  727 L
X2919  727 mt 2901  727 L
X1068  771 mt 
X( ) s
X1136 1083 mt 1154 1083 L
X2919 1083 mt 2901 1083 L
X1068 1127 mt 
X( ) s
X1136 1440 mt 1154 1440 L
X2919 1440 mt 2901 1440 L
X1068 1484 mt 
X( ) s
X1136 1797 mt 1154 1797 L
X2919 1797 mt 2901 1797 L
X1068 1841 mt 
X( ) s
X1136 2153 mt 1154 2153 L
X2919 2153 mt 2901 2153 L
X1068 2197 mt 
X( ) s
X1136 2171 mt 2919 2171 L
X1136  388 mt 2919  388 L
X1136  388 mt 1136 2171 L
X2919  388 mt 2919 2171 L
Xgs 1136 388 1784 1784 MR c np
X1 sg
X0 18 18 0 1136 388 3 MP
XPP
X18 0 0 18 1136 388 3 MP
XPP
X0 18 18 0 1136 406 3 MP
XPP
X18 0 0 18 1136 406 3 MP
XPP
X0 17 18 0 1136 424 3 MP
XPP
X18 0 0 17 1136 424 3 MP
XPP
X0 18 18 0 1136 441 3 MP
XPP
X18 0 0 18 1136 441 3 MP
XPP
X0 18 18 0 1136 459 3 MP
XPP
X18 0 0 18 1136 459 3 MP
XPP
X0 18 18 0 1136 477 3 MP
XPP
X18 0 0 18 1136 477 3 MP
XPP
X0 18 18 0 1136 495 3 MP
XPP
X18 0 0 18 1136 495 3 MP
XPP
X0 18 18 0 1136 513 3 MP
XPP
X18 0 0 18 1136 513 3 MP
XPP
X0 17 18 0 1136 531 3 MP
XPP
X18 0 0 17 1136 531 3 MP
XPP
X0 18 18 0 1136 548 3 MP
XPP
X18 0 0 18 1136 548 3 MP
XPP
X0 18 18 0 1136 566 3 MP
XPP
X18 0 0 18 1136 566 3 MP
XPP
X0 18 18 0 1136 584 3 MP
XPP
X18 0 0 18 1136 584 3 MP
XPP
X0 18 18 0 1136 602 3 MP
XPP
X18 0 0 18 1136 602 3 MP
XPP
X0 18 18 0 1136 620 3 MP
XPP
X18 0 0 18 1136 620 3 MP
XPP
X0 17 18 0 1136 638 3 MP
XPP
X18 0 0 17 1136 638 3 MP
XPP
X0 18 18 0 1136 655 3 MP
XPP
X18 0 0 18 1136 655 3 MP
XPP
X0 18 18 0 1136 673 3 MP
XPP
X18 0 0 18 1136 673 3 MP
XPP
X0 18 18 0 1136 691 3 MP
XPP
X18 0 0 18 1136 691 3 MP
XPP
X0 18 18 0 1136 709 3 MP
XPP
X18 0 0 18 1136 709 3 MP
XPP
X0 18 18 0 1136 727 3 MP
XPP
X18 0 0 18 1136 727 3 MP
XPP
X0 17 18 0 1136 745 3 MP
XPP
X18 0 0 17 1136 745 3 MP
XPP
X0 18 18 0 1136 762 3 MP
XPP
X18 0 0 18 1136 762 3 MP
XPP
X0 18 18 0 1136 780 3 MP
XPP
X18 0 0 18 1136 780 3 MP
XPP
X0 18 18 0 1136 798 3 MP
XPP
X18 0 0 18 1136 798 3 MP
XPP
X0 18 18 0 1136 816 3 MP
XPP
X18 0 0 18 1136 816 3 MP
XPP
X0 18 18 0 1136 834 3 MP
XPP
X18 0 0 18 1136 834 3 MP
XPP
X0 17 18 0 1136 852 3 MP
XPP
X18 0 0 17 1136 852 3 MP
XPP
X0 18 18 0 1136 869 3 MP
XPP
X18 0 0 18 1136 869 3 MP
XPP
X0 18 18 0 1136 887 3 MP
XPP
X18 0 0 18 1136 887 3 MP
XPP
X0 18 18 0 1136 905 3 MP
XPP
X18 0 0 18 1136 905 3 MP
XPP
X0 18 18 0 1136 923 3 MP
XPP
X18 0 0 18 1136 923 3 MP
XPP
X0 18 18 0 1136 941 3 MP
XPP
X18 0 0 18 1136 941 3 MP
XPP
X0 17 18 0 1136 959 3 MP
XPP
X18 0 0 17 1136 959 3 MP
XPP
X0 18 18 0 1136 976 3 MP
XPP
X18 0 0 18 1136 976 3 MP
XPP
X0 18 18 0 1136 994 3 MP
XPP
X18 0 0 18 1136 994 3 MP
XPP
X0 18 18 0 1136 1012 3 MP
XPP
X18 0 0 18 1136 1012 3 MP
XPP
X0 18 18 0 1136 1030 3 MP
XPP
X18 0 0 18 1136 1030 3 MP
XPP
X0 18 18 0 1136 1048 3 MP
XPP
X18 0 0 18 1136 1048 3 MP
XPP
X0 17 18 0 1136 1066 3 MP
XPP
X18 0 0 17 1136 1066 3 MP
XPP
X0 18 18 0 1136 1083 3 MP
XPP
X18 0 0 18 1136 1083 3 MP
XPP
X0 18 18 0 1136 1101 3 MP
XPP
X18 0 0 18 1136 1101 3 MP
XPP
X0 18 18 0 1136 1119 3 MP
XPP
X18 0 0 18 1136 1119 3 MP
XPP
X0 18 18 0 1136 1137 3 MP
XPP
X18 0 0 18 1136 1137 3 MP
XPP
X0 18 18 0 1136 1155 3 MP
XPP
X18 0 0 18 1136 1155 3 MP
XPP
X0 17 18 0 1136 1173 3 MP
XPP
X18 0 0 17 1136 1173 3 MP
XPP
X0 18 18 0 1136 1190 3 MP
XPP
X18 0 0 18 1136 1190 3 MP
XPP
X0 18 18 0 1136 1208 3 MP
XPP
X18 0 0 18 1136 1208 3 MP
XPP
X0 18 18 0 1136 1226 3 MP
XPP
X18 0 0 18 1136 1226 3 MP
XPP
X0 18 18 0 1136 1244 3 MP
XPP
X18 0 0 18 1136 1244 3 MP
XPP
X0 17 18 0 1136 1262 3 MP
XPP
X18 0 0 17 1136 1262 3 MP
XPP
X0 18 18 0 1136 1279 3 MP
XPP
X18 0 0 18 1136 1279 3 MP
XPP
X0 18 18 0 1136 1297 3 MP
XPP
X18 0 0 18 1136 1297 3 MP
XPP
X0 18 18 0 1136 1315 3 MP
XPP
X18 0 0 18 1136 1315 3 MP
XPP
X0 18 18 0 1136 1333 3 MP
XPP
X18 0 0 18 1136 1333 3 MP
XPP
X0 18 18 0 1136 1351 3 MP
XPP
X18 0 0 18 1136 1351 3 MP
XPP
X0 17 18 0 1136 1369 3 MP
XPP
X18 0 0 17 1136 1369 3 MP
XPP
X0 18 18 0 1136 1386 3 MP
XPP
X18 0 0 18 1136 1386 3 MP
XPP
X0 18 18 0 1136 1404 3 MP
XPP
X18 0 0 18 1136 1404 3 MP
XPP
X0 18 18 0 1136 1422 3 MP
XPP
X18 0 0 18 1136 1422 3 MP
XPP
X0 18 18 0 1136 1440 3 MP
XPP
X18 0 0 18 1136 1440 3 MP
XPP
X0 18 18 0 1136 1458 3 MP
XPP
X18 0 0 18 1136 1458 3 MP
XPP
X0 17 18 0 1136 1476 3 MP
XPP
X18 0 0 17 1136 1476 3 MP
XPP
X0 18 18 0 1136 1493 3 MP
XPP
X18 0 0 18 1136 1493 3 MP
XPP
X0 18 18 0 1136 1511 3 MP
XPP
X18 0 0 18 1136 1511 3 MP
XPP
X0 18 18 0 1136 1529 3 MP
XPP
X18 0 0 18 1136 1529 3 MP
XPP
X0 18 18 0 1136 1547 3 MP
XPP
X18 0 0 18 1136 1547 3 MP
XPP
X0 18 18 0 1136 1565 3 MP
XPP
X18 0 0 18 1136 1565 3 MP
XPP
X0 17 18 0 1136 1583 3 MP
XPP
X18 0 0 17 1136 1583 3 MP
XPP
X0 18 18 0 1136 1600 3 MP
XPP
X18 0 0 18 1136 1600 3 MP
XPP
X0 18 18 0 1136 1618 3 MP
XPP
X18 0 0 18 1136 1618 3 MP
XPP
X0 18 18 0 1136 1636 3 MP
XPP
X18 0 0 18 1136 1636 3 MP
XPP
X0 18 18 0 1136 1654 3 MP
XPP
X18 0 0 18 1136 1654 3 MP
XPP
X0 18 18 0 1136 1672 3 MP
XPP
X18 0 0 18 1136 1672 3 MP
XPP
X0 17 18 0 1136 1690 3 MP
XPP
X18 0 0 17 1136 1690 3 MP
XPP
X0 18 18 0 1136 1707 3 MP
XPP
X18 0 0 18 1136 1707 3 MP
XPP
X0 18 18 0 1136 1725 3 MP
XPP
X18 0 0 18 1136 1725 3 MP
XPP
X0 18 18 0 1136 1743 3 MP
XPP
X18 0 0 18 1136 1743 3 MP
XPP
X0 18 18 0 1136 1761 3 MP
XPP
X18 0 0 18 1136 1761 3 MP
XPP
X0 18 18 0 1136 1779 3 MP
XPP
X18 0 0 18 1136 1779 3 MP
XPP
X0 17 18 0 1136 1797 3 MP
XPP
X18 0 0 17 1136 1797 3 MP
XPP
X0 18 18 0 1136 1814 3 MP
XPP
X18 0 0 18 1136 1814 3 MP
XPP
X0 18 18 0 1136 1832 3 MP
XPP
X18 0 0 18 1136 1832 3 MP
XPP
X0 18 18 0 1136 1850 3 MP
XPP
X18 0 0 18 1136 1850 3 MP
XPP
X0 18 18 0 1136 1868 3 MP
XPP
X18 0 0 18 1136 1868 3 MP
XPP
X0 18 18 0 1136 1886 3 MP
XPP
X18 0 0 18 1136 1886 3 MP
XPP
X0 17 18 0 1136 1904 3 MP
XPP
X18 0 0 17 1136 1904 3 MP
XPP
X0 18 18 0 1136 1921 3 MP
XPP
X18 0 0 18 1136 1921 3 MP
XPP
X0 18 18 0 1136 1939 3 MP
XPP
X18 0 0 18 1136 1939 3 MP
XPP
X0 18 18 0 1136 1957 3 MP
XPP
X18 0 0 18 1136 1957 3 MP
XPP
X0 18 18 0 1136 1975 3 MP
XPP
X18 0 0 18 1136 1975 3 MP
XPP
X0 18 18 0 1136 1993 3 MP
XPP
X18 0 0 18 1136 1993 3 MP
XPP
X0 17 18 0 1136 2011 3 MP
XPP
X18 0 0 17 1136 2011 3 MP
XPP
X0 18 18 0 1136 2028 3 MP
XPP
X18 0 0 18 1136 2028 3 MP
XPP
X0 18 18 0 1136 2046 3 MP
XPP
X18 0 0 18 1136 2046 3 MP
XPP
X0 18 18 0 1136 2064 3 MP
XPP
X18 0 0 18 1136 2064 3 MP
XPP
X0 18 18 0 1136 2082 3 MP
XPP
X18 0 0 18 1136 2082 3 MP
XPP
X0 18 18 0 1136 2100 3 MP
XPP
X18 0 0 18 1136 2100 3 MP
XPP
X0 17 18 0 1136 2118 3 MP
XPP
X18 0 0 17 1136 2118 3 MP
XPP
X0 18 18 0 1136 2135 3 MP
XPP
X18 0 0 18 1136 2135 3 MP
XPP
X0 18 18 0 1136 2153 3 MP
XPP
X18 0 0 18 1136 2153 3 MP
XPP
X0 18 18 0 1154 388 3 MP
XPP
X18 0 0 18 1154 388 3 MP
XPP
X0 18 18 0 1154 406 3 MP
XPP
X18 0 0 18 1154 406 3 MP
XPP
X0 17 18 0 1154 424 3 MP
XPP
X18 0 0 17 1154 424 3 MP
XPP
X0 18 18 0 1154 441 3 MP
XPP
X18 0 0 18 1154 441 3 MP
XPP
X0 18 18 0 1154 459 3 MP
XPP
X18 0 0 18 1154 459 3 MP
XPP
X0 18 18 0 1154 477 3 MP
XPP
X18 0 0 18 1154 477 3 MP
XPP
X0 18 18 0 1154 495 3 MP
XPP
X18 0 0 18 1154 495 3 MP
XPP
X0 18 18 0 1154 513 3 MP
XPP
X18 0 0 18 1154 513 3 MP
XPP
X0 17 18 0 1154 531 3 MP
XPP
X18 0 0 17 1154 531 3 MP
XPP
X0 18 18 0 1154 548 3 MP
XPP
X18 0 0 18 1154 548 3 MP
XPP
X0 18 18 0 1154 566 3 MP
XPP
X18 0 0 18 1154 566 3 MP
XPP
X0 18 18 0 1154 584 3 MP
XPP
X18 0 0 18 1154 584 3 MP
XPP
X0 18 18 0 1154 602 3 MP
XPP
X18 0 0 18 1154 602 3 MP
XPP
X0 18 18 0 1154 620 3 MP
XPP
X18 0 0 18 1154 620 3 MP
XPP
X0 17 18 0 1154 638 3 MP
XPP
X18 0 0 17 1154 638 3 MP
XPP
X0 18 18 0 1154 655 3 MP
XPP
X18 0 0 18 1154 655 3 MP
XPP
X0 18 18 0 1154 673 3 MP
XPP
X18 0 0 18 1154 673 3 MP
XPP
X0 18 18 0 1154 691 3 MP
XPP
X18 0 0 18 1154 691 3 MP
XPP
X0 18 18 0 1154 709 3 MP
XPP
X18 0 0 18 1154 709 3 MP
XPP
X0 18 18 0 1154 727 3 MP
XPP
X18 0 0 18 1154 727 3 MP
XPP
X0 17 18 0 1154 745 3 MP
XPP
X18 0 0 17 1154 745 3 MP
XPP
X0 18 18 0 1154 762 3 MP
XPP
X18 0 0 18 1154 762 3 MP
XPP
X0 18 18 0 1154 780 3 MP
XPP
X18 0 0 18 1154 780 3 MP
XPP
X0 18 18 0 1154 798 3 MP
XPP
X18 0 0 18 1154 798 3 MP
XPP
X0 18 18 0 1154 816 3 MP
XPP
X18 0 0 18 1154 816 3 MP
XPP
X0 18 18 0 1154 834 3 MP
XPP
X18 0 0 18 1154 834 3 MP
XPP
X0 17 18 0 1154 852 3 MP
XPP
X18 0 0 17 1154 852 3 MP
XPP
X0 18 18 0 1154 869 3 MP
XPP
X18 0 0 18 1154 869 3 MP
XPP
X0 18 18 0 1154 887 3 MP
XPP
X18 0 0 18 1154 887 3 MP
XPP
X0 18 18 0 1154 905 3 MP
XPP
X18 0 0 18 1154 905 3 MP
XPP
X0 18 18 0 1154 923 3 MP
XPP
X18 0 0 18 1154 923 3 MP
XPP
X0 18 18 0 1154 941 3 MP
XPP
X18 0 0 18 1154 941 3 MP
XPP
X0 17 18 0 1154 959 3 MP
XPP
X18 0 0 17 1154 959 3 MP
XPP
X0 18 18 0 1154 976 3 MP
XPP
X18 0 0 18 1154 976 3 MP
XPP
X0 18 18 0 1154 994 3 MP
XPP
X18 0 0 18 1154 994 3 MP
XPP
X0 18 18 0 1154 1012 3 MP
XPP
X18 0 0 18 1154 1012 3 MP
XPP
X0 18 18 0 1154 1030 3 MP
XPP
X18 0 0 18 1154 1030 3 MP
XPP
X0 18 18 0 1154 1048 3 MP
XPP
X18 0 0 18 1154 1048 3 MP
XPP
X0 17 18 0 1154 1066 3 MP
XPP
X18 0 0 17 1154 1066 3 MP
XPP
X0 18 18 0 1154 1083 3 MP
XPP
X18 0 0 18 1154 1083 3 MP
XPP
X0 18 18 0 1154 1101 3 MP
XPP
X18 0 0 18 1154 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1154 1119 3 MP
XPP
X18 0 0 18 1154 1119 3 MP
XPP
X1 sg
X0 18 18 0 1154 1137 3 MP
XPP
X18 0 0 18 1154 1137 3 MP
XPP
X0 18 18 0 1154 1155 3 MP
XPP
X18 0 0 18 1154 1155 3 MP
XPP
X0 17 18 0 1154 1173 3 MP
XPP
X18 0 0 17 1154 1173 3 MP
XPP
X0 18 18 0 1154 1190 3 MP
XPP
X18 0 0 18 1154 1190 3 MP
XPP
X0 18 18 0 1154 1208 3 MP
XPP
X18 0 0 18 1154 1208 3 MP
XPP
X0 18 18 0 1154 1226 3 MP
XPP
X18 0 0 18 1154 1226 3 MP
XPP
X0 18 18 0 1154 1244 3 MP
XPP
X18 0 0 18 1154 1244 3 MP
XPP
X0 17 18 0 1154 1262 3 MP
XPP
X18 0 0 17 1154 1262 3 MP
XPP
X0 18 18 0 1154 1279 3 MP
XPP
X18 0 0 18 1154 1279 3 MP
XPP
X0 18 18 0 1154 1297 3 MP
XPP
X18 0 0 18 1154 1297 3 MP
XPP
X0 18 18 0 1154 1315 3 MP
XPP
X18 0 0 18 1154 1315 3 MP
XPP
X0 18 18 0 1154 1333 3 MP
XPP
X18 0 0 18 1154 1333 3 MP
XPP
X0 18 18 0 1154 1351 3 MP
XPP
X18 0 0 18 1154 1351 3 MP
XPP
X0 17 18 0 1154 1369 3 MP
XPP
X18 0 0 17 1154 1369 3 MP
XPP
X0 18 18 0 1154 1386 3 MP
XPP
X18 0 0 18 1154 1386 3 MP
XPP
X0 18 18 0 1154 1404 3 MP
XPP
X18 0 0 18 1154 1404 3 MP
XPP
X0 18 18 0 1154 1422 3 MP
XPP
X18 0 0 18 1154 1422 3 MP
XPP
X0 18 18 0 1154 1440 3 MP
XPP
X18 0 0 18 1154 1440 3 MP
XPP
X0 18 18 0 1154 1458 3 MP
XPP
X18 0 0 18 1154 1458 3 MP
XPP
X0 17 18 0 1154 1476 3 MP
XPP
X18 0 0 17 1154 1476 3 MP
XPP
X0 18 18 0 1154 1493 3 MP
XPP
X18 0 0 18 1154 1493 3 MP
XPP
X0 18 18 0 1154 1511 3 MP
XPP
X18 0 0 18 1154 1511 3 MP
XPP
X0 18 18 0 1154 1529 3 MP
XPP
X18 0 0 18 1154 1529 3 MP
XPP
X0 18 18 0 1154 1547 3 MP
XPP
X18 0 0 18 1154 1547 3 MP
XPP
X0 18 18 0 1154 1565 3 MP
XPP
X18 0 0 18 1154 1565 3 MP
XPP
X0 17 18 0 1154 1583 3 MP
XPP
X18 0 0 17 1154 1583 3 MP
XPP
X0 18 18 0 1154 1600 3 MP
XPP
X18 0 0 18 1154 1600 3 MP
XPP
X0 18 18 0 1154 1618 3 MP
XPP
X18 0 0 18 1154 1618 3 MP
XPP
X0 18 18 0 1154 1636 3 MP
XPP
X18 0 0 18 1154 1636 3 MP
XPP
X0 18 18 0 1154 1654 3 MP
XPP
X18 0 0 18 1154 1654 3 MP
XPP
X0 18 18 0 1154 1672 3 MP
XPP
X18 0 0 18 1154 1672 3 MP
XPP
X0 17 18 0 1154 1690 3 MP
XPP
X18 0 0 17 1154 1690 3 MP
XPP
X0 18 18 0 1154 1707 3 MP
XPP
X18 0 0 18 1154 1707 3 MP
XPP
X0 18 18 0 1154 1725 3 MP
XPP
X18 0 0 18 1154 1725 3 MP
XPP
X0 18 18 0 1154 1743 3 MP
XPP
X18 0 0 18 1154 1743 3 MP
XPP
X0 18 18 0 1154 1761 3 MP
XPP
X18 0 0 18 1154 1761 3 MP
XPP
X0 18 18 0 1154 1779 3 MP
XPP
X18 0 0 18 1154 1779 3 MP
XPP
X0 17 18 0 1154 1797 3 MP
XPP
X18 0 0 17 1154 1797 3 MP
XPP
X0 18 18 0 1154 1814 3 MP
XPP
X18 0 0 18 1154 1814 3 MP
XPP
X0 18 18 0 1154 1832 3 MP
XPP
X18 0 0 18 1154 1832 3 MP
XPP
X0 18 18 0 1154 1850 3 MP
XPP
X18 0 0 18 1154 1850 3 MP
XPP
X0 18 18 0 1154 1868 3 MP
XPP
X18 0 0 18 1154 1868 3 MP
XPP
X0 18 18 0 1154 1886 3 MP
XPP
X18 0 0 18 1154 1886 3 MP
XPP
X0 17 18 0 1154 1904 3 MP
XPP
X18 0 0 17 1154 1904 3 MP
XPP
X0 18 18 0 1154 1921 3 MP
XPP
X18 0 0 18 1154 1921 3 MP
XPP
X0 18 18 0 1154 1939 3 MP
XPP
X18 0 0 18 1154 1939 3 MP
XPP
X0 18 18 0 1154 1957 3 MP
XPP
X18 0 0 18 1154 1957 3 MP
XPP
X0 18 18 0 1154 1975 3 MP
XPP
X18 0 0 18 1154 1975 3 MP
XPP
X0 18 18 0 1154 1993 3 MP
XPP
X18 0 0 18 1154 1993 3 MP
XPP
X0 17 18 0 1154 2011 3 MP
XPP
X18 0 0 17 1154 2011 3 MP
XPP
X0 18 18 0 1154 2028 3 MP
XPP
X18 0 0 18 1154 2028 3 MP
XPP
X0 18 18 0 1154 2046 3 MP
XPP
X18 0 0 18 1154 2046 3 MP
XPP
X0 18 18 0 1154 2064 3 MP
XPP
X18 0 0 18 1154 2064 3 MP
XPP
X0 18 18 0 1154 2082 3 MP
XPP
X18 0 0 18 1154 2082 3 MP
XPP
X0 18 18 0 1154 2100 3 MP
XPP
X18 0 0 18 1154 2100 3 MP
XPP
X0 17 18 0 1154 2118 3 MP
XPP
X18 0 0 17 1154 2118 3 MP
XPP
X0 18 18 0 1154 2135 3 MP
XPP
X18 0 0 18 1154 2135 3 MP
XPP
X0 18 18 0 1154 2153 3 MP
XPP
X18 0 0 18 1154 2153 3 MP
XPP
X0 18 17 0 1172 388 3 MP
XPP
X17 0 0 18 1172 388 3 MP
XPP
X0 18 17 0 1172 406 3 MP
XPP
X17 0 0 18 1172 406 3 MP
XPP
X0 17 17 0 1172 424 3 MP
XPP
X17 0 0 17 1172 424 3 MP
XPP
X0 18 17 0 1172 441 3 MP
XPP
X17 0 0 18 1172 441 3 MP
XPP
X0 18 17 0 1172 459 3 MP
XPP
X17 0 0 18 1172 459 3 MP
XPP
X0 18 17 0 1172 477 3 MP
XPP
X17 0 0 18 1172 477 3 MP
XPP
X0 18 17 0 1172 495 3 MP
XPP
X17 0 0 18 1172 495 3 MP
XPP
X0 18 17 0 1172 513 3 MP
XPP
X17 0 0 18 1172 513 3 MP
XPP
X0 17 17 0 1172 531 3 MP
XPP
X17 0 0 17 1172 531 3 MP
XPP
X0 18 17 0 1172 548 3 MP
XPP
X17 0 0 18 1172 548 3 MP
XPP
X0 18 17 0 1172 566 3 MP
XPP
X17 0 0 18 1172 566 3 MP
XPP
X0 18 17 0 1172 584 3 MP
XPP
X17 0 0 18 1172 584 3 MP
XPP
X0 18 17 0 1172 602 3 MP
XPP
X17 0 0 18 1172 602 3 MP
XPP
X0 18 17 0 1172 620 3 MP
XPP
X17 0 0 18 1172 620 3 MP
XPP
X0 17 17 0 1172 638 3 MP
XPP
X17 0 0 17 1172 638 3 MP
XPP
X0 18 17 0 1172 655 3 MP
XPP
X17 0 0 18 1172 655 3 MP
XPP
X0 18 17 0 1172 673 3 MP
XPP
X17 0 0 18 1172 673 3 MP
XPP
X0 18 17 0 1172 691 3 MP
XPP
X17 0 0 18 1172 691 3 MP
XPP
X0 18 17 0 1172 709 3 MP
XPP
X17 0 0 18 1172 709 3 MP
XPP
X0 18 17 0 1172 727 3 MP
XPP
X17 0 0 18 1172 727 3 MP
XPP
X0 17 17 0 1172 745 3 MP
XPP
X17 0 0 17 1172 745 3 MP
XPP
X0 18 17 0 1172 762 3 MP
XPP
X17 0 0 18 1172 762 3 MP
XPP
X0 18 17 0 1172 780 3 MP
XPP
X17 0 0 18 1172 780 3 MP
XPP
X0 18 17 0 1172 798 3 MP
XPP
X17 0 0 18 1172 798 3 MP
XPP
X0 18 17 0 1172 816 3 MP
XPP
X17 0 0 18 1172 816 3 MP
XPP
X0 18 17 0 1172 834 3 MP
XPP
X17 0 0 18 1172 834 3 MP
XPP
X0 17 17 0 1172 852 3 MP
XPP
X17 0 0 17 1172 852 3 MP
XPP
X0 18 17 0 1172 869 3 MP
XPP
X17 0 0 18 1172 869 3 MP
XPP
X0 18 17 0 1172 887 3 MP
XPP
X17 0 0 18 1172 887 3 MP
XPP
X0 18 17 0 1172 905 3 MP
XPP
X17 0 0 18 1172 905 3 MP
XPP
X0 18 17 0 1172 923 3 MP
XPP
X17 0 0 18 1172 923 3 MP
XPP
X0 18 17 0 1172 941 3 MP
XPP
X17 0 0 18 1172 941 3 MP
XPP
X0 17 17 0 1172 959 3 MP
XPP
X17 0 0 17 1172 959 3 MP
XPP
X0 18 17 0 1172 976 3 MP
XPP
X17 0 0 18 1172 976 3 MP
XPP
X0 18 17 0 1172 994 3 MP
XPP
X17 0 0 18 1172 994 3 MP
XPP
X0 18 17 0 1172 1012 3 MP
XPP
X17 0 0 18 1172 1012 3 MP
XPP
X0 18 17 0 1172 1030 3 MP
XPP
X17 0 0 18 1172 1030 3 MP
XPP
X0 18 17 0 1172 1048 3 MP
XPP
X17 0 0 18 1172 1048 3 MP
XPP
X0 17 17 0 1172 1066 3 MP
XPP
X17 0 0 17 1172 1066 3 MP
XPP
X0 18 17 0 1172 1083 3 MP
XPP
X17 0 0 18 1172 1083 3 MP
XPP
X0 18 17 0 1172 1101 3 MP
XPP
X17 0 0 18 1172 1101 3 MP
XPP
X0.238095 sg
X0 18 17 0 1172 1119 3 MP
XPP
X17 0 0 18 1172 1119 3 MP
XPP
X0 18 17 0 1172 1137 3 MP
XPP
X17 0 0 18 1172 1137 3 MP
XPP
X1 sg
X0 18 17 0 1172 1155 3 MP
XPP
X17 0 0 18 1172 1155 3 MP
XPP
X0 17 17 0 1172 1173 3 MP
XPP
X17 0 0 17 1172 1173 3 MP
XPP
X0 18 17 0 1172 1190 3 MP
XPP
X17 0 0 18 1172 1190 3 MP
XPP
X0 18 17 0 1172 1208 3 MP
XPP
X17 0 0 18 1172 1208 3 MP
XPP
X0 18 17 0 1172 1226 3 MP
XPP
X17 0 0 18 1172 1226 3 MP
XPP
X0 18 17 0 1172 1244 3 MP
XPP
X17 0 0 18 1172 1244 3 MP
XPP
X0 17 17 0 1172 1262 3 MP
XPP
X17 0 0 17 1172 1262 3 MP
XPP
X0 18 17 0 1172 1279 3 MP
XPP
X17 0 0 18 1172 1279 3 MP
XPP
X0 18 17 0 1172 1297 3 MP
XPP
X17 0 0 18 1172 1297 3 MP
XPP
X0 18 17 0 1172 1315 3 MP
XPP
X17 0 0 18 1172 1315 3 MP
XPP
X0 18 17 0 1172 1333 3 MP
XPP
X17 0 0 18 1172 1333 3 MP
XPP
X0 18 17 0 1172 1351 3 MP
XPP
X17 0 0 18 1172 1351 3 MP
XPP
X0 17 17 0 1172 1369 3 MP
XPP
X17 0 0 17 1172 1369 3 MP
XPP
X0 18 17 0 1172 1386 3 MP
XPP
X17 0 0 18 1172 1386 3 MP
XPP
X0 18 17 0 1172 1404 3 MP
XPP
X17 0 0 18 1172 1404 3 MP
XPP
X0 18 17 0 1172 1422 3 MP
XPP
X17 0 0 18 1172 1422 3 MP
XPP
X0 18 17 0 1172 1440 3 MP
XPP
X17 0 0 18 1172 1440 3 MP
XPP
X0 18 17 0 1172 1458 3 MP
XPP
X17 0 0 18 1172 1458 3 MP
XPP
X0 17 17 0 1172 1476 3 MP
XPP
X17 0 0 17 1172 1476 3 MP
XPP
X0 18 17 0 1172 1493 3 MP
XPP
X17 0 0 18 1172 1493 3 MP
XPP
X0 18 17 0 1172 1511 3 MP
XPP
X17 0 0 18 1172 1511 3 MP
XPP
X0 18 17 0 1172 1529 3 MP
XPP
X17 0 0 18 1172 1529 3 MP
XPP
X0 18 17 0 1172 1547 3 MP
XPP
X17 0 0 18 1172 1547 3 MP
XPP
X0 18 17 0 1172 1565 3 MP
XPP
X17 0 0 18 1172 1565 3 MP
XPP
X0 17 17 0 1172 1583 3 MP
XPP
X17 0 0 17 1172 1583 3 MP
XPP
X0 18 17 0 1172 1600 3 MP
XPP
X17 0 0 18 1172 1600 3 MP
XPP
X0 18 17 0 1172 1618 3 MP
XPP
X17 0 0 18 1172 1618 3 MP
XPP
X0 18 17 0 1172 1636 3 MP
XPP
X17 0 0 18 1172 1636 3 MP
XPP
X0 18 17 0 1172 1654 3 MP
XPP
X17 0 0 18 1172 1654 3 MP
XPP
X0 18 17 0 1172 1672 3 MP
XPP
X17 0 0 18 1172 1672 3 MP
XPP
X0 17 17 0 1172 1690 3 MP
XPP
X17 0 0 17 1172 1690 3 MP
XPP
X0 18 17 0 1172 1707 3 MP
XPP
X17 0 0 18 1172 1707 3 MP
XPP
X0 18 17 0 1172 1725 3 MP
XPP
X17 0 0 18 1172 1725 3 MP
XPP
X0 18 17 0 1172 1743 3 MP
XPP
X17 0 0 18 1172 1743 3 MP
XPP
X0 18 17 0 1172 1761 3 MP
XPP
X17 0 0 18 1172 1761 3 MP
XPP
X0 18 17 0 1172 1779 3 MP
XPP
X17 0 0 18 1172 1779 3 MP
XPP
X0 17 17 0 1172 1797 3 MP
XPP
X17 0 0 17 1172 1797 3 MP
XPP
X0 18 17 0 1172 1814 3 MP
XPP
X17 0 0 18 1172 1814 3 MP
XPP
X0 18 17 0 1172 1832 3 MP
XPP
X17 0 0 18 1172 1832 3 MP
XPP
X0 18 17 0 1172 1850 3 MP
XPP
X17 0 0 18 1172 1850 3 MP
XPP
X0 18 17 0 1172 1868 3 MP
XPP
X17 0 0 18 1172 1868 3 MP
XPP
X0 18 17 0 1172 1886 3 MP
XPP
X17 0 0 18 1172 1886 3 MP
XPP
X0 17 17 0 1172 1904 3 MP
XPP
X17 0 0 17 1172 1904 3 MP
XPP
X0 18 17 0 1172 1921 3 MP
XPP
X17 0 0 18 1172 1921 3 MP
XPP
X0 18 17 0 1172 1939 3 MP
XPP
X17 0 0 18 1172 1939 3 MP
XPP
X0 18 17 0 1172 1957 3 MP
XPP
X17 0 0 18 1172 1957 3 MP
XPP
X0 18 17 0 1172 1975 3 MP
XPP
X17 0 0 18 1172 1975 3 MP
XPP
X0 18 17 0 1172 1993 3 MP
XPP
X17 0 0 18 1172 1993 3 MP
XPP
X0 17 17 0 1172 2011 3 MP
XPP
X17 0 0 17 1172 2011 3 MP
XPP
X0 18 17 0 1172 2028 3 MP
XPP
X17 0 0 18 1172 2028 3 MP
XPP
X0 18 17 0 1172 2046 3 MP
XPP
X17 0 0 18 1172 2046 3 MP
XPP
X0 18 17 0 1172 2064 3 MP
XPP
X17 0 0 18 1172 2064 3 MP
XPP
X0 18 17 0 1172 2082 3 MP
XPP
X17 0 0 18 1172 2082 3 MP
XPP
X0 18 17 0 1172 2100 3 MP
XPP
X17 0 0 18 1172 2100 3 MP
XPP
X0 17 17 0 1172 2118 3 MP
XPP
X17 0 0 17 1172 2118 3 MP
XPP
X0 18 17 0 1172 2135 3 MP
XPP
X17 0 0 18 1172 2135 3 MP
XPP
X0 18 17 0 1172 2153 3 MP
XPP
X17 0 0 18 1172 2153 3 MP
XPP
X0 18 18 0 1189 388 3 MP
XPP
X18 0 0 18 1189 388 3 MP
XPP
X0 18 18 0 1189 406 3 MP
XPP
X18 0 0 18 1189 406 3 MP
XPP
X0 17 18 0 1189 424 3 MP
XPP
X18 0 0 17 1189 424 3 MP
XPP
X0 18 18 0 1189 441 3 MP
XPP
X18 0 0 18 1189 441 3 MP
XPP
X0 18 18 0 1189 459 3 MP
XPP
X18 0 0 18 1189 459 3 MP
XPP
X0 18 18 0 1189 477 3 MP
XPP
X18 0 0 18 1189 477 3 MP
XPP
X0 18 18 0 1189 495 3 MP
XPP
X18 0 0 18 1189 495 3 MP
XPP
X0 18 18 0 1189 513 3 MP
XPP
X18 0 0 18 1189 513 3 MP
XPP
X0 17 18 0 1189 531 3 MP
XPP
X18 0 0 17 1189 531 3 MP
XPP
X0 18 18 0 1189 548 3 MP
XPP
X18 0 0 18 1189 548 3 MP
XPP
X0 18 18 0 1189 566 3 MP
XPP
X18 0 0 18 1189 566 3 MP
XPP
X0 18 18 0 1189 584 3 MP
XPP
X18 0 0 18 1189 584 3 MP
XPP
X0 18 18 0 1189 602 3 MP
XPP
X18 0 0 18 1189 602 3 MP
XPP
X0 18 18 0 1189 620 3 MP
XPP
X18 0 0 18 1189 620 3 MP
XPP
X0 17 18 0 1189 638 3 MP
XPP
X18 0 0 17 1189 638 3 MP
XPP
X0 18 18 0 1189 655 3 MP
XPP
X18 0 0 18 1189 655 3 MP
XPP
X0 18 18 0 1189 673 3 MP
XPP
X18 0 0 18 1189 673 3 MP
XPP
X0 18 18 0 1189 691 3 MP
XPP
X18 0 0 18 1189 691 3 MP
XPP
X0 18 18 0 1189 709 3 MP
XPP
X18 0 0 18 1189 709 3 MP
XPP
X0 18 18 0 1189 727 3 MP
XPP
X18 0 0 18 1189 727 3 MP
XPP
X0 17 18 0 1189 745 3 MP
XPP
X18 0 0 17 1189 745 3 MP
XPP
X0 18 18 0 1189 762 3 MP
XPP
X18 0 0 18 1189 762 3 MP
XPP
X0 18 18 0 1189 780 3 MP
XPP
X18 0 0 18 1189 780 3 MP
XPP
X0 18 18 0 1189 798 3 MP
XPP
X18 0 0 18 1189 798 3 MP
XPP
X0 18 18 0 1189 816 3 MP
XPP
X18 0 0 18 1189 816 3 MP
XPP
X0 18 18 0 1189 834 3 MP
XPP
X18 0 0 18 1189 834 3 MP
XPP
X0 17 18 0 1189 852 3 MP
XPP
X18 0 0 17 1189 852 3 MP
XPP
X0 18 18 0 1189 869 3 MP
XPP
X18 0 0 18 1189 869 3 MP
XPP
X0 18 18 0 1189 887 3 MP
XPP
X18 0 0 18 1189 887 3 MP
XPP
X0 18 18 0 1189 905 3 MP
XPP
X18 0 0 18 1189 905 3 MP
XPP
X0 18 18 0 1189 923 3 MP
XPP
X18 0 0 18 1189 923 3 MP
XPP
X0 18 18 0 1189 941 3 MP
XPP
X18 0 0 18 1189 941 3 MP
XPP
X0 17 18 0 1189 959 3 MP
XPP
X18 0 0 17 1189 959 3 MP
XPP
X0 18 18 0 1189 976 3 MP
XPP
X18 0 0 18 1189 976 3 MP
XPP
X0 18 18 0 1189 994 3 MP
XPP
X18 0 0 18 1189 994 3 MP
XPP
X0 18 18 0 1189 1012 3 MP
XPP
X18 0 0 18 1189 1012 3 MP
XPP
X0 18 18 0 1189 1030 3 MP
XPP
X18 0 0 18 1189 1030 3 MP
XPP
X0 18 18 0 1189 1048 3 MP
XPP
X18 0 0 18 1189 1048 3 MP
XPP
X0 17 18 0 1189 1066 3 MP
XPP
X18 0 0 17 1189 1066 3 MP
XPP
X0 18 18 0 1189 1083 3 MP
XPP
X18 0 0 18 1189 1083 3 MP
XPP
X0 18 18 0 1189 1101 3 MP
XPP
X18 0 0 18 1189 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1189 1119 3 MP
XPP
X18 0 0 18 1189 1119 3 MP
XPP
X0 18 18 0 1189 1137 3 MP
XPP
X18 0 0 18 1189 1137 3 MP
XPP
X0 18 18 0 1189 1155 3 MP
XPP
X18 0 0 18 1189 1155 3 MP
XPP
X1 sg
X0 17 18 0 1189 1173 3 MP
XPP
X18 0 0 17 1189 1173 3 MP
XPP
X0 18 18 0 1189 1190 3 MP
XPP
X18 0 0 18 1189 1190 3 MP
XPP
X0 18 18 0 1189 1208 3 MP
XPP
X18 0 0 18 1189 1208 3 MP
XPP
X0 18 18 0 1189 1226 3 MP
XPP
X18 0 0 18 1189 1226 3 MP
XPP
X0 18 18 0 1189 1244 3 MP
XPP
X18 0 0 18 1189 1244 3 MP
XPP
X0 17 18 0 1189 1262 3 MP
XPP
X18 0 0 17 1189 1262 3 MP
XPP
X0 18 18 0 1189 1279 3 MP
XPP
X18 0 0 18 1189 1279 3 MP
XPP
X0 18 18 0 1189 1297 3 MP
XPP
X18 0 0 18 1189 1297 3 MP
XPP
X0 18 18 0 1189 1315 3 MP
XPP
X18 0 0 18 1189 1315 3 MP
XPP
X0 18 18 0 1189 1333 3 MP
XPP
X18 0 0 18 1189 1333 3 MP
XPP
X0 18 18 0 1189 1351 3 MP
XPP
X18 0 0 18 1189 1351 3 MP
XPP
X0 17 18 0 1189 1369 3 MP
XPP
X18 0 0 17 1189 1369 3 MP
XPP
X0 18 18 0 1189 1386 3 MP
XPP
X18 0 0 18 1189 1386 3 MP
XPP
X0 18 18 0 1189 1404 3 MP
XPP
X18 0 0 18 1189 1404 3 MP
XPP
X0 18 18 0 1189 1422 3 MP
XPP
X18 0 0 18 1189 1422 3 MP
XPP
X0 18 18 0 1189 1440 3 MP
XPP
X18 0 0 18 1189 1440 3 MP
XPP
X0 18 18 0 1189 1458 3 MP
XPP
X18 0 0 18 1189 1458 3 MP
XPP
X0 17 18 0 1189 1476 3 MP
XPP
X18 0 0 17 1189 1476 3 MP
XPP
X0 18 18 0 1189 1493 3 MP
XPP
X18 0 0 18 1189 1493 3 MP
XPP
X0 18 18 0 1189 1511 3 MP
XPP
X18 0 0 18 1189 1511 3 MP
XPP
X0 18 18 0 1189 1529 3 MP
XPP
X18 0 0 18 1189 1529 3 MP
XPP
X0 18 18 0 1189 1547 3 MP
XPP
X18 0 0 18 1189 1547 3 MP
XPP
X0 18 18 0 1189 1565 3 MP
XPP
X18 0 0 18 1189 1565 3 MP
XPP
X0 17 18 0 1189 1583 3 MP
XPP
X18 0 0 17 1189 1583 3 MP
XPP
X0 18 18 0 1189 1600 3 MP
XPP
X18 0 0 18 1189 1600 3 MP
XPP
X0 18 18 0 1189 1618 3 MP
XPP
X18 0 0 18 1189 1618 3 MP
XPP
X0 18 18 0 1189 1636 3 MP
XPP
X18 0 0 18 1189 1636 3 MP
XPP
X0 18 18 0 1189 1654 3 MP
XPP
X18 0 0 18 1189 1654 3 MP
XPP
X0 18 18 0 1189 1672 3 MP
XPP
X18 0 0 18 1189 1672 3 MP
XPP
X0 17 18 0 1189 1690 3 MP
XPP
X18 0 0 17 1189 1690 3 MP
XPP
X0 18 18 0 1189 1707 3 MP
XPP
X18 0 0 18 1189 1707 3 MP
XPP
X0 18 18 0 1189 1725 3 MP
XPP
X18 0 0 18 1189 1725 3 MP
XPP
X0 18 18 0 1189 1743 3 MP
XPP
X18 0 0 18 1189 1743 3 MP
XPP
X0 18 18 0 1189 1761 3 MP
XPP
X18 0 0 18 1189 1761 3 MP
XPP
X0 18 18 0 1189 1779 3 MP
XPP
X18 0 0 18 1189 1779 3 MP
XPP
X0 17 18 0 1189 1797 3 MP
XPP
X18 0 0 17 1189 1797 3 MP
XPP
X0 18 18 0 1189 1814 3 MP
XPP
X18 0 0 18 1189 1814 3 MP
XPP
X0 18 18 0 1189 1832 3 MP
XPP
X18 0 0 18 1189 1832 3 MP
XPP
X0 18 18 0 1189 1850 3 MP
XPP
X18 0 0 18 1189 1850 3 MP
XPP
X0 18 18 0 1189 1868 3 MP
XPP
X18 0 0 18 1189 1868 3 MP
XPP
X0 18 18 0 1189 1886 3 MP
XPP
X18 0 0 18 1189 1886 3 MP
XPP
X0 17 18 0 1189 1904 3 MP
XPP
X18 0 0 17 1189 1904 3 MP
XPP
X0 18 18 0 1189 1921 3 MP
XPP
X18 0 0 18 1189 1921 3 MP
XPP
X0 18 18 0 1189 1939 3 MP
XPP
X18 0 0 18 1189 1939 3 MP
XPP
X0 18 18 0 1189 1957 3 MP
XPP
X18 0 0 18 1189 1957 3 MP
XPP
X0 18 18 0 1189 1975 3 MP
XPP
X18 0 0 18 1189 1975 3 MP
XPP
X0 18 18 0 1189 1993 3 MP
XPP
X18 0 0 18 1189 1993 3 MP
XPP
X0 17 18 0 1189 2011 3 MP
XPP
X18 0 0 17 1189 2011 3 MP
XPP
X0 18 18 0 1189 2028 3 MP
XPP
X18 0 0 18 1189 2028 3 MP
XPP
X0 18 18 0 1189 2046 3 MP
XPP
X18 0 0 18 1189 2046 3 MP
XPP
X0 18 18 0 1189 2064 3 MP
XPP
X18 0 0 18 1189 2064 3 MP
XPP
X0 18 18 0 1189 2082 3 MP
XPP
X18 0 0 18 1189 2082 3 MP
XPP
X0 18 18 0 1189 2100 3 MP
XPP
X18 0 0 18 1189 2100 3 MP
XPP
X0 17 18 0 1189 2118 3 MP
XPP
X18 0 0 17 1189 2118 3 MP
XPP
X0 18 18 0 1189 2135 3 MP
XPP
X18 0 0 18 1189 2135 3 MP
XPP
X0 18 18 0 1189 2153 3 MP
XPP
X18 0 0 18 1189 2153 3 MP
XPP
X0 18 18 0 1207 388 3 MP
XPP
X18 0 0 18 1207 388 3 MP
XPP
X0 18 18 0 1207 406 3 MP
XPP
X18 0 0 18 1207 406 3 MP
XPP
X0 17 18 0 1207 424 3 MP
XPP
X18 0 0 17 1207 424 3 MP
XPP
X0 18 18 0 1207 441 3 MP
XPP
X18 0 0 18 1207 441 3 MP
XPP
X0 18 18 0 1207 459 3 MP
XPP
X18 0 0 18 1207 459 3 MP
XPP
X0 18 18 0 1207 477 3 MP
XPP
X18 0 0 18 1207 477 3 MP
XPP
X0 18 18 0 1207 495 3 MP
XPP
X18 0 0 18 1207 495 3 MP
XPP
X0 18 18 0 1207 513 3 MP
XPP
X18 0 0 18 1207 513 3 MP
XPP
X0 17 18 0 1207 531 3 MP
XPP
X18 0 0 17 1207 531 3 MP
XPP
X0 18 18 0 1207 548 3 MP
XPP
X18 0 0 18 1207 548 3 MP
XPP
X0 18 18 0 1207 566 3 MP
XPP
X18 0 0 18 1207 566 3 MP
XPP
X0 18 18 0 1207 584 3 MP
XPP
X18 0 0 18 1207 584 3 MP
XPP
X0 18 18 0 1207 602 3 MP
XPP
X18 0 0 18 1207 602 3 MP
XPP
X0 18 18 0 1207 620 3 MP
XPP
X18 0 0 18 1207 620 3 MP
XPP
X0 17 18 0 1207 638 3 MP
XPP
X18 0 0 17 1207 638 3 MP
XPP
X0 18 18 0 1207 655 3 MP
XPP
X18 0 0 18 1207 655 3 MP
XPP
X0 18 18 0 1207 673 3 MP
XPP
X18 0 0 18 1207 673 3 MP
XPP
X0 18 18 0 1207 691 3 MP
XPP
X18 0 0 18 1207 691 3 MP
XPP
X0 18 18 0 1207 709 3 MP
XPP
X18 0 0 18 1207 709 3 MP
XPP
X0 18 18 0 1207 727 3 MP
XPP
X18 0 0 18 1207 727 3 MP
XPP
X0 17 18 0 1207 745 3 MP
XPP
X18 0 0 17 1207 745 3 MP
XPP
X0 18 18 0 1207 762 3 MP
XPP
X18 0 0 18 1207 762 3 MP
XPP
X0 18 18 0 1207 780 3 MP
XPP
X18 0 0 18 1207 780 3 MP
XPP
X0 18 18 0 1207 798 3 MP
XPP
X18 0 0 18 1207 798 3 MP
XPP
X0 18 18 0 1207 816 3 MP
XPP
X18 0 0 18 1207 816 3 MP
XPP
X0 18 18 0 1207 834 3 MP
XPP
X18 0 0 18 1207 834 3 MP
XPP
X0 17 18 0 1207 852 3 MP
XPP
X18 0 0 17 1207 852 3 MP
XPP
X0 18 18 0 1207 869 3 MP
XPP
X18 0 0 18 1207 869 3 MP
XPP
X0 18 18 0 1207 887 3 MP
XPP
X18 0 0 18 1207 887 3 MP
XPP
X0 18 18 0 1207 905 3 MP
XPP
X18 0 0 18 1207 905 3 MP
XPP
X0 18 18 0 1207 923 3 MP
XPP
X18 0 0 18 1207 923 3 MP
XPP
X0 18 18 0 1207 941 3 MP
XPP
X18 0 0 18 1207 941 3 MP
XPP
X0 17 18 0 1207 959 3 MP
XPP
X18 0 0 17 1207 959 3 MP
XPP
X0 18 18 0 1207 976 3 MP
XPP
X18 0 0 18 1207 976 3 MP
XPP
X0 18 18 0 1207 994 3 MP
XPP
X18 0 0 18 1207 994 3 MP
XPP
X0 18 18 0 1207 1012 3 MP
XPP
X18 0 0 18 1207 1012 3 MP
XPP
X0 18 18 0 1207 1030 3 MP
XPP
X18 0 0 18 1207 1030 3 MP
XPP
X0 18 18 0 1207 1048 3 MP
XPP
X18 0 0 18 1207 1048 3 MP
XPP
X0 17 18 0 1207 1066 3 MP
XPP
X18 0 0 17 1207 1066 3 MP
XPP
X0 18 18 0 1207 1083 3 MP
XPP
X18 0 0 18 1207 1083 3 MP
XPP
X0 18 18 0 1207 1101 3 MP
XPP
X18 0 0 18 1207 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1207 1119 3 MP
XPP
X18 0 0 18 1207 1119 3 MP
XPP
X0 18 18 0 1207 1137 3 MP
XPP
X18 0 0 18 1207 1137 3 MP
XPP
X0 18 18 0 1207 1155 3 MP
XPP
X18 0 0 18 1207 1155 3 MP
XPP
X0 17 18 0 1207 1173 3 MP
XPP
X18 0 0 17 1207 1173 3 MP
XPP
X1 sg
X0 18 18 0 1207 1190 3 MP
XPP
X18 0 0 18 1207 1190 3 MP
XPP
X0 18 18 0 1207 1208 3 MP
XPP
X18 0 0 18 1207 1208 3 MP
XPP
X0 18 18 0 1207 1226 3 MP
XPP
X18 0 0 18 1207 1226 3 MP
XPP
X0 18 18 0 1207 1244 3 MP
XPP
X18 0 0 18 1207 1244 3 MP
XPP
X0 17 18 0 1207 1262 3 MP
XPP
X18 0 0 17 1207 1262 3 MP
XPP
X0 18 18 0 1207 1279 3 MP
XPP
X18 0 0 18 1207 1279 3 MP
XPP
X0 18 18 0 1207 1297 3 MP
XPP
X18 0 0 18 1207 1297 3 MP
XPP
X0 18 18 0 1207 1315 3 MP
XPP
X18 0 0 18 1207 1315 3 MP
XPP
X0 18 18 0 1207 1333 3 MP
XPP
X18 0 0 18 1207 1333 3 MP
XPP
X0 18 18 0 1207 1351 3 MP
XPP
X18 0 0 18 1207 1351 3 MP
XPP
X0 17 18 0 1207 1369 3 MP
XPP
X18 0 0 17 1207 1369 3 MP
XPP
X0 18 18 0 1207 1386 3 MP
XPP
X18 0 0 18 1207 1386 3 MP
XPP
X0 18 18 0 1207 1404 3 MP
XPP
X18 0 0 18 1207 1404 3 MP
XPP
X0 18 18 0 1207 1422 3 MP
XPP
X18 0 0 18 1207 1422 3 MP
XPP
X0 18 18 0 1207 1440 3 MP
XPP
X18 0 0 18 1207 1440 3 MP
XPP
X0 18 18 0 1207 1458 3 MP
XPP
X18 0 0 18 1207 1458 3 MP
XPP
X0 17 18 0 1207 1476 3 MP
XPP
X18 0 0 17 1207 1476 3 MP
XPP
X0 18 18 0 1207 1493 3 MP
XPP
X18 0 0 18 1207 1493 3 MP
XPP
X0 18 18 0 1207 1511 3 MP
XPP
X18 0 0 18 1207 1511 3 MP
XPP
X0 18 18 0 1207 1529 3 MP
XPP
X18 0 0 18 1207 1529 3 MP
XPP
X0 18 18 0 1207 1547 3 MP
XPP
X18 0 0 18 1207 1547 3 MP
XPP
X0 18 18 0 1207 1565 3 MP
XPP
X18 0 0 18 1207 1565 3 MP
XPP
X0 17 18 0 1207 1583 3 MP
XPP
X18 0 0 17 1207 1583 3 MP
XPP
X0 18 18 0 1207 1600 3 MP
XPP
X18 0 0 18 1207 1600 3 MP
XPP
X0 18 18 0 1207 1618 3 MP
XPP
X18 0 0 18 1207 1618 3 MP
XPP
X0 18 18 0 1207 1636 3 MP
XPP
X18 0 0 18 1207 1636 3 MP
XPP
X0 18 18 0 1207 1654 3 MP
XPP
X18 0 0 18 1207 1654 3 MP
XPP
X0 18 18 0 1207 1672 3 MP
XPP
X18 0 0 18 1207 1672 3 MP
XPP
X0 17 18 0 1207 1690 3 MP
XPP
X18 0 0 17 1207 1690 3 MP
XPP
X0 18 18 0 1207 1707 3 MP
XPP
X18 0 0 18 1207 1707 3 MP
XPP
X0 18 18 0 1207 1725 3 MP
XPP
X18 0 0 18 1207 1725 3 MP
XPP
X0 18 18 0 1207 1743 3 MP
XPP
X18 0 0 18 1207 1743 3 MP
XPP
X0 18 18 0 1207 1761 3 MP
XPP
X18 0 0 18 1207 1761 3 MP
XPP
X0 18 18 0 1207 1779 3 MP
XPP
X18 0 0 18 1207 1779 3 MP
XPP
X0 17 18 0 1207 1797 3 MP
XPP
X18 0 0 17 1207 1797 3 MP
XPP
X0 18 18 0 1207 1814 3 MP
XPP
X18 0 0 18 1207 1814 3 MP
XPP
X0 18 18 0 1207 1832 3 MP
XPP
X18 0 0 18 1207 1832 3 MP
XPP
X0 18 18 0 1207 1850 3 MP
XPP
X18 0 0 18 1207 1850 3 MP
XPP
X0 18 18 0 1207 1868 3 MP
XPP
X18 0 0 18 1207 1868 3 MP
XPP
X0 18 18 0 1207 1886 3 MP
XPP
X18 0 0 18 1207 1886 3 MP
XPP
X0 17 18 0 1207 1904 3 MP
XPP
X18 0 0 17 1207 1904 3 MP
XPP
X0 18 18 0 1207 1921 3 MP
XPP
X18 0 0 18 1207 1921 3 MP
XPP
X0 18 18 0 1207 1939 3 MP
XPP
X18 0 0 18 1207 1939 3 MP
XPP
X0 18 18 0 1207 1957 3 MP
XPP
X18 0 0 18 1207 1957 3 MP
XPP
X0 18 18 0 1207 1975 3 MP
XPP
X18 0 0 18 1207 1975 3 MP
XPP
X0 18 18 0 1207 1993 3 MP
XPP
X18 0 0 18 1207 1993 3 MP
XPP
X0 17 18 0 1207 2011 3 MP
XPP
X18 0 0 17 1207 2011 3 MP
XPP
X0 18 18 0 1207 2028 3 MP
XPP
X18 0 0 18 1207 2028 3 MP
XPP
X0 18 18 0 1207 2046 3 MP
XPP
X18 0 0 18 1207 2046 3 MP
XPP
X0 18 18 0 1207 2064 3 MP
XPP
X18 0 0 18 1207 2064 3 MP
XPP
X0 18 18 0 1207 2082 3 MP
XPP
X18 0 0 18 1207 2082 3 MP
XPP
X0 18 18 0 1207 2100 3 MP
XPP
X18 0 0 18 1207 2100 3 MP
XPP
X0 17 18 0 1207 2118 3 MP
XPP
X18 0 0 17 1207 2118 3 MP
XPP
X0 18 18 0 1207 2135 3 MP
XPP
X18 0 0 18 1207 2135 3 MP
XPP
X0 18 18 0 1207 2153 3 MP
XPP
X18 0 0 18 1207 2153 3 MP
XPP
X0 18 18 0 1225 388 3 MP
XPP
X18 0 0 18 1225 388 3 MP
XPP
X0 18 18 0 1225 406 3 MP
XPP
X18 0 0 18 1225 406 3 MP
XPP
X0 17 18 0 1225 424 3 MP
XPP
X18 0 0 17 1225 424 3 MP
XPP
X0 18 18 0 1225 441 3 MP
XPP
X18 0 0 18 1225 441 3 MP
XPP
X0 18 18 0 1225 459 3 MP
XPP
X18 0 0 18 1225 459 3 MP
XPP
X0 18 18 0 1225 477 3 MP
XPP
X18 0 0 18 1225 477 3 MP
XPP
X0 18 18 0 1225 495 3 MP
XPP
X18 0 0 18 1225 495 3 MP
XPP
X0 18 18 0 1225 513 3 MP
XPP
X18 0 0 18 1225 513 3 MP
XPP
X0 17 18 0 1225 531 3 MP
XPP
X18 0 0 17 1225 531 3 MP
XPP
X0 18 18 0 1225 548 3 MP
XPP
X18 0 0 18 1225 548 3 MP
XPP
X0 18 18 0 1225 566 3 MP
XPP
X18 0 0 18 1225 566 3 MP
XPP
X0 18 18 0 1225 584 3 MP
XPP
X18 0 0 18 1225 584 3 MP
XPP
X0 18 18 0 1225 602 3 MP
XPP
X18 0 0 18 1225 602 3 MP
XPP
X0 18 18 0 1225 620 3 MP
XPP
X18 0 0 18 1225 620 3 MP
XPP
X0 17 18 0 1225 638 3 MP
XPP
X18 0 0 17 1225 638 3 MP
XPP
X0 18 18 0 1225 655 3 MP
XPP
X18 0 0 18 1225 655 3 MP
XPP
X0 18 18 0 1225 673 3 MP
XPP
X18 0 0 18 1225 673 3 MP
XPP
X0 18 18 0 1225 691 3 MP
XPP
X18 0 0 18 1225 691 3 MP
XPP
X0 18 18 0 1225 709 3 MP
XPP
X18 0 0 18 1225 709 3 MP
XPP
X0 18 18 0 1225 727 3 MP
XPP
X18 0 0 18 1225 727 3 MP
XPP
X0 17 18 0 1225 745 3 MP
XPP
X18 0 0 17 1225 745 3 MP
XPP
X0 18 18 0 1225 762 3 MP
XPP
X18 0 0 18 1225 762 3 MP
XPP
X0 18 18 0 1225 780 3 MP
XPP
X18 0 0 18 1225 780 3 MP
XPP
X0 18 18 0 1225 798 3 MP
XPP
X18 0 0 18 1225 798 3 MP
XPP
X0 18 18 0 1225 816 3 MP
XPP
X18 0 0 18 1225 816 3 MP
XPP
X0 18 18 0 1225 834 3 MP
XPP
X18 0 0 18 1225 834 3 MP
XPP
X0 17 18 0 1225 852 3 MP
XPP
X18 0 0 17 1225 852 3 MP
XPP
X0 18 18 0 1225 869 3 MP
XPP
X18 0 0 18 1225 869 3 MP
XPP
X0 18 18 0 1225 887 3 MP
XPP
X18 0 0 18 1225 887 3 MP
XPP
X0 18 18 0 1225 905 3 MP
XPP
X18 0 0 18 1225 905 3 MP
XPP
X0 18 18 0 1225 923 3 MP
XPP
X18 0 0 18 1225 923 3 MP
XPP
X0 18 18 0 1225 941 3 MP
XPP
X18 0 0 18 1225 941 3 MP
XPP
X0 17 18 0 1225 959 3 MP
XPP
X18 0 0 17 1225 959 3 MP
XPP
X0 18 18 0 1225 976 3 MP
XPP
X18 0 0 18 1225 976 3 MP
XPP
X0 18 18 0 1225 994 3 MP
XPP
X18 0 0 18 1225 994 3 MP
XPP
X0 18 18 0 1225 1012 3 MP
XPP
X18 0 0 18 1225 1012 3 MP
XPP
X0 18 18 0 1225 1030 3 MP
XPP
X18 0 0 18 1225 1030 3 MP
XPP
X0 18 18 0 1225 1048 3 MP
XPP
X18 0 0 18 1225 1048 3 MP
XPP
X0 17 18 0 1225 1066 3 MP
XPP
X18 0 0 17 1225 1066 3 MP
XPP
X0 18 18 0 1225 1083 3 MP
XPP
X18 0 0 18 1225 1083 3 MP
XPP
X0 18 18 0 1225 1101 3 MP
XPP
X18 0 0 18 1225 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1225 1119 3 MP
XPP
X18 0 0 18 1225 1119 3 MP
XPP
X0 18 18 0 1225 1137 3 MP
XPP
X18 0 0 18 1225 1137 3 MP
XPP
X0 18 18 0 1225 1155 3 MP
XPP
X18 0 0 18 1225 1155 3 MP
XPP
X0 17 18 0 1225 1173 3 MP
XPP
X18 0 0 17 1225 1173 3 MP
XPP
X0 18 18 0 1225 1190 3 MP
XPP
X18 0 0 18 1225 1190 3 MP
XPP
X1 sg
X0 18 18 0 1225 1208 3 MP
XPP
X18 0 0 18 1225 1208 3 MP
XPP
X0 18 18 0 1225 1226 3 MP
XPP
X18 0 0 18 1225 1226 3 MP
XPP
X0 18 18 0 1225 1244 3 MP
XPP
X18 0 0 18 1225 1244 3 MP
XPP
X0 17 18 0 1225 1262 3 MP
XPP
X18 0 0 17 1225 1262 3 MP
XPP
X0 18 18 0 1225 1279 3 MP
XPP
X18 0 0 18 1225 1279 3 MP
XPP
X0 18 18 0 1225 1297 3 MP
XPP
X18 0 0 18 1225 1297 3 MP
XPP
X0 18 18 0 1225 1315 3 MP
XPP
X18 0 0 18 1225 1315 3 MP
XPP
X0 18 18 0 1225 1333 3 MP
XPP
X18 0 0 18 1225 1333 3 MP
XPP
X0 18 18 0 1225 1351 3 MP
XPP
X18 0 0 18 1225 1351 3 MP
XPP
X0 17 18 0 1225 1369 3 MP
XPP
X18 0 0 17 1225 1369 3 MP
XPP
X0 18 18 0 1225 1386 3 MP
XPP
X18 0 0 18 1225 1386 3 MP
XPP
X0 18 18 0 1225 1404 3 MP
XPP
X18 0 0 18 1225 1404 3 MP
XPP
X0 18 18 0 1225 1422 3 MP
XPP
X18 0 0 18 1225 1422 3 MP
XPP
X0 18 18 0 1225 1440 3 MP
XPP
X18 0 0 18 1225 1440 3 MP
XPP
X0 18 18 0 1225 1458 3 MP
XPP
X18 0 0 18 1225 1458 3 MP
XPP
X0 17 18 0 1225 1476 3 MP
XPP
X18 0 0 17 1225 1476 3 MP
XPP
X0 18 18 0 1225 1493 3 MP
XPP
X18 0 0 18 1225 1493 3 MP
XPP
X0 18 18 0 1225 1511 3 MP
XPP
X18 0 0 18 1225 1511 3 MP
XPP
X0 18 18 0 1225 1529 3 MP
XPP
X18 0 0 18 1225 1529 3 MP
XPP
X0 18 18 0 1225 1547 3 MP
XPP
X18 0 0 18 1225 1547 3 MP
XPP
X0 18 18 0 1225 1565 3 MP
XPP
X18 0 0 18 1225 1565 3 MP
XPP
X0 17 18 0 1225 1583 3 MP
XPP
X18 0 0 17 1225 1583 3 MP
XPP
X0 18 18 0 1225 1600 3 MP
XPP
X18 0 0 18 1225 1600 3 MP
XPP
X0 18 18 0 1225 1618 3 MP
XPP
X18 0 0 18 1225 1618 3 MP
XPP
X0 18 18 0 1225 1636 3 MP
XPP
X18 0 0 18 1225 1636 3 MP
XPP
X0 18 18 0 1225 1654 3 MP
XPP
X18 0 0 18 1225 1654 3 MP
XPP
X0 18 18 0 1225 1672 3 MP
XPP
X18 0 0 18 1225 1672 3 MP
XPP
X0 17 18 0 1225 1690 3 MP
XPP
X18 0 0 17 1225 1690 3 MP
XPP
X0 18 18 0 1225 1707 3 MP
XPP
X18 0 0 18 1225 1707 3 MP
XPP
X0 18 18 0 1225 1725 3 MP
XPP
X18 0 0 18 1225 1725 3 MP
XPP
X0 18 18 0 1225 1743 3 MP
XPP
X18 0 0 18 1225 1743 3 MP
XPP
X0 18 18 0 1225 1761 3 MP
XPP
X18 0 0 18 1225 1761 3 MP
XPP
X0 18 18 0 1225 1779 3 MP
XPP
X18 0 0 18 1225 1779 3 MP
XPP
X0 17 18 0 1225 1797 3 MP
XPP
X18 0 0 17 1225 1797 3 MP
XPP
X0 18 18 0 1225 1814 3 MP
XPP
X18 0 0 18 1225 1814 3 MP
XPP
X0 18 18 0 1225 1832 3 MP
XPP
X18 0 0 18 1225 1832 3 MP
XPP
X0 18 18 0 1225 1850 3 MP
XPP
X18 0 0 18 1225 1850 3 MP
XPP
X0 18 18 0 1225 1868 3 MP
XPP
X18 0 0 18 1225 1868 3 MP
XPP
X0 18 18 0 1225 1886 3 MP
XPP
X18 0 0 18 1225 1886 3 MP
XPP
X0 17 18 0 1225 1904 3 MP
XPP
X18 0 0 17 1225 1904 3 MP
XPP
X0 18 18 0 1225 1921 3 MP
XPP
X18 0 0 18 1225 1921 3 MP
XPP
X0 18 18 0 1225 1939 3 MP
XPP
X18 0 0 18 1225 1939 3 MP
XPP
X0 18 18 0 1225 1957 3 MP
XPP
X18 0 0 18 1225 1957 3 MP
XPP
X0 18 18 0 1225 1975 3 MP
XPP
X18 0 0 18 1225 1975 3 MP
XPP
X0 18 18 0 1225 1993 3 MP
XPP
X18 0 0 18 1225 1993 3 MP
XPP
X0 17 18 0 1225 2011 3 MP
XPP
X18 0 0 17 1225 2011 3 MP
XPP
X0 18 18 0 1225 2028 3 MP
XPP
X18 0 0 18 1225 2028 3 MP
XPP
X0 18 18 0 1225 2046 3 MP
XPP
X18 0 0 18 1225 2046 3 MP
XPP
X0 18 18 0 1225 2064 3 MP
XPP
X18 0 0 18 1225 2064 3 MP
XPP
X0 18 18 0 1225 2082 3 MP
XPP
X18 0 0 18 1225 2082 3 MP
XPP
X0 18 18 0 1225 2100 3 MP
XPP
X18 0 0 18 1225 2100 3 MP
XPP
X0 17 18 0 1225 2118 3 MP
XPP
X18 0 0 17 1225 2118 3 MP
XPP
X0 18 18 0 1225 2135 3 MP
XPP
X18 0 0 18 1225 2135 3 MP
XPP
X0 18 18 0 1225 2153 3 MP
XPP
X18 0 0 18 1225 2153 3 MP
XPP
X0 18 18 0 1243 388 3 MP
XPP
X18 0 0 18 1243 388 3 MP
XPP
X0 18 18 0 1243 406 3 MP
XPP
X18 0 0 18 1243 406 3 MP
XPP
X0 17 18 0 1243 424 3 MP
XPP
X18 0 0 17 1243 424 3 MP
XPP
X0 18 18 0 1243 441 3 MP
XPP
X18 0 0 18 1243 441 3 MP
XPP
X0 18 18 0 1243 459 3 MP
XPP
X18 0 0 18 1243 459 3 MP
XPP
X0 18 18 0 1243 477 3 MP
XPP
X18 0 0 18 1243 477 3 MP
XPP
X0 18 18 0 1243 495 3 MP
XPP
X18 0 0 18 1243 495 3 MP
XPP
X0 18 18 0 1243 513 3 MP
XPP
X18 0 0 18 1243 513 3 MP
XPP
X0 17 18 0 1243 531 3 MP
XPP
X18 0 0 17 1243 531 3 MP
XPP
X0 18 18 0 1243 548 3 MP
XPP
X18 0 0 18 1243 548 3 MP
XPP
X0 18 18 0 1243 566 3 MP
XPP
X18 0 0 18 1243 566 3 MP
XPP
X0 18 18 0 1243 584 3 MP
XPP
X18 0 0 18 1243 584 3 MP
XPP
X0 18 18 0 1243 602 3 MP
XPP
X18 0 0 18 1243 602 3 MP
XPP
X0 18 18 0 1243 620 3 MP
XPP
X18 0 0 18 1243 620 3 MP
XPP
X0 17 18 0 1243 638 3 MP
XPP
X18 0 0 17 1243 638 3 MP
XPP
X0 18 18 0 1243 655 3 MP
XPP
X18 0 0 18 1243 655 3 MP
XPP
X0 18 18 0 1243 673 3 MP
XPP
X18 0 0 18 1243 673 3 MP
XPP
X0 18 18 0 1243 691 3 MP
XPP
X18 0 0 18 1243 691 3 MP
XPP
X0 18 18 0 1243 709 3 MP
XPP
X18 0 0 18 1243 709 3 MP
XPP
X0 18 18 0 1243 727 3 MP
XPP
X18 0 0 18 1243 727 3 MP
XPP
X0 17 18 0 1243 745 3 MP
XPP
X18 0 0 17 1243 745 3 MP
XPP
X0 18 18 0 1243 762 3 MP
XPP
X18 0 0 18 1243 762 3 MP
XPP
X0 18 18 0 1243 780 3 MP
XPP
X18 0 0 18 1243 780 3 MP
XPP
X0 18 18 0 1243 798 3 MP
XPP
X18 0 0 18 1243 798 3 MP
XPP
X0 18 18 0 1243 816 3 MP
XPP
X18 0 0 18 1243 816 3 MP
XPP
X0 18 18 0 1243 834 3 MP
XPP
X18 0 0 18 1243 834 3 MP
XPP
X0 17 18 0 1243 852 3 MP
XPP
X18 0 0 17 1243 852 3 MP
XPP
X0 18 18 0 1243 869 3 MP
XPP
X18 0 0 18 1243 869 3 MP
XPP
X0 18 18 0 1243 887 3 MP
XPP
X18 0 0 18 1243 887 3 MP
XPP
X0 18 18 0 1243 905 3 MP
XPP
X18 0 0 18 1243 905 3 MP
XPP
X0 18 18 0 1243 923 3 MP
XPP
X18 0 0 18 1243 923 3 MP
XPP
X0 18 18 0 1243 941 3 MP
XPP
X18 0 0 18 1243 941 3 MP
XPP
X0 17 18 0 1243 959 3 MP
XPP
X18 0 0 17 1243 959 3 MP
XPP
X0 18 18 0 1243 976 3 MP
XPP
X18 0 0 18 1243 976 3 MP
XPP
X0 18 18 0 1243 994 3 MP
XPP
X18 0 0 18 1243 994 3 MP
XPP
X0 18 18 0 1243 1012 3 MP
XPP
X18 0 0 18 1243 1012 3 MP
XPP
X0 18 18 0 1243 1030 3 MP
XPP
X18 0 0 18 1243 1030 3 MP
XPP
X0 18 18 0 1243 1048 3 MP
XPP
X18 0 0 18 1243 1048 3 MP
XPP
X0 17 18 0 1243 1066 3 MP
XPP
X18 0 0 17 1243 1066 3 MP
XPP
X0 18 18 0 1243 1083 3 MP
XPP
X18 0 0 18 1243 1083 3 MP
XPP
X0 18 18 0 1243 1101 3 MP
XPP
X18 0 0 18 1243 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1243 1119 3 MP
XPP
X18 0 0 18 1243 1119 3 MP
XPP
X0 18 18 0 1243 1137 3 MP
XPP
X18 0 0 18 1243 1137 3 MP
XPP
X0 18 18 0 1243 1155 3 MP
XPP
X18 0 0 18 1243 1155 3 MP
XPP
X0 17 18 0 1243 1173 3 MP
XPP
X18 0 0 17 1243 1173 3 MP
XPP
X0 18 18 0 1243 1190 3 MP
XPP
X18 0 0 18 1243 1190 3 MP
XPP
X0 18 18 0 1243 1208 3 MP
XPP
X18 0 0 18 1243 1208 3 MP
XPP
X1 sg
X0 18 18 0 1243 1226 3 MP
XPP
X18 0 0 18 1243 1226 3 MP
XPP
X0 18 18 0 1243 1244 3 MP
XPP
X18 0 0 18 1243 1244 3 MP
XPP
X0 17 18 0 1243 1262 3 MP
XPP
X18 0 0 17 1243 1262 3 MP
XPP
X0 18 18 0 1243 1279 3 MP
XPP
X18 0 0 18 1243 1279 3 MP
XPP
X0 18 18 0 1243 1297 3 MP
XPP
X18 0 0 18 1243 1297 3 MP
XPP
X0 18 18 0 1243 1315 3 MP
XPP
X18 0 0 18 1243 1315 3 MP
XPP
X0 18 18 0 1243 1333 3 MP
XPP
X18 0 0 18 1243 1333 3 MP
XPP
X0 18 18 0 1243 1351 3 MP
XPP
X18 0 0 18 1243 1351 3 MP
XPP
X0 17 18 0 1243 1369 3 MP
XPP
X18 0 0 17 1243 1369 3 MP
XPP
X0 18 18 0 1243 1386 3 MP
XPP
X18 0 0 18 1243 1386 3 MP
XPP
X0 18 18 0 1243 1404 3 MP
XPP
X18 0 0 18 1243 1404 3 MP
XPP
X0 18 18 0 1243 1422 3 MP
XPP
X18 0 0 18 1243 1422 3 MP
XPP
X0 18 18 0 1243 1440 3 MP
XPP
X18 0 0 18 1243 1440 3 MP
XPP
X0 18 18 0 1243 1458 3 MP
XPP
X18 0 0 18 1243 1458 3 MP
XPP
X0 17 18 0 1243 1476 3 MP
XPP
X18 0 0 17 1243 1476 3 MP
XPP
X0 18 18 0 1243 1493 3 MP
XPP
X18 0 0 18 1243 1493 3 MP
XPP
X0 18 18 0 1243 1511 3 MP
XPP
X18 0 0 18 1243 1511 3 MP
XPP
X0 18 18 0 1243 1529 3 MP
XPP
X18 0 0 18 1243 1529 3 MP
XPP
X0 18 18 0 1243 1547 3 MP
XPP
X18 0 0 18 1243 1547 3 MP
XPP
X0 18 18 0 1243 1565 3 MP
XPP
X18 0 0 18 1243 1565 3 MP
XPP
X0 17 18 0 1243 1583 3 MP
XPP
X18 0 0 17 1243 1583 3 MP
XPP
X0 18 18 0 1243 1600 3 MP
XPP
X18 0 0 18 1243 1600 3 MP
XPP
X0 18 18 0 1243 1618 3 MP
XPP
X18 0 0 18 1243 1618 3 MP
XPP
X0 18 18 0 1243 1636 3 MP
XPP
X18 0 0 18 1243 1636 3 MP
XPP
X0 18 18 0 1243 1654 3 MP
XPP
X18 0 0 18 1243 1654 3 MP
XPP
X0 18 18 0 1243 1672 3 MP
XPP
X18 0 0 18 1243 1672 3 MP
XPP
X0 17 18 0 1243 1690 3 MP
XPP
X18 0 0 17 1243 1690 3 MP
XPP
X0 18 18 0 1243 1707 3 MP
XPP
X18 0 0 18 1243 1707 3 MP
XPP
X0 18 18 0 1243 1725 3 MP
XPP
X18 0 0 18 1243 1725 3 MP
XPP
X0 18 18 0 1243 1743 3 MP
XPP
X18 0 0 18 1243 1743 3 MP
XPP
X0 18 18 0 1243 1761 3 MP
XPP
X18 0 0 18 1243 1761 3 MP
XPP
X0 18 18 0 1243 1779 3 MP
XPP
X18 0 0 18 1243 1779 3 MP
XPP
X0 17 18 0 1243 1797 3 MP
XPP
X18 0 0 17 1243 1797 3 MP
XPP
X0 18 18 0 1243 1814 3 MP
XPP
X18 0 0 18 1243 1814 3 MP
XPP
X0 18 18 0 1243 1832 3 MP
XPP
X18 0 0 18 1243 1832 3 MP
XPP
X0 18 18 0 1243 1850 3 MP
XPP
X18 0 0 18 1243 1850 3 MP
XPP
X0 18 18 0 1243 1868 3 MP
XPP
X18 0 0 18 1243 1868 3 MP
XPP
X0 18 18 0 1243 1886 3 MP
XPP
X18 0 0 18 1243 1886 3 MP
XPP
X0 17 18 0 1243 1904 3 MP
XPP
X18 0 0 17 1243 1904 3 MP
XPP
X0 18 18 0 1243 1921 3 MP
XPP
X18 0 0 18 1243 1921 3 MP
XPP
X0 18 18 0 1243 1939 3 MP
XPP
X18 0 0 18 1243 1939 3 MP
XPP
X0 18 18 0 1243 1957 3 MP
XPP
X18 0 0 18 1243 1957 3 MP
XPP
X0 18 18 0 1243 1975 3 MP
XPP
X18 0 0 18 1243 1975 3 MP
XPP
X0 18 18 0 1243 1993 3 MP
XPP
X18 0 0 18 1243 1993 3 MP
XPP
X0 17 18 0 1243 2011 3 MP
XPP
X18 0 0 17 1243 2011 3 MP
XPP
X0 18 18 0 1243 2028 3 MP
XPP
X18 0 0 18 1243 2028 3 MP
XPP
X0 18 18 0 1243 2046 3 MP
XPP
X18 0 0 18 1243 2046 3 MP
XPP
X0 18 18 0 1243 2064 3 MP
XPP
X18 0 0 18 1243 2064 3 MP
XPP
X0 18 18 0 1243 2082 3 MP
XPP
X18 0 0 18 1243 2082 3 MP
XPP
X0 18 18 0 1243 2100 3 MP
XPP
X18 0 0 18 1243 2100 3 MP
XPP
X0 17 18 0 1243 2118 3 MP
XPP
X18 0 0 17 1243 2118 3 MP
XPP
X0 18 18 0 1243 2135 3 MP
XPP
X18 0 0 18 1243 2135 3 MP
XPP
X0 18 18 0 1243 2153 3 MP
XPP
X18 0 0 18 1243 2153 3 MP
XPP
X0 18 18 0 1261 388 3 MP
XPP
X18 0 0 18 1261 388 3 MP
XPP
X0 18 18 0 1261 406 3 MP
XPP
X18 0 0 18 1261 406 3 MP
XPP
X0 17 18 0 1261 424 3 MP
XPP
X18 0 0 17 1261 424 3 MP
XPP
X0 18 18 0 1261 441 3 MP
XPP
X18 0 0 18 1261 441 3 MP
XPP
X0 18 18 0 1261 459 3 MP
XPP
X18 0 0 18 1261 459 3 MP
XPP
X0 18 18 0 1261 477 3 MP
XPP
X18 0 0 18 1261 477 3 MP
XPP
X0 18 18 0 1261 495 3 MP
XPP
X18 0 0 18 1261 495 3 MP
XPP
X0 18 18 0 1261 513 3 MP
XPP
X18 0 0 18 1261 513 3 MP
XPP
X0 17 18 0 1261 531 3 MP
XPP
X18 0 0 17 1261 531 3 MP
XPP
X0 18 18 0 1261 548 3 MP
XPP
X18 0 0 18 1261 548 3 MP
XPP
X0 18 18 0 1261 566 3 MP
XPP
X18 0 0 18 1261 566 3 MP
XPP
X0 18 18 0 1261 584 3 MP
XPP
X18 0 0 18 1261 584 3 MP
XPP
X0 18 18 0 1261 602 3 MP
XPP
X18 0 0 18 1261 602 3 MP
XPP
X0 18 18 0 1261 620 3 MP
XPP
X18 0 0 18 1261 620 3 MP
XPP
X0 17 18 0 1261 638 3 MP
XPP
X18 0 0 17 1261 638 3 MP
XPP
X0 18 18 0 1261 655 3 MP
XPP
X18 0 0 18 1261 655 3 MP
XPP
X0 18 18 0 1261 673 3 MP
XPP
X18 0 0 18 1261 673 3 MP
XPP
X0 18 18 0 1261 691 3 MP
XPP
X18 0 0 18 1261 691 3 MP
XPP
X0 18 18 0 1261 709 3 MP
XPP
X18 0 0 18 1261 709 3 MP
XPP
X0 18 18 0 1261 727 3 MP
XPP
X18 0 0 18 1261 727 3 MP
XPP
X0 17 18 0 1261 745 3 MP
XPP
X18 0 0 17 1261 745 3 MP
XPP
X0 18 18 0 1261 762 3 MP
XPP
X18 0 0 18 1261 762 3 MP
XPP
X0 18 18 0 1261 780 3 MP
XPP
X18 0 0 18 1261 780 3 MP
XPP
X0 18 18 0 1261 798 3 MP
XPP
X18 0 0 18 1261 798 3 MP
XPP
X0 18 18 0 1261 816 3 MP
XPP
X18 0 0 18 1261 816 3 MP
XPP
X0 18 18 0 1261 834 3 MP
XPP
X18 0 0 18 1261 834 3 MP
XPP
X0 17 18 0 1261 852 3 MP
XPP
X18 0 0 17 1261 852 3 MP
XPP
X0 18 18 0 1261 869 3 MP
XPP
X18 0 0 18 1261 869 3 MP
XPP
X0 18 18 0 1261 887 3 MP
XPP
X18 0 0 18 1261 887 3 MP
XPP
X0 18 18 0 1261 905 3 MP
XPP
X18 0 0 18 1261 905 3 MP
XPP
X0 18 18 0 1261 923 3 MP
XPP
X18 0 0 18 1261 923 3 MP
XPP
X0 18 18 0 1261 941 3 MP
XPP
X18 0 0 18 1261 941 3 MP
XPP
X0 17 18 0 1261 959 3 MP
XPP
X18 0 0 17 1261 959 3 MP
XPP
X0 18 18 0 1261 976 3 MP
XPP
X18 0 0 18 1261 976 3 MP
XPP
X0 18 18 0 1261 994 3 MP
XPP
X18 0 0 18 1261 994 3 MP
XPP
X0 18 18 0 1261 1012 3 MP
XPP
X18 0 0 18 1261 1012 3 MP
XPP
X0 18 18 0 1261 1030 3 MP
XPP
X18 0 0 18 1261 1030 3 MP
XPP
X0 18 18 0 1261 1048 3 MP
XPP
X18 0 0 18 1261 1048 3 MP
XPP
X0 17 18 0 1261 1066 3 MP
XPP
X18 0 0 17 1261 1066 3 MP
XPP
X0 18 18 0 1261 1083 3 MP
XPP
X18 0 0 18 1261 1083 3 MP
XPP
X0 18 18 0 1261 1101 3 MP
XPP
X18 0 0 18 1261 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1261 1119 3 MP
XPP
X18 0 0 18 1261 1119 3 MP
XPP
X0 18 18 0 1261 1137 3 MP
XPP
X18 0 0 18 1261 1137 3 MP
XPP
X0 18 18 0 1261 1155 3 MP
XPP
X18 0 0 18 1261 1155 3 MP
XPP
X0 17 18 0 1261 1173 3 MP
XPP
X18 0 0 17 1261 1173 3 MP
XPP
X0 18 18 0 1261 1190 3 MP
XPP
X18 0 0 18 1261 1190 3 MP
XPP
X0 18 18 0 1261 1208 3 MP
XPP
X18 0 0 18 1261 1208 3 MP
XPP
X0 18 18 0 1261 1226 3 MP
XPP
X18 0 0 18 1261 1226 3 MP
XPP
X1 sg
X0 18 18 0 1261 1244 3 MP
XPP
X18 0 0 18 1261 1244 3 MP
XPP
X0 17 18 0 1261 1262 3 MP
XPP
X18 0 0 17 1261 1262 3 MP
XPP
X0 18 18 0 1261 1279 3 MP
XPP
X18 0 0 18 1261 1279 3 MP
XPP
X0 18 18 0 1261 1297 3 MP
XPP
X18 0 0 18 1261 1297 3 MP
XPP
X0 18 18 0 1261 1315 3 MP
XPP
X18 0 0 18 1261 1315 3 MP
XPP
X0 18 18 0 1261 1333 3 MP
XPP
X18 0 0 18 1261 1333 3 MP
XPP
X0 18 18 0 1261 1351 3 MP
XPP
X18 0 0 18 1261 1351 3 MP
XPP
X0 17 18 0 1261 1369 3 MP
XPP
X18 0 0 17 1261 1369 3 MP
XPP
X0 18 18 0 1261 1386 3 MP
XPP
X18 0 0 18 1261 1386 3 MP
XPP
X0 18 18 0 1261 1404 3 MP
XPP
X18 0 0 18 1261 1404 3 MP
XPP
X0 18 18 0 1261 1422 3 MP
XPP
X18 0 0 18 1261 1422 3 MP
XPP
X0 18 18 0 1261 1440 3 MP
XPP
X18 0 0 18 1261 1440 3 MP
XPP
X0 18 18 0 1261 1458 3 MP
XPP
X18 0 0 18 1261 1458 3 MP
XPP
X0 17 18 0 1261 1476 3 MP
XPP
X18 0 0 17 1261 1476 3 MP
XPP
X0 18 18 0 1261 1493 3 MP
XPP
X18 0 0 18 1261 1493 3 MP
XPP
X0 18 18 0 1261 1511 3 MP
XPP
X18 0 0 18 1261 1511 3 MP
XPP
X0 18 18 0 1261 1529 3 MP
XPP
X18 0 0 18 1261 1529 3 MP
XPP
X0 18 18 0 1261 1547 3 MP
XPP
X18 0 0 18 1261 1547 3 MP
XPP
X0 18 18 0 1261 1565 3 MP
XPP
X18 0 0 18 1261 1565 3 MP
XPP
X0 17 18 0 1261 1583 3 MP
XPP
X18 0 0 17 1261 1583 3 MP
XPP
X0 18 18 0 1261 1600 3 MP
XPP
X18 0 0 18 1261 1600 3 MP
XPP
X0 18 18 0 1261 1618 3 MP
XPP
X18 0 0 18 1261 1618 3 MP
XPP
X0 18 18 0 1261 1636 3 MP
XPP
X18 0 0 18 1261 1636 3 MP
XPP
X0 18 18 0 1261 1654 3 MP
XPP
X18 0 0 18 1261 1654 3 MP
XPP
X0 18 18 0 1261 1672 3 MP
XPP
X18 0 0 18 1261 1672 3 MP
XPP
X0 17 18 0 1261 1690 3 MP
XPP
X18 0 0 17 1261 1690 3 MP
XPP
X0 18 18 0 1261 1707 3 MP
XPP
X18 0 0 18 1261 1707 3 MP
XPP
X0 18 18 0 1261 1725 3 MP
XPP
X18 0 0 18 1261 1725 3 MP
XPP
X0 18 18 0 1261 1743 3 MP
XPP
X18 0 0 18 1261 1743 3 MP
XPP
X0 18 18 0 1261 1761 3 MP
XPP
X18 0 0 18 1261 1761 3 MP
XPP
X0 18 18 0 1261 1779 3 MP
XPP
X18 0 0 18 1261 1779 3 MP
XPP
X0 17 18 0 1261 1797 3 MP
XPP
X18 0 0 17 1261 1797 3 MP
XPP
X0 18 18 0 1261 1814 3 MP
XPP
X18 0 0 18 1261 1814 3 MP
XPP
X0 18 18 0 1261 1832 3 MP
XPP
X18 0 0 18 1261 1832 3 MP
XPP
X0 18 18 0 1261 1850 3 MP
XPP
X18 0 0 18 1261 1850 3 MP
XPP
X0 18 18 0 1261 1868 3 MP
XPP
X18 0 0 18 1261 1868 3 MP
XPP
X0 18 18 0 1261 1886 3 MP
XPP
X18 0 0 18 1261 1886 3 MP
XPP
X0 17 18 0 1261 1904 3 MP
XPP
X18 0 0 17 1261 1904 3 MP
XPP
X0 18 18 0 1261 1921 3 MP
XPP
X18 0 0 18 1261 1921 3 MP
XPP
X0 18 18 0 1261 1939 3 MP
XPP
X18 0 0 18 1261 1939 3 MP
XPP
X0 18 18 0 1261 1957 3 MP
XPP
X18 0 0 18 1261 1957 3 MP
XPP
X0 18 18 0 1261 1975 3 MP
XPP
X18 0 0 18 1261 1975 3 MP
XPP
X0 18 18 0 1261 1993 3 MP
XPP
X18 0 0 18 1261 1993 3 MP
XPP
X0 17 18 0 1261 2011 3 MP
XPP
X18 0 0 17 1261 2011 3 MP
XPP
X0 18 18 0 1261 2028 3 MP
XPP
X18 0 0 18 1261 2028 3 MP
XPP
X0 18 18 0 1261 2046 3 MP
XPP
X18 0 0 18 1261 2046 3 MP
XPP
X0 18 18 0 1261 2064 3 MP
XPP
X18 0 0 18 1261 2064 3 MP
XPP
X0 18 18 0 1261 2082 3 MP
XPP
X18 0 0 18 1261 2082 3 MP
XPP
X0 18 18 0 1261 2100 3 MP
XPP
X18 0 0 18 1261 2100 3 MP
XPP
X0 17 18 0 1261 2118 3 MP
XPP
X18 0 0 17 1261 2118 3 MP
XPP
X0 18 18 0 1261 2135 3 MP
XPP
X18 0 0 18 1261 2135 3 MP
XPP
X0 18 18 0 1261 2153 3 MP
XPP
X18 0 0 18 1261 2153 3 MP
XPP
X0 18 17 0 1279 388 3 MP
XPP
X17 0 0 18 1279 388 3 MP
XPP
X0 18 17 0 1279 406 3 MP
XPP
X17 0 0 18 1279 406 3 MP
XPP
X0 17 17 0 1279 424 3 MP
XPP
X17 0 0 17 1279 424 3 MP
XPP
X0 18 17 0 1279 441 3 MP
XPP
X17 0 0 18 1279 441 3 MP
XPP
X0 18 17 0 1279 459 3 MP
XPP
X17 0 0 18 1279 459 3 MP
XPP
X0 18 17 0 1279 477 3 MP
XPP
X17 0 0 18 1279 477 3 MP
XPP
X0 18 17 0 1279 495 3 MP
XPP
X17 0 0 18 1279 495 3 MP
XPP
X0 18 17 0 1279 513 3 MP
XPP
X17 0 0 18 1279 513 3 MP
XPP
X0 17 17 0 1279 531 3 MP
XPP
X17 0 0 17 1279 531 3 MP
XPP
X0 18 17 0 1279 548 3 MP
XPP
X17 0 0 18 1279 548 3 MP
XPP
X0 18 17 0 1279 566 3 MP
XPP
X17 0 0 18 1279 566 3 MP
XPP
X0 18 17 0 1279 584 3 MP
XPP
X17 0 0 18 1279 584 3 MP
XPP
X0 18 17 0 1279 602 3 MP
XPP
X17 0 0 18 1279 602 3 MP
XPP
X0 18 17 0 1279 620 3 MP
XPP
X17 0 0 18 1279 620 3 MP
XPP
X0 17 17 0 1279 638 3 MP
XPP
X17 0 0 17 1279 638 3 MP
XPP
X0 18 17 0 1279 655 3 MP
XPP
X17 0 0 18 1279 655 3 MP
XPP
X0 18 17 0 1279 673 3 MP
XPP
X17 0 0 18 1279 673 3 MP
XPP
X0 18 17 0 1279 691 3 MP
XPP
X17 0 0 18 1279 691 3 MP
XPP
X0 18 17 0 1279 709 3 MP
XPP
X17 0 0 18 1279 709 3 MP
XPP
X0 18 17 0 1279 727 3 MP
XPP
X17 0 0 18 1279 727 3 MP
XPP
X0 17 17 0 1279 745 3 MP
XPP
X17 0 0 17 1279 745 3 MP
XPP
X0 18 17 0 1279 762 3 MP
XPP
X17 0 0 18 1279 762 3 MP
XPP
X0 18 17 0 1279 780 3 MP
XPP
X17 0 0 18 1279 780 3 MP
XPP
X0 18 17 0 1279 798 3 MP
XPP
X17 0 0 18 1279 798 3 MP
XPP
X0 18 17 0 1279 816 3 MP
XPP
X17 0 0 18 1279 816 3 MP
XPP
X0 18 17 0 1279 834 3 MP
XPP
X17 0 0 18 1279 834 3 MP
XPP
X0 17 17 0 1279 852 3 MP
XPP
X17 0 0 17 1279 852 3 MP
XPP
X0 18 17 0 1279 869 3 MP
XPP
X17 0 0 18 1279 869 3 MP
XPP
X0 18 17 0 1279 887 3 MP
XPP
X17 0 0 18 1279 887 3 MP
XPP
X0 18 17 0 1279 905 3 MP
XPP
X17 0 0 18 1279 905 3 MP
XPP
X0 18 17 0 1279 923 3 MP
XPP
X17 0 0 18 1279 923 3 MP
XPP
X0 18 17 0 1279 941 3 MP
XPP
X17 0 0 18 1279 941 3 MP
XPP
X0 17 17 0 1279 959 3 MP
XPP
X17 0 0 17 1279 959 3 MP
XPP
X0 18 17 0 1279 976 3 MP
XPP
X17 0 0 18 1279 976 3 MP
XPP
X0 18 17 0 1279 994 3 MP
XPP
X17 0 0 18 1279 994 3 MP
XPP
X0 18 17 0 1279 1012 3 MP
XPP
X17 0 0 18 1279 1012 3 MP
XPP
X0 18 17 0 1279 1030 3 MP
XPP
X17 0 0 18 1279 1030 3 MP
XPP
X0 18 17 0 1279 1048 3 MP
XPP
X17 0 0 18 1279 1048 3 MP
XPP
X0 17 17 0 1279 1066 3 MP
XPP
X17 0 0 17 1279 1066 3 MP
XPP
X0 18 17 0 1279 1083 3 MP
XPP
X17 0 0 18 1279 1083 3 MP
XPP
X0 18 17 0 1279 1101 3 MP
XPP
X17 0 0 18 1279 1101 3 MP
XPP
X0.238095 sg
X0 18 17 0 1279 1119 3 MP
XPP
X17 0 0 18 1279 1119 3 MP
XPP
X0 18 17 0 1279 1137 3 MP
XPP
X17 0 0 18 1279 1137 3 MP
XPP
X0 18 17 0 1279 1155 3 MP
XPP
X17 0 0 18 1279 1155 3 MP
XPP
X0 17 17 0 1279 1173 3 MP
XPP
X17 0 0 17 1279 1173 3 MP
XPP
X0 18 17 0 1279 1190 3 MP
XPP
X17 0 0 18 1279 1190 3 MP
XPP
X0 18 17 0 1279 1208 3 MP
XPP
X17 0 0 18 1279 1208 3 MP
XPP
X0 18 17 0 1279 1226 3 MP
XPP
X17 0 0 18 1279 1226 3 MP
XPP
X0 18 17 0 1279 1244 3 MP
XPP
X17 0 0 18 1279 1244 3 MP
XPP
X1 sg
X0 17 17 0 1279 1262 3 MP
XPP
X17 0 0 17 1279 1262 3 MP
XPP
X0 18 17 0 1279 1279 3 MP
XPP
X17 0 0 18 1279 1279 3 MP
XPP
X0 18 17 0 1279 1297 3 MP
XPP
X17 0 0 18 1279 1297 3 MP
XPP
X0 18 17 0 1279 1315 3 MP
XPP
X17 0 0 18 1279 1315 3 MP
XPP
X0 18 17 0 1279 1333 3 MP
XPP
X17 0 0 18 1279 1333 3 MP
XPP
X0 18 17 0 1279 1351 3 MP
XPP
X17 0 0 18 1279 1351 3 MP
XPP
X0 17 17 0 1279 1369 3 MP
XPP
X17 0 0 17 1279 1369 3 MP
XPP
X0 18 17 0 1279 1386 3 MP
XPP
X17 0 0 18 1279 1386 3 MP
XPP
X0 18 17 0 1279 1404 3 MP
XPP
X17 0 0 18 1279 1404 3 MP
XPP
X0 18 17 0 1279 1422 3 MP
XPP
X17 0 0 18 1279 1422 3 MP
XPP
X0 18 17 0 1279 1440 3 MP
XPP
X17 0 0 18 1279 1440 3 MP
XPP
X0 18 17 0 1279 1458 3 MP
XPP
X17 0 0 18 1279 1458 3 MP
XPP
X0 17 17 0 1279 1476 3 MP
XPP
X17 0 0 17 1279 1476 3 MP
XPP
X0 18 17 0 1279 1493 3 MP
XPP
X17 0 0 18 1279 1493 3 MP
XPP
X0 18 17 0 1279 1511 3 MP
XPP
X17 0 0 18 1279 1511 3 MP
XPP
X0 18 17 0 1279 1529 3 MP
XPP
X17 0 0 18 1279 1529 3 MP
XPP
X0 18 17 0 1279 1547 3 MP
XPP
X17 0 0 18 1279 1547 3 MP
XPP
X0 18 17 0 1279 1565 3 MP
XPP
X17 0 0 18 1279 1565 3 MP
XPP
X0 17 17 0 1279 1583 3 MP
XPP
X17 0 0 17 1279 1583 3 MP
XPP
X0 18 17 0 1279 1600 3 MP
XPP
X17 0 0 18 1279 1600 3 MP
XPP
X0 18 17 0 1279 1618 3 MP
XPP
X17 0 0 18 1279 1618 3 MP
XPP
X0 18 17 0 1279 1636 3 MP
XPP
X17 0 0 18 1279 1636 3 MP
XPP
X0 18 17 0 1279 1654 3 MP
XPP
X17 0 0 18 1279 1654 3 MP
XPP
X0 18 17 0 1279 1672 3 MP
XPP
X17 0 0 18 1279 1672 3 MP
XPP
X0 17 17 0 1279 1690 3 MP
XPP
X17 0 0 17 1279 1690 3 MP
XPP
X0 18 17 0 1279 1707 3 MP
XPP
X17 0 0 18 1279 1707 3 MP
XPP
X0 18 17 0 1279 1725 3 MP
XPP
X17 0 0 18 1279 1725 3 MP
XPP
X0 18 17 0 1279 1743 3 MP
XPP
X17 0 0 18 1279 1743 3 MP
XPP
X0 18 17 0 1279 1761 3 MP
XPP
X17 0 0 18 1279 1761 3 MP
XPP
X0 18 17 0 1279 1779 3 MP
XPP
X17 0 0 18 1279 1779 3 MP
XPP
X0 17 17 0 1279 1797 3 MP
XPP
X17 0 0 17 1279 1797 3 MP
XPP
X0 18 17 0 1279 1814 3 MP
XPP
X17 0 0 18 1279 1814 3 MP
XPP
X0 18 17 0 1279 1832 3 MP
XPP
X17 0 0 18 1279 1832 3 MP
XPP
X0 18 17 0 1279 1850 3 MP
XPP
X17 0 0 18 1279 1850 3 MP
XPP
X0 18 17 0 1279 1868 3 MP
XPP
X17 0 0 18 1279 1868 3 MP
XPP
X0 18 17 0 1279 1886 3 MP
XPP
X17 0 0 18 1279 1886 3 MP
XPP
X0 17 17 0 1279 1904 3 MP
XPP
X17 0 0 17 1279 1904 3 MP
XPP
X0 18 17 0 1279 1921 3 MP
XPP
X17 0 0 18 1279 1921 3 MP
XPP
X0 18 17 0 1279 1939 3 MP
XPP
X17 0 0 18 1279 1939 3 MP
XPP
X0 18 17 0 1279 1957 3 MP
XPP
X17 0 0 18 1279 1957 3 MP
XPP
X0 18 17 0 1279 1975 3 MP
XPP
X17 0 0 18 1279 1975 3 MP
XPP
X0 18 17 0 1279 1993 3 MP
XPP
X17 0 0 18 1279 1993 3 MP
XPP
X0 17 17 0 1279 2011 3 MP
XPP
X17 0 0 17 1279 2011 3 MP
XPP
X0 18 17 0 1279 2028 3 MP
XPP
X17 0 0 18 1279 2028 3 MP
XPP
X0 18 17 0 1279 2046 3 MP
XPP
X17 0 0 18 1279 2046 3 MP
XPP
X0 18 17 0 1279 2064 3 MP
XPP
X17 0 0 18 1279 2064 3 MP
XPP
X0 18 17 0 1279 2082 3 MP
XPP
X17 0 0 18 1279 2082 3 MP
XPP
X0 18 17 0 1279 2100 3 MP
XPP
X17 0 0 18 1279 2100 3 MP
XPP
X0 17 17 0 1279 2118 3 MP
XPP
X17 0 0 17 1279 2118 3 MP
XPP
X0 18 17 0 1279 2135 3 MP
XPP
X17 0 0 18 1279 2135 3 MP
XPP
X0 18 17 0 1279 2153 3 MP
XPP
X17 0 0 18 1279 2153 3 MP
XPP
X0 18 18 0 1296 388 3 MP
XPP
X18 0 0 18 1296 388 3 MP
XPP
X0 18 18 0 1296 406 3 MP
XPP
X18 0 0 18 1296 406 3 MP
XPP
X0 17 18 0 1296 424 3 MP
XPP
X18 0 0 17 1296 424 3 MP
XPP
X0 18 18 0 1296 441 3 MP
XPP
X18 0 0 18 1296 441 3 MP
XPP
X0 18 18 0 1296 459 3 MP
XPP
X18 0 0 18 1296 459 3 MP
XPP
X0 18 18 0 1296 477 3 MP
XPP
X18 0 0 18 1296 477 3 MP
XPP
X0 18 18 0 1296 495 3 MP
XPP
X18 0 0 18 1296 495 3 MP
XPP
X0 18 18 0 1296 513 3 MP
XPP
X18 0 0 18 1296 513 3 MP
XPP
X0 17 18 0 1296 531 3 MP
XPP
X18 0 0 17 1296 531 3 MP
XPP
X0 18 18 0 1296 548 3 MP
XPP
X18 0 0 18 1296 548 3 MP
XPP
X0 18 18 0 1296 566 3 MP
XPP
X18 0 0 18 1296 566 3 MP
XPP
X0 18 18 0 1296 584 3 MP
XPP
X18 0 0 18 1296 584 3 MP
XPP
X0 18 18 0 1296 602 3 MP
XPP
X18 0 0 18 1296 602 3 MP
XPP
X0 18 18 0 1296 620 3 MP
XPP
X18 0 0 18 1296 620 3 MP
XPP
X0 17 18 0 1296 638 3 MP
XPP
X18 0 0 17 1296 638 3 MP
XPP
X0 18 18 0 1296 655 3 MP
XPP
X18 0 0 18 1296 655 3 MP
XPP
X0 18 18 0 1296 673 3 MP
XPP
X18 0 0 18 1296 673 3 MP
XPP
X0 18 18 0 1296 691 3 MP
XPP
X18 0 0 18 1296 691 3 MP
XPP
X0 18 18 0 1296 709 3 MP
XPP
X18 0 0 18 1296 709 3 MP
XPP
X0 18 18 0 1296 727 3 MP
XPP
X18 0 0 18 1296 727 3 MP
XPP
X0 17 18 0 1296 745 3 MP
XPP
X18 0 0 17 1296 745 3 MP
XPP
X0 18 18 0 1296 762 3 MP
XPP
X18 0 0 18 1296 762 3 MP
XPP
X0 18 18 0 1296 780 3 MP
XPP
X18 0 0 18 1296 780 3 MP
XPP
X0 18 18 0 1296 798 3 MP
XPP
X18 0 0 18 1296 798 3 MP
XPP
X0 18 18 0 1296 816 3 MP
XPP
X18 0 0 18 1296 816 3 MP
XPP
X0 18 18 0 1296 834 3 MP
XPP
X18 0 0 18 1296 834 3 MP
XPP
X0 17 18 0 1296 852 3 MP
XPP
X18 0 0 17 1296 852 3 MP
XPP
X0 18 18 0 1296 869 3 MP
XPP
X18 0 0 18 1296 869 3 MP
XPP
X0 18 18 0 1296 887 3 MP
XPP
X18 0 0 18 1296 887 3 MP
XPP
X0 18 18 0 1296 905 3 MP
XPP
X18 0 0 18 1296 905 3 MP
XPP
X0 18 18 0 1296 923 3 MP
XPP
X18 0 0 18 1296 923 3 MP
XPP
X0 18 18 0 1296 941 3 MP
XPP
X18 0 0 18 1296 941 3 MP
XPP
X0 17 18 0 1296 959 3 MP
XPP
X18 0 0 17 1296 959 3 MP
XPP
X0 18 18 0 1296 976 3 MP
XPP
X18 0 0 18 1296 976 3 MP
XPP
X0 18 18 0 1296 994 3 MP
XPP
X18 0 0 18 1296 994 3 MP
XPP
X0 18 18 0 1296 1012 3 MP
XPP
X18 0 0 18 1296 1012 3 MP
XPP
X0 18 18 0 1296 1030 3 MP
XPP
X18 0 0 18 1296 1030 3 MP
XPP
X0 18 18 0 1296 1048 3 MP
XPP
X18 0 0 18 1296 1048 3 MP
XPP
X0 17 18 0 1296 1066 3 MP
XPP
X18 0 0 17 1296 1066 3 MP
XPP
X0 18 18 0 1296 1083 3 MP
XPP
X18 0 0 18 1296 1083 3 MP
XPP
X0 18 18 0 1296 1101 3 MP
XPP
X18 0 0 18 1296 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1296 1119 3 MP
XPP
X18 0 0 18 1296 1119 3 MP
XPP
X0 18 18 0 1296 1137 3 MP
XPP
X18 0 0 18 1296 1137 3 MP
XPP
X0 18 18 0 1296 1155 3 MP
XPP
X18 0 0 18 1296 1155 3 MP
XPP
X0 17 18 0 1296 1173 3 MP
XPP
X18 0 0 17 1296 1173 3 MP
XPP
X0 18 18 0 1296 1190 3 MP
XPP
X18 0 0 18 1296 1190 3 MP
XPP
X0 18 18 0 1296 1208 3 MP
XPP
X18 0 0 18 1296 1208 3 MP
XPP
X0 18 18 0 1296 1226 3 MP
XPP
X18 0 0 18 1296 1226 3 MP
XPP
X0 18 18 0 1296 1244 3 MP
XPP
X18 0 0 18 1296 1244 3 MP
XPP
X0 17 18 0 1296 1262 3 MP
XPP
X18 0 0 17 1296 1262 3 MP
XPP
X1 sg
X0 18 18 0 1296 1279 3 MP
XPP
X18 0 0 18 1296 1279 3 MP
XPP
X0 18 18 0 1296 1297 3 MP
XPP
X18 0 0 18 1296 1297 3 MP
XPP
X0 18 18 0 1296 1315 3 MP
XPP
X18 0 0 18 1296 1315 3 MP
XPP
X0 18 18 0 1296 1333 3 MP
XPP
X18 0 0 18 1296 1333 3 MP
XPP
X0 18 18 0 1296 1351 3 MP
XPP
X18 0 0 18 1296 1351 3 MP
XPP
X0 17 18 0 1296 1369 3 MP
XPP
X18 0 0 17 1296 1369 3 MP
XPP
X0 18 18 0 1296 1386 3 MP
XPP
X18 0 0 18 1296 1386 3 MP
XPP
X0 18 18 0 1296 1404 3 MP
XPP
X18 0 0 18 1296 1404 3 MP
XPP
X0 18 18 0 1296 1422 3 MP
XPP
X18 0 0 18 1296 1422 3 MP
XPP
X0 18 18 0 1296 1440 3 MP
XPP
X18 0 0 18 1296 1440 3 MP
XPP
X0 18 18 0 1296 1458 3 MP
XPP
X18 0 0 18 1296 1458 3 MP
XPP
X0 17 18 0 1296 1476 3 MP
XPP
X18 0 0 17 1296 1476 3 MP
XPP
X0 18 18 0 1296 1493 3 MP
XPP
X18 0 0 18 1296 1493 3 MP
XPP
X0 18 18 0 1296 1511 3 MP
XPP
X18 0 0 18 1296 1511 3 MP
XPP
X0 18 18 0 1296 1529 3 MP
XPP
X18 0 0 18 1296 1529 3 MP
XPP
X0 18 18 0 1296 1547 3 MP
XPP
X18 0 0 18 1296 1547 3 MP
XPP
X0 18 18 0 1296 1565 3 MP
XPP
X18 0 0 18 1296 1565 3 MP
XPP
X0 17 18 0 1296 1583 3 MP
XPP
X18 0 0 17 1296 1583 3 MP
XPP
X0 18 18 0 1296 1600 3 MP
XPP
X18 0 0 18 1296 1600 3 MP
XPP
X0 18 18 0 1296 1618 3 MP
XPP
X18 0 0 18 1296 1618 3 MP
XPP
X0 18 18 0 1296 1636 3 MP
XPP
X18 0 0 18 1296 1636 3 MP
XPP
X0 18 18 0 1296 1654 3 MP
XPP
X18 0 0 18 1296 1654 3 MP
XPP
X0 18 18 0 1296 1672 3 MP
XPP
X18 0 0 18 1296 1672 3 MP
XPP
X0 17 18 0 1296 1690 3 MP
XPP
X18 0 0 17 1296 1690 3 MP
XPP
X0 18 18 0 1296 1707 3 MP
XPP
X18 0 0 18 1296 1707 3 MP
XPP
X0 18 18 0 1296 1725 3 MP
XPP
X18 0 0 18 1296 1725 3 MP
XPP
X0 18 18 0 1296 1743 3 MP
XPP
X18 0 0 18 1296 1743 3 MP
XPP
X0 18 18 0 1296 1761 3 MP
XPP
X18 0 0 18 1296 1761 3 MP
XPP
X0 18 18 0 1296 1779 3 MP
XPP
X18 0 0 18 1296 1779 3 MP
XPP
X0 17 18 0 1296 1797 3 MP
XPP
X18 0 0 17 1296 1797 3 MP
XPP
X0 18 18 0 1296 1814 3 MP
XPP
X18 0 0 18 1296 1814 3 MP
XPP
X0 18 18 0 1296 1832 3 MP
XPP
X18 0 0 18 1296 1832 3 MP
XPP
X0 18 18 0 1296 1850 3 MP
XPP
X18 0 0 18 1296 1850 3 MP
XPP
X0 18 18 0 1296 1868 3 MP
XPP
X18 0 0 18 1296 1868 3 MP
XPP
X0 18 18 0 1296 1886 3 MP
XPP
X18 0 0 18 1296 1886 3 MP
XPP
X0 17 18 0 1296 1904 3 MP
XPP
X18 0 0 17 1296 1904 3 MP
XPP
X0 18 18 0 1296 1921 3 MP
XPP
X18 0 0 18 1296 1921 3 MP
XPP
X0 18 18 0 1296 1939 3 MP
XPP
X18 0 0 18 1296 1939 3 MP
XPP
X0 18 18 0 1296 1957 3 MP
XPP
X18 0 0 18 1296 1957 3 MP
XPP
X0 18 18 0 1296 1975 3 MP
XPP
X18 0 0 18 1296 1975 3 MP
XPP
X0 18 18 0 1296 1993 3 MP
XPP
X18 0 0 18 1296 1993 3 MP
XPP
X0 17 18 0 1296 2011 3 MP
XPP
X18 0 0 17 1296 2011 3 MP
XPP
X0 18 18 0 1296 2028 3 MP
XPP
X18 0 0 18 1296 2028 3 MP
XPP
X0 18 18 0 1296 2046 3 MP
XPP
X18 0 0 18 1296 2046 3 MP
XPP
X0 18 18 0 1296 2064 3 MP
XPP
X18 0 0 18 1296 2064 3 MP
XPP
X0 18 18 0 1296 2082 3 MP
XPP
X18 0 0 18 1296 2082 3 MP
XPP
X0 18 18 0 1296 2100 3 MP
XPP
X18 0 0 18 1296 2100 3 MP
XPP
X0 17 18 0 1296 2118 3 MP
XPP
X18 0 0 17 1296 2118 3 MP
XPP
X0 18 18 0 1296 2135 3 MP
XPP
X18 0 0 18 1296 2135 3 MP
XPP
X0 18 18 0 1296 2153 3 MP
XPP
X18 0 0 18 1296 2153 3 MP
XPP
X0 18 18 0 1314 388 3 MP
XPP
X18 0 0 18 1314 388 3 MP
XPP
X0 18 18 0 1314 406 3 MP
XPP
X18 0 0 18 1314 406 3 MP
XPP
X0 17 18 0 1314 424 3 MP
XPP
X18 0 0 17 1314 424 3 MP
XPP
X0 18 18 0 1314 441 3 MP
XPP
X18 0 0 18 1314 441 3 MP
XPP
X0 18 18 0 1314 459 3 MP
XPP
X18 0 0 18 1314 459 3 MP
XPP
X0 18 18 0 1314 477 3 MP
XPP
X18 0 0 18 1314 477 3 MP
XPP
X0 18 18 0 1314 495 3 MP
XPP
X18 0 0 18 1314 495 3 MP
XPP
X0 18 18 0 1314 513 3 MP
XPP
X18 0 0 18 1314 513 3 MP
XPP
X0 17 18 0 1314 531 3 MP
XPP
X18 0 0 17 1314 531 3 MP
XPP
X0 18 18 0 1314 548 3 MP
XPP
X18 0 0 18 1314 548 3 MP
XPP
X0 18 18 0 1314 566 3 MP
XPP
X18 0 0 18 1314 566 3 MP
XPP
X0 18 18 0 1314 584 3 MP
XPP
X18 0 0 18 1314 584 3 MP
XPP
X0 18 18 0 1314 602 3 MP
XPP
X18 0 0 18 1314 602 3 MP
XPP
X0 18 18 0 1314 620 3 MP
XPP
X18 0 0 18 1314 620 3 MP
XPP
X0 17 18 0 1314 638 3 MP
XPP
X18 0 0 17 1314 638 3 MP
XPP
X0 18 18 0 1314 655 3 MP
XPP
X18 0 0 18 1314 655 3 MP
XPP
X0 18 18 0 1314 673 3 MP
XPP
X18 0 0 18 1314 673 3 MP
XPP
X0 18 18 0 1314 691 3 MP
XPP
X18 0 0 18 1314 691 3 MP
XPP
X0 18 18 0 1314 709 3 MP
XPP
X18 0 0 18 1314 709 3 MP
XPP
X0 18 18 0 1314 727 3 MP
XPP
X18 0 0 18 1314 727 3 MP
XPP
X0 17 18 0 1314 745 3 MP
XPP
X18 0 0 17 1314 745 3 MP
XPP
X0 18 18 0 1314 762 3 MP
XPP
X18 0 0 18 1314 762 3 MP
XPP
X0 18 18 0 1314 780 3 MP
XPP
X18 0 0 18 1314 780 3 MP
XPP
X0 18 18 0 1314 798 3 MP
XPP
X18 0 0 18 1314 798 3 MP
XPP
X0 18 18 0 1314 816 3 MP
XPP
X18 0 0 18 1314 816 3 MP
XPP
X0 18 18 0 1314 834 3 MP
XPP
X18 0 0 18 1314 834 3 MP
XPP
X0 17 18 0 1314 852 3 MP
XPP
X18 0 0 17 1314 852 3 MP
XPP
X0 18 18 0 1314 869 3 MP
XPP
X18 0 0 18 1314 869 3 MP
XPP
X0 18 18 0 1314 887 3 MP
XPP
X18 0 0 18 1314 887 3 MP
XPP
X0 18 18 0 1314 905 3 MP
XPP
X18 0 0 18 1314 905 3 MP
XPP
X0 18 18 0 1314 923 3 MP
XPP
X18 0 0 18 1314 923 3 MP
XPP
X0 18 18 0 1314 941 3 MP
XPP
X18 0 0 18 1314 941 3 MP
XPP
X0 17 18 0 1314 959 3 MP
XPP
X18 0 0 17 1314 959 3 MP
XPP
X0 18 18 0 1314 976 3 MP
XPP
X18 0 0 18 1314 976 3 MP
XPP
X0 18 18 0 1314 994 3 MP
XPP
X18 0 0 18 1314 994 3 MP
XPP
X0 18 18 0 1314 1012 3 MP
XPP
X18 0 0 18 1314 1012 3 MP
XPP
X0 18 18 0 1314 1030 3 MP
XPP
X18 0 0 18 1314 1030 3 MP
XPP
X0 18 18 0 1314 1048 3 MP
XPP
X18 0 0 18 1314 1048 3 MP
XPP
X0 17 18 0 1314 1066 3 MP
XPP
X18 0 0 17 1314 1066 3 MP
XPP
X0 18 18 0 1314 1083 3 MP
XPP
X18 0 0 18 1314 1083 3 MP
XPP
X0 18 18 0 1314 1101 3 MP
XPP
X18 0 0 18 1314 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1314 1119 3 MP
XPP
X18 0 0 18 1314 1119 3 MP
XPP
X0 18 18 0 1314 1137 3 MP
XPP
X18 0 0 18 1314 1137 3 MP
XPP
X0 18 18 0 1314 1155 3 MP
XPP
X18 0 0 18 1314 1155 3 MP
XPP
X0 17 18 0 1314 1173 3 MP
XPP
X18 0 0 17 1314 1173 3 MP
XPP
X0 18 18 0 1314 1190 3 MP
XPP
X18 0 0 18 1314 1190 3 MP
XPP
X0 18 18 0 1314 1208 3 MP
XPP
X18 0 0 18 1314 1208 3 MP
XPP
X0 18 18 0 1314 1226 3 MP
XPP
X18 0 0 18 1314 1226 3 MP
XPP
X0 18 18 0 1314 1244 3 MP
XPP
X18 0 0 18 1314 1244 3 MP
XPP
X0 17 18 0 1314 1262 3 MP
XPP
X18 0 0 17 1314 1262 3 MP
XPP
X0 18 18 0 1314 1279 3 MP
XPP
X18 0 0 18 1314 1279 3 MP
XPP
X1 sg
X0 18 18 0 1314 1297 3 MP
XPP
X18 0 0 18 1314 1297 3 MP
XPP
X0 18 18 0 1314 1315 3 MP
XPP
X18 0 0 18 1314 1315 3 MP
XPP
X0 18 18 0 1314 1333 3 MP
XPP
X18 0 0 18 1314 1333 3 MP
XPP
X0 18 18 0 1314 1351 3 MP
XPP
X18 0 0 18 1314 1351 3 MP
XPP
X0 17 18 0 1314 1369 3 MP
XPP
X18 0 0 17 1314 1369 3 MP
XPP
X0 18 18 0 1314 1386 3 MP
XPP
X18 0 0 18 1314 1386 3 MP
XPP
X0 18 18 0 1314 1404 3 MP
XPP
X18 0 0 18 1314 1404 3 MP
XPP
X0 18 18 0 1314 1422 3 MP
XPP
X18 0 0 18 1314 1422 3 MP
XPP
X0 18 18 0 1314 1440 3 MP
XPP
X18 0 0 18 1314 1440 3 MP
XPP
X0 18 18 0 1314 1458 3 MP
XPP
X18 0 0 18 1314 1458 3 MP
XPP
X0 17 18 0 1314 1476 3 MP
XPP
X18 0 0 17 1314 1476 3 MP
XPP
X0 18 18 0 1314 1493 3 MP
XPP
X18 0 0 18 1314 1493 3 MP
XPP
X0 18 18 0 1314 1511 3 MP
XPP
X18 0 0 18 1314 1511 3 MP
XPP
X0 18 18 0 1314 1529 3 MP
XPP
X18 0 0 18 1314 1529 3 MP
XPP
X0 18 18 0 1314 1547 3 MP
XPP
X18 0 0 18 1314 1547 3 MP
XPP
X0 18 18 0 1314 1565 3 MP
XPP
X18 0 0 18 1314 1565 3 MP
XPP
X0 17 18 0 1314 1583 3 MP
XPP
X18 0 0 17 1314 1583 3 MP
XPP
X0 18 18 0 1314 1600 3 MP
XPP
X18 0 0 18 1314 1600 3 MP
XPP
X0 18 18 0 1314 1618 3 MP
XPP
X18 0 0 18 1314 1618 3 MP
XPP
X0 18 18 0 1314 1636 3 MP
XPP
X18 0 0 18 1314 1636 3 MP
XPP
X0 18 18 0 1314 1654 3 MP
XPP
X18 0 0 18 1314 1654 3 MP
XPP
X0 18 18 0 1314 1672 3 MP
XPP
X18 0 0 18 1314 1672 3 MP
XPP
X0 17 18 0 1314 1690 3 MP
XPP
X18 0 0 17 1314 1690 3 MP
XPP
X0 18 18 0 1314 1707 3 MP
XPP
X18 0 0 18 1314 1707 3 MP
XPP
X0 18 18 0 1314 1725 3 MP
XPP
X18 0 0 18 1314 1725 3 MP
XPP
X0 18 18 0 1314 1743 3 MP
XPP
X18 0 0 18 1314 1743 3 MP
XPP
X0 18 18 0 1314 1761 3 MP
XPP
X18 0 0 18 1314 1761 3 MP
XPP
X0 18 18 0 1314 1779 3 MP
XPP
X18 0 0 18 1314 1779 3 MP
XPP
X0 17 18 0 1314 1797 3 MP
XPP
X18 0 0 17 1314 1797 3 MP
XPP
X0 18 18 0 1314 1814 3 MP
XPP
X18 0 0 18 1314 1814 3 MP
XPP
X0 18 18 0 1314 1832 3 MP
XPP
X18 0 0 18 1314 1832 3 MP
XPP
X0 18 18 0 1314 1850 3 MP
XPP
X18 0 0 18 1314 1850 3 MP
XPP
X0 18 18 0 1314 1868 3 MP
XPP
X18 0 0 18 1314 1868 3 MP
XPP
X0 18 18 0 1314 1886 3 MP
XPP
X18 0 0 18 1314 1886 3 MP
XPP
X0 17 18 0 1314 1904 3 MP
XPP
X18 0 0 17 1314 1904 3 MP
XPP
X0 18 18 0 1314 1921 3 MP
XPP
X18 0 0 18 1314 1921 3 MP
XPP
X0 18 18 0 1314 1939 3 MP
XPP
X18 0 0 18 1314 1939 3 MP
XPP
X0 18 18 0 1314 1957 3 MP
XPP
X18 0 0 18 1314 1957 3 MP
XPP
X0 18 18 0 1314 1975 3 MP
XPP
X18 0 0 18 1314 1975 3 MP
XPP
X0 18 18 0 1314 1993 3 MP
XPP
X18 0 0 18 1314 1993 3 MP
XPP
X0 17 18 0 1314 2011 3 MP
XPP
X18 0 0 17 1314 2011 3 MP
XPP
X0 18 18 0 1314 2028 3 MP
XPP
X18 0 0 18 1314 2028 3 MP
XPP
X0 18 18 0 1314 2046 3 MP
XPP
X18 0 0 18 1314 2046 3 MP
XPP
X0 18 18 0 1314 2064 3 MP
XPP
X18 0 0 18 1314 2064 3 MP
XPP
X0 18 18 0 1314 2082 3 MP
XPP
X18 0 0 18 1314 2082 3 MP
XPP
X0 18 18 0 1314 2100 3 MP
XPP
X18 0 0 18 1314 2100 3 MP
XPP
X0 17 18 0 1314 2118 3 MP
XPP
X18 0 0 17 1314 2118 3 MP
XPP
X0 18 18 0 1314 2135 3 MP
XPP
X18 0 0 18 1314 2135 3 MP
XPP
X0 18 18 0 1314 2153 3 MP
XPP
X18 0 0 18 1314 2153 3 MP
XPP
X0 18 18 0 1332 388 3 MP
XPP
X18 0 0 18 1332 388 3 MP
XPP
X0 18 18 0 1332 406 3 MP
XPP
X18 0 0 18 1332 406 3 MP
XPP
X0 17 18 0 1332 424 3 MP
XPP
X18 0 0 17 1332 424 3 MP
XPP
X0 18 18 0 1332 441 3 MP
XPP
X18 0 0 18 1332 441 3 MP
XPP
X0 18 18 0 1332 459 3 MP
XPP
X18 0 0 18 1332 459 3 MP
XPP
X0 18 18 0 1332 477 3 MP
XPP
X18 0 0 18 1332 477 3 MP
XPP
X0 18 18 0 1332 495 3 MP
XPP
X18 0 0 18 1332 495 3 MP
XPP
X0 18 18 0 1332 513 3 MP
XPP
X18 0 0 18 1332 513 3 MP
XPP
X0 17 18 0 1332 531 3 MP
XPP
X18 0 0 17 1332 531 3 MP
XPP
X0 18 18 0 1332 548 3 MP
XPP
X18 0 0 18 1332 548 3 MP
XPP
X0 18 18 0 1332 566 3 MP
XPP
X18 0 0 18 1332 566 3 MP
XPP
X0 18 18 0 1332 584 3 MP
XPP
X18 0 0 18 1332 584 3 MP
XPP
X0 18 18 0 1332 602 3 MP
XPP
X18 0 0 18 1332 602 3 MP
XPP
X0 18 18 0 1332 620 3 MP
XPP
X18 0 0 18 1332 620 3 MP
XPP
X0 17 18 0 1332 638 3 MP
XPP
X18 0 0 17 1332 638 3 MP
XPP
X0 18 18 0 1332 655 3 MP
XPP
X18 0 0 18 1332 655 3 MP
XPP
X0 18 18 0 1332 673 3 MP
XPP
X18 0 0 18 1332 673 3 MP
XPP
X0 18 18 0 1332 691 3 MP
XPP
X18 0 0 18 1332 691 3 MP
XPP
X0 18 18 0 1332 709 3 MP
XPP
X18 0 0 18 1332 709 3 MP
XPP
X0 18 18 0 1332 727 3 MP
XPP
X18 0 0 18 1332 727 3 MP
XPP
X0 17 18 0 1332 745 3 MP
XPP
X18 0 0 17 1332 745 3 MP
XPP
X0 18 18 0 1332 762 3 MP
XPP
X18 0 0 18 1332 762 3 MP
XPP
X0 18 18 0 1332 780 3 MP
XPP
X18 0 0 18 1332 780 3 MP
XPP
X0 18 18 0 1332 798 3 MP
XPP
X18 0 0 18 1332 798 3 MP
XPP
X0 18 18 0 1332 816 3 MP
XPP
X18 0 0 18 1332 816 3 MP
XPP
X0 18 18 0 1332 834 3 MP
XPP
X18 0 0 18 1332 834 3 MP
XPP
X0 17 18 0 1332 852 3 MP
XPP
X18 0 0 17 1332 852 3 MP
XPP
X0 18 18 0 1332 869 3 MP
XPP
X18 0 0 18 1332 869 3 MP
XPP
X0 18 18 0 1332 887 3 MP
XPP
X18 0 0 18 1332 887 3 MP
XPP
X0 18 18 0 1332 905 3 MP
XPP
X18 0 0 18 1332 905 3 MP
XPP
X0 18 18 0 1332 923 3 MP
XPP
X18 0 0 18 1332 923 3 MP
XPP
X0 18 18 0 1332 941 3 MP
XPP
X18 0 0 18 1332 941 3 MP
XPP
X0 17 18 0 1332 959 3 MP
XPP
X18 0 0 17 1332 959 3 MP
XPP
X0 18 18 0 1332 976 3 MP
XPP
X18 0 0 18 1332 976 3 MP
XPP
X0 18 18 0 1332 994 3 MP
XPP
X18 0 0 18 1332 994 3 MP
XPP
X0 18 18 0 1332 1012 3 MP
XPP
X18 0 0 18 1332 1012 3 MP
XPP
X0 18 18 0 1332 1030 3 MP
XPP
X18 0 0 18 1332 1030 3 MP
XPP
X0 18 18 0 1332 1048 3 MP
XPP
X18 0 0 18 1332 1048 3 MP
XPP
X0 17 18 0 1332 1066 3 MP
XPP
X18 0 0 17 1332 1066 3 MP
XPP
X0 18 18 0 1332 1083 3 MP
XPP
X18 0 0 18 1332 1083 3 MP
XPP
X0 18 18 0 1332 1101 3 MP
XPP
X18 0 0 18 1332 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1332 1119 3 MP
XPP
X18 0 0 18 1332 1119 3 MP
XPP
X0 18 18 0 1332 1137 3 MP
XPP
X18 0 0 18 1332 1137 3 MP
XPP
X0 18 18 0 1332 1155 3 MP
XPP
X18 0 0 18 1332 1155 3 MP
XPP
X0 17 18 0 1332 1173 3 MP
XPP
X18 0 0 17 1332 1173 3 MP
XPP
X0 18 18 0 1332 1190 3 MP
XPP
X18 0 0 18 1332 1190 3 MP
XPP
X0 18 18 0 1332 1208 3 MP
XPP
X18 0 0 18 1332 1208 3 MP
XPP
X0 18 18 0 1332 1226 3 MP
XPP
X18 0 0 18 1332 1226 3 MP
XPP
X0 18 18 0 1332 1244 3 MP
XPP
X18 0 0 18 1332 1244 3 MP
XPP
X0 17 18 0 1332 1262 3 MP
XPP
X18 0 0 17 1332 1262 3 MP
XPP
X0 18 18 0 1332 1279 3 MP
XPP
X18 0 0 18 1332 1279 3 MP
XPP
X0 18 18 0 1332 1297 3 MP
XPP
X18 0 0 18 1332 1297 3 MP
XPP
X1 sg
X0 18 18 0 1332 1315 3 MP
XPP
X18 0 0 18 1332 1315 3 MP
XPP
X0 18 18 0 1332 1333 3 MP
XPP
X18 0 0 18 1332 1333 3 MP
XPP
X0 18 18 0 1332 1351 3 MP
XPP
X18 0 0 18 1332 1351 3 MP
XPP
X0 17 18 0 1332 1369 3 MP
XPP
X18 0 0 17 1332 1369 3 MP
XPP
X0 18 18 0 1332 1386 3 MP
XPP
X18 0 0 18 1332 1386 3 MP
XPP
X0 18 18 0 1332 1404 3 MP
XPP
X18 0 0 18 1332 1404 3 MP
XPP
X0 18 18 0 1332 1422 3 MP
XPP
X18 0 0 18 1332 1422 3 MP
XPP
X0 18 18 0 1332 1440 3 MP
XPP
X18 0 0 18 1332 1440 3 MP
XPP
X0 18 18 0 1332 1458 3 MP
XPP
X18 0 0 18 1332 1458 3 MP
XPP
X0 17 18 0 1332 1476 3 MP
XPP
X18 0 0 17 1332 1476 3 MP
XPP
X0 18 18 0 1332 1493 3 MP
XPP
X18 0 0 18 1332 1493 3 MP
XPP
X0 18 18 0 1332 1511 3 MP
XPP
X18 0 0 18 1332 1511 3 MP
XPP
X0 18 18 0 1332 1529 3 MP
XPP
X18 0 0 18 1332 1529 3 MP
XPP
X0 18 18 0 1332 1547 3 MP
XPP
X18 0 0 18 1332 1547 3 MP
XPP
X0 18 18 0 1332 1565 3 MP
XPP
X18 0 0 18 1332 1565 3 MP
XPP
X0 17 18 0 1332 1583 3 MP
XPP
X18 0 0 17 1332 1583 3 MP
XPP
X0 18 18 0 1332 1600 3 MP
XPP
X18 0 0 18 1332 1600 3 MP
XPP
X0 18 18 0 1332 1618 3 MP
XPP
X18 0 0 18 1332 1618 3 MP
XPP
X0 18 18 0 1332 1636 3 MP
XPP
X18 0 0 18 1332 1636 3 MP
XPP
X0 18 18 0 1332 1654 3 MP
XPP
X18 0 0 18 1332 1654 3 MP
XPP
X0 18 18 0 1332 1672 3 MP
XPP
X18 0 0 18 1332 1672 3 MP
XPP
X0 17 18 0 1332 1690 3 MP
XPP
X18 0 0 17 1332 1690 3 MP
XPP
X0 18 18 0 1332 1707 3 MP
XPP
X18 0 0 18 1332 1707 3 MP
XPP
X0 18 18 0 1332 1725 3 MP
XPP
X18 0 0 18 1332 1725 3 MP
XPP
X0 18 18 0 1332 1743 3 MP
XPP
X18 0 0 18 1332 1743 3 MP
XPP
X0 18 18 0 1332 1761 3 MP
XPP
X18 0 0 18 1332 1761 3 MP
XPP
X0 18 18 0 1332 1779 3 MP
XPP
X18 0 0 18 1332 1779 3 MP
XPP
X0 17 18 0 1332 1797 3 MP
XPP
X18 0 0 17 1332 1797 3 MP
XPP
X0 18 18 0 1332 1814 3 MP
XPP
X18 0 0 18 1332 1814 3 MP
XPP
X0 18 18 0 1332 1832 3 MP
XPP
X18 0 0 18 1332 1832 3 MP
XPP
X0 18 18 0 1332 1850 3 MP
XPP
X18 0 0 18 1332 1850 3 MP
XPP
X0 18 18 0 1332 1868 3 MP
XPP
X18 0 0 18 1332 1868 3 MP
XPP
X0 18 18 0 1332 1886 3 MP
XPP
X18 0 0 18 1332 1886 3 MP
XPP
X0 17 18 0 1332 1904 3 MP
XPP
X18 0 0 17 1332 1904 3 MP
XPP
X0 18 18 0 1332 1921 3 MP
XPP
X18 0 0 18 1332 1921 3 MP
XPP
X0 18 18 0 1332 1939 3 MP
XPP
X18 0 0 18 1332 1939 3 MP
XPP
X0 18 18 0 1332 1957 3 MP
XPP
X18 0 0 18 1332 1957 3 MP
XPP
X0 18 18 0 1332 1975 3 MP
XPP
X18 0 0 18 1332 1975 3 MP
XPP
X0 18 18 0 1332 1993 3 MP
XPP
X18 0 0 18 1332 1993 3 MP
XPP
X0 17 18 0 1332 2011 3 MP
XPP
X18 0 0 17 1332 2011 3 MP
XPP
X0 18 18 0 1332 2028 3 MP
XPP
X18 0 0 18 1332 2028 3 MP
XPP
X0 18 18 0 1332 2046 3 MP
XPP
X18 0 0 18 1332 2046 3 MP
XPP
X0 18 18 0 1332 2064 3 MP
XPP
X18 0 0 18 1332 2064 3 MP
XPP
X0 18 18 0 1332 2082 3 MP
XPP
X18 0 0 18 1332 2082 3 MP
XPP
X0 18 18 0 1332 2100 3 MP
XPP
X18 0 0 18 1332 2100 3 MP
XPP
X0 17 18 0 1332 2118 3 MP
XPP
X18 0 0 17 1332 2118 3 MP
XPP
X0 18 18 0 1332 2135 3 MP
XPP
X18 0 0 18 1332 2135 3 MP
XPP
X0 18 18 0 1332 2153 3 MP
XPP
X18 0 0 18 1332 2153 3 MP
XPP
X0 18 18 0 1350 388 3 MP
XPP
X18 0 0 18 1350 388 3 MP
XPP
X0 18 18 0 1350 406 3 MP
XPP
X18 0 0 18 1350 406 3 MP
XPP
X0 17 18 0 1350 424 3 MP
XPP
X18 0 0 17 1350 424 3 MP
XPP
X0 18 18 0 1350 441 3 MP
XPP
X18 0 0 18 1350 441 3 MP
XPP
X0 18 18 0 1350 459 3 MP
XPP
X18 0 0 18 1350 459 3 MP
XPP
X0 18 18 0 1350 477 3 MP
XPP
X18 0 0 18 1350 477 3 MP
XPP
X0 18 18 0 1350 495 3 MP
XPP
X18 0 0 18 1350 495 3 MP
XPP
X0 18 18 0 1350 513 3 MP
XPP
X18 0 0 18 1350 513 3 MP
XPP
X0 17 18 0 1350 531 3 MP
XPP
X18 0 0 17 1350 531 3 MP
XPP
X0 18 18 0 1350 548 3 MP
XPP
X18 0 0 18 1350 548 3 MP
XPP
X0 18 18 0 1350 566 3 MP
XPP
X18 0 0 18 1350 566 3 MP
XPP
X0 18 18 0 1350 584 3 MP
XPP
X18 0 0 18 1350 584 3 MP
XPP
X0 18 18 0 1350 602 3 MP
XPP
X18 0 0 18 1350 602 3 MP
XPP
X0 18 18 0 1350 620 3 MP
XPP
X18 0 0 18 1350 620 3 MP
XPP
X0 17 18 0 1350 638 3 MP
XPP
X18 0 0 17 1350 638 3 MP
XPP
X0 18 18 0 1350 655 3 MP
XPP
X18 0 0 18 1350 655 3 MP
XPP
X0 18 18 0 1350 673 3 MP
XPP
X18 0 0 18 1350 673 3 MP
XPP
X0 18 18 0 1350 691 3 MP
XPP
X18 0 0 18 1350 691 3 MP
XPP
X0 18 18 0 1350 709 3 MP
XPP
X18 0 0 18 1350 709 3 MP
XPP
X0 18 18 0 1350 727 3 MP
XPP
X18 0 0 18 1350 727 3 MP
XPP
X0 17 18 0 1350 745 3 MP
XPP
X18 0 0 17 1350 745 3 MP
XPP
X0 18 18 0 1350 762 3 MP
XPP
X18 0 0 18 1350 762 3 MP
XPP
X0 18 18 0 1350 780 3 MP
XPP
X18 0 0 18 1350 780 3 MP
XPP
X0 18 18 0 1350 798 3 MP
XPP
X18 0 0 18 1350 798 3 MP
XPP
X0 18 18 0 1350 816 3 MP
XPP
X18 0 0 18 1350 816 3 MP
XPP
X0 18 18 0 1350 834 3 MP
XPP
X18 0 0 18 1350 834 3 MP
XPP
X0 17 18 0 1350 852 3 MP
XPP
X18 0 0 17 1350 852 3 MP
XPP
X0 18 18 0 1350 869 3 MP
XPP
X18 0 0 18 1350 869 3 MP
XPP
X0 18 18 0 1350 887 3 MP
XPP
X18 0 0 18 1350 887 3 MP
XPP
X0 18 18 0 1350 905 3 MP
XPP
X18 0 0 18 1350 905 3 MP
XPP
X0 18 18 0 1350 923 3 MP
XPP
X18 0 0 18 1350 923 3 MP
XPP
X0 18 18 0 1350 941 3 MP
XPP
X18 0 0 18 1350 941 3 MP
XPP
X0 17 18 0 1350 959 3 MP
XPP
X18 0 0 17 1350 959 3 MP
XPP
X0 18 18 0 1350 976 3 MP
XPP
X18 0 0 18 1350 976 3 MP
XPP
X0 18 18 0 1350 994 3 MP
XPP
X18 0 0 18 1350 994 3 MP
XPP
X0 18 18 0 1350 1012 3 MP
XPP
X18 0 0 18 1350 1012 3 MP
XPP
X0 18 18 0 1350 1030 3 MP
XPP
X18 0 0 18 1350 1030 3 MP
XPP
X0 18 18 0 1350 1048 3 MP
XPP
X18 0 0 18 1350 1048 3 MP
XPP
X0 17 18 0 1350 1066 3 MP
XPP
X18 0 0 17 1350 1066 3 MP
XPP
X0 18 18 0 1350 1083 3 MP
XPP
X18 0 0 18 1350 1083 3 MP
XPP
X0 18 18 0 1350 1101 3 MP
XPP
X18 0 0 18 1350 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1350 1119 3 MP
XPP
X18 0 0 18 1350 1119 3 MP
XPP
X0 18 18 0 1350 1137 3 MP
XPP
X18 0 0 18 1350 1137 3 MP
XPP
X0 18 18 0 1350 1155 3 MP
XPP
X18 0 0 18 1350 1155 3 MP
XPP
X0 17 18 0 1350 1173 3 MP
XPP
X18 0 0 17 1350 1173 3 MP
XPP
X0 18 18 0 1350 1190 3 MP
XPP
X18 0 0 18 1350 1190 3 MP
XPP
X0 18 18 0 1350 1208 3 MP
XPP
X18 0 0 18 1350 1208 3 MP
XPP
X0 18 18 0 1350 1226 3 MP
XPP
X18 0 0 18 1350 1226 3 MP
XPP
X0 18 18 0 1350 1244 3 MP
XPP
X18 0 0 18 1350 1244 3 MP
XPP
X0 17 18 0 1350 1262 3 MP
XPP
X18 0 0 17 1350 1262 3 MP
XPP
X0 18 18 0 1350 1279 3 MP
XPP
X18 0 0 18 1350 1279 3 MP
XPP
X0 18 18 0 1350 1297 3 MP
XPP
X18 0 0 18 1350 1297 3 MP
XPP
X0 18 18 0 1350 1315 3 MP
XPP
X18 0 0 18 1350 1315 3 MP
XPP
X1 sg
X0 18 18 0 1350 1333 3 MP
XPP
X18 0 0 18 1350 1333 3 MP
XPP
X0 18 18 0 1350 1351 3 MP
XPP
X18 0 0 18 1350 1351 3 MP
XPP
X0 17 18 0 1350 1369 3 MP
XPP
X18 0 0 17 1350 1369 3 MP
XPP
X0 18 18 0 1350 1386 3 MP
XPP
X18 0 0 18 1350 1386 3 MP
XPP
X0 18 18 0 1350 1404 3 MP
XPP
X18 0 0 18 1350 1404 3 MP
XPP
X0 18 18 0 1350 1422 3 MP
XPP
X18 0 0 18 1350 1422 3 MP
XPP
X0 18 18 0 1350 1440 3 MP
XPP
X18 0 0 18 1350 1440 3 MP
XPP
X0 18 18 0 1350 1458 3 MP
XPP
X18 0 0 18 1350 1458 3 MP
XPP
X0 17 18 0 1350 1476 3 MP
XPP
X18 0 0 17 1350 1476 3 MP
XPP
X0 18 18 0 1350 1493 3 MP
XPP
X18 0 0 18 1350 1493 3 MP
XPP
X0 18 18 0 1350 1511 3 MP
XPP
X18 0 0 18 1350 1511 3 MP
XPP
X0 18 18 0 1350 1529 3 MP
XPP
X18 0 0 18 1350 1529 3 MP
XPP
X0 18 18 0 1350 1547 3 MP
XPP
X18 0 0 18 1350 1547 3 MP
XPP
X0 18 18 0 1350 1565 3 MP
XPP
X18 0 0 18 1350 1565 3 MP
XPP
X0 17 18 0 1350 1583 3 MP
XPP
X18 0 0 17 1350 1583 3 MP
XPP
X0 18 18 0 1350 1600 3 MP
XPP
X18 0 0 18 1350 1600 3 MP
XPP
X0 18 18 0 1350 1618 3 MP
XPP
X18 0 0 18 1350 1618 3 MP
XPP
X0 18 18 0 1350 1636 3 MP
XPP
X18 0 0 18 1350 1636 3 MP
XPP
X0 18 18 0 1350 1654 3 MP
XPP
X18 0 0 18 1350 1654 3 MP
XPP
X0 18 18 0 1350 1672 3 MP
XPP
X18 0 0 18 1350 1672 3 MP
XPP
X0 17 18 0 1350 1690 3 MP
XPP
X18 0 0 17 1350 1690 3 MP
XPP
X0 18 18 0 1350 1707 3 MP
XPP
X18 0 0 18 1350 1707 3 MP
XPP
X0 18 18 0 1350 1725 3 MP
XPP
X18 0 0 18 1350 1725 3 MP
XPP
X0 18 18 0 1350 1743 3 MP
XPP
X18 0 0 18 1350 1743 3 MP
XPP
X0 18 18 0 1350 1761 3 MP
XPP
X18 0 0 18 1350 1761 3 MP
XPP
X0 18 18 0 1350 1779 3 MP
XPP
X18 0 0 18 1350 1779 3 MP
XPP
X0 17 18 0 1350 1797 3 MP
XPP
X18 0 0 17 1350 1797 3 MP
XPP
X0 18 18 0 1350 1814 3 MP
XPP
X18 0 0 18 1350 1814 3 MP
XPP
X0 18 18 0 1350 1832 3 MP
XPP
X18 0 0 18 1350 1832 3 MP
XPP
X0 18 18 0 1350 1850 3 MP
XPP
X18 0 0 18 1350 1850 3 MP
XPP
X0 18 18 0 1350 1868 3 MP
XPP
X18 0 0 18 1350 1868 3 MP
XPP
X0 18 18 0 1350 1886 3 MP
XPP
X18 0 0 18 1350 1886 3 MP
XPP
X0 17 18 0 1350 1904 3 MP
XPP
X18 0 0 17 1350 1904 3 MP
XPP
X0 18 18 0 1350 1921 3 MP
XPP
X18 0 0 18 1350 1921 3 MP
XPP
X0 18 18 0 1350 1939 3 MP
XPP
X18 0 0 18 1350 1939 3 MP
XPP
X0 18 18 0 1350 1957 3 MP
XPP
X18 0 0 18 1350 1957 3 MP
XPP
X0 18 18 0 1350 1975 3 MP
XPP
X18 0 0 18 1350 1975 3 MP
XPP
X0 18 18 0 1350 1993 3 MP
XPP
X18 0 0 18 1350 1993 3 MP
XPP
X0 17 18 0 1350 2011 3 MP
XPP
X18 0 0 17 1350 2011 3 MP
XPP
X0 18 18 0 1350 2028 3 MP
XPP
X18 0 0 18 1350 2028 3 MP
XPP
X0 18 18 0 1350 2046 3 MP
XPP
X18 0 0 18 1350 2046 3 MP
XPP
X0 18 18 0 1350 2064 3 MP
XPP
X18 0 0 18 1350 2064 3 MP
XPP
X0 18 18 0 1350 2082 3 MP
XPP
X18 0 0 18 1350 2082 3 MP
XPP
X0 18 18 0 1350 2100 3 MP
XPP
X18 0 0 18 1350 2100 3 MP
XPP
X0 17 18 0 1350 2118 3 MP
XPP
X18 0 0 17 1350 2118 3 MP
XPP
X0 18 18 0 1350 2135 3 MP
XPP
X18 0 0 18 1350 2135 3 MP
XPP
X0 18 18 0 1350 2153 3 MP
XPP
X18 0 0 18 1350 2153 3 MP
XPP
X0 18 18 0 1368 388 3 MP
XPP
X18 0 0 18 1368 388 3 MP
XPP
X0 18 18 0 1368 406 3 MP
XPP
X18 0 0 18 1368 406 3 MP
XPP
X0 17 18 0 1368 424 3 MP
XPP
X18 0 0 17 1368 424 3 MP
XPP
X0 18 18 0 1368 441 3 MP
XPP
X18 0 0 18 1368 441 3 MP
XPP
X0 18 18 0 1368 459 3 MP
XPP
X18 0 0 18 1368 459 3 MP
XPP
X0 18 18 0 1368 477 3 MP
XPP
X18 0 0 18 1368 477 3 MP
XPP
X0 18 18 0 1368 495 3 MP
XPP
X18 0 0 18 1368 495 3 MP
XPP
X0 18 18 0 1368 513 3 MP
XPP
X18 0 0 18 1368 513 3 MP
XPP
X0 17 18 0 1368 531 3 MP
XPP
X18 0 0 17 1368 531 3 MP
XPP
X0 18 18 0 1368 548 3 MP
XPP
X18 0 0 18 1368 548 3 MP
XPP
X0 18 18 0 1368 566 3 MP
XPP
X18 0 0 18 1368 566 3 MP
XPP
X0 18 18 0 1368 584 3 MP
XPP
X18 0 0 18 1368 584 3 MP
XPP
X0 18 18 0 1368 602 3 MP
XPP
X18 0 0 18 1368 602 3 MP
XPP
X0 18 18 0 1368 620 3 MP
XPP
X18 0 0 18 1368 620 3 MP
XPP
X0 17 18 0 1368 638 3 MP
XPP
X18 0 0 17 1368 638 3 MP
XPP
X0 18 18 0 1368 655 3 MP
XPP
X18 0 0 18 1368 655 3 MP
XPP
X0 18 18 0 1368 673 3 MP
XPP
X18 0 0 18 1368 673 3 MP
XPP
X0 18 18 0 1368 691 3 MP
XPP
X18 0 0 18 1368 691 3 MP
XPP
X0 18 18 0 1368 709 3 MP
XPP
X18 0 0 18 1368 709 3 MP
XPP
X0 18 18 0 1368 727 3 MP
XPP
X18 0 0 18 1368 727 3 MP
XPP
X0 17 18 0 1368 745 3 MP
XPP
X18 0 0 17 1368 745 3 MP
XPP
X0 18 18 0 1368 762 3 MP
XPP
X18 0 0 18 1368 762 3 MP
XPP
X0 18 18 0 1368 780 3 MP
XPP
X18 0 0 18 1368 780 3 MP
XPP
X0 18 18 0 1368 798 3 MP
XPP
X18 0 0 18 1368 798 3 MP
XPP
X0 18 18 0 1368 816 3 MP
XPP
X18 0 0 18 1368 816 3 MP
XPP
X0 18 18 0 1368 834 3 MP
XPP
X18 0 0 18 1368 834 3 MP
XPP
X0 17 18 0 1368 852 3 MP
XPP
X18 0 0 17 1368 852 3 MP
XPP
X0 18 18 0 1368 869 3 MP
XPP
X18 0 0 18 1368 869 3 MP
XPP
X0 18 18 0 1368 887 3 MP
XPP
X18 0 0 18 1368 887 3 MP
XPP
X0 18 18 0 1368 905 3 MP
XPP
X18 0 0 18 1368 905 3 MP
XPP
X0 18 18 0 1368 923 3 MP
XPP
X18 0 0 18 1368 923 3 MP
XPP
X0 18 18 0 1368 941 3 MP
XPP
X18 0 0 18 1368 941 3 MP
XPP
X0 17 18 0 1368 959 3 MP
XPP
X18 0 0 17 1368 959 3 MP
XPP
X0 18 18 0 1368 976 3 MP
XPP
X18 0 0 18 1368 976 3 MP
XPP
X0 18 18 0 1368 994 3 MP
XPP
X18 0 0 18 1368 994 3 MP
XPP
X0 18 18 0 1368 1012 3 MP
XPP
X18 0 0 18 1368 1012 3 MP
XPP
X0 18 18 0 1368 1030 3 MP
XPP
X18 0 0 18 1368 1030 3 MP
XPP
X0 18 18 0 1368 1048 3 MP
XPP
X18 0 0 18 1368 1048 3 MP
XPP
X0 17 18 0 1368 1066 3 MP
XPP
X18 0 0 17 1368 1066 3 MP
XPP
X0 18 18 0 1368 1083 3 MP
XPP
X18 0 0 18 1368 1083 3 MP
XPP
X0 18 18 0 1368 1101 3 MP
XPP
X18 0 0 18 1368 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1368 1119 3 MP
XPP
X18 0 0 18 1368 1119 3 MP
XPP
X0 18 18 0 1368 1137 3 MP
XPP
X18 0 0 18 1368 1137 3 MP
XPP
X0 18 18 0 1368 1155 3 MP
XPP
X18 0 0 18 1368 1155 3 MP
XPP
X0 17 18 0 1368 1173 3 MP
XPP
X18 0 0 17 1368 1173 3 MP
XPP
X0 18 18 0 1368 1190 3 MP
XPP
X18 0 0 18 1368 1190 3 MP
XPP
X0 18 18 0 1368 1208 3 MP
XPP
X18 0 0 18 1368 1208 3 MP
XPP
X0 18 18 0 1368 1226 3 MP
XPP
X18 0 0 18 1368 1226 3 MP
XPP
X0 18 18 0 1368 1244 3 MP
XPP
X18 0 0 18 1368 1244 3 MP
XPP
X0 17 18 0 1368 1262 3 MP
XPP
X18 0 0 17 1368 1262 3 MP
XPP
X0 18 18 0 1368 1279 3 MP
XPP
X18 0 0 18 1368 1279 3 MP
XPP
X0 18 18 0 1368 1297 3 MP
XPP
X18 0 0 18 1368 1297 3 MP
XPP
X0 18 18 0 1368 1315 3 MP
XPP
X18 0 0 18 1368 1315 3 MP
XPP
X0 18 18 0 1368 1333 3 MP
XPP
X18 0 0 18 1368 1333 3 MP
XPP
X1 sg
X0 18 18 0 1368 1351 3 MP
XPP
X18 0 0 18 1368 1351 3 MP
XPP
X0 17 18 0 1368 1369 3 MP
XPP
X18 0 0 17 1368 1369 3 MP
XPP
X0 18 18 0 1368 1386 3 MP
XPP
X18 0 0 18 1368 1386 3 MP
XPP
X0 18 18 0 1368 1404 3 MP
XPP
X18 0 0 18 1368 1404 3 MP
XPP
X0 18 18 0 1368 1422 3 MP
XPP
X18 0 0 18 1368 1422 3 MP
XPP
X0 18 18 0 1368 1440 3 MP
XPP
X18 0 0 18 1368 1440 3 MP
XPP
X0 18 18 0 1368 1458 3 MP
XPP
X18 0 0 18 1368 1458 3 MP
XPP
X0 17 18 0 1368 1476 3 MP
XPP
X18 0 0 17 1368 1476 3 MP
XPP
X0 18 18 0 1368 1493 3 MP
XPP
X18 0 0 18 1368 1493 3 MP
XPP
X0 18 18 0 1368 1511 3 MP
XPP
X18 0 0 18 1368 1511 3 MP
XPP
X0 18 18 0 1368 1529 3 MP
XPP
X18 0 0 18 1368 1529 3 MP
XPP
X0 18 18 0 1368 1547 3 MP
XPP
X18 0 0 18 1368 1547 3 MP
XPP
X0 18 18 0 1368 1565 3 MP
XPP
X18 0 0 18 1368 1565 3 MP
XPP
X0 17 18 0 1368 1583 3 MP
XPP
X18 0 0 17 1368 1583 3 MP
XPP
X0 18 18 0 1368 1600 3 MP
XPP
X18 0 0 18 1368 1600 3 MP
XPP
X0 18 18 0 1368 1618 3 MP
XPP
X18 0 0 18 1368 1618 3 MP
XPP
X0 18 18 0 1368 1636 3 MP
XPP
X18 0 0 18 1368 1636 3 MP
XPP
X0 18 18 0 1368 1654 3 MP
XPP
X18 0 0 18 1368 1654 3 MP
XPP
X0 18 18 0 1368 1672 3 MP
XPP
X18 0 0 18 1368 1672 3 MP
XPP
X0 17 18 0 1368 1690 3 MP
XPP
X18 0 0 17 1368 1690 3 MP
XPP
X0 18 18 0 1368 1707 3 MP
XPP
X18 0 0 18 1368 1707 3 MP
XPP
X0 18 18 0 1368 1725 3 MP
XPP
X18 0 0 18 1368 1725 3 MP
XPP
X0 18 18 0 1368 1743 3 MP
XPP
X18 0 0 18 1368 1743 3 MP
XPP
X0 18 18 0 1368 1761 3 MP
XPP
X18 0 0 18 1368 1761 3 MP
XPP
X0 18 18 0 1368 1779 3 MP
XPP
X18 0 0 18 1368 1779 3 MP
XPP
X0 17 18 0 1368 1797 3 MP
XPP
X18 0 0 17 1368 1797 3 MP
XPP
X0 18 18 0 1368 1814 3 MP
XPP
X18 0 0 18 1368 1814 3 MP
XPP
X0 18 18 0 1368 1832 3 MP
XPP
X18 0 0 18 1368 1832 3 MP
XPP
X0 18 18 0 1368 1850 3 MP
XPP
X18 0 0 18 1368 1850 3 MP
XPP
X0 18 18 0 1368 1868 3 MP
XPP
X18 0 0 18 1368 1868 3 MP
XPP
X0 18 18 0 1368 1886 3 MP
XPP
X18 0 0 18 1368 1886 3 MP
XPP
X0 17 18 0 1368 1904 3 MP
XPP
X18 0 0 17 1368 1904 3 MP
XPP
X0 18 18 0 1368 1921 3 MP
XPP
X18 0 0 18 1368 1921 3 MP
XPP
X0 18 18 0 1368 1939 3 MP
XPP
X18 0 0 18 1368 1939 3 MP
XPP
X0 18 18 0 1368 1957 3 MP
XPP
X18 0 0 18 1368 1957 3 MP
XPP
X0 18 18 0 1368 1975 3 MP
XPP
X18 0 0 18 1368 1975 3 MP
XPP
X0 18 18 0 1368 1993 3 MP
XPP
X18 0 0 18 1368 1993 3 MP
XPP
X0 17 18 0 1368 2011 3 MP
XPP
X18 0 0 17 1368 2011 3 MP
XPP
X0 18 18 0 1368 2028 3 MP
XPP
X18 0 0 18 1368 2028 3 MP
XPP
X0 18 18 0 1368 2046 3 MP
XPP
X18 0 0 18 1368 2046 3 MP
XPP
X0 18 18 0 1368 2064 3 MP
XPP
X18 0 0 18 1368 2064 3 MP
XPP
X0 18 18 0 1368 2082 3 MP
XPP
X18 0 0 18 1368 2082 3 MP
XPP
X0 18 18 0 1368 2100 3 MP
XPP
X18 0 0 18 1368 2100 3 MP
XPP
X0 17 18 0 1368 2118 3 MP
XPP
X18 0 0 17 1368 2118 3 MP
XPP
X0 18 18 0 1368 2135 3 MP
XPP
X18 0 0 18 1368 2135 3 MP
XPP
X0 18 18 0 1368 2153 3 MP
XPP
X18 0 0 18 1368 2153 3 MP
XPP
X0 18 17 0 1386 388 3 MP
XPP
X17 0 0 18 1386 388 3 MP
XPP
X0 18 17 0 1386 406 3 MP
XPP
X17 0 0 18 1386 406 3 MP
XPP
X0 17 17 0 1386 424 3 MP
XPP
X17 0 0 17 1386 424 3 MP
XPP
X0 18 17 0 1386 441 3 MP
XPP
X17 0 0 18 1386 441 3 MP
XPP
X0 18 17 0 1386 459 3 MP
XPP
X17 0 0 18 1386 459 3 MP
XPP
X0 18 17 0 1386 477 3 MP
XPP
X17 0 0 18 1386 477 3 MP
XPP
X0 18 17 0 1386 495 3 MP
XPP
X17 0 0 18 1386 495 3 MP
XPP
X0 18 17 0 1386 513 3 MP
XPP
X17 0 0 18 1386 513 3 MP
XPP
X0 17 17 0 1386 531 3 MP
XPP
X17 0 0 17 1386 531 3 MP
XPP
X0 18 17 0 1386 548 3 MP
XPP
X17 0 0 18 1386 548 3 MP
XPP
X0 18 17 0 1386 566 3 MP
XPP
X17 0 0 18 1386 566 3 MP
XPP
X0 18 17 0 1386 584 3 MP
XPP
X17 0 0 18 1386 584 3 MP
XPP
X0 18 17 0 1386 602 3 MP
XPP
X17 0 0 18 1386 602 3 MP
XPP
X0 18 17 0 1386 620 3 MP
XPP
X17 0 0 18 1386 620 3 MP
XPP
X0 17 17 0 1386 638 3 MP
XPP
X17 0 0 17 1386 638 3 MP
XPP
X0 18 17 0 1386 655 3 MP
XPP
X17 0 0 18 1386 655 3 MP
XPP
X0 18 17 0 1386 673 3 MP
XPP
X17 0 0 18 1386 673 3 MP
XPP
X0 18 17 0 1386 691 3 MP
XPP
X17 0 0 18 1386 691 3 MP
XPP
X0 18 17 0 1386 709 3 MP
XPP
X17 0 0 18 1386 709 3 MP
XPP
X0 18 17 0 1386 727 3 MP
XPP
X17 0 0 18 1386 727 3 MP
XPP
X0 17 17 0 1386 745 3 MP
XPP
X17 0 0 17 1386 745 3 MP
XPP
X0 18 17 0 1386 762 3 MP
XPP
X17 0 0 18 1386 762 3 MP
XPP
X0 18 17 0 1386 780 3 MP
XPP
X17 0 0 18 1386 780 3 MP
XPP
X0 18 17 0 1386 798 3 MP
XPP
X17 0 0 18 1386 798 3 MP
XPP
X0 18 17 0 1386 816 3 MP
XPP
X17 0 0 18 1386 816 3 MP
XPP
X0 18 17 0 1386 834 3 MP
XPP
X17 0 0 18 1386 834 3 MP
XPP
X0 17 17 0 1386 852 3 MP
XPP
X17 0 0 17 1386 852 3 MP
XPP
X0 18 17 0 1386 869 3 MP
XPP
X17 0 0 18 1386 869 3 MP
XPP
X0 18 17 0 1386 887 3 MP
XPP
X17 0 0 18 1386 887 3 MP
XPP
X0 18 17 0 1386 905 3 MP
XPP
X17 0 0 18 1386 905 3 MP
XPP
X0 18 17 0 1386 923 3 MP
XPP
X17 0 0 18 1386 923 3 MP
XPP
X0 18 17 0 1386 941 3 MP
XPP
X17 0 0 18 1386 941 3 MP
XPP
X0 17 17 0 1386 959 3 MP
XPP
X17 0 0 17 1386 959 3 MP
XPP
X0 18 17 0 1386 976 3 MP
XPP
X17 0 0 18 1386 976 3 MP
XPP
X0 18 17 0 1386 994 3 MP
XPP
X17 0 0 18 1386 994 3 MP
XPP
X0 18 17 0 1386 1012 3 MP
XPP
X17 0 0 18 1386 1012 3 MP
XPP
X0 18 17 0 1386 1030 3 MP
XPP
X17 0 0 18 1386 1030 3 MP
XPP
X0 18 17 0 1386 1048 3 MP
XPP
X17 0 0 18 1386 1048 3 MP
XPP
X0 17 17 0 1386 1066 3 MP
XPP
X17 0 0 17 1386 1066 3 MP
XPP
X0 18 17 0 1386 1083 3 MP
XPP
X17 0 0 18 1386 1083 3 MP
XPP
X0 18 17 0 1386 1101 3 MP
XPP
X17 0 0 18 1386 1101 3 MP
XPP
X0.238095 sg
X0 18 17 0 1386 1119 3 MP
XPP
X17 0 0 18 1386 1119 3 MP
XPP
X0 18 17 0 1386 1137 3 MP
XPP
X17 0 0 18 1386 1137 3 MP
XPP
X0 18 17 0 1386 1155 3 MP
XPP
X17 0 0 18 1386 1155 3 MP
XPP
X0 17 17 0 1386 1173 3 MP
XPP
X17 0 0 17 1386 1173 3 MP
XPP
X0 18 17 0 1386 1190 3 MP
XPP
X17 0 0 18 1386 1190 3 MP
XPP
X0 18 17 0 1386 1208 3 MP
XPP
X17 0 0 18 1386 1208 3 MP
XPP
X0 18 17 0 1386 1226 3 MP
XPP
X17 0 0 18 1386 1226 3 MP
XPP
X0 18 17 0 1386 1244 3 MP
XPP
X17 0 0 18 1386 1244 3 MP
XPP
X0 17 17 0 1386 1262 3 MP
XPP
X17 0 0 17 1386 1262 3 MP
XPP
X0 18 17 0 1386 1279 3 MP
XPP
X17 0 0 18 1386 1279 3 MP
XPP
X0 18 17 0 1386 1297 3 MP
XPP
X17 0 0 18 1386 1297 3 MP
XPP
X0 18 17 0 1386 1315 3 MP
XPP
X17 0 0 18 1386 1315 3 MP
XPP
X0 18 17 0 1386 1333 3 MP
XPP
X17 0 0 18 1386 1333 3 MP
XPP
X0 18 17 0 1386 1351 3 MP
XPP
X17 0 0 18 1386 1351 3 MP
XPP
X1 sg
X0 17 17 0 1386 1369 3 MP
XPP
X17 0 0 17 1386 1369 3 MP
XPP
X0 18 17 0 1386 1386 3 MP
XPP
X17 0 0 18 1386 1386 3 MP
XPP
X0 18 17 0 1386 1404 3 MP
XPP
X17 0 0 18 1386 1404 3 MP
XPP
X0 18 17 0 1386 1422 3 MP
XPP
X17 0 0 18 1386 1422 3 MP
XPP
X0 18 17 0 1386 1440 3 MP
XPP
X17 0 0 18 1386 1440 3 MP
XPP
X0 18 17 0 1386 1458 3 MP
XPP
X17 0 0 18 1386 1458 3 MP
XPP
X0 17 17 0 1386 1476 3 MP
XPP
X17 0 0 17 1386 1476 3 MP
XPP
X0 18 17 0 1386 1493 3 MP
XPP
X17 0 0 18 1386 1493 3 MP
XPP
X0 18 17 0 1386 1511 3 MP
XPP
X17 0 0 18 1386 1511 3 MP
XPP
X0 18 17 0 1386 1529 3 MP
XPP
X17 0 0 18 1386 1529 3 MP
XPP
X0 18 17 0 1386 1547 3 MP
XPP
X17 0 0 18 1386 1547 3 MP
XPP
X0 18 17 0 1386 1565 3 MP
XPP
X17 0 0 18 1386 1565 3 MP
XPP
X0 17 17 0 1386 1583 3 MP
XPP
X17 0 0 17 1386 1583 3 MP
XPP
X0 18 17 0 1386 1600 3 MP
XPP
X17 0 0 18 1386 1600 3 MP
XPP
X0 18 17 0 1386 1618 3 MP
XPP
X17 0 0 18 1386 1618 3 MP
XPP
X0 18 17 0 1386 1636 3 MP
XPP
X17 0 0 18 1386 1636 3 MP
XPP
X0 18 17 0 1386 1654 3 MP
XPP
X17 0 0 18 1386 1654 3 MP
XPP
X0 18 17 0 1386 1672 3 MP
XPP
X17 0 0 18 1386 1672 3 MP
XPP
X0 17 17 0 1386 1690 3 MP
XPP
X17 0 0 17 1386 1690 3 MP
XPP
X0 18 17 0 1386 1707 3 MP
XPP
X17 0 0 18 1386 1707 3 MP
XPP
X0 18 17 0 1386 1725 3 MP
XPP
X17 0 0 18 1386 1725 3 MP
XPP
X0 18 17 0 1386 1743 3 MP
XPP
X17 0 0 18 1386 1743 3 MP
XPP
X0 18 17 0 1386 1761 3 MP
XPP
X17 0 0 18 1386 1761 3 MP
XPP
X0 18 17 0 1386 1779 3 MP
XPP
X17 0 0 18 1386 1779 3 MP
XPP
X0 17 17 0 1386 1797 3 MP
XPP
X17 0 0 17 1386 1797 3 MP
XPP
X0 18 17 0 1386 1814 3 MP
XPP
X17 0 0 18 1386 1814 3 MP
XPP
X0 18 17 0 1386 1832 3 MP
XPP
X17 0 0 18 1386 1832 3 MP
XPP
X0 18 17 0 1386 1850 3 MP
XPP
X17 0 0 18 1386 1850 3 MP
XPP
X0 18 17 0 1386 1868 3 MP
XPP
X17 0 0 18 1386 1868 3 MP
XPP
X0 18 17 0 1386 1886 3 MP
XPP
X17 0 0 18 1386 1886 3 MP
XPP
X0 17 17 0 1386 1904 3 MP
XPP
X17 0 0 17 1386 1904 3 MP
XPP
X0 18 17 0 1386 1921 3 MP
XPP
X17 0 0 18 1386 1921 3 MP
XPP
X0 18 17 0 1386 1939 3 MP
XPP
X17 0 0 18 1386 1939 3 MP
XPP
X0 18 17 0 1386 1957 3 MP
XPP
X17 0 0 18 1386 1957 3 MP
XPP
X0 18 17 0 1386 1975 3 MP
XPP
X17 0 0 18 1386 1975 3 MP
XPP
X0 18 17 0 1386 1993 3 MP
XPP
X17 0 0 18 1386 1993 3 MP
XPP
X0 17 17 0 1386 2011 3 MP
XPP
X17 0 0 17 1386 2011 3 MP
XPP
X0 18 17 0 1386 2028 3 MP
XPP
X17 0 0 18 1386 2028 3 MP
XPP
X0 18 17 0 1386 2046 3 MP
XPP
X17 0 0 18 1386 2046 3 MP
XPP
X0 18 17 0 1386 2064 3 MP
XPP
X17 0 0 18 1386 2064 3 MP
XPP
X0 18 17 0 1386 2082 3 MP
XPP
X17 0 0 18 1386 2082 3 MP
XPP
X0 18 17 0 1386 2100 3 MP
XPP
X17 0 0 18 1386 2100 3 MP
XPP
X0 17 17 0 1386 2118 3 MP
XPP
X17 0 0 17 1386 2118 3 MP
XPP
X0 18 17 0 1386 2135 3 MP
XPP
X17 0 0 18 1386 2135 3 MP
XPP
X0 18 17 0 1386 2153 3 MP
XPP
X17 0 0 18 1386 2153 3 MP
XPP
X0 18 18 0 1403 388 3 MP
XPP
X18 0 0 18 1403 388 3 MP
XPP
X0 18 18 0 1403 406 3 MP
XPP
X18 0 0 18 1403 406 3 MP
XPP
X0 17 18 0 1403 424 3 MP
XPP
X18 0 0 17 1403 424 3 MP
XPP
X0 18 18 0 1403 441 3 MP
XPP
X18 0 0 18 1403 441 3 MP
XPP
X0 18 18 0 1403 459 3 MP
XPP
X18 0 0 18 1403 459 3 MP
XPP
X0 18 18 0 1403 477 3 MP
XPP
X18 0 0 18 1403 477 3 MP
XPP
X0 18 18 0 1403 495 3 MP
XPP
X18 0 0 18 1403 495 3 MP
XPP
X0 18 18 0 1403 513 3 MP
XPP
X18 0 0 18 1403 513 3 MP
XPP
X0 17 18 0 1403 531 3 MP
XPP
X18 0 0 17 1403 531 3 MP
XPP
X0 18 18 0 1403 548 3 MP
XPP
X18 0 0 18 1403 548 3 MP
XPP
X0 18 18 0 1403 566 3 MP
XPP
X18 0 0 18 1403 566 3 MP
XPP
X0 18 18 0 1403 584 3 MP
XPP
X18 0 0 18 1403 584 3 MP
XPP
X0 18 18 0 1403 602 3 MP
XPP
X18 0 0 18 1403 602 3 MP
XPP
X0 18 18 0 1403 620 3 MP
XPP
X18 0 0 18 1403 620 3 MP
XPP
X0 17 18 0 1403 638 3 MP
XPP
X18 0 0 17 1403 638 3 MP
XPP
X0 18 18 0 1403 655 3 MP
XPP
X18 0 0 18 1403 655 3 MP
XPP
X0 18 18 0 1403 673 3 MP
XPP
X18 0 0 18 1403 673 3 MP
XPP
X0 18 18 0 1403 691 3 MP
XPP
X18 0 0 18 1403 691 3 MP
XPP
X0 18 18 0 1403 709 3 MP
XPP
X18 0 0 18 1403 709 3 MP
XPP
X0 18 18 0 1403 727 3 MP
XPP
X18 0 0 18 1403 727 3 MP
XPP
X0 17 18 0 1403 745 3 MP
XPP
X18 0 0 17 1403 745 3 MP
XPP
X0 18 18 0 1403 762 3 MP
XPP
X18 0 0 18 1403 762 3 MP
XPP
X0 18 18 0 1403 780 3 MP
XPP
X18 0 0 18 1403 780 3 MP
XPP
X0 18 18 0 1403 798 3 MP
XPP
X18 0 0 18 1403 798 3 MP
XPP
X0 18 18 0 1403 816 3 MP
XPP
X18 0 0 18 1403 816 3 MP
XPP
X0 18 18 0 1403 834 3 MP
XPP
X18 0 0 18 1403 834 3 MP
XPP
X0 17 18 0 1403 852 3 MP
XPP
X18 0 0 17 1403 852 3 MP
XPP
X0 18 18 0 1403 869 3 MP
XPP
X18 0 0 18 1403 869 3 MP
XPP
X0 18 18 0 1403 887 3 MP
XPP
X18 0 0 18 1403 887 3 MP
XPP
X0 18 18 0 1403 905 3 MP
XPP
X18 0 0 18 1403 905 3 MP
XPP
X0 18 18 0 1403 923 3 MP
XPP
X18 0 0 18 1403 923 3 MP
XPP
X0 18 18 0 1403 941 3 MP
XPP
X18 0 0 18 1403 941 3 MP
XPP
X0 17 18 0 1403 959 3 MP
XPP
X18 0 0 17 1403 959 3 MP
XPP
X0 18 18 0 1403 976 3 MP
XPP
X18 0 0 18 1403 976 3 MP
XPP
X0 18 18 0 1403 994 3 MP
XPP
X18 0 0 18 1403 994 3 MP
XPP
X0 18 18 0 1403 1012 3 MP
XPP
X18 0 0 18 1403 1012 3 MP
XPP
X0 18 18 0 1403 1030 3 MP
XPP
X18 0 0 18 1403 1030 3 MP
XPP
X0 18 18 0 1403 1048 3 MP
XPP
X18 0 0 18 1403 1048 3 MP
XPP
X0 17 18 0 1403 1066 3 MP
XPP
X18 0 0 17 1403 1066 3 MP
XPP
X0 18 18 0 1403 1083 3 MP
XPP
X18 0 0 18 1403 1083 3 MP
XPP
X0 18 18 0 1403 1101 3 MP
XPP
X18 0 0 18 1403 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1403 1119 3 MP
XPP
X18 0 0 18 1403 1119 3 MP
XPP
X0 18 18 0 1403 1137 3 MP
XPP
X18 0 0 18 1403 1137 3 MP
XPP
X0 18 18 0 1403 1155 3 MP
XPP
X18 0 0 18 1403 1155 3 MP
XPP
X0 17 18 0 1403 1173 3 MP
XPP
X18 0 0 17 1403 1173 3 MP
XPP
X0 18 18 0 1403 1190 3 MP
XPP
X18 0 0 18 1403 1190 3 MP
XPP
X0 18 18 0 1403 1208 3 MP
XPP
X18 0 0 18 1403 1208 3 MP
XPP
X0 18 18 0 1403 1226 3 MP
XPP
X18 0 0 18 1403 1226 3 MP
XPP
X0 18 18 0 1403 1244 3 MP
XPP
X18 0 0 18 1403 1244 3 MP
XPP
X0 17 18 0 1403 1262 3 MP
XPP
X18 0 0 17 1403 1262 3 MP
XPP
X0 18 18 0 1403 1279 3 MP
XPP
X18 0 0 18 1403 1279 3 MP
XPP
X0 18 18 0 1403 1297 3 MP
XPP
X18 0 0 18 1403 1297 3 MP
XPP
X0 18 18 0 1403 1315 3 MP
XPP
X18 0 0 18 1403 1315 3 MP
XPP
X0 18 18 0 1403 1333 3 MP
XPP
X18 0 0 18 1403 1333 3 MP
XPP
X0 18 18 0 1403 1351 3 MP
XPP
X18 0 0 18 1403 1351 3 MP
XPP
X0 17 18 0 1403 1369 3 MP
XPP
X18 0 0 17 1403 1369 3 MP
XPP
X1 sg
X0 18 18 0 1403 1386 3 MP
XPP
X18 0 0 18 1403 1386 3 MP
XPP
X0 18 18 0 1403 1404 3 MP
XPP
X18 0 0 18 1403 1404 3 MP
XPP
X0 18 18 0 1403 1422 3 MP
XPP
X18 0 0 18 1403 1422 3 MP
XPP
X0 18 18 0 1403 1440 3 MP
XPP
X18 0 0 18 1403 1440 3 MP
XPP
X0 18 18 0 1403 1458 3 MP
XPP
X18 0 0 18 1403 1458 3 MP
XPP
X0 17 18 0 1403 1476 3 MP
XPP
X18 0 0 17 1403 1476 3 MP
XPP
X0 18 18 0 1403 1493 3 MP
XPP
X18 0 0 18 1403 1493 3 MP
XPP
X0 18 18 0 1403 1511 3 MP
XPP
X18 0 0 18 1403 1511 3 MP
XPP
X0 18 18 0 1403 1529 3 MP
XPP
X18 0 0 18 1403 1529 3 MP
XPP
X0 18 18 0 1403 1547 3 MP
XPP
X18 0 0 18 1403 1547 3 MP
XPP
X0 18 18 0 1403 1565 3 MP
XPP
X18 0 0 18 1403 1565 3 MP
XPP
X0 17 18 0 1403 1583 3 MP
XPP
X18 0 0 17 1403 1583 3 MP
XPP
X0 18 18 0 1403 1600 3 MP
XPP
X18 0 0 18 1403 1600 3 MP
XPP
X0 18 18 0 1403 1618 3 MP
XPP
X18 0 0 18 1403 1618 3 MP
XPP
X0 18 18 0 1403 1636 3 MP
XPP
X18 0 0 18 1403 1636 3 MP
XPP
X0 18 18 0 1403 1654 3 MP
XPP
X18 0 0 18 1403 1654 3 MP
XPP
X0 18 18 0 1403 1672 3 MP
XPP
X18 0 0 18 1403 1672 3 MP
XPP
X0 17 18 0 1403 1690 3 MP
XPP
X18 0 0 17 1403 1690 3 MP
XPP
X0 18 18 0 1403 1707 3 MP
XPP
X18 0 0 18 1403 1707 3 MP
XPP
X0 18 18 0 1403 1725 3 MP
XPP
X18 0 0 18 1403 1725 3 MP
XPP
X0 18 18 0 1403 1743 3 MP
XPP
X18 0 0 18 1403 1743 3 MP
XPP
X0 18 18 0 1403 1761 3 MP
XPP
X18 0 0 18 1403 1761 3 MP
XPP
X0 18 18 0 1403 1779 3 MP
XPP
X18 0 0 18 1403 1779 3 MP
XPP
X0 17 18 0 1403 1797 3 MP
XPP
X18 0 0 17 1403 1797 3 MP
XPP
X0 18 18 0 1403 1814 3 MP
XPP
X18 0 0 18 1403 1814 3 MP
XPP
X0 18 18 0 1403 1832 3 MP
XPP
X18 0 0 18 1403 1832 3 MP
XPP
X0 18 18 0 1403 1850 3 MP
XPP
X18 0 0 18 1403 1850 3 MP
XPP
X0 18 18 0 1403 1868 3 MP
XPP
X18 0 0 18 1403 1868 3 MP
XPP
X0 18 18 0 1403 1886 3 MP
XPP
X18 0 0 18 1403 1886 3 MP
XPP
X0 17 18 0 1403 1904 3 MP
XPP
X18 0 0 17 1403 1904 3 MP
XPP
X0 18 18 0 1403 1921 3 MP
XPP
X18 0 0 18 1403 1921 3 MP
XPP
X0 18 18 0 1403 1939 3 MP
XPP
X18 0 0 18 1403 1939 3 MP
XPP
X0 18 18 0 1403 1957 3 MP
XPP
X18 0 0 18 1403 1957 3 MP
XPP
X0 18 18 0 1403 1975 3 MP
XPP
X18 0 0 18 1403 1975 3 MP
XPP
X0 18 18 0 1403 1993 3 MP
XPP
X18 0 0 18 1403 1993 3 MP
XPP
X0 17 18 0 1403 2011 3 MP
XPP
X18 0 0 17 1403 2011 3 MP
XPP
X0 18 18 0 1403 2028 3 MP
XPP
X18 0 0 18 1403 2028 3 MP
XPP
X0 18 18 0 1403 2046 3 MP
XPP
X18 0 0 18 1403 2046 3 MP
XPP
X0 18 18 0 1403 2064 3 MP
XPP
X18 0 0 18 1403 2064 3 MP
XPP
X0 18 18 0 1403 2082 3 MP
XPP
X18 0 0 18 1403 2082 3 MP
XPP
X0 18 18 0 1403 2100 3 MP
XPP
X18 0 0 18 1403 2100 3 MP
XPP
X0 17 18 0 1403 2118 3 MP
XPP
X18 0 0 17 1403 2118 3 MP
XPP
X0 18 18 0 1403 2135 3 MP
XPP
X18 0 0 18 1403 2135 3 MP
XPP
X0 18 18 0 1403 2153 3 MP
XPP
X18 0 0 18 1403 2153 3 MP
XPP
X0 18 18 0 1421 388 3 MP
XPP
X18 0 0 18 1421 388 3 MP
XPP
X0 18 18 0 1421 406 3 MP
XPP
X18 0 0 18 1421 406 3 MP
XPP
X0 17 18 0 1421 424 3 MP
XPP
X18 0 0 17 1421 424 3 MP
XPP
X0 18 18 0 1421 441 3 MP
XPP
X18 0 0 18 1421 441 3 MP
XPP
X0 18 18 0 1421 459 3 MP
XPP
X18 0 0 18 1421 459 3 MP
XPP
X0 18 18 0 1421 477 3 MP
XPP
X18 0 0 18 1421 477 3 MP
XPP
X0 18 18 0 1421 495 3 MP
XPP
X18 0 0 18 1421 495 3 MP
XPP
X0 18 18 0 1421 513 3 MP
XPP
X18 0 0 18 1421 513 3 MP
XPP
X0 17 18 0 1421 531 3 MP
XPP
X18 0 0 17 1421 531 3 MP
XPP
X0 18 18 0 1421 548 3 MP
XPP
X18 0 0 18 1421 548 3 MP
XPP
X0 18 18 0 1421 566 3 MP
XPP
X18 0 0 18 1421 566 3 MP
XPP
X0 18 18 0 1421 584 3 MP
XPP
X18 0 0 18 1421 584 3 MP
XPP
X0 18 18 0 1421 602 3 MP
XPP
X18 0 0 18 1421 602 3 MP
XPP
X0 18 18 0 1421 620 3 MP
XPP
X18 0 0 18 1421 620 3 MP
XPP
X0 17 18 0 1421 638 3 MP
XPP
X18 0 0 17 1421 638 3 MP
XPP
X0 18 18 0 1421 655 3 MP
XPP
X18 0 0 18 1421 655 3 MP
XPP
X0 18 18 0 1421 673 3 MP
XPP
X18 0 0 18 1421 673 3 MP
XPP
X0 18 18 0 1421 691 3 MP
XPP
X18 0 0 18 1421 691 3 MP
XPP
X0 18 18 0 1421 709 3 MP
XPP
X18 0 0 18 1421 709 3 MP
XPP
X0 18 18 0 1421 727 3 MP
XPP
X18 0 0 18 1421 727 3 MP
XPP
X0 17 18 0 1421 745 3 MP
XPP
X18 0 0 17 1421 745 3 MP
XPP
X0 18 18 0 1421 762 3 MP
XPP
X18 0 0 18 1421 762 3 MP
XPP
X0 18 18 0 1421 780 3 MP
XPP
X18 0 0 18 1421 780 3 MP
XPP
X0 18 18 0 1421 798 3 MP
XPP
X18 0 0 18 1421 798 3 MP
XPP
X0 18 18 0 1421 816 3 MP
XPP
X18 0 0 18 1421 816 3 MP
XPP
X0 18 18 0 1421 834 3 MP
XPP
X18 0 0 18 1421 834 3 MP
XPP
X0 17 18 0 1421 852 3 MP
XPP
X18 0 0 17 1421 852 3 MP
XPP
X0 18 18 0 1421 869 3 MP
XPP
X18 0 0 18 1421 869 3 MP
XPP
X0 18 18 0 1421 887 3 MP
XPP
X18 0 0 18 1421 887 3 MP
XPP
X0 18 18 0 1421 905 3 MP
XPP
X18 0 0 18 1421 905 3 MP
XPP
X0 18 18 0 1421 923 3 MP
XPP
X18 0 0 18 1421 923 3 MP
XPP
X0 18 18 0 1421 941 3 MP
XPP
X18 0 0 18 1421 941 3 MP
XPP
X0 17 18 0 1421 959 3 MP
XPP
X18 0 0 17 1421 959 3 MP
XPP
X0 18 18 0 1421 976 3 MP
XPP
X18 0 0 18 1421 976 3 MP
XPP
X0 18 18 0 1421 994 3 MP
XPP
X18 0 0 18 1421 994 3 MP
XPP
X0 18 18 0 1421 1012 3 MP
XPP
X18 0 0 18 1421 1012 3 MP
XPP
X0 18 18 0 1421 1030 3 MP
XPP
X18 0 0 18 1421 1030 3 MP
XPP
X0 18 18 0 1421 1048 3 MP
XPP
X18 0 0 18 1421 1048 3 MP
XPP
X0 17 18 0 1421 1066 3 MP
XPP
X18 0 0 17 1421 1066 3 MP
XPP
X0 18 18 0 1421 1083 3 MP
XPP
X18 0 0 18 1421 1083 3 MP
XPP
X0 18 18 0 1421 1101 3 MP
XPP
X18 0 0 18 1421 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1421 1119 3 MP
XPP
X18 0 0 18 1421 1119 3 MP
XPP
X0 18 18 0 1421 1137 3 MP
XPP
X18 0 0 18 1421 1137 3 MP
XPP
X0 18 18 0 1421 1155 3 MP
XPP
X18 0 0 18 1421 1155 3 MP
XPP
X0 17 18 0 1421 1173 3 MP
XPP
X18 0 0 17 1421 1173 3 MP
XPP
X0 18 18 0 1421 1190 3 MP
XPP
X18 0 0 18 1421 1190 3 MP
XPP
X0 18 18 0 1421 1208 3 MP
XPP
X18 0 0 18 1421 1208 3 MP
XPP
X0 18 18 0 1421 1226 3 MP
XPP
X18 0 0 18 1421 1226 3 MP
XPP
X0 18 18 0 1421 1244 3 MP
XPP
X18 0 0 18 1421 1244 3 MP
XPP
X0 17 18 0 1421 1262 3 MP
XPP
X18 0 0 17 1421 1262 3 MP
XPP
X0 18 18 0 1421 1279 3 MP
XPP
X18 0 0 18 1421 1279 3 MP
XPP
X0 18 18 0 1421 1297 3 MP
XPP
X18 0 0 18 1421 1297 3 MP
XPP
X0 18 18 0 1421 1315 3 MP
XPP
X18 0 0 18 1421 1315 3 MP
XPP
X0 18 18 0 1421 1333 3 MP
XPP
X18 0 0 18 1421 1333 3 MP
XPP
X0 18 18 0 1421 1351 3 MP
XPP
X18 0 0 18 1421 1351 3 MP
XPP
X0 17 18 0 1421 1369 3 MP
XPP
X18 0 0 17 1421 1369 3 MP
XPP
X0 18 18 0 1421 1386 3 MP
XPP
X18 0 0 18 1421 1386 3 MP
XPP
X1 sg
X0 18 18 0 1421 1404 3 MP
XPP
X18 0 0 18 1421 1404 3 MP
XPP
X0 18 18 0 1421 1422 3 MP
XPP
X18 0 0 18 1421 1422 3 MP
XPP
X0 18 18 0 1421 1440 3 MP
XPP
X18 0 0 18 1421 1440 3 MP
XPP
X0 18 18 0 1421 1458 3 MP
XPP
X18 0 0 18 1421 1458 3 MP
XPP
X0 17 18 0 1421 1476 3 MP
XPP
X18 0 0 17 1421 1476 3 MP
XPP
X0 18 18 0 1421 1493 3 MP
XPP
X18 0 0 18 1421 1493 3 MP
XPP
X0 18 18 0 1421 1511 3 MP
XPP
X18 0 0 18 1421 1511 3 MP
XPP
X0 18 18 0 1421 1529 3 MP
XPP
X18 0 0 18 1421 1529 3 MP
XPP
X0 18 18 0 1421 1547 3 MP
XPP
X18 0 0 18 1421 1547 3 MP
XPP
X0 18 18 0 1421 1565 3 MP
XPP
X18 0 0 18 1421 1565 3 MP
XPP
X0 17 18 0 1421 1583 3 MP
XPP
X18 0 0 17 1421 1583 3 MP
XPP
X0 18 18 0 1421 1600 3 MP
XPP
X18 0 0 18 1421 1600 3 MP
XPP
X0 18 18 0 1421 1618 3 MP
XPP
X18 0 0 18 1421 1618 3 MP
XPP
X0 18 18 0 1421 1636 3 MP
XPP
X18 0 0 18 1421 1636 3 MP
XPP
X0 18 18 0 1421 1654 3 MP
XPP
X18 0 0 18 1421 1654 3 MP
XPP
X0 18 18 0 1421 1672 3 MP
XPP
X18 0 0 18 1421 1672 3 MP
XPP
X0 17 18 0 1421 1690 3 MP
XPP
X18 0 0 17 1421 1690 3 MP
XPP
X0 18 18 0 1421 1707 3 MP
XPP
X18 0 0 18 1421 1707 3 MP
XPP
X0 18 18 0 1421 1725 3 MP
XPP
X18 0 0 18 1421 1725 3 MP
XPP
X0 18 18 0 1421 1743 3 MP
XPP
X18 0 0 18 1421 1743 3 MP
XPP
X0 18 18 0 1421 1761 3 MP
XPP
X18 0 0 18 1421 1761 3 MP
XPP
X0 18 18 0 1421 1779 3 MP
XPP
X18 0 0 18 1421 1779 3 MP
XPP
X0 17 18 0 1421 1797 3 MP
XPP
X18 0 0 17 1421 1797 3 MP
XPP
X0 18 18 0 1421 1814 3 MP
XPP
X18 0 0 18 1421 1814 3 MP
XPP
X0 18 18 0 1421 1832 3 MP
XPP
X18 0 0 18 1421 1832 3 MP
XPP
X0 18 18 0 1421 1850 3 MP
XPP
X18 0 0 18 1421 1850 3 MP
XPP
X0 18 18 0 1421 1868 3 MP
XPP
X18 0 0 18 1421 1868 3 MP
XPP
X0 18 18 0 1421 1886 3 MP
XPP
X18 0 0 18 1421 1886 3 MP
XPP
X0 17 18 0 1421 1904 3 MP
XPP
X18 0 0 17 1421 1904 3 MP
XPP
X0 18 18 0 1421 1921 3 MP
XPP
X18 0 0 18 1421 1921 3 MP
XPP
X0 18 18 0 1421 1939 3 MP
XPP
X18 0 0 18 1421 1939 3 MP
XPP
X0 18 18 0 1421 1957 3 MP
XPP
X18 0 0 18 1421 1957 3 MP
XPP
X0 18 18 0 1421 1975 3 MP
XPP
X18 0 0 18 1421 1975 3 MP
XPP
X0 18 18 0 1421 1993 3 MP
XPP
X18 0 0 18 1421 1993 3 MP
XPP
X0 17 18 0 1421 2011 3 MP
XPP
X18 0 0 17 1421 2011 3 MP
XPP
X0 18 18 0 1421 2028 3 MP
XPP
X18 0 0 18 1421 2028 3 MP
XPP
X0 18 18 0 1421 2046 3 MP
XPP
X18 0 0 18 1421 2046 3 MP
XPP
X0 18 18 0 1421 2064 3 MP
XPP
X18 0 0 18 1421 2064 3 MP
XPP
X0 18 18 0 1421 2082 3 MP
XPP
X18 0 0 18 1421 2082 3 MP
XPP
X0 18 18 0 1421 2100 3 MP
XPP
X18 0 0 18 1421 2100 3 MP
XPP
X0 17 18 0 1421 2118 3 MP
XPP
X18 0 0 17 1421 2118 3 MP
XPP
X0 18 18 0 1421 2135 3 MP
XPP
X18 0 0 18 1421 2135 3 MP
XPP
X0 18 18 0 1421 2153 3 MP
XPP
X18 0 0 18 1421 2153 3 MP
XPP
X0 18 18 0 1439 388 3 MP
XPP
X18 0 0 18 1439 388 3 MP
XPP
X0 18 18 0 1439 406 3 MP
XPP
X18 0 0 18 1439 406 3 MP
XPP
X0 17 18 0 1439 424 3 MP
XPP
X18 0 0 17 1439 424 3 MP
XPP
X0 18 18 0 1439 441 3 MP
XPP
X18 0 0 18 1439 441 3 MP
XPP
X0 18 18 0 1439 459 3 MP
XPP
X18 0 0 18 1439 459 3 MP
XPP
X0 18 18 0 1439 477 3 MP
XPP
X18 0 0 18 1439 477 3 MP
XPP
X0 18 18 0 1439 495 3 MP
XPP
X18 0 0 18 1439 495 3 MP
XPP
X0 18 18 0 1439 513 3 MP
XPP
X18 0 0 18 1439 513 3 MP
XPP
X0 17 18 0 1439 531 3 MP
XPP
X18 0 0 17 1439 531 3 MP
XPP
X0 18 18 0 1439 548 3 MP
XPP
X18 0 0 18 1439 548 3 MP
XPP
X0 18 18 0 1439 566 3 MP
XPP
X18 0 0 18 1439 566 3 MP
XPP
X0 18 18 0 1439 584 3 MP
XPP
X18 0 0 18 1439 584 3 MP
XPP
X0 18 18 0 1439 602 3 MP
XPP
X18 0 0 18 1439 602 3 MP
XPP
X0 18 18 0 1439 620 3 MP
XPP
X18 0 0 18 1439 620 3 MP
XPP
X0 17 18 0 1439 638 3 MP
XPP
X18 0 0 17 1439 638 3 MP
XPP
X0 18 18 0 1439 655 3 MP
XPP
X18 0 0 18 1439 655 3 MP
XPP
X0 18 18 0 1439 673 3 MP
XPP
X18 0 0 18 1439 673 3 MP
XPP
X0 18 18 0 1439 691 3 MP
XPP
X18 0 0 18 1439 691 3 MP
XPP
X0 18 18 0 1439 709 3 MP
XPP
X18 0 0 18 1439 709 3 MP
XPP
X0 18 18 0 1439 727 3 MP
XPP
X18 0 0 18 1439 727 3 MP
XPP
X0 17 18 0 1439 745 3 MP
XPP
X18 0 0 17 1439 745 3 MP
XPP
X0 18 18 0 1439 762 3 MP
XPP
X18 0 0 18 1439 762 3 MP
XPP
X0 18 18 0 1439 780 3 MP
XPP
X18 0 0 18 1439 780 3 MP
XPP
X0 18 18 0 1439 798 3 MP
XPP
X18 0 0 18 1439 798 3 MP
XPP
X0 18 18 0 1439 816 3 MP
XPP
X18 0 0 18 1439 816 3 MP
XPP
X0 18 18 0 1439 834 3 MP
XPP
X18 0 0 18 1439 834 3 MP
XPP
X0 17 18 0 1439 852 3 MP
XPP
X18 0 0 17 1439 852 3 MP
XPP
X0 18 18 0 1439 869 3 MP
XPP
X18 0 0 18 1439 869 3 MP
XPP
X0 18 18 0 1439 887 3 MP
XPP
X18 0 0 18 1439 887 3 MP
XPP
X0 18 18 0 1439 905 3 MP
XPP
X18 0 0 18 1439 905 3 MP
XPP
X0 18 18 0 1439 923 3 MP
XPP
X18 0 0 18 1439 923 3 MP
XPP
X0 18 18 0 1439 941 3 MP
XPP
X18 0 0 18 1439 941 3 MP
XPP
X0 17 18 0 1439 959 3 MP
XPP
X18 0 0 17 1439 959 3 MP
XPP
X0 18 18 0 1439 976 3 MP
XPP
X18 0 0 18 1439 976 3 MP
XPP
X0 18 18 0 1439 994 3 MP
XPP
X18 0 0 18 1439 994 3 MP
XPP
X0 18 18 0 1439 1012 3 MP
XPP
X18 0 0 18 1439 1012 3 MP
XPP
X0 18 18 0 1439 1030 3 MP
XPP
X18 0 0 18 1439 1030 3 MP
XPP
X0 18 18 0 1439 1048 3 MP
XPP
X18 0 0 18 1439 1048 3 MP
XPP
X0 17 18 0 1439 1066 3 MP
XPP
X18 0 0 17 1439 1066 3 MP
XPP
X0 18 18 0 1439 1083 3 MP
XPP
X18 0 0 18 1439 1083 3 MP
XPP
X0 18 18 0 1439 1101 3 MP
XPP
X18 0 0 18 1439 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1439 1119 3 MP
XPP
X18 0 0 18 1439 1119 3 MP
XPP
X0 18 18 0 1439 1137 3 MP
XPP
X18 0 0 18 1439 1137 3 MP
XPP
X0 18 18 0 1439 1155 3 MP
XPP
X18 0 0 18 1439 1155 3 MP
XPP
X0 17 18 0 1439 1173 3 MP
XPP
X18 0 0 17 1439 1173 3 MP
XPP
X0 18 18 0 1439 1190 3 MP
XPP
X18 0 0 18 1439 1190 3 MP
XPP
X0 18 18 0 1439 1208 3 MP
XPP
X18 0 0 18 1439 1208 3 MP
XPP
X0 18 18 0 1439 1226 3 MP
XPP
X18 0 0 18 1439 1226 3 MP
XPP
X0 18 18 0 1439 1244 3 MP
XPP
X18 0 0 18 1439 1244 3 MP
XPP
X0 17 18 0 1439 1262 3 MP
XPP
X18 0 0 17 1439 1262 3 MP
XPP
X0 18 18 0 1439 1279 3 MP
XPP
X18 0 0 18 1439 1279 3 MP
XPP
X0 18 18 0 1439 1297 3 MP
XPP
X18 0 0 18 1439 1297 3 MP
XPP
X0 18 18 0 1439 1315 3 MP
XPP
X18 0 0 18 1439 1315 3 MP
XPP
X0 18 18 0 1439 1333 3 MP
XPP
X18 0 0 18 1439 1333 3 MP
XPP
X0 18 18 0 1439 1351 3 MP
XPP
X18 0 0 18 1439 1351 3 MP
XPP
X0 17 18 0 1439 1369 3 MP
XPP
X18 0 0 17 1439 1369 3 MP
XPP
X0 18 18 0 1439 1386 3 MP
XPP
X18 0 0 18 1439 1386 3 MP
XPP
X0 18 18 0 1439 1404 3 MP
XPP
X18 0 0 18 1439 1404 3 MP
XPP
X1 sg
X0 18 18 0 1439 1422 3 MP
XPP
X18 0 0 18 1439 1422 3 MP
XPP
X0 18 18 0 1439 1440 3 MP
XPP
X18 0 0 18 1439 1440 3 MP
XPP
X0 18 18 0 1439 1458 3 MP
XPP
X18 0 0 18 1439 1458 3 MP
XPP
X0 17 18 0 1439 1476 3 MP
XPP
X18 0 0 17 1439 1476 3 MP
XPP
X0 18 18 0 1439 1493 3 MP
XPP
X18 0 0 18 1439 1493 3 MP
XPP
X0 18 18 0 1439 1511 3 MP
XPP
X18 0 0 18 1439 1511 3 MP
XPP
X0 18 18 0 1439 1529 3 MP
XPP
X18 0 0 18 1439 1529 3 MP
XPP
X0 18 18 0 1439 1547 3 MP
XPP
X18 0 0 18 1439 1547 3 MP
XPP
X0 18 18 0 1439 1565 3 MP
XPP
X18 0 0 18 1439 1565 3 MP
XPP
X0 17 18 0 1439 1583 3 MP
XPP
X18 0 0 17 1439 1583 3 MP
XPP
X0 18 18 0 1439 1600 3 MP
XPP
X18 0 0 18 1439 1600 3 MP
XPP
X0 18 18 0 1439 1618 3 MP
XPP
X18 0 0 18 1439 1618 3 MP
XPP
X0 18 18 0 1439 1636 3 MP
XPP
X18 0 0 18 1439 1636 3 MP
XPP
X0 18 18 0 1439 1654 3 MP
XPP
X18 0 0 18 1439 1654 3 MP
XPP
X0 18 18 0 1439 1672 3 MP
XPP
X18 0 0 18 1439 1672 3 MP
XPP
X0 17 18 0 1439 1690 3 MP
XPP
X18 0 0 17 1439 1690 3 MP
XPP
X0 18 18 0 1439 1707 3 MP
XPP
X18 0 0 18 1439 1707 3 MP
XPP
X0 18 18 0 1439 1725 3 MP
XPP
X18 0 0 18 1439 1725 3 MP
XPP
X0 18 18 0 1439 1743 3 MP
XPP
X18 0 0 18 1439 1743 3 MP
XPP
X0 18 18 0 1439 1761 3 MP
XPP
X18 0 0 18 1439 1761 3 MP
XPP
X0 18 18 0 1439 1779 3 MP
XPP
X18 0 0 18 1439 1779 3 MP
XPP
X0 17 18 0 1439 1797 3 MP
XPP
X18 0 0 17 1439 1797 3 MP
XPP
X0 18 18 0 1439 1814 3 MP
XPP
X18 0 0 18 1439 1814 3 MP
XPP
X0 18 18 0 1439 1832 3 MP
XPP
X18 0 0 18 1439 1832 3 MP
XPP
X0 18 18 0 1439 1850 3 MP
XPP
X18 0 0 18 1439 1850 3 MP
XPP
X0 18 18 0 1439 1868 3 MP
XPP
X18 0 0 18 1439 1868 3 MP
XPP
X0 18 18 0 1439 1886 3 MP
XPP
X18 0 0 18 1439 1886 3 MP
XPP
X0 17 18 0 1439 1904 3 MP
XPP
X18 0 0 17 1439 1904 3 MP
XPP
X0 18 18 0 1439 1921 3 MP
XPP
X18 0 0 18 1439 1921 3 MP
XPP
X0 18 18 0 1439 1939 3 MP
XPP
X18 0 0 18 1439 1939 3 MP
XPP
X0 18 18 0 1439 1957 3 MP
XPP
X18 0 0 18 1439 1957 3 MP
XPP
X0 18 18 0 1439 1975 3 MP
XPP
X18 0 0 18 1439 1975 3 MP
XPP
X0 18 18 0 1439 1993 3 MP
XPP
X18 0 0 18 1439 1993 3 MP
XPP
X0 17 18 0 1439 2011 3 MP
XPP
X18 0 0 17 1439 2011 3 MP
XPP
X0 18 18 0 1439 2028 3 MP
XPP
X18 0 0 18 1439 2028 3 MP
XPP
X0 18 18 0 1439 2046 3 MP
XPP
X18 0 0 18 1439 2046 3 MP
XPP
X0 18 18 0 1439 2064 3 MP
XPP
X18 0 0 18 1439 2064 3 MP
XPP
X0 18 18 0 1439 2082 3 MP
XPP
X18 0 0 18 1439 2082 3 MP
XPP
X0 18 18 0 1439 2100 3 MP
XPP
X18 0 0 18 1439 2100 3 MP
XPP
X0 17 18 0 1439 2118 3 MP
XPP
X18 0 0 17 1439 2118 3 MP
XPP
X0 18 18 0 1439 2135 3 MP
XPP
X18 0 0 18 1439 2135 3 MP
XPP
X0 18 18 0 1439 2153 3 MP
XPP
X18 0 0 18 1439 2153 3 MP
XPP
X0 18 18 0 1457 388 3 MP
XPP
X18 0 0 18 1457 388 3 MP
XPP
X0 18 18 0 1457 406 3 MP
XPP
X18 0 0 18 1457 406 3 MP
XPP
X0 17 18 0 1457 424 3 MP
XPP
X18 0 0 17 1457 424 3 MP
XPP
X0 18 18 0 1457 441 3 MP
XPP
X18 0 0 18 1457 441 3 MP
XPP
X0 18 18 0 1457 459 3 MP
XPP
X18 0 0 18 1457 459 3 MP
XPP
X0 18 18 0 1457 477 3 MP
XPP
X18 0 0 18 1457 477 3 MP
XPP
X0 18 18 0 1457 495 3 MP
XPP
X18 0 0 18 1457 495 3 MP
XPP
X0 18 18 0 1457 513 3 MP
XPP
X18 0 0 18 1457 513 3 MP
XPP
X0 17 18 0 1457 531 3 MP
XPP
X18 0 0 17 1457 531 3 MP
XPP
X0 18 18 0 1457 548 3 MP
XPP
X18 0 0 18 1457 548 3 MP
XPP
X0 18 18 0 1457 566 3 MP
XPP
X18 0 0 18 1457 566 3 MP
XPP
X0 18 18 0 1457 584 3 MP
XPP
X18 0 0 18 1457 584 3 MP
XPP
X0 18 18 0 1457 602 3 MP
XPP
X18 0 0 18 1457 602 3 MP
XPP
X0 18 18 0 1457 620 3 MP
XPP
X18 0 0 18 1457 620 3 MP
XPP
X0 17 18 0 1457 638 3 MP
XPP
X18 0 0 17 1457 638 3 MP
XPP
X0 18 18 0 1457 655 3 MP
XPP
X18 0 0 18 1457 655 3 MP
XPP
X0 18 18 0 1457 673 3 MP
XPP
X18 0 0 18 1457 673 3 MP
XPP
X0 18 18 0 1457 691 3 MP
XPP
X18 0 0 18 1457 691 3 MP
XPP
X0 18 18 0 1457 709 3 MP
XPP
X18 0 0 18 1457 709 3 MP
XPP
X0 18 18 0 1457 727 3 MP
XPP
X18 0 0 18 1457 727 3 MP
XPP
X0 17 18 0 1457 745 3 MP
XPP
X18 0 0 17 1457 745 3 MP
XPP
X0 18 18 0 1457 762 3 MP
XPP
X18 0 0 18 1457 762 3 MP
XPP
X0 18 18 0 1457 780 3 MP
XPP
X18 0 0 18 1457 780 3 MP
XPP
X0 18 18 0 1457 798 3 MP
XPP
X18 0 0 18 1457 798 3 MP
XPP
X0 18 18 0 1457 816 3 MP
XPP
X18 0 0 18 1457 816 3 MP
XPP
X0 18 18 0 1457 834 3 MP
XPP
X18 0 0 18 1457 834 3 MP
XPP
X0 17 18 0 1457 852 3 MP
XPP
X18 0 0 17 1457 852 3 MP
XPP
X0 18 18 0 1457 869 3 MP
XPP
X18 0 0 18 1457 869 3 MP
XPP
X0 18 18 0 1457 887 3 MP
XPP
X18 0 0 18 1457 887 3 MP
XPP
X0 18 18 0 1457 905 3 MP
XPP
X18 0 0 18 1457 905 3 MP
XPP
X0 18 18 0 1457 923 3 MP
XPP
X18 0 0 18 1457 923 3 MP
XPP
X0 18 18 0 1457 941 3 MP
XPP
X18 0 0 18 1457 941 3 MP
XPP
X0 17 18 0 1457 959 3 MP
XPP
X18 0 0 17 1457 959 3 MP
XPP
X0 18 18 0 1457 976 3 MP
XPP
X18 0 0 18 1457 976 3 MP
XPP
X0 18 18 0 1457 994 3 MP
XPP
X18 0 0 18 1457 994 3 MP
XPP
X0 18 18 0 1457 1012 3 MP
XPP
X18 0 0 18 1457 1012 3 MP
XPP
X0 18 18 0 1457 1030 3 MP
XPP
X18 0 0 18 1457 1030 3 MP
XPP
X0 18 18 0 1457 1048 3 MP
XPP
X18 0 0 18 1457 1048 3 MP
XPP
X0 17 18 0 1457 1066 3 MP
XPP
X18 0 0 17 1457 1066 3 MP
XPP
X0 18 18 0 1457 1083 3 MP
XPP
X18 0 0 18 1457 1083 3 MP
XPP
X0 18 18 0 1457 1101 3 MP
XPP
X18 0 0 18 1457 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1457 1119 3 MP
XPP
X18 0 0 18 1457 1119 3 MP
XPP
X0 18 18 0 1457 1137 3 MP
XPP
X18 0 0 18 1457 1137 3 MP
XPP
X0 18 18 0 1457 1155 3 MP
XPP
X18 0 0 18 1457 1155 3 MP
XPP
X0 17 18 0 1457 1173 3 MP
XPP
X18 0 0 17 1457 1173 3 MP
XPP
X0 18 18 0 1457 1190 3 MP
XPP
X18 0 0 18 1457 1190 3 MP
XPP
X0 18 18 0 1457 1208 3 MP
XPP
X18 0 0 18 1457 1208 3 MP
XPP
X0 18 18 0 1457 1226 3 MP
XPP
X18 0 0 18 1457 1226 3 MP
XPP
X0 18 18 0 1457 1244 3 MP
XPP
X18 0 0 18 1457 1244 3 MP
XPP
X0 17 18 0 1457 1262 3 MP
XPP
X18 0 0 17 1457 1262 3 MP
XPP
X0 18 18 0 1457 1279 3 MP
XPP
X18 0 0 18 1457 1279 3 MP
XPP
X0 18 18 0 1457 1297 3 MP
XPP
X18 0 0 18 1457 1297 3 MP
XPP
X0 18 18 0 1457 1315 3 MP
XPP
X18 0 0 18 1457 1315 3 MP
XPP
X0 18 18 0 1457 1333 3 MP
XPP
X18 0 0 18 1457 1333 3 MP
XPP
X0 18 18 0 1457 1351 3 MP
XPP
X18 0 0 18 1457 1351 3 MP
XPP
X0 17 18 0 1457 1369 3 MP
XPP
X18 0 0 17 1457 1369 3 MP
XPP
X0 18 18 0 1457 1386 3 MP
XPP
X18 0 0 18 1457 1386 3 MP
XPP
X0 18 18 0 1457 1404 3 MP
XPP
X18 0 0 18 1457 1404 3 MP
XPP
X0 18 18 0 1457 1422 3 MP
XPP
X18 0 0 18 1457 1422 3 MP
XPP
X1 sg
X0 18 18 0 1457 1440 3 MP
XPP
X18 0 0 18 1457 1440 3 MP
XPP
X0 18 18 0 1457 1458 3 MP
XPP
X18 0 0 18 1457 1458 3 MP
XPP
X0 17 18 0 1457 1476 3 MP
XPP
X18 0 0 17 1457 1476 3 MP
XPP
X0 18 18 0 1457 1493 3 MP
XPP
X18 0 0 18 1457 1493 3 MP
XPP
X0 18 18 0 1457 1511 3 MP
XPP
X18 0 0 18 1457 1511 3 MP
XPP
X0 18 18 0 1457 1529 3 MP
XPP
X18 0 0 18 1457 1529 3 MP
XPP
X0 18 18 0 1457 1547 3 MP
XPP
X18 0 0 18 1457 1547 3 MP
XPP
X0 18 18 0 1457 1565 3 MP
XPP
X18 0 0 18 1457 1565 3 MP
XPP
X0 17 18 0 1457 1583 3 MP
XPP
X18 0 0 17 1457 1583 3 MP
XPP
X0 18 18 0 1457 1600 3 MP
XPP
X18 0 0 18 1457 1600 3 MP
XPP
X0 18 18 0 1457 1618 3 MP
XPP
X18 0 0 18 1457 1618 3 MP
XPP
X0 18 18 0 1457 1636 3 MP
XPP
X18 0 0 18 1457 1636 3 MP
XPP
X0 18 18 0 1457 1654 3 MP
XPP
X18 0 0 18 1457 1654 3 MP
XPP
X0 18 18 0 1457 1672 3 MP
XPP
X18 0 0 18 1457 1672 3 MP
XPP
X0 17 18 0 1457 1690 3 MP
XPP
X18 0 0 17 1457 1690 3 MP
XPP
X0 18 18 0 1457 1707 3 MP
XPP
X18 0 0 18 1457 1707 3 MP
XPP
X0 18 18 0 1457 1725 3 MP
XPP
X18 0 0 18 1457 1725 3 MP
XPP
X0 18 18 0 1457 1743 3 MP
XPP
X18 0 0 18 1457 1743 3 MP
XPP
X0 18 18 0 1457 1761 3 MP
XPP
X18 0 0 18 1457 1761 3 MP
XPP
X0 18 18 0 1457 1779 3 MP
XPP
X18 0 0 18 1457 1779 3 MP
XPP
X0 17 18 0 1457 1797 3 MP
XPP
X18 0 0 17 1457 1797 3 MP
XPP
X0 18 18 0 1457 1814 3 MP
XPP
X18 0 0 18 1457 1814 3 MP
XPP
X0 18 18 0 1457 1832 3 MP
XPP
X18 0 0 18 1457 1832 3 MP
XPP
X0 18 18 0 1457 1850 3 MP
XPP
X18 0 0 18 1457 1850 3 MP
XPP
X0 18 18 0 1457 1868 3 MP
XPP
X18 0 0 18 1457 1868 3 MP
XPP
X0 18 18 0 1457 1886 3 MP
XPP
X18 0 0 18 1457 1886 3 MP
XPP
X0 17 18 0 1457 1904 3 MP
XPP
X18 0 0 17 1457 1904 3 MP
XPP
X0 18 18 0 1457 1921 3 MP
XPP
X18 0 0 18 1457 1921 3 MP
XPP
X0 18 18 0 1457 1939 3 MP
XPP
X18 0 0 18 1457 1939 3 MP
XPP
X0 18 18 0 1457 1957 3 MP
XPP
X18 0 0 18 1457 1957 3 MP
XPP
X0 18 18 0 1457 1975 3 MP
XPP
X18 0 0 18 1457 1975 3 MP
XPP
X0 18 18 0 1457 1993 3 MP
XPP
X18 0 0 18 1457 1993 3 MP
XPP
X0 17 18 0 1457 2011 3 MP
XPP
X18 0 0 17 1457 2011 3 MP
XPP
X0 18 18 0 1457 2028 3 MP
XPP
X18 0 0 18 1457 2028 3 MP
XPP
X0 18 18 0 1457 2046 3 MP
XPP
X18 0 0 18 1457 2046 3 MP
XPP
X0 18 18 0 1457 2064 3 MP
XPP
X18 0 0 18 1457 2064 3 MP
XPP
X0 18 18 0 1457 2082 3 MP
XPP
X18 0 0 18 1457 2082 3 MP
XPP
X0 18 18 0 1457 2100 3 MP
XPP
X18 0 0 18 1457 2100 3 MP
XPP
X0 17 18 0 1457 2118 3 MP
XPP
X18 0 0 17 1457 2118 3 MP
XPP
X0 18 18 0 1457 2135 3 MP
XPP
X18 0 0 18 1457 2135 3 MP
XPP
X0 18 18 0 1457 2153 3 MP
XPP
X18 0 0 18 1457 2153 3 MP
XPP
X0 18 18 0 1475 388 3 MP
XPP
X18 0 0 18 1475 388 3 MP
XPP
X0 18 18 0 1475 406 3 MP
XPP
X18 0 0 18 1475 406 3 MP
XPP
X0 17 18 0 1475 424 3 MP
XPP
X18 0 0 17 1475 424 3 MP
XPP
X0 18 18 0 1475 441 3 MP
XPP
X18 0 0 18 1475 441 3 MP
XPP
X0 18 18 0 1475 459 3 MP
XPP
X18 0 0 18 1475 459 3 MP
XPP
X0 18 18 0 1475 477 3 MP
XPP
X18 0 0 18 1475 477 3 MP
XPP
X0 18 18 0 1475 495 3 MP
XPP
X18 0 0 18 1475 495 3 MP
XPP
X0 18 18 0 1475 513 3 MP
XPP
X18 0 0 18 1475 513 3 MP
XPP
X0 17 18 0 1475 531 3 MP
XPP
X18 0 0 17 1475 531 3 MP
XPP
X0 18 18 0 1475 548 3 MP
XPP
X18 0 0 18 1475 548 3 MP
XPP
X0 18 18 0 1475 566 3 MP
XPP
X18 0 0 18 1475 566 3 MP
XPP
X0 18 18 0 1475 584 3 MP
XPP
X18 0 0 18 1475 584 3 MP
XPP
X0 18 18 0 1475 602 3 MP
XPP
X18 0 0 18 1475 602 3 MP
XPP
X0 18 18 0 1475 620 3 MP
XPP
X18 0 0 18 1475 620 3 MP
XPP
X0 17 18 0 1475 638 3 MP
XPP
X18 0 0 17 1475 638 3 MP
XPP
X0 18 18 0 1475 655 3 MP
XPP
X18 0 0 18 1475 655 3 MP
XPP
X0 18 18 0 1475 673 3 MP
XPP
X18 0 0 18 1475 673 3 MP
XPP
X0 18 18 0 1475 691 3 MP
XPP
X18 0 0 18 1475 691 3 MP
XPP
X0 18 18 0 1475 709 3 MP
XPP
X18 0 0 18 1475 709 3 MP
XPP
X0 18 18 0 1475 727 3 MP
XPP
X18 0 0 18 1475 727 3 MP
XPP
X0 17 18 0 1475 745 3 MP
XPP
X18 0 0 17 1475 745 3 MP
XPP
X0 18 18 0 1475 762 3 MP
XPP
X18 0 0 18 1475 762 3 MP
XPP
X0 18 18 0 1475 780 3 MP
XPP
X18 0 0 18 1475 780 3 MP
XPP
X0 18 18 0 1475 798 3 MP
XPP
X18 0 0 18 1475 798 3 MP
XPP
X0 18 18 0 1475 816 3 MP
XPP
X18 0 0 18 1475 816 3 MP
XPP
X0 18 18 0 1475 834 3 MP
XPP
X18 0 0 18 1475 834 3 MP
XPP
X0 17 18 0 1475 852 3 MP
XPP
X18 0 0 17 1475 852 3 MP
XPP
X0 18 18 0 1475 869 3 MP
XPP
X18 0 0 18 1475 869 3 MP
XPP
X0 18 18 0 1475 887 3 MP
XPP
X18 0 0 18 1475 887 3 MP
XPP
X0 18 18 0 1475 905 3 MP
XPP
X18 0 0 18 1475 905 3 MP
XPP
X0 18 18 0 1475 923 3 MP
XPP
X18 0 0 18 1475 923 3 MP
XPP
X0 18 18 0 1475 941 3 MP
XPP
X18 0 0 18 1475 941 3 MP
XPP
X0 17 18 0 1475 959 3 MP
XPP
X18 0 0 17 1475 959 3 MP
XPP
X0 18 18 0 1475 976 3 MP
XPP
X18 0 0 18 1475 976 3 MP
XPP
X0 18 18 0 1475 994 3 MP
XPP
X18 0 0 18 1475 994 3 MP
XPP
X0 18 18 0 1475 1012 3 MP
XPP
X18 0 0 18 1475 1012 3 MP
XPP
X0 18 18 0 1475 1030 3 MP
XPP
X18 0 0 18 1475 1030 3 MP
XPP
X0 18 18 0 1475 1048 3 MP
XPP
X18 0 0 18 1475 1048 3 MP
XPP
X0 17 18 0 1475 1066 3 MP
XPP
X18 0 0 17 1475 1066 3 MP
XPP
X0 18 18 0 1475 1083 3 MP
XPP
X18 0 0 18 1475 1083 3 MP
XPP
X0 18 18 0 1475 1101 3 MP
XPP
X18 0 0 18 1475 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1475 1119 3 MP
XPP
X18 0 0 18 1475 1119 3 MP
XPP
X0 18 18 0 1475 1137 3 MP
XPP
X18 0 0 18 1475 1137 3 MP
XPP
X0 18 18 0 1475 1155 3 MP
XPP
X18 0 0 18 1475 1155 3 MP
XPP
X0 17 18 0 1475 1173 3 MP
XPP
X18 0 0 17 1475 1173 3 MP
XPP
X0 18 18 0 1475 1190 3 MP
XPP
X18 0 0 18 1475 1190 3 MP
XPP
X0 18 18 0 1475 1208 3 MP
XPP
X18 0 0 18 1475 1208 3 MP
XPP
X0 18 18 0 1475 1226 3 MP
XPP
X18 0 0 18 1475 1226 3 MP
XPP
X0 18 18 0 1475 1244 3 MP
XPP
X18 0 0 18 1475 1244 3 MP
XPP
X0 17 18 0 1475 1262 3 MP
XPP
X18 0 0 17 1475 1262 3 MP
XPP
X0 18 18 0 1475 1279 3 MP
XPP
X18 0 0 18 1475 1279 3 MP
XPP
X0 18 18 0 1475 1297 3 MP
XPP
X18 0 0 18 1475 1297 3 MP
XPP
X0 18 18 0 1475 1315 3 MP
XPP
X18 0 0 18 1475 1315 3 MP
XPP
X0 18 18 0 1475 1333 3 MP
XPP
X18 0 0 18 1475 1333 3 MP
XPP
X0 18 18 0 1475 1351 3 MP
XPP
X18 0 0 18 1475 1351 3 MP
XPP
X0 17 18 0 1475 1369 3 MP
XPP
X18 0 0 17 1475 1369 3 MP
XPP
X0 18 18 0 1475 1386 3 MP
XPP
X18 0 0 18 1475 1386 3 MP
XPP
X0 18 18 0 1475 1404 3 MP
XPP
X18 0 0 18 1475 1404 3 MP
XPP
X0 18 18 0 1475 1422 3 MP
XPP
X18 0 0 18 1475 1422 3 MP
XPP
X0 18 18 0 1475 1440 3 MP
XPP
X18 0 0 18 1475 1440 3 MP
XPP
X1 sg
X0 18 18 0 1475 1458 3 MP
XPP
X18 0 0 18 1475 1458 3 MP
XPP
X0 17 18 0 1475 1476 3 MP
XPP
X18 0 0 17 1475 1476 3 MP
XPP
X0 18 18 0 1475 1493 3 MP
XPP
X18 0 0 18 1475 1493 3 MP
XPP
X0 18 18 0 1475 1511 3 MP
XPP
X18 0 0 18 1475 1511 3 MP
XPP
X0 18 18 0 1475 1529 3 MP
XPP
X18 0 0 18 1475 1529 3 MP
XPP
X0 18 18 0 1475 1547 3 MP
XPP
X18 0 0 18 1475 1547 3 MP
XPP
X0 18 18 0 1475 1565 3 MP
XPP
X18 0 0 18 1475 1565 3 MP
XPP
X0 17 18 0 1475 1583 3 MP
XPP
X18 0 0 17 1475 1583 3 MP
XPP
X0 18 18 0 1475 1600 3 MP
XPP
X18 0 0 18 1475 1600 3 MP
XPP
X0 18 18 0 1475 1618 3 MP
XPP
X18 0 0 18 1475 1618 3 MP
XPP
X0 18 18 0 1475 1636 3 MP
XPP
X18 0 0 18 1475 1636 3 MP
XPP
X0 18 18 0 1475 1654 3 MP
XPP
X18 0 0 18 1475 1654 3 MP
XPP
X0 18 18 0 1475 1672 3 MP
XPP
X18 0 0 18 1475 1672 3 MP
XPP
X0 17 18 0 1475 1690 3 MP
XPP
X18 0 0 17 1475 1690 3 MP
XPP
X0 18 18 0 1475 1707 3 MP
XPP
X18 0 0 18 1475 1707 3 MP
XPP
X0 18 18 0 1475 1725 3 MP
XPP
X18 0 0 18 1475 1725 3 MP
XPP
X0 18 18 0 1475 1743 3 MP
XPP
X18 0 0 18 1475 1743 3 MP
XPP
X0 18 18 0 1475 1761 3 MP
XPP
X18 0 0 18 1475 1761 3 MP
XPP
X0 18 18 0 1475 1779 3 MP
XPP
X18 0 0 18 1475 1779 3 MP
XPP
X0 17 18 0 1475 1797 3 MP
XPP
X18 0 0 17 1475 1797 3 MP
XPP
X0 18 18 0 1475 1814 3 MP
XPP
X18 0 0 18 1475 1814 3 MP
XPP
X0 18 18 0 1475 1832 3 MP
XPP
X18 0 0 18 1475 1832 3 MP
XPP
X0 18 18 0 1475 1850 3 MP
XPP
X18 0 0 18 1475 1850 3 MP
XPP
X0 18 18 0 1475 1868 3 MP
XPP
X18 0 0 18 1475 1868 3 MP
XPP
X0 18 18 0 1475 1886 3 MP
XPP
X18 0 0 18 1475 1886 3 MP
XPP
X0 17 18 0 1475 1904 3 MP
XPP
X18 0 0 17 1475 1904 3 MP
XPP
X0 18 18 0 1475 1921 3 MP
XPP
X18 0 0 18 1475 1921 3 MP
XPP
X0 18 18 0 1475 1939 3 MP
XPP
X18 0 0 18 1475 1939 3 MP
XPP
X0 18 18 0 1475 1957 3 MP
XPP
X18 0 0 18 1475 1957 3 MP
XPP
X0 18 18 0 1475 1975 3 MP
XPP
X18 0 0 18 1475 1975 3 MP
XPP
X0 18 18 0 1475 1993 3 MP
XPP
X18 0 0 18 1475 1993 3 MP
XPP
X0 17 18 0 1475 2011 3 MP
XPP
X18 0 0 17 1475 2011 3 MP
XPP
X0 18 18 0 1475 2028 3 MP
XPP
X18 0 0 18 1475 2028 3 MP
XPP
X0 18 18 0 1475 2046 3 MP
XPP
X18 0 0 18 1475 2046 3 MP
XPP
X0 18 18 0 1475 2064 3 MP
XPP
X18 0 0 18 1475 2064 3 MP
XPP
X0 18 18 0 1475 2082 3 MP
XPP
X18 0 0 18 1475 2082 3 MP
XPP
X0 18 18 0 1475 2100 3 MP
XPP
X18 0 0 18 1475 2100 3 MP
XPP
X0 17 18 0 1475 2118 3 MP
XPP
X18 0 0 17 1475 2118 3 MP
XPP
X0 18 18 0 1475 2135 3 MP
XPP
X18 0 0 18 1475 2135 3 MP
XPP
X0 18 18 0 1475 2153 3 MP
XPP
X18 0 0 18 1475 2153 3 MP
XPP
X0 18 17 0 1493 388 3 MP
XPP
X17 0 0 18 1493 388 3 MP
XPP
X0 18 17 0 1493 406 3 MP
XPP
X17 0 0 18 1493 406 3 MP
XPP
X0 17 17 0 1493 424 3 MP
XPP
X17 0 0 17 1493 424 3 MP
XPP
X0 18 17 0 1493 441 3 MP
XPP
X17 0 0 18 1493 441 3 MP
XPP
X0 18 17 0 1493 459 3 MP
XPP
X17 0 0 18 1493 459 3 MP
XPP
X0 18 17 0 1493 477 3 MP
XPP
X17 0 0 18 1493 477 3 MP
XPP
X0 18 17 0 1493 495 3 MP
XPP
X17 0 0 18 1493 495 3 MP
XPP
X0 18 17 0 1493 513 3 MP
XPP
X17 0 0 18 1493 513 3 MP
XPP
X0 17 17 0 1493 531 3 MP
XPP
X17 0 0 17 1493 531 3 MP
XPP
X0 18 17 0 1493 548 3 MP
XPP
X17 0 0 18 1493 548 3 MP
XPP
X0 18 17 0 1493 566 3 MP
XPP
X17 0 0 18 1493 566 3 MP
XPP
X0 18 17 0 1493 584 3 MP
XPP
X17 0 0 18 1493 584 3 MP
XPP
X0 18 17 0 1493 602 3 MP
XPP
X17 0 0 18 1493 602 3 MP
XPP
X0 18 17 0 1493 620 3 MP
XPP
X17 0 0 18 1493 620 3 MP
XPP
X0 17 17 0 1493 638 3 MP
XPP
X17 0 0 17 1493 638 3 MP
XPP
X0 18 17 0 1493 655 3 MP
XPP
X17 0 0 18 1493 655 3 MP
XPP
X0 18 17 0 1493 673 3 MP
XPP
X17 0 0 18 1493 673 3 MP
XPP
X0 18 17 0 1493 691 3 MP
XPP
X17 0 0 18 1493 691 3 MP
XPP
X0 18 17 0 1493 709 3 MP
XPP
X17 0 0 18 1493 709 3 MP
XPP
X0 18 17 0 1493 727 3 MP
XPP
X17 0 0 18 1493 727 3 MP
XPP
X0 17 17 0 1493 745 3 MP
XPP
X17 0 0 17 1493 745 3 MP
XPP
X0 18 17 0 1493 762 3 MP
XPP
X17 0 0 18 1493 762 3 MP
XPP
X0 18 17 0 1493 780 3 MP
XPP
X17 0 0 18 1493 780 3 MP
XPP
X0 18 17 0 1493 798 3 MP
XPP
X17 0 0 18 1493 798 3 MP
XPP
X0 18 17 0 1493 816 3 MP
XPP
X17 0 0 18 1493 816 3 MP
XPP
X0 18 17 0 1493 834 3 MP
XPP
X17 0 0 18 1493 834 3 MP
XPP
X0 17 17 0 1493 852 3 MP
XPP
X17 0 0 17 1493 852 3 MP
XPP
X0 18 17 0 1493 869 3 MP
XPP
X17 0 0 18 1493 869 3 MP
XPP
X0 18 17 0 1493 887 3 MP
XPP
X17 0 0 18 1493 887 3 MP
XPP
X0 18 17 0 1493 905 3 MP
XPP
X17 0 0 18 1493 905 3 MP
XPP
X0 18 17 0 1493 923 3 MP
XPP
X17 0 0 18 1493 923 3 MP
XPP
X0 18 17 0 1493 941 3 MP
XPP
X17 0 0 18 1493 941 3 MP
XPP
X0 17 17 0 1493 959 3 MP
XPP
X17 0 0 17 1493 959 3 MP
XPP
X0 18 17 0 1493 976 3 MP
XPP
X17 0 0 18 1493 976 3 MP
XPP
X0 18 17 0 1493 994 3 MP
XPP
X17 0 0 18 1493 994 3 MP
XPP
X0 18 17 0 1493 1012 3 MP
XPP
X17 0 0 18 1493 1012 3 MP
XPP
X0 18 17 0 1493 1030 3 MP
XPP
X17 0 0 18 1493 1030 3 MP
XPP
X0 18 17 0 1493 1048 3 MP
XPP
X17 0 0 18 1493 1048 3 MP
XPP
X0 17 17 0 1493 1066 3 MP
XPP
X17 0 0 17 1493 1066 3 MP
XPP
X0 18 17 0 1493 1083 3 MP
XPP
X17 0 0 18 1493 1083 3 MP
XPP
X0 18 17 0 1493 1101 3 MP
XPP
X17 0 0 18 1493 1101 3 MP
XPP
X0.238095 sg
X0 18 17 0 1493 1119 3 MP
XPP
X17 0 0 18 1493 1119 3 MP
XPP
X0 18 17 0 1493 1137 3 MP
XPP
X17 0 0 18 1493 1137 3 MP
XPP
X0 18 17 0 1493 1155 3 MP
XPP
X17 0 0 18 1493 1155 3 MP
XPP
X0 17 17 0 1493 1173 3 MP
XPP
X17 0 0 17 1493 1173 3 MP
XPP
X0 18 17 0 1493 1190 3 MP
XPP
X17 0 0 18 1493 1190 3 MP
XPP
X0 18 17 0 1493 1208 3 MP
XPP
X17 0 0 18 1493 1208 3 MP
XPP
X0 18 17 0 1493 1226 3 MP
XPP
X17 0 0 18 1493 1226 3 MP
XPP
X0 18 17 0 1493 1244 3 MP
XPP
X17 0 0 18 1493 1244 3 MP
XPP
X0 17 17 0 1493 1262 3 MP
XPP
X17 0 0 17 1493 1262 3 MP
XPP
X0 18 17 0 1493 1279 3 MP
XPP
X17 0 0 18 1493 1279 3 MP
XPP
X0 18 17 0 1493 1297 3 MP
XPP
X17 0 0 18 1493 1297 3 MP
XPP
X0 18 17 0 1493 1315 3 MP
XPP
X17 0 0 18 1493 1315 3 MP
XPP
X0 18 17 0 1493 1333 3 MP
XPP
X17 0 0 18 1493 1333 3 MP
XPP
X0 18 17 0 1493 1351 3 MP
XPP
X17 0 0 18 1493 1351 3 MP
XPP
X0 17 17 0 1493 1369 3 MP
XPP
X17 0 0 17 1493 1369 3 MP
XPP
X0 18 17 0 1493 1386 3 MP
XPP
X17 0 0 18 1493 1386 3 MP
XPP
X0 18 17 0 1493 1404 3 MP
XPP
X17 0 0 18 1493 1404 3 MP
XPP
X0 18 17 0 1493 1422 3 MP
XPP
X17 0 0 18 1493 1422 3 MP
XPP
X0 18 17 0 1493 1440 3 MP
XPP
X17 0 0 18 1493 1440 3 MP
XPP
X0 18 17 0 1493 1458 3 MP
XPP
X17 0 0 18 1493 1458 3 MP
XPP
X1 sg
X0 17 17 0 1493 1476 3 MP
XPP
X17 0 0 17 1493 1476 3 MP
XPP
X0 18 17 0 1493 1493 3 MP
XPP
X17 0 0 18 1493 1493 3 MP
XPP
X0 18 17 0 1493 1511 3 MP
XPP
X17 0 0 18 1493 1511 3 MP
XPP
X0 18 17 0 1493 1529 3 MP
XPP
X17 0 0 18 1493 1529 3 MP
XPP
X0 18 17 0 1493 1547 3 MP
XPP
X17 0 0 18 1493 1547 3 MP
XPP
X0 18 17 0 1493 1565 3 MP
XPP
X17 0 0 18 1493 1565 3 MP
XPP
X0 17 17 0 1493 1583 3 MP
XPP
X17 0 0 17 1493 1583 3 MP
XPP
X0 18 17 0 1493 1600 3 MP
XPP
X17 0 0 18 1493 1600 3 MP
XPP
X0 18 17 0 1493 1618 3 MP
XPP
X17 0 0 18 1493 1618 3 MP
XPP
X0 18 17 0 1493 1636 3 MP
XPP
X17 0 0 18 1493 1636 3 MP
XPP
X0 18 17 0 1493 1654 3 MP
XPP
X17 0 0 18 1493 1654 3 MP
XPP
X0 18 17 0 1493 1672 3 MP
XPP
X17 0 0 18 1493 1672 3 MP
XPP
X0 17 17 0 1493 1690 3 MP
XPP
X17 0 0 17 1493 1690 3 MP
XPP
X0 18 17 0 1493 1707 3 MP
XPP
X17 0 0 18 1493 1707 3 MP
XPP
X0 18 17 0 1493 1725 3 MP
XPP
X17 0 0 18 1493 1725 3 MP
XPP
X0 18 17 0 1493 1743 3 MP
XPP
X17 0 0 18 1493 1743 3 MP
XPP
X0 18 17 0 1493 1761 3 MP
XPP
X17 0 0 18 1493 1761 3 MP
XPP
X0 18 17 0 1493 1779 3 MP
XPP
X17 0 0 18 1493 1779 3 MP
XPP
X0 17 17 0 1493 1797 3 MP
XPP
X17 0 0 17 1493 1797 3 MP
XPP
X0 18 17 0 1493 1814 3 MP
XPP
X17 0 0 18 1493 1814 3 MP
XPP
X0 18 17 0 1493 1832 3 MP
XPP
X17 0 0 18 1493 1832 3 MP
XPP
X0 18 17 0 1493 1850 3 MP
XPP
X17 0 0 18 1493 1850 3 MP
XPP
X0 18 17 0 1493 1868 3 MP
XPP
X17 0 0 18 1493 1868 3 MP
XPP
X0 18 17 0 1493 1886 3 MP
XPP
X17 0 0 18 1493 1886 3 MP
XPP
X0 17 17 0 1493 1904 3 MP
XPP
X17 0 0 17 1493 1904 3 MP
XPP
X0 18 17 0 1493 1921 3 MP
XPP
X17 0 0 18 1493 1921 3 MP
XPP
X0 18 17 0 1493 1939 3 MP
XPP
X17 0 0 18 1493 1939 3 MP
XPP
X0 18 17 0 1493 1957 3 MP
XPP
X17 0 0 18 1493 1957 3 MP
XPP
X0 18 17 0 1493 1975 3 MP
XPP
X17 0 0 18 1493 1975 3 MP
XPP
X0 18 17 0 1493 1993 3 MP
XPP
X17 0 0 18 1493 1993 3 MP
XPP
X0 17 17 0 1493 2011 3 MP
XPP
X17 0 0 17 1493 2011 3 MP
XPP
X0 18 17 0 1493 2028 3 MP
XPP
X17 0 0 18 1493 2028 3 MP
XPP
X0 18 17 0 1493 2046 3 MP
XPP
X17 0 0 18 1493 2046 3 MP
XPP
X0 18 17 0 1493 2064 3 MP
XPP
X17 0 0 18 1493 2064 3 MP
XPP
X0 18 17 0 1493 2082 3 MP
XPP
X17 0 0 18 1493 2082 3 MP
XPP
X0 18 17 0 1493 2100 3 MP
XPP
X17 0 0 18 1493 2100 3 MP
XPP
X0 17 17 0 1493 2118 3 MP
XPP
X17 0 0 17 1493 2118 3 MP
XPP
X0 18 17 0 1493 2135 3 MP
XPP
X17 0 0 18 1493 2135 3 MP
XPP
X0 18 17 0 1493 2153 3 MP
XPP
X17 0 0 18 1493 2153 3 MP
XPP
X0 18 18 0 1510 388 3 MP
XPP
X18 0 0 18 1510 388 3 MP
XPP
X0 18 18 0 1510 406 3 MP
XPP
X18 0 0 18 1510 406 3 MP
XPP
X0 17 18 0 1510 424 3 MP
XPP
X18 0 0 17 1510 424 3 MP
XPP
X0 18 18 0 1510 441 3 MP
XPP
X18 0 0 18 1510 441 3 MP
XPP
X0 18 18 0 1510 459 3 MP
XPP
X18 0 0 18 1510 459 3 MP
XPP
X0 18 18 0 1510 477 3 MP
XPP
X18 0 0 18 1510 477 3 MP
XPP
X0 18 18 0 1510 495 3 MP
XPP
X18 0 0 18 1510 495 3 MP
XPP
X0 18 18 0 1510 513 3 MP
XPP
X18 0 0 18 1510 513 3 MP
XPP
X0 17 18 0 1510 531 3 MP
XPP
X18 0 0 17 1510 531 3 MP
XPP
X0 18 18 0 1510 548 3 MP
XPP
X18 0 0 18 1510 548 3 MP
XPP
X0 18 18 0 1510 566 3 MP
XPP
X18 0 0 18 1510 566 3 MP
XPP
X0 18 18 0 1510 584 3 MP
XPP
X18 0 0 18 1510 584 3 MP
XPP
X0 18 18 0 1510 602 3 MP
XPP
X18 0 0 18 1510 602 3 MP
XPP
X0 18 18 0 1510 620 3 MP
XPP
X18 0 0 18 1510 620 3 MP
XPP
X0 17 18 0 1510 638 3 MP
XPP
X18 0 0 17 1510 638 3 MP
XPP
X0 18 18 0 1510 655 3 MP
XPP
X18 0 0 18 1510 655 3 MP
XPP
X0 18 18 0 1510 673 3 MP
XPP
X18 0 0 18 1510 673 3 MP
XPP
X0 18 18 0 1510 691 3 MP
XPP
X18 0 0 18 1510 691 3 MP
XPP
X0 18 18 0 1510 709 3 MP
XPP
X18 0 0 18 1510 709 3 MP
XPP
X0 18 18 0 1510 727 3 MP
XPP
X18 0 0 18 1510 727 3 MP
XPP
X0 17 18 0 1510 745 3 MP
XPP
X18 0 0 17 1510 745 3 MP
XPP
X0 18 18 0 1510 762 3 MP
XPP
X18 0 0 18 1510 762 3 MP
XPP
X0 18 18 0 1510 780 3 MP
XPP
X18 0 0 18 1510 780 3 MP
XPP
X0 18 18 0 1510 798 3 MP
XPP
X18 0 0 18 1510 798 3 MP
XPP
X0 18 18 0 1510 816 3 MP
XPP
X18 0 0 18 1510 816 3 MP
XPP
X0 18 18 0 1510 834 3 MP
XPP
X18 0 0 18 1510 834 3 MP
XPP
X0 17 18 0 1510 852 3 MP
XPP
X18 0 0 17 1510 852 3 MP
XPP
X0 18 18 0 1510 869 3 MP
XPP
X18 0 0 18 1510 869 3 MP
XPP
X0 18 18 0 1510 887 3 MP
XPP
X18 0 0 18 1510 887 3 MP
XPP
X0 18 18 0 1510 905 3 MP
XPP
X18 0 0 18 1510 905 3 MP
XPP
X0 18 18 0 1510 923 3 MP
XPP
X18 0 0 18 1510 923 3 MP
XPP
X0 18 18 0 1510 941 3 MP
XPP
X18 0 0 18 1510 941 3 MP
XPP
X0 17 18 0 1510 959 3 MP
XPP
X18 0 0 17 1510 959 3 MP
XPP
X0 18 18 0 1510 976 3 MP
XPP
X18 0 0 18 1510 976 3 MP
XPP
X0 18 18 0 1510 994 3 MP
XPP
X18 0 0 18 1510 994 3 MP
XPP
X0 18 18 0 1510 1012 3 MP
XPP
X18 0 0 18 1510 1012 3 MP
XPP
X0 18 18 0 1510 1030 3 MP
XPP
X18 0 0 18 1510 1030 3 MP
XPP
X0 18 18 0 1510 1048 3 MP
XPP
X18 0 0 18 1510 1048 3 MP
XPP
X0 17 18 0 1510 1066 3 MP
XPP
X18 0 0 17 1510 1066 3 MP
XPP
X0 18 18 0 1510 1083 3 MP
XPP
X18 0 0 18 1510 1083 3 MP
XPP
X0 18 18 0 1510 1101 3 MP
XPP
X18 0 0 18 1510 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1510 1119 3 MP
XPP
X18 0 0 18 1510 1119 3 MP
XPP
X0 18 18 0 1510 1137 3 MP
XPP
X18 0 0 18 1510 1137 3 MP
XPP
X0 18 18 0 1510 1155 3 MP
XPP
X18 0 0 18 1510 1155 3 MP
XPP
X0 17 18 0 1510 1173 3 MP
XPP
X18 0 0 17 1510 1173 3 MP
XPP
X0 18 18 0 1510 1190 3 MP
XPP
X18 0 0 18 1510 1190 3 MP
XPP
X0 18 18 0 1510 1208 3 MP
XPP
X18 0 0 18 1510 1208 3 MP
XPP
X0 18 18 0 1510 1226 3 MP
XPP
X18 0 0 18 1510 1226 3 MP
XPP
X0 18 18 0 1510 1244 3 MP
XPP
X18 0 0 18 1510 1244 3 MP
XPP
X0 17 18 0 1510 1262 3 MP
XPP
X18 0 0 17 1510 1262 3 MP
XPP
X0 18 18 0 1510 1279 3 MP
XPP
X18 0 0 18 1510 1279 3 MP
XPP
X0 18 18 0 1510 1297 3 MP
XPP
X18 0 0 18 1510 1297 3 MP
XPP
X0 18 18 0 1510 1315 3 MP
XPP
X18 0 0 18 1510 1315 3 MP
XPP
X0 18 18 0 1510 1333 3 MP
XPP
X18 0 0 18 1510 1333 3 MP
XPP
X0 18 18 0 1510 1351 3 MP
XPP
X18 0 0 18 1510 1351 3 MP
XPP
X0 17 18 0 1510 1369 3 MP
XPP
X18 0 0 17 1510 1369 3 MP
XPP
X0 18 18 0 1510 1386 3 MP
XPP
X18 0 0 18 1510 1386 3 MP
XPP
X0 18 18 0 1510 1404 3 MP
XPP
X18 0 0 18 1510 1404 3 MP
XPP
X0 18 18 0 1510 1422 3 MP
XPP
X18 0 0 18 1510 1422 3 MP
XPP
X0 18 18 0 1510 1440 3 MP
XPP
X18 0 0 18 1510 1440 3 MP
XPP
X0 18 18 0 1510 1458 3 MP
XPP
X18 0 0 18 1510 1458 3 MP
XPP
X0 17 18 0 1510 1476 3 MP
XPP
X18 0 0 17 1510 1476 3 MP
XPP
X1 sg
X0 18 18 0 1510 1493 3 MP
XPP
X18 0 0 18 1510 1493 3 MP
XPP
X0 18 18 0 1510 1511 3 MP
XPP
X18 0 0 18 1510 1511 3 MP
XPP
X0 18 18 0 1510 1529 3 MP
XPP
X18 0 0 18 1510 1529 3 MP
XPP
X0 18 18 0 1510 1547 3 MP
XPP
X18 0 0 18 1510 1547 3 MP
XPP
X0 18 18 0 1510 1565 3 MP
XPP
X18 0 0 18 1510 1565 3 MP
XPP
X0 17 18 0 1510 1583 3 MP
XPP
X18 0 0 17 1510 1583 3 MP
XPP
X0 18 18 0 1510 1600 3 MP
XPP
X18 0 0 18 1510 1600 3 MP
XPP
X0 18 18 0 1510 1618 3 MP
XPP
X18 0 0 18 1510 1618 3 MP
XPP
X0 18 18 0 1510 1636 3 MP
XPP
X18 0 0 18 1510 1636 3 MP
XPP
X0 18 18 0 1510 1654 3 MP
XPP
X18 0 0 18 1510 1654 3 MP
XPP
X0 18 18 0 1510 1672 3 MP
XPP
X18 0 0 18 1510 1672 3 MP
XPP
X0 17 18 0 1510 1690 3 MP
XPP
X18 0 0 17 1510 1690 3 MP
XPP
X0 18 18 0 1510 1707 3 MP
XPP
X18 0 0 18 1510 1707 3 MP
XPP
X0 18 18 0 1510 1725 3 MP
XPP
X18 0 0 18 1510 1725 3 MP
XPP
X0 18 18 0 1510 1743 3 MP
XPP
X18 0 0 18 1510 1743 3 MP
XPP
X0 18 18 0 1510 1761 3 MP
XPP
X18 0 0 18 1510 1761 3 MP
XPP
X0 18 18 0 1510 1779 3 MP
XPP
X18 0 0 18 1510 1779 3 MP
XPP
X0 17 18 0 1510 1797 3 MP
XPP
X18 0 0 17 1510 1797 3 MP
XPP
X0 18 18 0 1510 1814 3 MP
XPP
X18 0 0 18 1510 1814 3 MP
XPP
X0 18 18 0 1510 1832 3 MP
XPP
X18 0 0 18 1510 1832 3 MP
XPP
X0 18 18 0 1510 1850 3 MP
XPP
X18 0 0 18 1510 1850 3 MP
XPP
X0 18 18 0 1510 1868 3 MP
XPP
X18 0 0 18 1510 1868 3 MP
XPP
X0 18 18 0 1510 1886 3 MP
XPP
X18 0 0 18 1510 1886 3 MP
XPP
X0 17 18 0 1510 1904 3 MP
XPP
X18 0 0 17 1510 1904 3 MP
XPP
X0 18 18 0 1510 1921 3 MP
XPP
X18 0 0 18 1510 1921 3 MP
XPP
X0 18 18 0 1510 1939 3 MP
XPP
X18 0 0 18 1510 1939 3 MP
XPP
X0 18 18 0 1510 1957 3 MP
XPP
X18 0 0 18 1510 1957 3 MP
XPP
X0 18 18 0 1510 1975 3 MP
XPP
X18 0 0 18 1510 1975 3 MP
XPP
X0 18 18 0 1510 1993 3 MP
XPP
X18 0 0 18 1510 1993 3 MP
XPP
X0 17 18 0 1510 2011 3 MP
XPP
X18 0 0 17 1510 2011 3 MP
XPP
X0 18 18 0 1510 2028 3 MP
XPP
X18 0 0 18 1510 2028 3 MP
XPP
X0 18 18 0 1510 2046 3 MP
XPP
X18 0 0 18 1510 2046 3 MP
XPP
X0 18 18 0 1510 2064 3 MP
XPP
X18 0 0 18 1510 2064 3 MP
XPP
X0 18 18 0 1510 2082 3 MP
XPP
X18 0 0 18 1510 2082 3 MP
XPP
X0 18 18 0 1510 2100 3 MP
XPP
X18 0 0 18 1510 2100 3 MP
XPP
X0 17 18 0 1510 2118 3 MP
XPP
X18 0 0 17 1510 2118 3 MP
XPP
X0 18 18 0 1510 2135 3 MP
XPP
X18 0 0 18 1510 2135 3 MP
XPP
X0 18 18 0 1510 2153 3 MP
XPP
X18 0 0 18 1510 2153 3 MP
XPP
X0 18 18 0 1528 388 3 MP
XPP
X18 0 0 18 1528 388 3 MP
XPP
X0 18 18 0 1528 406 3 MP
XPP
X18 0 0 18 1528 406 3 MP
XPP
X0 17 18 0 1528 424 3 MP
XPP
X18 0 0 17 1528 424 3 MP
XPP
X0 18 18 0 1528 441 3 MP
XPP
X18 0 0 18 1528 441 3 MP
XPP
X0 18 18 0 1528 459 3 MP
XPP
X18 0 0 18 1528 459 3 MP
XPP
X0 18 18 0 1528 477 3 MP
XPP
X18 0 0 18 1528 477 3 MP
XPP
X0 18 18 0 1528 495 3 MP
XPP
X18 0 0 18 1528 495 3 MP
XPP
X0 18 18 0 1528 513 3 MP
XPP
X18 0 0 18 1528 513 3 MP
XPP
X0 17 18 0 1528 531 3 MP
XPP
X18 0 0 17 1528 531 3 MP
XPP
X0 18 18 0 1528 548 3 MP
XPP
X18 0 0 18 1528 548 3 MP
XPP
X0 18 18 0 1528 566 3 MP
XPP
X18 0 0 18 1528 566 3 MP
XPP
X0 18 18 0 1528 584 3 MP
XPP
X18 0 0 18 1528 584 3 MP
XPP
X0 18 18 0 1528 602 3 MP
XPP
X18 0 0 18 1528 602 3 MP
XPP
X0 18 18 0 1528 620 3 MP
XPP
X18 0 0 18 1528 620 3 MP
XPP
X0 17 18 0 1528 638 3 MP
XPP
X18 0 0 17 1528 638 3 MP
XPP
X0 18 18 0 1528 655 3 MP
XPP
X18 0 0 18 1528 655 3 MP
XPP
X0 18 18 0 1528 673 3 MP
XPP
X18 0 0 18 1528 673 3 MP
XPP
X0 18 18 0 1528 691 3 MP
XPP
X18 0 0 18 1528 691 3 MP
XPP
X0 18 18 0 1528 709 3 MP
XPP
X18 0 0 18 1528 709 3 MP
XPP
X0 18 18 0 1528 727 3 MP
XPP
X18 0 0 18 1528 727 3 MP
XPP
X0 17 18 0 1528 745 3 MP
XPP
X18 0 0 17 1528 745 3 MP
XPP
X0 18 18 0 1528 762 3 MP
XPP
X18 0 0 18 1528 762 3 MP
XPP
X0 18 18 0 1528 780 3 MP
XPP
X18 0 0 18 1528 780 3 MP
XPP
X0 18 18 0 1528 798 3 MP
XPP
X18 0 0 18 1528 798 3 MP
XPP
X0 18 18 0 1528 816 3 MP
XPP
X18 0 0 18 1528 816 3 MP
XPP
X0 18 18 0 1528 834 3 MP
XPP
X18 0 0 18 1528 834 3 MP
XPP
X0 17 18 0 1528 852 3 MP
XPP
X18 0 0 17 1528 852 3 MP
XPP
X0 18 18 0 1528 869 3 MP
XPP
X18 0 0 18 1528 869 3 MP
XPP
X0 18 18 0 1528 887 3 MP
XPP
X18 0 0 18 1528 887 3 MP
XPP
X0 18 18 0 1528 905 3 MP
XPP
X18 0 0 18 1528 905 3 MP
XPP
X0 18 18 0 1528 923 3 MP
XPP
X18 0 0 18 1528 923 3 MP
XPP
X0 18 18 0 1528 941 3 MP
XPP
X18 0 0 18 1528 941 3 MP
XPP
X0 17 18 0 1528 959 3 MP
XPP
X18 0 0 17 1528 959 3 MP
XPP
X0 18 18 0 1528 976 3 MP
XPP
X18 0 0 18 1528 976 3 MP
XPP
X0 18 18 0 1528 994 3 MP
XPP
X18 0 0 18 1528 994 3 MP
XPP
X0 18 18 0 1528 1012 3 MP
XPP
X18 0 0 18 1528 1012 3 MP
XPP
X0 18 18 0 1528 1030 3 MP
XPP
X18 0 0 18 1528 1030 3 MP
XPP
X0 18 18 0 1528 1048 3 MP
XPP
X18 0 0 18 1528 1048 3 MP
XPP
X0 17 18 0 1528 1066 3 MP
XPP
X18 0 0 17 1528 1066 3 MP
XPP
X0 18 18 0 1528 1083 3 MP
XPP
X18 0 0 18 1528 1083 3 MP
XPP
X0 18 18 0 1528 1101 3 MP
XPP
X18 0 0 18 1528 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1528 1119 3 MP
XPP
X18 0 0 18 1528 1119 3 MP
XPP
X0 18 18 0 1528 1137 3 MP
XPP
X18 0 0 18 1528 1137 3 MP
XPP
X0 18 18 0 1528 1155 3 MP
XPP
X18 0 0 18 1528 1155 3 MP
XPP
X0 17 18 0 1528 1173 3 MP
XPP
X18 0 0 17 1528 1173 3 MP
XPP
X0 18 18 0 1528 1190 3 MP
XPP
X18 0 0 18 1528 1190 3 MP
XPP
X0 18 18 0 1528 1208 3 MP
XPP
X18 0 0 18 1528 1208 3 MP
XPP
X0 18 18 0 1528 1226 3 MP
XPP
X18 0 0 18 1528 1226 3 MP
XPP
X0 18 18 0 1528 1244 3 MP
XPP
X18 0 0 18 1528 1244 3 MP
XPP
X0 17 18 0 1528 1262 3 MP
XPP
X18 0 0 17 1528 1262 3 MP
XPP
X0 18 18 0 1528 1279 3 MP
XPP
X18 0 0 18 1528 1279 3 MP
XPP
X0 18 18 0 1528 1297 3 MP
XPP
X18 0 0 18 1528 1297 3 MP
XPP
X0 18 18 0 1528 1315 3 MP
XPP
X18 0 0 18 1528 1315 3 MP
XPP
X0 18 18 0 1528 1333 3 MP
XPP
X18 0 0 18 1528 1333 3 MP
XPP
X0 18 18 0 1528 1351 3 MP
XPP
X18 0 0 18 1528 1351 3 MP
XPP
X0 17 18 0 1528 1369 3 MP
XPP
X18 0 0 17 1528 1369 3 MP
XPP
X0 18 18 0 1528 1386 3 MP
XPP
X18 0 0 18 1528 1386 3 MP
XPP
X0 18 18 0 1528 1404 3 MP
XPP
X18 0 0 18 1528 1404 3 MP
XPP
X0 18 18 0 1528 1422 3 MP
XPP
X18 0 0 18 1528 1422 3 MP
XPP
X0 18 18 0 1528 1440 3 MP
XPP
X18 0 0 18 1528 1440 3 MP
XPP
X0 18 18 0 1528 1458 3 MP
XPP
X18 0 0 18 1528 1458 3 MP
XPP
X0 17 18 0 1528 1476 3 MP
XPP
X18 0 0 17 1528 1476 3 MP
XPP
X0 18 18 0 1528 1493 3 MP
XPP
X18 0 0 18 1528 1493 3 MP
XPP
X1 sg
X0 18 18 0 1528 1511 3 MP
XPP
X18 0 0 18 1528 1511 3 MP
XPP
X0 18 18 0 1528 1529 3 MP
XPP
X18 0 0 18 1528 1529 3 MP
XPP
X0 18 18 0 1528 1547 3 MP
XPP
X18 0 0 18 1528 1547 3 MP
XPP
X0 18 18 0 1528 1565 3 MP
XPP
X18 0 0 18 1528 1565 3 MP
XPP
X0 17 18 0 1528 1583 3 MP
XPP
X18 0 0 17 1528 1583 3 MP
XPP
X0 18 18 0 1528 1600 3 MP
XPP
X18 0 0 18 1528 1600 3 MP
XPP
X0 18 18 0 1528 1618 3 MP
XPP
X18 0 0 18 1528 1618 3 MP
XPP
X0 18 18 0 1528 1636 3 MP
XPP
X18 0 0 18 1528 1636 3 MP
XPP
X0 18 18 0 1528 1654 3 MP
XPP
X18 0 0 18 1528 1654 3 MP
XPP
X0 18 18 0 1528 1672 3 MP
XPP
X18 0 0 18 1528 1672 3 MP
XPP
X0 17 18 0 1528 1690 3 MP
XPP
X18 0 0 17 1528 1690 3 MP
XPP
X0 18 18 0 1528 1707 3 MP
XPP
X18 0 0 18 1528 1707 3 MP
XPP
X0 18 18 0 1528 1725 3 MP
XPP
X18 0 0 18 1528 1725 3 MP
XPP
X0 18 18 0 1528 1743 3 MP
XPP
X18 0 0 18 1528 1743 3 MP
XPP
X0 18 18 0 1528 1761 3 MP
XPP
X18 0 0 18 1528 1761 3 MP
XPP
X0 18 18 0 1528 1779 3 MP
XPP
X18 0 0 18 1528 1779 3 MP
XPP
X0 17 18 0 1528 1797 3 MP
XPP
X18 0 0 17 1528 1797 3 MP
XPP
X0 18 18 0 1528 1814 3 MP
XPP
X18 0 0 18 1528 1814 3 MP
XPP
X0 18 18 0 1528 1832 3 MP
XPP
X18 0 0 18 1528 1832 3 MP
XPP
X0 18 18 0 1528 1850 3 MP
XPP
X18 0 0 18 1528 1850 3 MP
XPP
X0 18 18 0 1528 1868 3 MP
XPP
X18 0 0 18 1528 1868 3 MP
XPP
X0 18 18 0 1528 1886 3 MP
XPP
X18 0 0 18 1528 1886 3 MP
XPP
X0 17 18 0 1528 1904 3 MP
XPP
X18 0 0 17 1528 1904 3 MP
XPP
X0 18 18 0 1528 1921 3 MP
XPP
X18 0 0 18 1528 1921 3 MP
XPP
X0 18 18 0 1528 1939 3 MP
XPP
X18 0 0 18 1528 1939 3 MP
XPP
X0 18 18 0 1528 1957 3 MP
XPP
X18 0 0 18 1528 1957 3 MP
XPP
X0 18 18 0 1528 1975 3 MP
XPP
X18 0 0 18 1528 1975 3 MP
XPP
X0 18 18 0 1528 1993 3 MP
XPP
X18 0 0 18 1528 1993 3 MP
XPP
X0 17 18 0 1528 2011 3 MP
XPP
X18 0 0 17 1528 2011 3 MP
XPP
X0 18 18 0 1528 2028 3 MP
XPP
X18 0 0 18 1528 2028 3 MP
XPP
X0 18 18 0 1528 2046 3 MP
XPP
X18 0 0 18 1528 2046 3 MP
XPP
X0 18 18 0 1528 2064 3 MP
XPP
X18 0 0 18 1528 2064 3 MP
XPP
X0 18 18 0 1528 2082 3 MP
XPP
X18 0 0 18 1528 2082 3 MP
XPP
X0 18 18 0 1528 2100 3 MP
XPP
X18 0 0 18 1528 2100 3 MP
XPP
X0 17 18 0 1528 2118 3 MP
XPP
X18 0 0 17 1528 2118 3 MP
XPP
X0 18 18 0 1528 2135 3 MP
XPP
X18 0 0 18 1528 2135 3 MP
XPP
X0 18 18 0 1528 2153 3 MP
XPP
X18 0 0 18 1528 2153 3 MP
XPP
X0 18 18 0 1546 388 3 MP
XPP
X18 0 0 18 1546 388 3 MP
XPP
X0 18 18 0 1546 406 3 MP
XPP
X18 0 0 18 1546 406 3 MP
XPP
X0 17 18 0 1546 424 3 MP
XPP
X18 0 0 17 1546 424 3 MP
XPP
X0 18 18 0 1546 441 3 MP
XPP
X18 0 0 18 1546 441 3 MP
XPP
X0 18 18 0 1546 459 3 MP
XPP
X18 0 0 18 1546 459 3 MP
XPP
X0 18 18 0 1546 477 3 MP
XPP
X18 0 0 18 1546 477 3 MP
XPP
X0 18 18 0 1546 495 3 MP
XPP
X18 0 0 18 1546 495 3 MP
XPP
X0 18 18 0 1546 513 3 MP
XPP
X18 0 0 18 1546 513 3 MP
XPP
X0 17 18 0 1546 531 3 MP
XPP
X18 0 0 17 1546 531 3 MP
XPP
X0 18 18 0 1546 548 3 MP
XPP
X18 0 0 18 1546 548 3 MP
XPP
X0 18 18 0 1546 566 3 MP
XPP
X18 0 0 18 1546 566 3 MP
XPP
X0 18 18 0 1546 584 3 MP
XPP
X18 0 0 18 1546 584 3 MP
XPP
X0 18 18 0 1546 602 3 MP
XPP
X18 0 0 18 1546 602 3 MP
XPP
X0 18 18 0 1546 620 3 MP
XPP
X18 0 0 18 1546 620 3 MP
XPP
X0 17 18 0 1546 638 3 MP
XPP
X18 0 0 17 1546 638 3 MP
XPP
X0 18 18 0 1546 655 3 MP
XPP
X18 0 0 18 1546 655 3 MP
XPP
X0 18 18 0 1546 673 3 MP
XPP
X18 0 0 18 1546 673 3 MP
XPP
X0 18 18 0 1546 691 3 MP
XPP
X18 0 0 18 1546 691 3 MP
XPP
X0 18 18 0 1546 709 3 MP
XPP
X18 0 0 18 1546 709 3 MP
XPP
X0 18 18 0 1546 727 3 MP
XPP
X18 0 0 18 1546 727 3 MP
XPP
X0 17 18 0 1546 745 3 MP
XPP
X18 0 0 17 1546 745 3 MP
XPP
X0 18 18 0 1546 762 3 MP
XPP
X18 0 0 18 1546 762 3 MP
XPP
X0 18 18 0 1546 780 3 MP
XPP
X18 0 0 18 1546 780 3 MP
XPP
X0 18 18 0 1546 798 3 MP
XPP
X18 0 0 18 1546 798 3 MP
XPP
X0 18 18 0 1546 816 3 MP
XPP
X18 0 0 18 1546 816 3 MP
XPP
X0 18 18 0 1546 834 3 MP
XPP
X18 0 0 18 1546 834 3 MP
XPP
X0 17 18 0 1546 852 3 MP
XPP
X18 0 0 17 1546 852 3 MP
XPP
X0 18 18 0 1546 869 3 MP
XPP
X18 0 0 18 1546 869 3 MP
XPP
X0 18 18 0 1546 887 3 MP
XPP
X18 0 0 18 1546 887 3 MP
XPP
X0 18 18 0 1546 905 3 MP
XPP
X18 0 0 18 1546 905 3 MP
XPP
X0 18 18 0 1546 923 3 MP
XPP
X18 0 0 18 1546 923 3 MP
XPP
X0 18 18 0 1546 941 3 MP
XPP
X18 0 0 18 1546 941 3 MP
XPP
X0 17 18 0 1546 959 3 MP
XPP
X18 0 0 17 1546 959 3 MP
XPP
X0 18 18 0 1546 976 3 MP
XPP
X18 0 0 18 1546 976 3 MP
XPP
X0 18 18 0 1546 994 3 MP
XPP
X18 0 0 18 1546 994 3 MP
XPP
X0 18 18 0 1546 1012 3 MP
XPP
X18 0 0 18 1546 1012 3 MP
XPP
X0 18 18 0 1546 1030 3 MP
XPP
X18 0 0 18 1546 1030 3 MP
XPP
X0 18 18 0 1546 1048 3 MP
XPP
X18 0 0 18 1546 1048 3 MP
XPP
X0 17 18 0 1546 1066 3 MP
XPP
X18 0 0 17 1546 1066 3 MP
XPP
X0 18 18 0 1546 1083 3 MP
XPP
X18 0 0 18 1546 1083 3 MP
XPP
X0 18 18 0 1546 1101 3 MP
XPP
X18 0 0 18 1546 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1546 1119 3 MP
XPP
X18 0 0 18 1546 1119 3 MP
XPP
X0 18 18 0 1546 1137 3 MP
XPP
X18 0 0 18 1546 1137 3 MP
XPP
X0 18 18 0 1546 1155 3 MP
XPP
X18 0 0 18 1546 1155 3 MP
XPP
X0 17 18 0 1546 1173 3 MP
XPP
X18 0 0 17 1546 1173 3 MP
XPP
X0 18 18 0 1546 1190 3 MP
XPP
X18 0 0 18 1546 1190 3 MP
XPP
X0 18 18 0 1546 1208 3 MP
XPP
X18 0 0 18 1546 1208 3 MP
XPP
X0 18 18 0 1546 1226 3 MP
XPP
X18 0 0 18 1546 1226 3 MP
XPP
X0 18 18 0 1546 1244 3 MP
XPP
X18 0 0 18 1546 1244 3 MP
XPP
X0 17 18 0 1546 1262 3 MP
XPP
X18 0 0 17 1546 1262 3 MP
XPP
X0 18 18 0 1546 1279 3 MP
XPP
X18 0 0 18 1546 1279 3 MP
XPP
X0 18 18 0 1546 1297 3 MP
XPP
X18 0 0 18 1546 1297 3 MP
XPP
X0 18 18 0 1546 1315 3 MP
XPP
X18 0 0 18 1546 1315 3 MP
XPP
X0 18 18 0 1546 1333 3 MP
XPP
X18 0 0 18 1546 1333 3 MP
XPP
X0 18 18 0 1546 1351 3 MP
XPP
X18 0 0 18 1546 1351 3 MP
XPP
X0 17 18 0 1546 1369 3 MP
XPP
X18 0 0 17 1546 1369 3 MP
XPP
X0 18 18 0 1546 1386 3 MP
XPP
X18 0 0 18 1546 1386 3 MP
XPP
X0 18 18 0 1546 1404 3 MP
XPP
X18 0 0 18 1546 1404 3 MP
XPP
X0 18 18 0 1546 1422 3 MP
XPP
X18 0 0 18 1546 1422 3 MP
XPP
X0 18 18 0 1546 1440 3 MP
XPP
X18 0 0 18 1546 1440 3 MP
XPP
X0 18 18 0 1546 1458 3 MP
XPP
X18 0 0 18 1546 1458 3 MP
XPP
X0 17 18 0 1546 1476 3 MP
XPP
X18 0 0 17 1546 1476 3 MP
XPP
X0 18 18 0 1546 1493 3 MP
XPP
X18 0 0 18 1546 1493 3 MP
XPP
X0 18 18 0 1546 1511 3 MP
XPP
X18 0 0 18 1546 1511 3 MP
XPP
X1 sg
X0 18 18 0 1546 1529 3 MP
XPP
X18 0 0 18 1546 1529 3 MP
XPP
X0 18 18 0 1546 1547 3 MP
XPP
X18 0 0 18 1546 1547 3 MP
XPP
X0 18 18 0 1546 1565 3 MP
XPP
X18 0 0 18 1546 1565 3 MP
XPP
X0 17 18 0 1546 1583 3 MP
XPP
X18 0 0 17 1546 1583 3 MP
XPP
X0 18 18 0 1546 1600 3 MP
XPP
X18 0 0 18 1546 1600 3 MP
XPP
X0 18 18 0 1546 1618 3 MP
XPP
X18 0 0 18 1546 1618 3 MP
XPP
X0 18 18 0 1546 1636 3 MP
XPP
X18 0 0 18 1546 1636 3 MP
XPP
X0 18 18 0 1546 1654 3 MP
XPP
X18 0 0 18 1546 1654 3 MP
XPP
X0 18 18 0 1546 1672 3 MP
XPP
X18 0 0 18 1546 1672 3 MP
XPP
X0 17 18 0 1546 1690 3 MP
XPP
X18 0 0 17 1546 1690 3 MP
XPP
X0 18 18 0 1546 1707 3 MP
XPP
X18 0 0 18 1546 1707 3 MP
XPP
X0 18 18 0 1546 1725 3 MP
XPP
X18 0 0 18 1546 1725 3 MP
XPP
X0 18 18 0 1546 1743 3 MP
XPP
X18 0 0 18 1546 1743 3 MP
XPP
X0 18 18 0 1546 1761 3 MP
XPP
X18 0 0 18 1546 1761 3 MP
XPP
X0 18 18 0 1546 1779 3 MP
XPP
X18 0 0 18 1546 1779 3 MP
XPP
X0 17 18 0 1546 1797 3 MP
XPP
X18 0 0 17 1546 1797 3 MP
XPP
X0 18 18 0 1546 1814 3 MP
XPP
X18 0 0 18 1546 1814 3 MP
XPP
X0 18 18 0 1546 1832 3 MP
XPP
X18 0 0 18 1546 1832 3 MP
XPP
X0 18 18 0 1546 1850 3 MP
XPP
X18 0 0 18 1546 1850 3 MP
XPP
X0 18 18 0 1546 1868 3 MP
XPP
X18 0 0 18 1546 1868 3 MP
XPP
X0 18 18 0 1546 1886 3 MP
XPP
X18 0 0 18 1546 1886 3 MP
XPP
X0 17 18 0 1546 1904 3 MP
XPP
X18 0 0 17 1546 1904 3 MP
XPP
X0 18 18 0 1546 1921 3 MP
XPP
X18 0 0 18 1546 1921 3 MP
XPP
X0 18 18 0 1546 1939 3 MP
XPP
X18 0 0 18 1546 1939 3 MP
XPP
X0 18 18 0 1546 1957 3 MP
XPP
X18 0 0 18 1546 1957 3 MP
XPP
X0 18 18 0 1546 1975 3 MP
XPP
X18 0 0 18 1546 1975 3 MP
XPP
X0 18 18 0 1546 1993 3 MP
XPP
X18 0 0 18 1546 1993 3 MP
XPP
X0 17 18 0 1546 2011 3 MP
XPP
X18 0 0 17 1546 2011 3 MP
XPP
X0 18 18 0 1546 2028 3 MP
XPP
X18 0 0 18 1546 2028 3 MP
XPP
X0 18 18 0 1546 2046 3 MP
XPP
X18 0 0 18 1546 2046 3 MP
XPP
X0 18 18 0 1546 2064 3 MP
XPP
X18 0 0 18 1546 2064 3 MP
XPP
X0 18 18 0 1546 2082 3 MP
XPP
X18 0 0 18 1546 2082 3 MP
XPP
X0 18 18 0 1546 2100 3 MP
XPP
X18 0 0 18 1546 2100 3 MP
XPP
X0 17 18 0 1546 2118 3 MP
XPP
X18 0 0 17 1546 2118 3 MP
XPP
X0 18 18 0 1546 2135 3 MP
XPP
X18 0 0 18 1546 2135 3 MP
XPP
X0 18 18 0 1546 2153 3 MP
XPP
X18 0 0 18 1546 2153 3 MP
XPP
X0 18 18 0 1564 388 3 MP
XPP
X18 0 0 18 1564 388 3 MP
XPP
X0 18 18 0 1564 406 3 MP
XPP
X18 0 0 18 1564 406 3 MP
XPP
X0 17 18 0 1564 424 3 MP
XPP
X18 0 0 17 1564 424 3 MP
XPP
X0 18 18 0 1564 441 3 MP
XPP
X18 0 0 18 1564 441 3 MP
XPP
X0 18 18 0 1564 459 3 MP
XPP
X18 0 0 18 1564 459 3 MP
XPP
X0 18 18 0 1564 477 3 MP
XPP
X18 0 0 18 1564 477 3 MP
XPP
X0 18 18 0 1564 495 3 MP
XPP
X18 0 0 18 1564 495 3 MP
XPP
X0 18 18 0 1564 513 3 MP
XPP
X18 0 0 18 1564 513 3 MP
XPP
X0 17 18 0 1564 531 3 MP
XPP
X18 0 0 17 1564 531 3 MP
XPP
X0 18 18 0 1564 548 3 MP
XPP
X18 0 0 18 1564 548 3 MP
XPP
X0 18 18 0 1564 566 3 MP
XPP
X18 0 0 18 1564 566 3 MP
XPP
X0 18 18 0 1564 584 3 MP
XPP
X18 0 0 18 1564 584 3 MP
XPP
X0 18 18 0 1564 602 3 MP
XPP
X18 0 0 18 1564 602 3 MP
XPP
X0 18 18 0 1564 620 3 MP
XPP
X18 0 0 18 1564 620 3 MP
XPP
X0 17 18 0 1564 638 3 MP
XPP
X18 0 0 17 1564 638 3 MP
XPP
X0 18 18 0 1564 655 3 MP
XPP
X18 0 0 18 1564 655 3 MP
XPP
X0 18 18 0 1564 673 3 MP
XPP
X18 0 0 18 1564 673 3 MP
XPP
X0 18 18 0 1564 691 3 MP
XPP
X18 0 0 18 1564 691 3 MP
XPP
X0 18 18 0 1564 709 3 MP
XPP
X18 0 0 18 1564 709 3 MP
XPP
X0 18 18 0 1564 727 3 MP
XPP
X18 0 0 18 1564 727 3 MP
XPP
X0 17 18 0 1564 745 3 MP
XPP
X18 0 0 17 1564 745 3 MP
XPP
X0 18 18 0 1564 762 3 MP
XPP
X18 0 0 18 1564 762 3 MP
XPP
X0 18 18 0 1564 780 3 MP
XPP
X18 0 0 18 1564 780 3 MP
XPP
X0 18 18 0 1564 798 3 MP
XPP
X18 0 0 18 1564 798 3 MP
XPP
X0 18 18 0 1564 816 3 MP
XPP
X18 0 0 18 1564 816 3 MP
XPP
X0 18 18 0 1564 834 3 MP
XPP
X18 0 0 18 1564 834 3 MP
XPP
X0 17 18 0 1564 852 3 MP
XPP
X18 0 0 17 1564 852 3 MP
XPP
X0 18 18 0 1564 869 3 MP
XPP
X18 0 0 18 1564 869 3 MP
XPP
X0 18 18 0 1564 887 3 MP
XPP
X18 0 0 18 1564 887 3 MP
XPP
X0 18 18 0 1564 905 3 MP
XPP
X18 0 0 18 1564 905 3 MP
XPP
X0 18 18 0 1564 923 3 MP
XPP
X18 0 0 18 1564 923 3 MP
XPP
X0 18 18 0 1564 941 3 MP
XPP
X18 0 0 18 1564 941 3 MP
XPP
X0 17 18 0 1564 959 3 MP
XPP
X18 0 0 17 1564 959 3 MP
XPP
X0 18 18 0 1564 976 3 MP
XPP
X18 0 0 18 1564 976 3 MP
XPP
X0 18 18 0 1564 994 3 MP
XPP
X18 0 0 18 1564 994 3 MP
XPP
X0 18 18 0 1564 1012 3 MP
XPP
X18 0 0 18 1564 1012 3 MP
XPP
X0 18 18 0 1564 1030 3 MP
XPP
X18 0 0 18 1564 1030 3 MP
XPP
X0 18 18 0 1564 1048 3 MP
XPP
X18 0 0 18 1564 1048 3 MP
XPP
X0 17 18 0 1564 1066 3 MP
XPP
X18 0 0 17 1564 1066 3 MP
XPP
X0 18 18 0 1564 1083 3 MP
XPP
X18 0 0 18 1564 1083 3 MP
XPP
X0 18 18 0 1564 1101 3 MP
XPP
X18 0 0 18 1564 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1564 1119 3 MP
XPP
X18 0 0 18 1564 1119 3 MP
XPP
X0 18 18 0 1564 1137 3 MP
XPP
X18 0 0 18 1564 1137 3 MP
XPP
X0 18 18 0 1564 1155 3 MP
XPP
X18 0 0 18 1564 1155 3 MP
XPP
X0 17 18 0 1564 1173 3 MP
XPP
X18 0 0 17 1564 1173 3 MP
XPP
X0 18 18 0 1564 1190 3 MP
XPP
X18 0 0 18 1564 1190 3 MP
XPP
X0 18 18 0 1564 1208 3 MP
XPP
X18 0 0 18 1564 1208 3 MP
XPP
X0 18 18 0 1564 1226 3 MP
XPP
X18 0 0 18 1564 1226 3 MP
XPP
X0 18 18 0 1564 1244 3 MP
XPP
X18 0 0 18 1564 1244 3 MP
XPP
X0 17 18 0 1564 1262 3 MP
XPP
X18 0 0 17 1564 1262 3 MP
XPP
X0 18 18 0 1564 1279 3 MP
XPP
X18 0 0 18 1564 1279 3 MP
XPP
X0 18 18 0 1564 1297 3 MP
XPP
X18 0 0 18 1564 1297 3 MP
XPP
X0 18 18 0 1564 1315 3 MP
XPP
X18 0 0 18 1564 1315 3 MP
XPP
X0 18 18 0 1564 1333 3 MP
XPP
X18 0 0 18 1564 1333 3 MP
XPP
X0 18 18 0 1564 1351 3 MP
XPP
X18 0 0 18 1564 1351 3 MP
XPP
X0 17 18 0 1564 1369 3 MP
XPP
X18 0 0 17 1564 1369 3 MP
XPP
X0 18 18 0 1564 1386 3 MP
XPP
X18 0 0 18 1564 1386 3 MP
XPP
X0 18 18 0 1564 1404 3 MP
XPP
X18 0 0 18 1564 1404 3 MP
XPP
X0 18 18 0 1564 1422 3 MP
XPP
X18 0 0 18 1564 1422 3 MP
XPP
X0 18 18 0 1564 1440 3 MP
XPP
X18 0 0 18 1564 1440 3 MP
XPP
X0 18 18 0 1564 1458 3 MP
XPP
X18 0 0 18 1564 1458 3 MP
XPP
X0 17 18 0 1564 1476 3 MP
XPP
X18 0 0 17 1564 1476 3 MP
XPP
X0 18 18 0 1564 1493 3 MP
XPP
X18 0 0 18 1564 1493 3 MP
XPP
X0 18 18 0 1564 1511 3 MP
XPP
X18 0 0 18 1564 1511 3 MP
XPP
X0 18 18 0 1564 1529 3 MP
XPP
X18 0 0 18 1564 1529 3 MP
XPP
X1 sg
X0 18 18 0 1564 1547 3 MP
XPP
X18 0 0 18 1564 1547 3 MP
XPP
X0 18 18 0 1564 1565 3 MP
XPP
X18 0 0 18 1564 1565 3 MP
XPP
X0 17 18 0 1564 1583 3 MP
XPP
X18 0 0 17 1564 1583 3 MP
XPP
X0 18 18 0 1564 1600 3 MP
XPP
X18 0 0 18 1564 1600 3 MP
XPP
X0 18 18 0 1564 1618 3 MP
XPP
X18 0 0 18 1564 1618 3 MP
XPP
X0 18 18 0 1564 1636 3 MP
XPP
X18 0 0 18 1564 1636 3 MP
XPP
X0 18 18 0 1564 1654 3 MP
XPP
X18 0 0 18 1564 1654 3 MP
XPP
X0 18 18 0 1564 1672 3 MP
XPP
X18 0 0 18 1564 1672 3 MP
XPP
X0 17 18 0 1564 1690 3 MP
XPP
X18 0 0 17 1564 1690 3 MP
XPP
X0 18 18 0 1564 1707 3 MP
XPP
X18 0 0 18 1564 1707 3 MP
XPP
X0 18 18 0 1564 1725 3 MP
XPP
X18 0 0 18 1564 1725 3 MP
XPP
X0 18 18 0 1564 1743 3 MP
XPP
X18 0 0 18 1564 1743 3 MP
XPP
X0 18 18 0 1564 1761 3 MP
XPP
X18 0 0 18 1564 1761 3 MP
XPP
X0 18 18 0 1564 1779 3 MP
XPP
X18 0 0 18 1564 1779 3 MP
XPP
X0 17 18 0 1564 1797 3 MP
XPP
X18 0 0 17 1564 1797 3 MP
XPP
X0 18 18 0 1564 1814 3 MP
XPP
X18 0 0 18 1564 1814 3 MP
XPP
X0 18 18 0 1564 1832 3 MP
XPP
X18 0 0 18 1564 1832 3 MP
XPP
X0 18 18 0 1564 1850 3 MP
XPP
X18 0 0 18 1564 1850 3 MP
XPP
X0 18 18 0 1564 1868 3 MP
XPP
X18 0 0 18 1564 1868 3 MP
XPP
X0 18 18 0 1564 1886 3 MP
XPP
X18 0 0 18 1564 1886 3 MP
XPP
X0 17 18 0 1564 1904 3 MP
XPP
X18 0 0 17 1564 1904 3 MP
XPP
X0 18 18 0 1564 1921 3 MP
XPP
X18 0 0 18 1564 1921 3 MP
XPP
X0 18 18 0 1564 1939 3 MP
XPP
X18 0 0 18 1564 1939 3 MP
XPP
X0 18 18 0 1564 1957 3 MP
XPP
X18 0 0 18 1564 1957 3 MP
XPP
X0 18 18 0 1564 1975 3 MP
XPP
X18 0 0 18 1564 1975 3 MP
XPP
X0 18 18 0 1564 1993 3 MP
XPP
X18 0 0 18 1564 1993 3 MP
XPP
X0 17 18 0 1564 2011 3 MP
XPP
X18 0 0 17 1564 2011 3 MP
XPP
X0 18 18 0 1564 2028 3 MP
XPP
X18 0 0 18 1564 2028 3 MP
XPP
X0 18 18 0 1564 2046 3 MP
XPP
X18 0 0 18 1564 2046 3 MP
XPP
X0 18 18 0 1564 2064 3 MP
XPP
X18 0 0 18 1564 2064 3 MP
XPP
X0 18 18 0 1564 2082 3 MP
XPP
X18 0 0 18 1564 2082 3 MP
XPP
X0 18 18 0 1564 2100 3 MP
XPP
X18 0 0 18 1564 2100 3 MP
XPP
X0 17 18 0 1564 2118 3 MP
XPP
X18 0 0 17 1564 2118 3 MP
XPP
X0 18 18 0 1564 2135 3 MP
XPP
X18 0 0 18 1564 2135 3 MP
XPP
X0 18 18 0 1564 2153 3 MP
XPP
X18 0 0 18 1564 2153 3 MP
XPP
X0 18 18 0 1582 388 3 MP
XPP
X18 0 0 18 1582 388 3 MP
XPP
X0 18 18 0 1582 406 3 MP
XPP
X18 0 0 18 1582 406 3 MP
XPP
X0 17 18 0 1582 424 3 MP
XPP
X18 0 0 17 1582 424 3 MP
XPP
X0 18 18 0 1582 441 3 MP
XPP
X18 0 0 18 1582 441 3 MP
XPP
X0 18 18 0 1582 459 3 MP
XPP
X18 0 0 18 1582 459 3 MP
XPP
X0 18 18 0 1582 477 3 MP
XPP
X18 0 0 18 1582 477 3 MP
XPP
X0 18 18 0 1582 495 3 MP
XPP
X18 0 0 18 1582 495 3 MP
XPP
X0 18 18 0 1582 513 3 MP
XPP
X18 0 0 18 1582 513 3 MP
XPP
X0 17 18 0 1582 531 3 MP
XPP
X18 0 0 17 1582 531 3 MP
XPP
X0 18 18 0 1582 548 3 MP
XPP
X18 0 0 18 1582 548 3 MP
XPP
X0 18 18 0 1582 566 3 MP
XPP
X18 0 0 18 1582 566 3 MP
XPP
X0 18 18 0 1582 584 3 MP
XPP
X18 0 0 18 1582 584 3 MP
XPP
X0 18 18 0 1582 602 3 MP
XPP
X18 0 0 18 1582 602 3 MP
XPP
X0 18 18 0 1582 620 3 MP
XPP
X18 0 0 18 1582 620 3 MP
XPP
X0 17 18 0 1582 638 3 MP
XPP
X18 0 0 17 1582 638 3 MP
XPP
X0 18 18 0 1582 655 3 MP
XPP
X18 0 0 18 1582 655 3 MP
XPP
X0 18 18 0 1582 673 3 MP
XPP
X18 0 0 18 1582 673 3 MP
XPP
X0 18 18 0 1582 691 3 MP
XPP
X18 0 0 18 1582 691 3 MP
XPP
X0 18 18 0 1582 709 3 MP
XPP
X18 0 0 18 1582 709 3 MP
XPP
X0 18 18 0 1582 727 3 MP
XPP
X18 0 0 18 1582 727 3 MP
XPP
X0 17 18 0 1582 745 3 MP
XPP
X18 0 0 17 1582 745 3 MP
XPP
X0 18 18 0 1582 762 3 MP
XPP
X18 0 0 18 1582 762 3 MP
XPP
X0 18 18 0 1582 780 3 MP
XPP
X18 0 0 18 1582 780 3 MP
XPP
X0 18 18 0 1582 798 3 MP
XPP
X18 0 0 18 1582 798 3 MP
XPP
X0 18 18 0 1582 816 3 MP
XPP
X18 0 0 18 1582 816 3 MP
XPP
X0 18 18 0 1582 834 3 MP
XPP
X18 0 0 18 1582 834 3 MP
XPP
X0 17 18 0 1582 852 3 MP
XPP
X18 0 0 17 1582 852 3 MP
XPP
X0 18 18 0 1582 869 3 MP
XPP
X18 0 0 18 1582 869 3 MP
XPP
X0 18 18 0 1582 887 3 MP
XPP
X18 0 0 18 1582 887 3 MP
XPP
X0 18 18 0 1582 905 3 MP
XPP
X18 0 0 18 1582 905 3 MP
XPP
X0 18 18 0 1582 923 3 MP
XPP
X18 0 0 18 1582 923 3 MP
XPP
X0 18 18 0 1582 941 3 MP
XPP
X18 0 0 18 1582 941 3 MP
XPP
X0 17 18 0 1582 959 3 MP
XPP
X18 0 0 17 1582 959 3 MP
XPP
X0 18 18 0 1582 976 3 MP
XPP
X18 0 0 18 1582 976 3 MP
XPP
X0 18 18 0 1582 994 3 MP
XPP
X18 0 0 18 1582 994 3 MP
XPP
X0 18 18 0 1582 1012 3 MP
XPP
X18 0 0 18 1582 1012 3 MP
XPP
X0 18 18 0 1582 1030 3 MP
XPP
X18 0 0 18 1582 1030 3 MP
XPP
X0 18 18 0 1582 1048 3 MP
XPP
X18 0 0 18 1582 1048 3 MP
XPP
X0 17 18 0 1582 1066 3 MP
XPP
X18 0 0 17 1582 1066 3 MP
XPP
X0 18 18 0 1582 1083 3 MP
XPP
X18 0 0 18 1582 1083 3 MP
XPP
X0 18 18 0 1582 1101 3 MP
XPP
X18 0 0 18 1582 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1582 1119 3 MP
XPP
X18 0 0 18 1582 1119 3 MP
XPP
X0 18 18 0 1582 1137 3 MP
XPP
X18 0 0 18 1582 1137 3 MP
XPP
X0 18 18 0 1582 1155 3 MP
XPP
X18 0 0 18 1582 1155 3 MP
XPP
X0 17 18 0 1582 1173 3 MP
XPP
X18 0 0 17 1582 1173 3 MP
XPP
X0 18 18 0 1582 1190 3 MP
XPP
X18 0 0 18 1582 1190 3 MP
XPP
X0 18 18 0 1582 1208 3 MP
XPP
X18 0 0 18 1582 1208 3 MP
XPP
X0 18 18 0 1582 1226 3 MP
XPP
X18 0 0 18 1582 1226 3 MP
XPP
X0 18 18 0 1582 1244 3 MP
XPP
X18 0 0 18 1582 1244 3 MP
XPP
X0 17 18 0 1582 1262 3 MP
XPP
X18 0 0 17 1582 1262 3 MP
XPP
X0 18 18 0 1582 1279 3 MP
XPP
X18 0 0 18 1582 1279 3 MP
XPP
X0 18 18 0 1582 1297 3 MP
XPP
X18 0 0 18 1582 1297 3 MP
XPP
X0 18 18 0 1582 1315 3 MP
XPP
X18 0 0 18 1582 1315 3 MP
XPP
X0 18 18 0 1582 1333 3 MP
XPP
X18 0 0 18 1582 1333 3 MP
XPP
X0 18 18 0 1582 1351 3 MP
XPP
X18 0 0 18 1582 1351 3 MP
XPP
X0 17 18 0 1582 1369 3 MP
XPP
X18 0 0 17 1582 1369 3 MP
XPP
X0 18 18 0 1582 1386 3 MP
XPP
X18 0 0 18 1582 1386 3 MP
XPP
X0 18 18 0 1582 1404 3 MP
XPP
X18 0 0 18 1582 1404 3 MP
XPP
X0 18 18 0 1582 1422 3 MP
XPP
X18 0 0 18 1582 1422 3 MP
XPP
X0 18 18 0 1582 1440 3 MP
XPP
X18 0 0 18 1582 1440 3 MP
XPP
X0 18 18 0 1582 1458 3 MP
XPP
X18 0 0 18 1582 1458 3 MP
XPP
X0 17 18 0 1582 1476 3 MP
XPP
X18 0 0 17 1582 1476 3 MP
XPP
X0 18 18 0 1582 1493 3 MP
XPP
X18 0 0 18 1582 1493 3 MP
XPP
X0 18 18 0 1582 1511 3 MP
XPP
X18 0 0 18 1582 1511 3 MP
XPP
X0 18 18 0 1582 1529 3 MP
XPP
X18 0 0 18 1582 1529 3 MP
XPP
X0 18 18 0 1582 1547 3 MP
XPP
X18 0 0 18 1582 1547 3 MP
XPP
X1 sg
X0 18 18 0 1582 1565 3 MP
XPP
X18 0 0 18 1582 1565 3 MP
XPP
X0 17 18 0 1582 1583 3 MP
XPP
X18 0 0 17 1582 1583 3 MP
XPP
X0 18 18 0 1582 1600 3 MP
XPP
X18 0 0 18 1582 1600 3 MP
XPP
X0 18 18 0 1582 1618 3 MP
XPP
X18 0 0 18 1582 1618 3 MP
XPP
X0 18 18 0 1582 1636 3 MP
XPP
X18 0 0 18 1582 1636 3 MP
XPP
X0 18 18 0 1582 1654 3 MP
XPP
X18 0 0 18 1582 1654 3 MP
XPP
X0 18 18 0 1582 1672 3 MP
XPP
X18 0 0 18 1582 1672 3 MP
XPP
X0 17 18 0 1582 1690 3 MP
XPP
X18 0 0 17 1582 1690 3 MP
XPP
X0 18 18 0 1582 1707 3 MP
XPP
X18 0 0 18 1582 1707 3 MP
XPP
X0 18 18 0 1582 1725 3 MP
XPP
X18 0 0 18 1582 1725 3 MP
XPP
X0 18 18 0 1582 1743 3 MP
XPP
X18 0 0 18 1582 1743 3 MP
XPP
X0 18 18 0 1582 1761 3 MP
XPP
X18 0 0 18 1582 1761 3 MP
XPP
X0 18 18 0 1582 1779 3 MP
XPP
X18 0 0 18 1582 1779 3 MP
XPP
X0 17 18 0 1582 1797 3 MP
XPP
X18 0 0 17 1582 1797 3 MP
XPP
X0 18 18 0 1582 1814 3 MP
XPP
X18 0 0 18 1582 1814 3 MP
XPP
X0 18 18 0 1582 1832 3 MP
XPP
X18 0 0 18 1582 1832 3 MP
XPP
X0 18 18 0 1582 1850 3 MP
XPP
X18 0 0 18 1582 1850 3 MP
XPP
X0 18 18 0 1582 1868 3 MP
XPP
X18 0 0 18 1582 1868 3 MP
XPP
X0 18 18 0 1582 1886 3 MP
XPP
X18 0 0 18 1582 1886 3 MP
XPP
X0 17 18 0 1582 1904 3 MP
XPP
X18 0 0 17 1582 1904 3 MP
XPP
X0 18 18 0 1582 1921 3 MP
XPP
X18 0 0 18 1582 1921 3 MP
XPP
X0 18 18 0 1582 1939 3 MP
XPP
X18 0 0 18 1582 1939 3 MP
XPP
X0 18 18 0 1582 1957 3 MP
XPP
X18 0 0 18 1582 1957 3 MP
XPP
X0 18 18 0 1582 1975 3 MP
XPP
X18 0 0 18 1582 1975 3 MP
XPP
X0 18 18 0 1582 1993 3 MP
XPP
X18 0 0 18 1582 1993 3 MP
XPP
X0 17 18 0 1582 2011 3 MP
XPP
X18 0 0 17 1582 2011 3 MP
XPP
X0 18 18 0 1582 2028 3 MP
XPP
X18 0 0 18 1582 2028 3 MP
XPP
X0 18 18 0 1582 2046 3 MP
XPP
X18 0 0 18 1582 2046 3 MP
XPP
X0 18 18 0 1582 2064 3 MP
XPP
X18 0 0 18 1582 2064 3 MP
XPP
X0 18 18 0 1582 2082 3 MP
XPP
X18 0 0 18 1582 2082 3 MP
XPP
X0 18 18 0 1582 2100 3 MP
XPP
X18 0 0 18 1582 2100 3 MP
XPP
X0 17 18 0 1582 2118 3 MP
XPP
X18 0 0 17 1582 2118 3 MP
XPP
X0 18 18 0 1582 2135 3 MP
XPP
X18 0 0 18 1582 2135 3 MP
XPP
X0 18 18 0 1582 2153 3 MP
XPP
X18 0 0 18 1582 2153 3 MP
XPP
X0 18 17 0 1600 388 3 MP
XPP
X17 0 0 18 1600 388 3 MP
XPP
X0 18 17 0 1600 406 3 MP
XPP
X17 0 0 18 1600 406 3 MP
XPP
X0 17 17 0 1600 424 3 MP
XPP
X17 0 0 17 1600 424 3 MP
XPP
X0 18 17 0 1600 441 3 MP
XPP
X17 0 0 18 1600 441 3 MP
XPP
X0 18 17 0 1600 459 3 MP
XPP
X17 0 0 18 1600 459 3 MP
XPP
X0 18 17 0 1600 477 3 MP
XPP
X17 0 0 18 1600 477 3 MP
XPP
X0 18 17 0 1600 495 3 MP
XPP
X17 0 0 18 1600 495 3 MP
XPP
X0 18 17 0 1600 513 3 MP
XPP
X17 0 0 18 1600 513 3 MP
XPP
X0 17 17 0 1600 531 3 MP
XPP
X17 0 0 17 1600 531 3 MP
XPP
X0 18 17 0 1600 548 3 MP
XPP
X17 0 0 18 1600 548 3 MP
XPP
X0 18 17 0 1600 566 3 MP
XPP
X17 0 0 18 1600 566 3 MP
XPP
X0 18 17 0 1600 584 3 MP
XPP
X17 0 0 18 1600 584 3 MP
XPP
X0 18 17 0 1600 602 3 MP
XPP
X17 0 0 18 1600 602 3 MP
XPP
X0 18 17 0 1600 620 3 MP
XPP
X17 0 0 18 1600 620 3 MP
XPP
X0 17 17 0 1600 638 3 MP
XPP
X17 0 0 17 1600 638 3 MP
XPP
X0 18 17 0 1600 655 3 MP
XPP
X17 0 0 18 1600 655 3 MP
XPP
X0 18 17 0 1600 673 3 MP
XPP
X17 0 0 18 1600 673 3 MP
XPP
X0 18 17 0 1600 691 3 MP
XPP
X17 0 0 18 1600 691 3 MP
XPP
X0 18 17 0 1600 709 3 MP
XPP
X17 0 0 18 1600 709 3 MP
XPP
X0 18 17 0 1600 727 3 MP
XPP
X17 0 0 18 1600 727 3 MP
XPP
X0 17 17 0 1600 745 3 MP
XPP
X17 0 0 17 1600 745 3 MP
XPP
X0 18 17 0 1600 762 3 MP
XPP
X17 0 0 18 1600 762 3 MP
XPP
X0 18 17 0 1600 780 3 MP
XPP
X17 0 0 18 1600 780 3 MP
XPP
X0 18 17 0 1600 798 3 MP
XPP
X17 0 0 18 1600 798 3 MP
XPP
X0 18 17 0 1600 816 3 MP
XPP
X17 0 0 18 1600 816 3 MP
XPP
X0 18 17 0 1600 834 3 MP
XPP
X17 0 0 18 1600 834 3 MP
XPP
X0 17 17 0 1600 852 3 MP
XPP
X17 0 0 17 1600 852 3 MP
XPP
X0 18 17 0 1600 869 3 MP
XPP
X17 0 0 18 1600 869 3 MP
XPP
X0 18 17 0 1600 887 3 MP
XPP
X17 0 0 18 1600 887 3 MP
XPP
X0 18 17 0 1600 905 3 MP
XPP
X17 0 0 18 1600 905 3 MP
XPP
X0 18 17 0 1600 923 3 MP
XPP
X17 0 0 18 1600 923 3 MP
XPP
X0 18 17 0 1600 941 3 MP
XPP
X17 0 0 18 1600 941 3 MP
XPP
X0 17 17 0 1600 959 3 MP
XPP
X17 0 0 17 1600 959 3 MP
XPP
X0 18 17 0 1600 976 3 MP
XPP
X17 0 0 18 1600 976 3 MP
XPP
X0 18 17 0 1600 994 3 MP
XPP
X17 0 0 18 1600 994 3 MP
XPP
X0 18 17 0 1600 1012 3 MP
XPP
X17 0 0 18 1600 1012 3 MP
XPP
X0 18 17 0 1600 1030 3 MP
XPP
X17 0 0 18 1600 1030 3 MP
XPP
X0 18 17 0 1600 1048 3 MP
XPP
X17 0 0 18 1600 1048 3 MP
XPP
X0 17 17 0 1600 1066 3 MP
XPP
X17 0 0 17 1600 1066 3 MP
XPP
X0 18 17 0 1600 1083 3 MP
XPP
X17 0 0 18 1600 1083 3 MP
XPP
X0 18 17 0 1600 1101 3 MP
XPP
X17 0 0 18 1600 1101 3 MP
XPP
X0.238095 sg
X0 18 17 0 1600 1119 3 MP
XPP
X17 0 0 18 1600 1119 3 MP
XPP
X0 18 17 0 1600 1137 3 MP
XPP
X17 0 0 18 1600 1137 3 MP
XPP
X0 18 17 0 1600 1155 3 MP
XPP
X17 0 0 18 1600 1155 3 MP
XPP
X0 17 17 0 1600 1173 3 MP
XPP
X17 0 0 17 1600 1173 3 MP
XPP
X0 18 17 0 1600 1190 3 MP
XPP
X17 0 0 18 1600 1190 3 MP
XPP
X0 18 17 0 1600 1208 3 MP
XPP
X17 0 0 18 1600 1208 3 MP
XPP
X0 18 17 0 1600 1226 3 MP
XPP
X17 0 0 18 1600 1226 3 MP
XPP
X0 18 17 0 1600 1244 3 MP
XPP
X17 0 0 18 1600 1244 3 MP
XPP
X0 17 17 0 1600 1262 3 MP
XPP
X17 0 0 17 1600 1262 3 MP
XPP
X0 18 17 0 1600 1279 3 MP
XPP
X17 0 0 18 1600 1279 3 MP
XPP
X0 18 17 0 1600 1297 3 MP
XPP
X17 0 0 18 1600 1297 3 MP
XPP
X0 18 17 0 1600 1315 3 MP
XPP
X17 0 0 18 1600 1315 3 MP
XPP
X0 18 17 0 1600 1333 3 MP
XPP
X17 0 0 18 1600 1333 3 MP
XPP
X0 18 17 0 1600 1351 3 MP
XPP
X17 0 0 18 1600 1351 3 MP
XPP
X0 17 17 0 1600 1369 3 MP
XPP
X17 0 0 17 1600 1369 3 MP
XPP
X0 18 17 0 1600 1386 3 MP
XPP
X17 0 0 18 1600 1386 3 MP
XPP
X0 18 17 0 1600 1404 3 MP
XPP
X17 0 0 18 1600 1404 3 MP
XPP
X0 18 17 0 1600 1422 3 MP
XPP
X17 0 0 18 1600 1422 3 MP
XPP
X0 18 17 0 1600 1440 3 MP
XPP
X17 0 0 18 1600 1440 3 MP
XPP
X0 18 17 0 1600 1458 3 MP
XPP
X17 0 0 18 1600 1458 3 MP
XPP
X0 17 17 0 1600 1476 3 MP
XPP
X17 0 0 17 1600 1476 3 MP
XPP
X0 18 17 0 1600 1493 3 MP
XPP
X17 0 0 18 1600 1493 3 MP
XPP
X0 18 17 0 1600 1511 3 MP
XPP
X17 0 0 18 1600 1511 3 MP
XPP
X0 18 17 0 1600 1529 3 MP
XPP
X17 0 0 18 1600 1529 3 MP
XPP
X0 18 17 0 1600 1547 3 MP
XPP
X17 0 0 18 1600 1547 3 MP
XPP
X0 18 17 0 1600 1565 3 MP
XPP
X17 0 0 18 1600 1565 3 MP
XPP
X1 sg
X0 17 17 0 1600 1583 3 MP
XPP
X17 0 0 17 1600 1583 3 MP
XPP
X0 18 17 0 1600 1600 3 MP
XPP
X17 0 0 18 1600 1600 3 MP
XPP
X0 18 17 0 1600 1618 3 MP
XPP
X17 0 0 18 1600 1618 3 MP
XPP
X0 18 17 0 1600 1636 3 MP
XPP
X17 0 0 18 1600 1636 3 MP
XPP
X0 18 17 0 1600 1654 3 MP
XPP
X17 0 0 18 1600 1654 3 MP
XPP
X0 18 17 0 1600 1672 3 MP
XPP
X17 0 0 18 1600 1672 3 MP
XPP
X0 17 17 0 1600 1690 3 MP
XPP
X17 0 0 17 1600 1690 3 MP
XPP
X0 18 17 0 1600 1707 3 MP
XPP
X17 0 0 18 1600 1707 3 MP
XPP
X0 18 17 0 1600 1725 3 MP
XPP
X17 0 0 18 1600 1725 3 MP
XPP
X0 18 17 0 1600 1743 3 MP
XPP
X17 0 0 18 1600 1743 3 MP
XPP
X0 18 17 0 1600 1761 3 MP
XPP
X17 0 0 18 1600 1761 3 MP
XPP
X0 18 17 0 1600 1779 3 MP
XPP
X17 0 0 18 1600 1779 3 MP
XPP
X0 17 17 0 1600 1797 3 MP
XPP
X17 0 0 17 1600 1797 3 MP
XPP
X0 18 17 0 1600 1814 3 MP
XPP
X17 0 0 18 1600 1814 3 MP
XPP
X0 18 17 0 1600 1832 3 MP
XPP
X17 0 0 18 1600 1832 3 MP
XPP
X0 18 17 0 1600 1850 3 MP
XPP
X17 0 0 18 1600 1850 3 MP
XPP
X0 18 17 0 1600 1868 3 MP
XPP
X17 0 0 18 1600 1868 3 MP
XPP
X0 18 17 0 1600 1886 3 MP
XPP
X17 0 0 18 1600 1886 3 MP
XPP
X0 17 17 0 1600 1904 3 MP
XPP
X17 0 0 17 1600 1904 3 MP
XPP
X0 18 17 0 1600 1921 3 MP
XPP
X17 0 0 18 1600 1921 3 MP
XPP
X0 18 17 0 1600 1939 3 MP
XPP
X17 0 0 18 1600 1939 3 MP
XPP
X0 18 17 0 1600 1957 3 MP
XPP
X17 0 0 18 1600 1957 3 MP
XPP
X0 18 17 0 1600 1975 3 MP
XPP
X17 0 0 18 1600 1975 3 MP
XPP
X0 18 17 0 1600 1993 3 MP
XPP
X17 0 0 18 1600 1993 3 MP
XPP
X0 17 17 0 1600 2011 3 MP
XPP
X17 0 0 17 1600 2011 3 MP
XPP
X0 18 17 0 1600 2028 3 MP
XPP
X17 0 0 18 1600 2028 3 MP
XPP
X0 18 17 0 1600 2046 3 MP
XPP
X17 0 0 18 1600 2046 3 MP
XPP
X0 18 17 0 1600 2064 3 MP
XPP
X17 0 0 18 1600 2064 3 MP
XPP
X0 18 17 0 1600 2082 3 MP
XPP
X17 0 0 18 1600 2082 3 MP
XPP
X0 18 17 0 1600 2100 3 MP
XPP
X17 0 0 18 1600 2100 3 MP
XPP
X0 17 17 0 1600 2118 3 MP
XPP
X17 0 0 17 1600 2118 3 MP
XPP
X0 18 17 0 1600 2135 3 MP
XPP
X17 0 0 18 1600 2135 3 MP
XPP
X0 18 17 0 1600 2153 3 MP
XPP
X17 0 0 18 1600 2153 3 MP
XPP
X0 18 18 0 1617 388 3 MP
XPP
X18 0 0 18 1617 388 3 MP
XPP
X0 18 18 0 1617 406 3 MP
XPP
X18 0 0 18 1617 406 3 MP
XPP
X0 17 18 0 1617 424 3 MP
XPP
X18 0 0 17 1617 424 3 MP
XPP
X0 18 18 0 1617 441 3 MP
XPP
X18 0 0 18 1617 441 3 MP
XPP
X0 18 18 0 1617 459 3 MP
XPP
X18 0 0 18 1617 459 3 MP
XPP
X0 18 18 0 1617 477 3 MP
XPP
X18 0 0 18 1617 477 3 MP
XPP
X0 18 18 0 1617 495 3 MP
XPP
X18 0 0 18 1617 495 3 MP
XPP
X0 18 18 0 1617 513 3 MP
XPP
X18 0 0 18 1617 513 3 MP
XPP
X0 17 18 0 1617 531 3 MP
XPP
X18 0 0 17 1617 531 3 MP
XPP
X0 18 18 0 1617 548 3 MP
XPP
X18 0 0 18 1617 548 3 MP
XPP
X0 18 18 0 1617 566 3 MP
XPP
X18 0 0 18 1617 566 3 MP
XPP
X0 18 18 0 1617 584 3 MP
XPP
X18 0 0 18 1617 584 3 MP
XPP
X0 18 18 0 1617 602 3 MP
XPP
X18 0 0 18 1617 602 3 MP
XPP
X0 18 18 0 1617 620 3 MP
XPP
X18 0 0 18 1617 620 3 MP
XPP
X0 17 18 0 1617 638 3 MP
XPP
X18 0 0 17 1617 638 3 MP
XPP
X0 18 18 0 1617 655 3 MP
XPP
X18 0 0 18 1617 655 3 MP
XPP
X0 18 18 0 1617 673 3 MP
XPP
X18 0 0 18 1617 673 3 MP
XPP
X0 18 18 0 1617 691 3 MP
XPP
X18 0 0 18 1617 691 3 MP
XPP
X0 18 18 0 1617 709 3 MP
XPP
X18 0 0 18 1617 709 3 MP
XPP
X0 18 18 0 1617 727 3 MP
XPP
X18 0 0 18 1617 727 3 MP
XPP
X0 17 18 0 1617 745 3 MP
XPP
X18 0 0 17 1617 745 3 MP
XPP
X0 18 18 0 1617 762 3 MP
XPP
X18 0 0 18 1617 762 3 MP
XPP
X0 18 18 0 1617 780 3 MP
XPP
X18 0 0 18 1617 780 3 MP
XPP
X0 18 18 0 1617 798 3 MP
XPP
X18 0 0 18 1617 798 3 MP
XPP
X0 18 18 0 1617 816 3 MP
XPP
X18 0 0 18 1617 816 3 MP
XPP
X0 18 18 0 1617 834 3 MP
XPP
X18 0 0 18 1617 834 3 MP
XPP
X0 17 18 0 1617 852 3 MP
XPP
X18 0 0 17 1617 852 3 MP
XPP
X0 18 18 0 1617 869 3 MP
XPP
X18 0 0 18 1617 869 3 MP
XPP
X0 18 18 0 1617 887 3 MP
XPP
X18 0 0 18 1617 887 3 MP
XPP
X0 18 18 0 1617 905 3 MP
XPP
X18 0 0 18 1617 905 3 MP
XPP
X0 18 18 0 1617 923 3 MP
XPP
X18 0 0 18 1617 923 3 MP
XPP
X0 18 18 0 1617 941 3 MP
XPP
X18 0 0 18 1617 941 3 MP
XPP
X0 17 18 0 1617 959 3 MP
XPP
X18 0 0 17 1617 959 3 MP
XPP
X0 18 18 0 1617 976 3 MP
XPP
X18 0 0 18 1617 976 3 MP
XPP
X0 18 18 0 1617 994 3 MP
XPP
X18 0 0 18 1617 994 3 MP
XPP
X0 18 18 0 1617 1012 3 MP
XPP
X18 0 0 18 1617 1012 3 MP
XPP
X0 18 18 0 1617 1030 3 MP
XPP
X18 0 0 18 1617 1030 3 MP
XPP
X0 18 18 0 1617 1048 3 MP
XPP
X18 0 0 18 1617 1048 3 MP
XPP
X0 17 18 0 1617 1066 3 MP
XPP
X18 0 0 17 1617 1066 3 MP
XPP
X0 18 18 0 1617 1083 3 MP
XPP
X18 0 0 18 1617 1083 3 MP
XPP
X0 18 18 0 1617 1101 3 MP
XPP
X18 0 0 18 1617 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1617 1119 3 MP
XPP
X18 0 0 18 1617 1119 3 MP
XPP
X0 18 18 0 1617 1137 3 MP
XPP
X18 0 0 18 1617 1137 3 MP
XPP
X0 18 18 0 1617 1155 3 MP
XPP
X18 0 0 18 1617 1155 3 MP
XPP
X0 17 18 0 1617 1173 3 MP
XPP
X18 0 0 17 1617 1173 3 MP
XPP
X0 18 18 0 1617 1190 3 MP
XPP
X18 0 0 18 1617 1190 3 MP
XPP
X0 18 18 0 1617 1208 3 MP
XPP
X18 0 0 18 1617 1208 3 MP
XPP
X0 18 18 0 1617 1226 3 MP
XPP
X18 0 0 18 1617 1226 3 MP
XPP
X0 18 18 0 1617 1244 3 MP
XPP
X18 0 0 18 1617 1244 3 MP
XPP
X0 17 18 0 1617 1262 3 MP
XPP
X18 0 0 17 1617 1262 3 MP
XPP
X0 18 18 0 1617 1279 3 MP
XPP
X18 0 0 18 1617 1279 3 MP
XPP
X0 18 18 0 1617 1297 3 MP
XPP
X18 0 0 18 1617 1297 3 MP
XPP
X0 18 18 0 1617 1315 3 MP
XPP
X18 0 0 18 1617 1315 3 MP
XPP
X0 18 18 0 1617 1333 3 MP
XPP
X18 0 0 18 1617 1333 3 MP
XPP
X0 18 18 0 1617 1351 3 MP
XPP
X18 0 0 18 1617 1351 3 MP
XPP
X0 17 18 0 1617 1369 3 MP
XPP
X18 0 0 17 1617 1369 3 MP
XPP
X0 18 18 0 1617 1386 3 MP
XPP
X18 0 0 18 1617 1386 3 MP
XPP
X0 18 18 0 1617 1404 3 MP
XPP
X18 0 0 18 1617 1404 3 MP
XPP
X0 18 18 0 1617 1422 3 MP
XPP
X18 0 0 18 1617 1422 3 MP
XPP
X0 18 18 0 1617 1440 3 MP
XPP
X18 0 0 18 1617 1440 3 MP
XPP
X0 18 18 0 1617 1458 3 MP
XPP
X18 0 0 18 1617 1458 3 MP
XPP
X0 17 18 0 1617 1476 3 MP
XPP
X18 0 0 17 1617 1476 3 MP
XPP
X0 18 18 0 1617 1493 3 MP
XPP
X18 0 0 18 1617 1493 3 MP
XPP
X0 18 18 0 1617 1511 3 MP
XPP
X18 0 0 18 1617 1511 3 MP
XPP
X0 18 18 0 1617 1529 3 MP
XPP
X18 0 0 18 1617 1529 3 MP
XPP
X0 18 18 0 1617 1547 3 MP
XPP
X18 0 0 18 1617 1547 3 MP
XPP
X0 18 18 0 1617 1565 3 MP
XPP
X18 0 0 18 1617 1565 3 MP
XPP
X0 17 18 0 1617 1583 3 MP
XPP
X18 0 0 17 1617 1583 3 MP
XPP
X1 sg
X0 18 18 0 1617 1600 3 MP
XPP
X18 0 0 18 1617 1600 3 MP
XPP
X0 18 18 0 1617 1618 3 MP
XPP
X18 0 0 18 1617 1618 3 MP
XPP
X0 18 18 0 1617 1636 3 MP
XPP
X18 0 0 18 1617 1636 3 MP
XPP
X0 18 18 0 1617 1654 3 MP
XPP
X18 0 0 18 1617 1654 3 MP
XPP
X0 18 18 0 1617 1672 3 MP
XPP
X18 0 0 18 1617 1672 3 MP
XPP
X0 17 18 0 1617 1690 3 MP
XPP
X18 0 0 17 1617 1690 3 MP
XPP
X0 18 18 0 1617 1707 3 MP
XPP
X18 0 0 18 1617 1707 3 MP
XPP
X0 18 18 0 1617 1725 3 MP
XPP
X18 0 0 18 1617 1725 3 MP
XPP
X0 18 18 0 1617 1743 3 MP
XPP
X18 0 0 18 1617 1743 3 MP
XPP
X0 18 18 0 1617 1761 3 MP
XPP
X18 0 0 18 1617 1761 3 MP
XPP
X0 18 18 0 1617 1779 3 MP
XPP
X18 0 0 18 1617 1779 3 MP
XPP
X0 17 18 0 1617 1797 3 MP
XPP
X18 0 0 17 1617 1797 3 MP
XPP
X0 18 18 0 1617 1814 3 MP
XPP
X18 0 0 18 1617 1814 3 MP
XPP
X0 18 18 0 1617 1832 3 MP
XPP
X18 0 0 18 1617 1832 3 MP
XPP
X0 18 18 0 1617 1850 3 MP
XPP
X18 0 0 18 1617 1850 3 MP
XPP
X0 18 18 0 1617 1868 3 MP
XPP
X18 0 0 18 1617 1868 3 MP
XPP
X0 18 18 0 1617 1886 3 MP
XPP
X18 0 0 18 1617 1886 3 MP
XPP
X0 17 18 0 1617 1904 3 MP
XPP
X18 0 0 17 1617 1904 3 MP
XPP
X0 18 18 0 1617 1921 3 MP
XPP
X18 0 0 18 1617 1921 3 MP
XPP
X0 18 18 0 1617 1939 3 MP
XPP
X18 0 0 18 1617 1939 3 MP
XPP
X0 18 18 0 1617 1957 3 MP
XPP
X18 0 0 18 1617 1957 3 MP
XPP
X0 18 18 0 1617 1975 3 MP
XPP
X18 0 0 18 1617 1975 3 MP
XPP
X0 18 18 0 1617 1993 3 MP
XPP
X18 0 0 18 1617 1993 3 MP
XPP
X0 17 18 0 1617 2011 3 MP
XPP
X18 0 0 17 1617 2011 3 MP
XPP
X0 18 18 0 1617 2028 3 MP
XPP
X18 0 0 18 1617 2028 3 MP
XPP
X0 18 18 0 1617 2046 3 MP
XPP
X18 0 0 18 1617 2046 3 MP
XPP
X0 18 18 0 1617 2064 3 MP
XPP
X18 0 0 18 1617 2064 3 MP
XPP
X0 18 18 0 1617 2082 3 MP
XPP
X18 0 0 18 1617 2082 3 MP
XPP
X0 18 18 0 1617 2100 3 MP
XPP
X18 0 0 18 1617 2100 3 MP
XPP
X0 17 18 0 1617 2118 3 MP
XPP
X18 0 0 17 1617 2118 3 MP
XPP
X0 18 18 0 1617 2135 3 MP
XPP
X18 0 0 18 1617 2135 3 MP
XPP
X0 18 18 0 1617 2153 3 MP
XPP
X18 0 0 18 1617 2153 3 MP
XPP
X0 18 18 0 1635 388 3 MP
XPP
X18 0 0 18 1635 388 3 MP
XPP
X0 18 18 0 1635 406 3 MP
XPP
X18 0 0 18 1635 406 3 MP
XPP
X0 17 18 0 1635 424 3 MP
XPP
X18 0 0 17 1635 424 3 MP
XPP
X0 18 18 0 1635 441 3 MP
XPP
X18 0 0 18 1635 441 3 MP
XPP
X0 18 18 0 1635 459 3 MP
XPP
X18 0 0 18 1635 459 3 MP
XPP
X0 18 18 0 1635 477 3 MP
XPP
X18 0 0 18 1635 477 3 MP
XPP
X0 18 18 0 1635 495 3 MP
XPP
X18 0 0 18 1635 495 3 MP
XPP
X0 18 18 0 1635 513 3 MP
XPP
X18 0 0 18 1635 513 3 MP
XPP
X0 17 18 0 1635 531 3 MP
XPP
X18 0 0 17 1635 531 3 MP
XPP
X0 18 18 0 1635 548 3 MP
XPP
X18 0 0 18 1635 548 3 MP
XPP
X0 18 18 0 1635 566 3 MP
XPP
X18 0 0 18 1635 566 3 MP
XPP
X0 18 18 0 1635 584 3 MP
XPP
X18 0 0 18 1635 584 3 MP
XPP
X0 18 18 0 1635 602 3 MP
XPP
X18 0 0 18 1635 602 3 MP
XPP
X0 18 18 0 1635 620 3 MP
XPP
X18 0 0 18 1635 620 3 MP
XPP
X0 17 18 0 1635 638 3 MP
XPP
X18 0 0 17 1635 638 3 MP
XPP
X0 18 18 0 1635 655 3 MP
XPP
X18 0 0 18 1635 655 3 MP
XPP
X0 18 18 0 1635 673 3 MP
XPP
X18 0 0 18 1635 673 3 MP
XPP
X0 18 18 0 1635 691 3 MP
XPP
X18 0 0 18 1635 691 3 MP
XPP
X0 18 18 0 1635 709 3 MP
XPP
X18 0 0 18 1635 709 3 MP
XPP
X0 18 18 0 1635 727 3 MP
XPP
X18 0 0 18 1635 727 3 MP
XPP
X0 17 18 0 1635 745 3 MP
XPP
X18 0 0 17 1635 745 3 MP
XPP
X0 18 18 0 1635 762 3 MP
XPP
X18 0 0 18 1635 762 3 MP
XPP
X0 18 18 0 1635 780 3 MP
XPP
X18 0 0 18 1635 780 3 MP
XPP
X0 18 18 0 1635 798 3 MP
XPP
X18 0 0 18 1635 798 3 MP
XPP
X0 18 18 0 1635 816 3 MP
XPP
X18 0 0 18 1635 816 3 MP
XPP
X0 18 18 0 1635 834 3 MP
XPP
X18 0 0 18 1635 834 3 MP
XPP
X0 17 18 0 1635 852 3 MP
XPP
X18 0 0 17 1635 852 3 MP
XPP
X0 18 18 0 1635 869 3 MP
XPP
X18 0 0 18 1635 869 3 MP
XPP
X0 18 18 0 1635 887 3 MP
XPP
X18 0 0 18 1635 887 3 MP
XPP
X0 18 18 0 1635 905 3 MP
XPP
X18 0 0 18 1635 905 3 MP
XPP
X0 18 18 0 1635 923 3 MP
XPP
X18 0 0 18 1635 923 3 MP
XPP
X0 18 18 0 1635 941 3 MP
XPP
X18 0 0 18 1635 941 3 MP
XPP
X0 17 18 0 1635 959 3 MP
XPP
X18 0 0 17 1635 959 3 MP
XPP
X0 18 18 0 1635 976 3 MP
XPP
X18 0 0 18 1635 976 3 MP
XPP
X0 18 18 0 1635 994 3 MP
XPP
X18 0 0 18 1635 994 3 MP
XPP
X0 18 18 0 1635 1012 3 MP
XPP
X18 0 0 18 1635 1012 3 MP
XPP
X0 18 18 0 1635 1030 3 MP
XPP
X18 0 0 18 1635 1030 3 MP
XPP
X0 18 18 0 1635 1048 3 MP
XPP
X18 0 0 18 1635 1048 3 MP
XPP
X0 17 18 0 1635 1066 3 MP
XPP
X18 0 0 17 1635 1066 3 MP
XPP
X0 18 18 0 1635 1083 3 MP
XPP
X18 0 0 18 1635 1083 3 MP
XPP
X0 18 18 0 1635 1101 3 MP
XPP
X18 0 0 18 1635 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1635 1119 3 MP
XPP
X18 0 0 18 1635 1119 3 MP
XPP
X0 18 18 0 1635 1137 3 MP
XPP
X18 0 0 18 1635 1137 3 MP
XPP
X0 18 18 0 1635 1155 3 MP
XPP
X18 0 0 18 1635 1155 3 MP
XPP
X0 17 18 0 1635 1173 3 MP
XPP
X18 0 0 17 1635 1173 3 MP
XPP
X0 18 18 0 1635 1190 3 MP
XPP
X18 0 0 18 1635 1190 3 MP
XPP
X0 18 18 0 1635 1208 3 MP
XPP
X18 0 0 18 1635 1208 3 MP
XPP
X0 18 18 0 1635 1226 3 MP
XPP
X18 0 0 18 1635 1226 3 MP
XPP
X0 18 18 0 1635 1244 3 MP
XPP
X18 0 0 18 1635 1244 3 MP
XPP
X0 17 18 0 1635 1262 3 MP
XPP
X18 0 0 17 1635 1262 3 MP
XPP
X0 18 18 0 1635 1279 3 MP
XPP
X18 0 0 18 1635 1279 3 MP
XPP
X0 18 18 0 1635 1297 3 MP
XPP
X18 0 0 18 1635 1297 3 MP
XPP
X0 18 18 0 1635 1315 3 MP
XPP
X18 0 0 18 1635 1315 3 MP
XPP
X0 18 18 0 1635 1333 3 MP
XPP
X18 0 0 18 1635 1333 3 MP
XPP
X0 18 18 0 1635 1351 3 MP
XPP
X18 0 0 18 1635 1351 3 MP
XPP
X0 17 18 0 1635 1369 3 MP
XPP
X18 0 0 17 1635 1369 3 MP
XPP
X0 18 18 0 1635 1386 3 MP
XPP
X18 0 0 18 1635 1386 3 MP
XPP
X0 18 18 0 1635 1404 3 MP
XPP
X18 0 0 18 1635 1404 3 MP
XPP
X0 18 18 0 1635 1422 3 MP
XPP
X18 0 0 18 1635 1422 3 MP
XPP
X0 18 18 0 1635 1440 3 MP
XPP
X18 0 0 18 1635 1440 3 MP
XPP
X0 18 18 0 1635 1458 3 MP
XPP
X18 0 0 18 1635 1458 3 MP
XPP
X0 17 18 0 1635 1476 3 MP
XPP
X18 0 0 17 1635 1476 3 MP
XPP
X0 18 18 0 1635 1493 3 MP
XPP
X18 0 0 18 1635 1493 3 MP
XPP
X0 18 18 0 1635 1511 3 MP
XPP
X18 0 0 18 1635 1511 3 MP
XPP
X0 18 18 0 1635 1529 3 MP
XPP
X18 0 0 18 1635 1529 3 MP
XPP
X0 18 18 0 1635 1547 3 MP
XPP
X18 0 0 18 1635 1547 3 MP
XPP
X0 18 18 0 1635 1565 3 MP
XPP
X18 0 0 18 1635 1565 3 MP
XPP
X0 17 18 0 1635 1583 3 MP
XPP
X18 0 0 17 1635 1583 3 MP
XPP
X0 18 18 0 1635 1600 3 MP
XPP
X18 0 0 18 1635 1600 3 MP
XPP
X1 sg
X0 18 18 0 1635 1618 3 MP
XPP
X18 0 0 18 1635 1618 3 MP
XPP
X0 18 18 0 1635 1636 3 MP
XPP
X18 0 0 18 1635 1636 3 MP
XPP
X0 18 18 0 1635 1654 3 MP
XPP
X18 0 0 18 1635 1654 3 MP
XPP
X0 18 18 0 1635 1672 3 MP
XPP
X18 0 0 18 1635 1672 3 MP
XPP
X0 17 18 0 1635 1690 3 MP
XPP
X18 0 0 17 1635 1690 3 MP
XPP
X0 18 18 0 1635 1707 3 MP
XPP
X18 0 0 18 1635 1707 3 MP
XPP
X0 18 18 0 1635 1725 3 MP
XPP
X18 0 0 18 1635 1725 3 MP
XPP
X0 18 18 0 1635 1743 3 MP
XPP
X18 0 0 18 1635 1743 3 MP
XPP
X0 18 18 0 1635 1761 3 MP
XPP
X18 0 0 18 1635 1761 3 MP
XPP
X0 18 18 0 1635 1779 3 MP
XPP
X18 0 0 18 1635 1779 3 MP
XPP
X0 17 18 0 1635 1797 3 MP
XPP
X18 0 0 17 1635 1797 3 MP
XPP
X0 18 18 0 1635 1814 3 MP
XPP
X18 0 0 18 1635 1814 3 MP
XPP
X0 18 18 0 1635 1832 3 MP
XPP
X18 0 0 18 1635 1832 3 MP
XPP
X0 18 18 0 1635 1850 3 MP
XPP
X18 0 0 18 1635 1850 3 MP
XPP
X0 18 18 0 1635 1868 3 MP
XPP
X18 0 0 18 1635 1868 3 MP
XPP
X0 18 18 0 1635 1886 3 MP
XPP
X18 0 0 18 1635 1886 3 MP
XPP
X0 17 18 0 1635 1904 3 MP
XPP
X18 0 0 17 1635 1904 3 MP
XPP
X0 18 18 0 1635 1921 3 MP
XPP
X18 0 0 18 1635 1921 3 MP
XPP
X0 18 18 0 1635 1939 3 MP
XPP
X18 0 0 18 1635 1939 3 MP
XPP
X0 18 18 0 1635 1957 3 MP
XPP
X18 0 0 18 1635 1957 3 MP
XPP
X0 18 18 0 1635 1975 3 MP
XPP
X18 0 0 18 1635 1975 3 MP
XPP
X0 18 18 0 1635 1993 3 MP
XPP
X18 0 0 18 1635 1993 3 MP
XPP
X0 17 18 0 1635 2011 3 MP
XPP
X18 0 0 17 1635 2011 3 MP
XPP
X0 18 18 0 1635 2028 3 MP
XPP
X18 0 0 18 1635 2028 3 MP
XPP
X0 18 18 0 1635 2046 3 MP
XPP
X18 0 0 18 1635 2046 3 MP
XPP
X0 18 18 0 1635 2064 3 MP
XPP
X18 0 0 18 1635 2064 3 MP
XPP
X0 18 18 0 1635 2082 3 MP
XPP
X18 0 0 18 1635 2082 3 MP
XPP
X0 18 18 0 1635 2100 3 MP
XPP
X18 0 0 18 1635 2100 3 MP
XPP
X0 17 18 0 1635 2118 3 MP
XPP
X18 0 0 17 1635 2118 3 MP
XPP
X0 18 18 0 1635 2135 3 MP
XPP
X18 0 0 18 1635 2135 3 MP
XPP
X0 18 18 0 1635 2153 3 MP
XPP
X18 0 0 18 1635 2153 3 MP
XPP
X0 18 18 0 1653 388 3 MP
XPP
X18 0 0 18 1653 388 3 MP
XPP
X0 18 18 0 1653 406 3 MP
XPP
X18 0 0 18 1653 406 3 MP
XPP
X0 17 18 0 1653 424 3 MP
XPP
X18 0 0 17 1653 424 3 MP
XPP
X0 18 18 0 1653 441 3 MP
XPP
X18 0 0 18 1653 441 3 MP
XPP
X0 18 18 0 1653 459 3 MP
XPP
X18 0 0 18 1653 459 3 MP
XPP
X0 18 18 0 1653 477 3 MP
XPP
X18 0 0 18 1653 477 3 MP
XPP
X0 18 18 0 1653 495 3 MP
XPP
X18 0 0 18 1653 495 3 MP
XPP
X0 18 18 0 1653 513 3 MP
XPP
X18 0 0 18 1653 513 3 MP
XPP
X0 17 18 0 1653 531 3 MP
XPP
X18 0 0 17 1653 531 3 MP
XPP
X0 18 18 0 1653 548 3 MP
XPP
X18 0 0 18 1653 548 3 MP
XPP
X0 18 18 0 1653 566 3 MP
XPP
X18 0 0 18 1653 566 3 MP
XPP
X0 18 18 0 1653 584 3 MP
XPP
X18 0 0 18 1653 584 3 MP
XPP
X0 18 18 0 1653 602 3 MP
XPP
X18 0 0 18 1653 602 3 MP
XPP
X0 18 18 0 1653 620 3 MP
XPP
X18 0 0 18 1653 620 3 MP
XPP
X0 17 18 0 1653 638 3 MP
XPP
X18 0 0 17 1653 638 3 MP
XPP
X0 18 18 0 1653 655 3 MP
XPP
X18 0 0 18 1653 655 3 MP
XPP
X0 18 18 0 1653 673 3 MP
XPP
X18 0 0 18 1653 673 3 MP
XPP
X0 18 18 0 1653 691 3 MP
XPP
X18 0 0 18 1653 691 3 MP
XPP
X0 18 18 0 1653 709 3 MP
XPP
X18 0 0 18 1653 709 3 MP
XPP
X0 18 18 0 1653 727 3 MP
XPP
X18 0 0 18 1653 727 3 MP
XPP
X0 17 18 0 1653 745 3 MP
XPP
X18 0 0 17 1653 745 3 MP
XPP
X0 18 18 0 1653 762 3 MP
XPP
X18 0 0 18 1653 762 3 MP
XPP
X0 18 18 0 1653 780 3 MP
XPP
X18 0 0 18 1653 780 3 MP
XPP
X0 18 18 0 1653 798 3 MP
XPP
X18 0 0 18 1653 798 3 MP
XPP
X0 18 18 0 1653 816 3 MP
XPP
X18 0 0 18 1653 816 3 MP
XPP
X0 18 18 0 1653 834 3 MP
XPP
X18 0 0 18 1653 834 3 MP
XPP
X0 17 18 0 1653 852 3 MP
XPP
X18 0 0 17 1653 852 3 MP
XPP
X0 18 18 0 1653 869 3 MP
XPP
X18 0 0 18 1653 869 3 MP
XPP
X0 18 18 0 1653 887 3 MP
XPP
X18 0 0 18 1653 887 3 MP
XPP
X0 18 18 0 1653 905 3 MP
XPP
X18 0 0 18 1653 905 3 MP
XPP
X0 18 18 0 1653 923 3 MP
XPP
X18 0 0 18 1653 923 3 MP
XPP
X0 18 18 0 1653 941 3 MP
XPP
X18 0 0 18 1653 941 3 MP
XPP
X0 17 18 0 1653 959 3 MP
XPP
X18 0 0 17 1653 959 3 MP
XPP
X0 18 18 0 1653 976 3 MP
XPP
X18 0 0 18 1653 976 3 MP
XPP
X0 18 18 0 1653 994 3 MP
XPP
X18 0 0 18 1653 994 3 MP
XPP
X0 18 18 0 1653 1012 3 MP
XPP
X18 0 0 18 1653 1012 3 MP
XPP
X0 18 18 0 1653 1030 3 MP
XPP
X18 0 0 18 1653 1030 3 MP
XPP
X0 18 18 0 1653 1048 3 MP
XPP
X18 0 0 18 1653 1048 3 MP
XPP
X0 17 18 0 1653 1066 3 MP
XPP
X18 0 0 17 1653 1066 3 MP
XPP
X0 18 18 0 1653 1083 3 MP
XPP
X18 0 0 18 1653 1083 3 MP
XPP
X0 18 18 0 1653 1101 3 MP
XPP
X18 0 0 18 1653 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1653 1119 3 MP
XPP
X18 0 0 18 1653 1119 3 MP
XPP
X0 18 18 0 1653 1137 3 MP
XPP
X18 0 0 18 1653 1137 3 MP
XPP
X0 18 18 0 1653 1155 3 MP
XPP
X18 0 0 18 1653 1155 3 MP
XPP
X0 17 18 0 1653 1173 3 MP
XPP
X18 0 0 17 1653 1173 3 MP
XPP
X0 18 18 0 1653 1190 3 MP
XPP
X18 0 0 18 1653 1190 3 MP
XPP
X0 18 18 0 1653 1208 3 MP
XPP
X18 0 0 18 1653 1208 3 MP
XPP
X0 18 18 0 1653 1226 3 MP
XPP
X18 0 0 18 1653 1226 3 MP
XPP
X0 18 18 0 1653 1244 3 MP
XPP
X18 0 0 18 1653 1244 3 MP
XPP
X0 17 18 0 1653 1262 3 MP
XPP
X18 0 0 17 1653 1262 3 MP
XPP
X0 18 18 0 1653 1279 3 MP
XPP
X18 0 0 18 1653 1279 3 MP
XPP
X0 18 18 0 1653 1297 3 MP
XPP
X18 0 0 18 1653 1297 3 MP
XPP
X0 18 18 0 1653 1315 3 MP
XPP
X18 0 0 18 1653 1315 3 MP
XPP
X0 18 18 0 1653 1333 3 MP
XPP
X18 0 0 18 1653 1333 3 MP
XPP
X0 18 18 0 1653 1351 3 MP
XPP
X18 0 0 18 1653 1351 3 MP
XPP
X0 17 18 0 1653 1369 3 MP
XPP
X18 0 0 17 1653 1369 3 MP
XPP
X0 18 18 0 1653 1386 3 MP
XPP
X18 0 0 18 1653 1386 3 MP
XPP
X0 18 18 0 1653 1404 3 MP
XPP
X18 0 0 18 1653 1404 3 MP
XPP
X0 18 18 0 1653 1422 3 MP
XPP
X18 0 0 18 1653 1422 3 MP
XPP
X0 18 18 0 1653 1440 3 MP
XPP
X18 0 0 18 1653 1440 3 MP
XPP
X0 18 18 0 1653 1458 3 MP
XPP
X18 0 0 18 1653 1458 3 MP
XPP
X0 17 18 0 1653 1476 3 MP
XPP
X18 0 0 17 1653 1476 3 MP
XPP
X0 18 18 0 1653 1493 3 MP
XPP
X18 0 0 18 1653 1493 3 MP
XPP
X0 18 18 0 1653 1511 3 MP
XPP
X18 0 0 18 1653 1511 3 MP
XPP
X0 18 18 0 1653 1529 3 MP
XPP
X18 0 0 18 1653 1529 3 MP
XPP
X0 18 18 0 1653 1547 3 MP
XPP
X18 0 0 18 1653 1547 3 MP
XPP
X0 18 18 0 1653 1565 3 MP
XPP
X18 0 0 18 1653 1565 3 MP
XPP
X0 17 18 0 1653 1583 3 MP
XPP
X18 0 0 17 1653 1583 3 MP
XPP
X0 18 18 0 1653 1600 3 MP
XPP
X18 0 0 18 1653 1600 3 MP
XPP
X0 18 18 0 1653 1618 3 MP
XPP
X18 0 0 18 1653 1618 3 MP
XPP
X1 sg
X0 18 18 0 1653 1636 3 MP
XPP
X18 0 0 18 1653 1636 3 MP
XPP
X0 18 18 0 1653 1654 3 MP
XPP
X18 0 0 18 1653 1654 3 MP
XPP
X0 18 18 0 1653 1672 3 MP
XPP
X18 0 0 18 1653 1672 3 MP
XPP
X0 17 18 0 1653 1690 3 MP
XPP
X18 0 0 17 1653 1690 3 MP
XPP
X0 18 18 0 1653 1707 3 MP
XPP
X18 0 0 18 1653 1707 3 MP
XPP
X0 18 18 0 1653 1725 3 MP
XPP
X18 0 0 18 1653 1725 3 MP
XPP
X0 18 18 0 1653 1743 3 MP
XPP
X18 0 0 18 1653 1743 3 MP
XPP
X0 18 18 0 1653 1761 3 MP
XPP
X18 0 0 18 1653 1761 3 MP
XPP
X0 18 18 0 1653 1779 3 MP
XPP
X18 0 0 18 1653 1779 3 MP
XPP
X0 17 18 0 1653 1797 3 MP
XPP
X18 0 0 17 1653 1797 3 MP
XPP
X0 18 18 0 1653 1814 3 MP
XPP
X18 0 0 18 1653 1814 3 MP
XPP
X0 18 18 0 1653 1832 3 MP
XPP
X18 0 0 18 1653 1832 3 MP
XPP
X0 18 18 0 1653 1850 3 MP
XPP
X18 0 0 18 1653 1850 3 MP
XPP
X0 18 18 0 1653 1868 3 MP
XPP
X18 0 0 18 1653 1868 3 MP
XPP
X0 18 18 0 1653 1886 3 MP
XPP
X18 0 0 18 1653 1886 3 MP
XPP
X0 17 18 0 1653 1904 3 MP
XPP
X18 0 0 17 1653 1904 3 MP
XPP
X0 18 18 0 1653 1921 3 MP
XPP
X18 0 0 18 1653 1921 3 MP
XPP
X0 18 18 0 1653 1939 3 MP
XPP
X18 0 0 18 1653 1939 3 MP
XPP
X0 18 18 0 1653 1957 3 MP
XPP
X18 0 0 18 1653 1957 3 MP
XPP
X0 18 18 0 1653 1975 3 MP
XPP
X18 0 0 18 1653 1975 3 MP
XPP
X0 18 18 0 1653 1993 3 MP
XPP
X18 0 0 18 1653 1993 3 MP
XPP
X0 17 18 0 1653 2011 3 MP
XPP
X18 0 0 17 1653 2011 3 MP
XPP
X0 18 18 0 1653 2028 3 MP
XPP
X18 0 0 18 1653 2028 3 MP
XPP
X0 18 18 0 1653 2046 3 MP
XPP
X18 0 0 18 1653 2046 3 MP
XPP
X0 18 18 0 1653 2064 3 MP
XPP
X18 0 0 18 1653 2064 3 MP
XPP
X0 18 18 0 1653 2082 3 MP
XPP
X18 0 0 18 1653 2082 3 MP
XPP
X0 18 18 0 1653 2100 3 MP
XPP
X18 0 0 18 1653 2100 3 MP
XPP
X0 17 18 0 1653 2118 3 MP
XPP
X18 0 0 17 1653 2118 3 MP
XPP
X0 18 18 0 1653 2135 3 MP
XPP
X18 0 0 18 1653 2135 3 MP
XPP
X0 18 18 0 1653 2153 3 MP
XPP
X18 0 0 18 1653 2153 3 MP
XPP
X0 18 18 0 1671 388 3 MP
XPP
X18 0 0 18 1671 388 3 MP
XPP
X0 18 18 0 1671 406 3 MP
XPP
X18 0 0 18 1671 406 3 MP
XPP
X0 17 18 0 1671 424 3 MP
XPP
X18 0 0 17 1671 424 3 MP
XPP
X0 18 18 0 1671 441 3 MP
XPP
X18 0 0 18 1671 441 3 MP
XPP
X0 18 18 0 1671 459 3 MP
XPP
X18 0 0 18 1671 459 3 MP
XPP
X0 18 18 0 1671 477 3 MP
XPP
X18 0 0 18 1671 477 3 MP
XPP
X0 18 18 0 1671 495 3 MP
XPP
X18 0 0 18 1671 495 3 MP
XPP
X0 18 18 0 1671 513 3 MP
XPP
X18 0 0 18 1671 513 3 MP
XPP
X0 17 18 0 1671 531 3 MP
XPP
X18 0 0 17 1671 531 3 MP
XPP
X0 18 18 0 1671 548 3 MP
XPP
X18 0 0 18 1671 548 3 MP
XPP
X0 18 18 0 1671 566 3 MP
XPP
X18 0 0 18 1671 566 3 MP
XPP
X0 18 18 0 1671 584 3 MP
XPP
X18 0 0 18 1671 584 3 MP
XPP
X0 18 18 0 1671 602 3 MP
XPP
X18 0 0 18 1671 602 3 MP
XPP
X0 18 18 0 1671 620 3 MP
XPP
X18 0 0 18 1671 620 3 MP
XPP
X0 17 18 0 1671 638 3 MP
XPP
X18 0 0 17 1671 638 3 MP
XPP
X0 18 18 0 1671 655 3 MP
XPP
X18 0 0 18 1671 655 3 MP
XPP
X0 18 18 0 1671 673 3 MP
XPP
X18 0 0 18 1671 673 3 MP
XPP
X0 18 18 0 1671 691 3 MP
XPP
X18 0 0 18 1671 691 3 MP
XPP
X0 18 18 0 1671 709 3 MP
XPP
X18 0 0 18 1671 709 3 MP
XPP
X0 18 18 0 1671 727 3 MP
XPP
X18 0 0 18 1671 727 3 MP
XPP
X0 17 18 0 1671 745 3 MP
XPP
X18 0 0 17 1671 745 3 MP
XPP
X0 18 18 0 1671 762 3 MP
XPP
X18 0 0 18 1671 762 3 MP
XPP
X0 18 18 0 1671 780 3 MP
XPP
X18 0 0 18 1671 780 3 MP
XPP
X0 18 18 0 1671 798 3 MP
XPP
X18 0 0 18 1671 798 3 MP
XPP
X0 18 18 0 1671 816 3 MP
XPP
X18 0 0 18 1671 816 3 MP
XPP
X0 18 18 0 1671 834 3 MP
XPP
X18 0 0 18 1671 834 3 MP
XPP
X0 17 18 0 1671 852 3 MP
XPP
X18 0 0 17 1671 852 3 MP
XPP
X0 18 18 0 1671 869 3 MP
XPP
X18 0 0 18 1671 869 3 MP
XPP
X0 18 18 0 1671 887 3 MP
XPP
X18 0 0 18 1671 887 3 MP
XPP
X0 18 18 0 1671 905 3 MP
XPP
X18 0 0 18 1671 905 3 MP
XPP
X0 18 18 0 1671 923 3 MP
XPP
X18 0 0 18 1671 923 3 MP
XPP
X0 18 18 0 1671 941 3 MP
XPP
X18 0 0 18 1671 941 3 MP
XPP
X0 17 18 0 1671 959 3 MP
XPP
X18 0 0 17 1671 959 3 MP
XPP
X0 18 18 0 1671 976 3 MP
XPP
X18 0 0 18 1671 976 3 MP
XPP
X0 18 18 0 1671 994 3 MP
XPP
X18 0 0 18 1671 994 3 MP
XPP
X0 18 18 0 1671 1012 3 MP
XPP
X18 0 0 18 1671 1012 3 MP
XPP
X0 18 18 0 1671 1030 3 MP
XPP
X18 0 0 18 1671 1030 3 MP
XPP
X0 18 18 0 1671 1048 3 MP
XPP
X18 0 0 18 1671 1048 3 MP
XPP
X0 17 18 0 1671 1066 3 MP
XPP
X18 0 0 17 1671 1066 3 MP
XPP
X0 18 18 0 1671 1083 3 MP
XPP
X18 0 0 18 1671 1083 3 MP
XPP
X0 18 18 0 1671 1101 3 MP
XPP
X18 0 0 18 1671 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1671 1119 3 MP
XPP
X18 0 0 18 1671 1119 3 MP
XPP
X0 18 18 0 1671 1137 3 MP
XPP
X18 0 0 18 1671 1137 3 MP
XPP
X0 18 18 0 1671 1155 3 MP
XPP
X18 0 0 18 1671 1155 3 MP
XPP
X0 17 18 0 1671 1173 3 MP
XPP
X18 0 0 17 1671 1173 3 MP
XPP
X0 18 18 0 1671 1190 3 MP
XPP
X18 0 0 18 1671 1190 3 MP
XPP
X0 18 18 0 1671 1208 3 MP
XPP
X18 0 0 18 1671 1208 3 MP
XPP
X0 18 18 0 1671 1226 3 MP
XPP
X18 0 0 18 1671 1226 3 MP
XPP
X0 18 18 0 1671 1244 3 MP
XPP
X18 0 0 18 1671 1244 3 MP
XPP
X0 17 18 0 1671 1262 3 MP
XPP
X18 0 0 17 1671 1262 3 MP
XPP
X0 18 18 0 1671 1279 3 MP
XPP
X18 0 0 18 1671 1279 3 MP
XPP
X0 18 18 0 1671 1297 3 MP
XPP
X18 0 0 18 1671 1297 3 MP
XPP
X0 18 18 0 1671 1315 3 MP
XPP
X18 0 0 18 1671 1315 3 MP
XPP
X0 18 18 0 1671 1333 3 MP
XPP
X18 0 0 18 1671 1333 3 MP
XPP
X0 18 18 0 1671 1351 3 MP
XPP
X18 0 0 18 1671 1351 3 MP
XPP
X0 17 18 0 1671 1369 3 MP
XPP
X18 0 0 17 1671 1369 3 MP
XPP
X0 18 18 0 1671 1386 3 MP
XPP
X18 0 0 18 1671 1386 3 MP
XPP
X0 18 18 0 1671 1404 3 MP
XPP
X18 0 0 18 1671 1404 3 MP
XPP
X0 18 18 0 1671 1422 3 MP
XPP
X18 0 0 18 1671 1422 3 MP
XPP
X0 18 18 0 1671 1440 3 MP
XPP
X18 0 0 18 1671 1440 3 MP
XPP
X0 18 18 0 1671 1458 3 MP
XPP
X18 0 0 18 1671 1458 3 MP
XPP
X0 17 18 0 1671 1476 3 MP
XPP
X18 0 0 17 1671 1476 3 MP
XPP
X0 18 18 0 1671 1493 3 MP
XPP
X18 0 0 18 1671 1493 3 MP
XPP
X0 18 18 0 1671 1511 3 MP
XPP
X18 0 0 18 1671 1511 3 MP
XPP
X0 18 18 0 1671 1529 3 MP
XPP
X18 0 0 18 1671 1529 3 MP
XPP
X0 18 18 0 1671 1547 3 MP
XPP
X18 0 0 18 1671 1547 3 MP
XPP
X0 18 18 0 1671 1565 3 MP
XPP
X18 0 0 18 1671 1565 3 MP
XPP
X0 17 18 0 1671 1583 3 MP
XPP
X18 0 0 17 1671 1583 3 MP
XPP
X0 18 18 0 1671 1600 3 MP
XPP
X18 0 0 18 1671 1600 3 MP
XPP
X0 18 18 0 1671 1618 3 MP
XPP
X18 0 0 18 1671 1618 3 MP
XPP
X0 18 18 0 1671 1636 3 MP
XPP
X18 0 0 18 1671 1636 3 MP
XPP
X1 sg
X0 18 18 0 1671 1654 3 MP
XPP
X18 0 0 18 1671 1654 3 MP
XPP
X0 18 18 0 1671 1672 3 MP
XPP
X18 0 0 18 1671 1672 3 MP
XPP
X0 17 18 0 1671 1690 3 MP
XPP
X18 0 0 17 1671 1690 3 MP
XPP
X0 18 18 0 1671 1707 3 MP
XPP
X18 0 0 18 1671 1707 3 MP
XPP
X0 18 18 0 1671 1725 3 MP
XPP
X18 0 0 18 1671 1725 3 MP
XPP
X0 18 18 0 1671 1743 3 MP
XPP
X18 0 0 18 1671 1743 3 MP
XPP
X0 18 18 0 1671 1761 3 MP
XPP
X18 0 0 18 1671 1761 3 MP
XPP
X0 18 18 0 1671 1779 3 MP
XPP
X18 0 0 18 1671 1779 3 MP
XPP
X0 17 18 0 1671 1797 3 MP
XPP
X18 0 0 17 1671 1797 3 MP
XPP
X0 18 18 0 1671 1814 3 MP
XPP
X18 0 0 18 1671 1814 3 MP
XPP
X0 18 18 0 1671 1832 3 MP
XPP
X18 0 0 18 1671 1832 3 MP
XPP
X0 18 18 0 1671 1850 3 MP
XPP
X18 0 0 18 1671 1850 3 MP
XPP
X0 18 18 0 1671 1868 3 MP
XPP
X18 0 0 18 1671 1868 3 MP
XPP
X0 18 18 0 1671 1886 3 MP
XPP
X18 0 0 18 1671 1886 3 MP
XPP
X0 17 18 0 1671 1904 3 MP
XPP
X18 0 0 17 1671 1904 3 MP
XPP
X0 18 18 0 1671 1921 3 MP
XPP
X18 0 0 18 1671 1921 3 MP
XPP
X0 18 18 0 1671 1939 3 MP
XPP
X18 0 0 18 1671 1939 3 MP
XPP
X0 18 18 0 1671 1957 3 MP
XPP
X18 0 0 18 1671 1957 3 MP
XPP
X0 18 18 0 1671 1975 3 MP
XPP
X18 0 0 18 1671 1975 3 MP
XPP
X0 18 18 0 1671 1993 3 MP
XPP
X18 0 0 18 1671 1993 3 MP
XPP
X0 17 18 0 1671 2011 3 MP
XPP
X18 0 0 17 1671 2011 3 MP
XPP
X0 18 18 0 1671 2028 3 MP
XPP
X18 0 0 18 1671 2028 3 MP
XPP
X0 18 18 0 1671 2046 3 MP
XPP
X18 0 0 18 1671 2046 3 MP
XPP
X0 18 18 0 1671 2064 3 MP
XPP
X18 0 0 18 1671 2064 3 MP
XPP
X0 18 18 0 1671 2082 3 MP
XPP
X18 0 0 18 1671 2082 3 MP
XPP
X0 18 18 0 1671 2100 3 MP
XPP
X18 0 0 18 1671 2100 3 MP
XPP
X0 17 18 0 1671 2118 3 MP
XPP
X18 0 0 17 1671 2118 3 MP
XPP
X0 18 18 0 1671 2135 3 MP
XPP
X18 0 0 18 1671 2135 3 MP
XPP
X0 18 18 0 1671 2153 3 MP
XPP
X18 0 0 18 1671 2153 3 MP
XPP
X0 18 18 0 1689 388 3 MP
XPP
X18 0 0 18 1689 388 3 MP
XPP
X0 18 18 0 1689 406 3 MP
XPP
X18 0 0 18 1689 406 3 MP
XPP
X0 17 18 0 1689 424 3 MP
XPP
X18 0 0 17 1689 424 3 MP
XPP
X0 18 18 0 1689 441 3 MP
XPP
X18 0 0 18 1689 441 3 MP
XPP
X0 18 18 0 1689 459 3 MP
XPP
X18 0 0 18 1689 459 3 MP
XPP
X0 18 18 0 1689 477 3 MP
XPP
X18 0 0 18 1689 477 3 MP
XPP
X0 18 18 0 1689 495 3 MP
XPP
X18 0 0 18 1689 495 3 MP
XPP
X0 18 18 0 1689 513 3 MP
XPP
X18 0 0 18 1689 513 3 MP
XPP
X0 17 18 0 1689 531 3 MP
XPP
X18 0 0 17 1689 531 3 MP
XPP
X0 18 18 0 1689 548 3 MP
XPP
X18 0 0 18 1689 548 3 MP
XPP
X0 18 18 0 1689 566 3 MP
XPP
X18 0 0 18 1689 566 3 MP
XPP
X0 18 18 0 1689 584 3 MP
XPP
X18 0 0 18 1689 584 3 MP
XPP
X0 18 18 0 1689 602 3 MP
XPP
X18 0 0 18 1689 602 3 MP
XPP
X0 18 18 0 1689 620 3 MP
XPP
X18 0 0 18 1689 620 3 MP
XPP
X0 17 18 0 1689 638 3 MP
XPP
X18 0 0 17 1689 638 3 MP
XPP
X0 18 18 0 1689 655 3 MP
XPP
X18 0 0 18 1689 655 3 MP
XPP
X0 18 18 0 1689 673 3 MP
XPP
X18 0 0 18 1689 673 3 MP
XPP
X0 18 18 0 1689 691 3 MP
XPP
X18 0 0 18 1689 691 3 MP
XPP
X0 18 18 0 1689 709 3 MP
XPP
X18 0 0 18 1689 709 3 MP
XPP
X0 18 18 0 1689 727 3 MP
XPP
X18 0 0 18 1689 727 3 MP
XPP
X0 17 18 0 1689 745 3 MP
XPP
X18 0 0 17 1689 745 3 MP
XPP
X0 18 18 0 1689 762 3 MP
XPP
X18 0 0 18 1689 762 3 MP
XPP
X0 18 18 0 1689 780 3 MP
XPP
X18 0 0 18 1689 780 3 MP
XPP
X0 18 18 0 1689 798 3 MP
XPP
X18 0 0 18 1689 798 3 MP
XPP
X0 18 18 0 1689 816 3 MP
XPP
X18 0 0 18 1689 816 3 MP
XPP
X0 18 18 0 1689 834 3 MP
XPP
X18 0 0 18 1689 834 3 MP
XPP
X0 17 18 0 1689 852 3 MP
XPP
X18 0 0 17 1689 852 3 MP
XPP
X0 18 18 0 1689 869 3 MP
XPP
X18 0 0 18 1689 869 3 MP
XPP
X0 18 18 0 1689 887 3 MP
XPP
X18 0 0 18 1689 887 3 MP
XPP
X0 18 18 0 1689 905 3 MP
XPP
X18 0 0 18 1689 905 3 MP
XPP
X0 18 18 0 1689 923 3 MP
XPP
X18 0 0 18 1689 923 3 MP
XPP
X0 18 18 0 1689 941 3 MP
XPP
X18 0 0 18 1689 941 3 MP
XPP
X0 17 18 0 1689 959 3 MP
XPP
X18 0 0 17 1689 959 3 MP
XPP
X0 18 18 0 1689 976 3 MP
XPP
X18 0 0 18 1689 976 3 MP
XPP
X0 18 18 0 1689 994 3 MP
XPP
X18 0 0 18 1689 994 3 MP
XPP
X0 18 18 0 1689 1012 3 MP
XPP
X18 0 0 18 1689 1012 3 MP
XPP
X0 18 18 0 1689 1030 3 MP
XPP
X18 0 0 18 1689 1030 3 MP
XPP
X0 18 18 0 1689 1048 3 MP
XPP
X18 0 0 18 1689 1048 3 MP
XPP
X0 17 18 0 1689 1066 3 MP
XPP
X18 0 0 17 1689 1066 3 MP
XPP
X0 18 18 0 1689 1083 3 MP
XPP
X18 0 0 18 1689 1083 3 MP
XPP
X0 18 18 0 1689 1101 3 MP
XPP
X18 0 0 18 1689 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1689 1119 3 MP
XPP
X18 0 0 18 1689 1119 3 MP
XPP
X0 18 18 0 1689 1137 3 MP
XPP
X18 0 0 18 1689 1137 3 MP
XPP
X0 18 18 0 1689 1155 3 MP
XPP
X18 0 0 18 1689 1155 3 MP
XPP
X0 17 18 0 1689 1173 3 MP
XPP
X18 0 0 17 1689 1173 3 MP
XPP
X0 18 18 0 1689 1190 3 MP
XPP
X18 0 0 18 1689 1190 3 MP
XPP
X0 18 18 0 1689 1208 3 MP
XPP
X18 0 0 18 1689 1208 3 MP
XPP
X0 18 18 0 1689 1226 3 MP
XPP
X18 0 0 18 1689 1226 3 MP
XPP
X0 18 18 0 1689 1244 3 MP
XPP
X18 0 0 18 1689 1244 3 MP
XPP
X0 17 18 0 1689 1262 3 MP
XPP
X18 0 0 17 1689 1262 3 MP
XPP
X0 18 18 0 1689 1279 3 MP
XPP
X18 0 0 18 1689 1279 3 MP
XPP
X0 18 18 0 1689 1297 3 MP
XPP
X18 0 0 18 1689 1297 3 MP
XPP
X0 18 18 0 1689 1315 3 MP
XPP
X18 0 0 18 1689 1315 3 MP
XPP
X0 18 18 0 1689 1333 3 MP
XPP
X18 0 0 18 1689 1333 3 MP
XPP
X0 18 18 0 1689 1351 3 MP
XPP
X18 0 0 18 1689 1351 3 MP
XPP
X0 17 18 0 1689 1369 3 MP
XPP
X18 0 0 17 1689 1369 3 MP
XPP
X0 18 18 0 1689 1386 3 MP
XPP
X18 0 0 18 1689 1386 3 MP
XPP
X0 18 18 0 1689 1404 3 MP
XPP
X18 0 0 18 1689 1404 3 MP
XPP
X0 18 18 0 1689 1422 3 MP
XPP
X18 0 0 18 1689 1422 3 MP
XPP
X0 18 18 0 1689 1440 3 MP
XPP
X18 0 0 18 1689 1440 3 MP
XPP
X0 18 18 0 1689 1458 3 MP
XPP
X18 0 0 18 1689 1458 3 MP
XPP
X0 17 18 0 1689 1476 3 MP
XPP
X18 0 0 17 1689 1476 3 MP
XPP
X0 18 18 0 1689 1493 3 MP
XPP
X18 0 0 18 1689 1493 3 MP
XPP
X0 18 18 0 1689 1511 3 MP
XPP
X18 0 0 18 1689 1511 3 MP
XPP
X0 18 18 0 1689 1529 3 MP
XPP
X18 0 0 18 1689 1529 3 MP
XPP
X0 18 18 0 1689 1547 3 MP
XPP
X18 0 0 18 1689 1547 3 MP
XPP
X0 18 18 0 1689 1565 3 MP
XPP
X18 0 0 18 1689 1565 3 MP
XPP
X0 17 18 0 1689 1583 3 MP
XPP
X18 0 0 17 1689 1583 3 MP
XPP
X0 18 18 0 1689 1600 3 MP
XPP
X18 0 0 18 1689 1600 3 MP
XPP
X0 18 18 0 1689 1618 3 MP
XPP
X18 0 0 18 1689 1618 3 MP
XPP
X0 18 18 0 1689 1636 3 MP
XPP
X18 0 0 18 1689 1636 3 MP
XPP
X0 18 18 0 1689 1654 3 MP
XPP
X18 0 0 18 1689 1654 3 MP
XPP
X1 sg
X0 18 18 0 1689 1672 3 MP
XPP
X18 0 0 18 1689 1672 3 MP
XPP
X0 17 18 0 1689 1690 3 MP
XPP
X18 0 0 17 1689 1690 3 MP
XPP
X0 18 18 0 1689 1707 3 MP
XPP
X18 0 0 18 1689 1707 3 MP
XPP
X0 18 18 0 1689 1725 3 MP
XPP
X18 0 0 18 1689 1725 3 MP
XPP
X0 18 18 0 1689 1743 3 MP
XPP
X18 0 0 18 1689 1743 3 MP
XPP
X0 18 18 0 1689 1761 3 MP
XPP
X18 0 0 18 1689 1761 3 MP
XPP
X0 18 18 0 1689 1779 3 MP
XPP
X18 0 0 18 1689 1779 3 MP
XPP
X0 17 18 0 1689 1797 3 MP
XPP
X18 0 0 17 1689 1797 3 MP
XPP
X0 18 18 0 1689 1814 3 MP
XPP
X18 0 0 18 1689 1814 3 MP
XPP
X0 18 18 0 1689 1832 3 MP
XPP
X18 0 0 18 1689 1832 3 MP
XPP
X0 18 18 0 1689 1850 3 MP
XPP
X18 0 0 18 1689 1850 3 MP
XPP
X0 18 18 0 1689 1868 3 MP
XPP
X18 0 0 18 1689 1868 3 MP
XPP
X0 18 18 0 1689 1886 3 MP
XPP
X18 0 0 18 1689 1886 3 MP
XPP
X0 17 18 0 1689 1904 3 MP
XPP
X18 0 0 17 1689 1904 3 MP
XPP
X0 18 18 0 1689 1921 3 MP
XPP
X18 0 0 18 1689 1921 3 MP
XPP
X0 18 18 0 1689 1939 3 MP
XPP
X18 0 0 18 1689 1939 3 MP
XPP
X0 18 18 0 1689 1957 3 MP
XPP
X18 0 0 18 1689 1957 3 MP
XPP
X0 18 18 0 1689 1975 3 MP
XPP
X18 0 0 18 1689 1975 3 MP
XPP
X0 18 18 0 1689 1993 3 MP
XPP
X18 0 0 18 1689 1993 3 MP
XPP
X0 17 18 0 1689 2011 3 MP
XPP
X18 0 0 17 1689 2011 3 MP
XPP
X0 18 18 0 1689 2028 3 MP
XPP
X18 0 0 18 1689 2028 3 MP
XPP
X0 18 18 0 1689 2046 3 MP
XPP
X18 0 0 18 1689 2046 3 MP
XPP
X0 18 18 0 1689 2064 3 MP
XPP
X18 0 0 18 1689 2064 3 MP
XPP
X0 18 18 0 1689 2082 3 MP
XPP
X18 0 0 18 1689 2082 3 MP
XPP
X0 18 18 0 1689 2100 3 MP
XPP
X18 0 0 18 1689 2100 3 MP
XPP
X0 17 18 0 1689 2118 3 MP
XPP
X18 0 0 17 1689 2118 3 MP
XPP
X0 18 18 0 1689 2135 3 MP
XPP
X18 0 0 18 1689 2135 3 MP
XPP
X0 18 18 0 1689 2153 3 MP
XPP
X18 0 0 18 1689 2153 3 MP
XPP
X0 18 17 0 1707 388 3 MP
XPP
X17 0 0 18 1707 388 3 MP
XPP
X0 18 17 0 1707 406 3 MP
XPP
X17 0 0 18 1707 406 3 MP
XPP
X0 17 17 0 1707 424 3 MP
XPP
X17 0 0 17 1707 424 3 MP
XPP
X0 18 17 0 1707 441 3 MP
XPP
X17 0 0 18 1707 441 3 MP
XPP
X0 18 17 0 1707 459 3 MP
XPP
X17 0 0 18 1707 459 3 MP
XPP
X0 18 17 0 1707 477 3 MP
XPP
X17 0 0 18 1707 477 3 MP
XPP
X0 18 17 0 1707 495 3 MP
XPP
X17 0 0 18 1707 495 3 MP
XPP
X0 18 17 0 1707 513 3 MP
XPP
X17 0 0 18 1707 513 3 MP
XPP
X0 17 17 0 1707 531 3 MP
XPP
X17 0 0 17 1707 531 3 MP
XPP
X0 18 17 0 1707 548 3 MP
XPP
X17 0 0 18 1707 548 3 MP
XPP
X0 18 17 0 1707 566 3 MP
XPP
X17 0 0 18 1707 566 3 MP
XPP
X0 18 17 0 1707 584 3 MP
XPP
X17 0 0 18 1707 584 3 MP
XPP
X0 18 17 0 1707 602 3 MP
XPP
X17 0 0 18 1707 602 3 MP
XPP
X0 18 17 0 1707 620 3 MP
XPP
X17 0 0 18 1707 620 3 MP
XPP
X0 17 17 0 1707 638 3 MP
XPP
X17 0 0 17 1707 638 3 MP
XPP
X0 18 17 0 1707 655 3 MP
XPP
X17 0 0 18 1707 655 3 MP
XPP
X0 18 17 0 1707 673 3 MP
XPP
X17 0 0 18 1707 673 3 MP
XPP
X0 18 17 0 1707 691 3 MP
XPP
X17 0 0 18 1707 691 3 MP
XPP
X0 18 17 0 1707 709 3 MP
XPP
X17 0 0 18 1707 709 3 MP
XPP
X0 18 17 0 1707 727 3 MP
XPP
X17 0 0 18 1707 727 3 MP
XPP
X0 17 17 0 1707 745 3 MP
XPP
X17 0 0 17 1707 745 3 MP
XPP
X0 18 17 0 1707 762 3 MP
XPP
X17 0 0 18 1707 762 3 MP
XPP
X0 18 17 0 1707 780 3 MP
XPP
X17 0 0 18 1707 780 3 MP
XPP
X0 18 17 0 1707 798 3 MP
XPP
X17 0 0 18 1707 798 3 MP
XPP
X0 18 17 0 1707 816 3 MP
XPP
X17 0 0 18 1707 816 3 MP
XPP
X0 18 17 0 1707 834 3 MP
XPP
X17 0 0 18 1707 834 3 MP
XPP
X0 17 17 0 1707 852 3 MP
XPP
X17 0 0 17 1707 852 3 MP
XPP
X0 18 17 0 1707 869 3 MP
XPP
X17 0 0 18 1707 869 3 MP
XPP
X0 18 17 0 1707 887 3 MP
XPP
X17 0 0 18 1707 887 3 MP
XPP
X0 18 17 0 1707 905 3 MP
XPP
X17 0 0 18 1707 905 3 MP
XPP
X0 18 17 0 1707 923 3 MP
XPP
X17 0 0 18 1707 923 3 MP
XPP
X0 18 17 0 1707 941 3 MP
XPP
X17 0 0 18 1707 941 3 MP
XPP
X0 17 17 0 1707 959 3 MP
XPP
X17 0 0 17 1707 959 3 MP
XPP
X0 18 17 0 1707 976 3 MP
XPP
X17 0 0 18 1707 976 3 MP
XPP
X0 18 17 0 1707 994 3 MP
XPP
X17 0 0 18 1707 994 3 MP
XPP
X0 18 17 0 1707 1012 3 MP
XPP
X17 0 0 18 1707 1012 3 MP
XPP
X0 18 17 0 1707 1030 3 MP
XPP
X17 0 0 18 1707 1030 3 MP
XPP
X0 18 17 0 1707 1048 3 MP
XPP
X17 0 0 18 1707 1048 3 MP
XPP
X0 17 17 0 1707 1066 3 MP
XPP
X17 0 0 17 1707 1066 3 MP
XPP
X0 18 17 0 1707 1083 3 MP
XPP
X17 0 0 18 1707 1083 3 MP
XPP
X0 18 17 0 1707 1101 3 MP
XPP
X17 0 0 18 1707 1101 3 MP
XPP
X0.238095 sg
X0 18 17 0 1707 1119 3 MP
XPP
X17 0 0 18 1707 1119 3 MP
XPP
X0 18 17 0 1707 1137 3 MP
XPP
X17 0 0 18 1707 1137 3 MP
XPP
X0 18 17 0 1707 1155 3 MP
XPP
X17 0 0 18 1707 1155 3 MP
XPP
X0 17 17 0 1707 1173 3 MP
XPP
X17 0 0 17 1707 1173 3 MP
XPP
X0 18 17 0 1707 1190 3 MP
XPP
X17 0 0 18 1707 1190 3 MP
XPP
X0 18 17 0 1707 1208 3 MP
XPP
X17 0 0 18 1707 1208 3 MP
XPP
X0 18 17 0 1707 1226 3 MP
XPP
X17 0 0 18 1707 1226 3 MP
XPP
X0 18 17 0 1707 1244 3 MP
XPP
X17 0 0 18 1707 1244 3 MP
XPP
X0 17 17 0 1707 1262 3 MP
XPP
X17 0 0 17 1707 1262 3 MP
XPP
X0 18 17 0 1707 1279 3 MP
XPP
X17 0 0 18 1707 1279 3 MP
XPP
X0 18 17 0 1707 1297 3 MP
XPP
X17 0 0 18 1707 1297 3 MP
XPP
X0 18 17 0 1707 1315 3 MP
XPP
X17 0 0 18 1707 1315 3 MP
XPP
X0 18 17 0 1707 1333 3 MP
XPP
X17 0 0 18 1707 1333 3 MP
XPP
X0 18 17 0 1707 1351 3 MP
XPP
X17 0 0 18 1707 1351 3 MP
XPP
X0 17 17 0 1707 1369 3 MP
XPP
X17 0 0 17 1707 1369 3 MP
XPP
X0 18 17 0 1707 1386 3 MP
XPP
X17 0 0 18 1707 1386 3 MP
XPP
X0 18 17 0 1707 1404 3 MP
XPP
X17 0 0 18 1707 1404 3 MP
XPP
X0 18 17 0 1707 1422 3 MP
XPP
X17 0 0 18 1707 1422 3 MP
XPP
X0 18 17 0 1707 1440 3 MP
XPP
X17 0 0 18 1707 1440 3 MP
XPP
X0 18 17 0 1707 1458 3 MP
XPP
X17 0 0 18 1707 1458 3 MP
XPP
X0 17 17 0 1707 1476 3 MP
XPP
X17 0 0 17 1707 1476 3 MP
XPP
X0 18 17 0 1707 1493 3 MP
XPP
X17 0 0 18 1707 1493 3 MP
XPP
X0 18 17 0 1707 1511 3 MP
XPP
X17 0 0 18 1707 1511 3 MP
XPP
X0 18 17 0 1707 1529 3 MP
XPP
X17 0 0 18 1707 1529 3 MP
XPP
X0 18 17 0 1707 1547 3 MP
XPP
X17 0 0 18 1707 1547 3 MP
XPP
X0 18 17 0 1707 1565 3 MP
XPP
X17 0 0 18 1707 1565 3 MP
XPP
X0 17 17 0 1707 1583 3 MP
XPP
X17 0 0 17 1707 1583 3 MP
XPP
X0 18 17 0 1707 1600 3 MP
XPP
X17 0 0 18 1707 1600 3 MP
XPP
X0 18 17 0 1707 1618 3 MP
XPP
X17 0 0 18 1707 1618 3 MP
XPP
X0 18 17 0 1707 1636 3 MP
XPP
X17 0 0 18 1707 1636 3 MP
XPP
X0 18 17 0 1707 1654 3 MP
XPP
X17 0 0 18 1707 1654 3 MP
XPP
X0 18 17 0 1707 1672 3 MP
XPP
X17 0 0 18 1707 1672 3 MP
XPP
X1 sg
X0 17 17 0 1707 1690 3 MP
XPP
X17 0 0 17 1707 1690 3 MP
XPP
X0 18 17 0 1707 1707 3 MP
XPP
X17 0 0 18 1707 1707 3 MP
XPP
X0 18 17 0 1707 1725 3 MP
XPP
X17 0 0 18 1707 1725 3 MP
XPP
X0 18 17 0 1707 1743 3 MP
XPP
X17 0 0 18 1707 1743 3 MP
XPP
X0 18 17 0 1707 1761 3 MP
XPP
X17 0 0 18 1707 1761 3 MP
XPP
X0 18 17 0 1707 1779 3 MP
XPP
X17 0 0 18 1707 1779 3 MP
XPP
X0 17 17 0 1707 1797 3 MP
XPP
X17 0 0 17 1707 1797 3 MP
XPP
X0 18 17 0 1707 1814 3 MP
XPP
X17 0 0 18 1707 1814 3 MP
XPP
X0 18 17 0 1707 1832 3 MP
XPP
X17 0 0 18 1707 1832 3 MP
XPP
X0 18 17 0 1707 1850 3 MP
XPP
X17 0 0 18 1707 1850 3 MP
XPP
X0 18 17 0 1707 1868 3 MP
XPP
X17 0 0 18 1707 1868 3 MP
XPP
X0 18 17 0 1707 1886 3 MP
XPP
X17 0 0 18 1707 1886 3 MP
XPP
X0 17 17 0 1707 1904 3 MP
XPP
X17 0 0 17 1707 1904 3 MP
XPP
X0 18 17 0 1707 1921 3 MP
XPP
X17 0 0 18 1707 1921 3 MP
XPP
X0 18 17 0 1707 1939 3 MP
XPP
X17 0 0 18 1707 1939 3 MP
XPP
X0 18 17 0 1707 1957 3 MP
XPP
X17 0 0 18 1707 1957 3 MP
XPP
X0 18 17 0 1707 1975 3 MP
XPP
X17 0 0 18 1707 1975 3 MP
XPP
X0 18 17 0 1707 1993 3 MP
XPP
X17 0 0 18 1707 1993 3 MP
XPP
X0 17 17 0 1707 2011 3 MP
XPP
X17 0 0 17 1707 2011 3 MP
XPP
X0 18 17 0 1707 2028 3 MP
XPP
X17 0 0 18 1707 2028 3 MP
XPP
X0 18 17 0 1707 2046 3 MP
XPP
X17 0 0 18 1707 2046 3 MP
XPP
X0 18 17 0 1707 2064 3 MP
XPP
X17 0 0 18 1707 2064 3 MP
XPP
X0 18 17 0 1707 2082 3 MP
XPP
X17 0 0 18 1707 2082 3 MP
XPP
X0 18 17 0 1707 2100 3 MP
XPP
X17 0 0 18 1707 2100 3 MP
XPP
X0 17 17 0 1707 2118 3 MP
XPP
X17 0 0 17 1707 2118 3 MP
XPP
X0 18 17 0 1707 2135 3 MP
XPP
X17 0 0 18 1707 2135 3 MP
XPP
X0 18 17 0 1707 2153 3 MP
XPP
X17 0 0 18 1707 2153 3 MP
XPP
X0 18 18 0 1724 388 3 MP
XPP
X18 0 0 18 1724 388 3 MP
XPP
X0 18 18 0 1724 406 3 MP
XPP
X18 0 0 18 1724 406 3 MP
XPP
X0 17 18 0 1724 424 3 MP
XPP
X18 0 0 17 1724 424 3 MP
XPP
X0 18 18 0 1724 441 3 MP
XPP
X18 0 0 18 1724 441 3 MP
XPP
X0 18 18 0 1724 459 3 MP
XPP
X18 0 0 18 1724 459 3 MP
XPP
X0 18 18 0 1724 477 3 MP
XPP
X18 0 0 18 1724 477 3 MP
XPP
X0 18 18 0 1724 495 3 MP
XPP
X18 0 0 18 1724 495 3 MP
XPP
X0 18 18 0 1724 513 3 MP
XPP
X18 0 0 18 1724 513 3 MP
XPP
X0 17 18 0 1724 531 3 MP
XPP
X18 0 0 17 1724 531 3 MP
XPP
X0 18 18 0 1724 548 3 MP
XPP
X18 0 0 18 1724 548 3 MP
XPP
X0 18 18 0 1724 566 3 MP
XPP
X18 0 0 18 1724 566 3 MP
XPP
X0 18 18 0 1724 584 3 MP
XPP
X18 0 0 18 1724 584 3 MP
XPP
X0 18 18 0 1724 602 3 MP
XPP
X18 0 0 18 1724 602 3 MP
XPP
X0 18 18 0 1724 620 3 MP
XPP
X18 0 0 18 1724 620 3 MP
XPP
X0 17 18 0 1724 638 3 MP
XPP
X18 0 0 17 1724 638 3 MP
XPP
X0.746032 sg
X0 18 18 0 1724 655 3 MP
XPP
X18 0 0 18 1724 655 3 MP
XPP
X0 18 18 0 1724 673 3 MP
XPP
X18 0 0 18 1724 673 3 MP
XPP
X0 18 18 0 1724 691 3 MP
XPP
X18 0 0 18 1724 691 3 MP
XPP
X0 18 18 0 1724 709 3 MP
XPP
X18 0 0 18 1724 709 3 MP
XPP
X0 18 18 0 1724 727 3 MP
XPP
X18 0 0 18 1724 727 3 MP
XPP
X0 17 18 0 1724 745 3 MP
XPP
X18 0 0 17 1724 745 3 MP
XPP
X0 18 18 0 1724 762 3 MP
XPP
X18 0 0 18 1724 762 3 MP
XPP
X0 18 18 0 1724 780 3 MP
XPP
X18 0 0 18 1724 780 3 MP
XPP
X1 sg
X0 18 18 0 1724 798 3 MP
XPP
X18 0 0 18 1724 798 3 MP
XPP
X0 18 18 0 1724 816 3 MP
XPP
X18 0 0 18 1724 816 3 MP
XPP
X0 18 18 0 1724 834 3 MP
XPP
X18 0 0 18 1724 834 3 MP
XPP
X0 17 18 0 1724 852 3 MP
XPP
X18 0 0 17 1724 852 3 MP
XPP
X0 18 18 0 1724 869 3 MP
XPP
X18 0 0 18 1724 869 3 MP
XPP
X0 18 18 0 1724 887 3 MP
XPP
X18 0 0 18 1724 887 3 MP
XPP
X0 18 18 0 1724 905 3 MP
XPP
X18 0 0 18 1724 905 3 MP
XPP
X0 18 18 0 1724 923 3 MP
XPP
X18 0 0 18 1724 923 3 MP
XPP
X0 18 18 0 1724 941 3 MP
XPP
X18 0 0 18 1724 941 3 MP
XPP
X0 17 18 0 1724 959 3 MP
XPP
X18 0 0 17 1724 959 3 MP
XPP
X0 18 18 0 1724 976 3 MP
XPP
X18 0 0 18 1724 976 3 MP
XPP
X0 18 18 0 1724 994 3 MP
XPP
X18 0 0 18 1724 994 3 MP
XPP
X0 18 18 0 1724 1012 3 MP
XPP
X18 0 0 18 1724 1012 3 MP
XPP
X0 18 18 0 1724 1030 3 MP
XPP
X18 0 0 18 1724 1030 3 MP
XPP
X0 18 18 0 1724 1048 3 MP
XPP
X18 0 0 18 1724 1048 3 MP
XPP
X0 17 18 0 1724 1066 3 MP
XPP
X18 0 0 17 1724 1066 3 MP
XPP
X0 18 18 0 1724 1083 3 MP
XPP
X18 0 0 18 1724 1083 3 MP
XPP
X0 18 18 0 1724 1101 3 MP
XPP
X18 0 0 18 1724 1101 3 MP
XPP
X0.238095 sg
X0 18 18 0 1724 1119 3 MP
XPP
X18 0 0 18 1724 1119 3 MP
XPP
X0 18 18 0 1724 1137 3 MP
XPP
X18 0 0 18 1724 1137 3 MP
XPP
X0 18 18 0 1724 1155 3 MP
XPP
X18 0 0 18 1724 1155 3 MP
XPP
X0 17 18 0 1724 1173 3 MP
XPP
X18 0 0 17 1724 1173 3 MP
XPP
X0 18 18 0 1724 1190 3 MP
XPP
X18 0 0 18 1724 1190 3 MP
XPP
X0 18 18 0 1724 1208 3 MP
XPP
X18 0 0 18 1724 1208 3 MP
XPP
X0 18 18 0 1724 1226 3 MP
XPP
X18 0 0 18 1724 1226 3 MP
XPP
X0 18 18 0 1724 1244 3 MP
XPP
X18 0 0 18 1724 1244 3 MP
XPP
X0 17 18 0 1724 1262 3 MP
XPP
X18 0 0 17 1724 1262 3 MP
XPP
X0 18 18 0 1724 1279 3 MP
XPP
X18 0 0 18 1724 1279 3 MP
XPP
X0 18 18 0 1724 1297 3 MP
XPP
X18 0 0 18 1724 1297 3 MP
XPP
X0 18 18 0 1724 1315 3 MP
XPP
X18 0 0 18 1724 1315 3 MP
XPP
X0 18 18 0 1724 1333 3 MP
XPP
X18 0 0 18 1724 1333 3 MP
XPP
X0 18 18 0 1724 1351 3 MP
XPP
X18 0 0 18 1724 1351 3 MP
XPP
X0 17 18 0 1724 1369 3 MP
XPP
X18 0 0 17 1724 1369 3 MP
XPP
X0 18 18 0 1724 1386 3 MP
XPP
X18 0 0 18 1724 1386 3 MP
XPP
X0 18 18 0 1724 1404 3 MP
XPP
X18 0 0 18 1724 1404 3 MP
XPP
X0 18 18 0 1724 1422 3 MP
XPP
X18 0 0 18 1724 1422 3 MP
XPP
X0 18 18 0 1724 1440 3 MP
XPP
X18 0 0 18 1724 1440 3 MP
XPP
X0 18 18 0 1724 1458 3 MP
XPP
X18 0 0 18 1724 1458 3 MP
XPP
X0 17 18 0 1724 1476 3 MP
XPP
X18 0 0 17 1724 1476 3 MP
XPP
X0 18 18 0 1724 1493 3 MP
XPP
X18 0 0 18 1724 1493 3 MP
XPP
X0 18 18 0 1724 1511 3 MP
XPP
X18 0 0 18 1724 1511 3 MP
XPP
X0 18 18 0 1724 1529 3 MP
XPP
X18 0 0 18 1724 1529 3 MP
XPP
X0 18 18 0 1724 1547 3 MP
XPP
X18 0 0 18 1724 1547 3 MP
XPP
X0 18 18 0 1724 1565 3 MP
XPP
X18 0 0 18 1724 1565 3 MP
XPP
X0 17 18 0 1724 1583 3 MP
XPP
X18 0 0 17 1724 1583 3 MP
XPP
X0 18 18 0 1724 1600 3 MP
XPP
X18 0 0 18 1724 1600 3 MP
XPP
X0 18 18 0 1724 1618 3 MP
XPP
X18 0 0 18 1724 1618 3 MP
XPP
X0 18 18 0 1724 1636 3 MP
XPP
X18 0 0 18 1724 1636 3 MP
XPP
X0 18 18 0 1724 1654 3 MP
XPP
X18 0 0 18 1724 1654 3 MP
XPP
X0 18 18 0 1724 1672 3 MP
XPP
X18 0 0 18 1724 1672 3 MP
XPP
X0 17 18 0 1724 1690 3 MP
XPP
X18 0 0 17 1724 1690 3 MP
XPP
X1 sg
X0 18 18 0 1724 1707 3 MP
XPP
X18 0 0 18 1724 1707 3 MP
XPP
X0 18 18 0 1724 1725 3 MP
XPP
X18 0 0 18 1724 1725 3 MP
XPP
X0 18 18 0 1724 1743 3 MP
XPP
X18 0 0 18 1724 1743 3 MP
XPP
X0 18 18 0 1724 1761 3 MP
XPP
X18 0 0 18 1724 1761 3 MP
XPP
X0 18 18 0 1724 1779 3 MP
XPP
X18 0 0 18 1724 1779 3 MP
XPP
X0 17 18 0 1724 1797 3 MP
XPP
X18 0 0 17 1724 1797 3 MP
XPP
X0 18 18 0 1724 1814 3 MP
XPP
X18 0 0 18 1724 1814 3 MP
XPP
X0 18 18 0 1724 1832 3 MP
XPP
X18 0 0 18 1724 1832 3 MP
XPP
X0 18 18 0 1724 1850 3 MP
XPP
X18 0 0 18 1724 1850 3 MP
XPP
X0 18 18 0 1724 1868 3 MP
XPP
X18 0 0 18 1724 1868 3 MP
XPP
X0 18 18 0 1724 1886 3 MP
XPP
X18 0 0 18 1724 1886 3 MP
XPP
X0 17 18 0 1724 1904 3 MP
XPP
X18 0 0 17 1724 1904 3 MP
XPP
X0 18 18 0 1724 1921 3 MP
XPP
X18 0 0 18 1724 1921 3 MP
XPP
X0 18 18 0 1724 1939 3 MP
XPP
X18 0 0 18 1724 1939 3 MP
XPP
X0 18 18 0 1724 1957 3 MP
XPP
X18 0 0 18 1724 1957 3 MP
XPP
X0 18 18 0 1724 1975 3 MP
XPP
X18 0 0 18 1724 1975 3 MP
XPP
X0 18 18 0 1724 1993 3 MP
XPP
X18 0 0 18 1724 1993 3 MP
XPP
X0 17 18 0 1724 2011 3 MP
XPP
X18 0 0 17 1724 2011 3 MP
XPP
X0 18 18 0 1724 2028 3 MP
XPP
X18 0 0 18 1724 2028 3 MP
XPP
X0 18 18 0 1724 2046 3 MP
XPP
X18 0 0 18 1724 2046 3 MP
XPP
X0 18 18 0 1724 2064 3 MP
XPP
X18 0 0 18 1724 2064 3 MP
XPP
X0 18 18 0 1724 2082 3 MP
XPP
X18 0 0 18 1724 2082 3 MP
XPP
X0 18 18 0 1724 2100 3 MP
XPP
X18 0 0 18 1724 2100 3 MP
XPP
X0 17 18 0 1724 2118 3 MP
XPP
X18 0 0 17 1724 2118 3 MP
XPP
X0 18 18 0 1724 2135 3 MP
XPP
X18 0 0 18 1724 2135 3 MP
XPP
X0 18 18 0 1724 2153 3 MP
XPP
X18 0 0 18 1724 2153 3 MP
XPP
X0 18 18 0 1742 388 3 MP
XPP
X18 0 0 18 1742 388 3 MP
XPP
X0 18 18 0 1742 406 3 MP
XPP
X18 0 0 18 1742 406 3 MP
XPP
X0 17 18 0 1742 424 3 MP
XPP
X18 0 0 17 1742 424 3 MP
XPP
X0 18 18 0 1742 441 3 MP
XPP
X18 0 0 18 1742 441 3 MP
XPP
X0 18 18 0 1742 459 3 MP
XPP
X18 0 0 18 1742 459 3 MP
XPP
X0 18 18 0 1742 477 3 MP
XPP
X18 0 0 18 1742 477 3 MP
XPP
X0 18 18 0 1742 495 3 MP
XPP
X18 0 0 18 1742 495 3 MP
XPP
X0 18 18 0 1742 513 3 MP
XPP
X18 0 0 18 1742 513 3 MP
XPP
X0 17 18 0 1742 531 3 MP
XPP
X18 0 0 17 1742 531 3 MP
XPP
X0 18 18 0 1742 548 3 MP
XPP
X18 0 0 18 1742 548 3 MP
XPP
X0 18 18 0 1742 566 3 MP
XPP
X18 0 0 18 1742 566 3 MP
XPP
X0 18 18 0 1742 584 3 MP
XPP
X18 0 0 18 1742 584 3 MP
XPP
X0 18 18 0 1742 602 3 MP
XPP
X18 0 0 18 1742 602 3 MP
XPP
X0 18 18 0 1742 620 3 MP
XPP
X18 0 0 18 1742 620 3 MP
XPP
X0.746032 sg
X0 17 18 0 1742 638 3 MP
XPP
X18 0 0 17 1742 638 3 MP
XPP
X0 18 18 0 1742 655 3 MP
XPP
X18 0 0 18 1742 655 3 MP
XPP
X0 18 18 0 1742 673 3 MP
XPP
X18 0 0 18 1742 673 3 MP
XPP
X0 18 18 0 1742 691 3 MP
XPP
X18 0 0 18 1742 691 3 MP
XPP
X0 18 18 0 1742 709 3 MP
XPP
X18 0 0 18 1742 709 3 MP
XPP
X0 18 18 0 1742 727 3 MP
XPP
X18 0 0 18 1742 727 3 MP
XPP
X0 17 18 0 1742 745 3 MP
XPP
X18 0 0 17 1742 745 3 MP
XPP
X0 18 18 0 1742 762 3 MP
XPP
X18 0 0 18 1742 762 3 MP
XPP
X0 18 18 0 1742 780 3 MP
XPP
X18 0 0 18 1742 780 3 MP
XPP
X0 18 18 0 1742 798 3 MP
XPP
X18 0 0 18 1742 798 3 MP
XPP
X1 sg
X0 18 18 0 1742 816 3 MP
XPP
X18 0 0 18 1742 816 3 MP
XPP
X0 18 18 0 1742 834 3 MP
XPP
X18 0 0 18 1742 834 3 MP
XPP
X0 17 18 0 1742 852 3 MP
XPP
X18 0 0 17 1742 852 3 MP
XPP
X0 18 18 0 1742 869 3 MP
XPP
X18 0 0 18 1742 869 3 MP
XPP
X0 18 18 0 1742 887 3 MP
XPP
X18 0 0 18 1742 887 3 MP
XPP
X0 18 18 0 1742 905 3 MP
XPP
X18 0 0 18 1742 905 3 MP
XPP
X0 18 18 0 1742 923 3 MP
XPP
X18 0 0 18 1742 923 3 MP
XPP
X0 18 18 0 1742 941 3 MP
XPP
X18 0 0 18 1742 941 3 MP
XPP
X0 17 18 0 1742 959 3 MP
XPP
X18 0 0 17 1742 959 3 MP
XPP
X0 18 18 0 1742 976 3 MP
XPP
X18 0 0 18 1742 976 3 MP
XPP
X0 18 18 0 1742 994 3 MP
XPP
X18 0 0 18 1742 994 3 MP
XPP
X0 18 18 0 1742 1012 3 MP
XPP
X18 0 0 18 1742 1012 3 MP
XPP
X0 18 18 0 1742 1030 3 MP
XPP
X18 0 0 18 1742 1030 3 MP
XPP
X0 18 18 0 1742 1048 3 MP
XPP
X18 0 0 18 1742 1048 3 MP
XPP
X0 17 18 0 1742 1066 3 MP
XPP
X18 0 0 17 1742 1066 3 MP
XPP
X0 18 18 0 1742 1083 3 MP
XPP
X18 0 0 18 1742 1083 3 MP
XPP
X0 18 18 0 1742 1101 3 MP
XPP
X18 0 0 18 1742 1101 3 MP
XPP
X0 18 18 0 1742 1119 3 MP
XPP
X18 0 0 18 1742 1119 3 MP
XPP
X0 18 18 0 1742 1137 3 MP
XPP
X18 0 0 18 1742 1137 3 MP
XPP
X0 18 18 0 1742 1155 3 MP
XPP
X18 0 0 18 1742 1155 3 MP
XPP
X0 17 18 0 1742 1173 3 MP
XPP
X18 0 0 17 1742 1173 3 MP
XPP
X0 18 18 0 1742 1190 3 MP
XPP
X18 0 0 18 1742 1190 3 MP
XPP
X0 18 18 0 1742 1208 3 MP
XPP
X18 0 0 18 1742 1208 3 MP
XPP
X0 18 18 0 1742 1226 3 MP
XPP
X18 0 0 18 1742 1226 3 MP
XPP
X0 18 18 0 1742 1244 3 MP
XPP
X18 0 0 18 1742 1244 3 MP
XPP
X0 17 18 0 1742 1262 3 MP
XPP
X18 0 0 17 1742 1262 3 MP
XPP
X0 18 18 0 1742 1279 3 MP
XPP
X18 0 0 18 1742 1279 3 MP
XPP
X0 18 18 0 1742 1297 3 MP
XPP
X18 0 0 18 1742 1297 3 MP
XPP
X0 18 18 0 1742 1315 3 MP
XPP
X18 0 0 18 1742 1315 3 MP
XPP
X0 18 18 0 1742 1333 3 MP
XPP
X18 0 0 18 1742 1333 3 MP
XPP
X0 18 18 0 1742 1351 3 MP
XPP
X18 0 0 18 1742 1351 3 MP
XPP
X0 17 18 0 1742 1369 3 MP
XPP
X18 0 0 17 1742 1369 3 MP
XPP
X0 18 18 0 1742 1386 3 MP
XPP
X18 0 0 18 1742 1386 3 MP
XPP
X0 18 18 0 1742 1404 3 MP
XPP
X18 0 0 18 1742 1404 3 MP
XPP
X0 18 18 0 1742 1422 3 MP
XPP
X18 0 0 18 1742 1422 3 MP
XPP
X0 18 18 0 1742 1440 3 MP
XPP
X18 0 0 18 1742 1440 3 MP
XPP
X0 18 18 0 1742 1458 3 MP
XPP
X18 0 0 18 1742 1458 3 MP
XPP
X0 17 18 0 1742 1476 3 MP
XPP
X18 0 0 17 1742 1476 3 MP
XPP
X0 18 18 0 1742 1493 3 MP
XPP
X18 0 0 18 1742 1493 3 MP
XPP
X0 18 18 0 1742 1511 3 MP
XPP
X18 0 0 18 1742 1511 3 MP
XPP
X0 18 18 0 1742 1529 3 MP
XPP
X18 0 0 18 1742 1529 3 MP
XPP
X0 18 18 0 1742 1547 3 MP
XPP
X18 0 0 18 1742 1547 3 MP
XPP
X0 18 18 0 1742 1565 3 MP
XPP
X18 0 0 18 1742 1565 3 MP
XPP
X0 17 18 0 1742 1583 3 MP
XPP
X18 0 0 17 1742 1583 3 MP
XPP
X0 18 18 0 1742 1600 3 MP
XPP
X18 0 0 18 1742 1600 3 MP
XPP
X0 18 18 0 1742 1618 3 MP
XPP
X18 0 0 18 1742 1618 3 MP
XPP
X0 18 18 0 1742 1636 3 MP
XPP
X18 0 0 18 1742 1636 3 MP
XPP
X0 18 18 0 1742 1654 3 MP
XPP
X18 0 0 18 1742 1654 3 MP
XPP
X0 18 18 0 1742 1672 3 MP
XPP
X18 0 0 18 1742 1672 3 MP
XPP
X0 17 18 0 1742 1690 3 MP
XPP
X18 0 0 17 1742 1690 3 MP
XPP
X0 18 18 0 1742 1707 3 MP
XPP
X18 0 0 18 1742 1707 3 MP
XPP
X0 18 18 0 1742 1725 3 MP
XPP
X18 0 0 18 1742 1725 3 MP
XPP
X0 18 18 0 1742 1743 3 MP
XPP
X18 0 0 18 1742 1743 3 MP
XPP
X0 18 18 0 1742 1761 3 MP
XPP
X18 0 0 18 1742 1761 3 MP
XPP
X0 18 18 0 1742 1779 3 MP
XPP
X18 0 0 18 1742 1779 3 MP
XPP
X0 17 18 0 1742 1797 3 MP
XPP
X18 0 0 17 1742 1797 3 MP
XPP
X0 18 18 0 1742 1814 3 MP
XPP
X18 0 0 18 1742 1814 3 MP
XPP
X0 18 18 0 1742 1832 3 MP
XPP
X18 0 0 18 1742 1832 3 MP
XPP
X0 18 18 0 1742 1850 3 MP
XPP
X18 0 0 18 1742 1850 3 MP
XPP
X0 18 18 0 1742 1868 3 MP
XPP
X18 0 0 18 1742 1868 3 MP
XPP
X0 18 18 0 1742 1886 3 MP
XPP
X18 0 0 18 1742 1886 3 MP
XPP
X0 17 18 0 1742 1904 3 MP
XPP
X18 0 0 17 1742 1904 3 MP
XPP
X0 18 18 0 1742 1921 3 MP
XPP
X18 0 0 18 1742 1921 3 MP
XPP
X0 18 18 0 1742 1939 3 MP
XPP
X18 0 0 18 1742 1939 3 MP
XPP
X0 18 18 0 1742 1957 3 MP
XPP
X18 0 0 18 1742 1957 3 MP
XPP
X0 18 18 0 1742 1975 3 MP
XPP
X18 0 0 18 1742 1975 3 MP
XPP
X0 18 18 0 1742 1993 3 MP
XPP
X18 0 0 18 1742 1993 3 MP
XPP
X0 17 18 0 1742 2011 3 MP
XPP
X18 0 0 17 1742 2011 3 MP
XPP
X0 18 18 0 1742 2028 3 MP
XPP
X18 0 0 18 1742 2028 3 MP
XPP
X0 18 18 0 1742 2046 3 MP
XPP
X18 0 0 18 1742 2046 3 MP
XPP
X0 18 18 0 1742 2064 3 MP
XPP
X18 0 0 18 1742 2064 3 MP
XPP
X0 18 18 0 1742 2082 3 MP
XPP
X18 0 0 18 1742 2082 3 MP
XPP
X0 18 18 0 1742 2100 3 MP
XPP
X18 0 0 18 1742 2100 3 MP
XPP
X0 17 18 0 1742 2118 3 MP
XPP
X18 0 0 17 1742 2118 3 MP
XPP
X0 18 18 0 1742 2135 3 MP
XPP
X18 0 0 18 1742 2135 3 MP
XPP
X0 18 18 0 1742 2153 3 MP
XPP
X18 0 0 18 1742 2153 3 MP
XPP
X0 18 18 0 1760 388 3 MP
XPP
X18 0 0 18 1760 388 3 MP
XPP
X0 18 18 0 1760 406 3 MP
XPP
X18 0 0 18 1760 406 3 MP
XPP
X0 17 18 0 1760 424 3 MP
XPP
X18 0 0 17 1760 424 3 MP
XPP
X0 18 18 0 1760 441 3 MP
XPP
X18 0 0 18 1760 441 3 MP
XPP
X0 18 18 0 1760 459 3 MP
XPP
X18 0 0 18 1760 459 3 MP
XPP
X0 18 18 0 1760 477 3 MP
XPP
X18 0 0 18 1760 477 3 MP
XPP
X0 18 18 0 1760 495 3 MP
XPP
X18 0 0 18 1760 495 3 MP
XPP
X0 18 18 0 1760 513 3 MP
XPP
X18 0 0 18 1760 513 3 MP
XPP
X0 17 18 0 1760 531 3 MP
XPP
X18 0 0 17 1760 531 3 MP
XPP
X0 18 18 0 1760 548 3 MP
XPP
X18 0 0 18 1760 548 3 MP
XPP
X0 18 18 0 1760 566 3 MP
XPP
X18 0 0 18 1760 566 3 MP
XPP
X0 18 18 0 1760 584 3 MP
XPP
X18 0 0 18 1760 584 3 MP
XPP
X0.746032 sg
X0 18 18 0 1760 602 3 MP
XPP
X18 0 0 18 1760 602 3 MP
XPP
X0 18 18 0 1760 620 3 MP
XPP
X18 0 0 18 1760 620 3 MP
XPP
X0 17 18 0 1760 638 3 MP
XPP
X18 0 0 17 1760 638 3 MP
XPP
X0 18 18 0 1760 655 3 MP
XPP
X18 0 0 18 1760 655 3 MP
XPP
X0 18 18 0 1760 673 3 MP
XPP
X18 0 0 18 1760 673 3 MP
XPP
X0 18 18 0 1760 691 3 MP
XPP
X18 0 0 18 1760 691 3 MP
XPP
X0 18 18 0 1760 709 3 MP
XPP
X18 0 0 18 1760 709 3 MP
XPP
X0 18 18 0 1760 727 3 MP
XPP
X18 0 0 18 1760 727 3 MP
XPP
X0 17 18 0 1760 745 3 MP
XPP
X18 0 0 17 1760 745 3 MP
XPP
X0 18 18 0 1760 762 3 MP
XPP
X18 0 0 18 1760 762 3 MP
XPP
X0 18 18 0 1760 780 3 MP
XPP
X18 0 0 18 1760 780 3 MP
XPP
X0 18 18 0 1760 798 3 MP
XPP
X18 0 0 18 1760 798 3 MP
XPP
X0 18 18 0 1760 816 3 MP
XPP
X18 0 0 18 1760 816 3 MP
XPP
X0 18 18 0 1760 834 3 MP
XPP
X18 0 0 18 1760 834 3 MP
XPP
X1 sg
X0 17 18 0 1760 852 3 MP
XPP
X18 0 0 17 1760 852 3 MP
XPP
X0 18 18 0 1760 869 3 MP
XPP
X18 0 0 18 1760 869 3 MP
XPP
X0 18 18 0 1760 887 3 MP
XPP
X18 0 0 18 1760 887 3 MP
XPP
X0 18 18 0 1760 905 3 MP
XPP
X18 0 0 18 1760 905 3 MP
XPP
X0 18 18 0 1760 923 3 MP
XPP
X18 0 0 18 1760 923 3 MP
XPP
X0 18 18 0 1760 941 3 MP
XPP
X18 0 0 18 1760 941 3 MP
XPP
X0 17 18 0 1760 959 3 MP
XPP
X18 0 0 17 1760 959 3 MP
XPP
X0 18 18 0 1760 976 3 MP
XPP
X18 0 0 18 1760 976 3 MP
XPP
X0 18 18 0 1760 994 3 MP
XPP
X18 0 0 18 1760 994 3 MP
XPP
X0 18 18 0 1760 1012 3 MP
XPP
X18 0 0 18 1760 1012 3 MP
XPP
X0 18 18 0 1760 1030 3 MP
XPP
X18 0 0 18 1760 1030 3 MP
XPP
X0 18 18 0 1760 1048 3 MP
XPP
X18 0 0 18 1760 1048 3 MP
XPP
X0 17 18 0 1760 1066 3 MP
XPP
X18 0 0 17 1760 1066 3 MP
XPP
X0 18 18 0 1760 1083 3 MP
XPP
X18 0 0 18 1760 1083 3 MP
XPP
X0 18 18 0 1760 1101 3 MP
XPP
X18 0 0 18 1760 1101 3 MP
XPP
X0 18 18 0 1760 1119 3 MP
XPP
X18 0 0 18 1760 1119 3 MP
XPP
X0 18 18 0 1760 1137 3 MP
XPP
X18 0 0 18 1760 1137 3 MP
XPP
X0 18 18 0 1760 1155 3 MP
XPP
X18 0 0 18 1760 1155 3 MP
XPP
X0 17 18 0 1760 1173 3 MP
XPP
X18 0 0 17 1760 1173 3 MP
XPP
X0 18 18 0 1760 1190 3 MP
XPP
X18 0 0 18 1760 1190 3 MP
XPP
X0 18 18 0 1760 1208 3 MP
XPP
X18 0 0 18 1760 1208 3 MP
XPP
X0 18 18 0 1760 1226 3 MP
XPP
X18 0 0 18 1760 1226 3 MP
XPP
X0 18 18 0 1760 1244 3 MP
XPP
X18 0 0 18 1760 1244 3 MP
XPP
X0 17 18 0 1760 1262 3 MP
XPP
X18 0 0 17 1760 1262 3 MP
XPP
X0 18 18 0 1760 1279 3 MP
XPP
X18 0 0 18 1760 1279 3 MP
XPP
X0 18 18 0 1760 1297 3 MP
XPP
X18 0 0 18 1760 1297 3 MP
XPP
X0 18 18 0 1760 1315 3 MP
XPP
X18 0 0 18 1760 1315 3 MP
XPP
X0 18 18 0 1760 1333 3 MP
XPP
X18 0 0 18 1760 1333 3 MP
XPP
X0 18 18 0 1760 1351 3 MP
XPP
X18 0 0 18 1760 1351 3 MP
XPP
X0 17 18 0 1760 1369 3 MP
XPP
X18 0 0 17 1760 1369 3 MP
XPP
X0 18 18 0 1760 1386 3 MP
XPP
X18 0 0 18 1760 1386 3 MP
XPP
X0 18 18 0 1760 1404 3 MP
XPP
X18 0 0 18 1760 1404 3 MP
XPP
X0 18 18 0 1760 1422 3 MP
XPP
X18 0 0 18 1760 1422 3 MP
XPP
X0 18 18 0 1760 1440 3 MP
XPP
X18 0 0 18 1760 1440 3 MP
XPP
X0 18 18 0 1760 1458 3 MP
XPP
X18 0 0 18 1760 1458 3 MP
XPP
X0 17 18 0 1760 1476 3 MP
XPP
X18 0 0 17 1760 1476 3 MP
XPP
X0 18 18 0 1760 1493 3 MP
XPP
X18 0 0 18 1760 1493 3 MP
XPP
X0 18 18 0 1760 1511 3 MP
XPP
X18 0 0 18 1760 1511 3 MP
XPP
X0 18 18 0 1760 1529 3 MP
XPP
X18 0 0 18 1760 1529 3 MP
XPP
X0 18 18 0 1760 1547 3 MP
XPP
X18 0 0 18 1760 1547 3 MP
XPP
X0 18 18 0 1760 1565 3 MP
XPP
X18 0 0 18 1760 1565 3 MP
XPP
X0 17 18 0 1760 1583 3 MP
XPP
X18 0 0 17 1760 1583 3 MP
XPP
X0 18 18 0 1760 1600 3 MP
XPP
X18 0 0 18 1760 1600 3 MP
XPP
X0 18 18 0 1760 1618 3 MP
XPP
X18 0 0 18 1760 1618 3 MP
XPP
X0 18 18 0 1760 1636 3 MP
XPP
X18 0 0 18 1760 1636 3 MP
XPP
X0 18 18 0 1760 1654 3 MP
XPP
X18 0 0 18 1760 1654 3 MP
XPP
X0 18 18 0 1760 1672 3 MP
XPP
X18 0 0 18 1760 1672 3 MP
XPP
X0 17 18 0 1760 1690 3 MP
XPP
X18 0 0 17 1760 1690 3 MP
XPP
X0 18 18 0 1760 1707 3 MP
XPP
X18 0 0 18 1760 1707 3 MP
XPP
X0 18 18 0 1760 1725 3 MP
XPP
X18 0 0 18 1760 1725 3 MP
XPP
X0 18 18 0 1760 1743 3 MP
XPP
X18 0 0 18 1760 1743 3 MP
XPP
X0 18 18 0 1760 1761 3 MP
XPP
X18 0 0 18 1760 1761 3 MP
XPP
X0 18 18 0 1760 1779 3 MP
XPP
X18 0 0 18 1760 1779 3 MP
XPP
X0 17 18 0 1760 1797 3 MP
XPP
X18 0 0 17 1760 1797 3 MP
XPP
X0 18 18 0 1760 1814 3 MP
XPP
X18 0 0 18 1760 1814 3 MP
XPP
X0 18 18 0 1760 1832 3 MP
XPP
X18 0 0 18 1760 1832 3 MP
XPP
X0 18 18 0 1760 1850 3 MP
XPP
X18 0 0 18 1760 1850 3 MP
XPP
X0 18 18 0 1760 1868 3 MP
XPP
X18 0 0 18 1760 1868 3 MP
XPP
X0 18 18 0 1760 1886 3 MP
XPP
X18 0 0 18 1760 1886 3 MP
XPP
X0 17 18 0 1760 1904 3 MP
XPP
X18 0 0 17 1760 1904 3 MP
XPP
X0 18 18 0 1760 1921 3 MP
XPP
X18 0 0 18 1760 1921 3 MP
XPP
X0 18 18 0 1760 1939 3 MP
XPP
X18 0 0 18 1760 1939 3 MP
XPP
X0 18 18 0 1760 1957 3 MP
XPP
X18 0 0 18 1760 1957 3 MP
XPP
X0 18 18 0 1760 1975 3 MP
XPP
X18 0 0 18 1760 1975 3 MP
XPP
X0 18 18 0 1760 1993 3 MP
XPP
X18 0 0 18 1760 1993 3 MP
XPP
X0 17 18 0 1760 2011 3 MP
XPP
X18 0 0 17 1760 2011 3 MP
XPP
X0 18 18 0 1760 2028 3 MP
XPP
X18 0 0 18 1760 2028 3 MP
XPP
X0 18 18 0 1760 2046 3 MP
XPP
X18 0 0 18 1760 2046 3 MP
XPP
X0 18 18 0 1760 2064 3 MP
XPP
X18 0 0 18 1760 2064 3 MP
XPP
X0 18 18 0 1760 2082 3 MP
XPP
X18 0 0 18 1760 2082 3 MP
XPP
X0 18 18 0 1760 2100 3 MP
XPP
X18 0 0 18 1760 2100 3 MP
XPP
X0 17 18 0 1760 2118 3 MP
XPP
X18 0 0 17 1760 2118 3 MP
XPP
X0 18 18 0 1760 2135 3 MP
XPP
X18 0 0 18 1760 2135 3 MP
XPP
X0 18 18 0 1760 2153 3 MP
XPP
X18 0 0 18 1760 2153 3 MP
XPP
X0 18 18 0 1778 388 3 MP
XPP
X18 0 0 18 1778 388 3 MP
XPP
X0 18 18 0 1778 406 3 MP
XPP
X18 0 0 18 1778 406 3 MP
XPP
X0 17 18 0 1778 424 3 MP
XPP
X18 0 0 17 1778 424 3 MP
XPP
X0 18 18 0 1778 441 3 MP
XPP
X18 0 0 18 1778 441 3 MP
XPP
X0 18 18 0 1778 459 3 MP
XPP
X18 0 0 18 1778 459 3 MP
XPP
X0 18 18 0 1778 477 3 MP
XPP
X18 0 0 18 1778 477 3 MP
XPP
X0 18 18 0 1778 495 3 MP
XPP
X18 0 0 18 1778 495 3 MP
XPP
X0 18 18 0 1778 513 3 MP
XPP
X18 0 0 18 1778 513 3 MP
XPP
X0 17 18 0 1778 531 3 MP
XPP
X18 0 0 17 1778 531 3 MP
XPP
X0 18 18 0 1778 548 3 MP
XPP
X18 0 0 18 1778 548 3 MP
XPP
X0 18 18 0 1778 566 3 MP
XPP
X18 0 0 18 1778 566 3 MP
XPP
X0.746032 sg
X0 18 18 0 1778 584 3 MP
XPP
X18 0 0 18 1778 584 3 MP
XPP
X0 18 18 0 1778 602 3 MP
XPP
X18 0 0 18 1778 602 3 MP
XPP
X0 18 18 0 1778 620 3 MP
XPP
X18 0 0 18 1778 620 3 MP
XPP
X0 17 18 0 1778 638 3 MP
XPP
X18 0 0 17 1778 638 3 MP
XPP
X0 18 18 0 1778 655 3 MP
XPP
X18 0 0 18 1778 655 3 MP
XPP
X0 18 18 0 1778 673 3 MP
XPP
X18 0 0 18 1778 673 3 MP
XPP
X0 18 18 0 1778 691 3 MP
XPP
X18 0 0 18 1778 691 3 MP
XPP
X0 18 18 0 1778 709 3 MP
XPP
X18 0 0 18 1778 709 3 MP
XPP
X0 18 18 0 1778 727 3 MP
XPP
X18 0 0 18 1778 727 3 MP
XPP
X0 17 18 0 1778 745 3 MP
XPP
X18 0 0 17 1778 745 3 MP
XPP
X0 18 18 0 1778 762 3 MP
XPP
X18 0 0 18 1778 762 3 MP
XPP
X0 18 18 0 1778 780 3 MP
XPP
X18 0 0 18 1778 780 3 MP
XPP
X0 18 18 0 1778 798 3 MP
XPP
X18 0 0 18 1778 798 3 MP
XPP
X0 18 18 0 1778 816 3 MP
XPP
X18 0 0 18 1778 816 3 MP
XPP
X0 18 18 0 1778 834 3 MP
XPP
X18 0 0 18 1778 834 3 MP
XPP
X0 17 18 0 1778 852 3 MP
XPP
X18 0 0 17 1778 852 3 MP
XPP
X1 sg
X0 18 18 0 1778 869 3 MP
XPP
X18 0 0 18 1778 869 3 MP
XPP
X0 18 18 0 1778 887 3 MP
XPP
X18 0 0 18 1778 887 3 MP
XPP
X0 18 18 0 1778 905 3 MP
XPP
X18 0 0 18 1778 905 3 MP
XPP
X0 18 18 0 1778 923 3 MP
XPP
X18 0 0 18 1778 923 3 MP
XPP
X0 18 18 0 1778 941 3 MP
XPP
X18 0 0 18 1778 941 3 MP
XPP
X0 17 18 0 1778 959 3 MP
XPP
X18 0 0 17 1778 959 3 MP
XPP
X0 18 18 0 1778 976 3 MP
XPP
X18 0 0 18 1778 976 3 MP
XPP
X0 18 18 0 1778 994 3 MP
XPP
X18 0 0 18 1778 994 3 MP
XPP
X0 18 18 0 1778 1012 3 MP
XPP
X18 0 0 18 1778 1012 3 MP
XPP
X0 18 18 0 1778 1030 3 MP
XPP
X18 0 0 18 1778 1030 3 MP
XPP
X0 18 18 0 1778 1048 3 MP
XPP
X18 0 0 18 1778 1048 3 MP
XPP
X0 17 18 0 1778 1066 3 MP
XPP
X18 0 0 17 1778 1066 3 MP
XPP
X0 18 18 0 1778 1083 3 MP
XPP
X18 0 0 18 1778 1083 3 MP
XPP
X0 18 18 0 1778 1101 3 MP
XPP
X18 0 0 18 1778 1101 3 MP
XPP
X0 18 18 0 1778 1119 3 MP
XPP
X18 0 0 18 1778 1119 3 MP
XPP
X0 18 18 0 1778 1137 3 MP
XPP
X18 0 0 18 1778 1137 3 MP
XPP
X0 18 18 0 1778 1155 3 MP
XPP
X18 0 0 18 1778 1155 3 MP
XPP
X0 17 18 0 1778 1173 3 MP
XPP
X18 0 0 17 1778 1173 3 MP
XPP
X0 18 18 0 1778 1190 3 MP
XPP
X18 0 0 18 1778 1190 3 MP
XPP
X0 18 18 0 1778 1208 3 MP
XPP
X18 0 0 18 1778 1208 3 MP
XPP
X0 18 18 0 1778 1226 3 MP
XPP
X18 0 0 18 1778 1226 3 MP
XPP
X0 18 18 0 1778 1244 3 MP
XPP
X18 0 0 18 1778 1244 3 MP
XPP
X0 17 18 0 1778 1262 3 MP
XPP
X18 0 0 17 1778 1262 3 MP
XPP
X0 18 18 0 1778 1279 3 MP
XPP
X18 0 0 18 1778 1279 3 MP
XPP
X0 18 18 0 1778 1297 3 MP
XPP
X18 0 0 18 1778 1297 3 MP
XPP
X0 18 18 0 1778 1315 3 MP
XPP
X18 0 0 18 1778 1315 3 MP
XPP
X0 18 18 0 1778 1333 3 MP
XPP
X18 0 0 18 1778 1333 3 MP
XPP
X0 18 18 0 1778 1351 3 MP
XPP
X18 0 0 18 1778 1351 3 MP
XPP
X0 17 18 0 1778 1369 3 MP
XPP
X18 0 0 17 1778 1369 3 MP
XPP
X0 18 18 0 1778 1386 3 MP
XPP
X18 0 0 18 1778 1386 3 MP
XPP
X0 18 18 0 1778 1404 3 MP
XPP
X18 0 0 18 1778 1404 3 MP
XPP
X0 18 18 0 1778 1422 3 MP
XPP
X18 0 0 18 1778 1422 3 MP
XPP
X0 18 18 0 1778 1440 3 MP
XPP
X18 0 0 18 1778 1440 3 MP
XPP
X0 18 18 0 1778 1458 3 MP
XPP
X18 0 0 18 1778 1458 3 MP
XPP
X0 17 18 0 1778 1476 3 MP
XPP
X18 0 0 17 1778 1476 3 MP
XPP
X0 18 18 0 1778 1493 3 MP
XPP
X18 0 0 18 1778 1493 3 MP
XPP
X0 18 18 0 1778 1511 3 MP
XPP
X18 0 0 18 1778 1511 3 MP
XPP
X0 18 18 0 1778 1529 3 MP
XPP
X18 0 0 18 1778 1529 3 MP
XPP
X0 18 18 0 1778 1547 3 MP
XPP
X18 0 0 18 1778 1547 3 MP
XPP
X0 18 18 0 1778 1565 3 MP
XPP
X18 0 0 18 1778 1565 3 MP
XPP
X0 17 18 0 1778 1583 3 MP
XPP
X18 0 0 17 1778 1583 3 MP
XPP
X0 18 18 0 1778 1600 3 MP
XPP
X18 0 0 18 1778 1600 3 MP
XPP
X0 18 18 0 1778 1618 3 MP
XPP
X18 0 0 18 1778 1618 3 MP
XPP
X0 18 18 0 1778 1636 3 MP
XPP
X18 0 0 18 1778 1636 3 MP
XPP
X0 18 18 0 1778 1654 3 MP
XPP
X18 0 0 18 1778 1654 3 MP
XPP
X0 18 18 0 1778 1672 3 MP
XPP
X18 0 0 18 1778 1672 3 MP
XPP
X0 17 18 0 1778 1690 3 MP
XPP
X18 0 0 17 1778 1690 3 MP
XPP
X0 18 18 0 1778 1707 3 MP
XPP
X18 0 0 18 1778 1707 3 MP
XPP
X0 18 18 0 1778 1725 3 MP
XPP
X18 0 0 18 1778 1725 3 MP
XPP
X0 18 18 0 1778 1743 3 MP
XPP
X18 0 0 18 1778 1743 3 MP
XPP
X0 18 18 0 1778 1761 3 MP
XPP
X18 0 0 18 1778 1761 3 MP
XPP
X0 18 18 0 1778 1779 3 MP
XPP
X18 0 0 18 1778 1779 3 MP
XPP
X0 17 18 0 1778 1797 3 MP
XPP
X18 0 0 17 1778 1797 3 MP
XPP
X0 18 18 0 1778 1814 3 MP
XPP
X18 0 0 18 1778 1814 3 MP
XPP
X0 18 18 0 1778 1832 3 MP
XPP
X18 0 0 18 1778 1832 3 MP
XPP
X0 18 18 0 1778 1850 3 MP
XPP
X18 0 0 18 1778 1850 3 MP
XPP
X0 18 18 0 1778 1868 3 MP
XPP
X18 0 0 18 1778 1868 3 MP
XPP
X0 18 18 0 1778 1886 3 MP
XPP
X18 0 0 18 1778 1886 3 MP
XPP
X0 17 18 0 1778 1904 3 MP
XPP
X18 0 0 17 1778 1904 3 MP
XPP
X0 18 18 0 1778 1921 3 MP
XPP
X18 0 0 18 1778 1921 3 MP
XPP
X0 18 18 0 1778 1939 3 MP
XPP
X18 0 0 18 1778 1939 3 MP
XPP
X0 18 18 0 1778 1957 3 MP
XPP
X18 0 0 18 1778 1957 3 MP
XPP
X0 18 18 0 1778 1975 3 MP
XPP
X18 0 0 18 1778 1975 3 MP
XPP
X0 18 18 0 1778 1993 3 MP
XPP
X18 0 0 18 1778 1993 3 MP
XPP
X0 17 18 0 1778 2011 3 MP
XPP
X18 0 0 17 1778 2011 3 MP
XPP
X0 18 18 0 1778 2028 3 MP
XPP
X18 0 0 18 1778 2028 3 MP
XPP
X0 18 18 0 1778 2046 3 MP
XPP
X18 0 0 18 1778 2046 3 MP
XPP
X0 18 18 0 1778 2064 3 MP
XPP
X18 0 0 18 1778 2064 3 MP
XPP
X0 18 18 0 1778 2082 3 MP
XPP
X18 0 0 18 1778 2082 3 MP
XPP
X0 18 18 0 1778 2100 3 MP
XPP
X18 0 0 18 1778 2100 3 MP
XPP
X0 17 18 0 1778 2118 3 MP
XPP
X18 0 0 17 1778 2118 3 MP
XPP
X0 18 18 0 1778 2135 3 MP
XPP
X18 0 0 18 1778 2135 3 MP
XPP
X0 18 18 0 1778 2153 3 MP
XPP
X18 0 0 18 1778 2153 3 MP
XPP
X0 18 18 0 1796 388 3 MP
XPP
X18 0 0 18 1796 388 3 MP
XPP
X0 18 18 0 1796 406 3 MP
XPP
X18 0 0 18 1796 406 3 MP
XPP
X0 17 18 0 1796 424 3 MP
XPP
X18 0 0 17 1796 424 3 MP
XPP
X0 18 18 0 1796 441 3 MP
XPP
X18 0 0 18 1796 441 3 MP
XPP
X0 18 18 0 1796 459 3 MP
XPP
X18 0 0 18 1796 459 3 MP
XPP
X0 18 18 0 1796 477 3 MP
XPP
X18 0 0 18 1796 477 3 MP
XPP
X0 18 18 0 1796 495 3 MP
XPP
X18 0 0 18 1796 495 3 MP
XPP
X0 18 18 0 1796 513 3 MP
XPP
X18 0 0 18 1796 513 3 MP
XPP
X0 17 18 0 1796 531 3 MP
XPP
X18 0 0 17 1796 531 3 MP
XPP
X0 18 18 0 1796 548 3 MP
XPP
X18 0 0 18 1796 548 3 MP
XPP
X0 18 18 0 1796 566 3 MP
XPP
X18 0 0 18 1796 566 3 MP
XPP
X0.746032 sg
X0 18 18 0 1796 584 3 MP
XPP
X18 0 0 18 1796 584 3 MP
XPP
X0 18 18 0 1796 602 3 MP
XPP
X18 0 0 18 1796 602 3 MP
XPP
X0 18 18 0 1796 620 3 MP
XPP
X18 0 0 18 1796 620 3 MP
XPP
X0 17 18 0 1796 638 3 MP
XPP
X18 0 0 17 1796 638 3 MP
XPP
X0 18 18 0 1796 655 3 MP
XPP
X18 0 0 18 1796 655 3 MP
XPP
X0 18 18 0 1796 673 3 MP
XPP
X18 0 0 18 1796 673 3 MP
XPP
X0 18 18 0 1796 691 3 MP
XPP
X18 0 0 18 1796 691 3 MP
XPP
X0 18 18 0 1796 709 3 MP
XPP
X18 0 0 18 1796 709 3 MP
XPP
X0 18 18 0 1796 727 3 MP
XPP
X18 0 0 18 1796 727 3 MP
XPP
X0 17 18 0 1796 745 3 MP
XPP
X18 0 0 17 1796 745 3 MP
XPP
X0 18 18 0 1796 762 3 MP
XPP
X18 0 0 18 1796 762 3 MP
XPP
X0 18 18 0 1796 780 3 MP
XPP
X18 0 0 18 1796 780 3 MP
XPP
X0 18 18 0 1796 798 3 MP
XPP
X18 0 0 18 1796 798 3 MP
XPP
X0 18 18 0 1796 816 3 MP
XPP
X18 0 0 18 1796 816 3 MP
XPP
X0 18 18 0 1796 834 3 MP
XPP
X18 0 0 18 1796 834 3 MP
XPP
X0 17 18 0 1796 852 3 MP
XPP
X18 0 0 17 1796 852 3 MP
XPP
X1 sg
X0 18 18 0 1796 869 3 MP
XPP
X18 0 0 18 1796 869 3 MP
XPP
X0 18 18 0 1796 887 3 MP
XPP
X18 0 0 18 1796 887 3 MP
XPP
X0 18 18 0 1796 905 3 MP
XPP
X18 0 0 18 1796 905 3 MP
XPP
X0 18 18 0 1796 923 3 MP
XPP
X18 0 0 18 1796 923 3 MP
XPP
X0 18 18 0 1796 941 3 MP
XPP
X18 0 0 18 1796 941 3 MP
XPP
X0 17 18 0 1796 959 3 MP
XPP
X18 0 0 17 1796 959 3 MP
XPP
X0 18 18 0 1796 976 3 MP
XPP
X18 0 0 18 1796 976 3 MP
XPP
X0 18 18 0 1796 994 3 MP
XPP
X18 0 0 18 1796 994 3 MP
XPP
X0 18 18 0 1796 1012 3 MP
XPP
X18 0 0 18 1796 1012 3 MP
XPP
X0 18 18 0 1796 1030 3 MP
XPP
X18 0 0 18 1796 1030 3 MP
XPP
X0 18 18 0 1796 1048 3 MP
XPP
X18 0 0 18 1796 1048 3 MP
XPP
X0 17 18 0 1796 1066 3 MP
XPP
X18 0 0 17 1796 1066 3 MP
XPP
X0 18 18 0 1796 1083 3 MP
XPP
X18 0 0 18 1796 1083 3 MP
XPP
X0 18 18 0 1796 1101 3 MP
XPP
X18 0 0 18 1796 1101 3 MP
XPP
X0 18 18 0 1796 1119 3 MP
XPP
X18 0 0 18 1796 1119 3 MP
XPP
X0 18 18 0 1796 1137 3 MP
XPP
X18 0 0 18 1796 1137 3 MP
XPP
X0 18 18 0 1796 1155 3 MP
XPP
X18 0 0 18 1796 1155 3 MP
XPP
X0 17 18 0 1796 1173 3 MP
XPP
X18 0 0 17 1796 1173 3 MP
XPP
X0 18 18 0 1796 1190 3 MP
XPP
X18 0 0 18 1796 1190 3 MP
XPP
X0 18 18 0 1796 1208 3 MP
XPP
X18 0 0 18 1796 1208 3 MP
XPP
X0 18 18 0 1796 1226 3 MP
XPP
X18 0 0 18 1796 1226 3 MP
XPP
X0 18 18 0 1796 1244 3 MP
XPP
X18 0 0 18 1796 1244 3 MP
XPP
X0 17 18 0 1796 1262 3 MP
XPP
X18 0 0 17 1796 1262 3 MP
XPP
X0 18 18 0 1796 1279 3 MP
XPP
X18 0 0 18 1796 1279 3 MP
XPP
X0 18 18 0 1796 1297 3 MP
XPP
X18 0 0 18 1796 1297 3 MP
XPP
X0 18 18 0 1796 1315 3 MP
XPP
X18 0 0 18 1796 1315 3 MP
XPP
X0 18 18 0 1796 1333 3 MP
XPP
X18 0 0 18 1796 1333 3 MP
XPP
X0 18 18 0 1796 1351 3 MP
XPP
X18 0 0 18 1796 1351 3 MP
XPP
X0 17 18 0 1796 1369 3 MP
XPP
X18 0 0 17 1796 1369 3 MP
XPP
X0 18 18 0 1796 1386 3 MP
XPP
X18 0 0 18 1796 1386 3 MP
XPP
X0 18 18 0 1796 1404 3 MP
XPP
X18 0 0 18 1796 1404 3 MP
XPP
X0 18 18 0 1796 1422 3 MP
XPP
X18 0 0 18 1796 1422 3 MP
XPP
X0 18 18 0 1796 1440 3 MP
XPP
X18 0 0 18 1796 1440 3 MP
XPP
X0 18 18 0 1796 1458 3 MP
XPP
X18 0 0 18 1796 1458 3 MP
XPP
X0 17 18 0 1796 1476 3 MP
XPP
X18 0 0 17 1796 1476 3 MP
XPP
X0 18 18 0 1796 1493 3 MP
XPP
X18 0 0 18 1796 1493 3 MP
XPP
X0 18 18 0 1796 1511 3 MP
XPP
X18 0 0 18 1796 1511 3 MP
XPP
X0 18 18 0 1796 1529 3 MP
XPP
X18 0 0 18 1796 1529 3 MP
XPP
X0 18 18 0 1796 1547 3 MP
XPP
X18 0 0 18 1796 1547 3 MP
XPP
X0 18 18 0 1796 1565 3 MP
XPP
X18 0 0 18 1796 1565 3 MP
XPP
X0 17 18 0 1796 1583 3 MP
XPP
X18 0 0 17 1796 1583 3 MP
XPP
X0 18 18 0 1796 1600 3 MP
XPP
X18 0 0 18 1796 1600 3 MP
XPP
X0 18 18 0 1796 1618 3 MP
XPP
X18 0 0 18 1796 1618 3 MP
XPP
X0 18 18 0 1796 1636 3 MP
XPP
X18 0 0 18 1796 1636 3 MP
XPP
X0 18 18 0 1796 1654 3 MP
XPP
X18 0 0 18 1796 1654 3 MP
XPP
X0 18 18 0 1796 1672 3 MP
XPP
X18 0 0 18 1796 1672 3 MP
XPP
X0 17 18 0 1796 1690 3 MP
XPP
X18 0 0 17 1796 1690 3 MP
XPP
X0 18 18 0 1796 1707 3 MP
XPP
X18 0 0 18 1796 1707 3 MP
XPP
X0 18 18 0 1796 1725 3 MP
XPP
X18 0 0 18 1796 1725 3 MP
XPP
X0 18 18 0 1796 1743 3 MP
XPP
X18 0 0 18 1796 1743 3 MP
XPP
X0 18 18 0 1796 1761 3 MP
XPP
X18 0 0 18 1796 1761 3 MP
XPP
X0 18 18 0 1796 1779 3 MP
XPP
X18 0 0 18 1796 1779 3 MP
XPP
X0 17 18 0 1796 1797 3 MP
XPP
X18 0 0 17 1796 1797 3 MP
XPP
X0 18 18 0 1796 1814 3 MP
XPP
X18 0 0 18 1796 1814 3 MP
XPP
X0 18 18 0 1796 1832 3 MP
XPP
X18 0 0 18 1796 1832 3 MP
XPP
X0 18 18 0 1796 1850 3 MP
XPP
X18 0 0 18 1796 1850 3 MP
XPP
X0 18 18 0 1796 1868 3 MP
XPP
X18 0 0 18 1796 1868 3 MP
XPP
X0 18 18 0 1796 1886 3 MP
XPP
X18 0 0 18 1796 1886 3 MP
XPP
X0 17 18 0 1796 1904 3 MP
XPP
X18 0 0 17 1796 1904 3 MP
XPP
X0 18 18 0 1796 1921 3 MP
XPP
X18 0 0 18 1796 1921 3 MP
XPP
X0 18 18 0 1796 1939 3 MP
XPP
X18 0 0 18 1796 1939 3 MP
XPP
X0 18 18 0 1796 1957 3 MP
XPP
X18 0 0 18 1796 1957 3 MP
XPP
X0 18 18 0 1796 1975 3 MP
XPP
X18 0 0 18 1796 1975 3 MP
XPP
X0 18 18 0 1796 1993 3 MP
XPP
X18 0 0 18 1796 1993 3 MP
XPP
X0 17 18 0 1796 2011 3 MP
XPP
X18 0 0 17 1796 2011 3 MP
XPP
X0 18 18 0 1796 2028 3 MP
XPP
X18 0 0 18 1796 2028 3 MP
XPP
X0 18 18 0 1796 2046 3 MP
XPP
X18 0 0 18 1796 2046 3 MP
XPP
X0 18 18 0 1796 2064 3 MP
XPP
X18 0 0 18 1796 2064 3 MP
XPP
X0 18 18 0 1796 2082 3 MP
XPP
X18 0 0 18 1796 2082 3 MP
XPP
X0 18 18 0 1796 2100 3 MP
XPP
X18 0 0 18 1796 2100 3 MP
XPP
X0 17 18 0 1796 2118 3 MP
XPP
X18 0 0 17 1796 2118 3 MP
XPP
X0 18 18 0 1796 2135 3 MP
XPP
X18 0 0 18 1796 2135 3 MP
XPP
X0 18 18 0 1796 2153 3 MP
XPP
X18 0 0 18 1796 2153 3 MP
XPP
X0 18 17 0 1814 388 3 MP
XPP
X17 0 0 18 1814 388 3 MP
XPP
X0 18 17 0 1814 406 3 MP
XPP
X17 0 0 18 1814 406 3 MP
XPP
X0 17 17 0 1814 424 3 MP
XPP
X17 0 0 17 1814 424 3 MP
XPP
X0 18 17 0 1814 441 3 MP
XPP
X17 0 0 18 1814 441 3 MP
XPP
X0 18 17 0 1814 459 3 MP
XPP
X17 0 0 18 1814 459 3 MP
XPP
X0 18 17 0 1814 477 3 MP
XPP
X17 0 0 18 1814 477 3 MP
XPP
X0 18 17 0 1814 495 3 MP
XPP
X17 0 0 18 1814 495 3 MP
XPP
X0 18 17 0 1814 513 3 MP
XPP
X17 0 0 18 1814 513 3 MP
XPP
X0 17 17 0 1814 531 3 MP
XPP
X17 0 0 17 1814 531 3 MP
XPP
X0 18 17 0 1814 548 3 MP
XPP
X17 0 0 18 1814 548 3 MP
XPP
X0.746032 sg
X0 18 17 0 1814 566 3 MP
XPP
X17 0 0 18 1814 566 3 MP
XPP
X0 18 17 0 1814 584 3 MP
XPP
X17 0 0 18 1814 584 3 MP
XPP
X0 18 17 0 1814 602 3 MP
XPP
X17 0 0 18 1814 602 3 MP
XPP
X0 18 17 0 1814 620 3 MP
XPP
X17 0 0 18 1814 620 3 MP
XPP
X0 17 17 0 1814 638 3 MP
XPP
X17 0 0 17 1814 638 3 MP
XPP
X0 18 17 0 1814 655 3 MP
XPP
X17 0 0 18 1814 655 3 MP
XPP
X0 18 17 0 1814 673 3 MP
XPP
X17 0 0 18 1814 673 3 MP
XPP
X0 18 17 0 1814 691 3 MP
XPP
X17 0 0 18 1814 691 3 MP
XPP
X0 18 17 0 1814 709 3 MP
XPP
X17 0 0 18 1814 709 3 MP
XPP
X0 18 17 0 1814 727 3 MP
XPP
X17 0 0 18 1814 727 3 MP
XPP
X0 17 17 0 1814 745 3 MP
XPP
X17 0 0 17 1814 745 3 MP
XPP
X0 18 17 0 1814 762 3 MP
XPP
X17 0 0 18 1814 762 3 MP
XPP
X0 18 17 0 1814 780 3 MP
XPP
X17 0 0 18 1814 780 3 MP
XPP
X0 18 17 0 1814 798 3 MP
XPP
X17 0 0 18 1814 798 3 MP
XPP
X0 18 17 0 1814 816 3 MP
XPP
X17 0 0 18 1814 816 3 MP
XPP
X0 18 17 0 1814 834 3 MP
XPP
X17 0 0 18 1814 834 3 MP
XPP
X0 17 17 0 1814 852 3 MP
XPP
X17 0 0 17 1814 852 3 MP
XPP
X0 18 17 0 1814 869 3 MP
XPP
X17 0 0 18 1814 869 3 MP
XPP
X1 sg
X0 18 17 0 1814 887 3 MP
XPP
X17 0 0 18 1814 887 3 MP
XPP
X0 18 17 0 1814 905 3 MP
XPP
X17 0 0 18 1814 905 3 MP
XPP
X0 18 17 0 1814 923 3 MP
XPP
X17 0 0 18 1814 923 3 MP
XPP
X0 18 17 0 1814 941 3 MP
XPP
X17 0 0 18 1814 941 3 MP
XPP
X0 17 17 0 1814 959 3 MP
XPP
X17 0 0 17 1814 959 3 MP
XPP
X0 18 17 0 1814 976 3 MP
XPP
X17 0 0 18 1814 976 3 MP
XPP
X0 18 17 0 1814 994 3 MP
XPP
X17 0 0 18 1814 994 3 MP
XPP
X0 18 17 0 1814 1012 3 MP
XPP
X17 0 0 18 1814 1012 3 MP
XPP
X0 18 17 0 1814 1030 3 MP
XPP
X17 0 0 18 1814 1030 3 MP
XPP
X0 18 17 0 1814 1048 3 MP
XPP
X17 0 0 18 1814 1048 3 MP
XPP
X0 17 17 0 1814 1066 3 MP
XPP
X17 0 0 17 1814 1066 3 MP
XPP
X0 18 17 0 1814 1083 3 MP
XPP
X17 0 0 18 1814 1083 3 MP
XPP
X0 18 17 0 1814 1101 3 MP
XPP
X17 0 0 18 1814 1101 3 MP
XPP
X0 18 17 0 1814 1119 3 MP
XPP
X17 0 0 18 1814 1119 3 MP
XPP
X0 18 17 0 1814 1137 3 MP
XPP
X17 0 0 18 1814 1137 3 MP
XPP
X0 18 17 0 1814 1155 3 MP
XPP
X17 0 0 18 1814 1155 3 MP
XPP
X0 17 17 0 1814 1173 3 MP
XPP
X17 0 0 17 1814 1173 3 MP
XPP
X0 18 17 0 1814 1190 3 MP
XPP
X17 0 0 18 1814 1190 3 MP
XPP
X0 18 17 0 1814 1208 3 MP
XPP
X17 0 0 18 1814 1208 3 MP
XPP
X0 18 17 0 1814 1226 3 MP
XPP
X17 0 0 18 1814 1226 3 MP
XPP
X0 18 17 0 1814 1244 3 MP
XPP
X17 0 0 18 1814 1244 3 MP
XPP
X0 17 17 0 1814 1262 3 MP
XPP
X17 0 0 17 1814 1262 3 MP
XPP
X0 18 17 0 1814 1279 3 MP
XPP
X17 0 0 18 1814 1279 3 MP
XPP
X0 18 17 0 1814 1297 3 MP
XPP
X17 0 0 18 1814 1297 3 MP
XPP
X0 18 17 0 1814 1315 3 MP
XPP
X17 0 0 18 1814 1315 3 MP
XPP
X0 18 17 0 1814 1333 3 MP
XPP
X17 0 0 18 1814 1333 3 MP
XPP
X0 18 17 0 1814 1351 3 MP
XPP
X17 0 0 18 1814 1351 3 MP
XPP
X0 17 17 0 1814 1369 3 MP
XPP
X17 0 0 17 1814 1369 3 MP
XPP
X0 18 17 0 1814 1386 3 MP
XPP
X17 0 0 18 1814 1386 3 MP
XPP
X0 18 17 0 1814 1404 3 MP
XPP
X17 0 0 18 1814 1404 3 MP
XPP
X0 18 17 0 1814 1422 3 MP
XPP
X17 0 0 18 1814 1422 3 MP
XPP
X0 18 17 0 1814 1440 3 MP
XPP
X17 0 0 18 1814 1440 3 MP
XPP
X0 18 17 0 1814 1458 3 MP
XPP
X17 0 0 18 1814 1458 3 MP
XPP
X0 17 17 0 1814 1476 3 MP
XPP
X17 0 0 17 1814 1476 3 MP
XPP
X0 18 17 0 1814 1493 3 MP
XPP
X17 0 0 18 1814 1493 3 MP
XPP
X0 18 17 0 1814 1511 3 MP
XPP
X17 0 0 18 1814 1511 3 MP
XPP
X0 18 17 0 1814 1529 3 MP
XPP
X17 0 0 18 1814 1529 3 MP
XPP
X0 18 17 0 1814 1547 3 MP
XPP
X17 0 0 18 1814 1547 3 MP
XPP
X0 18 17 0 1814 1565 3 MP
XPP
X17 0 0 18 1814 1565 3 MP
XPP
X0 17 17 0 1814 1583 3 MP
XPP
X17 0 0 17 1814 1583 3 MP
XPP
X0 18 17 0 1814 1600 3 MP
XPP
X17 0 0 18 1814 1600 3 MP
XPP
X0 18 17 0 1814 1618 3 MP
XPP
X17 0 0 18 1814 1618 3 MP
XPP
X0 18 17 0 1814 1636 3 MP
XPP
X17 0 0 18 1814 1636 3 MP
XPP
X0 18 17 0 1814 1654 3 MP
XPP
X17 0 0 18 1814 1654 3 MP
XPP
X0 18 17 0 1814 1672 3 MP
XPP
X17 0 0 18 1814 1672 3 MP
XPP
X0 17 17 0 1814 1690 3 MP
XPP
X17 0 0 17 1814 1690 3 MP
XPP
X0 18 17 0 1814 1707 3 MP
XPP
X17 0 0 18 1814 1707 3 MP
XPP
X0 18 17 0 1814 1725 3 MP
XPP
X17 0 0 18 1814 1725 3 MP
XPP
X0 18 17 0 1814 1743 3 MP
XPP
X17 0 0 18 1814 1743 3 MP
XPP
X0 18 17 0 1814 1761 3 MP
XPP
X17 0 0 18 1814 1761 3 MP
XPP
X0 18 17 0 1814 1779 3 MP
XPP
X17 0 0 18 1814 1779 3 MP
XPP
X0 17 17 0 1814 1797 3 MP
XPP
X17 0 0 17 1814 1797 3 MP
XPP
X0 18 17 0 1814 1814 3 MP
XPP
X17 0 0 18 1814 1814 3 MP
XPP
X0 18 17 0 1814 1832 3 MP
XPP
X17 0 0 18 1814 1832 3 MP
XPP
X0 18 17 0 1814 1850 3 MP
XPP
X17 0 0 18 1814 1850 3 MP
XPP
X0 18 17 0 1814 1868 3 MP
XPP
X17 0 0 18 1814 1868 3 MP
XPP
X0 18 17 0 1814 1886 3 MP
XPP
X17 0 0 18 1814 1886 3 MP
XPP
X0 17 17 0 1814 1904 3 MP
XPP
X17 0 0 17 1814 1904 3 MP
XPP
X0 18 17 0 1814 1921 3 MP
XPP
X17 0 0 18 1814 1921 3 MP
XPP
X0 18 17 0 1814 1939 3 MP
XPP
X17 0 0 18 1814 1939 3 MP
XPP
X0 18 17 0 1814 1957 3 MP
XPP
X17 0 0 18 1814 1957 3 MP
XPP
X0 18 17 0 1814 1975 3 MP
XPP
X17 0 0 18 1814 1975 3 MP
XPP
X0 18 17 0 1814 1993 3 MP
XPP
X17 0 0 18 1814 1993 3 MP
XPP
X0 17 17 0 1814 2011 3 MP
XPP
X17 0 0 17 1814 2011 3 MP
XPP
X0 18 17 0 1814 2028 3 MP
XPP
X17 0 0 18 1814 2028 3 MP
XPP
X0 18 17 0 1814 2046 3 MP
XPP
X17 0 0 18 1814 2046 3 MP
XPP
X0 18 17 0 1814 2064 3 MP
XPP
X17 0 0 18 1814 2064 3 MP
XPP
X0 18 17 0 1814 2082 3 MP
XPP
X17 0 0 18 1814 2082 3 MP
XPP
X0 18 17 0 1814 2100 3 MP
XPP
X17 0 0 18 1814 2100 3 MP
XPP
X0 17 17 0 1814 2118 3 MP
XPP
X17 0 0 17 1814 2118 3 MP
XPP
X0 18 17 0 1814 2135 3 MP
XPP
X17 0 0 18 1814 2135 3 MP
XPP
X0 18 17 0 1814 2153 3 MP
XPP
X17 0 0 18 1814 2153 3 MP
XPP
X0 18 18 0 1831 388 3 MP
XPP
X18 0 0 18 1831 388 3 MP
XPP
X0 18 18 0 1831 406 3 MP
XPP
X18 0 0 18 1831 406 3 MP
XPP
X0 17 18 0 1831 424 3 MP
XPP
X18 0 0 17 1831 424 3 MP
XPP
X0 18 18 0 1831 441 3 MP
XPP
X18 0 0 18 1831 441 3 MP
XPP
X0 18 18 0 1831 459 3 MP
XPP
X18 0 0 18 1831 459 3 MP
XPP
X0 18 18 0 1831 477 3 MP
XPP
X18 0 0 18 1831 477 3 MP
XPP
X0 18 18 0 1831 495 3 MP
XPP
X18 0 0 18 1831 495 3 MP
XPP
X0 18 18 0 1831 513 3 MP
XPP
X18 0 0 18 1831 513 3 MP
XPP
X0 17 18 0 1831 531 3 MP
XPP
X18 0 0 17 1831 531 3 MP
XPP
X0.746032 sg
X0 18 18 0 1831 548 3 MP
XPP
X18 0 0 18 1831 548 3 MP
XPP
X0 18 18 0 1831 566 3 MP
XPP
X18 0 0 18 1831 566 3 MP
XPP
X0 18 18 0 1831 584 3 MP
XPP
X18 0 0 18 1831 584 3 MP
XPP
X0 18 18 0 1831 602 3 MP
XPP
X18 0 0 18 1831 602 3 MP
XPP
X0 18 18 0 1831 620 3 MP
XPP
X18 0 0 18 1831 620 3 MP
XPP
X0 17 18 0 1831 638 3 MP
XPP
X18 0 0 17 1831 638 3 MP
XPP
X0 18 18 0 1831 655 3 MP
XPP
X18 0 0 18 1831 655 3 MP
XPP
X0 18 18 0 1831 673 3 MP
XPP
X18 0 0 18 1831 673 3 MP
XPP
X0 18 18 0 1831 691 3 MP
XPP
X18 0 0 18 1831 691 3 MP
XPP
X0 18 18 0 1831 709 3 MP
XPP
X18 0 0 18 1831 709 3 MP
XPP
X0 18 18 0 1831 727 3 MP
XPP
X18 0 0 18 1831 727 3 MP
XPP
X0 17 18 0 1831 745 3 MP
XPP
X18 0 0 17 1831 745 3 MP
XPP
X0 18 18 0 1831 762 3 MP
XPP
X18 0 0 18 1831 762 3 MP
XPP
X0 18 18 0 1831 780 3 MP
XPP
X18 0 0 18 1831 780 3 MP
XPP
X0 18 18 0 1831 798 3 MP
XPP
X18 0 0 18 1831 798 3 MP
XPP
X0 18 18 0 1831 816 3 MP
XPP
X18 0 0 18 1831 816 3 MP
XPP
X0 18 18 0 1831 834 3 MP
XPP
X18 0 0 18 1831 834 3 MP
XPP
X0 17 18 0 1831 852 3 MP
XPP
X18 0 0 17 1831 852 3 MP
XPP
X0 18 18 0 1831 869 3 MP
XPP
X18 0 0 18 1831 869 3 MP
XPP
X0 18 18 0 1831 887 3 MP
XPP
X18 0 0 18 1831 887 3 MP
XPP
X1 sg
X0 18 18 0 1831 905 3 MP
XPP
X18 0 0 18 1831 905 3 MP
XPP
X0 18 18 0 1831 923 3 MP
XPP
X18 0 0 18 1831 923 3 MP
XPP
X0 18 18 0 1831 941 3 MP
XPP
X18 0 0 18 1831 941 3 MP
XPP
X0 17 18 0 1831 959 3 MP
XPP
X18 0 0 17 1831 959 3 MP
XPP
X0 18 18 0 1831 976 3 MP
XPP
X18 0 0 18 1831 976 3 MP
XPP
X0 18 18 0 1831 994 3 MP
XPP
X18 0 0 18 1831 994 3 MP
XPP
X0 18 18 0 1831 1012 3 MP
XPP
X18 0 0 18 1831 1012 3 MP
XPP
X0 18 18 0 1831 1030 3 MP
XPP
X18 0 0 18 1831 1030 3 MP
XPP
X0 18 18 0 1831 1048 3 MP
XPP
X18 0 0 18 1831 1048 3 MP
XPP
X0 17 18 0 1831 1066 3 MP
XPP
X18 0 0 17 1831 1066 3 MP
XPP
X0 18 18 0 1831 1083 3 MP
XPP
X18 0 0 18 1831 1083 3 MP
XPP
X0 18 18 0 1831 1101 3 MP
XPP
X18 0 0 18 1831 1101 3 MP
XPP
X0 18 18 0 1831 1119 3 MP
XPP
X18 0 0 18 1831 1119 3 MP
XPP
X0 18 18 0 1831 1137 3 MP
XPP
X18 0 0 18 1831 1137 3 MP
XPP
X0 18 18 0 1831 1155 3 MP
XPP
X18 0 0 18 1831 1155 3 MP
XPP
X0 17 18 0 1831 1173 3 MP
XPP
X18 0 0 17 1831 1173 3 MP
XPP
X0 18 18 0 1831 1190 3 MP
XPP
X18 0 0 18 1831 1190 3 MP
XPP
X0 18 18 0 1831 1208 3 MP
XPP
X18 0 0 18 1831 1208 3 MP
XPP
X0 18 18 0 1831 1226 3 MP
XPP
X18 0 0 18 1831 1226 3 MP
XPP
X0 18 18 0 1831 1244 3 MP
XPP
X18 0 0 18 1831 1244 3 MP
XPP
X0 17 18 0 1831 1262 3 MP
XPP
X18 0 0 17 1831 1262 3 MP
XPP
X0 18 18 0 1831 1279 3 MP
XPP
X18 0 0 18 1831 1279 3 MP
XPP
X0 18 18 0 1831 1297 3 MP
XPP
X18 0 0 18 1831 1297 3 MP
XPP
X0 18 18 0 1831 1315 3 MP
XPP
X18 0 0 18 1831 1315 3 MP
XPP
X0 18 18 0 1831 1333 3 MP
XPP
X18 0 0 18 1831 1333 3 MP
XPP
X0 18 18 0 1831 1351 3 MP
XPP
X18 0 0 18 1831 1351 3 MP
XPP
X0 17 18 0 1831 1369 3 MP
XPP
X18 0 0 17 1831 1369 3 MP
XPP
X0 18 18 0 1831 1386 3 MP
XPP
X18 0 0 18 1831 1386 3 MP
XPP
X0 18 18 0 1831 1404 3 MP
XPP
X18 0 0 18 1831 1404 3 MP
XPP
X0 18 18 0 1831 1422 3 MP
XPP
X18 0 0 18 1831 1422 3 MP
XPP
X0 18 18 0 1831 1440 3 MP
XPP
X18 0 0 18 1831 1440 3 MP
XPP
X0 18 18 0 1831 1458 3 MP
XPP
X18 0 0 18 1831 1458 3 MP
XPP
X0 17 18 0 1831 1476 3 MP
XPP
X18 0 0 17 1831 1476 3 MP
XPP
X0 18 18 0 1831 1493 3 MP
XPP
X18 0 0 18 1831 1493 3 MP
XPP
X0 18 18 0 1831 1511 3 MP
XPP
X18 0 0 18 1831 1511 3 MP
XPP
X0 18 18 0 1831 1529 3 MP
XPP
X18 0 0 18 1831 1529 3 MP
XPP
X0 18 18 0 1831 1547 3 MP
XPP
X18 0 0 18 1831 1547 3 MP
XPP
X0 18 18 0 1831 1565 3 MP
XPP
X18 0 0 18 1831 1565 3 MP
XPP
X0 17 18 0 1831 1583 3 MP
XPP
X18 0 0 17 1831 1583 3 MP
XPP
X0 18 18 0 1831 1600 3 MP
XPP
X18 0 0 18 1831 1600 3 MP
XPP
X0 18 18 0 1831 1618 3 MP
XPP
X18 0 0 18 1831 1618 3 MP
XPP
X0 18 18 0 1831 1636 3 MP
XPP
X18 0 0 18 1831 1636 3 MP
XPP
X0 18 18 0 1831 1654 3 MP
XPP
X18 0 0 18 1831 1654 3 MP
XPP
X0 18 18 0 1831 1672 3 MP
XPP
X18 0 0 18 1831 1672 3 MP
XPP
X0 17 18 0 1831 1690 3 MP
XPP
X18 0 0 17 1831 1690 3 MP
XPP
X0 18 18 0 1831 1707 3 MP
XPP
X18 0 0 18 1831 1707 3 MP
XPP
X0 18 18 0 1831 1725 3 MP
XPP
X18 0 0 18 1831 1725 3 MP
XPP
X0 18 18 0 1831 1743 3 MP
XPP
X18 0 0 18 1831 1743 3 MP
XPP
X0 18 18 0 1831 1761 3 MP
XPP
X18 0 0 18 1831 1761 3 MP
XPP
X0 18 18 0 1831 1779 3 MP
XPP
X18 0 0 18 1831 1779 3 MP
XPP
X0 17 18 0 1831 1797 3 MP
XPP
X18 0 0 17 1831 1797 3 MP
XPP
X0 18 18 0 1831 1814 3 MP
XPP
X18 0 0 18 1831 1814 3 MP
XPP
X0 18 18 0 1831 1832 3 MP
XPP
X18 0 0 18 1831 1832 3 MP
XPP
X0 18 18 0 1831 1850 3 MP
XPP
X18 0 0 18 1831 1850 3 MP
XPP
X0 18 18 0 1831 1868 3 MP
XPP
X18 0 0 18 1831 1868 3 MP
XPP
X0 18 18 0 1831 1886 3 MP
XPP
X18 0 0 18 1831 1886 3 MP
XPP
X0 17 18 0 1831 1904 3 MP
XPP
X18 0 0 17 1831 1904 3 MP
XPP
X0 18 18 0 1831 1921 3 MP
XPP
X18 0 0 18 1831 1921 3 MP
XPP
X0 18 18 0 1831 1939 3 MP
XPP
X18 0 0 18 1831 1939 3 MP
XPP
X0 18 18 0 1831 1957 3 MP
XPP
X18 0 0 18 1831 1957 3 MP
XPP
X0 18 18 0 1831 1975 3 MP
XPP
X18 0 0 18 1831 1975 3 MP
XPP
X0 18 18 0 1831 1993 3 MP
XPP
X18 0 0 18 1831 1993 3 MP
XPP
X0 17 18 0 1831 2011 3 MP
XPP
X18 0 0 17 1831 2011 3 MP
XPP
X0 18 18 0 1831 2028 3 MP
XPP
X18 0 0 18 1831 2028 3 MP
XPP
X0 18 18 0 1831 2046 3 MP
XPP
X18 0 0 18 1831 2046 3 MP
XPP
X0 18 18 0 1831 2064 3 MP
XPP
X18 0 0 18 1831 2064 3 MP
XPP
X0 18 18 0 1831 2082 3 MP
XPP
X18 0 0 18 1831 2082 3 MP
XPP
X0 18 18 0 1831 2100 3 MP
XPP
X18 0 0 18 1831 2100 3 MP
XPP
X0 17 18 0 1831 2118 3 MP
XPP
X18 0 0 17 1831 2118 3 MP
XPP
X0 18 18 0 1831 2135 3 MP
XPP
X18 0 0 18 1831 2135 3 MP
XPP
X0 18 18 0 1831 2153 3 MP
XPP
X18 0 0 18 1831 2153 3 MP
XPP
X0 18 18 0 1849 388 3 MP
XPP
X18 0 0 18 1849 388 3 MP
XPP
X0 18 18 0 1849 406 3 MP
XPP
X18 0 0 18 1849 406 3 MP
XPP
X0 17 18 0 1849 424 3 MP
XPP
X18 0 0 17 1849 424 3 MP
XPP
X0 18 18 0 1849 441 3 MP
XPP
X18 0 0 18 1849 441 3 MP
XPP
X0 18 18 0 1849 459 3 MP
XPP
X18 0 0 18 1849 459 3 MP
XPP
X0 18 18 0 1849 477 3 MP
XPP
X18 0 0 18 1849 477 3 MP
XPP
X0 18 18 0 1849 495 3 MP
XPP
X18 0 0 18 1849 495 3 MP
XPP
X0 18 18 0 1849 513 3 MP
XPP
X18 0 0 18 1849 513 3 MP
XPP
X0.746032 sg
X0 17 18 0 1849 531 3 MP
XPP
X18 0 0 17 1849 531 3 MP
XPP
X0 18 18 0 1849 548 3 MP
XPP
X18 0 0 18 1849 548 3 MP
XPP
X0 18 18 0 1849 566 3 MP
XPP
X18 0 0 18 1849 566 3 MP
XPP
X0 18 18 0 1849 584 3 MP
XPP
X18 0 0 18 1849 584 3 MP
XPP
X0 18 18 0 1849 602 3 MP
XPP
X18 0 0 18 1849 602 3 MP
XPP
X0 18 18 0 1849 620 3 MP
XPP
X18 0 0 18 1849 620 3 MP
XPP
X0 17 18 0 1849 638 3 MP
XPP
X18 0 0 17 1849 638 3 MP
XPP
X0 18 18 0 1849 655 3 MP
XPP
X18 0 0 18 1849 655 3 MP
XPP
X0 18 18 0 1849 673 3 MP
XPP
X18 0 0 18 1849 673 3 MP
XPP
X0 18 18 0 1849 691 3 MP
XPP
X18 0 0 18 1849 691 3 MP
XPP
X0 18 18 0 1849 709 3 MP
XPP
X18 0 0 18 1849 709 3 MP
XPP
X0 18 18 0 1849 727 3 MP
XPP
X18 0 0 18 1849 727 3 MP
XPP
X0 17 18 0 1849 745 3 MP
XPP
X18 0 0 17 1849 745 3 MP
XPP
X0 18 18 0 1849 762 3 MP
XPP
X18 0 0 18 1849 762 3 MP
XPP
X0 18 18 0 1849 780 3 MP
XPP
X18 0 0 18 1849 780 3 MP
XPP
X0 18 18 0 1849 798 3 MP
XPP
X18 0 0 18 1849 798 3 MP
XPP
X0 18 18 0 1849 816 3 MP
XPP
X18 0 0 18 1849 816 3 MP
XPP
X0 18 18 0 1849 834 3 MP
XPP
X18 0 0 18 1849 834 3 MP
XPP
X0 17 18 0 1849 852 3 MP
XPP
X18 0 0 17 1849 852 3 MP
XPP
X0 18 18 0 1849 869 3 MP
XPP
X18 0 0 18 1849 869 3 MP
XPP
X0 18 18 0 1849 887 3 MP
XPP
X18 0 0 18 1849 887 3 MP
XPP
X0 18 18 0 1849 905 3 MP
XPP
X18 0 0 18 1849 905 3 MP
XPP
X1 sg
X0 18 18 0 1849 923 3 MP
XPP
X18 0 0 18 1849 923 3 MP
XPP
X0 18 18 0 1849 941 3 MP
XPP
X18 0 0 18 1849 941 3 MP
XPP
X0.492063 sg
X0 17 18 0 1849 959 3 MP
XPP
X18 0 0 17 1849 959 3 MP
XPP
X0 18 18 0 1849 976 3 MP
XPP
X18 0 0 18 1849 976 3 MP
XPP
X0 18 18 0 1849 994 3 MP
XPP
X18 0 0 18 1849 994 3 MP
XPP
X0 18 18 0 1849 1012 3 MP
XPP
X18 0 0 18 1849 1012 3 MP
XPP
X1 sg
X0 18 18 0 1849 1030 3 MP
XPP
X18 0 0 18 1849 1030 3 MP
XPP
X0 18 18 0 1849 1048 3 MP
XPP
X18 0 0 18 1849 1048 3 MP
XPP
X0 17 18 0 1849 1066 3 MP
XPP
X18 0 0 17 1849 1066 3 MP
XPP
X0 18 18 0 1849 1083 3 MP
XPP
X18 0 0 18 1849 1083 3 MP
XPP
X0 18 18 0 1849 1101 3 MP
XPP
X18 0 0 18 1849 1101 3 MP
XPP
X0 18 18 0 1849 1119 3 MP
XPP
X18 0 0 18 1849 1119 3 MP
XPP
X0 18 18 0 1849 1137 3 MP
XPP
X18 0 0 18 1849 1137 3 MP
XPP
X0 18 18 0 1849 1155 3 MP
XPP
X18 0 0 18 1849 1155 3 MP
XPP
X0 17 18 0 1849 1173 3 MP
XPP
X18 0 0 17 1849 1173 3 MP
XPP
X0 18 18 0 1849 1190 3 MP
XPP
X18 0 0 18 1849 1190 3 MP
XPP
X0 18 18 0 1849 1208 3 MP
XPP
X18 0 0 18 1849 1208 3 MP
XPP
X0 18 18 0 1849 1226 3 MP
XPP
X18 0 0 18 1849 1226 3 MP
XPP
X0 18 18 0 1849 1244 3 MP
XPP
X18 0 0 18 1849 1244 3 MP
XPP
X0 17 18 0 1849 1262 3 MP
XPP
X18 0 0 17 1849 1262 3 MP
XPP
X0 18 18 0 1849 1279 3 MP
XPP
X18 0 0 18 1849 1279 3 MP
XPP
X0 18 18 0 1849 1297 3 MP
XPP
X18 0 0 18 1849 1297 3 MP
XPP
X0 18 18 0 1849 1315 3 MP
XPP
X18 0 0 18 1849 1315 3 MP
XPP
X0 18 18 0 1849 1333 3 MP
XPP
X18 0 0 18 1849 1333 3 MP
XPP
X0 18 18 0 1849 1351 3 MP
XPP
X18 0 0 18 1849 1351 3 MP
XPP
X0 17 18 0 1849 1369 3 MP
XPP
X18 0 0 17 1849 1369 3 MP
XPP
X0 18 18 0 1849 1386 3 MP
XPP
X18 0 0 18 1849 1386 3 MP
XPP
X0 18 18 0 1849 1404 3 MP
XPP
X18 0 0 18 1849 1404 3 MP
XPP
X0 18 18 0 1849 1422 3 MP
XPP
X18 0 0 18 1849 1422 3 MP
XPP
X0 18 18 0 1849 1440 3 MP
XPP
X18 0 0 18 1849 1440 3 MP
XPP
X0 18 18 0 1849 1458 3 MP
XPP
X18 0 0 18 1849 1458 3 MP
XPP
X0 17 18 0 1849 1476 3 MP
XPP
X18 0 0 17 1849 1476 3 MP
XPP
X0 18 18 0 1849 1493 3 MP
XPP
X18 0 0 18 1849 1493 3 MP
XPP
X0 18 18 0 1849 1511 3 MP
XPP
X18 0 0 18 1849 1511 3 MP
XPP
X0 18 18 0 1849 1529 3 MP
XPP
X18 0 0 18 1849 1529 3 MP
XPP
X0 18 18 0 1849 1547 3 MP
XPP
X18 0 0 18 1849 1547 3 MP
XPP
X0 18 18 0 1849 1565 3 MP
XPP
X18 0 0 18 1849 1565 3 MP
XPP
X0 17 18 0 1849 1583 3 MP
XPP
X18 0 0 17 1849 1583 3 MP
XPP
X0 18 18 0 1849 1600 3 MP
XPP
X18 0 0 18 1849 1600 3 MP
XPP
X0 18 18 0 1849 1618 3 MP
XPP
X18 0 0 18 1849 1618 3 MP
XPP
X0 18 18 0 1849 1636 3 MP
XPP
X18 0 0 18 1849 1636 3 MP
XPP
X0 18 18 0 1849 1654 3 MP
XPP
X18 0 0 18 1849 1654 3 MP
XPP
X0 18 18 0 1849 1672 3 MP
XPP
X18 0 0 18 1849 1672 3 MP
XPP
X0 17 18 0 1849 1690 3 MP
XPP
X18 0 0 17 1849 1690 3 MP
XPP
X0 18 18 0 1849 1707 3 MP
XPP
X18 0 0 18 1849 1707 3 MP
XPP
X0 18 18 0 1849 1725 3 MP
XPP
X18 0 0 18 1849 1725 3 MP
XPP
X0 18 18 0 1849 1743 3 MP
XPP
X18 0 0 18 1849 1743 3 MP
XPP
X0 18 18 0 1849 1761 3 MP
XPP
X18 0 0 18 1849 1761 3 MP
XPP
X0 18 18 0 1849 1779 3 MP
XPP
X18 0 0 18 1849 1779 3 MP
XPP
X0 17 18 0 1849 1797 3 MP
XPP
X18 0 0 17 1849 1797 3 MP
XPP
X0 18 18 0 1849 1814 3 MP
XPP
X18 0 0 18 1849 1814 3 MP
XPP
X0 18 18 0 1849 1832 3 MP
XPP
X18 0 0 18 1849 1832 3 MP
XPP
X0 18 18 0 1849 1850 3 MP
XPP
X18 0 0 18 1849 1850 3 MP
XPP
X0 18 18 0 1849 1868 3 MP
XPP
X18 0 0 18 1849 1868 3 MP
XPP
X0 18 18 0 1849 1886 3 MP
XPP
X18 0 0 18 1849 1886 3 MP
XPP
X0 17 18 0 1849 1904 3 MP
XPP
X18 0 0 17 1849 1904 3 MP
XPP
X0 18 18 0 1849 1921 3 MP
XPP
X18 0 0 18 1849 1921 3 MP
XPP
X0 18 18 0 1849 1939 3 MP
XPP
X18 0 0 18 1849 1939 3 MP
XPP
X0 18 18 0 1849 1957 3 MP
XPP
X18 0 0 18 1849 1957 3 MP
XPP
X0 18 18 0 1849 1975 3 MP
XPP
X18 0 0 18 1849 1975 3 MP
XPP
X0 18 18 0 1849 1993 3 MP
XPP
X18 0 0 18 1849 1993 3 MP
XPP
X0 17 18 0 1849 2011 3 MP
XPP
X18 0 0 17 1849 2011 3 MP
XPP
X0 18 18 0 1849 2028 3 MP
XPP
X18 0 0 18 1849 2028 3 MP
XPP
X0 18 18 0 1849 2046 3 MP
XPP
X18 0 0 18 1849 2046 3 MP
XPP
X0 18 18 0 1849 2064 3 MP
XPP
X18 0 0 18 1849 2064 3 MP
XPP
X0 18 18 0 1849 2082 3 MP
XPP
X18 0 0 18 1849 2082 3 MP
XPP
X0 18 18 0 1849 2100 3 MP
XPP
X18 0 0 18 1849 2100 3 MP
XPP
X0 17 18 0 1849 2118 3 MP
XPP
X18 0 0 17 1849 2118 3 MP
XPP
X0 18 18 0 1849 2135 3 MP
XPP
X18 0 0 18 1849 2135 3 MP
XPP
X0 18 18 0 1849 2153 3 MP
XPP
X18 0 0 18 1849 2153 3 MP
XPP
X0 18 18 0 1867 388 3 MP
XPP
X18 0 0 18 1867 388 3 MP
XPP
X0 18 18 0 1867 406 3 MP
XPP
X18 0 0 18 1867 406 3 MP
XPP
X0 17 18 0 1867 424 3 MP
XPP
X18 0 0 17 1867 424 3 MP
XPP
X0 18 18 0 1867 441 3 MP
XPP
X18 0 0 18 1867 441 3 MP
XPP
X0 18 18 0 1867 459 3 MP
XPP
X18 0 0 18 1867 459 3 MP
XPP
X0 18 18 0 1867 477 3 MP
XPP
X18 0 0 18 1867 477 3 MP
XPP
X0 18 18 0 1867 495 3 MP
XPP
X18 0 0 18 1867 495 3 MP
XPP
X0 18 18 0 1867 513 3 MP
XPP
X18 0 0 18 1867 513 3 MP
XPP
X0.746032 sg
X0 17 18 0 1867 531 3 MP
XPP
X18 0 0 17 1867 531 3 MP
XPP
X0 18 18 0 1867 548 3 MP
XPP
X18 0 0 18 1867 548 3 MP
XPP
X0 18 18 0 1867 566 3 MP
XPP
X18 0 0 18 1867 566 3 MP
XPP
X0 18 18 0 1867 584 3 MP
XPP
X18 0 0 18 1867 584 3 MP
XPP
X0 18 18 0 1867 602 3 MP
XPP
X18 0 0 18 1867 602 3 MP
XPP
X0 18 18 0 1867 620 3 MP
XPP
X18 0 0 18 1867 620 3 MP
XPP
X0 17 18 0 1867 638 3 MP
XPP
X18 0 0 17 1867 638 3 MP
XPP
X0 18 18 0 1867 655 3 MP
XPP
X18 0 0 18 1867 655 3 MP
XPP
X0 18 18 0 1867 673 3 MP
XPP
X18 0 0 18 1867 673 3 MP
XPP
X0 18 18 0 1867 691 3 MP
XPP
X18 0 0 18 1867 691 3 MP
XPP
X0 18 18 0 1867 709 3 MP
XPP
X18 0 0 18 1867 709 3 MP
XPP
X0 18 18 0 1867 727 3 MP
XPP
X18 0 0 18 1867 727 3 MP
XPP
X0 17 18 0 1867 745 3 MP
XPP
X18 0 0 17 1867 745 3 MP
XPP
X0 18 18 0 1867 762 3 MP
XPP
X18 0 0 18 1867 762 3 MP
XPP
X0 18 18 0 1867 780 3 MP
XPP
X18 0 0 18 1867 780 3 MP
XPP
X0 18 18 0 1867 798 3 MP
XPP
X18 0 0 18 1867 798 3 MP
XPP
X0 18 18 0 1867 816 3 MP
XPP
X18 0 0 18 1867 816 3 MP
XPP
X0 18 18 0 1867 834 3 MP
XPP
X18 0 0 18 1867 834 3 MP
XPP
X0 17 18 0 1867 852 3 MP
XPP
X18 0 0 17 1867 852 3 MP
XPP
X0 18 18 0 1867 869 3 MP
XPP
X18 0 0 18 1867 869 3 MP
XPP
X0 18 18 0 1867 887 3 MP
XPP
X18 0 0 18 1867 887 3 MP
XPP
X0 18 18 0 1867 905 3 MP
XPP
X18 0 0 18 1867 905 3 MP
XPP
X0.492063 sg
X0 18 18 0 1867 923 3 MP
XPP
X18 0 0 18 1867 923 3 MP
XPP
X0 18 18 0 1867 941 3 MP
XPP
X18 0 0 18 1867 941 3 MP
XPP
X0 17 18 0 1867 959 3 MP
XPP
X18 0 0 17 1867 959 3 MP
XPP
X0 18 18 0 1867 976 3 MP
XPP
X18 0 0 18 1867 976 3 MP
XPP
X0 18 18 0 1867 994 3 MP
XPP
X18 0 0 18 1867 994 3 MP
XPP
X0 18 18 0 1867 1012 3 MP
XPP
X18 0 0 18 1867 1012 3 MP
XPP
X0 18 18 0 1867 1030 3 MP
XPP
X18 0 0 18 1867 1030 3 MP
XPP
X0 18 18 0 1867 1048 3 MP
XPP
X18 0 0 18 1867 1048 3 MP
XPP
X1 sg
X0 17 18 0 1867 1066 3 MP
XPP
X18 0 0 17 1867 1066 3 MP
XPP
X0 18 18 0 1867 1083 3 MP
XPP
X18 0 0 18 1867 1083 3 MP
XPP
X0 18 18 0 1867 1101 3 MP
XPP
X18 0 0 18 1867 1101 3 MP
XPP
X0 18 18 0 1867 1119 3 MP
XPP
X18 0 0 18 1867 1119 3 MP
XPP
X0 18 18 0 1867 1137 3 MP
XPP
X18 0 0 18 1867 1137 3 MP
XPP
X0 18 18 0 1867 1155 3 MP
XPP
X18 0 0 18 1867 1155 3 MP
XPP
X0 17 18 0 1867 1173 3 MP
XPP
X18 0 0 17 1867 1173 3 MP
XPP
X0 18 18 0 1867 1190 3 MP
XPP
X18 0 0 18 1867 1190 3 MP
XPP
X0 18 18 0 1867 1208 3 MP
XPP
X18 0 0 18 1867 1208 3 MP
XPP
X0 18 18 0 1867 1226 3 MP
XPP
X18 0 0 18 1867 1226 3 MP
XPP
X0 18 18 0 1867 1244 3 MP
XPP
X18 0 0 18 1867 1244 3 MP
XPP
X0 17 18 0 1867 1262 3 MP
XPP
X18 0 0 17 1867 1262 3 MP
XPP
X0 18 18 0 1867 1279 3 MP
XPP
X18 0 0 18 1867 1279 3 MP
XPP
X0 18 18 0 1867 1297 3 MP
XPP
X18 0 0 18 1867 1297 3 MP
XPP
X0 18 18 0 1867 1315 3 MP
XPP
X18 0 0 18 1867 1315 3 MP
XPP
X0 18 18 0 1867 1333 3 MP
XPP
X18 0 0 18 1867 1333 3 MP
XPP
X0 18 18 0 1867 1351 3 MP
XPP
X18 0 0 18 1867 1351 3 MP
XPP
X0 17 18 0 1867 1369 3 MP
XPP
X18 0 0 17 1867 1369 3 MP
XPP
X0 18 18 0 1867 1386 3 MP
XPP
X18 0 0 18 1867 1386 3 MP
XPP
X0 18 18 0 1867 1404 3 MP
XPP
X18 0 0 18 1867 1404 3 MP
XPP
X0 18 18 0 1867 1422 3 MP
XPP
X18 0 0 18 1867 1422 3 MP
XPP
X0 18 18 0 1867 1440 3 MP
XPP
X18 0 0 18 1867 1440 3 MP
XPP
X0 18 18 0 1867 1458 3 MP
XPP
X18 0 0 18 1867 1458 3 MP
XPP
X0 17 18 0 1867 1476 3 MP
XPP
X18 0 0 17 1867 1476 3 MP
XPP
X0 18 18 0 1867 1493 3 MP
XPP
X18 0 0 18 1867 1493 3 MP
XPP
X0 18 18 0 1867 1511 3 MP
XPP
X18 0 0 18 1867 1511 3 MP
XPP
X0 18 18 0 1867 1529 3 MP
XPP
X18 0 0 18 1867 1529 3 MP
XPP
X0 18 18 0 1867 1547 3 MP
XPP
X18 0 0 18 1867 1547 3 MP
XPP
X0 18 18 0 1867 1565 3 MP
XPP
X18 0 0 18 1867 1565 3 MP
XPP
X0 17 18 0 1867 1583 3 MP
XPP
X18 0 0 17 1867 1583 3 MP
XPP
X0 18 18 0 1867 1600 3 MP
XPP
X18 0 0 18 1867 1600 3 MP
XPP
X0 18 18 0 1867 1618 3 MP
XPP
X18 0 0 18 1867 1618 3 MP
XPP
X0 18 18 0 1867 1636 3 MP
XPP
X18 0 0 18 1867 1636 3 MP
XPP
X0 18 18 0 1867 1654 3 MP
XPP
X18 0 0 18 1867 1654 3 MP
XPP
X0 18 18 0 1867 1672 3 MP
XPP
X18 0 0 18 1867 1672 3 MP
XPP
X0 17 18 0 1867 1690 3 MP
XPP
X18 0 0 17 1867 1690 3 MP
XPP
X0 18 18 0 1867 1707 3 MP
XPP
X18 0 0 18 1867 1707 3 MP
XPP
X0 18 18 0 1867 1725 3 MP
XPP
X18 0 0 18 1867 1725 3 MP
XPP
X0 18 18 0 1867 1743 3 MP
XPP
X18 0 0 18 1867 1743 3 MP
XPP
X0 18 18 0 1867 1761 3 MP
XPP
X18 0 0 18 1867 1761 3 MP
XPP
X0 18 18 0 1867 1779 3 MP
XPP
X18 0 0 18 1867 1779 3 MP
XPP
X0 17 18 0 1867 1797 3 MP
XPP
X18 0 0 17 1867 1797 3 MP
XPP
X0 18 18 0 1867 1814 3 MP
XPP
X18 0 0 18 1867 1814 3 MP
XPP
X0 18 18 0 1867 1832 3 MP
XPP
X18 0 0 18 1867 1832 3 MP
XPP
X0 18 18 0 1867 1850 3 MP
XPP
X18 0 0 18 1867 1850 3 MP
XPP
X0 18 18 0 1867 1868 3 MP
XPP
X18 0 0 18 1867 1868 3 MP
XPP
X0 18 18 0 1867 1886 3 MP
XPP
X18 0 0 18 1867 1886 3 MP
XPP
X0 17 18 0 1867 1904 3 MP
XPP
X18 0 0 17 1867 1904 3 MP
XPP
X0 18 18 0 1867 1921 3 MP
XPP
X18 0 0 18 1867 1921 3 MP
XPP
X0 18 18 0 1867 1939 3 MP
XPP
X18 0 0 18 1867 1939 3 MP
XPP
X0 18 18 0 1867 1957 3 MP
XPP
X18 0 0 18 1867 1957 3 MP
XPP
X0 18 18 0 1867 1975 3 MP
XPP
X18 0 0 18 1867 1975 3 MP
XPP
X0 18 18 0 1867 1993 3 MP
XPP
X18 0 0 18 1867 1993 3 MP
XPP
X0 17 18 0 1867 2011 3 MP
XPP
X18 0 0 17 1867 2011 3 MP
XPP
X0 18 18 0 1867 2028 3 MP
XPP
X18 0 0 18 1867 2028 3 MP
XPP
X0 18 18 0 1867 2046 3 MP
XPP
X18 0 0 18 1867 2046 3 MP
XPP
X0 18 18 0 1867 2064 3 MP
XPP
X18 0 0 18 1867 2064 3 MP
XPP
X0 18 18 0 1867 2082 3 MP
XPP
X18 0 0 18 1867 2082 3 MP
XPP
X0 18 18 0 1867 2100 3 MP
XPP
X18 0 0 18 1867 2100 3 MP
XPP
X0 17 18 0 1867 2118 3 MP
XPP
X18 0 0 17 1867 2118 3 MP
XPP
X0 18 18 0 1867 2135 3 MP
XPP
X18 0 0 18 1867 2135 3 MP
XPP
X0 18 18 0 1867 2153 3 MP
XPP
X18 0 0 18 1867 2153 3 MP
XPP
X0 18 18 0 1885 388 3 MP
XPP
X18 0 0 18 1885 388 3 MP
XPP
X0 18 18 0 1885 406 3 MP
XPP
X18 0 0 18 1885 406 3 MP
XPP
X0 17 18 0 1885 424 3 MP
XPP
X18 0 0 17 1885 424 3 MP
XPP
X0 18 18 0 1885 441 3 MP
XPP
X18 0 0 18 1885 441 3 MP
XPP
X0 18 18 0 1885 459 3 MP
XPP
X18 0 0 18 1885 459 3 MP
XPP
X0 18 18 0 1885 477 3 MP
XPP
X18 0 0 18 1885 477 3 MP
XPP
X0 18 18 0 1885 495 3 MP
XPP
X18 0 0 18 1885 495 3 MP
XPP
X0.746032 sg
X0 18 18 0 1885 513 3 MP
XPP
X18 0 0 18 1885 513 3 MP
XPP
X0 17 18 0 1885 531 3 MP
XPP
X18 0 0 17 1885 531 3 MP
XPP
X0 18 18 0 1885 548 3 MP
XPP
X18 0 0 18 1885 548 3 MP
XPP
X0 18 18 0 1885 566 3 MP
XPP
X18 0 0 18 1885 566 3 MP
XPP
X0 18 18 0 1885 584 3 MP
XPP
X18 0 0 18 1885 584 3 MP
XPP
X0 18 18 0 1885 602 3 MP
XPP
X18 0 0 18 1885 602 3 MP
XPP
X0 18 18 0 1885 620 3 MP
XPP
X18 0 0 18 1885 620 3 MP
XPP
X0 17 18 0 1885 638 3 MP
XPP
X18 0 0 17 1885 638 3 MP
XPP
X0 18 18 0 1885 655 3 MP
XPP
X18 0 0 18 1885 655 3 MP
XPP
X0 18 18 0 1885 673 3 MP
XPP
X18 0 0 18 1885 673 3 MP
XPP
X0 18 18 0 1885 691 3 MP
XPP
X18 0 0 18 1885 691 3 MP
XPP
X0 18 18 0 1885 709 3 MP
XPP
X18 0 0 18 1885 709 3 MP
XPP
X0 18 18 0 1885 727 3 MP
XPP
X18 0 0 18 1885 727 3 MP
XPP
X0 17 18 0 1885 745 3 MP
XPP
X18 0 0 17 1885 745 3 MP
XPP
X0 18 18 0 1885 762 3 MP
XPP
X18 0 0 18 1885 762 3 MP
XPP
X0 18 18 0 1885 780 3 MP
XPP
X18 0 0 18 1885 780 3 MP
XPP
X0 18 18 0 1885 798 3 MP
XPP
X18 0 0 18 1885 798 3 MP
XPP
X0 18 18 0 1885 816 3 MP
XPP
X18 0 0 18 1885 816 3 MP
XPP
X0 18 18 0 1885 834 3 MP
XPP
X18 0 0 18 1885 834 3 MP
XPP
X0 17 18 0 1885 852 3 MP
XPP
X18 0 0 17 1885 852 3 MP
XPP
X0 18 18 0 1885 869 3 MP
XPP
X18 0 0 18 1885 869 3 MP
XPP
X0 18 18 0 1885 887 3 MP
XPP
X18 0 0 18 1885 887 3 MP
XPP
X0.492063 sg
X0 18 18 0 1885 905 3 MP
XPP
X18 0 0 18 1885 905 3 MP
XPP
X0 18 18 0 1885 923 3 MP
XPP
X18 0 0 18 1885 923 3 MP
XPP
X0 18 18 0 1885 941 3 MP
XPP
X18 0 0 18 1885 941 3 MP
XPP
X0 17 18 0 1885 959 3 MP
XPP
X18 0 0 17 1885 959 3 MP
XPP
X0 18 18 0 1885 976 3 MP
XPP
X18 0 0 18 1885 976 3 MP
XPP
X0 18 18 0 1885 994 3 MP
XPP
X18 0 0 18 1885 994 3 MP
XPP
X0 18 18 0 1885 1012 3 MP
XPP
X18 0 0 18 1885 1012 3 MP
XPP
X0 18 18 0 1885 1030 3 MP
XPP
X18 0 0 18 1885 1030 3 MP
XPP
X0 18 18 0 1885 1048 3 MP
XPP
X18 0 0 18 1885 1048 3 MP
XPP
X0 17 18 0 1885 1066 3 MP
XPP
X18 0 0 17 1885 1066 3 MP
XPP
X1 sg
X0 18 18 0 1885 1083 3 MP
XPP
X18 0 0 18 1885 1083 3 MP
XPP
X0 18 18 0 1885 1101 3 MP
XPP
X18 0 0 18 1885 1101 3 MP
XPP
X0 18 18 0 1885 1119 3 MP
XPP
X18 0 0 18 1885 1119 3 MP
XPP
X0 18 18 0 1885 1137 3 MP
XPP
X18 0 0 18 1885 1137 3 MP
XPP
X0 18 18 0 1885 1155 3 MP
XPP
X18 0 0 18 1885 1155 3 MP
XPP
X0 17 18 0 1885 1173 3 MP
XPP
X18 0 0 17 1885 1173 3 MP
XPP
X0 18 18 0 1885 1190 3 MP
XPP
X18 0 0 18 1885 1190 3 MP
XPP
X0 18 18 0 1885 1208 3 MP
XPP
X18 0 0 18 1885 1208 3 MP
XPP
X0 18 18 0 1885 1226 3 MP
XPP
X18 0 0 18 1885 1226 3 MP
XPP
X0 18 18 0 1885 1244 3 MP
XPP
X18 0 0 18 1885 1244 3 MP
XPP
X0 17 18 0 1885 1262 3 MP
XPP
X18 0 0 17 1885 1262 3 MP
XPP
X0 18 18 0 1885 1279 3 MP
XPP
X18 0 0 18 1885 1279 3 MP
XPP
X0 18 18 0 1885 1297 3 MP
XPP
X18 0 0 18 1885 1297 3 MP
XPP
X0 18 18 0 1885 1315 3 MP
XPP
X18 0 0 18 1885 1315 3 MP
XPP
X0 18 18 0 1885 1333 3 MP
XPP
X18 0 0 18 1885 1333 3 MP
XPP
X0 18 18 0 1885 1351 3 MP
XPP
X18 0 0 18 1885 1351 3 MP
XPP
X0 17 18 0 1885 1369 3 MP
XPP
X18 0 0 17 1885 1369 3 MP
XPP
X0 18 18 0 1885 1386 3 MP
XPP
X18 0 0 18 1885 1386 3 MP
XPP
X0 18 18 0 1885 1404 3 MP
XPP
X18 0 0 18 1885 1404 3 MP
XPP
X0 18 18 0 1885 1422 3 MP
XPP
X18 0 0 18 1885 1422 3 MP
XPP
X0 18 18 0 1885 1440 3 MP
XPP
X18 0 0 18 1885 1440 3 MP
XPP
X0 18 18 0 1885 1458 3 MP
XPP
X18 0 0 18 1885 1458 3 MP
XPP
X0 17 18 0 1885 1476 3 MP
XPP
X18 0 0 17 1885 1476 3 MP
XPP
X0 18 18 0 1885 1493 3 MP
XPP
X18 0 0 18 1885 1493 3 MP
XPP
X0 18 18 0 1885 1511 3 MP
XPP
X18 0 0 18 1885 1511 3 MP
XPP
X0 18 18 0 1885 1529 3 MP
XPP
X18 0 0 18 1885 1529 3 MP
XPP
X0 18 18 0 1885 1547 3 MP
XPP
X18 0 0 18 1885 1547 3 MP
XPP
X0 18 18 0 1885 1565 3 MP
XPP
X18 0 0 18 1885 1565 3 MP
XPP
X0 17 18 0 1885 1583 3 MP
XPP
X18 0 0 17 1885 1583 3 MP
XPP
X0 18 18 0 1885 1600 3 MP
XPP
X18 0 0 18 1885 1600 3 MP
XPP
X0 18 18 0 1885 1618 3 MP
XPP
X18 0 0 18 1885 1618 3 MP
XPP
X0 18 18 0 1885 1636 3 MP
XPP
X18 0 0 18 1885 1636 3 MP
XPP
X0 18 18 0 1885 1654 3 MP
XPP
X18 0 0 18 1885 1654 3 MP
XPP
X0 18 18 0 1885 1672 3 MP
XPP
X18 0 0 18 1885 1672 3 MP
XPP
X0 17 18 0 1885 1690 3 MP
XPP
X18 0 0 17 1885 1690 3 MP
XPP
X0 18 18 0 1885 1707 3 MP
XPP
X18 0 0 18 1885 1707 3 MP
XPP
X0 18 18 0 1885 1725 3 MP
XPP
X18 0 0 18 1885 1725 3 MP
XPP
X0 18 18 0 1885 1743 3 MP
XPP
X18 0 0 18 1885 1743 3 MP
XPP
X0 18 18 0 1885 1761 3 MP
XPP
X18 0 0 18 1885 1761 3 MP
XPP
X0 18 18 0 1885 1779 3 MP
XPP
X18 0 0 18 1885 1779 3 MP
XPP
X0 17 18 0 1885 1797 3 MP
XPP
X18 0 0 17 1885 1797 3 MP
XPP
X0 18 18 0 1885 1814 3 MP
XPP
X18 0 0 18 1885 1814 3 MP
XPP
X0 18 18 0 1885 1832 3 MP
XPP
X18 0 0 18 1885 1832 3 MP
XPP
X0 18 18 0 1885 1850 3 MP
XPP
X18 0 0 18 1885 1850 3 MP
XPP
X0 18 18 0 1885 1868 3 MP
XPP
X18 0 0 18 1885 1868 3 MP
XPP
X0 18 18 0 1885 1886 3 MP
XPP
X18 0 0 18 1885 1886 3 MP
XPP
X0 17 18 0 1885 1904 3 MP
XPP
X18 0 0 17 1885 1904 3 MP
XPP
X0 18 18 0 1885 1921 3 MP
XPP
X18 0 0 18 1885 1921 3 MP
XPP
X0 18 18 0 1885 1939 3 MP
XPP
X18 0 0 18 1885 1939 3 MP
XPP
X0 18 18 0 1885 1957 3 MP
XPP
X18 0 0 18 1885 1957 3 MP
XPP
X0 18 18 0 1885 1975 3 MP
XPP
X18 0 0 18 1885 1975 3 MP
XPP
X0 18 18 0 1885 1993 3 MP
XPP
X18 0 0 18 1885 1993 3 MP
XPP
X0 17 18 0 1885 2011 3 MP
XPP
X18 0 0 17 1885 2011 3 MP
XPP
X0 18 18 0 1885 2028 3 MP
XPP
X18 0 0 18 1885 2028 3 MP
XPP
X0 18 18 0 1885 2046 3 MP
XPP
X18 0 0 18 1885 2046 3 MP
XPP
X0 18 18 0 1885 2064 3 MP
XPP
X18 0 0 18 1885 2064 3 MP
XPP
X0 18 18 0 1885 2082 3 MP
XPP
X18 0 0 18 1885 2082 3 MP
XPP
X0 18 18 0 1885 2100 3 MP
XPP
X18 0 0 18 1885 2100 3 MP
XPP
X0 17 18 0 1885 2118 3 MP
XPP
X18 0 0 17 1885 2118 3 MP
XPP
X0 18 18 0 1885 2135 3 MP
XPP
X18 0 0 18 1885 2135 3 MP
XPP
X0 18 18 0 1885 2153 3 MP
XPP
X18 0 0 18 1885 2153 3 MP
XPP
X0 18 18 0 1903 388 3 MP
XPP
X18 0 0 18 1903 388 3 MP
XPP
X0 18 18 0 1903 406 3 MP
XPP
X18 0 0 18 1903 406 3 MP
XPP
X0 17 18 0 1903 424 3 MP
XPP
X18 0 0 17 1903 424 3 MP
XPP
X0 18 18 0 1903 441 3 MP
XPP
X18 0 0 18 1903 441 3 MP
XPP
X0 18 18 0 1903 459 3 MP
XPP
X18 0 0 18 1903 459 3 MP
XPP
X0 18 18 0 1903 477 3 MP
XPP
X18 0 0 18 1903 477 3 MP
XPP
X0 18 18 0 1903 495 3 MP
XPP
X18 0 0 18 1903 495 3 MP
XPP
X0.746032 sg
X0 18 18 0 1903 513 3 MP
XPP
X18 0 0 18 1903 513 3 MP
XPP
X0 17 18 0 1903 531 3 MP
XPP
X18 0 0 17 1903 531 3 MP
XPP
X0 18 18 0 1903 548 3 MP
XPP
X18 0 0 18 1903 548 3 MP
XPP
X0 18 18 0 1903 566 3 MP
XPP
X18 0 0 18 1903 566 3 MP
XPP
X0 18 18 0 1903 584 3 MP
XPP
X18 0 0 18 1903 584 3 MP
XPP
X0 18 18 0 1903 602 3 MP
XPP
X18 0 0 18 1903 602 3 MP
XPP
X0 18 18 0 1903 620 3 MP
XPP
X18 0 0 18 1903 620 3 MP
XPP
X0 17 18 0 1903 638 3 MP
XPP
X18 0 0 17 1903 638 3 MP
XPP
X0 18 18 0 1903 655 3 MP
XPP
X18 0 0 18 1903 655 3 MP
XPP
X0 18 18 0 1903 673 3 MP
XPP
X18 0 0 18 1903 673 3 MP
XPP
X0 18 18 0 1903 691 3 MP
XPP
X18 0 0 18 1903 691 3 MP
XPP
X0 18 18 0 1903 709 3 MP
XPP
X18 0 0 18 1903 709 3 MP
XPP
X0 18 18 0 1903 727 3 MP
XPP
X18 0 0 18 1903 727 3 MP
XPP
X0 17 18 0 1903 745 3 MP
XPP
X18 0 0 17 1903 745 3 MP
XPP
X0 18 18 0 1903 762 3 MP
XPP
X18 0 0 18 1903 762 3 MP
XPP
X0 18 18 0 1903 780 3 MP
XPP
X18 0 0 18 1903 780 3 MP
XPP
X0 18 18 0 1903 798 3 MP
XPP
X18 0 0 18 1903 798 3 MP
XPP
X0 18 18 0 1903 816 3 MP
XPP
X18 0 0 18 1903 816 3 MP
XPP
X0 18 18 0 1903 834 3 MP
XPP
X18 0 0 18 1903 834 3 MP
XPP
X0 17 18 0 1903 852 3 MP
XPP
X18 0 0 17 1903 852 3 MP
XPP
X0 18 18 0 1903 869 3 MP
XPP
X18 0 0 18 1903 869 3 MP
XPP
X0.492063 sg
X0 18 18 0 1903 887 3 MP
XPP
X18 0 0 18 1903 887 3 MP
XPP
X0 18 18 0 1903 905 3 MP
XPP
X18 0 0 18 1903 905 3 MP
XPP
X0 18 18 0 1903 923 3 MP
XPP
X18 0 0 18 1903 923 3 MP
XPP
X0 18 18 0 1903 941 3 MP
XPP
X18 0 0 18 1903 941 3 MP
XPP
X0 17 18 0 1903 959 3 MP
XPP
X18 0 0 17 1903 959 3 MP
XPP
X0 18 18 0 1903 976 3 MP
XPP
X18 0 0 18 1903 976 3 MP
XPP
X0 18 18 0 1903 994 3 MP
XPP
X18 0 0 18 1903 994 3 MP
XPP
X0 18 18 0 1903 1012 3 MP
XPP
X18 0 0 18 1903 1012 3 MP
XPP
X0 18 18 0 1903 1030 3 MP
XPP
X18 0 0 18 1903 1030 3 MP
XPP
X0 18 18 0 1903 1048 3 MP
XPP
X18 0 0 18 1903 1048 3 MP
XPP
X0 17 18 0 1903 1066 3 MP
XPP
X18 0 0 17 1903 1066 3 MP
XPP
X0 18 18 0 1903 1083 3 MP
XPP
X18 0 0 18 1903 1083 3 MP
XPP
X1 sg
X0 18 18 0 1903 1101 3 MP
XPP
X18 0 0 18 1903 1101 3 MP
XPP
X0 18 18 0 1903 1119 3 MP
XPP
X18 0 0 18 1903 1119 3 MP
XPP
X0 18 18 0 1903 1137 3 MP
XPP
X18 0 0 18 1903 1137 3 MP
XPP
X0 18 18 0 1903 1155 3 MP
XPP
X18 0 0 18 1903 1155 3 MP
XPP
X0 17 18 0 1903 1173 3 MP
XPP
X18 0 0 17 1903 1173 3 MP
XPP
X0 18 18 0 1903 1190 3 MP
XPP
X18 0 0 18 1903 1190 3 MP
XPP
X0 18 18 0 1903 1208 3 MP
XPP
X18 0 0 18 1903 1208 3 MP
XPP
X0 18 18 0 1903 1226 3 MP
XPP
X18 0 0 18 1903 1226 3 MP
XPP
X0 18 18 0 1903 1244 3 MP
XPP
X18 0 0 18 1903 1244 3 MP
XPP
X0 17 18 0 1903 1262 3 MP
XPP
X18 0 0 17 1903 1262 3 MP
XPP
X0 18 18 0 1903 1279 3 MP
XPP
X18 0 0 18 1903 1279 3 MP
XPP
X0 18 18 0 1903 1297 3 MP
XPP
X18 0 0 18 1903 1297 3 MP
XPP
X0 18 18 0 1903 1315 3 MP
XPP
X18 0 0 18 1903 1315 3 MP
XPP
X0 18 18 0 1903 1333 3 MP
XPP
X18 0 0 18 1903 1333 3 MP
XPP
X0 18 18 0 1903 1351 3 MP
XPP
X18 0 0 18 1903 1351 3 MP
XPP
X0 17 18 0 1903 1369 3 MP
XPP
X18 0 0 17 1903 1369 3 MP
XPP
X0 18 18 0 1903 1386 3 MP
XPP
X18 0 0 18 1903 1386 3 MP
XPP
X0 18 18 0 1903 1404 3 MP
XPP
X18 0 0 18 1903 1404 3 MP
XPP
X0 18 18 0 1903 1422 3 MP
XPP
X18 0 0 18 1903 1422 3 MP
XPP
X0 18 18 0 1903 1440 3 MP
XPP
X18 0 0 18 1903 1440 3 MP
XPP
X0 18 18 0 1903 1458 3 MP
XPP
X18 0 0 18 1903 1458 3 MP
XPP
X0 17 18 0 1903 1476 3 MP
XPP
X18 0 0 17 1903 1476 3 MP
XPP
X0 18 18 0 1903 1493 3 MP
XPP
X18 0 0 18 1903 1493 3 MP
XPP
X0 18 18 0 1903 1511 3 MP
XPP
X18 0 0 18 1903 1511 3 MP
XPP
X0 18 18 0 1903 1529 3 MP
XPP
X18 0 0 18 1903 1529 3 MP
XPP
X0 18 18 0 1903 1547 3 MP
XPP
X18 0 0 18 1903 1547 3 MP
XPP
X0 18 18 0 1903 1565 3 MP
XPP
X18 0 0 18 1903 1565 3 MP
XPP
X0 17 18 0 1903 1583 3 MP
XPP
X18 0 0 17 1903 1583 3 MP
XPP
X0 18 18 0 1903 1600 3 MP
XPP
X18 0 0 18 1903 1600 3 MP
XPP
X0 18 18 0 1903 1618 3 MP
XPP
X18 0 0 18 1903 1618 3 MP
XPP
X0 18 18 0 1903 1636 3 MP
XPP
X18 0 0 18 1903 1636 3 MP
XPP
X0 18 18 0 1903 1654 3 MP
XPP
X18 0 0 18 1903 1654 3 MP
XPP
X0 18 18 0 1903 1672 3 MP
XPP
X18 0 0 18 1903 1672 3 MP
XPP
X0 17 18 0 1903 1690 3 MP
XPP
X18 0 0 17 1903 1690 3 MP
XPP
X0 18 18 0 1903 1707 3 MP
XPP
X18 0 0 18 1903 1707 3 MP
XPP
X0 18 18 0 1903 1725 3 MP
XPP
X18 0 0 18 1903 1725 3 MP
XPP
X0 18 18 0 1903 1743 3 MP
XPP
X18 0 0 18 1903 1743 3 MP
XPP
X0 18 18 0 1903 1761 3 MP
XPP
X18 0 0 18 1903 1761 3 MP
XPP
X0 18 18 0 1903 1779 3 MP
XPP
X18 0 0 18 1903 1779 3 MP
XPP
X0 17 18 0 1903 1797 3 MP
XPP
X18 0 0 17 1903 1797 3 MP
XPP
X0 18 18 0 1903 1814 3 MP
XPP
X18 0 0 18 1903 1814 3 MP
XPP
X0 18 18 0 1903 1832 3 MP
XPP
X18 0 0 18 1903 1832 3 MP
XPP
X0 18 18 0 1903 1850 3 MP
XPP
X18 0 0 18 1903 1850 3 MP
XPP
X0 18 18 0 1903 1868 3 MP
XPP
X18 0 0 18 1903 1868 3 MP
XPP
X0 18 18 0 1903 1886 3 MP
XPP
X18 0 0 18 1903 1886 3 MP
XPP
X0 17 18 0 1903 1904 3 MP
XPP
X18 0 0 17 1903 1904 3 MP
XPP
X0 18 18 0 1903 1921 3 MP
XPP
X18 0 0 18 1903 1921 3 MP
XPP
X0 18 18 0 1903 1939 3 MP
XPP
X18 0 0 18 1903 1939 3 MP
XPP
X0 18 18 0 1903 1957 3 MP
XPP
X18 0 0 18 1903 1957 3 MP
XPP
X0 18 18 0 1903 1975 3 MP
XPP
X18 0 0 18 1903 1975 3 MP
XPP
X0 18 18 0 1903 1993 3 MP
XPP
X18 0 0 18 1903 1993 3 MP
XPP
X0 17 18 0 1903 2011 3 MP
XPP
X18 0 0 17 1903 2011 3 MP
XPP
X0 18 18 0 1903 2028 3 MP
XPP
X18 0 0 18 1903 2028 3 MP
XPP
X0 18 18 0 1903 2046 3 MP
XPP
X18 0 0 18 1903 2046 3 MP
XPP
X0 18 18 0 1903 2064 3 MP
XPP
X18 0 0 18 1903 2064 3 MP
XPP
X0 18 18 0 1903 2082 3 MP
XPP
X18 0 0 18 1903 2082 3 MP
XPP
X0 18 18 0 1903 2100 3 MP
XPP
X18 0 0 18 1903 2100 3 MP
XPP
X0 17 18 0 1903 2118 3 MP
XPP
X18 0 0 17 1903 2118 3 MP
XPP
X0 18 18 0 1903 2135 3 MP
XPP
X18 0 0 18 1903 2135 3 MP
XPP
X0 18 18 0 1903 2153 3 MP
XPP
X18 0 0 18 1903 2153 3 MP
XPP
X0 18 17 0 1921 388 3 MP
XPP
X17 0 0 18 1921 388 3 MP
XPP
X0 18 17 0 1921 406 3 MP
XPP
X17 0 0 18 1921 406 3 MP
XPP
X0 17 17 0 1921 424 3 MP
XPP
X17 0 0 17 1921 424 3 MP
XPP
X0 18 17 0 1921 441 3 MP
XPP
X17 0 0 18 1921 441 3 MP
XPP
X0 18 17 0 1921 459 3 MP
XPP
X17 0 0 18 1921 459 3 MP
XPP
X0 18 17 0 1921 477 3 MP
XPP
X17 0 0 18 1921 477 3 MP
XPP
X0.746032 sg
X0 18 17 0 1921 495 3 MP
XPP
X17 0 0 18 1921 495 3 MP
XPP
X0 18 17 0 1921 513 3 MP
XPP
X17 0 0 18 1921 513 3 MP
XPP
X0 17 17 0 1921 531 3 MP
XPP
X17 0 0 17 1921 531 3 MP
XPP
X0 18 17 0 1921 548 3 MP
XPP
X17 0 0 18 1921 548 3 MP
XPP
X0 18 17 0 1921 566 3 MP
XPP
X17 0 0 18 1921 566 3 MP
XPP
X0 18 17 0 1921 584 3 MP
XPP
X17 0 0 18 1921 584 3 MP
XPP
X0 18 17 0 1921 602 3 MP
XPP
X17 0 0 18 1921 602 3 MP
XPP
X0 18 17 0 1921 620 3 MP
XPP
X17 0 0 18 1921 620 3 MP
XPP
X0 17 17 0 1921 638 3 MP
XPP
X17 0 0 17 1921 638 3 MP
XPP
X0 18 17 0 1921 655 3 MP
XPP
X17 0 0 18 1921 655 3 MP
XPP
X0 18 17 0 1921 673 3 MP
XPP
X17 0 0 18 1921 673 3 MP
XPP
X0 18 17 0 1921 691 3 MP
XPP
X17 0 0 18 1921 691 3 MP
XPP
X0 18 17 0 1921 709 3 MP
XPP
X17 0 0 18 1921 709 3 MP
XPP
X0 18 17 0 1921 727 3 MP
XPP
X17 0 0 18 1921 727 3 MP
XPP
X0 17 17 0 1921 745 3 MP
XPP
X17 0 0 17 1921 745 3 MP
XPP
X0 18 17 0 1921 762 3 MP
XPP
X17 0 0 18 1921 762 3 MP
XPP
X0 18 17 0 1921 780 3 MP
XPP
X17 0 0 18 1921 780 3 MP
XPP
X0 18 17 0 1921 798 3 MP
XPP
X17 0 0 18 1921 798 3 MP
XPP
X0 18 17 0 1921 816 3 MP
XPP
X17 0 0 18 1921 816 3 MP
XPP
X0 18 17 0 1921 834 3 MP
XPP
X17 0 0 18 1921 834 3 MP
XPP
X0 17 17 0 1921 852 3 MP
XPP
X17 0 0 17 1921 852 3 MP
XPP
X0.492063 sg
X0 18 17 0 1921 869 3 MP
XPP
X17 0 0 18 1921 869 3 MP
XPP
X0 18 17 0 1921 887 3 MP
XPP
X17 0 0 18 1921 887 3 MP
XPP
X0 18 17 0 1921 905 3 MP
XPP
X17 0 0 18 1921 905 3 MP
XPP
X0 18 17 0 1921 923 3 MP
XPP
X17 0 0 18 1921 923 3 MP
XPP
X0 18 17 0 1921 941 3 MP
XPP
X17 0 0 18 1921 941 3 MP
XPP
X0 17 17 0 1921 959 3 MP
XPP
X17 0 0 17 1921 959 3 MP
XPP
X0 18 17 0 1921 976 3 MP
XPP
X17 0 0 18 1921 976 3 MP
XPP
X0 18 17 0 1921 994 3 MP
XPP
X17 0 0 18 1921 994 3 MP
XPP
X0 18 17 0 1921 1012 3 MP
XPP
X17 0 0 18 1921 1012 3 MP
XPP
X0 18 17 0 1921 1030 3 MP
XPP
X17 0 0 18 1921 1030 3 MP
XPP
X0 18 17 0 1921 1048 3 MP
XPP
X17 0 0 18 1921 1048 3 MP
XPP
X0 17 17 0 1921 1066 3 MP
XPP
X17 0 0 17 1921 1066 3 MP
XPP
X0 18 17 0 1921 1083 3 MP
XPP
X17 0 0 18 1921 1083 3 MP
XPP
X0 18 17 0 1921 1101 3 MP
XPP
X17 0 0 18 1921 1101 3 MP
XPP
X1 sg
X0 18 17 0 1921 1119 3 MP
XPP
X17 0 0 18 1921 1119 3 MP
XPP
X0 18 17 0 1921 1137 3 MP
XPP
X17 0 0 18 1921 1137 3 MP
XPP
X0 18 17 0 1921 1155 3 MP
XPP
X17 0 0 18 1921 1155 3 MP
XPP
X0 17 17 0 1921 1173 3 MP
XPP
X17 0 0 17 1921 1173 3 MP
XPP
X0 18 17 0 1921 1190 3 MP
XPP
X17 0 0 18 1921 1190 3 MP
XPP
X0 18 17 0 1921 1208 3 MP
XPP
X17 0 0 18 1921 1208 3 MP
XPP
X0 18 17 0 1921 1226 3 MP
XPP
X17 0 0 18 1921 1226 3 MP
XPP
X0 18 17 0 1921 1244 3 MP
XPP
X17 0 0 18 1921 1244 3 MP
XPP
X0 17 17 0 1921 1262 3 MP
XPP
X17 0 0 17 1921 1262 3 MP
XPP
X0 18 17 0 1921 1279 3 MP
XPP
X17 0 0 18 1921 1279 3 MP
XPP
X0 18 17 0 1921 1297 3 MP
XPP
X17 0 0 18 1921 1297 3 MP
XPP
X0 18 17 0 1921 1315 3 MP
XPP
X17 0 0 18 1921 1315 3 MP
XPP
X0 18 17 0 1921 1333 3 MP
XPP
X17 0 0 18 1921 1333 3 MP
XPP
X0 18 17 0 1921 1351 3 MP
XPP
X17 0 0 18 1921 1351 3 MP
XPP
X0 17 17 0 1921 1369 3 MP
XPP
X17 0 0 17 1921 1369 3 MP
XPP
X0 18 17 0 1921 1386 3 MP
XPP
X17 0 0 18 1921 1386 3 MP
XPP
X0 18 17 0 1921 1404 3 MP
XPP
X17 0 0 18 1921 1404 3 MP
XPP
X0 18 17 0 1921 1422 3 MP
XPP
X17 0 0 18 1921 1422 3 MP
XPP
X0 18 17 0 1921 1440 3 MP
XPP
X17 0 0 18 1921 1440 3 MP
XPP
X0 18 17 0 1921 1458 3 MP
XPP
X17 0 0 18 1921 1458 3 MP
XPP
X0 17 17 0 1921 1476 3 MP
XPP
X17 0 0 17 1921 1476 3 MP
XPP
X0 18 17 0 1921 1493 3 MP
XPP
X17 0 0 18 1921 1493 3 MP
XPP
X0 18 17 0 1921 1511 3 MP
XPP
X17 0 0 18 1921 1511 3 MP
XPP
X0 18 17 0 1921 1529 3 MP
XPP
X17 0 0 18 1921 1529 3 MP
XPP
X0 18 17 0 1921 1547 3 MP
XPP
X17 0 0 18 1921 1547 3 MP
XPP
X0 18 17 0 1921 1565 3 MP
XPP
X17 0 0 18 1921 1565 3 MP
XPP
X0 17 17 0 1921 1583 3 MP
XPP
X17 0 0 17 1921 1583 3 MP
XPP
X0 18 17 0 1921 1600 3 MP
XPP
X17 0 0 18 1921 1600 3 MP
XPP
X0 18 17 0 1921 1618 3 MP
XPP
X17 0 0 18 1921 1618 3 MP
XPP
X0 18 17 0 1921 1636 3 MP
XPP
X17 0 0 18 1921 1636 3 MP
XPP
X0 18 17 0 1921 1654 3 MP
XPP
X17 0 0 18 1921 1654 3 MP
XPP
X0 18 17 0 1921 1672 3 MP
XPP
X17 0 0 18 1921 1672 3 MP
XPP
X0 17 17 0 1921 1690 3 MP
XPP
X17 0 0 17 1921 1690 3 MP
XPP
X0 18 17 0 1921 1707 3 MP
XPP
X17 0 0 18 1921 1707 3 MP
XPP
X0 18 17 0 1921 1725 3 MP
XPP
X17 0 0 18 1921 1725 3 MP
XPP
X0 18 17 0 1921 1743 3 MP
XPP
X17 0 0 18 1921 1743 3 MP
XPP
X0 18 17 0 1921 1761 3 MP
XPP
X17 0 0 18 1921 1761 3 MP
XPP
X0 18 17 0 1921 1779 3 MP
XPP
X17 0 0 18 1921 1779 3 MP
XPP
X0 17 17 0 1921 1797 3 MP
XPP
X17 0 0 17 1921 1797 3 MP
XPP
X0 18 17 0 1921 1814 3 MP
XPP
X17 0 0 18 1921 1814 3 MP
XPP
X0 18 17 0 1921 1832 3 MP
XPP
X17 0 0 18 1921 1832 3 MP
XPP
X0 18 17 0 1921 1850 3 MP
XPP
X17 0 0 18 1921 1850 3 MP
XPP
X0 18 17 0 1921 1868 3 MP
XPP
X17 0 0 18 1921 1868 3 MP
XPP
X0 18 17 0 1921 1886 3 MP
XPP
X17 0 0 18 1921 1886 3 MP
XPP
X0 17 17 0 1921 1904 3 MP
XPP
X17 0 0 17 1921 1904 3 MP
XPP
X0 18 17 0 1921 1921 3 MP
XPP
X17 0 0 18 1921 1921 3 MP
XPP
X0 18 17 0 1921 1939 3 MP
XPP
X17 0 0 18 1921 1939 3 MP
XPP
X0 18 17 0 1921 1957 3 MP
XPP
X17 0 0 18 1921 1957 3 MP
XPP
X0 18 17 0 1921 1975 3 MP
XPP
X17 0 0 18 1921 1975 3 MP
XPP
X0 18 17 0 1921 1993 3 MP
XPP
X17 0 0 18 1921 1993 3 MP
XPP
X0 17 17 0 1921 2011 3 MP
XPP
X17 0 0 17 1921 2011 3 MP
XPP
X0 18 17 0 1921 2028 3 MP
XPP
X17 0 0 18 1921 2028 3 MP
XPP
X0 18 17 0 1921 2046 3 MP
XPP
X17 0 0 18 1921 2046 3 MP
XPP
X0 18 17 0 1921 2064 3 MP
XPP
X17 0 0 18 1921 2064 3 MP
XPP
X0 18 17 0 1921 2082 3 MP
XPP
X17 0 0 18 1921 2082 3 MP
XPP
X0 18 17 0 1921 2100 3 MP
XPP
X17 0 0 18 1921 2100 3 MP
XPP
X0 17 17 0 1921 2118 3 MP
XPP
X17 0 0 17 1921 2118 3 MP
XPP
X0 18 17 0 1921 2135 3 MP
XPP
X17 0 0 18 1921 2135 3 MP
XPP
X0 18 17 0 1921 2153 3 MP
XPP
X17 0 0 18 1921 2153 3 MP
XPP
X0 18 18 0 1938 388 3 MP
XPP
X18 0 0 18 1938 388 3 MP
XPP
X0 18 18 0 1938 406 3 MP
XPP
X18 0 0 18 1938 406 3 MP
XPP
X0 17 18 0 1938 424 3 MP
XPP
X18 0 0 17 1938 424 3 MP
XPP
X0 18 18 0 1938 441 3 MP
XPP
X18 0 0 18 1938 441 3 MP
XPP
X0 18 18 0 1938 459 3 MP
XPP
X18 0 0 18 1938 459 3 MP
XPP
X0 18 18 0 1938 477 3 MP
XPP
X18 0 0 18 1938 477 3 MP
XPP
X0.746032 sg
X0 18 18 0 1938 495 3 MP
XPP
X18 0 0 18 1938 495 3 MP
XPP
X0 18 18 0 1938 513 3 MP
XPP
X18 0 0 18 1938 513 3 MP
XPP
X0 17 18 0 1938 531 3 MP
XPP
X18 0 0 17 1938 531 3 MP
XPP
X0 18 18 0 1938 548 3 MP
XPP
X18 0 0 18 1938 548 3 MP
XPP
X0 18 18 0 1938 566 3 MP
XPP
X18 0 0 18 1938 566 3 MP
XPP
X0 18 18 0 1938 584 3 MP
XPP
X18 0 0 18 1938 584 3 MP
XPP
X0 18 18 0 1938 602 3 MP
XPP
X18 0 0 18 1938 602 3 MP
XPP
X0 18 18 0 1938 620 3 MP
XPP
X18 0 0 18 1938 620 3 MP
XPP
X0 17 18 0 1938 638 3 MP
XPP
X18 0 0 17 1938 638 3 MP
XPP
X0 18 18 0 1938 655 3 MP
XPP
X18 0 0 18 1938 655 3 MP
XPP
X0 18 18 0 1938 673 3 MP
XPP
X18 0 0 18 1938 673 3 MP
XPP
X0 18 18 0 1938 691 3 MP
XPP
X18 0 0 18 1938 691 3 MP
XPP
X0 18 18 0 1938 709 3 MP
XPP
X18 0 0 18 1938 709 3 MP
XPP
X0 18 18 0 1938 727 3 MP
XPP
X18 0 0 18 1938 727 3 MP
XPP
X0 17 18 0 1938 745 3 MP
XPP
X18 0 0 17 1938 745 3 MP
XPP
X0 18 18 0 1938 762 3 MP
XPP
X18 0 0 18 1938 762 3 MP
XPP
X0 18 18 0 1938 780 3 MP
XPP
X18 0 0 18 1938 780 3 MP
XPP
X0 18 18 0 1938 798 3 MP
XPP
X18 0 0 18 1938 798 3 MP
XPP
X0 18 18 0 1938 816 3 MP
XPP
X18 0 0 18 1938 816 3 MP
XPP
X0 18 18 0 1938 834 3 MP
XPP
X18 0 0 18 1938 834 3 MP
XPP
X0.492063 sg
X0 17 18 0 1938 852 3 MP
XPP
X18 0 0 17 1938 852 3 MP
XPP
X0 18 18 0 1938 869 3 MP
XPP
X18 0 0 18 1938 869 3 MP
XPP
X0 18 18 0 1938 887 3 MP
XPP
X18 0 0 18 1938 887 3 MP
XPP
X0 18 18 0 1938 905 3 MP
XPP
X18 0 0 18 1938 905 3 MP
XPP
X0 18 18 0 1938 923 3 MP
XPP
X18 0 0 18 1938 923 3 MP
XPP
X0 18 18 0 1938 941 3 MP
XPP
X18 0 0 18 1938 941 3 MP
XPP
X0 17 18 0 1938 959 3 MP
XPP
X18 0 0 17 1938 959 3 MP
XPP
X0 18 18 0 1938 976 3 MP
XPP
X18 0 0 18 1938 976 3 MP
XPP
X0 18 18 0 1938 994 3 MP
XPP
X18 0 0 18 1938 994 3 MP
XPP
X0 18 18 0 1938 1012 3 MP
XPP
X18 0 0 18 1938 1012 3 MP
XPP
X0 18 18 0 1938 1030 3 MP
XPP
X18 0 0 18 1938 1030 3 MP
XPP
X0 18 18 0 1938 1048 3 MP
XPP
X18 0 0 18 1938 1048 3 MP
XPP
X0 17 18 0 1938 1066 3 MP
XPP
X18 0 0 17 1938 1066 3 MP
XPP
X0 18 18 0 1938 1083 3 MP
XPP
X18 0 0 18 1938 1083 3 MP
XPP
X0 18 18 0 1938 1101 3 MP
XPP
X18 0 0 18 1938 1101 3 MP
XPP
X0 18 18 0 1938 1119 3 MP
XPP
X18 0 0 18 1938 1119 3 MP
XPP
X1 sg
X0 18 18 0 1938 1137 3 MP
XPP
X18 0 0 18 1938 1137 3 MP
XPP
X0 18 18 0 1938 1155 3 MP
XPP
X18 0 0 18 1938 1155 3 MP
XPP
X0 17 18 0 1938 1173 3 MP
XPP
X18 0 0 17 1938 1173 3 MP
XPP
X0 18 18 0 1938 1190 3 MP
XPP
X18 0 0 18 1938 1190 3 MP
XPP
X0 18 18 0 1938 1208 3 MP
XPP
X18 0 0 18 1938 1208 3 MP
XPP
X0 18 18 0 1938 1226 3 MP
XPP
X18 0 0 18 1938 1226 3 MP
XPP
X0 18 18 0 1938 1244 3 MP
XPP
X18 0 0 18 1938 1244 3 MP
XPP
X0 17 18 0 1938 1262 3 MP
XPP
X18 0 0 17 1938 1262 3 MP
XPP
X0 18 18 0 1938 1279 3 MP
XPP
X18 0 0 18 1938 1279 3 MP
XPP
X0 18 18 0 1938 1297 3 MP
XPP
X18 0 0 18 1938 1297 3 MP
XPP
X0 18 18 0 1938 1315 3 MP
XPP
X18 0 0 18 1938 1315 3 MP
XPP
X0 18 18 0 1938 1333 3 MP
XPP
X18 0 0 18 1938 1333 3 MP
XPP
X0 18 18 0 1938 1351 3 MP
XPP
X18 0 0 18 1938 1351 3 MP
XPP
X0 17 18 0 1938 1369 3 MP
XPP
X18 0 0 17 1938 1369 3 MP
XPP
X0 18 18 0 1938 1386 3 MP
XPP
X18 0 0 18 1938 1386 3 MP
XPP
X0 18 18 0 1938 1404 3 MP
XPP
X18 0 0 18 1938 1404 3 MP
XPP
X0 18 18 0 1938 1422 3 MP
XPP
X18 0 0 18 1938 1422 3 MP
XPP
X0 18 18 0 1938 1440 3 MP
XPP
X18 0 0 18 1938 1440 3 MP
XPP
X0 18 18 0 1938 1458 3 MP
XPP
X18 0 0 18 1938 1458 3 MP
XPP
X0 17 18 0 1938 1476 3 MP
XPP
X18 0 0 17 1938 1476 3 MP
XPP
X0 18 18 0 1938 1493 3 MP
XPP
X18 0 0 18 1938 1493 3 MP
XPP
X0 18 18 0 1938 1511 3 MP
XPP
X18 0 0 18 1938 1511 3 MP
XPP
X0 18 18 0 1938 1529 3 MP
XPP
X18 0 0 18 1938 1529 3 MP
XPP
X0 18 18 0 1938 1547 3 MP
XPP
X18 0 0 18 1938 1547 3 MP
XPP
X0 18 18 0 1938 1565 3 MP
XPP
X18 0 0 18 1938 1565 3 MP
XPP
X0 17 18 0 1938 1583 3 MP
XPP
X18 0 0 17 1938 1583 3 MP
XPP
X0 18 18 0 1938 1600 3 MP
XPP
X18 0 0 18 1938 1600 3 MP
XPP
X0 18 18 0 1938 1618 3 MP
XPP
X18 0 0 18 1938 1618 3 MP
XPP
X0 18 18 0 1938 1636 3 MP
XPP
X18 0 0 18 1938 1636 3 MP
XPP
X0 18 18 0 1938 1654 3 MP
XPP
X18 0 0 18 1938 1654 3 MP
XPP
X0 18 18 0 1938 1672 3 MP
XPP
X18 0 0 18 1938 1672 3 MP
XPP
X0 17 18 0 1938 1690 3 MP
XPP
X18 0 0 17 1938 1690 3 MP
XPP
X0 18 18 0 1938 1707 3 MP
XPP
X18 0 0 18 1938 1707 3 MP
XPP
X0 18 18 0 1938 1725 3 MP
XPP
X18 0 0 18 1938 1725 3 MP
XPP
X0 18 18 0 1938 1743 3 MP
XPP
X18 0 0 18 1938 1743 3 MP
XPP
X0 18 18 0 1938 1761 3 MP
XPP
X18 0 0 18 1938 1761 3 MP
XPP
X0 18 18 0 1938 1779 3 MP
XPP
X18 0 0 18 1938 1779 3 MP
XPP
X0 17 18 0 1938 1797 3 MP
XPP
X18 0 0 17 1938 1797 3 MP
XPP
X0 18 18 0 1938 1814 3 MP
XPP
X18 0 0 18 1938 1814 3 MP
XPP
X0 18 18 0 1938 1832 3 MP
XPP
X18 0 0 18 1938 1832 3 MP
XPP
X0 18 18 0 1938 1850 3 MP
XPP
X18 0 0 18 1938 1850 3 MP
XPP
X0 18 18 0 1938 1868 3 MP
XPP
X18 0 0 18 1938 1868 3 MP
XPP
X0 18 18 0 1938 1886 3 MP
XPP
X18 0 0 18 1938 1886 3 MP
XPP
X0 17 18 0 1938 1904 3 MP
XPP
X18 0 0 17 1938 1904 3 MP
XPP
X0 18 18 0 1938 1921 3 MP
XPP
X18 0 0 18 1938 1921 3 MP
XPP
X0 18 18 0 1938 1939 3 MP
XPP
X18 0 0 18 1938 1939 3 MP
XPP
X0 18 18 0 1938 1957 3 MP
XPP
X18 0 0 18 1938 1957 3 MP
XPP
X0 18 18 0 1938 1975 3 MP
XPP
X18 0 0 18 1938 1975 3 MP
XPP
X0 18 18 0 1938 1993 3 MP
XPP
X18 0 0 18 1938 1993 3 MP
XPP
X0 17 18 0 1938 2011 3 MP
XPP
X18 0 0 17 1938 2011 3 MP
XPP
X0 18 18 0 1938 2028 3 MP
XPP
X18 0 0 18 1938 2028 3 MP
XPP
X0 18 18 0 1938 2046 3 MP
XPP
X18 0 0 18 1938 2046 3 MP
XPP
X0 18 18 0 1938 2064 3 MP
XPP
X18 0 0 18 1938 2064 3 MP
XPP
X0 18 18 0 1938 2082 3 MP
XPP
X18 0 0 18 1938 2082 3 MP
XPP
X0 18 18 0 1938 2100 3 MP
XPP
X18 0 0 18 1938 2100 3 MP
XPP
X0 17 18 0 1938 2118 3 MP
XPP
X18 0 0 17 1938 2118 3 MP
XPP
X0 18 18 0 1938 2135 3 MP
XPP
X18 0 0 18 1938 2135 3 MP
XPP
X0 18 18 0 1938 2153 3 MP
XPP
X18 0 0 18 1938 2153 3 MP
XPP
X0 18 18 0 1956 388 3 MP
XPP
X18 0 0 18 1956 388 3 MP
XPP
X0 18 18 0 1956 406 3 MP
XPP
X18 0 0 18 1956 406 3 MP
XPP
X0 17 18 0 1956 424 3 MP
XPP
X18 0 0 17 1956 424 3 MP
XPP
X0 18 18 0 1956 441 3 MP
XPP
X18 0 0 18 1956 441 3 MP
XPP
X0 18 18 0 1956 459 3 MP
XPP
X18 0 0 18 1956 459 3 MP
XPP
X0 18 18 0 1956 477 3 MP
XPP
X18 0 0 18 1956 477 3 MP
XPP
X0.746032 sg
X0 18 18 0 1956 495 3 MP
XPP
X18 0 0 18 1956 495 3 MP
XPP
X0 18 18 0 1956 513 3 MP
XPP
X18 0 0 18 1956 513 3 MP
XPP
X0 17 18 0 1956 531 3 MP
XPP
X18 0 0 17 1956 531 3 MP
XPP
X0 18 18 0 1956 548 3 MP
XPP
X18 0 0 18 1956 548 3 MP
XPP
X0 18 18 0 1956 566 3 MP
XPP
X18 0 0 18 1956 566 3 MP
XPP
X0 18 18 0 1956 584 3 MP
XPP
X18 0 0 18 1956 584 3 MP
XPP
X0 18 18 0 1956 602 3 MP
XPP
X18 0 0 18 1956 602 3 MP
XPP
X0 18 18 0 1956 620 3 MP
XPP
X18 0 0 18 1956 620 3 MP
XPP
X0 17 18 0 1956 638 3 MP
XPP
X18 0 0 17 1956 638 3 MP
XPP
X0 18 18 0 1956 655 3 MP
XPP
X18 0 0 18 1956 655 3 MP
XPP
X0 18 18 0 1956 673 3 MP
XPP
X18 0 0 18 1956 673 3 MP
XPP
X0 18 18 0 1956 691 3 MP
XPP
X18 0 0 18 1956 691 3 MP
XPP
X0 18 18 0 1956 709 3 MP
XPP
X18 0 0 18 1956 709 3 MP
XPP
X0 18 18 0 1956 727 3 MP
XPP
X18 0 0 18 1956 727 3 MP
XPP
X0 17 18 0 1956 745 3 MP
XPP
X18 0 0 17 1956 745 3 MP
XPP
X0 18 18 0 1956 762 3 MP
XPP
X18 0 0 18 1956 762 3 MP
XPP
X0 18 18 0 1956 780 3 MP
XPP
X18 0 0 18 1956 780 3 MP
XPP
X0 18 18 0 1956 798 3 MP
XPP
X18 0 0 18 1956 798 3 MP
XPP
X0 18 18 0 1956 816 3 MP
XPP
X18 0 0 18 1956 816 3 MP
XPP
X0 18 18 0 1956 834 3 MP
XPP
X18 0 0 18 1956 834 3 MP
XPP
X0.492063 sg
X0 17 18 0 1956 852 3 MP
XPP
X18 0 0 17 1956 852 3 MP
XPP
X0 18 18 0 1956 869 3 MP
XPP
X18 0 0 18 1956 869 3 MP
XPP
X0 18 18 0 1956 887 3 MP
XPP
X18 0 0 18 1956 887 3 MP
XPP
X0 18 18 0 1956 905 3 MP
XPP
X18 0 0 18 1956 905 3 MP
XPP
X0 18 18 0 1956 923 3 MP
XPP
X18 0 0 18 1956 923 3 MP
XPP
X0 18 18 0 1956 941 3 MP
XPP
X18 0 0 18 1956 941 3 MP
XPP
X0 17 18 0 1956 959 3 MP
XPP
X18 0 0 17 1956 959 3 MP
XPP
X0 18 18 0 1956 976 3 MP
XPP
X18 0 0 18 1956 976 3 MP
XPP
X0 18 18 0 1956 994 3 MP
XPP
X18 0 0 18 1956 994 3 MP
XPP
X0 18 18 0 1956 1012 3 MP
XPP
X18 0 0 18 1956 1012 3 MP
XPP
X0 18 18 0 1956 1030 3 MP
XPP
X18 0 0 18 1956 1030 3 MP
XPP
X0 18 18 0 1956 1048 3 MP
XPP
X18 0 0 18 1956 1048 3 MP
XPP
X0 17 18 0 1956 1066 3 MP
XPP
X18 0 0 17 1956 1066 3 MP
XPP
X0 18 18 0 1956 1083 3 MP
XPP
X18 0 0 18 1956 1083 3 MP
XPP
X0 18 18 0 1956 1101 3 MP
XPP
X18 0 0 18 1956 1101 3 MP
XPP
X0 18 18 0 1956 1119 3 MP
XPP
X18 0 0 18 1956 1119 3 MP
XPP
X1 sg
X0 18 18 0 1956 1137 3 MP
XPP
X18 0 0 18 1956 1137 3 MP
XPP
X0 18 18 0 1956 1155 3 MP
XPP
X18 0 0 18 1956 1155 3 MP
XPP
X0 17 18 0 1956 1173 3 MP
XPP
X18 0 0 17 1956 1173 3 MP
XPP
X0 18 18 0 1956 1190 3 MP
XPP
X18 0 0 18 1956 1190 3 MP
XPP
X0 18 18 0 1956 1208 3 MP
XPP
X18 0 0 18 1956 1208 3 MP
XPP
X0 18 18 0 1956 1226 3 MP
XPP
X18 0 0 18 1956 1226 3 MP
XPP
X0 18 18 0 1956 1244 3 MP
XPP
X18 0 0 18 1956 1244 3 MP
XPP
X0 17 18 0 1956 1262 3 MP
XPP
X18 0 0 17 1956 1262 3 MP
XPP
X0 18 18 0 1956 1279 3 MP
XPP
X18 0 0 18 1956 1279 3 MP
XPP
X0 18 18 0 1956 1297 3 MP
XPP
X18 0 0 18 1956 1297 3 MP
XPP
X0 18 18 0 1956 1315 3 MP
XPP
X18 0 0 18 1956 1315 3 MP
XPP
X0 18 18 0 1956 1333 3 MP
XPP
X18 0 0 18 1956 1333 3 MP
XPP
X0 18 18 0 1956 1351 3 MP
XPP
X18 0 0 18 1956 1351 3 MP
XPP
X0 17 18 0 1956 1369 3 MP
XPP
X18 0 0 17 1956 1369 3 MP
XPP
X0 18 18 0 1956 1386 3 MP
XPP
X18 0 0 18 1956 1386 3 MP
XPP
X0 18 18 0 1956 1404 3 MP
XPP
X18 0 0 18 1956 1404 3 MP
XPP
X0 18 18 0 1956 1422 3 MP
XPP
X18 0 0 18 1956 1422 3 MP
XPP
X0 18 18 0 1956 1440 3 MP
XPP
X18 0 0 18 1956 1440 3 MP
XPP
X0 18 18 0 1956 1458 3 MP
XPP
X18 0 0 18 1956 1458 3 MP
XPP
X0 17 18 0 1956 1476 3 MP
XPP
X18 0 0 17 1956 1476 3 MP
XPP
X0 18 18 0 1956 1493 3 MP
XPP
X18 0 0 18 1956 1493 3 MP
XPP
X0 18 18 0 1956 1511 3 MP
XPP
X18 0 0 18 1956 1511 3 MP
XPP
X0 18 18 0 1956 1529 3 MP
XPP
X18 0 0 18 1956 1529 3 MP
XPP
X0 18 18 0 1956 1547 3 MP
XPP
X18 0 0 18 1956 1547 3 MP
XPP
X0 18 18 0 1956 1565 3 MP
XPP
X18 0 0 18 1956 1565 3 MP
XPP
X0 17 18 0 1956 1583 3 MP
XPP
X18 0 0 17 1956 1583 3 MP
XPP
X0 18 18 0 1956 1600 3 MP
XPP
X18 0 0 18 1956 1600 3 MP
XPP
X0 18 18 0 1956 1618 3 MP
XPP
X18 0 0 18 1956 1618 3 MP
XPP
X0 18 18 0 1956 1636 3 MP
XPP
X18 0 0 18 1956 1636 3 MP
XPP
X0 18 18 0 1956 1654 3 MP
XPP
X18 0 0 18 1956 1654 3 MP
XPP
X0 18 18 0 1956 1672 3 MP
XPP
X18 0 0 18 1956 1672 3 MP
XPP
X0 17 18 0 1956 1690 3 MP
XPP
X18 0 0 17 1956 1690 3 MP
XPP
X0 18 18 0 1956 1707 3 MP
XPP
X18 0 0 18 1956 1707 3 MP
XPP
X0 18 18 0 1956 1725 3 MP
XPP
X18 0 0 18 1956 1725 3 MP
XPP
X0 18 18 0 1956 1743 3 MP
XPP
X18 0 0 18 1956 1743 3 MP
XPP
X0 18 18 0 1956 1761 3 MP
XPP
X18 0 0 18 1956 1761 3 MP
XPP
X0 18 18 0 1956 1779 3 MP
XPP
X18 0 0 18 1956 1779 3 MP
XPP
X0 17 18 0 1956 1797 3 MP
XPP
X18 0 0 17 1956 1797 3 MP
XPP
X0 18 18 0 1956 1814 3 MP
XPP
X18 0 0 18 1956 1814 3 MP
XPP
X0 18 18 0 1956 1832 3 MP
XPP
X18 0 0 18 1956 1832 3 MP
XPP
X0 18 18 0 1956 1850 3 MP
XPP
X18 0 0 18 1956 1850 3 MP
XPP
X0 18 18 0 1956 1868 3 MP
XPP
X18 0 0 18 1956 1868 3 MP
XPP
X0 18 18 0 1956 1886 3 MP
XPP
X18 0 0 18 1956 1886 3 MP
XPP
X0 17 18 0 1956 1904 3 MP
XPP
X18 0 0 17 1956 1904 3 MP
XPP
X0 18 18 0 1956 1921 3 MP
XPP
X18 0 0 18 1956 1921 3 MP
XPP
X0 18 18 0 1956 1939 3 MP
XPP
X18 0 0 18 1956 1939 3 MP
XPP
X0 18 18 0 1956 1957 3 MP
XPP
X18 0 0 18 1956 1957 3 MP
XPP
X0 18 18 0 1956 1975 3 MP
XPP
X18 0 0 18 1956 1975 3 MP
XPP
X0 18 18 0 1956 1993 3 MP
XPP
X18 0 0 18 1956 1993 3 MP
XPP
X0 17 18 0 1956 2011 3 MP
XPP
X18 0 0 17 1956 2011 3 MP
XPP
X0 18 18 0 1956 2028 3 MP
XPP
X18 0 0 18 1956 2028 3 MP
XPP
X0 18 18 0 1956 2046 3 MP
XPP
X18 0 0 18 1956 2046 3 MP
XPP
X0 18 18 0 1956 2064 3 MP
XPP
X18 0 0 18 1956 2064 3 MP
XPP
X0 18 18 0 1956 2082 3 MP
XPP
X18 0 0 18 1956 2082 3 MP
XPP
X0 18 18 0 1956 2100 3 MP
XPP
X18 0 0 18 1956 2100 3 MP
XPP
X0 17 18 0 1956 2118 3 MP
XPP
X18 0 0 17 1956 2118 3 MP
XPP
X0 18 18 0 1956 2135 3 MP
XPP
X18 0 0 18 1956 2135 3 MP
XPP
X0 18 18 0 1956 2153 3 MP
XPP
X18 0 0 18 1956 2153 3 MP
XPP
X0 18 18 0 1974 388 3 MP
XPP
X18 0 0 18 1974 388 3 MP
XPP
X0 18 18 0 1974 406 3 MP
XPP
X18 0 0 18 1974 406 3 MP
XPP
X0 17 18 0 1974 424 3 MP
XPP
X18 0 0 17 1974 424 3 MP
XPP
X0 18 18 0 1974 441 3 MP
XPP
X18 0 0 18 1974 441 3 MP
XPP
X0 18 18 0 1974 459 3 MP
XPP
X18 0 0 18 1974 459 3 MP
XPP
X0.746032 sg
X0 18 18 0 1974 477 3 MP
XPP
X18 0 0 18 1974 477 3 MP
XPP
X0 18 18 0 1974 495 3 MP
XPP
X18 0 0 18 1974 495 3 MP
XPP
X0 18 18 0 1974 513 3 MP
XPP
X18 0 0 18 1974 513 3 MP
XPP
X0 17 18 0 1974 531 3 MP
XPP
X18 0 0 17 1974 531 3 MP
XPP
X0 18 18 0 1974 548 3 MP
XPP
X18 0 0 18 1974 548 3 MP
XPP
X0 18 18 0 1974 566 3 MP
XPP
X18 0 0 18 1974 566 3 MP
XPP
X0 18 18 0 1974 584 3 MP
XPP
X18 0 0 18 1974 584 3 MP
XPP
X0 18 18 0 1974 602 3 MP
XPP
X18 0 0 18 1974 602 3 MP
XPP
X0 18 18 0 1974 620 3 MP
XPP
X18 0 0 18 1974 620 3 MP
XPP
X0 17 18 0 1974 638 3 MP
XPP
X18 0 0 17 1974 638 3 MP
XPP
X0 18 18 0 1974 655 3 MP
XPP
X18 0 0 18 1974 655 3 MP
XPP
X0 18 18 0 1974 673 3 MP
XPP
X18 0 0 18 1974 673 3 MP
XPP
X0 18 18 0 1974 691 3 MP
XPP
X18 0 0 18 1974 691 3 MP
XPP
X0 18 18 0 1974 709 3 MP
XPP
X18 0 0 18 1974 709 3 MP
XPP
X0 18 18 0 1974 727 3 MP
XPP
X18 0 0 18 1974 727 3 MP
XPP
X0 17 18 0 1974 745 3 MP
XPP
X18 0 0 17 1974 745 3 MP
XPP
X0 18 18 0 1974 762 3 MP
XPP
X18 0 0 18 1974 762 3 MP
XPP
X0 18 18 0 1974 780 3 MP
XPP
X18 0 0 18 1974 780 3 MP
XPP
X0 18 18 0 1974 798 3 MP
XPP
X18 0 0 18 1974 798 3 MP
XPP
X0 18 18 0 1974 816 3 MP
XPP
X18 0 0 18 1974 816 3 MP
XPP
X0.492063 sg
X0 18 18 0 1974 834 3 MP
XPP
X18 0 0 18 1974 834 3 MP
XPP
X0 17 18 0 1974 852 3 MP
XPP
X18 0 0 17 1974 852 3 MP
XPP
X0 18 18 0 1974 869 3 MP
XPP
X18 0 0 18 1974 869 3 MP
XPP
X0 18 18 0 1974 887 3 MP
XPP
X18 0 0 18 1974 887 3 MP
XPP
X0 18 18 0 1974 905 3 MP
XPP
X18 0 0 18 1974 905 3 MP
XPP
X0 18 18 0 1974 923 3 MP
XPP
X18 0 0 18 1974 923 3 MP
XPP
X0 18 18 0 1974 941 3 MP
XPP
X18 0 0 18 1974 941 3 MP
XPP
X0 17 18 0 1974 959 3 MP
XPP
X18 0 0 17 1974 959 3 MP
XPP
X0 18 18 0 1974 976 3 MP
XPP
X18 0 0 18 1974 976 3 MP
XPP
X0 18 18 0 1974 994 3 MP
XPP
X18 0 0 18 1974 994 3 MP
XPP
X0 18 18 0 1974 1012 3 MP
XPP
X18 0 0 18 1974 1012 3 MP
XPP
X0 18 18 0 1974 1030 3 MP
XPP
X18 0 0 18 1974 1030 3 MP
XPP
X0 18 18 0 1974 1048 3 MP
XPP
X18 0 0 18 1974 1048 3 MP
XPP
X0 17 18 0 1974 1066 3 MP
XPP
X18 0 0 17 1974 1066 3 MP
XPP
X0 18 18 0 1974 1083 3 MP
XPP
X18 0 0 18 1974 1083 3 MP
XPP
X0 18 18 0 1974 1101 3 MP
XPP
X18 0 0 18 1974 1101 3 MP
XPP
X0 18 18 0 1974 1119 3 MP
XPP
X18 0 0 18 1974 1119 3 MP
XPP
X0 18 18 0 1974 1137 3 MP
XPP
X18 0 0 18 1974 1137 3 MP
XPP
X1 sg
X0 18 18 0 1974 1155 3 MP
XPP
X18 0 0 18 1974 1155 3 MP
XPP
X0 17 18 0 1974 1173 3 MP
XPP
X18 0 0 17 1974 1173 3 MP
XPP
X0 18 18 0 1974 1190 3 MP
XPP
X18 0 0 18 1974 1190 3 MP
XPP
X0 18 18 0 1974 1208 3 MP
XPP
X18 0 0 18 1974 1208 3 MP
XPP
X0 18 18 0 1974 1226 3 MP
XPP
X18 0 0 18 1974 1226 3 MP
XPP
X0 18 18 0 1974 1244 3 MP
XPP
X18 0 0 18 1974 1244 3 MP
XPP
X0 17 18 0 1974 1262 3 MP
XPP
X18 0 0 17 1974 1262 3 MP
XPP
X0 18 18 0 1974 1279 3 MP
XPP
X18 0 0 18 1974 1279 3 MP
XPP
X0 18 18 0 1974 1297 3 MP
XPP
X18 0 0 18 1974 1297 3 MP
XPP
X0 18 18 0 1974 1315 3 MP
XPP
X18 0 0 18 1974 1315 3 MP
XPP
X0 18 18 0 1974 1333 3 MP
XPP
X18 0 0 18 1974 1333 3 MP
XPP
X0 18 18 0 1974 1351 3 MP
XPP
X18 0 0 18 1974 1351 3 MP
XPP
X0 17 18 0 1974 1369 3 MP
XPP
X18 0 0 17 1974 1369 3 MP
XPP
X0 18 18 0 1974 1386 3 MP
XPP
X18 0 0 18 1974 1386 3 MP
XPP
X0 18 18 0 1974 1404 3 MP
XPP
X18 0 0 18 1974 1404 3 MP
XPP
X0 18 18 0 1974 1422 3 MP
XPP
X18 0 0 18 1974 1422 3 MP
XPP
X0 18 18 0 1974 1440 3 MP
XPP
X18 0 0 18 1974 1440 3 MP
XPP
X0 18 18 0 1974 1458 3 MP
XPP
X18 0 0 18 1974 1458 3 MP
XPP
X0 17 18 0 1974 1476 3 MP
XPP
X18 0 0 17 1974 1476 3 MP
XPP
X0 18 18 0 1974 1493 3 MP
XPP
X18 0 0 18 1974 1493 3 MP
XPP
X0 18 18 0 1974 1511 3 MP
XPP
X18 0 0 18 1974 1511 3 MP
XPP
X0 18 18 0 1974 1529 3 MP
XPP
X18 0 0 18 1974 1529 3 MP
XPP
X0 18 18 0 1974 1547 3 MP
XPP
X18 0 0 18 1974 1547 3 MP
XPP
X0 18 18 0 1974 1565 3 MP
XPP
X18 0 0 18 1974 1565 3 MP
XPP
X0 17 18 0 1974 1583 3 MP
XPP
X18 0 0 17 1974 1583 3 MP
XPP
X0 18 18 0 1974 1600 3 MP
XPP
X18 0 0 18 1974 1600 3 MP
XPP
X0 18 18 0 1974 1618 3 MP
XPP
X18 0 0 18 1974 1618 3 MP
XPP
X0 18 18 0 1974 1636 3 MP
XPP
X18 0 0 18 1974 1636 3 MP
XPP
X0 18 18 0 1974 1654 3 MP
XPP
X18 0 0 18 1974 1654 3 MP
XPP
X0 18 18 0 1974 1672 3 MP
XPP
X18 0 0 18 1974 1672 3 MP
XPP
X0 17 18 0 1974 1690 3 MP
XPP
X18 0 0 17 1974 1690 3 MP
XPP
X0 18 18 0 1974 1707 3 MP
XPP
X18 0 0 18 1974 1707 3 MP
XPP
X0 18 18 0 1974 1725 3 MP
XPP
X18 0 0 18 1974 1725 3 MP
XPP
X0 18 18 0 1974 1743 3 MP
XPP
X18 0 0 18 1974 1743 3 MP
XPP
X0 18 18 0 1974 1761 3 MP
XPP
X18 0 0 18 1974 1761 3 MP
XPP
X0 18 18 0 1974 1779 3 MP
XPP
X18 0 0 18 1974 1779 3 MP
XPP
X0 17 18 0 1974 1797 3 MP
XPP
X18 0 0 17 1974 1797 3 MP
XPP
X0 18 18 0 1974 1814 3 MP
XPP
X18 0 0 18 1974 1814 3 MP
XPP
X0 18 18 0 1974 1832 3 MP
XPP
X18 0 0 18 1974 1832 3 MP
XPP
X0 18 18 0 1974 1850 3 MP
XPP
X18 0 0 18 1974 1850 3 MP
XPP
X0 18 18 0 1974 1868 3 MP
XPP
X18 0 0 18 1974 1868 3 MP
XPP
X0 18 18 0 1974 1886 3 MP
XPP
X18 0 0 18 1974 1886 3 MP
XPP
X0 17 18 0 1974 1904 3 MP
XPP
X18 0 0 17 1974 1904 3 MP
XPP
X0 18 18 0 1974 1921 3 MP
XPP
X18 0 0 18 1974 1921 3 MP
XPP
X0 18 18 0 1974 1939 3 MP
XPP
X18 0 0 18 1974 1939 3 MP
XPP
X0 18 18 0 1974 1957 3 MP
XPP
X18 0 0 18 1974 1957 3 MP
XPP
X0 18 18 0 1974 1975 3 MP
XPP
X18 0 0 18 1974 1975 3 MP
XPP
X0 18 18 0 1974 1993 3 MP
XPP
X18 0 0 18 1974 1993 3 MP
XPP
X0 17 18 0 1974 2011 3 MP
XPP
X18 0 0 17 1974 2011 3 MP
XPP
X0 18 18 0 1974 2028 3 MP
XPP
X18 0 0 18 1974 2028 3 MP
XPP
X0 18 18 0 1974 2046 3 MP
XPP
X18 0 0 18 1974 2046 3 MP
XPP
X0 18 18 0 1974 2064 3 MP
XPP
X18 0 0 18 1974 2064 3 MP
XPP
X0 18 18 0 1974 2082 3 MP
XPP
X18 0 0 18 1974 2082 3 MP
XPP
X0 18 18 0 1974 2100 3 MP
XPP
X18 0 0 18 1974 2100 3 MP
XPP
X0 17 18 0 1974 2118 3 MP
XPP
X18 0 0 17 1974 2118 3 MP
XPP
X0 18 18 0 1974 2135 3 MP
XPP
X18 0 0 18 1974 2135 3 MP
XPP
X0 18 18 0 1974 2153 3 MP
XPP
X18 0 0 18 1974 2153 3 MP
XPP
X0 18 18 0 1992 388 3 MP
XPP
X18 0 0 18 1992 388 3 MP
XPP
X0 18 18 0 1992 406 3 MP
XPP
X18 0 0 18 1992 406 3 MP
XPP
X0 17 18 0 1992 424 3 MP
XPP
X18 0 0 17 1992 424 3 MP
XPP
X0 18 18 0 1992 441 3 MP
XPP
X18 0 0 18 1992 441 3 MP
XPP
X0 18 18 0 1992 459 3 MP
XPP
X18 0 0 18 1992 459 3 MP
XPP
X0.746032 sg
X0 18 18 0 1992 477 3 MP
XPP
X18 0 0 18 1992 477 3 MP
XPP
X0 18 18 0 1992 495 3 MP
XPP
X18 0 0 18 1992 495 3 MP
XPP
X0 18 18 0 1992 513 3 MP
XPP
X18 0 0 18 1992 513 3 MP
XPP
X0 17 18 0 1992 531 3 MP
XPP
X18 0 0 17 1992 531 3 MP
XPP
X0 18 18 0 1992 548 3 MP
XPP
X18 0 0 18 1992 548 3 MP
XPP
X0 18 18 0 1992 566 3 MP
XPP
X18 0 0 18 1992 566 3 MP
XPP
X0 18 18 0 1992 584 3 MP
XPP
X18 0 0 18 1992 584 3 MP
XPP
X0 18 18 0 1992 602 3 MP
XPP
X18 0 0 18 1992 602 3 MP
XPP
X0 18 18 0 1992 620 3 MP
XPP
X18 0 0 18 1992 620 3 MP
XPP
X0 17 18 0 1992 638 3 MP
XPP
X18 0 0 17 1992 638 3 MP
XPP
X0 18 18 0 1992 655 3 MP
XPP
X18 0 0 18 1992 655 3 MP
XPP
X0 18 18 0 1992 673 3 MP
XPP
X18 0 0 18 1992 673 3 MP
XPP
X0 18 18 0 1992 691 3 MP
XPP
X18 0 0 18 1992 691 3 MP
XPP
X0 18 18 0 1992 709 3 MP
XPP
X18 0 0 18 1992 709 3 MP
XPP
X0 18 18 0 1992 727 3 MP
XPP
X18 0 0 18 1992 727 3 MP
XPP
X0 17 18 0 1992 745 3 MP
XPP
X18 0 0 17 1992 745 3 MP
XPP
X0 18 18 0 1992 762 3 MP
XPP
X18 0 0 18 1992 762 3 MP
XPP
X0 18 18 0 1992 780 3 MP
XPP
X18 0 0 18 1992 780 3 MP
XPP
X0 18 18 0 1992 798 3 MP
XPP
X18 0 0 18 1992 798 3 MP
XPP
X0 18 18 0 1992 816 3 MP
XPP
X18 0 0 18 1992 816 3 MP
XPP
X0.492063 sg
X0 18 18 0 1992 834 3 MP
XPP
X18 0 0 18 1992 834 3 MP
XPP
X0 17 18 0 1992 852 3 MP
XPP
X18 0 0 17 1992 852 3 MP
XPP
X0 18 18 0 1992 869 3 MP
XPP
X18 0 0 18 1992 869 3 MP
XPP
X0 18 18 0 1992 887 3 MP
XPP
X18 0 0 18 1992 887 3 MP
XPP
X0 18 18 0 1992 905 3 MP
XPP
X18 0 0 18 1992 905 3 MP
XPP
X0 18 18 0 1992 923 3 MP
XPP
X18 0 0 18 1992 923 3 MP
XPP
X0 18 18 0 1992 941 3 MP
XPP
X18 0 0 18 1992 941 3 MP
XPP
X0 17 18 0 1992 959 3 MP
XPP
X18 0 0 17 1992 959 3 MP
XPP
X0 18 18 0 1992 976 3 MP
XPP
X18 0 0 18 1992 976 3 MP
XPP
X0 18 18 0 1992 994 3 MP
XPP
X18 0 0 18 1992 994 3 MP
XPP
X0 18 18 0 1992 1012 3 MP
XPP
X18 0 0 18 1992 1012 3 MP
XPP
X0 18 18 0 1992 1030 3 MP
XPP
X18 0 0 18 1992 1030 3 MP
XPP
X0 18 18 0 1992 1048 3 MP
XPP
X18 0 0 18 1992 1048 3 MP
XPP
X0 17 18 0 1992 1066 3 MP
XPP
X18 0 0 17 1992 1066 3 MP
XPP
X0 18 18 0 1992 1083 3 MP
XPP
X18 0 0 18 1992 1083 3 MP
XPP
X0 18 18 0 1992 1101 3 MP
XPP
X18 0 0 18 1992 1101 3 MP
XPP
X0 18 18 0 1992 1119 3 MP
XPP
X18 0 0 18 1992 1119 3 MP
XPP
X0 18 18 0 1992 1137 3 MP
XPP
X18 0 0 18 1992 1137 3 MP
XPP
X1 sg
X0 18 18 0 1992 1155 3 MP
XPP
X18 0 0 18 1992 1155 3 MP
XPP
X0 17 18 0 1992 1173 3 MP
XPP
X18 0 0 17 1992 1173 3 MP
XPP
X0 18 18 0 1992 1190 3 MP
XPP
X18 0 0 18 1992 1190 3 MP
XPP
X0 18 18 0 1992 1208 3 MP
XPP
X18 0 0 18 1992 1208 3 MP
XPP
X0 18 18 0 1992 1226 3 MP
XPP
X18 0 0 18 1992 1226 3 MP
XPP
X0 18 18 0 1992 1244 3 MP
XPP
X18 0 0 18 1992 1244 3 MP
XPP
X0 17 18 0 1992 1262 3 MP
XPP
X18 0 0 17 1992 1262 3 MP
XPP
X0 18 18 0 1992 1279 3 MP
XPP
X18 0 0 18 1992 1279 3 MP
XPP
X0 18 18 0 1992 1297 3 MP
XPP
X18 0 0 18 1992 1297 3 MP
XPP
X0 18 18 0 1992 1315 3 MP
XPP
X18 0 0 18 1992 1315 3 MP
XPP
X0 18 18 0 1992 1333 3 MP
XPP
X18 0 0 18 1992 1333 3 MP
XPP
X0 18 18 0 1992 1351 3 MP
XPP
X18 0 0 18 1992 1351 3 MP
XPP
X0 17 18 0 1992 1369 3 MP
XPP
X18 0 0 17 1992 1369 3 MP
XPP
X0 18 18 0 1992 1386 3 MP
XPP
X18 0 0 18 1992 1386 3 MP
XPP
X0 18 18 0 1992 1404 3 MP
XPP
X18 0 0 18 1992 1404 3 MP
XPP
X0 18 18 0 1992 1422 3 MP
XPP
X18 0 0 18 1992 1422 3 MP
XPP
X0 18 18 0 1992 1440 3 MP
XPP
X18 0 0 18 1992 1440 3 MP
XPP
X0 18 18 0 1992 1458 3 MP
XPP
X18 0 0 18 1992 1458 3 MP
XPP
X0 17 18 0 1992 1476 3 MP
XPP
X18 0 0 17 1992 1476 3 MP
XPP
X0 18 18 0 1992 1493 3 MP
XPP
X18 0 0 18 1992 1493 3 MP
XPP
X0 18 18 0 1992 1511 3 MP
XPP
X18 0 0 18 1992 1511 3 MP
XPP
X0 18 18 0 1992 1529 3 MP
XPP
X18 0 0 18 1992 1529 3 MP
XPP
X0 18 18 0 1992 1547 3 MP
XPP
X18 0 0 18 1992 1547 3 MP
XPP
X0 18 18 0 1992 1565 3 MP
XPP
X18 0 0 18 1992 1565 3 MP
XPP
X0 17 18 0 1992 1583 3 MP
XPP
X18 0 0 17 1992 1583 3 MP
XPP
X0 18 18 0 1992 1600 3 MP
XPP
X18 0 0 18 1992 1600 3 MP
XPP
X0 18 18 0 1992 1618 3 MP
XPP
X18 0 0 18 1992 1618 3 MP
XPP
X0 18 18 0 1992 1636 3 MP
XPP
X18 0 0 18 1992 1636 3 MP
XPP
X0 18 18 0 1992 1654 3 MP
XPP
X18 0 0 18 1992 1654 3 MP
XPP
X0 18 18 0 1992 1672 3 MP
XPP
X18 0 0 18 1992 1672 3 MP
XPP
X0 17 18 0 1992 1690 3 MP
XPP
X18 0 0 17 1992 1690 3 MP
XPP
X0 18 18 0 1992 1707 3 MP
XPP
X18 0 0 18 1992 1707 3 MP
XPP
X0 18 18 0 1992 1725 3 MP
XPP
X18 0 0 18 1992 1725 3 MP
XPP
X0 18 18 0 1992 1743 3 MP
XPP
X18 0 0 18 1992 1743 3 MP
XPP
X0 18 18 0 1992 1761 3 MP
XPP
X18 0 0 18 1992 1761 3 MP
XPP
X0 18 18 0 1992 1779 3 MP
XPP
X18 0 0 18 1992 1779 3 MP
XPP
X0 17 18 0 1992 1797 3 MP
XPP
X18 0 0 17 1992 1797 3 MP
XPP
X0 18 18 0 1992 1814 3 MP
XPP
X18 0 0 18 1992 1814 3 MP
XPP
X0 18 18 0 1992 1832 3 MP
XPP
X18 0 0 18 1992 1832 3 MP
XPP
X0 18 18 0 1992 1850 3 MP
XPP
X18 0 0 18 1992 1850 3 MP
XPP
X0 18 18 0 1992 1868 3 MP
XPP
X18 0 0 18 1992 1868 3 MP
XPP
X0 18 18 0 1992 1886 3 MP
XPP
X18 0 0 18 1992 1886 3 MP
XPP
X0 17 18 0 1992 1904 3 MP
XPP
X18 0 0 17 1992 1904 3 MP
XPP
X0 18 18 0 1992 1921 3 MP
XPP
X18 0 0 18 1992 1921 3 MP
XPP
X0 18 18 0 1992 1939 3 MP
XPP
X18 0 0 18 1992 1939 3 MP
XPP
X0 18 18 0 1992 1957 3 MP
XPP
X18 0 0 18 1992 1957 3 MP
XPP
X0 18 18 0 1992 1975 3 MP
XPP
X18 0 0 18 1992 1975 3 MP
XPP
X0 18 18 0 1992 1993 3 MP
XPP
X18 0 0 18 1992 1993 3 MP
XPP
X0 17 18 0 1992 2011 3 MP
XPP
X18 0 0 17 1992 2011 3 MP
XPP
X0 18 18 0 1992 2028 3 MP
XPP
X18 0 0 18 1992 2028 3 MP
XPP
X0 18 18 0 1992 2046 3 MP
XPP
X18 0 0 18 1992 2046 3 MP
XPP
X0 18 18 0 1992 2064 3 MP
XPP
X18 0 0 18 1992 2064 3 MP
XPP
X0 18 18 0 1992 2082 3 MP
XPP
X18 0 0 18 1992 2082 3 MP
XPP
X0 18 18 0 1992 2100 3 MP
XPP
X18 0 0 18 1992 2100 3 MP
XPP
X0 17 18 0 1992 2118 3 MP
XPP
X18 0 0 17 1992 2118 3 MP
XPP
X0 18 18 0 1992 2135 3 MP
XPP
X18 0 0 18 1992 2135 3 MP
XPP
X0 18 18 0 1992 2153 3 MP
XPP
X18 0 0 18 1992 2153 3 MP
XPP
X0 18 18 0 2010 388 3 MP
XPP
X18 0 0 18 2010 388 3 MP
XPP
X0 18 18 0 2010 406 3 MP
XPP
X18 0 0 18 2010 406 3 MP
XPP
X0 17 18 0 2010 424 3 MP
XPP
X18 0 0 17 2010 424 3 MP
XPP
X0 18 18 0 2010 441 3 MP
XPP
X18 0 0 18 2010 441 3 MP
XPP
X0 18 18 0 2010 459 3 MP
XPP
X18 0 0 18 2010 459 3 MP
XPP
X0.746032 sg
X0 18 18 0 2010 477 3 MP
XPP
X18 0 0 18 2010 477 3 MP
XPP
X0 18 18 0 2010 495 3 MP
XPP
X18 0 0 18 2010 495 3 MP
XPP
X0 18 18 0 2010 513 3 MP
XPP
X18 0 0 18 2010 513 3 MP
XPP
X0 17 18 0 2010 531 3 MP
XPP
X18 0 0 17 2010 531 3 MP
XPP
X0 18 18 0 2010 548 3 MP
XPP
X18 0 0 18 2010 548 3 MP
XPP
X0 18 18 0 2010 566 3 MP
XPP
X18 0 0 18 2010 566 3 MP
XPP
X0 18 18 0 2010 584 3 MP
XPP
X18 0 0 18 2010 584 3 MP
XPP
X0 18 18 0 2010 602 3 MP
XPP
X18 0 0 18 2010 602 3 MP
XPP
X0 18 18 0 2010 620 3 MP
XPP
X18 0 0 18 2010 620 3 MP
XPP
X0 17 18 0 2010 638 3 MP
XPP
X18 0 0 17 2010 638 3 MP
XPP
X0 18 18 0 2010 655 3 MP
XPP
X18 0 0 18 2010 655 3 MP
XPP
X0 18 18 0 2010 673 3 MP
XPP
X18 0 0 18 2010 673 3 MP
XPP
X0 18 18 0 2010 691 3 MP
XPP
X18 0 0 18 2010 691 3 MP
XPP
X0 18 18 0 2010 709 3 MP
XPP
X18 0 0 18 2010 709 3 MP
XPP
X0 18 18 0 2010 727 3 MP
XPP
X18 0 0 18 2010 727 3 MP
XPP
X0 17 18 0 2010 745 3 MP
XPP
X18 0 0 17 2010 745 3 MP
XPP
X0 18 18 0 2010 762 3 MP
XPP
X18 0 0 18 2010 762 3 MP
XPP
X0 18 18 0 2010 780 3 MP
XPP
X18 0 0 18 2010 780 3 MP
XPP
X0 18 18 0 2010 798 3 MP
XPP
X18 0 0 18 2010 798 3 MP
XPP
X0.492063 sg
X0 18 18 0 2010 816 3 MP
XPP
X18 0 0 18 2010 816 3 MP
XPP
X0 18 18 0 2010 834 3 MP
XPP
X18 0 0 18 2010 834 3 MP
XPP
X0 17 18 0 2010 852 3 MP
XPP
X18 0 0 17 2010 852 3 MP
XPP
X0 18 18 0 2010 869 3 MP
XPP
X18 0 0 18 2010 869 3 MP
XPP
X0 18 18 0 2010 887 3 MP
XPP
X18 0 0 18 2010 887 3 MP
XPP
X0 18 18 0 2010 905 3 MP
XPP
X18 0 0 18 2010 905 3 MP
XPP
X0 18 18 0 2010 923 3 MP
XPP
X18 0 0 18 2010 923 3 MP
XPP
X0 18 18 0 2010 941 3 MP
XPP
X18 0 0 18 2010 941 3 MP
XPP
X0 17 18 0 2010 959 3 MP
XPP
X18 0 0 17 2010 959 3 MP
XPP
X0 18 18 0 2010 976 3 MP
XPP
X18 0 0 18 2010 976 3 MP
XPP
X0 18 18 0 2010 994 3 MP
XPP
X18 0 0 18 2010 994 3 MP
XPP
X0 18 18 0 2010 1012 3 MP
XPP
X18 0 0 18 2010 1012 3 MP
XPP
X0 18 18 0 2010 1030 3 MP
XPP
X18 0 0 18 2010 1030 3 MP
XPP
X0 18 18 0 2010 1048 3 MP
XPP
X18 0 0 18 2010 1048 3 MP
XPP
X0 17 18 0 2010 1066 3 MP
XPP
X18 0 0 17 2010 1066 3 MP
XPP
X0 18 18 0 2010 1083 3 MP
XPP
X18 0 0 18 2010 1083 3 MP
XPP
X0 18 18 0 2010 1101 3 MP
XPP
X18 0 0 18 2010 1101 3 MP
XPP
X0 18 18 0 2010 1119 3 MP
XPP
X18 0 0 18 2010 1119 3 MP
XPP
X0 18 18 0 2010 1137 3 MP
XPP
X18 0 0 18 2010 1137 3 MP
XPP
X0 18 18 0 2010 1155 3 MP
XPP
X18 0 0 18 2010 1155 3 MP
XPP
X1 sg
X0 17 18 0 2010 1173 3 MP
XPP
X18 0 0 17 2010 1173 3 MP
XPP
X0 18 18 0 2010 1190 3 MP
XPP
X18 0 0 18 2010 1190 3 MP
XPP
X0 18 18 0 2010 1208 3 MP
XPP
X18 0 0 18 2010 1208 3 MP
XPP
X0 18 18 0 2010 1226 3 MP
XPP
X18 0 0 18 2010 1226 3 MP
XPP
X0 18 18 0 2010 1244 3 MP
XPP
X18 0 0 18 2010 1244 3 MP
XPP
X0 17 18 0 2010 1262 3 MP
XPP
X18 0 0 17 2010 1262 3 MP
XPP
X0 18 18 0 2010 1279 3 MP
XPP
X18 0 0 18 2010 1279 3 MP
XPP
X0 18 18 0 2010 1297 3 MP
XPP
X18 0 0 18 2010 1297 3 MP
XPP
X0 18 18 0 2010 1315 3 MP
XPP
X18 0 0 18 2010 1315 3 MP
XPP
X0 18 18 0 2010 1333 3 MP
XPP
X18 0 0 18 2010 1333 3 MP
XPP
X0 18 18 0 2010 1351 3 MP
XPP
X18 0 0 18 2010 1351 3 MP
XPP
X0 17 18 0 2010 1369 3 MP
XPP
X18 0 0 17 2010 1369 3 MP
XPP
X0 18 18 0 2010 1386 3 MP
XPP
X18 0 0 18 2010 1386 3 MP
XPP
X0 18 18 0 2010 1404 3 MP
XPP
X18 0 0 18 2010 1404 3 MP
XPP
X0 18 18 0 2010 1422 3 MP
XPP
X18 0 0 18 2010 1422 3 MP
XPP
X0 18 18 0 2010 1440 3 MP
XPP
X18 0 0 18 2010 1440 3 MP
XPP
X0 18 18 0 2010 1458 3 MP
XPP
X18 0 0 18 2010 1458 3 MP
XPP
X0 17 18 0 2010 1476 3 MP
XPP
X18 0 0 17 2010 1476 3 MP
XPP
X0 18 18 0 2010 1493 3 MP
XPP
X18 0 0 18 2010 1493 3 MP
XPP
X0 18 18 0 2010 1511 3 MP
XPP
X18 0 0 18 2010 1511 3 MP
XPP
X0 18 18 0 2010 1529 3 MP
XPP
X18 0 0 18 2010 1529 3 MP
XPP
X0 18 18 0 2010 1547 3 MP
XPP
X18 0 0 18 2010 1547 3 MP
XPP
X0 18 18 0 2010 1565 3 MP
XPP
X18 0 0 18 2010 1565 3 MP
XPP
X0 17 18 0 2010 1583 3 MP
XPP
X18 0 0 17 2010 1583 3 MP
XPP
X0 18 18 0 2010 1600 3 MP
XPP
X18 0 0 18 2010 1600 3 MP
XPP
X0 18 18 0 2010 1618 3 MP
XPP
X18 0 0 18 2010 1618 3 MP
XPP
X0 18 18 0 2010 1636 3 MP
XPP
X18 0 0 18 2010 1636 3 MP
XPP
X0 18 18 0 2010 1654 3 MP
XPP
X18 0 0 18 2010 1654 3 MP
XPP
X0 18 18 0 2010 1672 3 MP
XPP
X18 0 0 18 2010 1672 3 MP
XPP
X0 17 18 0 2010 1690 3 MP
XPP
X18 0 0 17 2010 1690 3 MP
XPP
X0 18 18 0 2010 1707 3 MP
XPP
X18 0 0 18 2010 1707 3 MP
XPP
X0 18 18 0 2010 1725 3 MP
XPP
X18 0 0 18 2010 1725 3 MP
XPP
X0 18 18 0 2010 1743 3 MP
XPP
X18 0 0 18 2010 1743 3 MP
XPP
X0 18 18 0 2010 1761 3 MP
XPP
X18 0 0 18 2010 1761 3 MP
XPP
X0 18 18 0 2010 1779 3 MP
XPP
X18 0 0 18 2010 1779 3 MP
XPP
X0 17 18 0 2010 1797 3 MP
XPP
X18 0 0 17 2010 1797 3 MP
XPP
X0 18 18 0 2010 1814 3 MP
XPP
X18 0 0 18 2010 1814 3 MP
XPP
X0 18 18 0 2010 1832 3 MP
XPP
X18 0 0 18 2010 1832 3 MP
XPP
X0 18 18 0 2010 1850 3 MP
XPP
X18 0 0 18 2010 1850 3 MP
XPP
X0 18 18 0 2010 1868 3 MP
XPP
X18 0 0 18 2010 1868 3 MP
XPP
X0 18 18 0 2010 1886 3 MP
XPP
X18 0 0 18 2010 1886 3 MP
XPP
X0 17 18 0 2010 1904 3 MP
XPP
X18 0 0 17 2010 1904 3 MP
XPP
X0 18 18 0 2010 1921 3 MP
XPP
X18 0 0 18 2010 1921 3 MP
XPP
X0 18 18 0 2010 1939 3 MP
XPP
X18 0 0 18 2010 1939 3 MP
XPP
X0 18 18 0 2010 1957 3 MP
XPP
X18 0 0 18 2010 1957 3 MP
XPP
X0 18 18 0 2010 1975 3 MP
XPP
X18 0 0 18 2010 1975 3 MP
XPP
X0 18 18 0 2010 1993 3 MP
XPP
X18 0 0 18 2010 1993 3 MP
XPP
X0 17 18 0 2010 2011 3 MP
XPP
X18 0 0 17 2010 2011 3 MP
XPP
X0 18 18 0 2010 2028 3 MP
XPP
X18 0 0 18 2010 2028 3 MP
XPP
X0 18 18 0 2010 2046 3 MP
XPP
X18 0 0 18 2010 2046 3 MP
XPP
X0 18 18 0 2010 2064 3 MP
XPP
X18 0 0 18 2010 2064 3 MP
XPP
X0 18 18 0 2010 2082 3 MP
XPP
X18 0 0 18 2010 2082 3 MP
XPP
X0 18 18 0 2010 2100 3 MP
XPP
X18 0 0 18 2010 2100 3 MP
XPP
X0 17 18 0 2010 2118 3 MP
XPP
X18 0 0 17 2010 2118 3 MP
XPP
X0 18 18 0 2010 2135 3 MP
XPP
X18 0 0 18 2010 2135 3 MP
XPP
X0 18 18 0 2010 2153 3 MP
XPP
X18 0 0 18 2010 2153 3 MP
XPP
X0 18 17 0 2028 388 3 MP
XPP
X17 0 0 18 2028 388 3 MP
XPP
X0 18 17 0 2028 406 3 MP
XPP
X17 0 0 18 2028 406 3 MP
XPP
X0 17 17 0 2028 424 3 MP
XPP
X17 0 0 17 2028 424 3 MP
XPP
X0 18 17 0 2028 441 3 MP
XPP
X17 0 0 18 2028 441 3 MP
XPP
X0.746032 sg
X0 18 17 0 2028 459 3 MP
XPP
X17 0 0 18 2028 459 3 MP
XPP
X0 18 17 0 2028 477 3 MP
XPP
X17 0 0 18 2028 477 3 MP
XPP
X0 18 17 0 2028 495 3 MP
XPP
X17 0 0 18 2028 495 3 MP
XPP
X0 18 17 0 2028 513 3 MP
XPP
X17 0 0 18 2028 513 3 MP
XPP
X0 17 17 0 2028 531 3 MP
XPP
X17 0 0 17 2028 531 3 MP
XPP
X0 18 17 0 2028 548 3 MP
XPP
X17 0 0 18 2028 548 3 MP
XPP
X0 18 17 0 2028 566 3 MP
XPP
X17 0 0 18 2028 566 3 MP
XPP
X0 18 17 0 2028 584 3 MP
XPP
X17 0 0 18 2028 584 3 MP
XPP
X0 18 17 0 2028 602 3 MP
XPP
X17 0 0 18 2028 602 3 MP
XPP
X0 18 17 0 2028 620 3 MP
XPP
X17 0 0 18 2028 620 3 MP
XPP
X0 17 17 0 2028 638 3 MP
XPP
X17 0 0 17 2028 638 3 MP
XPP
X0 18 17 0 2028 655 3 MP
XPP
X17 0 0 18 2028 655 3 MP
XPP
X0 18 17 0 2028 673 3 MP
XPP
X17 0 0 18 2028 673 3 MP
XPP
X0 18 17 0 2028 691 3 MP
XPP
X17 0 0 18 2028 691 3 MP
XPP
X0 18 17 0 2028 709 3 MP
XPP
X17 0 0 18 2028 709 3 MP
XPP
X0 18 17 0 2028 727 3 MP
XPP
X17 0 0 18 2028 727 3 MP
XPP
X0 17 17 0 2028 745 3 MP
XPP
X17 0 0 17 2028 745 3 MP
XPP
X0 18 17 0 2028 762 3 MP
XPP
X17 0 0 18 2028 762 3 MP
XPP
X0 18 17 0 2028 780 3 MP
XPP
X17 0 0 18 2028 780 3 MP
XPP
X0 18 17 0 2028 798 3 MP
XPP
X17 0 0 18 2028 798 3 MP
XPP
X0.492063 sg
X0 18 17 0 2028 816 3 MP
XPP
X17 0 0 18 2028 816 3 MP
XPP
X0 18 17 0 2028 834 3 MP
XPP
X17 0 0 18 2028 834 3 MP
XPP
X0 17 17 0 2028 852 3 MP
XPP
X17 0 0 17 2028 852 3 MP
XPP
X0 18 17 0 2028 869 3 MP
XPP
X17 0 0 18 2028 869 3 MP
XPP
X0 18 17 0 2028 887 3 MP
XPP
X17 0 0 18 2028 887 3 MP
XPP
X0 18 17 0 2028 905 3 MP
XPP
X17 0 0 18 2028 905 3 MP
XPP
X0 18 17 0 2028 923 3 MP
XPP
X17 0 0 18 2028 923 3 MP
XPP
X0 18 17 0 2028 941 3 MP
XPP
X17 0 0 18 2028 941 3 MP
XPP
X0 17 17 0 2028 959 3 MP
XPP
X17 0 0 17 2028 959 3 MP
XPP
X0 18 17 0 2028 976 3 MP
XPP
X17 0 0 18 2028 976 3 MP
XPP
X0 18 17 0 2028 994 3 MP
XPP
X17 0 0 18 2028 994 3 MP
XPP
X0 18 17 0 2028 1012 3 MP
XPP
X17 0 0 18 2028 1012 3 MP
XPP
X0 18 17 0 2028 1030 3 MP
XPP
X17 0 0 18 2028 1030 3 MP
XPP
X0 18 17 0 2028 1048 3 MP
XPP
X17 0 0 18 2028 1048 3 MP
XPP
X0 17 17 0 2028 1066 3 MP
XPP
X17 0 0 17 2028 1066 3 MP
XPP
X0 18 17 0 2028 1083 3 MP
XPP
X17 0 0 18 2028 1083 3 MP
XPP
X0 18 17 0 2028 1101 3 MP
XPP
X17 0 0 18 2028 1101 3 MP
XPP
X0 18 17 0 2028 1119 3 MP
XPP
X17 0 0 18 2028 1119 3 MP
XPP
X0 18 17 0 2028 1137 3 MP
XPP
X17 0 0 18 2028 1137 3 MP
XPP
X0 18 17 0 2028 1155 3 MP
XPP
X17 0 0 18 2028 1155 3 MP
XPP
X1 sg
X0 17 17 0 2028 1173 3 MP
XPP
X17 0 0 17 2028 1173 3 MP
XPP
X0 18 17 0 2028 1190 3 MP
XPP
X17 0 0 18 2028 1190 3 MP
XPP
X0 18 17 0 2028 1208 3 MP
XPP
X17 0 0 18 2028 1208 3 MP
XPP
X0 18 17 0 2028 1226 3 MP
XPP
X17 0 0 18 2028 1226 3 MP
XPP
X0 18 17 0 2028 1244 3 MP
XPP
X17 0 0 18 2028 1244 3 MP
XPP
X0 17 17 0 2028 1262 3 MP
XPP
X17 0 0 17 2028 1262 3 MP
XPP
X0 18 17 0 2028 1279 3 MP
XPP
X17 0 0 18 2028 1279 3 MP
XPP
X0 18 17 0 2028 1297 3 MP
XPP
X17 0 0 18 2028 1297 3 MP
XPP
X0 18 17 0 2028 1315 3 MP
XPP
X17 0 0 18 2028 1315 3 MP
XPP
X0 18 17 0 2028 1333 3 MP
XPP
X17 0 0 18 2028 1333 3 MP
XPP
X0 18 17 0 2028 1351 3 MP
XPP
X17 0 0 18 2028 1351 3 MP
XPP
X0 17 17 0 2028 1369 3 MP
XPP
X17 0 0 17 2028 1369 3 MP
XPP
X0 18 17 0 2028 1386 3 MP
XPP
X17 0 0 18 2028 1386 3 MP
XPP
X0 18 17 0 2028 1404 3 MP
XPP
X17 0 0 18 2028 1404 3 MP
XPP
X0 18 17 0 2028 1422 3 MP
XPP
X17 0 0 18 2028 1422 3 MP
XPP
X0 18 17 0 2028 1440 3 MP
XPP
X17 0 0 18 2028 1440 3 MP
XPP
X0 18 17 0 2028 1458 3 MP
XPP
X17 0 0 18 2028 1458 3 MP
XPP
X0 17 17 0 2028 1476 3 MP
XPP
X17 0 0 17 2028 1476 3 MP
XPP
X0 18 17 0 2028 1493 3 MP
XPP
X17 0 0 18 2028 1493 3 MP
XPP
X0 18 17 0 2028 1511 3 MP
XPP
X17 0 0 18 2028 1511 3 MP
XPP
X0 18 17 0 2028 1529 3 MP
XPP
X17 0 0 18 2028 1529 3 MP
XPP
X0 18 17 0 2028 1547 3 MP
XPP
X17 0 0 18 2028 1547 3 MP
XPP
X0 18 17 0 2028 1565 3 MP
XPP
X17 0 0 18 2028 1565 3 MP
XPP
X0 17 17 0 2028 1583 3 MP
XPP
X17 0 0 17 2028 1583 3 MP
XPP
X0 18 17 0 2028 1600 3 MP
XPP
X17 0 0 18 2028 1600 3 MP
XPP
X0 18 17 0 2028 1618 3 MP
XPP
X17 0 0 18 2028 1618 3 MP
XPP
X0 18 17 0 2028 1636 3 MP
XPP
X17 0 0 18 2028 1636 3 MP
XPP
X0 18 17 0 2028 1654 3 MP
XPP
X17 0 0 18 2028 1654 3 MP
XPP
X0 18 17 0 2028 1672 3 MP
XPP
X17 0 0 18 2028 1672 3 MP
XPP
X0 17 17 0 2028 1690 3 MP
XPP
X17 0 0 17 2028 1690 3 MP
XPP
X0 18 17 0 2028 1707 3 MP
XPP
X17 0 0 18 2028 1707 3 MP
XPP
X0 sg
X0 18 17 0 2028 1725 3 MP
XPP
X17 0 0 18 2028 1725 3 MP
XPP
X1 sg
X0 18 17 0 2028 1743 3 MP
XPP
X17 0 0 18 2028 1743 3 MP
XPP
X0 18 17 0 2028 1761 3 MP
XPP
X17 0 0 18 2028 1761 3 MP
XPP
X0 18 17 0 2028 1779 3 MP
XPP
X17 0 0 18 2028 1779 3 MP
XPP
X0 17 17 0 2028 1797 3 MP
XPP
X17 0 0 17 2028 1797 3 MP
XPP
X0 18 17 0 2028 1814 3 MP
XPP
X17 0 0 18 2028 1814 3 MP
XPP
X0 18 17 0 2028 1832 3 MP
XPP
X17 0 0 18 2028 1832 3 MP
XPP
X0 18 17 0 2028 1850 3 MP
XPP
X17 0 0 18 2028 1850 3 MP
XPP
X0 18 17 0 2028 1868 3 MP
XPP
X17 0 0 18 2028 1868 3 MP
XPP
X0 18 17 0 2028 1886 3 MP
XPP
X17 0 0 18 2028 1886 3 MP
XPP
X0 17 17 0 2028 1904 3 MP
XPP
X17 0 0 17 2028 1904 3 MP
XPP
X0 18 17 0 2028 1921 3 MP
XPP
X17 0 0 18 2028 1921 3 MP
XPP
X0 18 17 0 2028 1939 3 MP
XPP
X17 0 0 18 2028 1939 3 MP
XPP
X0 18 17 0 2028 1957 3 MP
XPP
X17 0 0 18 2028 1957 3 MP
XPP
X0 18 17 0 2028 1975 3 MP
XPP
X17 0 0 18 2028 1975 3 MP
XPP
X0 18 17 0 2028 1993 3 MP
XPP
X17 0 0 18 2028 1993 3 MP
XPP
X0 17 17 0 2028 2011 3 MP
XPP
X17 0 0 17 2028 2011 3 MP
XPP
X0 18 17 0 2028 2028 3 MP
XPP
X17 0 0 18 2028 2028 3 MP
XPP
X0 18 17 0 2028 2046 3 MP
XPP
X17 0 0 18 2028 2046 3 MP
XPP
X0 18 17 0 2028 2064 3 MP
XPP
X17 0 0 18 2028 2064 3 MP
XPP
X0 18 17 0 2028 2082 3 MP
XPP
X17 0 0 18 2028 2082 3 MP
XPP
X0 18 17 0 2028 2100 3 MP
XPP
X17 0 0 18 2028 2100 3 MP
XPP
X0 17 17 0 2028 2118 3 MP
XPP
X17 0 0 17 2028 2118 3 MP
XPP
X0 18 17 0 2028 2135 3 MP
XPP
X17 0 0 18 2028 2135 3 MP
XPP
X0 18 17 0 2028 2153 3 MP
XPP
X17 0 0 18 2028 2153 3 MP
XPP
X0 18 18 0 2045 388 3 MP
XPP
X18 0 0 18 2045 388 3 MP
XPP
X0 18 18 0 2045 406 3 MP
XPP
X18 0 0 18 2045 406 3 MP
XPP
X0 17 18 0 2045 424 3 MP
XPP
X18 0 0 17 2045 424 3 MP
XPP
X0 18 18 0 2045 441 3 MP
XPP
X18 0 0 18 2045 441 3 MP
XPP
X0.746032 sg
X0 18 18 0 2045 459 3 MP
XPP
X18 0 0 18 2045 459 3 MP
XPP
X0 18 18 0 2045 477 3 MP
XPP
X18 0 0 18 2045 477 3 MP
XPP
X0 18 18 0 2045 495 3 MP
XPP
X18 0 0 18 2045 495 3 MP
XPP
X0 18 18 0 2045 513 3 MP
XPP
X18 0 0 18 2045 513 3 MP
XPP
X0 17 18 0 2045 531 3 MP
XPP
X18 0 0 17 2045 531 3 MP
XPP
X0 18 18 0 2045 548 3 MP
XPP
X18 0 0 18 2045 548 3 MP
XPP
X0 18 18 0 2045 566 3 MP
XPP
X18 0 0 18 2045 566 3 MP
XPP
X0 18 18 0 2045 584 3 MP
XPP
X18 0 0 18 2045 584 3 MP
XPP
X0 18 18 0 2045 602 3 MP
XPP
X18 0 0 18 2045 602 3 MP
XPP
X0 18 18 0 2045 620 3 MP
XPP
X18 0 0 18 2045 620 3 MP
XPP
X0 17 18 0 2045 638 3 MP
XPP
X18 0 0 17 2045 638 3 MP
XPP
X0 18 18 0 2045 655 3 MP
XPP
X18 0 0 18 2045 655 3 MP
XPP
X0 18 18 0 2045 673 3 MP
XPP
X18 0 0 18 2045 673 3 MP
XPP
X0 18 18 0 2045 691 3 MP
XPP
X18 0 0 18 2045 691 3 MP
XPP
X0 18 18 0 2045 709 3 MP
XPP
X18 0 0 18 2045 709 3 MP
XPP
X0 18 18 0 2045 727 3 MP
XPP
X18 0 0 18 2045 727 3 MP
XPP
X0 17 18 0 2045 745 3 MP
XPP
X18 0 0 17 2045 745 3 MP
XPP
X0 18 18 0 2045 762 3 MP
XPP
X18 0 0 18 2045 762 3 MP
XPP
X0 18 18 0 2045 780 3 MP
XPP
X18 0 0 18 2045 780 3 MP
XPP
X0.492063 sg
X0 18 18 0 2045 798 3 MP
XPP
X18 0 0 18 2045 798 3 MP
XPP
X0 18 18 0 2045 816 3 MP
XPP
X18 0 0 18 2045 816 3 MP
XPP
X0 18 18 0 2045 834 3 MP
XPP
X18 0 0 18 2045 834 3 MP
XPP
X0 17 18 0 2045 852 3 MP
XPP
X18 0 0 17 2045 852 3 MP
XPP
X0 18 18 0 2045 869 3 MP
XPP
X18 0 0 18 2045 869 3 MP
XPP
X0 18 18 0 2045 887 3 MP
XPP
X18 0 0 18 2045 887 3 MP
XPP
X0 18 18 0 2045 905 3 MP
XPP
X18 0 0 18 2045 905 3 MP
XPP
X0 18 18 0 2045 923 3 MP
XPP
X18 0 0 18 2045 923 3 MP
XPP
X0 18 18 0 2045 941 3 MP
XPP
X18 0 0 18 2045 941 3 MP
XPP
X0 17 18 0 2045 959 3 MP
XPP
X18 0 0 17 2045 959 3 MP
XPP
X0 18 18 0 2045 976 3 MP
XPP
X18 0 0 18 2045 976 3 MP
XPP
X0 18 18 0 2045 994 3 MP
XPP
X18 0 0 18 2045 994 3 MP
XPP
X0 18 18 0 2045 1012 3 MP
XPP
X18 0 0 18 2045 1012 3 MP
XPP
X0 18 18 0 2045 1030 3 MP
XPP
X18 0 0 18 2045 1030 3 MP
XPP
X0 18 18 0 2045 1048 3 MP
XPP
X18 0 0 18 2045 1048 3 MP
XPP
X0 17 18 0 2045 1066 3 MP
XPP
X18 0 0 17 2045 1066 3 MP
XPP
X0 18 18 0 2045 1083 3 MP
XPP
X18 0 0 18 2045 1083 3 MP
XPP
X0 18 18 0 2045 1101 3 MP
XPP
X18 0 0 18 2045 1101 3 MP
XPP
X0 18 18 0 2045 1119 3 MP
XPP
X18 0 0 18 2045 1119 3 MP
XPP
X0 18 18 0 2045 1137 3 MP
XPP
X18 0 0 18 2045 1137 3 MP
XPP
X0 18 18 0 2045 1155 3 MP
XPP
X18 0 0 18 2045 1155 3 MP
XPP
X0 17 18 0 2045 1173 3 MP
XPP
X18 0 0 17 2045 1173 3 MP
XPP
X1 sg
X0 18 18 0 2045 1190 3 MP
XPP
X18 0 0 18 2045 1190 3 MP
XPP
X0 18 18 0 2045 1208 3 MP
XPP
X18 0 0 18 2045 1208 3 MP
XPP
X0 18 18 0 2045 1226 3 MP
XPP
X18 0 0 18 2045 1226 3 MP
XPP
X0 18 18 0 2045 1244 3 MP
XPP
X18 0 0 18 2045 1244 3 MP
XPP
X0 17 18 0 2045 1262 3 MP
XPP
X18 0 0 17 2045 1262 3 MP
XPP
X0 18 18 0 2045 1279 3 MP
XPP
X18 0 0 18 2045 1279 3 MP
XPP
X0 18 18 0 2045 1297 3 MP
XPP
X18 0 0 18 2045 1297 3 MP
XPP
X0 18 18 0 2045 1315 3 MP
XPP
X18 0 0 18 2045 1315 3 MP
XPP
X0 18 18 0 2045 1333 3 MP
XPP
X18 0 0 18 2045 1333 3 MP
XPP
X0 18 18 0 2045 1351 3 MP
XPP
X18 0 0 18 2045 1351 3 MP
XPP
X0 17 18 0 2045 1369 3 MP
XPP
X18 0 0 17 2045 1369 3 MP
XPP
X0 18 18 0 2045 1386 3 MP
XPP
X18 0 0 18 2045 1386 3 MP
XPP
X0 18 18 0 2045 1404 3 MP
XPP
X18 0 0 18 2045 1404 3 MP
XPP
X0 18 18 0 2045 1422 3 MP
XPP
X18 0 0 18 2045 1422 3 MP
XPP
X0 18 18 0 2045 1440 3 MP
XPP
X18 0 0 18 2045 1440 3 MP
XPP
X0 18 18 0 2045 1458 3 MP
XPP
X18 0 0 18 2045 1458 3 MP
XPP
X0 17 18 0 2045 1476 3 MP
XPP
X18 0 0 17 2045 1476 3 MP
XPP
X0 18 18 0 2045 1493 3 MP
XPP
X18 0 0 18 2045 1493 3 MP
XPP
X0 18 18 0 2045 1511 3 MP
XPP
X18 0 0 18 2045 1511 3 MP
XPP
X0 18 18 0 2045 1529 3 MP
XPP
X18 0 0 18 2045 1529 3 MP
XPP
X0 18 18 0 2045 1547 3 MP
XPP
X18 0 0 18 2045 1547 3 MP
XPP
X0 18 18 0 2045 1565 3 MP
XPP
X18 0 0 18 2045 1565 3 MP
XPP
X0 17 18 0 2045 1583 3 MP
XPP
X18 0 0 17 2045 1583 3 MP
XPP
X0 18 18 0 2045 1600 3 MP
XPP
X18 0 0 18 2045 1600 3 MP
XPP
X0 18 18 0 2045 1618 3 MP
XPP
X18 0 0 18 2045 1618 3 MP
XPP
X0 18 18 0 2045 1636 3 MP
XPP
X18 0 0 18 2045 1636 3 MP
XPP
X0 18 18 0 2045 1654 3 MP
XPP
X18 0 0 18 2045 1654 3 MP
XPP
X0 18 18 0 2045 1672 3 MP
XPP
X18 0 0 18 2045 1672 3 MP
XPP
X0 17 18 0 2045 1690 3 MP
XPP
X18 0 0 17 2045 1690 3 MP
XPP
X0 18 18 0 2045 1707 3 MP
XPP
X18 0 0 18 2045 1707 3 MP
XPP
X0 sg
X0 18 18 0 2045 1725 3 MP
XPP
X18 0 0 18 2045 1725 3 MP
XPP
X1 sg
X0 18 18 0 2045 1743 3 MP
XPP
X18 0 0 18 2045 1743 3 MP
XPP
X0 18 18 0 2045 1761 3 MP
XPP
X18 0 0 18 2045 1761 3 MP
XPP
X0 18 18 0 2045 1779 3 MP
XPP
X18 0 0 18 2045 1779 3 MP
XPP
X0 17 18 0 2045 1797 3 MP
XPP
X18 0 0 17 2045 1797 3 MP
XPP
X0 18 18 0 2045 1814 3 MP
XPP
X18 0 0 18 2045 1814 3 MP
XPP
X0 18 18 0 2045 1832 3 MP
XPP
X18 0 0 18 2045 1832 3 MP
XPP
X0 18 18 0 2045 1850 3 MP
XPP
X18 0 0 18 2045 1850 3 MP
XPP
X0 18 18 0 2045 1868 3 MP
XPP
X18 0 0 18 2045 1868 3 MP
XPP
X0 18 18 0 2045 1886 3 MP
XPP
X18 0 0 18 2045 1886 3 MP
XPP
X0 17 18 0 2045 1904 3 MP
XPP
X18 0 0 17 2045 1904 3 MP
XPP
X0 18 18 0 2045 1921 3 MP
XPP
X18 0 0 18 2045 1921 3 MP
XPP
X0 18 18 0 2045 1939 3 MP
XPP
X18 0 0 18 2045 1939 3 MP
XPP
X0 18 18 0 2045 1957 3 MP
XPP
X18 0 0 18 2045 1957 3 MP
XPP
X0 18 18 0 2045 1975 3 MP
XPP
X18 0 0 18 2045 1975 3 MP
XPP
X0 18 18 0 2045 1993 3 MP
XPP
X18 0 0 18 2045 1993 3 MP
XPP
X0 17 18 0 2045 2011 3 MP
XPP
X18 0 0 17 2045 2011 3 MP
XPP
X0 18 18 0 2045 2028 3 MP
XPP
X18 0 0 18 2045 2028 3 MP
XPP
X0 18 18 0 2045 2046 3 MP
XPP
X18 0 0 18 2045 2046 3 MP
XPP
X0 18 18 0 2045 2064 3 MP
XPP
X18 0 0 18 2045 2064 3 MP
XPP
X0 18 18 0 2045 2082 3 MP
XPP
X18 0 0 18 2045 2082 3 MP
XPP
X0 18 18 0 2045 2100 3 MP
XPP
X18 0 0 18 2045 2100 3 MP
XPP
X0 17 18 0 2045 2118 3 MP
XPP
X18 0 0 17 2045 2118 3 MP
XPP
X0 18 18 0 2045 2135 3 MP
XPP
X18 0 0 18 2045 2135 3 MP
XPP
X0 18 18 0 2045 2153 3 MP
XPP
X18 0 0 18 2045 2153 3 MP
XPP
X0 18 18 0 2063 388 3 MP
XPP
X18 0 0 18 2063 388 3 MP
XPP
X0 18 18 0 2063 406 3 MP
XPP
X18 0 0 18 2063 406 3 MP
XPP
X0 17 18 0 2063 424 3 MP
XPP
X18 0 0 17 2063 424 3 MP
XPP
X0 18 18 0 2063 441 3 MP
XPP
X18 0 0 18 2063 441 3 MP
XPP
X0.746032 sg
X0 18 18 0 2063 459 3 MP
XPP
X18 0 0 18 2063 459 3 MP
XPP
X0 18 18 0 2063 477 3 MP
XPP
X18 0 0 18 2063 477 3 MP
XPP
X0 18 18 0 2063 495 3 MP
XPP
X18 0 0 18 2063 495 3 MP
XPP
X0 18 18 0 2063 513 3 MP
XPP
X18 0 0 18 2063 513 3 MP
XPP
X0 17 18 0 2063 531 3 MP
XPP
X18 0 0 17 2063 531 3 MP
XPP
X0 18 18 0 2063 548 3 MP
XPP
X18 0 0 18 2063 548 3 MP
XPP
X0 18 18 0 2063 566 3 MP
XPP
X18 0 0 18 2063 566 3 MP
XPP
X0 18 18 0 2063 584 3 MP
XPP
X18 0 0 18 2063 584 3 MP
XPP
X0 18 18 0 2063 602 3 MP
XPP
X18 0 0 18 2063 602 3 MP
XPP
X0 18 18 0 2063 620 3 MP
XPP
X18 0 0 18 2063 620 3 MP
XPP
X0 17 18 0 2063 638 3 MP
XPP
X18 0 0 17 2063 638 3 MP
XPP
X0 18 18 0 2063 655 3 MP
XPP
X18 0 0 18 2063 655 3 MP
XPP
X0 18 18 0 2063 673 3 MP
XPP
X18 0 0 18 2063 673 3 MP
XPP
X0 18 18 0 2063 691 3 MP
XPP
X18 0 0 18 2063 691 3 MP
XPP
X0 18 18 0 2063 709 3 MP
XPP
X18 0 0 18 2063 709 3 MP
XPP
X0 18 18 0 2063 727 3 MP
XPP
X18 0 0 18 2063 727 3 MP
XPP
X0 17 18 0 2063 745 3 MP
XPP
X18 0 0 17 2063 745 3 MP
XPP
X0 18 18 0 2063 762 3 MP
XPP
X18 0 0 18 2063 762 3 MP
XPP
X0 18 18 0 2063 780 3 MP
XPP
X18 0 0 18 2063 780 3 MP
XPP
X0.492063 sg
X0 18 18 0 2063 798 3 MP
XPP
X18 0 0 18 2063 798 3 MP
XPP
X0 18 18 0 2063 816 3 MP
XPP
X18 0 0 18 2063 816 3 MP
XPP
X0 18 18 0 2063 834 3 MP
XPP
X18 0 0 18 2063 834 3 MP
XPP
X0 17 18 0 2063 852 3 MP
XPP
X18 0 0 17 2063 852 3 MP
XPP
X0 18 18 0 2063 869 3 MP
XPP
X18 0 0 18 2063 869 3 MP
XPP
X0 18 18 0 2063 887 3 MP
XPP
X18 0 0 18 2063 887 3 MP
XPP
X0 18 18 0 2063 905 3 MP
XPP
X18 0 0 18 2063 905 3 MP
XPP
X0 18 18 0 2063 923 3 MP
XPP
X18 0 0 18 2063 923 3 MP
XPP
X0 18 18 0 2063 941 3 MP
XPP
X18 0 0 18 2063 941 3 MP
XPP
X0 17 18 0 2063 959 3 MP
XPP
X18 0 0 17 2063 959 3 MP
XPP
X0 18 18 0 2063 976 3 MP
XPP
X18 0 0 18 2063 976 3 MP
XPP
X0 18 18 0 2063 994 3 MP
XPP
X18 0 0 18 2063 994 3 MP
XPP
X0 18 18 0 2063 1012 3 MP
XPP
X18 0 0 18 2063 1012 3 MP
XPP
X0 18 18 0 2063 1030 3 MP
XPP
X18 0 0 18 2063 1030 3 MP
XPP
X0 18 18 0 2063 1048 3 MP
XPP
X18 0 0 18 2063 1048 3 MP
XPP
X0 17 18 0 2063 1066 3 MP
XPP
X18 0 0 17 2063 1066 3 MP
XPP
X0 18 18 0 2063 1083 3 MP
XPP
X18 0 0 18 2063 1083 3 MP
XPP
X0 18 18 0 2063 1101 3 MP
XPP
X18 0 0 18 2063 1101 3 MP
XPP
X0 18 18 0 2063 1119 3 MP
XPP
X18 0 0 18 2063 1119 3 MP
XPP
X0 18 18 0 2063 1137 3 MP
XPP
X18 0 0 18 2063 1137 3 MP
XPP
X0 18 18 0 2063 1155 3 MP
XPP
X18 0 0 18 2063 1155 3 MP
XPP
X0 17 18 0 2063 1173 3 MP
XPP
X18 0 0 17 2063 1173 3 MP
XPP
X1 sg
X0 18 18 0 2063 1190 3 MP
XPP
X18 0 0 18 2063 1190 3 MP
XPP
X0 18 18 0 2063 1208 3 MP
XPP
X18 0 0 18 2063 1208 3 MP
XPP
X0 18 18 0 2063 1226 3 MP
XPP
X18 0 0 18 2063 1226 3 MP
XPP
X0 18 18 0 2063 1244 3 MP
XPP
X18 0 0 18 2063 1244 3 MP
XPP
X0 17 18 0 2063 1262 3 MP
XPP
X18 0 0 17 2063 1262 3 MP
XPP
X0 18 18 0 2063 1279 3 MP
XPP
X18 0 0 18 2063 1279 3 MP
XPP
X0 18 18 0 2063 1297 3 MP
XPP
X18 0 0 18 2063 1297 3 MP
XPP
X0 18 18 0 2063 1315 3 MP
XPP
X18 0 0 18 2063 1315 3 MP
XPP
X0 18 18 0 2063 1333 3 MP
XPP
X18 0 0 18 2063 1333 3 MP
XPP
X0 18 18 0 2063 1351 3 MP
XPP
X18 0 0 18 2063 1351 3 MP
XPP
X0 17 18 0 2063 1369 3 MP
XPP
X18 0 0 17 2063 1369 3 MP
XPP
X0 18 18 0 2063 1386 3 MP
XPP
X18 0 0 18 2063 1386 3 MP
XPP
X0 18 18 0 2063 1404 3 MP
XPP
X18 0 0 18 2063 1404 3 MP
XPP
X0 18 18 0 2063 1422 3 MP
XPP
X18 0 0 18 2063 1422 3 MP
XPP
X0 18 18 0 2063 1440 3 MP
XPP
X18 0 0 18 2063 1440 3 MP
XPP
X0 18 18 0 2063 1458 3 MP
XPP
X18 0 0 18 2063 1458 3 MP
XPP
X0 17 18 0 2063 1476 3 MP
XPP
X18 0 0 17 2063 1476 3 MP
XPP
X0 18 18 0 2063 1493 3 MP
XPP
X18 0 0 18 2063 1493 3 MP
XPP
X0 18 18 0 2063 1511 3 MP
XPP
X18 0 0 18 2063 1511 3 MP
XPP
X0 18 18 0 2063 1529 3 MP
XPP
X18 0 0 18 2063 1529 3 MP
XPP
X0 18 18 0 2063 1547 3 MP
XPP
X18 0 0 18 2063 1547 3 MP
XPP
X0 18 18 0 2063 1565 3 MP
XPP
X18 0 0 18 2063 1565 3 MP
XPP
X0 17 18 0 2063 1583 3 MP
XPP
X18 0 0 17 2063 1583 3 MP
XPP
X0 18 18 0 2063 1600 3 MP
XPP
X18 0 0 18 2063 1600 3 MP
XPP
X0 18 18 0 2063 1618 3 MP
XPP
X18 0 0 18 2063 1618 3 MP
XPP
X0 18 18 0 2063 1636 3 MP
XPP
X18 0 0 18 2063 1636 3 MP
XPP
X0 18 18 0 2063 1654 3 MP
XPP
X18 0 0 18 2063 1654 3 MP
XPP
X0 18 18 0 2063 1672 3 MP
XPP
X18 0 0 18 2063 1672 3 MP
XPP
X0 17 18 0 2063 1690 3 MP
XPP
X18 0 0 17 2063 1690 3 MP
XPP
X0 18 18 0 2063 1707 3 MP
XPP
X18 0 0 18 2063 1707 3 MP
XPP
X0 sg
X0 18 18 0 2063 1725 3 MP
XPP
X18 0 0 18 2063 1725 3 MP
XPP
X1 sg
X0 18 18 0 2063 1743 3 MP
XPP
X18 0 0 18 2063 1743 3 MP
XPP
X0 18 18 0 2063 1761 3 MP
XPP
X18 0 0 18 2063 1761 3 MP
XPP
X0 18 18 0 2063 1779 3 MP
XPP
X18 0 0 18 2063 1779 3 MP
XPP
X0 17 18 0 2063 1797 3 MP
XPP
X18 0 0 17 2063 1797 3 MP
XPP
X0 18 18 0 2063 1814 3 MP
XPP
X18 0 0 18 2063 1814 3 MP
XPP
X0 18 18 0 2063 1832 3 MP
XPP
X18 0 0 18 2063 1832 3 MP
XPP
X0 18 18 0 2063 1850 3 MP
XPP
X18 0 0 18 2063 1850 3 MP
XPP
X0 18 18 0 2063 1868 3 MP
XPP
X18 0 0 18 2063 1868 3 MP
XPP
X0 18 18 0 2063 1886 3 MP
XPP
X18 0 0 18 2063 1886 3 MP
XPP
X0 17 18 0 2063 1904 3 MP
XPP
X18 0 0 17 2063 1904 3 MP
XPP
X0 18 18 0 2063 1921 3 MP
XPP
X18 0 0 18 2063 1921 3 MP
XPP
X0 18 18 0 2063 1939 3 MP
XPP
X18 0 0 18 2063 1939 3 MP
XPP
X0 18 18 0 2063 1957 3 MP
XPP
X18 0 0 18 2063 1957 3 MP
XPP
X0 18 18 0 2063 1975 3 MP
XPP
X18 0 0 18 2063 1975 3 MP
XPP
X0 18 18 0 2063 1993 3 MP
XPP
X18 0 0 18 2063 1993 3 MP
XPP
X0 17 18 0 2063 2011 3 MP
XPP
X18 0 0 17 2063 2011 3 MP
XPP
X0 18 18 0 2063 2028 3 MP
XPP
X18 0 0 18 2063 2028 3 MP
XPP
X0 18 18 0 2063 2046 3 MP
XPP
X18 0 0 18 2063 2046 3 MP
XPP
X0 18 18 0 2063 2064 3 MP
XPP
X18 0 0 18 2063 2064 3 MP
XPP
X0 18 18 0 2063 2082 3 MP
XPP
X18 0 0 18 2063 2082 3 MP
XPP
X0 18 18 0 2063 2100 3 MP
XPP
X18 0 0 18 2063 2100 3 MP
XPP
X0 17 18 0 2063 2118 3 MP
XPP
X18 0 0 17 2063 2118 3 MP
XPP
X0 18 18 0 2063 2135 3 MP
XPP
X18 0 0 18 2063 2135 3 MP
XPP
X0 18 18 0 2063 2153 3 MP
XPP
X18 0 0 18 2063 2153 3 MP
XPP
X0 18 18 0 2081 388 3 MP
XPP
X18 0 0 18 2081 388 3 MP
XPP
X0 18 18 0 2081 406 3 MP
XPP
X18 0 0 18 2081 406 3 MP
XPP
X0 17 18 0 2081 424 3 MP
XPP
X18 0 0 17 2081 424 3 MP
XPP
X0 18 18 0 2081 441 3 MP
XPP
X18 0 0 18 2081 441 3 MP
XPP
X0.746032 sg
X0 18 18 0 2081 459 3 MP
XPP
X18 0 0 18 2081 459 3 MP
XPP
X0 18 18 0 2081 477 3 MP
XPP
X18 0 0 18 2081 477 3 MP
XPP
X0 18 18 0 2081 495 3 MP
XPP
X18 0 0 18 2081 495 3 MP
XPP
X0 18 18 0 2081 513 3 MP
XPP
X18 0 0 18 2081 513 3 MP
XPP
X0 17 18 0 2081 531 3 MP
XPP
X18 0 0 17 2081 531 3 MP
XPP
X0 18 18 0 2081 548 3 MP
XPP
X18 0 0 18 2081 548 3 MP
XPP
X0 18 18 0 2081 566 3 MP
XPP
X18 0 0 18 2081 566 3 MP
XPP
X0 18 18 0 2081 584 3 MP
XPP
X18 0 0 18 2081 584 3 MP
XPP
X0 18 18 0 2081 602 3 MP
XPP
X18 0 0 18 2081 602 3 MP
XPP
X0 18 18 0 2081 620 3 MP
XPP
X18 0 0 18 2081 620 3 MP
XPP
X0 17 18 0 2081 638 3 MP
XPP
X18 0 0 17 2081 638 3 MP
XPP
X0 18 18 0 2081 655 3 MP
XPP
X18 0 0 18 2081 655 3 MP
XPP
X0 18 18 0 2081 673 3 MP
XPP
X18 0 0 18 2081 673 3 MP
XPP
X0 18 18 0 2081 691 3 MP
XPP
X18 0 0 18 2081 691 3 MP
XPP
X0 18 18 0 2081 709 3 MP
XPP
X18 0 0 18 2081 709 3 MP
XPP
X0 18 18 0 2081 727 3 MP
XPP
X18 0 0 18 2081 727 3 MP
XPP
X0 17 18 0 2081 745 3 MP
XPP
X18 0 0 17 2081 745 3 MP
XPP
X0 18 18 0 2081 762 3 MP
XPP
X18 0 0 18 2081 762 3 MP
XPP
X0 18 18 0 2081 780 3 MP
XPP
X18 0 0 18 2081 780 3 MP
XPP
X0.492063 sg
X0 18 18 0 2081 798 3 MP
XPP
X18 0 0 18 2081 798 3 MP
XPP
X0 18 18 0 2081 816 3 MP
XPP
X18 0 0 18 2081 816 3 MP
XPP
X0 18 18 0 2081 834 3 MP
XPP
X18 0 0 18 2081 834 3 MP
XPP
X0 17 18 0 2081 852 3 MP
XPP
X18 0 0 17 2081 852 3 MP
XPP
X0 18 18 0 2081 869 3 MP
XPP
X18 0 0 18 2081 869 3 MP
XPP
X0 18 18 0 2081 887 3 MP
XPP
X18 0 0 18 2081 887 3 MP
XPP
X0 18 18 0 2081 905 3 MP
XPP
X18 0 0 18 2081 905 3 MP
XPP
X0 18 18 0 2081 923 3 MP
XPP
X18 0 0 18 2081 923 3 MP
XPP
X0 18 18 0 2081 941 3 MP
XPP
X18 0 0 18 2081 941 3 MP
XPP
X0 17 18 0 2081 959 3 MP
XPP
X18 0 0 17 2081 959 3 MP
XPP
X0 18 18 0 2081 976 3 MP
XPP
X18 0 0 18 2081 976 3 MP
XPP
X0 18 18 0 2081 994 3 MP
XPP
X18 0 0 18 2081 994 3 MP
XPP
X0 18 18 0 2081 1012 3 MP
XPP
X18 0 0 18 2081 1012 3 MP
XPP
X0 18 18 0 2081 1030 3 MP
XPP
X18 0 0 18 2081 1030 3 MP
XPP
X0 18 18 0 2081 1048 3 MP
XPP
X18 0 0 18 2081 1048 3 MP
XPP
X0 17 18 0 2081 1066 3 MP
XPP
X18 0 0 17 2081 1066 3 MP
XPP
X0 18 18 0 2081 1083 3 MP
XPP
X18 0 0 18 2081 1083 3 MP
XPP
X0 18 18 0 2081 1101 3 MP
XPP
X18 0 0 18 2081 1101 3 MP
XPP
X0 18 18 0 2081 1119 3 MP
XPP
X18 0 0 18 2081 1119 3 MP
XPP
X0 18 18 0 2081 1137 3 MP
XPP
X18 0 0 18 2081 1137 3 MP
XPP
X0 18 18 0 2081 1155 3 MP
XPP
X18 0 0 18 2081 1155 3 MP
XPP
X0 17 18 0 2081 1173 3 MP
XPP
X18 0 0 17 2081 1173 3 MP
XPP
X1 sg
X0 18 18 0 2081 1190 3 MP
XPP
X18 0 0 18 2081 1190 3 MP
XPP
X0 18 18 0 2081 1208 3 MP
XPP
X18 0 0 18 2081 1208 3 MP
XPP
X0 18 18 0 2081 1226 3 MP
XPP
X18 0 0 18 2081 1226 3 MP
XPP
X0 18 18 0 2081 1244 3 MP
XPP
X18 0 0 18 2081 1244 3 MP
XPP
X0 17 18 0 2081 1262 3 MP
XPP
X18 0 0 17 2081 1262 3 MP
XPP
X0 18 18 0 2081 1279 3 MP
XPP
X18 0 0 18 2081 1279 3 MP
XPP
X0 18 18 0 2081 1297 3 MP
XPP
X18 0 0 18 2081 1297 3 MP
XPP
X0 18 18 0 2081 1315 3 MP
XPP
X18 0 0 18 2081 1315 3 MP
XPP
X0 18 18 0 2081 1333 3 MP
XPP
X18 0 0 18 2081 1333 3 MP
XPP
X0 18 18 0 2081 1351 3 MP
XPP
X18 0 0 18 2081 1351 3 MP
XPP
X0 17 18 0 2081 1369 3 MP
XPP
X18 0 0 17 2081 1369 3 MP
XPP
X0 18 18 0 2081 1386 3 MP
XPP
X18 0 0 18 2081 1386 3 MP
XPP
X0 18 18 0 2081 1404 3 MP
XPP
X18 0 0 18 2081 1404 3 MP
XPP
X0 18 18 0 2081 1422 3 MP
XPP
X18 0 0 18 2081 1422 3 MP
XPP
X0 18 18 0 2081 1440 3 MP
XPP
X18 0 0 18 2081 1440 3 MP
XPP
X0 18 18 0 2081 1458 3 MP
XPP
X18 0 0 18 2081 1458 3 MP
XPP
X0 17 18 0 2081 1476 3 MP
XPP
X18 0 0 17 2081 1476 3 MP
XPP
X0 18 18 0 2081 1493 3 MP
XPP
X18 0 0 18 2081 1493 3 MP
XPP
X0 18 18 0 2081 1511 3 MP
XPP
X18 0 0 18 2081 1511 3 MP
XPP
X0 18 18 0 2081 1529 3 MP
XPP
X18 0 0 18 2081 1529 3 MP
XPP
X0 18 18 0 2081 1547 3 MP
XPP
X18 0 0 18 2081 1547 3 MP
XPP
X0 18 18 0 2081 1565 3 MP
XPP
X18 0 0 18 2081 1565 3 MP
XPP
X0 17 18 0 2081 1583 3 MP
XPP
X18 0 0 17 2081 1583 3 MP
XPP
X0 18 18 0 2081 1600 3 MP
XPP
X18 0 0 18 2081 1600 3 MP
XPP
X0 18 18 0 2081 1618 3 MP
XPP
X18 0 0 18 2081 1618 3 MP
XPP
X0 18 18 0 2081 1636 3 MP
XPP
X18 0 0 18 2081 1636 3 MP
XPP
X0 18 18 0 2081 1654 3 MP
XPP
X18 0 0 18 2081 1654 3 MP
XPP
X0 18 18 0 2081 1672 3 MP
XPP
X18 0 0 18 2081 1672 3 MP
XPP
X0 17 18 0 2081 1690 3 MP
XPP
X18 0 0 17 2081 1690 3 MP
XPP
X0 18 18 0 2081 1707 3 MP
XPP
X18 0 0 18 2081 1707 3 MP
XPP
X0 sg
X0 18 18 0 2081 1725 3 MP
XPP
X18 0 0 18 2081 1725 3 MP
XPP
X1 sg
X0 18 18 0 2081 1743 3 MP
XPP
X18 0 0 18 2081 1743 3 MP
XPP
X0 18 18 0 2081 1761 3 MP
XPP
X18 0 0 18 2081 1761 3 MP
XPP
X0 18 18 0 2081 1779 3 MP
XPP
X18 0 0 18 2081 1779 3 MP
XPP
X0 17 18 0 2081 1797 3 MP
XPP
X18 0 0 17 2081 1797 3 MP
XPP
X0 18 18 0 2081 1814 3 MP
XPP
X18 0 0 18 2081 1814 3 MP
XPP
X0 18 18 0 2081 1832 3 MP
XPP
X18 0 0 18 2081 1832 3 MP
XPP
X0 18 18 0 2081 1850 3 MP
XPP
X18 0 0 18 2081 1850 3 MP
XPP
X0 18 18 0 2081 1868 3 MP
XPP
X18 0 0 18 2081 1868 3 MP
XPP
X0 18 18 0 2081 1886 3 MP
XPP
X18 0 0 18 2081 1886 3 MP
XPP
X0 17 18 0 2081 1904 3 MP
XPP
X18 0 0 17 2081 1904 3 MP
XPP
X0 18 18 0 2081 1921 3 MP
XPP
X18 0 0 18 2081 1921 3 MP
XPP
X0 18 18 0 2081 1939 3 MP
XPP
X18 0 0 18 2081 1939 3 MP
XPP
X0 18 18 0 2081 1957 3 MP
XPP
X18 0 0 18 2081 1957 3 MP
XPP
X0 18 18 0 2081 1975 3 MP
XPP
X18 0 0 18 2081 1975 3 MP
XPP
X0 18 18 0 2081 1993 3 MP
XPP
X18 0 0 18 2081 1993 3 MP
XPP
X0 17 18 0 2081 2011 3 MP
XPP
X18 0 0 17 2081 2011 3 MP
XPP
X0 18 18 0 2081 2028 3 MP
XPP
X18 0 0 18 2081 2028 3 MP
XPP
X0 18 18 0 2081 2046 3 MP
XPP
X18 0 0 18 2081 2046 3 MP
XPP
X0 18 18 0 2081 2064 3 MP
XPP
X18 0 0 18 2081 2064 3 MP
XPP
X0 18 18 0 2081 2082 3 MP
XPP
X18 0 0 18 2081 2082 3 MP
XPP
X0 18 18 0 2081 2100 3 MP
XPP
X18 0 0 18 2081 2100 3 MP
XPP
X0 17 18 0 2081 2118 3 MP
XPP
X18 0 0 17 2081 2118 3 MP
XPP
X0 18 18 0 2081 2135 3 MP
XPP
X18 0 0 18 2081 2135 3 MP
XPP
X0 18 18 0 2081 2153 3 MP
XPP
X18 0 0 18 2081 2153 3 MP
XPP
X0 18 18 0 2099 388 3 MP
XPP
X18 0 0 18 2099 388 3 MP
XPP
X0 18 18 0 2099 406 3 MP
XPP
X18 0 0 18 2099 406 3 MP
XPP
X0 17 18 0 2099 424 3 MP
XPP
X18 0 0 17 2099 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2099 441 3 MP
XPP
X18 0 0 18 2099 441 3 MP
XPP
X0 18 18 0 2099 459 3 MP
XPP
X18 0 0 18 2099 459 3 MP
XPP
X0 18 18 0 2099 477 3 MP
XPP
X18 0 0 18 2099 477 3 MP
XPP
X0 18 18 0 2099 495 3 MP
XPP
X18 0 0 18 2099 495 3 MP
XPP
X0 18 18 0 2099 513 3 MP
XPP
X18 0 0 18 2099 513 3 MP
XPP
X0 17 18 0 2099 531 3 MP
XPP
X18 0 0 17 2099 531 3 MP
XPP
X0 18 18 0 2099 548 3 MP
XPP
X18 0 0 18 2099 548 3 MP
XPP
X0 18 18 0 2099 566 3 MP
XPP
X18 0 0 18 2099 566 3 MP
XPP
X0 18 18 0 2099 584 3 MP
XPP
X18 0 0 18 2099 584 3 MP
XPP
X0 18 18 0 2099 602 3 MP
XPP
X18 0 0 18 2099 602 3 MP
XPP
X0 18 18 0 2099 620 3 MP
XPP
X18 0 0 18 2099 620 3 MP
XPP
X0 17 18 0 2099 638 3 MP
XPP
X18 0 0 17 2099 638 3 MP
XPP
X0 18 18 0 2099 655 3 MP
XPP
X18 0 0 18 2099 655 3 MP
XPP
X0 18 18 0 2099 673 3 MP
XPP
X18 0 0 18 2099 673 3 MP
XPP
X0 18 18 0 2099 691 3 MP
XPP
X18 0 0 18 2099 691 3 MP
XPP
X0 18 18 0 2099 709 3 MP
XPP
X18 0 0 18 2099 709 3 MP
XPP
X0 18 18 0 2099 727 3 MP
XPP
X18 0 0 18 2099 727 3 MP
XPP
X0 17 18 0 2099 745 3 MP
XPP
X18 0 0 17 2099 745 3 MP
XPP
X0 18 18 0 2099 762 3 MP
XPP
X18 0 0 18 2099 762 3 MP
XPP
X0 18 18 0 2099 780 3 MP
XPP
X18 0 0 18 2099 780 3 MP
XPP
X0.492063 sg
X0 18 18 0 2099 798 3 MP
XPP
X18 0 0 18 2099 798 3 MP
XPP
X0 18 18 0 2099 816 3 MP
XPP
X18 0 0 18 2099 816 3 MP
XPP
X0 18 18 0 2099 834 3 MP
XPP
X18 0 0 18 2099 834 3 MP
XPP
X0 17 18 0 2099 852 3 MP
XPP
X18 0 0 17 2099 852 3 MP
XPP
X0 18 18 0 2099 869 3 MP
XPP
X18 0 0 18 2099 869 3 MP
XPP
X0 18 18 0 2099 887 3 MP
XPP
X18 0 0 18 2099 887 3 MP
XPP
X0 18 18 0 2099 905 3 MP
XPP
X18 0 0 18 2099 905 3 MP
XPP
X0 18 18 0 2099 923 3 MP
XPP
X18 0 0 18 2099 923 3 MP
XPP
X0 18 18 0 2099 941 3 MP
XPP
X18 0 0 18 2099 941 3 MP
XPP
X0 17 18 0 2099 959 3 MP
XPP
X18 0 0 17 2099 959 3 MP
XPP
X0 18 18 0 2099 976 3 MP
XPP
X18 0 0 18 2099 976 3 MP
XPP
X0 18 18 0 2099 994 3 MP
XPP
X18 0 0 18 2099 994 3 MP
XPP
X0 18 18 0 2099 1012 3 MP
XPP
X18 0 0 18 2099 1012 3 MP
XPP
X0 18 18 0 2099 1030 3 MP
XPP
X18 0 0 18 2099 1030 3 MP
XPP
X0 18 18 0 2099 1048 3 MP
XPP
X18 0 0 18 2099 1048 3 MP
XPP
X0 17 18 0 2099 1066 3 MP
XPP
X18 0 0 17 2099 1066 3 MP
XPP
X0 18 18 0 2099 1083 3 MP
XPP
X18 0 0 18 2099 1083 3 MP
XPP
X0 18 18 0 2099 1101 3 MP
XPP
X18 0 0 18 2099 1101 3 MP
XPP
X0 18 18 0 2099 1119 3 MP
XPP
X18 0 0 18 2099 1119 3 MP
XPP
X0 18 18 0 2099 1137 3 MP
XPP
X18 0 0 18 2099 1137 3 MP
XPP
X0 18 18 0 2099 1155 3 MP
XPP
X18 0 0 18 2099 1155 3 MP
XPP
X0 17 18 0 2099 1173 3 MP
XPP
X18 0 0 17 2099 1173 3 MP
XPP
X1 sg
X0 18 18 0 2099 1190 3 MP
XPP
X18 0 0 18 2099 1190 3 MP
XPP
X0 18 18 0 2099 1208 3 MP
XPP
X18 0 0 18 2099 1208 3 MP
XPP
X0 18 18 0 2099 1226 3 MP
XPP
X18 0 0 18 2099 1226 3 MP
XPP
X0 18 18 0 2099 1244 3 MP
XPP
X18 0 0 18 2099 1244 3 MP
XPP
X0 17 18 0 2099 1262 3 MP
XPP
X18 0 0 17 2099 1262 3 MP
XPP
X0 18 18 0 2099 1279 3 MP
XPP
X18 0 0 18 2099 1279 3 MP
XPP
X0 18 18 0 2099 1297 3 MP
XPP
X18 0 0 18 2099 1297 3 MP
XPP
X0 18 18 0 2099 1315 3 MP
XPP
X18 0 0 18 2099 1315 3 MP
XPP
X0 18 18 0 2099 1333 3 MP
XPP
X18 0 0 18 2099 1333 3 MP
XPP
X0 18 18 0 2099 1351 3 MP
XPP
X18 0 0 18 2099 1351 3 MP
XPP
X0 17 18 0 2099 1369 3 MP
XPP
X18 0 0 17 2099 1369 3 MP
XPP
X0 18 18 0 2099 1386 3 MP
XPP
X18 0 0 18 2099 1386 3 MP
XPP
X0 18 18 0 2099 1404 3 MP
XPP
X18 0 0 18 2099 1404 3 MP
XPP
X0 18 18 0 2099 1422 3 MP
XPP
X18 0 0 18 2099 1422 3 MP
XPP
X0 18 18 0 2099 1440 3 MP
XPP
X18 0 0 18 2099 1440 3 MP
XPP
X0 18 18 0 2099 1458 3 MP
XPP
X18 0 0 18 2099 1458 3 MP
XPP
X0 17 18 0 2099 1476 3 MP
XPP
X18 0 0 17 2099 1476 3 MP
XPP
X0 18 18 0 2099 1493 3 MP
XPP
X18 0 0 18 2099 1493 3 MP
XPP
X0 18 18 0 2099 1511 3 MP
XPP
X18 0 0 18 2099 1511 3 MP
XPP
X0 18 18 0 2099 1529 3 MP
XPP
X18 0 0 18 2099 1529 3 MP
XPP
X0 18 18 0 2099 1547 3 MP
XPP
X18 0 0 18 2099 1547 3 MP
XPP
X0 18 18 0 2099 1565 3 MP
XPP
X18 0 0 18 2099 1565 3 MP
XPP
X0 17 18 0 2099 1583 3 MP
XPP
X18 0 0 17 2099 1583 3 MP
XPP
X0 18 18 0 2099 1600 3 MP
XPP
X18 0 0 18 2099 1600 3 MP
XPP
X0 18 18 0 2099 1618 3 MP
XPP
X18 0 0 18 2099 1618 3 MP
XPP
X0 18 18 0 2099 1636 3 MP
XPP
X18 0 0 18 2099 1636 3 MP
XPP
X0 18 18 0 2099 1654 3 MP
XPP
X18 0 0 18 2099 1654 3 MP
XPP
X0 18 18 0 2099 1672 3 MP
XPP
X18 0 0 18 2099 1672 3 MP
XPP
X0 17 18 0 2099 1690 3 MP
XPP
X18 0 0 17 2099 1690 3 MP
XPP
X0 18 18 0 2099 1707 3 MP
XPP
X18 0 0 18 2099 1707 3 MP
XPP
X0 sg
X0 18 18 0 2099 1725 3 MP
XPP
X18 0 0 18 2099 1725 3 MP
XPP
X1 sg
X0 18 18 0 2099 1743 3 MP
XPP
X18 0 0 18 2099 1743 3 MP
XPP
X0 18 18 0 2099 1761 3 MP
XPP
X18 0 0 18 2099 1761 3 MP
XPP
X0 18 18 0 2099 1779 3 MP
XPP
X18 0 0 18 2099 1779 3 MP
XPP
X0 17 18 0 2099 1797 3 MP
XPP
X18 0 0 17 2099 1797 3 MP
XPP
X0 18 18 0 2099 1814 3 MP
XPP
X18 0 0 18 2099 1814 3 MP
XPP
X0 18 18 0 2099 1832 3 MP
XPP
X18 0 0 18 2099 1832 3 MP
XPP
X0 18 18 0 2099 1850 3 MP
XPP
X18 0 0 18 2099 1850 3 MP
XPP
X0 18 18 0 2099 1868 3 MP
XPP
X18 0 0 18 2099 1868 3 MP
XPP
X0 18 18 0 2099 1886 3 MP
XPP
X18 0 0 18 2099 1886 3 MP
XPP
X0 17 18 0 2099 1904 3 MP
XPP
X18 0 0 17 2099 1904 3 MP
XPP
X0 18 18 0 2099 1921 3 MP
XPP
X18 0 0 18 2099 1921 3 MP
XPP
X0 18 18 0 2099 1939 3 MP
XPP
X18 0 0 18 2099 1939 3 MP
XPP
X0 18 18 0 2099 1957 3 MP
XPP
X18 0 0 18 2099 1957 3 MP
XPP
X0 18 18 0 2099 1975 3 MP
XPP
X18 0 0 18 2099 1975 3 MP
XPP
X0 18 18 0 2099 1993 3 MP
XPP
X18 0 0 18 2099 1993 3 MP
XPP
X0 17 18 0 2099 2011 3 MP
XPP
X18 0 0 17 2099 2011 3 MP
XPP
X0 18 18 0 2099 2028 3 MP
XPP
X18 0 0 18 2099 2028 3 MP
XPP
X0 18 18 0 2099 2046 3 MP
XPP
X18 0 0 18 2099 2046 3 MP
XPP
X0 18 18 0 2099 2064 3 MP
XPP
X18 0 0 18 2099 2064 3 MP
XPP
X0 18 18 0 2099 2082 3 MP
XPP
X18 0 0 18 2099 2082 3 MP
XPP
X0 18 18 0 2099 2100 3 MP
XPP
X18 0 0 18 2099 2100 3 MP
XPP
X0 17 18 0 2099 2118 3 MP
XPP
X18 0 0 17 2099 2118 3 MP
XPP
X0 18 18 0 2099 2135 3 MP
XPP
X18 0 0 18 2099 2135 3 MP
XPP
X0 18 18 0 2099 2153 3 MP
XPP
X18 0 0 18 2099 2153 3 MP
XPP
X0 18 17 0 2117 388 3 MP
XPP
X17 0 0 18 2117 388 3 MP
XPP
X0 18 17 0 2117 406 3 MP
XPP
X17 0 0 18 2117 406 3 MP
XPP
X0 17 17 0 2117 424 3 MP
XPP
X17 0 0 17 2117 424 3 MP
XPP
X0.746032 sg
X0 18 17 0 2117 441 3 MP
XPP
X17 0 0 18 2117 441 3 MP
XPP
X0 18 17 0 2117 459 3 MP
XPP
X17 0 0 18 2117 459 3 MP
XPP
X0 18 17 0 2117 477 3 MP
XPP
X17 0 0 18 2117 477 3 MP
XPP
X0 18 17 0 2117 495 3 MP
XPP
X17 0 0 18 2117 495 3 MP
XPP
X0 18 17 0 2117 513 3 MP
XPP
X17 0 0 18 2117 513 3 MP
XPP
X0 17 17 0 2117 531 3 MP
XPP
X17 0 0 17 2117 531 3 MP
XPP
X0 18 17 0 2117 548 3 MP
XPP
X17 0 0 18 2117 548 3 MP
XPP
X0 18 17 0 2117 566 3 MP
XPP
X17 0 0 18 2117 566 3 MP
XPP
X0 18 17 0 2117 584 3 MP
XPP
X17 0 0 18 2117 584 3 MP
XPP
X0 18 17 0 2117 602 3 MP
XPP
X17 0 0 18 2117 602 3 MP
XPP
X0 18 17 0 2117 620 3 MP
XPP
X17 0 0 18 2117 620 3 MP
XPP
X0 17 17 0 2117 638 3 MP
XPP
X17 0 0 17 2117 638 3 MP
XPP
X0 18 17 0 2117 655 3 MP
XPP
X17 0 0 18 2117 655 3 MP
XPP
X0 18 17 0 2117 673 3 MP
XPP
X17 0 0 18 2117 673 3 MP
XPP
X0 18 17 0 2117 691 3 MP
XPP
X17 0 0 18 2117 691 3 MP
XPP
X0 18 17 0 2117 709 3 MP
XPP
X17 0 0 18 2117 709 3 MP
XPP
X0 18 17 0 2117 727 3 MP
XPP
X17 0 0 18 2117 727 3 MP
XPP
X0 17 17 0 2117 745 3 MP
XPP
X17 0 0 17 2117 745 3 MP
XPP
X0 18 17 0 2117 762 3 MP
XPP
X17 0 0 18 2117 762 3 MP
XPP
X0.492063 sg
X0 18 17 0 2117 780 3 MP
XPP
X17 0 0 18 2117 780 3 MP
XPP
X0 18 17 0 2117 798 3 MP
XPP
X17 0 0 18 2117 798 3 MP
XPP
X0 18 17 0 2117 816 3 MP
XPP
X17 0 0 18 2117 816 3 MP
XPP
X0 18 17 0 2117 834 3 MP
XPP
X17 0 0 18 2117 834 3 MP
XPP
X0 17 17 0 2117 852 3 MP
XPP
X17 0 0 17 2117 852 3 MP
XPP
X0 18 17 0 2117 869 3 MP
XPP
X17 0 0 18 2117 869 3 MP
XPP
X0 18 17 0 2117 887 3 MP
XPP
X17 0 0 18 2117 887 3 MP
XPP
X0 18 17 0 2117 905 3 MP
XPP
X17 0 0 18 2117 905 3 MP
XPP
X0 18 17 0 2117 923 3 MP
XPP
X17 0 0 18 2117 923 3 MP
XPP
X0 18 17 0 2117 941 3 MP
XPP
X17 0 0 18 2117 941 3 MP
XPP
X0 17 17 0 2117 959 3 MP
XPP
X17 0 0 17 2117 959 3 MP
XPP
X0 18 17 0 2117 976 3 MP
XPP
X17 0 0 18 2117 976 3 MP
XPP
X0 18 17 0 2117 994 3 MP
XPP
X17 0 0 18 2117 994 3 MP
XPP
X0 18 17 0 2117 1012 3 MP
XPP
X17 0 0 18 2117 1012 3 MP
XPP
X0 18 17 0 2117 1030 3 MP
XPP
X17 0 0 18 2117 1030 3 MP
XPP
X0 18 17 0 2117 1048 3 MP
XPP
X17 0 0 18 2117 1048 3 MP
XPP
X0 17 17 0 2117 1066 3 MP
XPP
X17 0 0 17 2117 1066 3 MP
XPP
X0 18 17 0 2117 1083 3 MP
XPP
X17 0 0 18 2117 1083 3 MP
XPP
X0 18 17 0 2117 1101 3 MP
XPP
X17 0 0 18 2117 1101 3 MP
XPP
X0 18 17 0 2117 1119 3 MP
XPP
X17 0 0 18 2117 1119 3 MP
XPP
X0 18 17 0 2117 1137 3 MP
XPP
X17 0 0 18 2117 1137 3 MP
XPP
X0 18 17 0 2117 1155 3 MP
XPP
X17 0 0 18 2117 1155 3 MP
XPP
X0 17 17 0 2117 1173 3 MP
XPP
X17 0 0 17 2117 1173 3 MP
XPP
X0 18 17 0 2117 1190 3 MP
XPP
X17 0 0 18 2117 1190 3 MP
XPP
X1 sg
X0 18 17 0 2117 1208 3 MP
XPP
X17 0 0 18 2117 1208 3 MP
XPP
X0 18 17 0 2117 1226 3 MP
XPP
X17 0 0 18 2117 1226 3 MP
XPP
X0 18 17 0 2117 1244 3 MP
XPP
X17 0 0 18 2117 1244 3 MP
XPP
X0 17 17 0 2117 1262 3 MP
XPP
X17 0 0 17 2117 1262 3 MP
XPP
X0 18 17 0 2117 1279 3 MP
XPP
X17 0 0 18 2117 1279 3 MP
XPP
X0 18 17 0 2117 1297 3 MP
XPP
X17 0 0 18 2117 1297 3 MP
XPP
X0 18 17 0 2117 1315 3 MP
XPP
X17 0 0 18 2117 1315 3 MP
XPP
X0 18 17 0 2117 1333 3 MP
XPP
X17 0 0 18 2117 1333 3 MP
XPP
X0 18 17 0 2117 1351 3 MP
XPP
X17 0 0 18 2117 1351 3 MP
XPP
X0 17 17 0 2117 1369 3 MP
XPP
X17 0 0 17 2117 1369 3 MP
XPP
X0 18 17 0 2117 1386 3 MP
XPP
X17 0 0 18 2117 1386 3 MP
XPP
X0 18 17 0 2117 1404 3 MP
XPP
X17 0 0 18 2117 1404 3 MP
XPP
X0 18 17 0 2117 1422 3 MP
XPP
X17 0 0 18 2117 1422 3 MP
XPP
X0 18 17 0 2117 1440 3 MP
XPP
X17 0 0 18 2117 1440 3 MP
XPP
X0 18 17 0 2117 1458 3 MP
XPP
X17 0 0 18 2117 1458 3 MP
XPP
X0 17 17 0 2117 1476 3 MP
XPP
X17 0 0 17 2117 1476 3 MP
XPP
X0 18 17 0 2117 1493 3 MP
XPP
X17 0 0 18 2117 1493 3 MP
XPP
X0 18 17 0 2117 1511 3 MP
XPP
X17 0 0 18 2117 1511 3 MP
XPP
X0 18 17 0 2117 1529 3 MP
XPP
X17 0 0 18 2117 1529 3 MP
XPP
X0 18 17 0 2117 1547 3 MP
XPP
X17 0 0 18 2117 1547 3 MP
XPP
X0 18 17 0 2117 1565 3 MP
XPP
X17 0 0 18 2117 1565 3 MP
XPP
X0 17 17 0 2117 1583 3 MP
XPP
X17 0 0 17 2117 1583 3 MP
XPP
X0 18 17 0 2117 1600 3 MP
XPP
X17 0 0 18 2117 1600 3 MP
XPP
X0 18 17 0 2117 1618 3 MP
XPP
X17 0 0 18 2117 1618 3 MP
XPP
X0 18 17 0 2117 1636 3 MP
XPP
X17 0 0 18 2117 1636 3 MP
XPP
X0 18 17 0 2117 1654 3 MP
XPP
X17 0 0 18 2117 1654 3 MP
XPP
X0 18 17 0 2117 1672 3 MP
XPP
X17 0 0 18 2117 1672 3 MP
XPP
X0 17 17 0 2117 1690 3 MP
XPP
X17 0 0 17 2117 1690 3 MP
XPP
X0 18 17 0 2117 1707 3 MP
XPP
X17 0 0 18 2117 1707 3 MP
XPP
X0 sg
X0 18 17 0 2117 1725 3 MP
XPP
X17 0 0 18 2117 1725 3 MP
XPP
X1 sg
X0 18 17 0 2117 1743 3 MP
XPP
X17 0 0 18 2117 1743 3 MP
XPP
X0 18 17 0 2117 1761 3 MP
XPP
X17 0 0 18 2117 1761 3 MP
XPP
X0 18 17 0 2117 1779 3 MP
XPP
X17 0 0 18 2117 1779 3 MP
XPP
X0 17 17 0 2117 1797 3 MP
XPP
X17 0 0 17 2117 1797 3 MP
XPP
X0 18 17 0 2117 1814 3 MP
XPP
X17 0 0 18 2117 1814 3 MP
XPP
X0 18 17 0 2117 1832 3 MP
XPP
X17 0 0 18 2117 1832 3 MP
XPP
X0 18 17 0 2117 1850 3 MP
XPP
X17 0 0 18 2117 1850 3 MP
XPP
X0 18 17 0 2117 1868 3 MP
XPP
X17 0 0 18 2117 1868 3 MP
XPP
X0 18 17 0 2117 1886 3 MP
XPP
X17 0 0 18 2117 1886 3 MP
XPP
X0 17 17 0 2117 1904 3 MP
XPP
X17 0 0 17 2117 1904 3 MP
XPP
X0 18 17 0 2117 1921 3 MP
XPP
X17 0 0 18 2117 1921 3 MP
XPP
X0 18 17 0 2117 1939 3 MP
XPP
X17 0 0 18 2117 1939 3 MP
XPP
X0 18 17 0 2117 1957 3 MP
XPP
X17 0 0 18 2117 1957 3 MP
XPP
X0 18 17 0 2117 1975 3 MP
XPP
X17 0 0 18 2117 1975 3 MP
XPP
X0 18 17 0 2117 1993 3 MP
XPP
X17 0 0 18 2117 1993 3 MP
XPP
X0 17 17 0 2117 2011 3 MP
XPP
X17 0 0 17 2117 2011 3 MP
XPP
X0 18 17 0 2117 2028 3 MP
XPP
X17 0 0 18 2117 2028 3 MP
XPP
X0 18 17 0 2117 2046 3 MP
XPP
X17 0 0 18 2117 2046 3 MP
XPP
X0 18 17 0 2117 2064 3 MP
XPP
X17 0 0 18 2117 2064 3 MP
XPP
X0 18 17 0 2117 2082 3 MP
XPP
X17 0 0 18 2117 2082 3 MP
XPP
X0 18 17 0 2117 2100 3 MP
XPP
X17 0 0 18 2117 2100 3 MP
XPP
X0 17 17 0 2117 2118 3 MP
XPP
X17 0 0 17 2117 2118 3 MP
XPP
X0 18 17 0 2117 2135 3 MP
XPP
X17 0 0 18 2117 2135 3 MP
XPP
X0 18 17 0 2117 2153 3 MP
XPP
X17 0 0 18 2117 2153 3 MP
XPP
X0 18 18 0 2134 388 3 MP
XPP
X18 0 0 18 2134 388 3 MP
XPP
X0 18 18 0 2134 406 3 MP
XPP
X18 0 0 18 2134 406 3 MP
XPP
X0 17 18 0 2134 424 3 MP
XPP
X18 0 0 17 2134 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2134 441 3 MP
XPP
X18 0 0 18 2134 441 3 MP
XPP
X0 18 18 0 2134 459 3 MP
XPP
X18 0 0 18 2134 459 3 MP
XPP
X0 18 18 0 2134 477 3 MP
XPP
X18 0 0 18 2134 477 3 MP
XPP
X0 18 18 0 2134 495 3 MP
XPP
X18 0 0 18 2134 495 3 MP
XPP
X0 18 18 0 2134 513 3 MP
XPP
X18 0 0 18 2134 513 3 MP
XPP
X0 17 18 0 2134 531 3 MP
XPP
X18 0 0 17 2134 531 3 MP
XPP
X0 18 18 0 2134 548 3 MP
XPP
X18 0 0 18 2134 548 3 MP
XPP
X0 18 18 0 2134 566 3 MP
XPP
X18 0 0 18 2134 566 3 MP
XPP
X0 18 18 0 2134 584 3 MP
XPP
X18 0 0 18 2134 584 3 MP
XPP
X0 18 18 0 2134 602 3 MP
XPP
X18 0 0 18 2134 602 3 MP
XPP
X0 18 18 0 2134 620 3 MP
XPP
X18 0 0 18 2134 620 3 MP
XPP
X0 17 18 0 2134 638 3 MP
XPP
X18 0 0 17 2134 638 3 MP
XPP
X0 18 18 0 2134 655 3 MP
XPP
X18 0 0 18 2134 655 3 MP
XPP
X0 18 18 0 2134 673 3 MP
XPP
X18 0 0 18 2134 673 3 MP
XPP
X0 18 18 0 2134 691 3 MP
XPP
X18 0 0 18 2134 691 3 MP
XPP
X0 18 18 0 2134 709 3 MP
XPP
X18 0 0 18 2134 709 3 MP
XPP
X0 18 18 0 2134 727 3 MP
XPP
X18 0 0 18 2134 727 3 MP
XPP
X0 17 18 0 2134 745 3 MP
XPP
X18 0 0 17 2134 745 3 MP
XPP
X0 18 18 0 2134 762 3 MP
XPP
X18 0 0 18 2134 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2134 780 3 MP
XPP
X18 0 0 18 2134 780 3 MP
XPP
X0 18 18 0 2134 798 3 MP
XPP
X18 0 0 18 2134 798 3 MP
XPP
X0 18 18 0 2134 816 3 MP
XPP
X18 0 0 18 2134 816 3 MP
XPP
X0 18 18 0 2134 834 3 MP
XPP
X18 0 0 18 2134 834 3 MP
XPP
X0 17 18 0 2134 852 3 MP
XPP
X18 0 0 17 2134 852 3 MP
XPP
X0 18 18 0 2134 869 3 MP
XPP
X18 0 0 18 2134 869 3 MP
XPP
X0 18 18 0 2134 887 3 MP
XPP
X18 0 0 18 2134 887 3 MP
XPP
X0 18 18 0 2134 905 3 MP
XPP
X18 0 0 18 2134 905 3 MP
XPP
X0 18 18 0 2134 923 3 MP
XPP
X18 0 0 18 2134 923 3 MP
XPP
X0 18 18 0 2134 941 3 MP
XPP
X18 0 0 18 2134 941 3 MP
XPP
X0 17 18 0 2134 959 3 MP
XPP
X18 0 0 17 2134 959 3 MP
XPP
X0 18 18 0 2134 976 3 MP
XPP
X18 0 0 18 2134 976 3 MP
XPP
X0 18 18 0 2134 994 3 MP
XPP
X18 0 0 18 2134 994 3 MP
XPP
X0 18 18 0 2134 1012 3 MP
XPP
X18 0 0 18 2134 1012 3 MP
XPP
X0 18 18 0 2134 1030 3 MP
XPP
X18 0 0 18 2134 1030 3 MP
XPP
X0 18 18 0 2134 1048 3 MP
XPP
X18 0 0 18 2134 1048 3 MP
XPP
X0 17 18 0 2134 1066 3 MP
XPP
X18 0 0 17 2134 1066 3 MP
XPP
X0 18 18 0 2134 1083 3 MP
XPP
X18 0 0 18 2134 1083 3 MP
XPP
X0 18 18 0 2134 1101 3 MP
XPP
X18 0 0 18 2134 1101 3 MP
XPP
X0 18 18 0 2134 1119 3 MP
XPP
X18 0 0 18 2134 1119 3 MP
XPP
X0 18 18 0 2134 1137 3 MP
XPP
X18 0 0 18 2134 1137 3 MP
XPP
X0 18 18 0 2134 1155 3 MP
XPP
X18 0 0 18 2134 1155 3 MP
XPP
X0 17 18 0 2134 1173 3 MP
XPP
X18 0 0 17 2134 1173 3 MP
XPP
X0 18 18 0 2134 1190 3 MP
XPP
X18 0 0 18 2134 1190 3 MP
XPP
X1 sg
X0 18 18 0 2134 1208 3 MP
XPP
X18 0 0 18 2134 1208 3 MP
XPP
X0 18 18 0 2134 1226 3 MP
XPP
X18 0 0 18 2134 1226 3 MP
XPP
X0 18 18 0 2134 1244 3 MP
XPP
X18 0 0 18 2134 1244 3 MP
XPP
X0 17 18 0 2134 1262 3 MP
XPP
X18 0 0 17 2134 1262 3 MP
XPP
X0 18 18 0 2134 1279 3 MP
XPP
X18 0 0 18 2134 1279 3 MP
XPP
X0 18 18 0 2134 1297 3 MP
XPP
X18 0 0 18 2134 1297 3 MP
XPP
X0 18 18 0 2134 1315 3 MP
XPP
X18 0 0 18 2134 1315 3 MP
XPP
X0 18 18 0 2134 1333 3 MP
XPP
X18 0 0 18 2134 1333 3 MP
XPP
X0 18 18 0 2134 1351 3 MP
XPP
X18 0 0 18 2134 1351 3 MP
XPP
X0 17 18 0 2134 1369 3 MP
XPP
X18 0 0 17 2134 1369 3 MP
XPP
X0 18 18 0 2134 1386 3 MP
XPP
X18 0 0 18 2134 1386 3 MP
XPP
X0 18 18 0 2134 1404 3 MP
XPP
X18 0 0 18 2134 1404 3 MP
XPP
X0 18 18 0 2134 1422 3 MP
XPP
X18 0 0 18 2134 1422 3 MP
XPP
X0 18 18 0 2134 1440 3 MP
XPP
X18 0 0 18 2134 1440 3 MP
XPP
X0 18 18 0 2134 1458 3 MP
XPP
X18 0 0 18 2134 1458 3 MP
XPP
X0 17 18 0 2134 1476 3 MP
XPP
X18 0 0 17 2134 1476 3 MP
XPP
X0 18 18 0 2134 1493 3 MP
XPP
X18 0 0 18 2134 1493 3 MP
XPP
X0 18 18 0 2134 1511 3 MP
XPP
X18 0 0 18 2134 1511 3 MP
XPP
X0 18 18 0 2134 1529 3 MP
XPP
X18 0 0 18 2134 1529 3 MP
XPP
X0 18 18 0 2134 1547 3 MP
XPP
X18 0 0 18 2134 1547 3 MP
XPP
X0 18 18 0 2134 1565 3 MP
XPP
X18 0 0 18 2134 1565 3 MP
XPP
X0 17 18 0 2134 1583 3 MP
XPP
X18 0 0 17 2134 1583 3 MP
XPP
X0 18 18 0 2134 1600 3 MP
XPP
X18 0 0 18 2134 1600 3 MP
XPP
X0 18 18 0 2134 1618 3 MP
XPP
X18 0 0 18 2134 1618 3 MP
XPP
X0 18 18 0 2134 1636 3 MP
XPP
X18 0 0 18 2134 1636 3 MP
XPP
X0 18 18 0 2134 1654 3 MP
XPP
X18 0 0 18 2134 1654 3 MP
XPP
X0 18 18 0 2134 1672 3 MP
XPP
X18 0 0 18 2134 1672 3 MP
XPP
X0 17 18 0 2134 1690 3 MP
XPP
X18 0 0 17 2134 1690 3 MP
XPP
X0 18 18 0 2134 1707 3 MP
XPP
X18 0 0 18 2134 1707 3 MP
XPP
X0 sg
X0 18 18 0 2134 1725 3 MP
XPP
X18 0 0 18 2134 1725 3 MP
XPP
X1 sg
X0 18 18 0 2134 1743 3 MP
XPP
X18 0 0 18 2134 1743 3 MP
XPP
X0 18 18 0 2134 1761 3 MP
XPP
X18 0 0 18 2134 1761 3 MP
XPP
X0 18 18 0 2134 1779 3 MP
XPP
X18 0 0 18 2134 1779 3 MP
XPP
X0 17 18 0 2134 1797 3 MP
XPP
X18 0 0 17 2134 1797 3 MP
XPP
X0 18 18 0 2134 1814 3 MP
XPP
X18 0 0 18 2134 1814 3 MP
XPP
X0 18 18 0 2134 1832 3 MP
XPP
X18 0 0 18 2134 1832 3 MP
XPP
X0 18 18 0 2134 1850 3 MP
XPP
X18 0 0 18 2134 1850 3 MP
XPP
X0 18 18 0 2134 1868 3 MP
XPP
X18 0 0 18 2134 1868 3 MP
XPP
X0 18 18 0 2134 1886 3 MP
XPP
X18 0 0 18 2134 1886 3 MP
XPP
X0 17 18 0 2134 1904 3 MP
XPP
X18 0 0 17 2134 1904 3 MP
XPP
X0 18 18 0 2134 1921 3 MP
XPP
X18 0 0 18 2134 1921 3 MP
XPP
X0 18 18 0 2134 1939 3 MP
XPP
X18 0 0 18 2134 1939 3 MP
XPP
X0 18 18 0 2134 1957 3 MP
XPP
X18 0 0 18 2134 1957 3 MP
XPP
X0 18 18 0 2134 1975 3 MP
XPP
X18 0 0 18 2134 1975 3 MP
XPP
X0 18 18 0 2134 1993 3 MP
XPP
X18 0 0 18 2134 1993 3 MP
XPP
X0 17 18 0 2134 2011 3 MP
XPP
X18 0 0 17 2134 2011 3 MP
XPP
X0 18 18 0 2134 2028 3 MP
XPP
X18 0 0 18 2134 2028 3 MP
XPP
X0 18 18 0 2134 2046 3 MP
XPP
X18 0 0 18 2134 2046 3 MP
XPP
X0 18 18 0 2134 2064 3 MP
XPP
X18 0 0 18 2134 2064 3 MP
XPP
X0 18 18 0 2134 2082 3 MP
XPP
X18 0 0 18 2134 2082 3 MP
XPP
X0 18 18 0 2134 2100 3 MP
XPP
X18 0 0 18 2134 2100 3 MP
XPP
X0 17 18 0 2134 2118 3 MP
XPP
X18 0 0 17 2134 2118 3 MP
XPP
X0 18 18 0 2134 2135 3 MP
XPP
X18 0 0 18 2134 2135 3 MP
XPP
X0 18 18 0 2134 2153 3 MP
XPP
X18 0 0 18 2134 2153 3 MP
XPP
X0 18 18 0 2152 388 3 MP
XPP
X18 0 0 18 2152 388 3 MP
XPP
X0 18 18 0 2152 406 3 MP
XPP
X18 0 0 18 2152 406 3 MP
XPP
X0 17 18 0 2152 424 3 MP
XPP
X18 0 0 17 2152 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2152 441 3 MP
XPP
X18 0 0 18 2152 441 3 MP
XPP
X0 18 18 0 2152 459 3 MP
XPP
X18 0 0 18 2152 459 3 MP
XPP
X0 18 18 0 2152 477 3 MP
XPP
X18 0 0 18 2152 477 3 MP
XPP
X0 18 18 0 2152 495 3 MP
XPP
X18 0 0 18 2152 495 3 MP
XPP
X0 18 18 0 2152 513 3 MP
XPP
X18 0 0 18 2152 513 3 MP
XPP
X0 17 18 0 2152 531 3 MP
XPP
X18 0 0 17 2152 531 3 MP
XPP
X0 18 18 0 2152 548 3 MP
XPP
X18 0 0 18 2152 548 3 MP
XPP
X0 18 18 0 2152 566 3 MP
XPP
X18 0 0 18 2152 566 3 MP
XPP
X0 18 18 0 2152 584 3 MP
XPP
X18 0 0 18 2152 584 3 MP
XPP
X0 18 18 0 2152 602 3 MP
XPP
X18 0 0 18 2152 602 3 MP
XPP
X0 18 18 0 2152 620 3 MP
XPP
X18 0 0 18 2152 620 3 MP
XPP
X0 17 18 0 2152 638 3 MP
XPP
X18 0 0 17 2152 638 3 MP
XPP
X0 18 18 0 2152 655 3 MP
XPP
X18 0 0 18 2152 655 3 MP
XPP
X0 18 18 0 2152 673 3 MP
XPP
X18 0 0 18 2152 673 3 MP
XPP
X0 18 18 0 2152 691 3 MP
XPP
X18 0 0 18 2152 691 3 MP
XPP
X0 18 18 0 2152 709 3 MP
XPP
X18 0 0 18 2152 709 3 MP
XPP
X0 18 18 0 2152 727 3 MP
XPP
X18 0 0 18 2152 727 3 MP
XPP
X0 17 18 0 2152 745 3 MP
XPP
X18 0 0 17 2152 745 3 MP
XPP
X0 18 18 0 2152 762 3 MP
XPP
X18 0 0 18 2152 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2152 780 3 MP
XPP
X18 0 0 18 2152 780 3 MP
XPP
X0 18 18 0 2152 798 3 MP
XPP
X18 0 0 18 2152 798 3 MP
XPP
X0 18 18 0 2152 816 3 MP
XPP
X18 0 0 18 2152 816 3 MP
XPP
X0 18 18 0 2152 834 3 MP
XPP
X18 0 0 18 2152 834 3 MP
XPP
X0 17 18 0 2152 852 3 MP
XPP
X18 0 0 17 2152 852 3 MP
XPP
X0 18 18 0 2152 869 3 MP
XPP
X18 0 0 18 2152 869 3 MP
XPP
X0 18 18 0 2152 887 3 MP
XPP
X18 0 0 18 2152 887 3 MP
XPP
X0 18 18 0 2152 905 3 MP
XPP
X18 0 0 18 2152 905 3 MP
XPP
X0 18 18 0 2152 923 3 MP
XPP
X18 0 0 18 2152 923 3 MP
XPP
X0 18 18 0 2152 941 3 MP
XPP
X18 0 0 18 2152 941 3 MP
XPP
X0 17 18 0 2152 959 3 MP
XPP
X18 0 0 17 2152 959 3 MP
XPP
X0 18 18 0 2152 976 3 MP
XPP
X18 0 0 18 2152 976 3 MP
XPP
X0 18 18 0 2152 994 3 MP
XPP
X18 0 0 18 2152 994 3 MP
XPP
X0 18 18 0 2152 1012 3 MP
XPP
X18 0 0 18 2152 1012 3 MP
XPP
X0 18 18 0 2152 1030 3 MP
XPP
X18 0 0 18 2152 1030 3 MP
XPP
X0 18 18 0 2152 1048 3 MP
XPP
X18 0 0 18 2152 1048 3 MP
XPP
X0 17 18 0 2152 1066 3 MP
XPP
X18 0 0 17 2152 1066 3 MP
XPP
X0 18 18 0 2152 1083 3 MP
XPP
X18 0 0 18 2152 1083 3 MP
XPP
X0 18 18 0 2152 1101 3 MP
XPP
X18 0 0 18 2152 1101 3 MP
XPP
X0 18 18 0 2152 1119 3 MP
XPP
X18 0 0 18 2152 1119 3 MP
XPP
X0 18 18 0 2152 1137 3 MP
XPP
X18 0 0 18 2152 1137 3 MP
XPP
X0 18 18 0 2152 1155 3 MP
XPP
X18 0 0 18 2152 1155 3 MP
XPP
X0 17 18 0 2152 1173 3 MP
XPP
X18 0 0 17 2152 1173 3 MP
XPP
X0 18 18 0 2152 1190 3 MP
XPP
X18 0 0 18 2152 1190 3 MP
XPP
X1 sg
X0 18 18 0 2152 1208 3 MP
XPP
X18 0 0 18 2152 1208 3 MP
XPP
X0 18 18 0 2152 1226 3 MP
XPP
X18 0 0 18 2152 1226 3 MP
XPP
X0 18 18 0 2152 1244 3 MP
XPP
X18 0 0 18 2152 1244 3 MP
XPP
X0 17 18 0 2152 1262 3 MP
XPP
X18 0 0 17 2152 1262 3 MP
XPP
X0 18 18 0 2152 1279 3 MP
XPP
X18 0 0 18 2152 1279 3 MP
XPP
X0 18 18 0 2152 1297 3 MP
XPP
X18 0 0 18 2152 1297 3 MP
XPP
X0 18 18 0 2152 1315 3 MP
XPP
X18 0 0 18 2152 1315 3 MP
XPP
X0 18 18 0 2152 1333 3 MP
XPP
X18 0 0 18 2152 1333 3 MP
XPP
X0 18 18 0 2152 1351 3 MP
XPP
X18 0 0 18 2152 1351 3 MP
XPP
X0 17 18 0 2152 1369 3 MP
XPP
X18 0 0 17 2152 1369 3 MP
XPP
X0 18 18 0 2152 1386 3 MP
XPP
X18 0 0 18 2152 1386 3 MP
XPP
X0 18 18 0 2152 1404 3 MP
XPP
X18 0 0 18 2152 1404 3 MP
XPP
X0 18 18 0 2152 1422 3 MP
XPP
X18 0 0 18 2152 1422 3 MP
XPP
X0 18 18 0 2152 1440 3 MP
XPP
X18 0 0 18 2152 1440 3 MP
XPP
X0 18 18 0 2152 1458 3 MP
XPP
X18 0 0 18 2152 1458 3 MP
XPP
X0 17 18 0 2152 1476 3 MP
XPP
X18 0 0 17 2152 1476 3 MP
XPP
X0 18 18 0 2152 1493 3 MP
XPP
X18 0 0 18 2152 1493 3 MP
XPP
X0 18 18 0 2152 1511 3 MP
XPP
X18 0 0 18 2152 1511 3 MP
XPP
X0 18 18 0 2152 1529 3 MP
XPP
X18 0 0 18 2152 1529 3 MP
XPP
X0 18 18 0 2152 1547 3 MP
XPP
X18 0 0 18 2152 1547 3 MP
XPP
X0 18 18 0 2152 1565 3 MP
XPP
X18 0 0 18 2152 1565 3 MP
XPP
X0 17 18 0 2152 1583 3 MP
XPP
X18 0 0 17 2152 1583 3 MP
XPP
X0 18 18 0 2152 1600 3 MP
XPP
X18 0 0 18 2152 1600 3 MP
XPP
X0 18 18 0 2152 1618 3 MP
XPP
X18 0 0 18 2152 1618 3 MP
XPP
X0 18 18 0 2152 1636 3 MP
XPP
X18 0 0 18 2152 1636 3 MP
XPP
X0 18 18 0 2152 1654 3 MP
XPP
X18 0 0 18 2152 1654 3 MP
XPP
X0 18 18 0 2152 1672 3 MP
XPP
X18 0 0 18 2152 1672 3 MP
XPP
X0 17 18 0 2152 1690 3 MP
XPP
X18 0 0 17 2152 1690 3 MP
XPP
X0 18 18 0 2152 1707 3 MP
XPP
X18 0 0 18 2152 1707 3 MP
XPP
X0 sg
X0 18 18 0 2152 1725 3 MP
XPP
X18 0 0 18 2152 1725 3 MP
XPP
X1 sg
X0 18 18 0 2152 1743 3 MP
XPP
X18 0 0 18 2152 1743 3 MP
XPP
X0 18 18 0 2152 1761 3 MP
XPP
X18 0 0 18 2152 1761 3 MP
XPP
X0 18 18 0 2152 1779 3 MP
XPP
X18 0 0 18 2152 1779 3 MP
XPP
X0 17 18 0 2152 1797 3 MP
XPP
X18 0 0 17 2152 1797 3 MP
XPP
X0 18 18 0 2152 1814 3 MP
XPP
X18 0 0 18 2152 1814 3 MP
XPP
X0 18 18 0 2152 1832 3 MP
XPP
X18 0 0 18 2152 1832 3 MP
XPP
X0 18 18 0 2152 1850 3 MP
XPP
X18 0 0 18 2152 1850 3 MP
XPP
X0 18 18 0 2152 1868 3 MP
XPP
X18 0 0 18 2152 1868 3 MP
XPP
X0 18 18 0 2152 1886 3 MP
XPP
X18 0 0 18 2152 1886 3 MP
XPP
X0 17 18 0 2152 1904 3 MP
XPP
X18 0 0 17 2152 1904 3 MP
XPP
X0 18 18 0 2152 1921 3 MP
XPP
X18 0 0 18 2152 1921 3 MP
XPP
X0 18 18 0 2152 1939 3 MP
XPP
X18 0 0 18 2152 1939 3 MP
XPP
X0 18 18 0 2152 1957 3 MP
XPP
X18 0 0 18 2152 1957 3 MP
XPP
X0 18 18 0 2152 1975 3 MP
XPP
X18 0 0 18 2152 1975 3 MP
XPP
X0 18 18 0 2152 1993 3 MP
XPP
X18 0 0 18 2152 1993 3 MP
XPP
X0 17 18 0 2152 2011 3 MP
XPP
X18 0 0 17 2152 2011 3 MP
XPP
X0 18 18 0 2152 2028 3 MP
XPP
X18 0 0 18 2152 2028 3 MP
XPP
X0 18 18 0 2152 2046 3 MP
XPP
X18 0 0 18 2152 2046 3 MP
XPP
X0 18 18 0 2152 2064 3 MP
XPP
X18 0 0 18 2152 2064 3 MP
XPP
X0 18 18 0 2152 2082 3 MP
XPP
X18 0 0 18 2152 2082 3 MP
XPP
X0 18 18 0 2152 2100 3 MP
XPP
X18 0 0 18 2152 2100 3 MP
XPP
X0 17 18 0 2152 2118 3 MP
XPP
X18 0 0 17 2152 2118 3 MP
XPP
X0 18 18 0 2152 2135 3 MP
XPP
X18 0 0 18 2152 2135 3 MP
XPP
X0 18 18 0 2152 2153 3 MP
XPP
X18 0 0 18 2152 2153 3 MP
XPP
X0 18 18 0 2170 388 3 MP
XPP
X18 0 0 18 2170 388 3 MP
XPP
X0 18 18 0 2170 406 3 MP
XPP
X18 0 0 18 2170 406 3 MP
XPP
X0 17 18 0 2170 424 3 MP
XPP
X18 0 0 17 2170 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2170 441 3 MP
XPP
X18 0 0 18 2170 441 3 MP
XPP
X0 18 18 0 2170 459 3 MP
XPP
X18 0 0 18 2170 459 3 MP
XPP
X0 18 18 0 2170 477 3 MP
XPP
X18 0 0 18 2170 477 3 MP
XPP
X0 18 18 0 2170 495 3 MP
XPP
X18 0 0 18 2170 495 3 MP
XPP
X0 18 18 0 2170 513 3 MP
XPP
X18 0 0 18 2170 513 3 MP
XPP
X0 17 18 0 2170 531 3 MP
XPP
X18 0 0 17 2170 531 3 MP
XPP
X0 18 18 0 2170 548 3 MP
XPP
X18 0 0 18 2170 548 3 MP
XPP
X0 18 18 0 2170 566 3 MP
XPP
X18 0 0 18 2170 566 3 MP
XPP
X0 18 18 0 2170 584 3 MP
XPP
X18 0 0 18 2170 584 3 MP
XPP
X0 18 18 0 2170 602 3 MP
XPP
X18 0 0 18 2170 602 3 MP
XPP
X0 18 18 0 2170 620 3 MP
XPP
X18 0 0 18 2170 620 3 MP
XPP
X0 17 18 0 2170 638 3 MP
XPP
X18 0 0 17 2170 638 3 MP
XPP
X0 18 18 0 2170 655 3 MP
XPP
X18 0 0 18 2170 655 3 MP
XPP
X0 18 18 0 2170 673 3 MP
XPP
X18 0 0 18 2170 673 3 MP
XPP
X0 18 18 0 2170 691 3 MP
XPP
X18 0 0 18 2170 691 3 MP
XPP
X0 18 18 0 2170 709 3 MP
XPP
X18 0 0 18 2170 709 3 MP
XPP
X0 18 18 0 2170 727 3 MP
XPP
X18 0 0 18 2170 727 3 MP
XPP
X0 17 18 0 2170 745 3 MP
XPP
X18 0 0 17 2170 745 3 MP
XPP
X0 18 18 0 2170 762 3 MP
XPP
X18 0 0 18 2170 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2170 780 3 MP
XPP
X18 0 0 18 2170 780 3 MP
XPP
X0 18 18 0 2170 798 3 MP
XPP
X18 0 0 18 2170 798 3 MP
XPP
X0 18 18 0 2170 816 3 MP
XPP
X18 0 0 18 2170 816 3 MP
XPP
X0 18 18 0 2170 834 3 MP
XPP
X18 0 0 18 2170 834 3 MP
XPP
X0 17 18 0 2170 852 3 MP
XPP
X18 0 0 17 2170 852 3 MP
XPP
X0 18 18 0 2170 869 3 MP
XPP
X18 0 0 18 2170 869 3 MP
XPP
X0 18 18 0 2170 887 3 MP
XPP
X18 0 0 18 2170 887 3 MP
XPP
X0 18 18 0 2170 905 3 MP
XPP
X18 0 0 18 2170 905 3 MP
XPP
X0 18 18 0 2170 923 3 MP
XPP
X18 0 0 18 2170 923 3 MP
XPP
X0 18 18 0 2170 941 3 MP
XPP
X18 0 0 18 2170 941 3 MP
XPP
X0 17 18 0 2170 959 3 MP
XPP
X18 0 0 17 2170 959 3 MP
XPP
X0 18 18 0 2170 976 3 MP
XPP
X18 0 0 18 2170 976 3 MP
XPP
X0 18 18 0 2170 994 3 MP
XPP
X18 0 0 18 2170 994 3 MP
XPP
X0 18 18 0 2170 1012 3 MP
XPP
X18 0 0 18 2170 1012 3 MP
XPP
X0 18 18 0 2170 1030 3 MP
XPP
X18 0 0 18 2170 1030 3 MP
XPP
X0 18 18 0 2170 1048 3 MP
XPP
X18 0 0 18 2170 1048 3 MP
XPP
X0 17 18 0 2170 1066 3 MP
XPP
X18 0 0 17 2170 1066 3 MP
XPP
X0 18 18 0 2170 1083 3 MP
XPP
X18 0 0 18 2170 1083 3 MP
XPP
X0 18 18 0 2170 1101 3 MP
XPP
X18 0 0 18 2170 1101 3 MP
XPP
X0 18 18 0 2170 1119 3 MP
XPP
X18 0 0 18 2170 1119 3 MP
XPP
X0 18 18 0 2170 1137 3 MP
XPP
X18 0 0 18 2170 1137 3 MP
XPP
X0 18 18 0 2170 1155 3 MP
XPP
X18 0 0 18 2170 1155 3 MP
XPP
X0 17 18 0 2170 1173 3 MP
XPP
X18 0 0 17 2170 1173 3 MP
XPP
X0 18 18 0 2170 1190 3 MP
XPP
X18 0 0 18 2170 1190 3 MP
XPP
X1 sg
X0 18 18 0 2170 1208 3 MP
XPP
X18 0 0 18 2170 1208 3 MP
XPP
X0 18 18 0 2170 1226 3 MP
XPP
X18 0 0 18 2170 1226 3 MP
XPP
X0 18 18 0 2170 1244 3 MP
XPP
X18 0 0 18 2170 1244 3 MP
XPP
X0 17 18 0 2170 1262 3 MP
XPP
X18 0 0 17 2170 1262 3 MP
XPP
X0 18 18 0 2170 1279 3 MP
XPP
X18 0 0 18 2170 1279 3 MP
XPP
X0 18 18 0 2170 1297 3 MP
XPP
X18 0 0 18 2170 1297 3 MP
XPP
X0 18 18 0 2170 1315 3 MP
XPP
X18 0 0 18 2170 1315 3 MP
XPP
X0 18 18 0 2170 1333 3 MP
XPP
X18 0 0 18 2170 1333 3 MP
XPP
X0 18 18 0 2170 1351 3 MP
XPP
X18 0 0 18 2170 1351 3 MP
XPP
X0 17 18 0 2170 1369 3 MP
XPP
X18 0 0 17 2170 1369 3 MP
XPP
X0 18 18 0 2170 1386 3 MP
XPP
X18 0 0 18 2170 1386 3 MP
XPP
X0 18 18 0 2170 1404 3 MP
XPP
X18 0 0 18 2170 1404 3 MP
XPP
X0 18 18 0 2170 1422 3 MP
XPP
X18 0 0 18 2170 1422 3 MP
XPP
X0 18 18 0 2170 1440 3 MP
XPP
X18 0 0 18 2170 1440 3 MP
XPP
X0 18 18 0 2170 1458 3 MP
XPP
X18 0 0 18 2170 1458 3 MP
XPP
X0 17 18 0 2170 1476 3 MP
XPP
X18 0 0 17 2170 1476 3 MP
XPP
X0 18 18 0 2170 1493 3 MP
XPP
X18 0 0 18 2170 1493 3 MP
XPP
X0 18 18 0 2170 1511 3 MP
XPP
X18 0 0 18 2170 1511 3 MP
XPP
X0 18 18 0 2170 1529 3 MP
XPP
X18 0 0 18 2170 1529 3 MP
XPP
X0 18 18 0 2170 1547 3 MP
XPP
X18 0 0 18 2170 1547 3 MP
XPP
X0 18 18 0 2170 1565 3 MP
XPP
X18 0 0 18 2170 1565 3 MP
XPP
X0 17 18 0 2170 1583 3 MP
XPP
X18 0 0 17 2170 1583 3 MP
XPP
X0 18 18 0 2170 1600 3 MP
XPP
X18 0 0 18 2170 1600 3 MP
XPP
X0 18 18 0 2170 1618 3 MP
XPP
X18 0 0 18 2170 1618 3 MP
XPP
X0 18 18 0 2170 1636 3 MP
XPP
X18 0 0 18 2170 1636 3 MP
XPP
X0 18 18 0 2170 1654 3 MP
XPP
X18 0 0 18 2170 1654 3 MP
XPP
X0 18 18 0 2170 1672 3 MP
XPP
X18 0 0 18 2170 1672 3 MP
XPP
X0 17 18 0 2170 1690 3 MP
XPP
X18 0 0 17 2170 1690 3 MP
XPP
X0 18 18 0 2170 1707 3 MP
XPP
X18 0 0 18 2170 1707 3 MP
XPP
X0 sg
X0 18 18 0 2170 1725 3 MP
XPP
X18 0 0 18 2170 1725 3 MP
XPP
X1 sg
X0 18 18 0 2170 1743 3 MP
XPP
X18 0 0 18 2170 1743 3 MP
XPP
X0 18 18 0 2170 1761 3 MP
XPP
X18 0 0 18 2170 1761 3 MP
XPP
X0 18 18 0 2170 1779 3 MP
XPP
X18 0 0 18 2170 1779 3 MP
XPP
X0 17 18 0 2170 1797 3 MP
XPP
X18 0 0 17 2170 1797 3 MP
XPP
X0 18 18 0 2170 1814 3 MP
XPP
X18 0 0 18 2170 1814 3 MP
XPP
X0 18 18 0 2170 1832 3 MP
XPP
X18 0 0 18 2170 1832 3 MP
XPP
X0 18 18 0 2170 1850 3 MP
XPP
X18 0 0 18 2170 1850 3 MP
XPP
X0 18 18 0 2170 1868 3 MP
XPP
X18 0 0 18 2170 1868 3 MP
XPP
X0 18 18 0 2170 1886 3 MP
XPP
X18 0 0 18 2170 1886 3 MP
XPP
X0 17 18 0 2170 1904 3 MP
XPP
X18 0 0 17 2170 1904 3 MP
XPP
X0 18 18 0 2170 1921 3 MP
XPP
X18 0 0 18 2170 1921 3 MP
XPP
X0 18 18 0 2170 1939 3 MP
XPP
X18 0 0 18 2170 1939 3 MP
XPP
X0 18 18 0 2170 1957 3 MP
XPP
X18 0 0 18 2170 1957 3 MP
XPP
X0 18 18 0 2170 1975 3 MP
XPP
X18 0 0 18 2170 1975 3 MP
XPP
X0 18 18 0 2170 1993 3 MP
XPP
X18 0 0 18 2170 1993 3 MP
XPP
X0 17 18 0 2170 2011 3 MP
XPP
X18 0 0 17 2170 2011 3 MP
XPP
X0 18 18 0 2170 2028 3 MP
XPP
X18 0 0 18 2170 2028 3 MP
XPP
X0 18 18 0 2170 2046 3 MP
XPP
X18 0 0 18 2170 2046 3 MP
XPP
X0 18 18 0 2170 2064 3 MP
XPP
X18 0 0 18 2170 2064 3 MP
XPP
X0 18 18 0 2170 2082 3 MP
XPP
X18 0 0 18 2170 2082 3 MP
XPP
X0 18 18 0 2170 2100 3 MP
XPP
X18 0 0 18 2170 2100 3 MP
XPP
X0 17 18 0 2170 2118 3 MP
XPP
X18 0 0 17 2170 2118 3 MP
XPP
X0 18 18 0 2170 2135 3 MP
XPP
X18 0 0 18 2170 2135 3 MP
XPP
X0 18 18 0 2170 2153 3 MP
XPP
X18 0 0 18 2170 2153 3 MP
XPP
X0 18 18 0 2188 388 3 MP
XPP
X18 0 0 18 2188 388 3 MP
XPP
X0 18 18 0 2188 406 3 MP
XPP
X18 0 0 18 2188 406 3 MP
XPP
X0 17 18 0 2188 424 3 MP
XPP
X18 0 0 17 2188 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2188 441 3 MP
XPP
X18 0 0 18 2188 441 3 MP
XPP
X0 18 18 0 2188 459 3 MP
XPP
X18 0 0 18 2188 459 3 MP
XPP
X0 18 18 0 2188 477 3 MP
XPP
X18 0 0 18 2188 477 3 MP
XPP
X0 18 18 0 2188 495 3 MP
XPP
X18 0 0 18 2188 495 3 MP
XPP
X0 18 18 0 2188 513 3 MP
XPP
X18 0 0 18 2188 513 3 MP
XPP
X0 17 18 0 2188 531 3 MP
XPP
X18 0 0 17 2188 531 3 MP
XPP
X0 18 18 0 2188 548 3 MP
XPP
X18 0 0 18 2188 548 3 MP
XPP
X0 18 18 0 2188 566 3 MP
XPP
X18 0 0 18 2188 566 3 MP
XPP
X0 18 18 0 2188 584 3 MP
XPP
X18 0 0 18 2188 584 3 MP
XPP
X0 18 18 0 2188 602 3 MP
XPP
X18 0 0 18 2188 602 3 MP
XPP
X0 18 18 0 2188 620 3 MP
XPP
X18 0 0 18 2188 620 3 MP
XPP
X0 17 18 0 2188 638 3 MP
XPP
X18 0 0 17 2188 638 3 MP
XPP
X0 18 18 0 2188 655 3 MP
XPP
X18 0 0 18 2188 655 3 MP
XPP
X0 18 18 0 2188 673 3 MP
XPP
X18 0 0 18 2188 673 3 MP
XPP
X0 18 18 0 2188 691 3 MP
XPP
X18 0 0 18 2188 691 3 MP
XPP
X0 18 18 0 2188 709 3 MP
XPP
X18 0 0 18 2188 709 3 MP
XPP
X0 18 18 0 2188 727 3 MP
XPP
X18 0 0 18 2188 727 3 MP
XPP
X0 17 18 0 2188 745 3 MP
XPP
X18 0 0 17 2188 745 3 MP
XPP
X0 18 18 0 2188 762 3 MP
XPP
X18 0 0 18 2188 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2188 780 3 MP
XPP
X18 0 0 18 2188 780 3 MP
XPP
X0 18 18 0 2188 798 3 MP
XPP
X18 0 0 18 2188 798 3 MP
XPP
X0 18 18 0 2188 816 3 MP
XPP
X18 0 0 18 2188 816 3 MP
XPP
X0 18 18 0 2188 834 3 MP
XPP
X18 0 0 18 2188 834 3 MP
XPP
X0 17 18 0 2188 852 3 MP
XPP
X18 0 0 17 2188 852 3 MP
XPP
X0 18 18 0 2188 869 3 MP
XPP
X18 0 0 18 2188 869 3 MP
XPP
X0 18 18 0 2188 887 3 MP
XPP
X18 0 0 18 2188 887 3 MP
XPP
X0 18 18 0 2188 905 3 MP
XPP
X18 0 0 18 2188 905 3 MP
XPP
X0 18 18 0 2188 923 3 MP
XPP
X18 0 0 18 2188 923 3 MP
XPP
X0 18 18 0 2188 941 3 MP
XPP
X18 0 0 18 2188 941 3 MP
XPP
X0 17 18 0 2188 959 3 MP
XPP
X18 0 0 17 2188 959 3 MP
XPP
X0 18 18 0 2188 976 3 MP
XPP
X18 0 0 18 2188 976 3 MP
XPP
X0 18 18 0 2188 994 3 MP
XPP
X18 0 0 18 2188 994 3 MP
XPP
X0 18 18 0 2188 1012 3 MP
XPP
X18 0 0 18 2188 1012 3 MP
XPP
X0 18 18 0 2188 1030 3 MP
XPP
X18 0 0 18 2188 1030 3 MP
XPP
X0 18 18 0 2188 1048 3 MP
XPP
X18 0 0 18 2188 1048 3 MP
XPP
X0 17 18 0 2188 1066 3 MP
XPP
X18 0 0 17 2188 1066 3 MP
XPP
X0 18 18 0 2188 1083 3 MP
XPP
X18 0 0 18 2188 1083 3 MP
XPP
X0 18 18 0 2188 1101 3 MP
XPP
X18 0 0 18 2188 1101 3 MP
XPP
X0 18 18 0 2188 1119 3 MP
XPP
X18 0 0 18 2188 1119 3 MP
XPP
X0 18 18 0 2188 1137 3 MP
XPP
X18 0 0 18 2188 1137 3 MP
XPP
X0 18 18 0 2188 1155 3 MP
XPP
X18 0 0 18 2188 1155 3 MP
XPP
X0 17 18 0 2188 1173 3 MP
XPP
X18 0 0 17 2188 1173 3 MP
XPP
X0 18 18 0 2188 1190 3 MP
XPP
X18 0 0 18 2188 1190 3 MP
XPP
X1 sg
X0 18 18 0 2188 1208 3 MP
XPP
X18 0 0 18 2188 1208 3 MP
XPP
X0 18 18 0 2188 1226 3 MP
XPP
X18 0 0 18 2188 1226 3 MP
XPP
X0 18 18 0 2188 1244 3 MP
XPP
X18 0 0 18 2188 1244 3 MP
XPP
X0 17 18 0 2188 1262 3 MP
XPP
X18 0 0 17 2188 1262 3 MP
XPP
X0 18 18 0 2188 1279 3 MP
XPP
X18 0 0 18 2188 1279 3 MP
XPP
X0 18 18 0 2188 1297 3 MP
XPP
X18 0 0 18 2188 1297 3 MP
XPP
X0 18 18 0 2188 1315 3 MP
XPP
X18 0 0 18 2188 1315 3 MP
XPP
X0 18 18 0 2188 1333 3 MP
XPP
X18 0 0 18 2188 1333 3 MP
XPP
X0 18 18 0 2188 1351 3 MP
XPP
X18 0 0 18 2188 1351 3 MP
XPP
X0 17 18 0 2188 1369 3 MP
XPP
X18 0 0 17 2188 1369 3 MP
XPP
X0 18 18 0 2188 1386 3 MP
XPP
X18 0 0 18 2188 1386 3 MP
XPP
X0 18 18 0 2188 1404 3 MP
XPP
X18 0 0 18 2188 1404 3 MP
XPP
X0 18 18 0 2188 1422 3 MP
XPP
X18 0 0 18 2188 1422 3 MP
XPP
X0 18 18 0 2188 1440 3 MP
XPP
X18 0 0 18 2188 1440 3 MP
XPP
X0 18 18 0 2188 1458 3 MP
XPP
X18 0 0 18 2188 1458 3 MP
XPP
X0 17 18 0 2188 1476 3 MP
XPP
X18 0 0 17 2188 1476 3 MP
XPP
X0 18 18 0 2188 1493 3 MP
XPP
X18 0 0 18 2188 1493 3 MP
XPP
X0 18 18 0 2188 1511 3 MP
XPP
X18 0 0 18 2188 1511 3 MP
XPP
X0 18 18 0 2188 1529 3 MP
XPP
X18 0 0 18 2188 1529 3 MP
XPP
X0 18 18 0 2188 1547 3 MP
XPP
X18 0 0 18 2188 1547 3 MP
XPP
X0 18 18 0 2188 1565 3 MP
XPP
X18 0 0 18 2188 1565 3 MP
XPP
X0 17 18 0 2188 1583 3 MP
XPP
X18 0 0 17 2188 1583 3 MP
XPP
X0 18 18 0 2188 1600 3 MP
XPP
X18 0 0 18 2188 1600 3 MP
XPP
X0 18 18 0 2188 1618 3 MP
XPP
X18 0 0 18 2188 1618 3 MP
XPP
X0 18 18 0 2188 1636 3 MP
XPP
X18 0 0 18 2188 1636 3 MP
XPP
X0 18 18 0 2188 1654 3 MP
XPP
X18 0 0 18 2188 1654 3 MP
XPP
X0 18 18 0 2188 1672 3 MP
XPP
X18 0 0 18 2188 1672 3 MP
XPP
X0 17 18 0 2188 1690 3 MP
XPP
X18 0 0 17 2188 1690 3 MP
XPP
X0 18 18 0 2188 1707 3 MP
XPP
X18 0 0 18 2188 1707 3 MP
XPP
X0 sg
X0 18 18 0 2188 1725 3 MP
XPP
X18 0 0 18 2188 1725 3 MP
XPP
X1 sg
X0 18 18 0 2188 1743 3 MP
XPP
X18 0 0 18 2188 1743 3 MP
XPP
X0 18 18 0 2188 1761 3 MP
XPP
X18 0 0 18 2188 1761 3 MP
XPP
X0 18 18 0 2188 1779 3 MP
XPP
X18 0 0 18 2188 1779 3 MP
XPP
X0 17 18 0 2188 1797 3 MP
XPP
X18 0 0 17 2188 1797 3 MP
XPP
X0 18 18 0 2188 1814 3 MP
XPP
X18 0 0 18 2188 1814 3 MP
XPP
X0 18 18 0 2188 1832 3 MP
XPP
X18 0 0 18 2188 1832 3 MP
XPP
X0 18 18 0 2188 1850 3 MP
XPP
X18 0 0 18 2188 1850 3 MP
XPP
X0 18 18 0 2188 1868 3 MP
XPP
X18 0 0 18 2188 1868 3 MP
XPP
X0 18 18 0 2188 1886 3 MP
XPP
X18 0 0 18 2188 1886 3 MP
XPP
X0 17 18 0 2188 1904 3 MP
XPP
X18 0 0 17 2188 1904 3 MP
XPP
X0 18 18 0 2188 1921 3 MP
XPP
X18 0 0 18 2188 1921 3 MP
XPP
X0 18 18 0 2188 1939 3 MP
XPP
X18 0 0 18 2188 1939 3 MP
XPP
X0 18 18 0 2188 1957 3 MP
XPP
X18 0 0 18 2188 1957 3 MP
XPP
X0 18 18 0 2188 1975 3 MP
XPP
X18 0 0 18 2188 1975 3 MP
XPP
X0 18 18 0 2188 1993 3 MP
XPP
X18 0 0 18 2188 1993 3 MP
XPP
X0 17 18 0 2188 2011 3 MP
XPP
X18 0 0 17 2188 2011 3 MP
XPP
X0 18 18 0 2188 2028 3 MP
XPP
X18 0 0 18 2188 2028 3 MP
XPP
X0 18 18 0 2188 2046 3 MP
XPP
X18 0 0 18 2188 2046 3 MP
XPP
X0 18 18 0 2188 2064 3 MP
XPP
X18 0 0 18 2188 2064 3 MP
XPP
X0 18 18 0 2188 2082 3 MP
XPP
X18 0 0 18 2188 2082 3 MP
XPP
X0 18 18 0 2188 2100 3 MP
XPP
X18 0 0 18 2188 2100 3 MP
XPP
X0 17 18 0 2188 2118 3 MP
XPP
X18 0 0 17 2188 2118 3 MP
XPP
X0 18 18 0 2188 2135 3 MP
XPP
X18 0 0 18 2188 2135 3 MP
XPP
X0 18 18 0 2188 2153 3 MP
XPP
X18 0 0 18 2188 2153 3 MP
XPP
X0 18 18 0 2206 388 3 MP
XPP
X18 0 0 18 2206 388 3 MP
XPP
X0 18 18 0 2206 406 3 MP
XPP
X18 0 0 18 2206 406 3 MP
XPP
X0 17 18 0 2206 424 3 MP
XPP
X18 0 0 17 2206 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2206 441 3 MP
XPP
X18 0 0 18 2206 441 3 MP
XPP
X0 18 18 0 2206 459 3 MP
XPP
X18 0 0 18 2206 459 3 MP
XPP
X0 18 18 0 2206 477 3 MP
XPP
X18 0 0 18 2206 477 3 MP
XPP
X0 18 18 0 2206 495 3 MP
XPP
X18 0 0 18 2206 495 3 MP
XPP
X0 18 18 0 2206 513 3 MP
XPP
X18 0 0 18 2206 513 3 MP
XPP
X0 17 18 0 2206 531 3 MP
XPP
X18 0 0 17 2206 531 3 MP
XPP
X0 18 18 0 2206 548 3 MP
XPP
X18 0 0 18 2206 548 3 MP
XPP
X0 18 18 0 2206 566 3 MP
XPP
X18 0 0 18 2206 566 3 MP
XPP
X0 18 18 0 2206 584 3 MP
XPP
X18 0 0 18 2206 584 3 MP
XPP
X0 18 18 0 2206 602 3 MP
XPP
X18 0 0 18 2206 602 3 MP
XPP
X0 18 18 0 2206 620 3 MP
XPP
X18 0 0 18 2206 620 3 MP
XPP
X0 17 18 0 2206 638 3 MP
XPP
X18 0 0 17 2206 638 3 MP
XPP
X0 18 18 0 2206 655 3 MP
XPP
X18 0 0 18 2206 655 3 MP
XPP
X0 18 18 0 2206 673 3 MP
XPP
X18 0 0 18 2206 673 3 MP
XPP
X0 18 18 0 2206 691 3 MP
XPP
X18 0 0 18 2206 691 3 MP
XPP
X0 18 18 0 2206 709 3 MP
XPP
X18 0 0 18 2206 709 3 MP
XPP
X0 18 18 0 2206 727 3 MP
XPP
X18 0 0 18 2206 727 3 MP
XPP
X0 17 18 0 2206 745 3 MP
XPP
X18 0 0 17 2206 745 3 MP
XPP
X0 18 18 0 2206 762 3 MP
XPP
X18 0 0 18 2206 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2206 780 3 MP
XPP
X18 0 0 18 2206 780 3 MP
XPP
X0 18 18 0 2206 798 3 MP
XPP
X18 0 0 18 2206 798 3 MP
XPP
X0 18 18 0 2206 816 3 MP
XPP
X18 0 0 18 2206 816 3 MP
XPP
X0 18 18 0 2206 834 3 MP
XPP
X18 0 0 18 2206 834 3 MP
XPP
X0 17 18 0 2206 852 3 MP
XPP
X18 0 0 17 2206 852 3 MP
XPP
X0 18 18 0 2206 869 3 MP
XPP
X18 0 0 18 2206 869 3 MP
XPP
X0 18 18 0 2206 887 3 MP
XPP
X18 0 0 18 2206 887 3 MP
XPP
X0 18 18 0 2206 905 3 MP
XPP
X18 0 0 18 2206 905 3 MP
XPP
X0 18 18 0 2206 923 3 MP
XPP
X18 0 0 18 2206 923 3 MP
XPP
X0 18 18 0 2206 941 3 MP
XPP
X18 0 0 18 2206 941 3 MP
XPP
X0 17 18 0 2206 959 3 MP
XPP
X18 0 0 17 2206 959 3 MP
XPP
X0 18 18 0 2206 976 3 MP
XPP
X18 0 0 18 2206 976 3 MP
XPP
X0 18 18 0 2206 994 3 MP
XPP
X18 0 0 18 2206 994 3 MP
XPP
X0 18 18 0 2206 1012 3 MP
XPP
X18 0 0 18 2206 1012 3 MP
XPP
X0 18 18 0 2206 1030 3 MP
XPP
X18 0 0 18 2206 1030 3 MP
XPP
X0 18 18 0 2206 1048 3 MP
XPP
X18 0 0 18 2206 1048 3 MP
XPP
X0 17 18 0 2206 1066 3 MP
XPP
X18 0 0 17 2206 1066 3 MP
XPP
X0 18 18 0 2206 1083 3 MP
XPP
X18 0 0 18 2206 1083 3 MP
XPP
X0 18 18 0 2206 1101 3 MP
XPP
X18 0 0 18 2206 1101 3 MP
XPP
X0 18 18 0 2206 1119 3 MP
XPP
X18 0 0 18 2206 1119 3 MP
XPP
X0 18 18 0 2206 1137 3 MP
XPP
X18 0 0 18 2206 1137 3 MP
XPP
X0 18 18 0 2206 1155 3 MP
XPP
X18 0 0 18 2206 1155 3 MP
XPP
X0 17 18 0 2206 1173 3 MP
XPP
X18 0 0 17 2206 1173 3 MP
XPP
X0 18 18 0 2206 1190 3 MP
XPP
X18 0 0 18 2206 1190 3 MP
XPP
X1 sg
X0 18 18 0 2206 1208 3 MP
XPP
X18 0 0 18 2206 1208 3 MP
XPP
X0 18 18 0 2206 1226 3 MP
XPP
X18 0 0 18 2206 1226 3 MP
XPP
X0 18 18 0 2206 1244 3 MP
XPP
X18 0 0 18 2206 1244 3 MP
XPP
X0 17 18 0 2206 1262 3 MP
XPP
X18 0 0 17 2206 1262 3 MP
XPP
X0 18 18 0 2206 1279 3 MP
XPP
X18 0 0 18 2206 1279 3 MP
XPP
X0 18 18 0 2206 1297 3 MP
XPP
X18 0 0 18 2206 1297 3 MP
XPP
X0 18 18 0 2206 1315 3 MP
XPP
X18 0 0 18 2206 1315 3 MP
XPP
X0 18 18 0 2206 1333 3 MP
XPP
X18 0 0 18 2206 1333 3 MP
XPP
X0 18 18 0 2206 1351 3 MP
XPP
X18 0 0 18 2206 1351 3 MP
XPP
X0 17 18 0 2206 1369 3 MP
XPP
X18 0 0 17 2206 1369 3 MP
XPP
X0 18 18 0 2206 1386 3 MP
XPP
X18 0 0 18 2206 1386 3 MP
XPP
X0 18 18 0 2206 1404 3 MP
XPP
X18 0 0 18 2206 1404 3 MP
XPP
X0 18 18 0 2206 1422 3 MP
XPP
X18 0 0 18 2206 1422 3 MP
XPP
X0 18 18 0 2206 1440 3 MP
XPP
X18 0 0 18 2206 1440 3 MP
XPP
X0 18 18 0 2206 1458 3 MP
XPP
X18 0 0 18 2206 1458 3 MP
XPP
X0 17 18 0 2206 1476 3 MP
XPP
X18 0 0 17 2206 1476 3 MP
XPP
X0 18 18 0 2206 1493 3 MP
XPP
X18 0 0 18 2206 1493 3 MP
XPP
X0 18 18 0 2206 1511 3 MP
XPP
X18 0 0 18 2206 1511 3 MP
XPP
X0 18 18 0 2206 1529 3 MP
XPP
X18 0 0 18 2206 1529 3 MP
XPP
X0 18 18 0 2206 1547 3 MP
XPP
X18 0 0 18 2206 1547 3 MP
XPP
X0 18 18 0 2206 1565 3 MP
XPP
X18 0 0 18 2206 1565 3 MP
XPP
X0 17 18 0 2206 1583 3 MP
XPP
X18 0 0 17 2206 1583 3 MP
XPP
X0 18 18 0 2206 1600 3 MP
XPP
X18 0 0 18 2206 1600 3 MP
XPP
X0 18 18 0 2206 1618 3 MP
XPP
X18 0 0 18 2206 1618 3 MP
XPP
X0 18 18 0 2206 1636 3 MP
XPP
X18 0 0 18 2206 1636 3 MP
XPP
X0 18 18 0 2206 1654 3 MP
XPP
X18 0 0 18 2206 1654 3 MP
XPP
X0 18 18 0 2206 1672 3 MP
XPP
X18 0 0 18 2206 1672 3 MP
XPP
X0 17 18 0 2206 1690 3 MP
XPP
X18 0 0 17 2206 1690 3 MP
XPP
X0 18 18 0 2206 1707 3 MP
XPP
X18 0 0 18 2206 1707 3 MP
XPP
X0 sg
X0 18 18 0 2206 1725 3 MP
XPP
X18 0 0 18 2206 1725 3 MP
XPP
X1 sg
X0 18 18 0 2206 1743 3 MP
XPP
X18 0 0 18 2206 1743 3 MP
XPP
X0 18 18 0 2206 1761 3 MP
XPP
X18 0 0 18 2206 1761 3 MP
XPP
X0 18 18 0 2206 1779 3 MP
XPP
X18 0 0 18 2206 1779 3 MP
XPP
X0 17 18 0 2206 1797 3 MP
XPP
X18 0 0 17 2206 1797 3 MP
XPP
X0 18 18 0 2206 1814 3 MP
XPP
X18 0 0 18 2206 1814 3 MP
XPP
X0 18 18 0 2206 1832 3 MP
XPP
X18 0 0 18 2206 1832 3 MP
XPP
X0 18 18 0 2206 1850 3 MP
XPP
X18 0 0 18 2206 1850 3 MP
XPP
X0 18 18 0 2206 1868 3 MP
XPP
X18 0 0 18 2206 1868 3 MP
XPP
X0 18 18 0 2206 1886 3 MP
XPP
X18 0 0 18 2206 1886 3 MP
XPP
X0 17 18 0 2206 1904 3 MP
XPP
X18 0 0 17 2206 1904 3 MP
XPP
X0 18 18 0 2206 1921 3 MP
XPP
X18 0 0 18 2206 1921 3 MP
XPP
X0 18 18 0 2206 1939 3 MP
XPP
X18 0 0 18 2206 1939 3 MP
XPP
X0 18 18 0 2206 1957 3 MP
XPP
X18 0 0 18 2206 1957 3 MP
XPP
X0 18 18 0 2206 1975 3 MP
XPP
X18 0 0 18 2206 1975 3 MP
XPP
X0 18 18 0 2206 1993 3 MP
XPP
X18 0 0 18 2206 1993 3 MP
XPP
X0 17 18 0 2206 2011 3 MP
XPP
X18 0 0 17 2206 2011 3 MP
XPP
X0 18 18 0 2206 2028 3 MP
XPP
X18 0 0 18 2206 2028 3 MP
XPP
X0 18 18 0 2206 2046 3 MP
XPP
X18 0 0 18 2206 2046 3 MP
XPP
X0 18 18 0 2206 2064 3 MP
XPP
X18 0 0 18 2206 2064 3 MP
XPP
X0 18 18 0 2206 2082 3 MP
XPP
X18 0 0 18 2206 2082 3 MP
XPP
X0 18 18 0 2206 2100 3 MP
XPP
X18 0 0 18 2206 2100 3 MP
XPP
X0 17 18 0 2206 2118 3 MP
XPP
X18 0 0 17 2206 2118 3 MP
XPP
X0 18 18 0 2206 2135 3 MP
XPP
X18 0 0 18 2206 2135 3 MP
XPP
X0 18 18 0 2206 2153 3 MP
XPP
X18 0 0 18 2206 2153 3 MP
XPP
X0 18 17 0 2224 388 3 MP
XPP
X17 0 0 18 2224 388 3 MP
XPP
X0 18 17 0 2224 406 3 MP
XPP
X17 0 0 18 2224 406 3 MP
XPP
X0 17 17 0 2224 424 3 MP
XPP
X17 0 0 17 2224 424 3 MP
XPP
X0.746032 sg
X0 18 17 0 2224 441 3 MP
XPP
X17 0 0 18 2224 441 3 MP
XPP
X0 18 17 0 2224 459 3 MP
XPP
X17 0 0 18 2224 459 3 MP
XPP
X0 18 17 0 2224 477 3 MP
XPP
X17 0 0 18 2224 477 3 MP
XPP
X0 18 17 0 2224 495 3 MP
XPP
X17 0 0 18 2224 495 3 MP
XPP
X0 18 17 0 2224 513 3 MP
XPP
X17 0 0 18 2224 513 3 MP
XPP
X0 17 17 0 2224 531 3 MP
XPP
X17 0 0 17 2224 531 3 MP
XPP
X0 18 17 0 2224 548 3 MP
XPP
X17 0 0 18 2224 548 3 MP
XPP
X0 18 17 0 2224 566 3 MP
XPP
X17 0 0 18 2224 566 3 MP
XPP
X0 18 17 0 2224 584 3 MP
XPP
X17 0 0 18 2224 584 3 MP
XPP
X0 18 17 0 2224 602 3 MP
XPP
X17 0 0 18 2224 602 3 MP
XPP
X0 18 17 0 2224 620 3 MP
XPP
X17 0 0 18 2224 620 3 MP
XPP
X0 17 17 0 2224 638 3 MP
XPP
X17 0 0 17 2224 638 3 MP
XPP
X0 18 17 0 2224 655 3 MP
XPP
X17 0 0 18 2224 655 3 MP
XPP
X0 18 17 0 2224 673 3 MP
XPP
X17 0 0 18 2224 673 3 MP
XPP
X0 18 17 0 2224 691 3 MP
XPP
X17 0 0 18 2224 691 3 MP
XPP
X0 18 17 0 2224 709 3 MP
XPP
X17 0 0 18 2224 709 3 MP
XPP
X0 18 17 0 2224 727 3 MP
XPP
X17 0 0 18 2224 727 3 MP
XPP
X0 17 17 0 2224 745 3 MP
XPP
X17 0 0 17 2224 745 3 MP
XPP
X0.492063 sg
X0 18 17 0 2224 762 3 MP
XPP
X17 0 0 18 2224 762 3 MP
XPP
X0 18 17 0 2224 780 3 MP
XPP
X17 0 0 18 2224 780 3 MP
XPP
X0 18 17 0 2224 798 3 MP
XPP
X17 0 0 18 2224 798 3 MP
XPP
X0 18 17 0 2224 816 3 MP
XPP
X17 0 0 18 2224 816 3 MP
XPP
X0 18 17 0 2224 834 3 MP
XPP
X17 0 0 18 2224 834 3 MP
XPP
X0 17 17 0 2224 852 3 MP
XPP
X17 0 0 17 2224 852 3 MP
XPP
X0 18 17 0 2224 869 3 MP
XPP
X17 0 0 18 2224 869 3 MP
XPP
X0 18 17 0 2224 887 3 MP
XPP
X17 0 0 18 2224 887 3 MP
XPP
X0 18 17 0 2224 905 3 MP
XPP
X17 0 0 18 2224 905 3 MP
XPP
X0 18 17 0 2224 923 3 MP
XPP
X17 0 0 18 2224 923 3 MP
XPP
X0 18 17 0 2224 941 3 MP
XPP
X17 0 0 18 2224 941 3 MP
XPP
X0 17 17 0 2224 959 3 MP
XPP
X17 0 0 17 2224 959 3 MP
XPP
X0 18 17 0 2224 976 3 MP
XPP
X17 0 0 18 2224 976 3 MP
XPP
X0 18 17 0 2224 994 3 MP
XPP
X17 0 0 18 2224 994 3 MP
XPP
X0 18 17 0 2224 1012 3 MP
XPP
X17 0 0 18 2224 1012 3 MP
XPP
X0 18 17 0 2224 1030 3 MP
XPP
X17 0 0 18 2224 1030 3 MP
XPP
X0 18 17 0 2224 1048 3 MP
XPP
X17 0 0 18 2224 1048 3 MP
XPP
X0 17 17 0 2224 1066 3 MP
XPP
X17 0 0 17 2224 1066 3 MP
XPP
X0 18 17 0 2224 1083 3 MP
XPP
X17 0 0 18 2224 1083 3 MP
XPP
X0 18 17 0 2224 1101 3 MP
XPP
X17 0 0 18 2224 1101 3 MP
XPP
X0 18 17 0 2224 1119 3 MP
XPP
X17 0 0 18 2224 1119 3 MP
XPP
X0 18 17 0 2224 1137 3 MP
XPP
X17 0 0 18 2224 1137 3 MP
XPP
X0 18 17 0 2224 1155 3 MP
XPP
X17 0 0 18 2224 1155 3 MP
XPP
X0 17 17 0 2224 1173 3 MP
XPP
X17 0 0 17 2224 1173 3 MP
XPP
X0 18 17 0 2224 1190 3 MP
XPP
X17 0 0 18 2224 1190 3 MP
XPP
X0 18 17 0 2224 1208 3 MP
XPP
X17 0 0 18 2224 1208 3 MP
XPP
X1 sg
X0 18 17 0 2224 1226 3 MP
XPP
X17 0 0 18 2224 1226 3 MP
XPP
X0 18 17 0 2224 1244 3 MP
XPP
X17 0 0 18 2224 1244 3 MP
XPP
X0 17 17 0 2224 1262 3 MP
XPP
X17 0 0 17 2224 1262 3 MP
XPP
X0 18 17 0 2224 1279 3 MP
XPP
X17 0 0 18 2224 1279 3 MP
XPP
X0 18 17 0 2224 1297 3 MP
XPP
X17 0 0 18 2224 1297 3 MP
XPP
X0 18 17 0 2224 1315 3 MP
XPP
X17 0 0 18 2224 1315 3 MP
XPP
X0 18 17 0 2224 1333 3 MP
XPP
X17 0 0 18 2224 1333 3 MP
XPP
X0 18 17 0 2224 1351 3 MP
XPP
X17 0 0 18 2224 1351 3 MP
XPP
X0 17 17 0 2224 1369 3 MP
XPP
X17 0 0 17 2224 1369 3 MP
XPP
X0 18 17 0 2224 1386 3 MP
XPP
X17 0 0 18 2224 1386 3 MP
XPP
X0 18 17 0 2224 1404 3 MP
XPP
X17 0 0 18 2224 1404 3 MP
XPP
X0 18 17 0 2224 1422 3 MP
XPP
X17 0 0 18 2224 1422 3 MP
XPP
X0 18 17 0 2224 1440 3 MP
XPP
X17 0 0 18 2224 1440 3 MP
XPP
X0 18 17 0 2224 1458 3 MP
XPP
X17 0 0 18 2224 1458 3 MP
XPP
X0 17 17 0 2224 1476 3 MP
XPP
X17 0 0 17 2224 1476 3 MP
XPP
X0 18 17 0 2224 1493 3 MP
XPP
X17 0 0 18 2224 1493 3 MP
XPP
X0 18 17 0 2224 1511 3 MP
XPP
X17 0 0 18 2224 1511 3 MP
XPP
X0 18 17 0 2224 1529 3 MP
XPP
X17 0 0 18 2224 1529 3 MP
XPP
X0 18 17 0 2224 1547 3 MP
XPP
X17 0 0 18 2224 1547 3 MP
XPP
X0 18 17 0 2224 1565 3 MP
XPP
X17 0 0 18 2224 1565 3 MP
XPP
X0 17 17 0 2224 1583 3 MP
XPP
X17 0 0 17 2224 1583 3 MP
XPP
X0 18 17 0 2224 1600 3 MP
XPP
X17 0 0 18 2224 1600 3 MP
XPP
X0 18 17 0 2224 1618 3 MP
XPP
X17 0 0 18 2224 1618 3 MP
XPP
X0 18 17 0 2224 1636 3 MP
XPP
X17 0 0 18 2224 1636 3 MP
XPP
X0 18 17 0 2224 1654 3 MP
XPP
X17 0 0 18 2224 1654 3 MP
XPP
X0 18 17 0 2224 1672 3 MP
XPP
X17 0 0 18 2224 1672 3 MP
XPP
X0 17 17 0 2224 1690 3 MP
XPP
X17 0 0 17 2224 1690 3 MP
XPP
X0 18 17 0 2224 1707 3 MP
XPP
X17 0 0 18 2224 1707 3 MP
XPP
X0 sg
X0 18 17 0 2224 1725 3 MP
XPP
X17 0 0 18 2224 1725 3 MP
XPP
X1 sg
X0 18 17 0 2224 1743 3 MP
XPP
X17 0 0 18 2224 1743 3 MP
XPP
X0 18 17 0 2224 1761 3 MP
XPP
X17 0 0 18 2224 1761 3 MP
XPP
X0 18 17 0 2224 1779 3 MP
XPP
X17 0 0 18 2224 1779 3 MP
XPP
X0 17 17 0 2224 1797 3 MP
XPP
X17 0 0 17 2224 1797 3 MP
XPP
X0 18 17 0 2224 1814 3 MP
XPP
X17 0 0 18 2224 1814 3 MP
XPP
X0 18 17 0 2224 1832 3 MP
XPP
X17 0 0 18 2224 1832 3 MP
XPP
X0 18 17 0 2224 1850 3 MP
XPP
X17 0 0 18 2224 1850 3 MP
XPP
X0 18 17 0 2224 1868 3 MP
XPP
X17 0 0 18 2224 1868 3 MP
XPP
X0 18 17 0 2224 1886 3 MP
XPP
X17 0 0 18 2224 1886 3 MP
XPP
X0 17 17 0 2224 1904 3 MP
XPP
X17 0 0 17 2224 1904 3 MP
XPP
X0 18 17 0 2224 1921 3 MP
XPP
X17 0 0 18 2224 1921 3 MP
XPP
X0 18 17 0 2224 1939 3 MP
XPP
X17 0 0 18 2224 1939 3 MP
XPP
X0 18 17 0 2224 1957 3 MP
XPP
X17 0 0 18 2224 1957 3 MP
XPP
X0 18 17 0 2224 1975 3 MP
XPP
X17 0 0 18 2224 1975 3 MP
XPP
X0 18 17 0 2224 1993 3 MP
XPP
X17 0 0 18 2224 1993 3 MP
XPP
X0 17 17 0 2224 2011 3 MP
XPP
X17 0 0 17 2224 2011 3 MP
XPP
X0 18 17 0 2224 2028 3 MP
XPP
X17 0 0 18 2224 2028 3 MP
XPP
X0 18 17 0 2224 2046 3 MP
XPP
X17 0 0 18 2224 2046 3 MP
XPP
X0 18 17 0 2224 2064 3 MP
XPP
X17 0 0 18 2224 2064 3 MP
XPP
X0 18 17 0 2224 2082 3 MP
XPP
X17 0 0 18 2224 2082 3 MP
XPP
X0 18 17 0 2224 2100 3 MP
XPP
X17 0 0 18 2224 2100 3 MP
XPP
X0 17 17 0 2224 2118 3 MP
XPP
X17 0 0 17 2224 2118 3 MP
XPP
X0 18 17 0 2224 2135 3 MP
XPP
X17 0 0 18 2224 2135 3 MP
XPP
X0 18 17 0 2224 2153 3 MP
XPP
X17 0 0 18 2224 2153 3 MP
XPP
X0 18 18 0 2241 388 3 MP
XPP
X18 0 0 18 2241 388 3 MP
XPP
X0 18 18 0 2241 406 3 MP
XPP
X18 0 0 18 2241 406 3 MP
XPP
X0 17 18 0 2241 424 3 MP
XPP
X18 0 0 17 2241 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2241 441 3 MP
XPP
X18 0 0 18 2241 441 3 MP
XPP
X0 18 18 0 2241 459 3 MP
XPP
X18 0 0 18 2241 459 3 MP
XPP
X0 18 18 0 2241 477 3 MP
XPP
X18 0 0 18 2241 477 3 MP
XPP
X0 18 18 0 2241 495 3 MP
XPP
X18 0 0 18 2241 495 3 MP
XPP
X0 18 18 0 2241 513 3 MP
XPP
X18 0 0 18 2241 513 3 MP
XPP
X0 17 18 0 2241 531 3 MP
XPP
X18 0 0 17 2241 531 3 MP
XPP
X0 18 18 0 2241 548 3 MP
XPP
X18 0 0 18 2241 548 3 MP
XPP
X0 18 18 0 2241 566 3 MP
XPP
X18 0 0 18 2241 566 3 MP
XPP
X0 18 18 0 2241 584 3 MP
XPP
X18 0 0 18 2241 584 3 MP
XPP
X0 18 18 0 2241 602 3 MP
XPP
X18 0 0 18 2241 602 3 MP
XPP
X0 18 18 0 2241 620 3 MP
XPP
X18 0 0 18 2241 620 3 MP
XPP
X0 17 18 0 2241 638 3 MP
XPP
X18 0 0 17 2241 638 3 MP
XPP
X0 18 18 0 2241 655 3 MP
XPP
X18 0 0 18 2241 655 3 MP
XPP
X0 18 18 0 2241 673 3 MP
XPP
X18 0 0 18 2241 673 3 MP
XPP
X0 18 18 0 2241 691 3 MP
XPP
X18 0 0 18 2241 691 3 MP
XPP
X0 18 18 0 2241 709 3 MP
XPP
X18 0 0 18 2241 709 3 MP
XPP
X0 18 18 0 2241 727 3 MP
XPP
X18 0 0 18 2241 727 3 MP
XPP
X0 17 18 0 2241 745 3 MP
XPP
X18 0 0 17 2241 745 3 MP
XPP
X0.492063 sg
X0 18 18 0 2241 762 3 MP
XPP
X18 0 0 18 2241 762 3 MP
XPP
X0 18 18 0 2241 780 3 MP
XPP
X18 0 0 18 2241 780 3 MP
XPP
X0 18 18 0 2241 798 3 MP
XPP
X18 0 0 18 2241 798 3 MP
XPP
X0 18 18 0 2241 816 3 MP
XPP
X18 0 0 18 2241 816 3 MP
XPP
X0 18 18 0 2241 834 3 MP
XPP
X18 0 0 18 2241 834 3 MP
XPP
X0 17 18 0 2241 852 3 MP
XPP
X18 0 0 17 2241 852 3 MP
XPP
X0 18 18 0 2241 869 3 MP
XPP
X18 0 0 18 2241 869 3 MP
XPP
X0 18 18 0 2241 887 3 MP
XPP
X18 0 0 18 2241 887 3 MP
XPP
X0 18 18 0 2241 905 3 MP
XPP
X18 0 0 18 2241 905 3 MP
XPP
X0 18 18 0 2241 923 3 MP
XPP
X18 0 0 18 2241 923 3 MP
XPP
X0 18 18 0 2241 941 3 MP
XPP
X18 0 0 18 2241 941 3 MP
XPP
X0 17 18 0 2241 959 3 MP
XPP
X18 0 0 17 2241 959 3 MP
XPP
X0 18 18 0 2241 976 3 MP
XPP
X18 0 0 18 2241 976 3 MP
XPP
X0 18 18 0 2241 994 3 MP
XPP
X18 0 0 18 2241 994 3 MP
XPP
X0 18 18 0 2241 1012 3 MP
XPP
X18 0 0 18 2241 1012 3 MP
XPP
X0 18 18 0 2241 1030 3 MP
XPP
X18 0 0 18 2241 1030 3 MP
XPP
X0 18 18 0 2241 1048 3 MP
XPP
X18 0 0 18 2241 1048 3 MP
XPP
X0 17 18 0 2241 1066 3 MP
XPP
X18 0 0 17 2241 1066 3 MP
XPP
X0 18 18 0 2241 1083 3 MP
XPP
X18 0 0 18 2241 1083 3 MP
XPP
X0 18 18 0 2241 1101 3 MP
XPP
X18 0 0 18 2241 1101 3 MP
XPP
X0 18 18 0 2241 1119 3 MP
XPP
X18 0 0 18 2241 1119 3 MP
XPP
X0 18 18 0 2241 1137 3 MP
XPP
X18 0 0 18 2241 1137 3 MP
XPP
X0 18 18 0 2241 1155 3 MP
XPP
X18 0 0 18 2241 1155 3 MP
XPP
X0 17 18 0 2241 1173 3 MP
XPP
X18 0 0 17 2241 1173 3 MP
XPP
X0 18 18 0 2241 1190 3 MP
XPP
X18 0 0 18 2241 1190 3 MP
XPP
X0 18 18 0 2241 1208 3 MP
XPP
X18 0 0 18 2241 1208 3 MP
XPP
X1 sg
X0 18 18 0 2241 1226 3 MP
XPP
X18 0 0 18 2241 1226 3 MP
XPP
X0 18 18 0 2241 1244 3 MP
XPP
X18 0 0 18 2241 1244 3 MP
XPP
X0 17 18 0 2241 1262 3 MP
XPP
X18 0 0 17 2241 1262 3 MP
XPP
X0 18 18 0 2241 1279 3 MP
XPP
X18 0 0 18 2241 1279 3 MP
XPP
X0 18 18 0 2241 1297 3 MP
XPP
X18 0 0 18 2241 1297 3 MP
XPP
X0 18 18 0 2241 1315 3 MP
XPP
X18 0 0 18 2241 1315 3 MP
XPP
X0 18 18 0 2241 1333 3 MP
XPP
X18 0 0 18 2241 1333 3 MP
XPP
X0 18 18 0 2241 1351 3 MP
XPP
X18 0 0 18 2241 1351 3 MP
XPP
X0 17 18 0 2241 1369 3 MP
XPP
X18 0 0 17 2241 1369 3 MP
XPP
X0 18 18 0 2241 1386 3 MP
XPP
X18 0 0 18 2241 1386 3 MP
XPP
X0 18 18 0 2241 1404 3 MP
XPP
X18 0 0 18 2241 1404 3 MP
XPP
X0 18 18 0 2241 1422 3 MP
XPP
X18 0 0 18 2241 1422 3 MP
XPP
X0 18 18 0 2241 1440 3 MP
XPP
X18 0 0 18 2241 1440 3 MP
XPP
X0 18 18 0 2241 1458 3 MP
XPP
X18 0 0 18 2241 1458 3 MP
XPP
X0 17 18 0 2241 1476 3 MP
XPP
X18 0 0 17 2241 1476 3 MP
XPP
X0 18 18 0 2241 1493 3 MP
XPP
X18 0 0 18 2241 1493 3 MP
XPP
X0 18 18 0 2241 1511 3 MP
XPP
X18 0 0 18 2241 1511 3 MP
XPP
X0 18 18 0 2241 1529 3 MP
XPP
X18 0 0 18 2241 1529 3 MP
XPP
X0 18 18 0 2241 1547 3 MP
XPP
X18 0 0 18 2241 1547 3 MP
XPP
X0 18 18 0 2241 1565 3 MP
XPP
X18 0 0 18 2241 1565 3 MP
XPP
X0 17 18 0 2241 1583 3 MP
XPP
X18 0 0 17 2241 1583 3 MP
XPP
X0 18 18 0 2241 1600 3 MP
XPP
X18 0 0 18 2241 1600 3 MP
XPP
X0 18 18 0 2241 1618 3 MP
XPP
X18 0 0 18 2241 1618 3 MP
XPP
X0 18 18 0 2241 1636 3 MP
XPP
X18 0 0 18 2241 1636 3 MP
XPP
X0 18 18 0 2241 1654 3 MP
XPP
X18 0 0 18 2241 1654 3 MP
XPP
X0 18 18 0 2241 1672 3 MP
XPP
X18 0 0 18 2241 1672 3 MP
XPP
X0 17 18 0 2241 1690 3 MP
XPP
X18 0 0 17 2241 1690 3 MP
XPP
X0 18 18 0 2241 1707 3 MP
XPP
X18 0 0 18 2241 1707 3 MP
XPP
X0 sg
X0 18 18 0 2241 1725 3 MP
XPP
X18 0 0 18 2241 1725 3 MP
XPP
X1 sg
X0 18 18 0 2241 1743 3 MP
XPP
X18 0 0 18 2241 1743 3 MP
XPP
X0 18 18 0 2241 1761 3 MP
XPP
X18 0 0 18 2241 1761 3 MP
XPP
X0 18 18 0 2241 1779 3 MP
XPP
X18 0 0 18 2241 1779 3 MP
XPP
X0 17 18 0 2241 1797 3 MP
XPP
X18 0 0 17 2241 1797 3 MP
XPP
X0 18 18 0 2241 1814 3 MP
XPP
X18 0 0 18 2241 1814 3 MP
XPP
X0 18 18 0 2241 1832 3 MP
XPP
X18 0 0 18 2241 1832 3 MP
XPP
X0 18 18 0 2241 1850 3 MP
XPP
X18 0 0 18 2241 1850 3 MP
XPP
X0 18 18 0 2241 1868 3 MP
XPP
X18 0 0 18 2241 1868 3 MP
XPP
X0 18 18 0 2241 1886 3 MP
XPP
X18 0 0 18 2241 1886 3 MP
XPP
X0 17 18 0 2241 1904 3 MP
XPP
X18 0 0 17 2241 1904 3 MP
XPP
X0 18 18 0 2241 1921 3 MP
XPP
X18 0 0 18 2241 1921 3 MP
XPP
X0 18 18 0 2241 1939 3 MP
XPP
X18 0 0 18 2241 1939 3 MP
XPP
X0 18 18 0 2241 1957 3 MP
XPP
X18 0 0 18 2241 1957 3 MP
XPP
X0 18 18 0 2241 1975 3 MP
XPP
X18 0 0 18 2241 1975 3 MP
XPP
X0 18 18 0 2241 1993 3 MP
XPP
X18 0 0 18 2241 1993 3 MP
XPP
X0 17 18 0 2241 2011 3 MP
XPP
X18 0 0 17 2241 2011 3 MP
XPP
X0 18 18 0 2241 2028 3 MP
XPP
X18 0 0 18 2241 2028 3 MP
XPP
X0 18 18 0 2241 2046 3 MP
XPP
X18 0 0 18 2241 2046 3 MP
XPP
X0 18 18 0 2241 2064 3 MP
XPP
X18 0 0 18 2241 2064 3 MP
XPP
X0 18 18 0 2241 2082 3 MP
XPP
X18 0 0 18 2241 2082 3 MP
XPP
X0 18 18 0 2241 2100 3 MP
XPP
X18 0 0 18 2241 2100 3 MP
XPP
X0 17 18 0 2241 2118 3 MP
XPP
X18 0 0 17 2241 2118 3 MP
XPP
X0 18 18 0 2241 2135 3 MP
XPP
X18 0 0 18 2241 2135 3 MP
XPP
X0 18 18 0 2241 2153 3 MP
XPP
X18 0 0 18 2241 2153 3 MP
XPP
X0 18 18 0 2259 388 3 MP
XPP
X18 0 0 18 2259 388 3 MP
XPP
X0 18 18 0 2259 406 3 MP
XPP
X18 0 0 18 2259 406 3 MP
XPP
X0 17 18 0 2259 424 3 MP
XPP
X18 0 0 17 2259 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2259 441 3 MP
XPP
X18 0 0 18 2259 441 3 MP
XPP
X0 18 18 0 2259 459 3 MP
XPP
X18 0 0 18 2259 459 3 MP
XPP
X0 18 18 0 2259 477 3 MP
XPP
X18 0 0 18 2259 477 3 MP
XPP
X0 18 18 0 2259 495 3 MP
XPP
X18 0 0 18 2259 495 3 MP
XPP
X0 18 18 0 2259 513 3 MP
XPP
X18 0 0 18 2259 513 3 MP
XPP
X0 17 18 0 2259 531 3 MP
XPP
X18 0 0 17 2259 531 3 MP
XPP
X0 18 18 0 2259 548 3 MP
XPP
X18 0 0 18 2259 548 3 MP
XPP
X0 18 18 0 2259 566 3 MP
XPP
X18 0 0 18 2259 566 3 MP
XPP
X0 18 18 0 2259 584 3 MP
XPP
X18 0 0 18 2259 584 3 MP
XPP
X0 18 18 0 2259 602 3 MP
XPP
X18 0 0 18 2259 602 3 MP
XPP
X0 18 18 0 2259 620 3 MP
XPP
X18 0 0 18 2259 620 3 MP
XPP
X0 17 18 0 2259 638 3 MP
XPP
X18 0 0 17 2259 638 3 MP
XPP
X0 18 18 0 2259 655 3 MP
XPP
X18 0 0 18 2259 655 3 MP
XPP
X0 18 18 0 2259 673 3 MP
XPP
X18 0 0 18 2259 673 3 MP
XPP
X0 18 18 0 2259 691 3 MP
XPP
X18 0 0 18 2259 691 3 MP
XPP
X0 18 18 0 2259 709 3 MP
XPP
X18 0 0 18 2259 709 3 MP
XPP
X0 18 18 0 2259 727 3 MP
XPP
X18 0 0 18 2259 727 3 MP
XPP
X0 17 18 0 2259 745 3 MP
XPP
X18 0 0 17 2259 745 3 MP
XPP
X0.492063 sg
X0 18 18 0 2259 762 3 MP
XPP
X18 0 0 18 2259 762 3 MP
XPP
X0 18 18 0 2259 780 3 MP
XPP
X18 0 0 18 2259 780 3 MP
XPP
X0 18 18 0 2259 798 3 MP
XPP
X18 0 0 18 2259 798 3 MP
XPP
X0 18 18 0 2259 816 3 MP
XPP
X18 0 0 18 2259 816 3 MP
XPP
X0 18 18 0 2259 834 3 MP
XPP
X18 0 0 18 2259 834 3 MP
XPP
X0 17 18 0 2259 852 3 MP
XPP
X18 0 0 17 2259 852 3 MP
XPP
X0 18 18 0 2259 869 3 MP
XPP
X18 0 0 18 2259 869 3 MP
XPP
X0 18 18 0 2259 887 3 MP
XPP
X18 0 0 18 2259 887 3 MP
XPP
X0 18 18 0 2259 905 3 MP
XPP
X18 0 0 18 2259 905 3 MP
XPP
X0 18 18 0 2259 923 3 MP
XPP
X18 0 0 18 2259 923 3 MP
XPP
X0 18 18 0 2259 941 3 MP
XPP
X18 0 0 18 2259 941 3 MP
XPP
X0 17 18 0 2259 959 3 MP
XPP
X18 0 0 17 2259 959 3 MP
XPP
X0 18 18 0 2259 976 3 MP
XPP
X18 0 0 18 2259 976 3 MP
XPP
X0 18 18 0 2259 994 3 MP
XPP
X18 0 0 18 2259 994 3 MP
XPP
X0 18 18 0 2259 1012 3 MP
XPP
X18 0 0 18 2259 1012 3 MP
XPP
X0 18 18 0 2259 1030 3 MP
XPP
X18 0 0 18 2259 1030 3 MP
XPP
X0 18 18 0 2259 1048 3 MP
XPP
X18 0 0 18 2259 1048 3 MP
XPP
X0 17 18 0 2259 1066 3 MP
XPP
X18 0 0 17 2259 1066 3 MP
XPP
X0 18 18 0 2259 1083 3 MP
XPP
X18 0 0 18 2259 1083 3 MP
XPP
X0 18 18 0 2259 1101 3 MP
XPP
X18 0 0 18 2259 1101 3 MP
XPP
X0 18 18 0 2259 1119 3 MP
XPP
X18 0 0 18 2259 1119 3 MP
XPP
X0 18 18 0 2259 1137 3 MP
XPP
X18 0 0 18 2259 1137 3 MP
XPP
X0 18 18 0 2259 1155 3 MP
XPP
X18 0 0 18 2259 1155 3 MP
XPP
X0 17 18 0 2259 1173 3 MP
XPP
X18 0 0 17 2259 1173 3 MP
XPP
X0 18 18 0 2259 1190 3 MP
XPP
X18 0 0 18 2259 1190 3 MP
XPP
X0 18 18 0 2259 1208 3 MP
XPP
X18 0 0 18 2259 1208 3 MP
XPP
X1 sg
X0 18 18 0 2259 1226 3 MP
XPP
X18 0 0 18 2259 1226 3 MP
XPP
X0 18 18 0 2259 1244 3 MP
XPP
X18 0 0 18 2259 1244 3 MP
XPP
X0 17 18 0 2259 1262 3 MP
XPP
X18 0 0 17 2259 1262 3 MP
XPP
X0 18 18 0 2259 1279 3 MP
XPP
X18 0 0 18 2259 1279 3 MP
XPP
X0 18 18 0 2259 1297 3 MP
XPP
X18 0 0 18 2259 1297 3 MP
XPP
X0 18 18 0 2259 1315 3 MP
XPP
X18 0 0 18 2259 1315 3 MP
XPP
X0 18 18 0 2259 1333 3 MP
XPP
X18 0 0 18 2259 1333 3 MP
XPP
X0 18 18 0 2259 1351 3 MP
XPP
X18 0 0 18 2259 1351 3 MP
XPP
X0 17 18 0 2259 1369 3 MP
XPP
X18 0 0 17 2259 1369 3 MP
XPP
X0 18 18 0 2259 1386 3 MP
XPP
X18 0 0 18 2259 1386 3 MP
XPP
X0 18 18 0 2259 1404 3 MP
XPP
X18 0 0 18 2259 1404 3 MP
XPP
X0 18 18 0 2259 1422 3 MP
XPP
X18 0 0 18 2259 1422 3 MP
XPP
X0 18 18 0 2259 1440 3 MP
XPP
X18 0 0 18 2259 1440 3 MP
XPP
X0 18 18 0 2259 1458 3 MP
XPP
X18 0 0 18 2259 1458 3 MP
XPP
X0 17 18 0 2259 1476 3 MP
XPP
X18 0 0 17 2259 1476 3 MP
XPP
X0 18 18 0 2259 1493 3 MP
XPP
X18 0 0 18 2259 1493 3 MP
XPP
X0 18 18 0 2259 1511 3 MP
XPP
X18 0 0 18 2259 1511 3 MP
XPP
X0 18 18 0 2259 1529 3 MP
XPP
X18 0 0 18 2259 1529 3 MP
XPP
X0 18 18 0 2259 1547 3 MP
XPP
X18 0 0 18 2259 1547 3 MP
XPP
X0 18 18 0 2259 1565 3 MP
XPP
X18 0 0 18 2259 1565 3 MP
XPP
X0 17 18 0 2259 1583 3 MP
XPP
X18 0 0 17 2259 1583 3 MP
XPP
X0 18 18 0 2259 1600 3 MP
XPP
X18 0 0 18 2259 1600 3 MP
XPP
X0 18 18 0 2259 1618 3 MP
XPP
X18 0 0 18 2259 1618 3 MP
XPP
X0 18 18 0 2259 1636 3 MP
XPP
X18 0 0 18 2259 1636 3 MP
XPP
X0 18 18 0 2259 1654 3 MP
XPP
X18 0 0 18 2259 1654 3 MP
XPP
X0 18 18 0 2259 1672 3 MP
XPP
X18 0 0 18 2259 1672 3 MP
XPP
X0 17 18 0 2259 1690 3 MP
XPP
X18 0 0 17 2259 1690 3 MP
XPP
X0 18 18 0 2259 1707 3 MP
XPP
X18 0 0 18 2259 1707 3 MP
XPP
X0 sg
X0 18 18 0 2259 1725 3 MP
XPP
X18 0 0 18 2259 1725 3 MP
XPP
X1 sg
X0 18 18 0 2259 1743 3 MP
XPP
X18 0 0 18 2259 1743 3 MP
XPP
X0 18 18 0 2259 1761 3 MP
XPP
X18 0 0 18 2259 1761 3 MP
XPP
X0 18 18 0 2259 1779 3 MP
XPP
X18 0 0 18 2259 1779 3 MP
XPP
X0 17 18 0 2259 1797 3 MP
XPP
X18 0 0 17 2259 1797 3 MP
XPP
X0 18 18 0 2259 1814 3 MP
XPP
X18 0 0 18 2259 1814 3 MP
XPP
X0 18 18 0 2259 1832 3 MP
XPP
X18 0 0 18 2259 1832 3 MP
XPP
X0 18 18 0 2259 1850 3 MP
XPP
X18 0 0 18 2259 1850 3 MP
XPP
X0 18 18 0 2259 1868 3 MP
XPP
X18 0 0 18 2259 1868 3 MP
XPP
X0 18 18 0 2259 1886 3 MP
XPP
X18 0 0 18 2259 1886 3 MP
XPP
X0 17 18 0 2259 1904 3 MP
XPP
X18 0 0 17 2259 1904 3 MP
XPP
X0 18 18 0 2259 1921 3 MP
XPP
X18 0 0 18 2259 1921 3 MP
XPP
X0 18 18 0 2259 1939 3 MP
XPP
X18 0 0 18 2259 1939 3 MP
XPP
X0 18 18 0 2259 1957 3 MP
XPP
X18 0 0 18 2259 1957 3 MP
XPP
X0 18 18 0 2259 1975 3 MP
XPP
X18 0 0 18 2259 1975 3 MP
XPP
X0 18 18 0 2259 1993 3 MP
XPP
X18 0 0 18 2259 1993 3 MP
XPP
X0 17 18 0 2259 2011 3 MP
XPP
X18 0 0 17 2259 2011 3 MP
XPP
X0 18 18 0 2259 2028 3 MP
XPP
X18 0 0 18 2259 2028 3 MP
XPP
X0 18 18 0 2259 2046 3 MP
XPP
X18 0 0 18 2259 2046 3 MP
XPP
X0 18 18 0 2259 2064 3 MP
XPP
X18 0 0 18 2259 2064 3 MP
XPP
X0 18 18 0 2259 2082 3 MP
XPP
X18 0 0 18 2259 2082 3 MP
XPP
X0 18 18 0 2259 2100 3 MP
XPP
X18 0 0 18 2259 2100 3 MP
XPP
X0 17 18 0 2259 2118 3 MP
XPP
X18 0 0 17 2259 2118 3 MP
XPP
X0 18 18 0 2259 2135 3 MP
XPP
X18 0 0 18 2259 2135 3 MP
XPP
X0 18 18 0 2259 2153 3 MP
XPP
X18 0 0 18 2259 2153 3 MP
XPP
X0 18 18 0 2277 388 3 MP
XPP
X18 0 0 18 2277 388 3 MP
XPP
X0 18 18 0 2277 406 3 MP
XPP
X18 0 0 18 2277 406 3 MP
XPP
X0 17 18 0 2277 424 3 MP
XPP
X18 0 0 17 2277 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2277 441 3 MP
XPP
X18 0 0 18 2277 441 3 MP
XPP
X0 18 18 0 2277 459 3 MP
XPP
X18 0 0 18 2277 459 3 MP
XPP
X0 18 18 0 2277 477 3 MP
XPP
X18 0 0 18 2277 477 3 MP
XPP
X0 18 18 0 2277 495 3 MP
XPP
X18 0 0 18 2277 495 3 MP
XPP
X0 18 18 0 2277 513 3 MP
XPP
X18 0 0 18 2277 513 3 MP
XPP
X0 17 18 0 2277 531 3 MP
XPP
X18 0 0 17 2277 531 3 MP
XPP
X0 18 18 0 2277 548 3 MP
XPP
X18 0 0 18 2277 548 3 MP
XPP
X0 18 18 0 2277 566 3 MP
XPP
X18 0 0 18 2277 566 3 MP
XPP
X0 18 18 0 2277 584 3 MP
XPP
X18 0 0 18 2277 584 3 MP
XPP
X0 18 18 0 2277 602 3 MP
XPP
X18 0 0 18 2277 602 3 MP
XPP
X0 18 18 0 2277 620 3 MP
XPP
X18 0 0 18 2277 620 3 MP
XPP
X0 17 18 0 2277 638 3 MP
XPP
X18 0 0 17 2277 638 3 MP
XPP
X0 18 18 0 2277 655 3 MP
XPP
X18 0 0 18 2277 655 3 MP
XPP
X0 18 18 0 2277 673 3 MP
XPP
X18 0 0 18 2277 673 3 MP
XPP
X0 18 18 0 2277 691 3 MP
XPP
X18 0 0 18 2277 691 3 MP
XPP
X0 18 18 0 2277 709 3 MP
XPP
X18 0 0 18 2277 709 3 MP
XPP
X0 18 18 0 2277 727 3 MP
XPP
X18 0 0 18 2277 727 3 MP
XPP
X0 17 18 0 2277 745 3 MP
XPP
X18 0 0 17 2277 745 3 MP
XPP
X0.492063 sg
X0 18 18 0 2277 762 3 MP
XPP
X18 0 0 18 2277 762 3 MP
XPP
X0 18 18 0 2277 780 3 MP
XPP
X18 0 0 18 2277 780 3 MP
XPP
X0 18 18 0 2277 798 3 MP
XPP
X18 0 0 18 2277 798 3 MP
XPP
X0 18 18 0 2277 816 3 MP
XPP
X18 0 0 18 2277 816 3 MP
XPP
X0 18 18 0 2277 834 3 MP
XPP
X18 0 0 18 2277 834 3 MP
XPP
X0 17 18 0 2277 852 3 MP
XPP
X18 0 0 17 2277 852 3 MP
XPP
X0 18 18 0 2277 869 3 MP
XPP
X18 0 0 18 2277 869 3 MP
XPP
X0 18 18 0 2277 887 3 MP
XPP
X18 0 0 18 2277 887 3 MP
XPP
X0 18 18 0 2277 905 3 MP
XPP
X18 0 0 18 2277 905 3 MP
XPP
X0 18 18 0 2277 923 3 MP
XPP
X18 0 0 18 2277 923 3 MP
XPP
X0 18 18 0 2277 941 3 MP
XPP
X18 0 0 18 2277 941 3 MP
XPP
X0 17 18 0 2277 959 3 MP
XPP
X18 0 0 17 2277 959 3 MP
XPP
X0 18 18 0 2277 976 3 MP
XPP
X18 0 0 18 2277 976 3 MP
XPP
X0 18 18 0 2277 994 3 MP
XPP
X18 0 0 18 2277 994 3 MP
XPP
X0 18 18 0 2277 1012 3 MP
XPP
X18 0 0 18 2277 1012 3 MP
XPP
X0 18 18 0 2277 1030 3 MP
XPP
X18 0 0 18 2277 1030 3 MP
XPP
X0 18 18 0 2277 1048 3 MP
XPP
X18 0 0 18 2277 1048 3 MP
XPP
X0 17 18 0 2277 1066 3 MP
XPP
X18 0 0 17 2277 1066 3 MP
XPP
X0 18 18 0 2277 1083 3 MP
XPP
X18 0 0 18 2277 1083 3 MP
XPP
X0 18 18 0 2277 1101 3 MP
XPP
X18 0 0 18 2277 1101 3 MP
XPP
X0 18 18 0 2277 1119 3 MP
XPP
X18 0 0 18 2277 1119 3 MP
XPP
X0 18 18 0 2277 1137 3 MP
XPP
X18 0 0 18 2277 1137 3 MP
XPP
X0 18 18 0 2277 1155 3 MP
XPP
X18 0 0 18 2277 1155 3 MP
XPP
X0 17 18 0 2277 1173 3 MP
XPP
X18 0 0 17 2277 1173 3 MP
XPP
X0 18 18 0 2277 1190 3 MP
XPP
X18 0 0 18 2277 1190 3 MP
XPP
X0 18 18 0 2277 1208 3 MP
XPP
X18 0 0 18 2277 1208 3 MP
XPP
X1 sg
X0 18 18 0 2277 1226 3 MP
XPP
X18 0 0 18 2277 1226 3 MP
XPP
X0 18 18 0 2277 1244 3 MP
XPP
X18 0 0 18 2277 1244 3 MP
XPP
X0 17 18 0 2277 1262 3 MP
XPP
X18 0 0 17 2277 1262 3 MP
XPP
X0 18 18 0 2277 1279 3 MP
XPP
X18 0 0 18 2277 1279 3 MP
XPP
X0 18 18 0 2277 1297 3 MP
XPP
X18 0 0 18 2277 1297 3 MP
XPP
X0 18 18 0 2277 1315 3 MP
XPP
X18 0 0 18 2277 1315 3 MP
XPP
X0 18 18 0 2277 1333 3 MP
XPP
X18 0 0 18 2277 1333 3 MP
XPP
X0 18 18 0 2277 1351 3 MP
XPP
X18 0 0 18 2277 1351 3 MP
XPP
X0 17 18 0 2277 1369 3 MP
XPP
X18 0 0 17 2277 1369 3 MP
XPP
X0 18 18 0 2277 1386 3 MP
XPP
X18 0 0 18 2277 1386 3 MP
XPP
X0 18 18 0 2277 1404 3 MP
XPP
X18 0 0 18 2277 1404 3 MP
XPP
X0 18 18 0 2277 1422 3 MP
XPP
X18 0 0 18 2277 1422 3 MP
XPP
X0 18 18 0 2277 1440 3 MP
XPP
X18 0 0 18 2277 1440 3 MP
XPP
X0 18 18 0 2277 1458 3 MP
XPP
X18 0 0 18 2277 1458 3 MP
XPP
X0 17 18 0 2277 1476 3 MP
XPP
X18 0 0 17 2277 1476 3 MP
XPP
X0 18 18 0 2277 1493 3 MP
XPP
X18 0 0 18 2277 1493 3 MP
XPP
X0 18 18 0 2277 1511 3 MP
XPP
X18 0 0 18 2277 1511 3 MP
XPP
X0 18 18 0 2277 1529 3 MP
XPP
X18 0 0 18 2277 1529 3 MP
XPP
X0 18 18 0 2277 1547 3 MP
XPP
X18 0 0 18 2277 1547 3 MP
XPP
X0 18 18 0 2277 1565 3 MP
XPP
X18 0 0 18 2277 1565 3 MP
XPP
X0 17 18 0 2277 1583 3 MP
XPP
X18 0 0 17 2277 1583 3 MP
XPP
X0 18 18 0 2277 1600 3 MP
XPP
X18 0 0 18 2277 1600 3 MP
XPP
X0 18 18 0 2277 1618 3 MP
XPP
X18 0 0 18 2277 1618 3 MP
XPP
X0 18 18 0 2277 1636 3 MP
XPP
X18 0 0 18 2277 1636 3 MP
XPP
X0 18 18 0 2277 1654 3 MP
XPP
X18 0 0 18 2277 1654 3 MP
XPP
X0 18 18 0 2277 1672 3 MP
XPP
X18 0 0 18 2277 1672 3 MP
XPP
X0 17 18 0 2277 1690 3 MP
XPP
X18 0 0 17 2277 1690 3 MP
XPP
X0 18 18 0 2277 1707 3 MP
XPP
X18 0 0 18 2277 1707 3 MP
XPP
X0 sg
X0 18 18 0 2277 1725 3 MP
XPP
X18 0 0 18 2277 1725 3 MP
XPP
X1 sg
X0 18 18 0 2277 1743 3 MP
XPP
X18 0 0 18 2277 1743 3 MP
XPP
X0 18 18 0 2277 1761 3 MP
XPP
X18 0 0 18 2277 1761 3 MP
XPP
X0 18 18 0 2277 1779 3 MP
XPP
X18 0 0 18 2277 1779 3 MP
XPP
X0 17 18 0 2277 1797 3 MP
XPP
X18 0 0 17 2277 1797 3 MP
XPP
X0 18 18 0 2277 1814 3 MP
XPP
X18 0 0 18 2277 1814 3 MP
XPP
X0 18 18 0 2277 1832 3 MP
XPP
X18 0 0 18 2277 1832 3 MP
XPP
X0 18 18 0 2277 1850 3 MP
XPP
X18 0 0 18 2277 1850 3 MP
XPP
X0 18 18 0 2277 1868 3 MP
XPP
X18 0 0 18 2277 1868 3 MP
XPP
X0 18 18 0 2277 1886 3 MP
XPP
X18 0 0 18 2277 1886 3 MP
XPP
X0 17 18 0 2277 1904 3 MP
XPP
X18 0 0 17 2277 1904 3 MP
XPP
X0 18 18 0 2277 1921 3 MP
XPP
X18 0 0 18 2277 1921 3 MP
XPP
X0 18 18 0 2277 1939 3 MP
XPP
X18 0 0 18 2277 1939 3 MP
XPP
X0 18 18 0 2277 1957 3 MP
XPP
X18 0 0 18 2277 1957 3 MP
XPP
X0 18 18 0 2277 1975 3 MP
XPP
X18 0 0 18 2277 1975 3 MP
XPP
X0 18 18 0 2277 1993 3 MP
XPP
X18 0 0 18 2277 1993 3 MP
XPP
X0 17 18 0 2277 2011 3 MP
XPP
X18 0 0 17 2277 2011 3 MP
XPP
X0 18 18 0 2277 2028 3 MP
XPP
X18 0 0 18 2277 2028 3 MP
XPP
X0 18 18 0 2277 2046 3 MP
XPP
X18 0 0 18 2277 2046 3 MP
XPP
X0 18 18 0 2277 2064 3 MP
XPP
X18 0 0 18 2277 2064 3 MP
XPP
X0 18 18 0 2277 2082 3 MP
XPP
X18 0 0 18 2277 2082 3 MP
XPP
X0 18 18 0 2277 2100 3 MP
XPP
X18 0 0 18 2277 2100 3 MP
XPP
X0 17 18 0 2277 2118 3 MP
XPP
X18 0 0 17 2277 2118 3 MP
XPP
X0 18 18 0 2277 2135 3 MP
XPP
X18 0 0 18 2277 2135 3 MP
XPP
X0 18 18 0 2277 2153 3 MP
XPP
X18 0 0 18 2277 2153 3 MP
XPP
X0 18 18 0 2295 388 3 MP
XPP
X18 0 0 18 2295 388 3 MP
XPP
X0 18 18 0 2295 406 3 MP
XPP
X18 0 0 18 2295 406 3 MP
XPP
X0 17 18 0 2295 424 3 MP
XPP
X18 0 0 17 2295 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2295 441 3 MP
XPP
X18 0 0 18 2295 441 3 MP
XPP
X0 18 18 0 2295 459 3 MP
XPP
X18 0 0 18 2295 459 3 MP
XPP
X0 18 18 0 2295 477 3 MP
XPP
X18 0 0 18 2295 477 3 MP
XPP
X0 18 18 0 2295 495 3 MP
XPP
X18 0 0 18 2295 495 3 MP
XPP
X0 18 18 0 2295 513 3 MP
XPP
X18 0 0 18 2295 513 3 MP
XPP
X0 17 18 0 2295 531 3 MP
XPP
X18 0 0 17 2295 531 3 MP
XPP
X0 18 18 0 2295 548 3 MP
XPP
X18 0 0 18 2295 548 3 MP
XPP
X0 18 18 0 2295 566 3 MP
XPP
X18 0 0 18 2295 566 3 MP
XPP
X0 18 18 0 2295 584 3 MP
XPP
X18 0 0 18 2295 584 3 MP
XPP
X0 18 18 0 2295 602 3 MP
XPP
X18 0 0 18 2295 602 3 MP
XPP
X0 18 18 0 2295 620 3 MP
XPP
X18 0 0 18 2295 620 3 MP
XPP
X0 17 18 0 2295 638 3 MP
XPP
X18 0 0 17 2295 638 3 MP
XPP
X0 18 18 0 2295 655 3 MP
XPP
X18 0 0 18 2295 655 3 MP
XPP
X0 18 18 0 2295 673 3 MP
XPP
X18 0 0 18 2295 673 3 MP
XPP
X0 18 18 0 2295 691 3 MP
XPP
X18 0 0 18 2295 691 3 MP
XPP
X0 18 18 0 2295 709 3 MP
XPP
X18 0 0 18 2295 709 3 MP
XPP
X0 18 18 0 2295 727 3 MP
XPP
X18 0 0 18 2295 727 3 MP
XPP
X0 17 18 0 2295 745 3 MP
XPP
X18 0 0 17 2295 745 3 MP
XPP
X0.492063 sg
X0 18 18 0 2295 762 3 MP
XPP
X18 0 0 18 2295 762 3 MP
XPP
X0 18 18 0 2295 780 3 MP
XPP
X18 0 0 18 2295 780 3 MP
XPP
X0 18 18 0 2295 798 3 MP
XPP
X18 0 0 18 2295 798 3 MP
XPP
X0 18 18 0 2295 816 3 MP
XPP
X18 0 0 18 2295 816 3 MP
XPP
X0 18 18 0 2295 834 3 MP
XPP
X18 0 0 18 2295 834 3 MP
XPP
X0 17 18 0 2295 852 3 MP
XPP
X18 0 0 17 2295 852 3 MP
XPP
X0 18 18 0 2295 869 3 MP
XPP
X18 0 0 18 2295 869 3 MP
XPP
X0 18 18 0 2295 887 3 MP
XPP
X18 0 0 18 2295 887 3 MP
XPP
X0 18 18 0 2295 905 3 MP
XPP
X18 0 0 18 2295 905 3 MP
XPP
X0 18 18 0 2295 923 3 MP
XPP
X18 0 0 18 2295 923 3 MP
XPP
X0 18 18 0 2295 941 3 MP
XPP
X18 0 0 18 2295 941 3 MP
XPP
X0 17 18 0 2295 959 3 MP
XPP
X18 0 0 17 2295 959 3 MP
XPP
X0 18 18 0 2295 976 3 MP
XPP
X18 0 0 18 2295 976 3 MP
XPP
X0 18 18 0 2295 994 3 MP
XPP
X18 0 0 18 2295 994 3 MP
XPP
X0 18 18 0 2295 1012 3 MP
XPP
X18 0 0 18 2295 1012 3 MP
XPP
X0 18 18 0 2295 1030 3 MP
XPP
X18 0 0 18 2295 1030 3 MP
XPP
X0 18 18 0 2295 1048 3 MP
XPP
X18 0 0 18 2295 1048 3 MP
XPP
X0 17 18 0 2295 1066 3 MP
XPP
X18 0 0 17 2295 1066 3 MP
XPP
X0 18 18 0 2295 1083 3 MP
XPP
X18 0 0 18 2295 1083 3 MP
XPP
X0 18 18 0 2295 1101 3 MP
XPP
X18 0 0 18 2295 1101 3 MP
XPP
X0 18 18 0 2295 1119 3 MP
XPP
X18 0 0 18 2295 1119 3 MP
XPP
X0 18 18 0 2295 1137 3 MP
XPP
X18 0 0 18 2295 1137 3 MP
XPP
X0 18 18 0 2295 1155 3 MP
XPP
X18 0 0 18 2295 1155 3 MP
XPP
X0 17 18 0 2295 1173 3 MP
XPP
X18 0 0 17 2295 1173 3 MP
XPP
X0 18 18 0 2295 1190 3 MP
XPP
X18 0 0 18 2295 1190 3 MP
XPP
X0 18 18 0 2295 1208 3 MP
XPP
X18 0 0 18 2295 1208 3 MP
XPP
X1 sg
X0 18 18 0 2295 1226 3 MP
XPP
X18 0 0 18 2295 1226 3 MP
XPP
X0 18 18 0 2295 1244 3 MP
XPP
X18 0 0 18 2295 1244 3 MP
XPP
X0 17 18 0 2295 1262 3 MP
XPP
X18 0 0 17 2295 1262 3 MP
XPP
X0 18 18 0 2295 1279 3 MP
XPP
X18 0 0 18 2295 1279 3 MP
XPP
X0 18 18 0 2295 1297 3 MP
XPP
X18 0 0 18 2295 1297 3 MP
XPP
X0 18 18 0 2295 1315 3 MP
XPP
X18 0 0 18 2295 1315 3 MP
XPP
X0 18 18 0 2295 1333 3 MP
XPP
X18 0 0 18 2295 1333 3 MP
XPP
X0 18 18 0 2295 1351 3 MP
XPP
X18 0 0 18 2295 1351 3 MP
XPP
X0 17 18 0 2295 1369 3 MP
XPP
X18 0 0 17 2295 1369 3 MP
XPP
X0 18 18 0 2295 1386 3 MP
XPP
X18 0 0 18 2295 1386 3 MP
XPP
X0 18 18 0 2295 1404 3 MP
XPP
X18 0 0 18 2295 1404 3 MP
XPP
X0 18 18 0 2295 1422 3 MP
XPP
X18 0 0 18 2295 1422 3 MP
XPP
X0 18 18 0 2295 1440 3 MP
XPP
X18 0 0 18 2295 1440 3 MP
XPP
X0 18 18 0 2295 1458 3 MP
XPP
X18 0 0 18 2295 1458 3 MP
XPP
X0 17 18 0 2295 1476 3 MP
XPP
X18 0 0 17 2295 1476 3 MP
XPP
X0 18 18 0 2295 1493 3 MP
XPP
X18 0 0 18 2295 1493 3 MP
XPP
X0 18 18 0 2295 1511 3 MP
XPP
X18 0 0 18 2295 1511 3 MP
XPP
X0 18 18 0 2295 1529 3 MP
XPP
X18 0 0 18 2295 1529 3 MP
XPP
X0 18 18 0 2295 1547 3 MP
XPP
X18 0 0 18 2295 1547 3 MP
XPP
X0 18 18 0 2295 1565 3 MP
XPP
X18 0 0 18 2295 1565 3 MP
XPP
X0 17 18 0 2295 1583 3 MP
XPP
X18 0 0 17 2295 1583 3 MP
XPP
X0 18 18 0 2295 1600 3 MP
XPP
X18 0 0 18 2295 1600 3 MP
XPP
X0 18 18 0 2295 1618 3 MP
XPP
X18 0 0 18 2295 1618 3 MP
XPP
X0 18 18 0 2295 1636 3 MP
XPP
X18 0 0 18 2295 1636 3 MP
XPP
X0 18 18 0 2295 1654 3 MP
XPP
X18 0 0 18 2295 1654 3 MP
XPP
X0 18 18 0 2295 1672 3 MP
XPP
X18 0 0 18 2295 1672 3 MP
XPP
X0 17 18 0 2295 1690 3 MP
XPP
X18 0 0 17 2295 1690 3 MP
XPP
X0 18 18 0 2295 1707 3 MP
XPP
X18 0 0 18 2295 1707 3 MP
XPP
X0 sg
X0 18 18 0 2295 1725 3 MP
XPP
X18 0 0 18 2295 1725 3 MP
XPP
X1 sg
X0 18 18 0 2295 1743 3 MP
XPP
X18 0 0 18 2295 1743 3 MP
XPP
X0 18 18 0 2295 1761 3 MP
XPP
X18 0 0 18 2295 1761 3 MP
XPP
X0 18 18 0 2295 1779 3 MP
XPP
X18 0 0 18 2295 1779 3 MP
XPP
X0 17 18 0 2295 1797 3 MP
XPP
X18 0 0 17 2295 1797 3 MP
XPP
X0 18 18 0 2295 1814 3 MP
XPP
X18 0 0 18 2295 1814 3 MP
XPP
X0 18 18 0 2295 1832 3 MP
XPP
X18 0 0 18 2295 1832 3 MP
XPP
X0 18 18 0 2295 1850 3 MP
XPP
X18 0 0 18 2295 1850 3 MP
XPP
X0 18 18 0 2295 1868 3 MP
XPP
X18 0 0 18 2295 1868 3 MP
XPP
X0 18 18 0 2295 1886 3 MP
XPP
X18 0 0 18 2295 1886 3 MP
XPP
X0 17 18 0 2295 1904 3 MP
XPP
X18 0 0 17 2295 1904 3 MP
XPP
X0 18 18 0 2295 1921 3 MP
XPP
X18 0 0 18 2295 1921 3 MP
XPP
X0 18 18 0 2295 1939 3 MP
XPP
X18 0 0 18 2295 1939 3 MP
XPP
X0 18 18 0 2295 1957 3 MP
XPP
X18 0 0 18 2295 1957 3 MP
XPP
X0 18 18 0 2295 1975 3 MP
XPP
X18 0 0 18 2295 1975 3 MP
XPP
X0 18 18 0 2295 1993 3 MP
XPP
X18 0 0 18 2295 1993 3 MP
XPP
X0 17 18 0 2295 2011 3 MP
XPP
X18 0 0 17 2295 2011 3 MP
XPP
X0 18 18 0 2295 2028 3 MP
XPP
X18 0 0 18 2295 2028 3 MP
XPP
X0 18 18 0 2295 2046 3 MP
XPP
X18 0 0 18 2295 2046 3 MP
XPP
X0 18 18 0 2295 2064 3 MP
XPP
X18 0 0 18 2295 2064 3 MP
XPP
X0 18 18 0 2295 2082 3 MP
XPP
X18 0 0 18 2295 2082 3 MP
XPP
X0 18 18 0 2295 2100 3 MP
XPP
X18 0 0 18 2295 2100 3 MP
XPP
X0 17 18 0 2295 2118 3 MP
XPP
X18 0 0 17 2295 2118 3 MP
XPP
X0 18 18 0 2295 2135 3 MP
XPP
X18 0 0 18 2295 2135 3 MP
XPP
X0 18 18 0 2295 2153 3 MP
XPP
X18 0 0 18 2295 2153 3 MP
XPP
X0 18 18 0 2313 388 3 MP
XPP
X18 0 0 18 2313 388 3 MP
XPP
X0 18 18 0 2313 406 3 MP
XPP
X18 0 0 18 2313 406 3 MP
XPP
X0 17 18 0 2313 424 3 MP
XPP
X18 0 0 17 2313 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2313 441 3 MP
XPP
X18 0 0 18 2313 441 3 MP
XPP
X0 18 18 0 2313 459 3 MP
XPP
X18 0 0 18 2313 459 3 MP
XPP
X0 18 18 0 2313 477 3 MP
XPP
X18 0 0 18 2313 477 3 MP
XPP
X0 18 18 0 2313 495 3 MP
XPP
X18 0 0 18 2313 495 3 MP
XPP
X0 18 18 0 2313 513 3 MP
XPP
X18 0 0 18 2313 513 3 MP
XPP
X0 17 18 0 2313 531 3 MP
XPP
X18 0 0 17 2313 531 3 MP
XPP
X0 18 18 0 2313 548 3 MP
XPP
X18 0 0 18 2313 548 3 MP
XPP
X0 18 18 0 2313 566 3 MP
XPP
X18 0 0 18 2313 566 3 MP
XPP
X0 18 18 0 2313 584 3 MP
XPP
X18 0 0 18 2313 584 3 MP
XPP
X0 18 18 0 2313 602 3 MP
XPP
X18 0 0 18 2313 602 3 MP
XPP
X0 18 18 0 2313 620 3 MP
XPP
X18 0 0 18 2313 620 3 MP
XPP
X0 17 18 0 2313 638 3 MP
XPP
X18 0 0 17 2313 638 3 MP
XPP
X0 18 18 0 2313 655 3 MP
XPP
X18 0 0 18 2313 655 3 MP
XPP
X0 18 18 0 2313 673 3 MP
XPP
X18 0 0 18 2313 673 3 MP
XPP
X0 18 18 0 2313 691 3 MP
XPP
X18 0 0 18 2313 691 3 MP
XPP
X0 18 18 0 2313 709 3 MP
XPP
X18 0 0 18 2313 709 3 MP
XPP
X0 18 18 0 2313 727 3 MP
XPP
X18 0 0 18 2313 727 3 MP
XPP
X0 17 18 0 2313 745 3 MP
XPP
X18 0 0 17 2313 745 3 MP
XPP
X0.492063 sg
X0 18 18 0 2313 762 3 MP
XPP
X18 0 0 18 2313 762 3 MP
XPP
X0 18 18 0 2313 780 3 MP
XPP
X18 0 0 18 2313 780 3 MP
XPP
X0 18 18 0 2313 798 3 MP
XPP
X18 0 0 18 2313 798 3 MP
XPP
X0 18 18 0 2313 816 3 MP
XPP
X18 0 0 18 2313 816 3 MP
XPP
X0 18 18 0 2313 834 3 MP
XPP
X18 0 0 18 2313 834 3 MP
XPP
X0 17 18 0 2313 852 3 MP
XPP
X18 0 0 17 2313 852 3 MP
XPP
X0 18 18 0 2313 869 3 MP
XPP
X18 0 0 18 2313 869 3 MP
XPP
X0 18 18 0 2313 887 3 MP
XPP
X18 0 0 18 2313 887 3 MP
XPP
X0 18 18 0 2313 905 3 MP
XPP
X18 0 0 18 2313 905 3 MP
XPP
X0 18 18 0 2313 923 3 MP
XPP
X18 0 0 18 2313 923 3 MP
XPP
X0 18 18 0 2313 941 3 MP
XPP
X18 0 0 18 2313 941 3 MP
XPP
X0 17 18 0 2313 959 3 MP
XPP
X18 0 0 17 2313 959 3 MP
XPP
X0 18 18 0 2313 976 3 MP
XPP
X18 0 0 18 2313 976 3 MP
XPP
X0 18 18 0 2313 994 3 MP
XPP
X18 0 0 18 2313 994 3 MP
XPP
X0 18 18 0 2313 1012 3 MP
XPP
X18 0 0 18 2313 1012 3 MP
XPP
X0 18 18 0 2313 1030 3 MP
XPP
X18 0 0 18 2313 1030 3 MP
XPP
X0 18 18 0 2313 1048 3 MP
XPP
X18 0 0 18 2313 1048 3 MP
XPP
X0 17 18 0 2313 1066 3 MP
XPP
X18 0 0 17 2313 1066 3 MP
XPP
X0 18 18 0 2313 1083 3 MP
XPP
X18 0 0 18 2313 1083 3 MP
XPP
X0 18 18 0 2313 1101 3 MP
XPP
X18 0 0 18 2313 1101 3 MP
XPP
X0 18 18 0 2313 1119 3 MP
XPP
X18 0 0 18 2313 1119 3 MP
XPP
X0 18 18 0 2313 1137 3 MP
XPP
X18 0 0 18 2313 1137 3 MP
XPP
X0 18 18 0 2313 1155 3 MP
XPP
X18 0 0 18 2313 1155 3 MP
XPP
X0 17 18 0 2313 1173 3 MP
XPP
X18 0 0 17 2313 1173 3 MP
XPP
X0 18 18 0 2313 1190 3 MP
XPP
X18 0 0 18 2313 1190 3 MP
XPP
X0 18 18 0 2313 1208 3 MP
XPP
X18 0 0 18 2313 1208 3 MP
XPP
X1 sg
X0 18 18 0 2313 1226 3 MP
XPP
X18 0 0 18 2313 1226 3 MP
XPP
X0 18 18 0 2313 1244 3 MP
XPP
X18 0 0 18 2313 1244 3 MP
XPP
X0 17 18 0 2313 1262 3 MP
XPP
X18 0 0 17 2313 1262 3 MP
XPP
X0 18 18 0 2313 1279 3 MP
XPP
X18 0 0 18 2313 1279 3 MP
XPP
X0 18 18 0 2313 1297 3 MP
XPP
X18 0 0 18 2313 1297 3 MP
XPP
X0 18 18 0 2313 1315 3 MP
XPP
X18 0 0 18 2313 1315 3 MP
XPP
X0 18 18 0 2313 1333 3 MP
XPP
X18 0 0 18 2313 1333 3 MP
XPP
X0 18 18 0 2313 1351 3 MP
XPP
X18 0 0 18 2313 1351 3 MP
XPP
X0 17 18 0 2313 1369 3 MP
XPP
X18 0 0 17 2313 1369 3 MP
XPP
X0 18 18 0 2313 1386 3 MP
XPP
X18 0 0 18 2313 1386 3 MP
XPP
X0 18 18 0 2313 1404 3 MP
XPP
X18 0 0 18 2313 1404 3 MP
XPP
X0 18 18 0 2313 1422 3 MP
XPP
X18 0 0 18 2313 1422 3 MP
XPP
X0 18 18 0 2313 1440 3 MP
XPP
X18 0 0 18 2313 1440 3 MP
XPP
X0 18 18 0 2313 1458 3 MP
XPP
X18 0 0 18 2313 1458 3 MP
XPP
X0 17 18 0 2313 1476 3 MP
XPP
X18 0 0 17 2313 1476 3 MP
XPP
X0 18 18 0 2313 1493 3 MP
XPP
X18 0 0 18 2313 1493 3 MP
XPP
X0 18 18 0 2313 1511 3 MP
XPP
X18 0 0 18 2313 1511 3 MP
XPP
X0 18 18 0 2313 1529 3 MP
XPP
X18 0 0 18 2313 1529 3 MP
XPP
X0 18 18 0 2313 1547 3 MP
XPP
X18 0 0 18 2313 1547 3 MP
XPP
X0 18 18 0 2313 1565 3 MP
XPP
X18 0 0 18 2313 1565 3 MP
XPP
X0 17 18 0 2313 1583 3 MP
XPP
X18 0 0 17 2313 1583 3 MP
XPP
X0 18 18 0 2313 1600 3 MP
XPP
X18 0 0 18 2313 1600 3 MP
XPP
X0 18 18 0 2313 1618 3 MP
XPP
X18 0 0 18 2313 1618 3 MP
XPP
X0 18 18 0 2313 1636 3 MP
XPP
X18 0 0 18 2313 1636 3 MP
XPP
X0 18 18 0 2313 1654 3 MP
XPP
X18 0 0 18 2313 1654 3 MP
XPP
X0 18 18 0 2313 1672 3 MP
XPP
X18 0 0 18 2313 1672 3 MP
XPP
X0 17 18 0 2313 1690 3 MP
XPP
X18 0 0 17 2313 1690 3 MP
XPP
X0 18 18 0 2313 1707 3 MP
XPP
X18 0 0 18 2313 1707 3 MP
XPP
X0 sg
X0 18 18 0 2313 1725 3 MP
XPP
X18 0 0 18 2313 1725 3 MP
XPP
X1 sg
X0 18 18 0 2313 1743 3 MP
XPP
X18 0 0 18 2313 1743 3 MP
XPP
X0 18 18 0 2313 1761 3 MP
XPP
X18 0 0 18 2313 1761 3 MP
XPP
X0 18 18 0 2313 1779 3 MP
XPP
X18 0 0 18 2313 1779 3 MP
XPP
X0 17 18 0 2313 1797 3 MP
XPP
X18 0 0 17 2313 1797 3 MP
XPP
X0 18 18 0 2313 1814 3 MP
XPP
X18 0 0 18 2313 1814 3 MP
XPP
X0 18 18 0 2313 1832 3 MP
XPP
X18 0 0 18 2313 1832 3 MP
XPP
X0 18 18 0 2313 1850 3 MP
XPP
X18 0 0 18 2313 1850 3 MP
XPP
X0 18 18 0 2313 1868 3 MP
XPP
X18 0 0 18 2313 1868 3 MP
XPP
X0 18 18 0 2313 1886 3 MP
XPP
X18 0 0 18 2313 1886 3 MP
XPP
X0 17 18 0 2313 1904 3 MP
XPP
X18 0 0 17 2313 1904 3 MP
XPP
X0 18 18 0 2313 1921 3 MP
XPP
X18 0 0 18 2313 1921 3 MP
XPP
X0 18 18 0 2313 1939 3 MP
XPP
X18 0 0 18 2313 1939 3 MP
XPP
X0 18 18 0 2313 1957 3 MP
XPP
X18 0 0 18 2313 1957 3 MP
XPP
X0 18 18 0 2313 1975 3 MP
XPP
X18 0 0 18 2313 1975 3 MP
XPP
X0 18 18 0 2313 1993 3 MP
XPP
X18 0 0 18 2313 1993 3 MP
XPP
X0 17 18 0 2313 2011 3 MP
XPP
X18 0 0 17 2313 2011 3 MP
XPP
X0 18 18 0 2313 2028 3 MP
XPP
X18 0 0 18 2313 2028 3 MP
XPP
X0 18 18 0 2313 2046 3 MP
XPP
X18 0 0 18 2313 2046 3 MP
XPP
X0 18 18 0 2313 2064 3 MP
XPP
X18 0 0 18 2313 2064 3 MP
XPP
X0 18 18 0 2313 2082 3 MP
XPP
X18 0 0 18 2313 2082 3 MP
XPP
X0 18 18 0 2313 2100 3 MP
XPP
X18 0 0 18 2313 2100 3 MP
XPP
X0 17 18 0 2313 2118 3 MP
XPP
X18 0 0 17 2313 2118 3 MP
XPP
X0 18 18 0 2313 2135 3 MP
XPP
X18 0 0 18 2313 2135 3 MP
XPP
X0 18 18 0 2313 2153 3 MP
XPP
X18 0 0 18 2313 2153 3 MP
XPP
X0 18 17 0 2331 388 3 MP
XPP
X17 0 0 18 2331 388 3 MP
XPP
X0 18 17 0 2331 406 3 MP
XPP
X17 0 0 18 2331 406 3 MP
XPP
X0 17 17 0 2331 424 3 MP
XPP
X17 0 0 17 2331 424 3 MP
XPP
X0.746032 sg
X0 18 17 0 2331 441 3 MP
XPP
X17 0 0 18 2331 441 3 MP
XPP
X0 18 17 0 2331 459 3 MP
XPP
X17 0 0 18 2331 459 3 MP
XPP
X0 18 17 0 2331 477 3 MP
XPP
X17 0 0 18 2331 477 3 MP
XPP
X0 18 17 0 2331 495 3 MP
XPP
X17 0 0 18 2331 495 3 MP
XPP
X0 18 17 0 2331 513 3 MP
XPP
X17 0 0 18 2331 513 3 MP
XPP
X0 17 17 0 2331 531 3 MP
XPP
X17 0 0 17 2331 531 3 MP
XPP
X0 18 17 0 2331 548 3 MP
XPP
X17 0 0 18 2331 548 3 MP
XPP
X0 18 17 0 2331 566 3 MP
XPP
X17 0 0 18 2331 566 3 MP
XPP
X0 18 17 0 2331 584 3 MP
XPP
X17 0 0 18 2331 584 3 MP
XPP
X0 18 17 0 2331 602 3 MP
XPP
X17 0 0 18 2331 602 3 MP
XPP
X0 18 17 0 2331 620 3 MP
XPP
X17 0 0 18 2331 620 3 MP
XPP
X0 17 17 0 2331 638 3 MP
XPP
X17 0 0 17 2331 638 3 MP
XPP
X0 18 17 0 2331 655 3 MP
XPP
X17 0 0 18 2331 655 3 MP
XPP
X0 18 17 0 2331 673 3 MP
XPP
X17 0 0 18 2331 673 3 MP
XPP
X0 18 17 0 2331 691 3 MP
XPP
X17 0 0 18 2331 691 3 MP
XPP
X0 18 17 0 2331 709 3 MP
XPP
X17 0 0 18 2331 709 3 MP
XPP
X0 18 17 0 2331 727 3 MP
XPP
X17 0 0 18 2331 727 3 MP
XPP
X0 17 17 0 2331 745 3 MP
XPP
X17 0 0 17 2331 745 3 MP
XPP
X0.492063 sg
X0 18 17 0 2331 762 3 MP
XPP
X17 0 0 18 2331 762 3 MP
XPP
X0 18 17 0 2331 780 3 MP
XPP
X17 0 0 18 2331 780 3 MP
XPP
X0 18 17 0 2331 798 3 MP
XPP
X17 0 0 18 2331 798 3 MP
XPP
X0 18 17 0 2331 816 3 MP
XPP
X17 0 0 18 2331 816 3 MP
XPP
X0 18 17 0 2331 834 3 MP
XPP
X17 0 0 18 2331 834 3 MP
XPP
X0 17 17 0 2331 852 3 MP
XPP
X17 0 0 17 2331 852 3 MP
XPP
X0 18 17 0 2331 869 3 MP
XPP
X17 0 0 18 2331 869 3 MP
XPP
X0 18 17 0 2331 887 3 MP
XPP
X17 0 0 18 2331 887 3 MP
XPP
X0 18 17 0 2331 905 3 MP
XPP
X17 0 0 18 2331 905 3 MP
XPP
X0 18 17 0 2331 923 3 MP
XPP
X17 0 0 18 2331 923 3 MP
XPP
X0 18 17 0 2331 941 3 MP
XPP
X17 0 0 18 2331 941 3 MP
XPP
X0 17 17 0 2331 959 3 MP
XPP
X17 0 0 17 2331 959 3 MP
XPP
X0 18 17 0 2331 976 3 MP
XPP
X17 0 0 18 2331 976 3 MP
XPP
X0 18 17 0 2331 994 3 MP
XPP
X17 0 0 18 2331 994 3 MP
XPP
X0 18 17 0 2331 1012 3 MP
XPP
X17 0 0 18 2331 1012 3 MP
XPP
X0 18 17 0 2331 1030 3 MP
XPP
X17 0 0 18 2331 1030 3 MP
XPP
X0 18 17 0 2331 1048 3 MP
XPP
X17 0 0 18 2331 1048 3 MP
XPP
X0 17 17 0 2331 1066 3 MP
XPP
X17 0 0 17 2331 1066 3 MP
XPP
X0 18 17 0 2331 1083 3 MP
XPP
X17 0 0 18 2331 1083 3 MP
XPP
X0 18 17 0 2331 1101 3 MP
XPP
X17 0 0 18 2331 1101 3 MP
XPP
X0 18 17 0 2331 1119 3 MP
XPP
X17 0 0 18 2331 1119 3 MP
XPP
X0 18 17 0 2331 1137 3 MP
XPP
X17 0 0 18 2331 1137 3 MP
XPP
X0 18 17 0 2331 1155 3 MP
XPP
X17 0 0 18 2331 1155 3 MP
XPP
X0 17 17 0 2331 1173 3 MP
XPP
X17 0 0 17 2331 1173 3 MP
XPP
X0 18 17 0 2331 1190 3 MP
XPP
X17 0 0 18 2331 1190 3 MP
XPP
X0 18 17 0 2331 1208 3 MP
XPP
X17 0 0 18 2331 1208 3 MP
XPP
X1 sg
X0 18 17 0 2331 1226 3 MP
XPP
X17 0 0 18 2331 1226 3 MP
XPP
X0 18 17 0 2331 1244 3 MP
XPP
X17 0 0 18 2331 1244 3 MP
XPP
X0 17 17 0 2331 1262 3 MP
XPP
X17 0 0 17 2331 1262 3 MP
XPP
X0 18 17 0 2331 1279 3 MP
XPP
X17 0 0 18 2331 1279 3 MP
XPP
X0 18 17 0 2331 1297 3 MP
XPP
X17 0 0 18 2331 1297 3 MP
XPP
X0 18 17 0 2331 1315 3 MP
XPP
X17 0 0 18 2331 1315 3 MP
XPP
X0 18 17 0 2331 1333 3 MP
XPP
X17 0 0 18 2331 1333 3 MP
XPP
X0 18 17 0 2331 1351 3 MP
XPP
X17 0 0 18 2331 1351 3 MP
XPP
X0 17 17 0 2331 1369 3 MP
XPP
X17 0 0 17 2331 1369 3 MP
XPP
X0 18 17 0 2331 1386 3 MP
XPP
X17 0 0 18 2331 1386 3 MP
XPP
X0 18 17 0 2331 1404 3 MP
XPP
X17 0 0 18 2331 1404 3 MP
XPP
X0 sg
X0 18 17 0 2331 1422 3 MP
XPP
X17 0 0 18 2331 1422 3 MP
XPP
X0 18 17 0 2331 1440 3 MP
XPP
X17 0 0 18 2331 1440 3 MP
XPP
X0 18 17 0 2331 1458 3 MP
XPP
X17 0 0 18 2331 1458 3 MP
XPP
X0 17 17 0 2331 1476 3 MP
XPP
X17 0 0 17 2331 1476 3 MP
XPP
X0 18 17 0 2331 1493 3 MP
XPP
X17 0 0 18 2331 1493 3 MP
XPP
X0 18 17 0 2331 1511 3 MP
XPP
X17 0 0 18 2331 1511 3 MP
XPP
X0 18 17 0 2331 1529 3 MP
XPP
X17 0 0 18 2331 1529 3 MP
XPP
X0 18 17 0 2331 1547 3 MP
XPP
X17 0 0 18 2331 1547 3 MP
XPP
X0 18 17 0 2331 1565 3 MP
XPP
X17 0 0 18 2331 1565 3 MP
XPP
X0 17 17 0 2331 1583 3 MP
XPP
X17 0 0 17 2331 1583 3 MP
XPP
X0 18 17 0 2331 1600 3 MP
XPP
X17 0 0 18 2331 1600 3 MP
XPP
X0 18 17 0 2331 1618 3 MP
XPP
X17 0 0 18 2331 1618 3 MP
XPP
X0 18 17 0 2331 1636 3 MP
XPP
X17 0 0 18 2331 1636 3 MP
XPP
X0 18 17 0 2331 1654 3 MP
XPP
X17 0 0 18 2331 1654 3 MP
XPP
X0 18 17 0 2331 1672 3 MP
XPP
X17 0 0 18 2331 1672 3 MP
XPP
X0 17 17 0 2331 1690 3 MP
XPP
X17 0 0 17 2331 1690 3 MP
XPP
X0 18 17 0 2331 1707 3 MP
XPP
X17 0 0 18 2331 1707 3 MP
XPP
X0 18 17 0 2331 1725 3 MP
XPP
X17 0 0 18 2331 1725 3 MP
XPP
X0 18 17 0 2331 1743 3 MP
XPP
X17 0 0 18 2331 1743 3 MP
XPP
X0 18 17 0 2331 1761 3 MP
XPP
X17 0 0 18 2331 1761 3 MP
XPP
X0 18 17 0 2331 1779 3 MP
XPP
X17 0 0 18 2331 1779 3 MP
XPP
X0 17 17 0 2331 1797 3 MP
XPP
X17 0 0 17 2331 1797 3 MP
XPP
X0 18 17 0 2331 1814 3 MP
XPP
X17 0 0 18 2331 1814 3 MP
XPP
X0 18 17 0 2331 1832 3 MP
XPP
X17 0 0 18 2331 1832 3 MP
XPP
X0 18 17 0 2331 1850 3 MP
XPP
X17 0 0 18 2331 1850 3 MP
XPP
X0 18 17 0 2331 1868 3 MP
XPP
X17 0 0 18 2331 1868 3 MP
XPP
X0 18 17 0 2331 1886 3 MP
XPP
X17 0 0 18 2331 1886 3 MP
XPP
X0 17 17 0 2331 1904 3 MP
XPP
X17 0 0 17 2331 1904 3 MP
XPP
X0 18 17 0 2331 1921 3 MP
XPP
X17 0 0 18 2331 1921 3 MP
XPP
X0 18 17 0 2331 1939 3 MP
XPP
X17 0 0 18 2331 1939 3 MP
XPP
X0 18 17 0 2331 1957 3 MP
XPP
X17 0 0 18 2331 1957 3 MP
XPP
X0 18 17 0 2331 1975 3 MP
XPP
X17 0 0 18 2331 1975 3 MP
XPP
X0 18 17 0 2331 1993 3 MP
XPP
X17 0 0 18 2331 1993 3 MP
XPP
X0 17 17 0 2331 2011 3 MP
XPP
X17 0 0 17 2331 2011 3 MP
XPP
X0 18 17 0 2331 2028 3 MP
XPP
X17 0 0 18 2331 2028 3 MP
XPP
X1 sg
X0 18 17 0 2331 2046 3 MP
XPP
X17 0 0 18 2331 2046 3 MP
XPP
X0 18 17 0 2331 2064 3 MP
XPP
X17 0 0 18 2331 2064 3 MP
XPP
X0 18 17 0 2331 2082 3 MP
XPP
X17 0 0 18 2331 2082 3 MP
XPP
X0 18 17 0 2331 2100 3 MP
XPP
X17 0 0 18 2331 2100 3 MP
XPP
X0 17 17 0 2331 2118 3 MP
XPP
X17 0 0 17 2331 2118 3 MP
XPP
X0 18 17 0 2331 2135 3 MP
XPP
X17 0 0 18 2331 2135 3 MP
XPP
X0 18 17 0 2331 2153 3 MP
XPP
X17 0 0 18 2331 2153 3 MP
XPP
X0 18 18 0 2348 388 3 MP
XPP
X18 0 0 18 2348 388 3 MP
XPP
X0 18 18 0 2348 406 3 MP
XPP
X18 0 0 18 2348 406 3 MP
XPP
X0 17 18 0 2348 424 3 MP
XPP
X18 0 0 17 2348 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2348 441 3 MP
XPP
X18 0 0 18 2348 441 3 MP
XPP
X0 18 18 0 2348 459 3 MP
XPP
X18 0 0 18 2348 459 3 MP
XPP
X0 18 18 0 2348 477 3 MP
XPP
X18 0 0 18 2348 477 3 MP
XPP
X0 18 18 0 2348 495 3 MP
XPP
X18 0 0 18 2348 495 3 MP
XPP
X0 18 18 0 2348 513 3 MP
XPP
X18 0 0 18 2348 513 3 MP
XPP
X0 17 18 0 2348 531 3 MP
XPP
X18 0 0 17 2348 531 3 MP
XPP
X0 18 18 0 2348 548 3 MP
XPP
X18 0 0 18 2348 548 3 MP
XPP
X0 18 18 0 2348 566 3 MP
XPP
X18 0 0 18 2348 566 3 MP
XPP
X0 18 18 0 2348 584 3 MP
XPP
X18 0 0 18 2348 584 3 MP
XPP
X0 18 18 0 2348 602 3 MP
XPP
X18 0 0 18 2348 602 3 MP
XPP
X0 18 18 0 2348 620 3 MP
XPP
X18 0 0 18 2348 620 3 MP
XPP
X0 17 18 0 2348 638 3 MP
XPP
X18 0 0 17 2348 638 3 MP
XPP
X0 18 18 0 2348 655 3 MP
XPP
X18 0 0 18 2348 655 3 MP
XPP
X0 18 18 0 2348 673 3 MP
XPP
X18 0 0 18 2348 673 3 MP
XPP
X0 18 18 0 2348 691 3 MP
XPP
X18 0 0 18 2348 691 3 MP
XPP
X0 18 18 0 2348 709 3 MP
XPP
X18 0 0 18 2348 709 3 MP
XPP
X0 18 18 0 2348 727 3 MP
XPP
X18 0 0 18 2348 727 3 MP
XPP
X0 17 18 0 2348 745 3 MP
XPP
X18 0 0 17 2348 745 3 MP
XPP
X0.492063 sg
X0 18 18 0 2348 762 3 MP
XPP
X18 0 0 18 2348 762 3 MP
XPP
X0 18 18 0 2348 780 3 MP
XPP
X18 0 0 18 2348 780 3 MP
XPP
X0 18 18 0 2348 798 3 MP
XPP
X18 0 0 18 2348 798 3 MP
XPP
X0 18 18 0 2348 816 3 MP
XPP
X18 0 0 18 2348 816 3 MP
XPP
X0 18 18 0 2348 834 3 MP
XPP
X18 0 0 18 2348 834 3 MP
XPP
X0 17 18 0 2348 852 3 MP
XPP
X18 0 0 17 2348 852 3 MP
XPP
X0 18 18 0 2348 869 3 MP
XPP
X18 0 0 18 2348 869 3 MP
XPP
X0 18 18 0 2348 887 3 MP
XPP
X18 0 0 18 2348 887 3 MP
XPP
X0 18 18 0 2348 905 3 MP
XPP
X18 0 0 18 2348 905 3 MP
XPP
X0 18 18 0 2348 923 3 MP
XPP
X18 0 0 18 2348 923 3 MP
XPP
X0 18 18 0 2348 941 3 MP
XPP
X18 0 0 18 2348 941 3 MP
XPP
X0 17 18 0 2348 959 3 MP
XPP
X18 0 0 17 2348 959 3 MP
XPP
X0 18 18 0 2348 976 3 MP
XPP
X18 0 0 18 2348 976 3 MP
XPP
X0 18 18 0 2348 994 3 MP
XPP
X18 0 0 18 2348 994 3 MP
XPP
X0 18 18 0 2348 1012 3 MP
XPP
X18 0 0 18 2348 1012 3 MP
XPP
X0 18 18 0 2348 1030 3 MP
XPP
X18 0 0 18 2348 1030 3 MP
XPP
X0 18 18 0 2348 1048 3 MP
XPP
X18 0 0 18 2348 1048 3 MP
XPP
X0 17 18 0 2348 1066 3 MP
XPP
X18 0 0 17 2348 1066 3 MP
XPP
X0 18 18 0 2348 1083 3 MP
XPP
X18 0 0 18 2348 1083 3 MP
XPP
X0 18 18 0 2348 1101 3 MP
XPP
X18 0 0 18 2348 1101 3 MP
XPP
X0 18 18 0 2348 1119 3 MP
XPP
X18 0 0 18 2348 1119 3 MP
XPP
X0 18 18 0 2348 1137 3 MP
XPP
X18 0 0 18 2348 1137 3 MP
XPP
X0 18 18 0 2348 1155 3 MP
XPP
X18 0 0 18 2348 1155 3 MP
XPP
X0 17 18 0 2348 1173 3 MP
XPP
X18 0 0 17 2348 1173 3 MP
XPP
X0 18 18 0 2348 1190 3 MP
XPP
X18 0 0 18 2348 1190 3 MP
XPP
X0 18 18 0 2348 1208 3 MP
XPP
X18 0 0 18 2348 1208 3 MP
XPP
X1 sg
X0 18 18 0 2348 1226 3 MP
XPP
X18 0 0 18 2348 1226 3 MP
XPP
X0 18 18 0 2348 1244 3 MP
XPP
X18 0 0 18 2348 1244 3 MP
XPP
X0 17 18 0 2348 1262 3 MP
XPP
X18 0 0 17 2348 1262 3 MP
XPP
X0 18 18 0 2348 1279 3 MP
XPP
X18 0 0 18 2348 1279 3 MP
XPP
X0 18 18 0 2348 1297 3 MP
XPP
X18 0 0 18 2348 1297 3 MP
XPP
X0 18 18 0 2348 1315 3 MP
XPP
X18 0 0 18 2348 1315 3 MP
XPP
X0 18 18 0 2348 1333 3 MP
XPP
X18 0 0 18 2348 1333 3 MP
XPP
X0 18 18 0 2348 1351 3 MP
XPP
X18 0 0 18 2348 1351 3 MP
XPP
X0 17 18 0 2348 1369 3 MP
XPP
X18 0 0 17 2348 1369 3 MP
XPP
X0 18 18 0 2348 1386 3 MP
XPP
X18 0 0 18 2348 1386 3 MP
XPP
X0 18 18 0 2348 1404 3 MP
XPP
X18 0 0 18 2348 1404 3 MP
XPP
X0 18 18 0 2348 1422 3 MP
XPP
X18 0 0 18 2348 1422 3 MP
XPP
X0 18 18 0 2348 1440 3 MP
XPP
X18 0 0 18 2348 1440 3 MP
XPP
X0 18 18 0 2348 1458 3 MP
XPP
X18 0 0 18 2348 1458 3 MP
XPP
X0 17 18 0 2348 1476 3 MP
XPP
X18 0 0 17 2348 1476 3 MP
XPP
X0 18 18 0 2348 1493 3 MP
XPP
X18 0 0 18 2348 1493 3 MP
XPP
X0 18 18 0 2348 1511 3 MP
XPP
X18 0 0 18 2348 1511 3 MP
XPP
X0 18 18 0 2348 1529 3 MP
XPP
X18 0 0 18 2348 1529 3 MP
XPP
X0 18 18 0 2348 1547 3 MP
XPP
X18 0 0 18 2348 1547 3 MP
XPP
X0 18 18 0 2348 1565 3 MP
XPP
X18 0 0 18 2348 1565 3 MP
XPP
X0 17 18 0 2348 1583 3 MP
XPP
X18 0 0 17 2348 1583 3 MP
XPP
X0 18 18 0 2348 1600 3 MP
XPP
X18 0 0 18 2348 1600 3 MP
XPP
X0 18 18 0 2348 1618 3 MP
XPP
X18 0 0 18 2348 1618 3 MP
XPP
X0 18 18 0 2348 1636 3 MP
XPP
X18 0 0 18 2348 1636 3 MP
XPP
X0 18 18 0 2348 1654 3 MP
XPP
X18 0 0 18 2348 1654 3 MP
XPP
X0 18 18 0 2348 1672 3 MP
XPP
X18 0 0 18 2348 1672 3 MP
XPP
X0 17 18 0 2348 1690 3 MP
XPP
X18 0 0 17 2348 1690 3 MP
XPP
X0 18 18 0 2348 1707 3 MP
XPP
X18 0 0 18 2348 1707 3 MP
XPP
X0 sg
X0 18 18 0 2348 1725 3 MP
XPP
X18 0 0 18 2348 1725 3 MP
XPP
X1 sg
X0 18 18 0 2348 1743 3 MP
XPP
X18 0 0 18 2348 1743 3 MP
XPP
X0 18 18 0 2348 1761 3 MP
XPP
X18 0 0 18 2348 1761 3 MP
XPP
X0 18 18 0 2348 1779 3 MP
XPP
X18 0 0 18 2348 1779 3 MP
XPP
X0 17 18 0 2348 1797 3 MP
XPP
X18 0 0 17 2348 1797 3 MP
XPP
X0 18 18 0 2348 1814 3 MP
XPP
X18 0 0 18 2348 1814 3 MP
XPP
X0 18 18 0 2348 1832 3 MP
XPP
X18 0 0 18 2348 1832 3 MP
XPP
X0 18 18 0 2348 1850 3 MP
XPP
X18 0 0 18 2348 1850 3 MP
XPP
X0 18 18 0 2348 1868 3 MP
XPP
X18 0 0 18 2348 1868 3 MP
XPP
X0 18 18 0 2348 1886 3 MP
XPP
X18 0 0 18 2348 1886 3 MP
XPP
X0 17 18 0 2348 1904 3 MP
XPP
X18 0 0 17 2348 1904 3 MP
XPP
X0 18 18 0 2348 1921 3 MP
XPP
X18 0 0 18 2348 1921 3 MP
XPP
X0 18 18 0 2348 1939 3 MP
XPP
X18 0 0 18 2348 1939 3 MP
XPP
X0 18 18 0 2348 1957 3 MP
XPP
X18 0 0 18 2348 1957 3 MP
XPP
X0 18 18 0 2348 1975 3 MP
XPP
X18 0 0 18 2348 1975 3 MP
XPP
X0 18 18 0 2348 1993 3 MP
XPP
X18 0 0 18 2348 1993 3 MP
XPP
X0 17 18 0 2348 2011 3 MP
XPP
X18 0 0 17 2348 2011 3 MP
XPP
X0 18 18 0 2348 2028 3 MP
XPP
X18 0 0 18 2348 2028 3 MP
XPP
X0 18 18 0 2348 2046 3 MP
XPP
X18 0 0 18 2348 2046 3 MP
XPP
X0 18 18 0 2348 2064 3 MP
XPP
X18 0 0 18 2348 2064 3 MP
XPP
X0 18 18 0 2348 2082 3 MP
XPP
X18 0 0 18 2348 2082 3 MP
XPP
X0 18 18 0 2348 2100 3 MP
XPP
X18 0 0 18 2348 2100 3 MP
XPP
X0 17 18 0 2348 2118 3 MP
XPP
X18 0 0 17 2348 2118 3 MP
XPP
X0 18 18 0 2348 2135 3 MP
XPP
X18 0 0 18 2348 2135 3 MP
XPP
X0 18 18 0 2348 2153 3 MP
XPP
X18 0 0 18 2348 2153 3 MP
XPP
X0 18 18 0 2366 388 3 MP
XPP
X18 0 0 18 2366 388 3 MP
XPP
X0 18 18 0 2366 406 3 MP
XPP
X18 0 0 18 2366 406 3 MP
XPP
X0 17 18 0 2366 424 3 MP
XPP
X18 0 0 17 2366 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2366 441 3 MP
XPP
X18 0 0 18 2366 441 3 MP
XPP
X0 18 18 0 2366 459 3 MP
XPP
X18 0 0 18 2366 459 3 MP
XPP
X0 18 18 0 2366 477 3 MP
XPP
X18 0 0 18 2366 477 3 MP
XPP
X0 18 18 0 2366 495 3 MP
XPP
X18 0 0 18 2366 495 3 MP
XPP
X0 18 18 0 2366 513 3 MP
XPP
X18 0 0 18 2366 513 3 MP
XPP
X0 17 18 0 2366 531 3 MP
XPP
X18 0 0 17 2366 531 3 MP
XPP
X0 18 18 0 2366 548 3 MP
XPP
X18 0 0 18 2366 548 3 MP
XPP
X0 18 18 0 2366 566 3 MP
XPP
X18 0 0 18 2366 566 3 MP
XPP
X0 18 18 0 2366 584 3 MP
XPP
X18 0 0 18 2366 584 3 MP
XPP
X0 18 18 0 2366 602 3 MP
XPP
X18 0 0 18 2366 602 3 MP
XPP
X0 18 18 0 2366 620 3 MP
XPP
X18 0 0 18 2366 620 3 MP
XPP
X0 17 18 0 2366 638 3 MP
XPP
X18 0 0 17 2366 638 3 MP
XPP
X0 18 18 0 2366 655 3 MP
XPP
X18 0 0 18 2366 655 3 MP
XPP
X0 18 18 0 2366 673 3 MP
XPP
X18 0 0 18 2366 673 3 MP
XPP
X0 18 18 0 2366 691 3 MP
XPP
X18 0 0 18 2366 691 3 MP
XPP
X0 18 18 0 2366 709 3 MP
XPP
X18 0 0 18 2366 709 3 MP
XPP
X0 18 18 0 2366 727 3 MP
XPP
X18 0 0 18 2366 727 3 MP
XPP
X0 17 18 0 2366 745 3 MP
XPP
X18 0 0 17 2366 745 3 MP
XPP
X0 18 18 0 2366 762 3 MP
XPP
X18 0 0 18 2366 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2366 780 3 MP
XPP
X18 0 0 18 2366 780 3 MP
XPP
X0 18 18 0 2366 798 3 MP
XPP
X18 0 0 18 2366 798 3 MP
XPP
X0 18 18 0 2366 816 3 MP
XPP
X18 0 0 18 2366 816 3 MP
XPP
X0 18 18 0 2366 834 3 MP
XPP
X18 0 0 18 2366 834 3 MP
XPP
X0 17 18 0 2366 852 3 MP
XPP
X18 0 0 17 2366 852 3 MP
XPP
X0 18 18 0 2366 869 3 MP
XPP
X18 0 0 18 2366 869 3 MP
XPP
X0 18 18 0 2366 887 3 MP
XPP
X18 0 0 18 2366 887 3 MP
XPP
X0 18 18 0 2366 905 3 MP
XPP
X18 0 0 18 2366 905 3 MP
XPP
X0 18 18 0 2366 923 3 MP
XPP
X18 0 0 18 2366 923 3 MP
XPP
X0 18 18 0 2366 941 3 MP
XPP
X18 0 0 18 2366 941 3 MP
XPP
X0 17 18 0 2366 959 3 MP
XPP
X18 0 0 17 2366 959 3 MP
XPP
X0 18 18 0 2366 976 3 MP
XPP
X18 0 0 18 2366 976 3 MP
XPP
X0 18 18 0 2366 994 3 MP
XPP
X18 0 0 18 2366 994 3 MP
XPP
X0 18 18 0 2366 1012 3 MP
XPP
X18 0 0 18 2366 1012 3 MP
XPP
X0 18 18 0 2366 1030 3 MP
XPP
X18 0 0 18 2366 1030 3 MP
XPP
X0 18 18 0 2366 1048 3 MP
XPP
X18 0 0 18 2366 1048 3 MP
XPP
X0 17 18 0 2366 1066 3 MP
XPP
X18 0 0 17 2366 1066 3 MP
XPP
X0 18 18 0 2366 1083 3 MP
XPP
X18 0 0 18 2366 1083 3 MP
XPP
X0 18 18 0 2366 1101 3 MP
XPP
X18 0 0 18 2366 1101 3 MP
XPP
X0 18 18 0 2366 1119 3 MP
XPP
X18 0 0 18 2366 1119 3 MP
XPP
X0 18 18 0 2366 1137 3 MP
XPP
X18 0 0 18 2366 1137 3 MP
XPP
X0 18 18 0 2366 1155 3 MP
XPP
X18 0 0 18 2366 1155 3 MP
XPP
X0 17 18 0 2366 1173 3 MP
XPP
X18 0 0 17 2366 1173 3 MP
XPP
X0 18 18 0 2366 1190 3 MP
XPP
X18 0 0 18 2366 1190 3 MP
XPP
X1 sg
X0 18 18 0 2366 1208 3 MP
XPP
X18 0 0 18 2366 1208 3 MP
XPP
X0 18 18 0 2366 1226 3 MP
XPP
X18 0 0 18 2366 1226 3 MP
XPP
X0 18 18 0 2366 1244 3 MP
XPP
X18 0 0 18 2366 1244 3 MP
XPP
X0 17 18 0 2366 1262 3 MP
XPP
X18 0 0 17 2366 1262 3 MP
XPP
X0 18 18 0 2366 1279 3 MP
XPP
X18 0 0 18 2366 1279 3 MP
XPP
X0 18 18 0 2366 1297 3 MP
XPP
X18 0 0 18 2366 1297 3 MP
XPP
X0 18 18 0 2366 1315 3 MP
XPP
X18 0 0 18 2366 1315 3 MP
XPP
X0 18 18 0 2366 1333 3 MP
XPP
X18 0 0 18 2366 1333 3 MP
XPP
X0 18 18 0 2366 1351 3 MP
XPP
X18 0 0 18 2366 1351 3 MP
XPP
X0 17 18 0 2366 1369 3 MP
XPP
X18 0 0 17 2366 1369 3 MP
XPP
X0 18 18 0 2366 1386 3 MP
XPP
X18 0 0 18 2366 1386 3 MP
XPP
X0 18 18 0 2366 1404 3 MP
XPP
X18 0 0 18 2366 1404 3 MP
XPP
X0 18 18 0 2366 1422 3 MP
XPP
X18 0 0 18 2366 1422 3 MP
XPP
X0 18 18 0 2366 1440 3 MP
XPP
X18 0 0 18 2366 1440 3 MP
XPP
X0 18 18 0 2366 1458 3 MP
XPP
X18 0 0 18 2366 1458 3 MP
XPP
X0 17 18 0 2366 1476 3 MP
XPP
X18 0 0 17 2366 1476 3 MP
XPP
X0 18 18 0 2366 1493 3 MP
XPP
X18 0 0 18 2366 1493 3 MP
XPP
X0 18 18 0 2366 1511 3 MP
XPP
X18 0 0 18 2366 1511 3 MP
XPP
X0 18 18 0 2366 1529 3 MP
XPP
X18 0 0 18 2366 1529 3 MP
XPP
X0 18 18 0 2366 1547 3 MP
XPP
X18 0 0 18 2366 1547 3 MP
XPP
X0 18 18 0 2366 1565 3 MP
XPP
X18 0 0 18 2366 1565 3 MP
XPP
X0 17 18 0 2366 1583 3 MP
XPP
X18 0 0 17 2366 1583 3 MP
XPP
X0 18 18 0 2366 1600 3 MP
XPP
X18 0 0 18 2366 1600 3 MP
XPP
X0 18 18 0 2366 1618 3 MP
XPP
X18 0 0 18 2366 1618 3 MP
XPP
X0 18 18 0 2366 1636 3 MP
XPP
X18 0 0 18 2366 1636 3 MP
XPP
X0 18 18 0 2366 1654 3 MP
XPP
X18 0 0 18 2366 1654 3 MP
XPP
X0 18 18 0 2366 1672 3 MP
XPP
X18 0 0 18 2366 1672 3 MP
XPP
X0 17 18 0 2366 1690 3 MP
XPP
X18 0 0 17 2366 1690 3 MP
XPP
X0 18 18 0 2366 1707 3 MP
XPP
X18 0 0 18 2366 1707 3 MP
XPP
X0 sg
X0 18 18 0 2366 1725 3 MP
XPP
X18 0 0 18 2366 1725 3 MP
XPP
X1 sg
X0 18 18 0 2366 1743 3 MP
XPP
X18 0 0 18 2366 1743 3 MP
XPP
X0 18 18 0 2366 1761 3 MP
XPP
X18 0 0 18 2366 1761 3 MP
XPP
X0 18 18 0 2366 1779 3 MP
XPP
X18 0 0 18 2366 1779 3 MP
XPP
X0 17 18 0 2366 1797 3 MP
XPP
X18 0 0 17 2366 1797 3 MP
XPP
X0 18 18 0 2366 1814 3 MP
XPP
X18 0 0 18 2366 1814 3 MP
XPP
X0 18 18 0 2366 1832 3 MP
XPP
X18 0 0 18 2366 1832 3 MP
XPP
X0 18 18 0 2366 1850 3 MP
XPP
X18 0 0 18 2366 1850 3 MP
XPP
X0 18 18 0 2366 1868 3 MP
XPP
X18 0 0 18 2366 1868 3 MP
XPP
X0 18 18 0 2366 1886 3 MP
XPP
X18 0 0 18 2366 1886 3 MP
XPP
X0 17 18 0 2366 1904 3 MP
XPP
X18 0 0 17 2366 1904 3 MP
XPP
X0 18 18 0 2366 1921 3 MP
XPP
X18 0 0 18 2366 1921 3 MP
XPP
X0 18 18 0 2366 1939 3 MP
XPP
X18 0 0 18 2366 1939 3 MP
XPP
X0 18 18 0 2366 1957 3 MP
XPP
X18 0 0 18 2366 1957 3 MP
XPP
X0 18 18 0 2366 1975 3 MP
XPP
X18 0 0 18 2366 1975 3 MP
XPP
X0 18 18 0 2366 1993 3 MP
XPP
X18 0 0 18 2366 1993 3 MP
XPP
X0 17 18 0 2366 2011 3 MP
XPP
X18 0 0 17 2366 2011 3 MP
XPP
X0 18 18 0 2366 2028 3 MP
XPP
X18 0 0 18 2366 2028 3 MP
XPP
X0 18 18 0 2366 2046 3 MP
XPP
X18 0 0 18 2366 2046 3 MP
XPP
X0 18 18 0 2366 2064 3 MP
XPP
X18 0 0 18 2366 2064 3 MP
XPP
X0 18 18 0 2366 2082 3 MP
XPP
X18 0 0 18 2366 2082 3 MP
XPP
X0 18 18 0 2366 2100 3 MP
XPP
X18 0 0 18 2366 2100 3 MP
XPP
X0 17 18 0 2366 2118 3 MP
XPP
X18 0 0 17 2366 2118 3 MP
XPP
X0 18 18 0 2366 2135 3 MP
XPP
X18 0 0 18 2366 2135 3 MP
XPP
X0 18 18 0 2366 2153 3 MP
XPP
X18 0 0 18 2366 2153 3 MP
XPP
X0 18 18 0 2384 388 3 MP
XPP
X18 0 0 18 2384 388 3 MP
XPP
X0 18 18 0 2384 406 3 MP
XPP
X18 0 0 18 2384 406 3 MP
XPP
X0 17 18 0 2384 424 3 MP
XPP
X18 0 0 17 2384 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2384 441 3 MP
XPP
X18 0 0 18 2384 441 3 MP
XPP
X0 18 18 0 2384 459 3 MP
XPP
X18 0 0 18 2384 459 3 MP
XPP
X0 18 18 0 2384 477 3 MP
XPP
X18 0 0 18 2384 477 3 MP
XPP
X0 18 18 0 2384 495 3 MP
XPP
X18 0 0 18 2384 495 3 MP
XPP
X0 18 18 0 2384 513 3 MP
XPP
X18 0 0 18 2384 513 3 MP
XPP
X0 17 18 0 2384 531 3 MP
XPP
X18 0 0 17 2384 531 3 MP
XPP
X0 18 18 0 2384 548 3 MP
XPP
X18 0 0 18 2384 548 3 MP
XPP
X0 18 18 0 2384 566 3 MP
XPP
X18 0 0 18 2384 566 3 MP
XPP
X0 18 18 0 2384 584 3 MP
XPP
X18 0 0 18 2384 584 3 MP
XPP
X0 18 18 0 2384 602 3 MP
XPP
X18 0 0 18 2384 602 3 MP
XPP
X0 18 18 0 2384 620 3 MP
XPP
X18 0 0 18 2384 620 3 MP
XPP
X0 17 18 0 2384 638 3 MP
XPP
X18 0 0 17 2384 638 3 MP
XPP
X0 18 18 0 2384 655 3 MP
XPP
X18 0 0 18 2384 655 3 MP
XPP
X0 18 18 0 2384 673 3 MP
XPP
X18 0 0 18 2384 673 3 MP
XPP
X0 18 18 0 2384 691 3 MP
XPP
X18 0 0 18 2384 691 3 MP
XPP
X0 18 18 0 2384 709 3 MP
XPP
X18 0 0 18 2384 709 3 MP
XPP
X0 18 18 0 2384 727 3 MP
XPP
X18 0 0 18 2384 727 3 MP
XPP
X0 17 18 0 2384 745 3 MP
XPP
X18 0 0 17 2384 745 3 MP
XPP
X0 18 18 0 2384 762 3 MP
XPP
X18 0 0 18 2384 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2384 780 3 MP
XPP
X18 0 0 18 2384 780 3 MP
XPP
X0 18 18 0 2384 798 3 MP
XPP
X18 0 0 18 2384 798 3 MP
XPP
X0 18 18 0 2384 816 3 MP
XPP
X18 0 0 18 2384 816 3 MP
XPP
X0 18 18 0 2384 834 3 MP
XPP
X18 0 0 18 2384 834 3 MP
XPP
X0 17 18 0 2384 852 3 MP
XPP
X18 0 0 17 2384 852 3 MP
XPP
X0 18 18 0 2384 869 3 MP
XPP
X18 0 0 18 2384 869 3 MP
XPP
X0 18 18 0 2384 887 3 MP
XPP
X18 0 0 18 2384 887 3 MP
XPP
X0 18 18 0 2384 905 3 MP
XPP
X18 0 0 18 2384 905 3 MP
XPP
X0 18 18 0 2384 923 3 MP
XPP
X18 0 0 18 2384 923 3 MP
XPP
X0 18 18 0 2384 941 3 MP
XPP
X18 0 0 18 2384 941 3 MP
XPP
X0 17 18 0 2384 959 3 MP
XPP
X18 0 0 17 2384 959 3 MP
XPP
X0 18 18 0 2384 976 3 MP
XPP
X18 0 0 18 2384 976 3 MP
XPP
X0 18 18 0 2384 994 3 MP
XPP
X18 0 0 18 2384 994 3 MP
XPP
X0 18 18 0 2384 1012 3 MP
XPP
X18 0 0 18 2384 1012 3 MP
XPP
X0 18 18 0 2384 1030 3 MP
XPP
X18 0 0 18 2384 1030 3 MP
XPP
X0 18 18 0 2384 1048 3 MP
XPP
X18 0 0 18 2384 1048 3 MP
XPP
X0 17 18 0 2384 1066 3 MP
XPP
X18 0 0 17 2384 1066 3 MP
XPP
X0 18 18 0 2384 1083 3 MP
XPP
X18 0 0 18 2384 1083 3 MP
XPP
X0 18 18 0 2384 1101 3 MP
XPP
X18 0 0 18 2384 1101 3 MP
XPP
X0 18 18 0 2384 1119 3 MP
XPP
X18 0 0 18 2384 1119 3 MP
XPP
X0 18 18 0 2384 1137 3 MP
XPP
X18 0 0 18 2384 1137 3 MP
XPP
X0 18 18 0 2384 1155 3 MP
XPP
X18 0 0 18 2384 1155 3 MP
XPP
X0 17 18 0 2384 1173 3 MP
XPP
X18 0 0 17 2384 1173 3 MP
XPP
X0 18 18 0 2384 1190 3 MP
XPP
X18 0 0 18 2384 1190 3 MP
XPP
X1 sg
X0 18 18 0 2384 1208 3 MP
XPP
X18 0 0 18 2384 1208 3 MP
XPP
X0 18 18 0 2384 1226 3 MP
XPP
X18 0 0 18 2384 1226 3 MP
XPP
X0 18 18 0 2384 1244 3 MP
XPP
X18 0 0 18 2384 1244 3 MP
XPP
X0 17 18 0 2384 1262 3 MP
XPP
X18 0 0 17 2384 1262 3 MP
XPP
X0 18 18 0 2384 1279 3 MP
XPP
X18 0 0 18 2384 1279 3 MP
XPP
X0 18 18 0 2384 1297 3 MP
XPP
X18 0 0 18 2384 1297 3 MP
XPP
X0 18 18 0 2384 1315 3 MP
XPP
X18 0 0 18 2384 1315 3 MP
XPP
X0 18 18 0 2384 1333 3 MP
XPP
X18 0 0 18 2384 1333 3 MP
XPP
X0 18 18 0 2384 1351 3 MP
XPP
X18 0 0 18 2384 1351 3 MP
XPP
X0 17 18 0 2384 1369 3 MP
XPP
X18 0 0 17 2384 1369 3 MP
XPP
X0 18 18 0 2384 1386 3 MP
XPP
X18 0 0 18 2384 1386 3 MP
XPP
X0 18 18 0 2384 1404 3 MP
XPP
X18 0 0 18 2384 1404 3 MP
XPP
X0 18 18 0 2384 1422 3 MP
XPP
X18 0 0 18 2384 1422 3 MP
XPP
X0 18 18 0 2384 1440 3 MP
XPP
X18 0 0 18 2384 1440 3 MP
XPP
X0 18 18 0 2384 1458 3 MP
XPP
X18 0 0 18 2384 1458 3 MP
XPP
X0 17 18 0 2384 1476 3 MP
XPP
X18 0 0 17 2384 1476 3 MP
XPP
X0 18 18 0 2384 1493 3 MP
XPP
X18 0 0 18 2384 1493 3 MP
XPP
X0 18 18 0 2384 1511 3 MP
XPP
X18 0 0 18 2384 1511 3 MP
XPP
X0 18 18 0 2384 1529 3 MP
XPP
X18 0 0 18 2384 1529 3 MP
XPP
X0 18 18 0 2384 1547 3 MP
XPP
X18 0 0 18 2384 1547 3 MP
XPP
X0 18 18 0 2384 1565 3 MP
XPP
X18 0 0 18 2384 1565 3 MP
XPP
X0 17 18 0 2384 1583 3 MP
XPP
X18 0 0 17 2384 1583 3 MP
XPP
X0 18 18 0 2384 1600 3 MP
XPP
X18 0 0 18 2384 1600 3 MP
XPP
X0 18 18 0 2384 1618 3 MP
XPP
X18 0 0 18 2384 1618 3 MP
XPP
X0 18 18 0 2384 1636 3 MP
XPP
X18 0 0 18 2384 1636 3 MP
XPP
X0 18 18 0 2384 1654 3 MP
XPP
X18 0 0 18 2384 1654 3 MP
XPP
X0 18 18 0 2384 1672 3 MP
XPP
X18 0 0 18 2384 1672 3 MP
XPP
X0 17 18 0 2384 1690 3 MP
XPP
X18 0 0 17 2384 1690 3 MP
XPP
X0 18 18 0 2384 1707 3 MP
XPP
X18 0 0 18 2384 1707 3 MP
XPP
X0 sg
X0 18 18 0 2384 1725 3 MP
XPP
X18 0 0 18 2384 1725 3 MP
XPP
X1 sg
X0 18 18 0 2384 1743 3 MP
XPP
X18 0 0 18 2384 1743 3 MP
XPP
X0 18 18 0 2384 1761 3 MP
XPP
X18 0 0 18 2384 1761 3 MP
XPP
X0 18 18 0 2384 1779 3 MP
XPP
X18 0 0 18 2384 1779 3 MP
XPP
X0 17 18 0 2384 1797 3 MP
XPP
X18 0 0 17 2384 1797 3 MP
XPP
X0 18 18 0 2384 1814 3 MP
XPP
X18 0 0 18 2384 1814 3 MP
XPP
X0 18 18 0 2384 1832 3 MP
XPP
X18 0 0 18 2384 1832 3 MP
XPP
X0 18 18 0 2384 1850 3 MP
XPP
X18 0 0 18 2384 1850 3 MP
XPP
X0 18 18 0 2384 1868 3 MP
XPP
X18 0 0 18 2384 1868 3 MP
XPP
X0 18 18 0 2384 1886 3 MP
XPP
X18 0 0 18 2384 1886 3 MP
XPP
X0 17 18 0 2384 1904 3 MP
XPP
X18 0 0 17 2384 1904 3 MP
XPP
X0 18 18 0 2384 1921 3 MP
XPP
X18 0 0 18 2384 1921 3 MP
XPP
X0 18 18 0 2384 1939 3 MP
XPP
X18 0 0 18 2384 1939 3 MP
XPP
X0 18 18 0 2384 1957 3 MP
XPP
X18 0 0 18 2384 1957 3 MP
XPP
X0 18 18 0 2384 1975 3 MP
XPP
X18 0 0 18 2384 1975 3 MP
XPP
X0 18 18 0 2384 1993 3 MP
XPP
X18 0 0 18 2384 1993 3 MP
XPP
X0 17 18 0 2384 2011 3 MP
XPP
X18 0 0 17 2384 2011 3 MP
XPP
X0 18 18 0 2384 2028 3 MP
XPP
X18 0 0 18 2384 2028 3 MP
XPP
X0 18 18 0 2384 2046 3 MP
XPP
X18 0 0 18 2384 2046 3 MP
XPP
X0 18 18 0 2384 2064 3 MP
XPP
X18 0 0 18 2384 2064 3 MP
XPP
X0 18 18 0 2384 2082 3 MP
XPP
X18 0 0 18 2384 2082 3 MP
XPP
X0 18 18 0 2384 2100 3 MP
XPP
X18 0 0 18 2384 2100 3 MP
XPP
X0 17 18 0 2384 2118 3 MP
XPP
X18 0 0 17 2384 2118 3 MP
XPP
X0 18 18 0 2384 2135 3 MP
XPP
X18 0 0 18 2384 2135 3 MP
XPP
X0 18 18 0 2384 2153 3 MP
XPP
X18 0 0 18 2384 2153 3 MP
XPP
X0 18 18 0 2402 388 3 MP
XPP
X18 0 0 18 2402 388 3 MP
XPP
X0 18 18 0 2402 406 3 MP
XPP
X18 0 0 18 2402 406 3 MP
XPP
X0 17 18 0 2402 424 3 MP
XPP
X18 0 0 17 2402 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2402 441 3 MP
XPP
X18 0 0 18 2402 441 3 MP
XPP
X0 18 18 0 2402 459 3 MP
XPP
X18 0 0 18 2402 459 3 MP
XPP
X0 18 18 0 2402 477 3 MP
XPP
X18 0 0 18 2402 477 3 MP
XPP
X0 18 18 0 2402 495 3 MP
XPP
X18 0 0 18 2402 495 3 MP
XPP
X0 18 18 0 2402 513 3 MP
XPP
X18 0 0 18 2402 513 3 MP
XPP
X0 17 18 0 2402 531 3 MP
XPP
X18 0 0 17 2402 531 3 MP
XPP
X0 18 18 0 2402 548 3 MP
XPP
X18 0 0 18 2402 548 3 MP
XPP
X0 18 18 0 2402 566 3 MP
XPP
X18 0 0 18 2402 566 3 MP
XPP
X0 18 18 0 2402 584 3 MP
XPP
X18 0 0 18 2402 584 3 MP
XPP
X0 18 18 0 2402 602 3 MP
XPP
X18 0 0 18 2402 602 3 MP
XPP
X0 18 18 0 2402 620 3 MP
XPP
X18 0 0 18 2402 620 3 MP
XPP
X0 17 18 0 2402 638 3 MP
XPP
X18 0 0 17 2402 638 3 MP
XPP
X0 18 18 0 2402 655 3 MP
XPP
X18 0 0 18 2402 655 3 MP
XPP
X0 18 18 0 2402 673 3 MP
XPP
X18 0 0 18 2402 673 3 MP
XPP
X0 18 18 0 2402 691 3 MP
XPP
X18 0 0 18 2402 691 3 MP
XPP
X0 18 18 0 2402 709 3 MP
XPP
X18 0 0 18 2402 709 3 MP
XPP
X0 18 18 0 2402 727 3 MP
XPP
X18 0 0 18 2402 727 3 MP
XPP
X0 17 18 0 2402 745 3 MP
XPP
X18 0 0 17 2402 745 3 MP
XPP
X0 18 18 0 2402 762 3 MP
XPP
X18 0 0 18 2402 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2402 780 3 MP
XPP
X18 0 0 18 2402 780 3 MP
XPP
X0 18 18 0 2402 798 3 MP
XPP
X18 0 0 18 2402 798 3 MP
XPP
X0 18 18 0 2402 816 3 MP
XPP
X18 0 0 18 2402 816 3 MP
XPP
X0 18 18 0 2402 834 3 MP
XPP
X18 0 0 18 2402 834 3 MP
XPP
X0 17 18 0 2402 852 3 MP
XPP
X18 0 0 17 2402 852 3 MP
XPP
X0 18 18 0 2402 869 3 MP
XPP
X18 0 0 18 2402 869 3 MP
XPP
X0 18 18 0 2402 887 3 MP
XPP
X18 0 0 18 2402 887 3 MP
XPP
X0 18 18 0 2402 905 3 MP
XPP
X18 0 0 18 2402 905 3 MP
XPP
X0 18 18 0 2402 923 3 MP
XPP
X18 0 0 18 2402 923 3 MP
XPP
X0 18 18 0 2402 941 3 MP
XPP
X18 0 0 18 2402 941 3 MP
XPP
X0 17 18 0 2402 959 3 MP
XPP
X18 0 0 17 2402 959 3 MP
XPP
X0 18 18 0 2402 976 3 MP
XPP
X18 0 0 18 2402 976 3 MP
XPP
X0 18 18 0 2402 994 3 MP
XPP
X18 0 0 18 2402 994 3 MP
XPP
X0 18 18 0 2402 1012 3 MP
XPP
X18 0 0 18 2402 1012 3 MP
XPP
X0 18 18 0 2402 1030 3 MP
XPP
X18 0 0 18 2402 1030 3 MP
XPP
X0 18 18 0 2402 1048 3 MP
XPP
X18 0 0 18 2402 1048 3 MP
XPP
X0 17 18 0 2402 1066 3 MP
XPP
X18 0 0 17 2402 1066 3 MP
XPP
X0 18 18 0 2402 1083 3 MP
XPP
X18 0 0 18 2402 1083 3 MP
XPP
X0 18 18 0 2402 1101 3 MP
XPP
X18 0 0 18 2402 1101 3 MP
XPP
X0 18 18 0 2402 1119 3 MP
XPP
X18 0 0 18 2402 1119 3 MP
XPP
X0 18 18 0 2402 1137 3 MP
XPP
X18 0 0 18 2402 1137 3 MP
XPP
X0 18 18 0 2402 1155 3 MP
XPP
X18 0 0 18 2402 1155 3 MP
XPP
X0 17 18 0 2402 1173 3 MP
XPP
X18 0 0 17 2402 1173 3 MP
XPP
X0 18 18 0 2402 1190 3 MP
XPP
X18 0 0 18 2402 1190 3 MP
XPP
X1 sg
X0 18 18 0 2402 1208 3 MP
XPP
X18 0 0 18 2402 1208 3 MP
XPP
X0 18 18 0 2402 1226 3 MP
XPP
X18 0 0 18 2402 1226 3 MP
XPP
X0 18 18 0 2402 1244 3 MP
XPP
X18 0 0 18 2402 1244 3 MP
XPP
X0 17 18 0 2402 1262 3 MP
XPP
X18 0 0 17 2402 1262 3 MP
XPP
X0 18 18 0 2402 1279 3 MP
XPP
X18 0 0 18 2402 1279 3 MP
XPP
X0 18 18 0 2402 1297 3 MP
XPP
X18 0 0 18 2402 1297 3 MP
XPP
X0 18 18 0 2402 1315 3 MP
XPP
X18 0 0 18 2402 1315 3 MP
XPP
X0 18 18 0 2402 1333 3 MP
XPP
X18 0 0 18 2402 1333 3 MP
XPP
X0 18 18 0 2402 1351 3 MP
XPP
X18 0 0 18 2402 1351 3 MP
XPP
X0 17 18 0 2402 1369 3 MP
XPP
X18 0 0 17 2402 1369 3 MP
XPP
X0 18 18 0 2402 1386 3 MP
XPP
X18 0 0 18 2402 1386 3 MP
XPP
X0 18 18 0 2402 1404 3 MP
XPP
X18 0 0 18 2402 1404 3 MP
XPP
X0 18 18 0 2402 1422 3 MP
XPP
X18 0 0 18 2402 1422 3 MP
XPP
X0 18 18 0 2402 1440 3 MP
XPP
X18 0 0 18 2402 1440 3 MP
XPP
X0 18 18 0 2402 1458 3 MP
XPP
X18 0 0 18 2402 1458 3 MP
XPP
X0 17 18 0 2402 1476 3 MP
XPP
X18 0 0 17 2402 1476 3 MP
XPP
X0 18 18 0 2402 1493 3 MP
XPP
X18 0 0 18 2402 1493 3 MP
XPP
X0 18 18 0 2402 1511 3 MP
XPP
X18 0 0 18 2402 1511 3 MP
XPP
X0 18 18 0 2402 1529 3 MP
XPP
X18 0 0 18 2402 1529 3 MP
XPP
X0 18 18 0 2402 1547 3 MP
XPP
X18 0 0 18 2402 1547 3 MP
XPP
X0 18 18 0 2402 1565 3 MP
XPP
X18 0 0 18 2402 1565 3 MP
XPP
X0 17 18 0 2402 1583 3 MP
XPP
X18 0 0 17 2402 1583 3 MP
XPP
X0 18 18 0 2402 1600 3 MP
XPP
X18 0 0 18 2402 1600 3 MP
XPP
X0 18 18 0 2402 1618 3 MP
XPP
X18 0 0 18 2402 1618 3 MP
XPP
X0 18 18 0 2402 1636 3 MP
XPP
X18 0 0 18 2402 1636 3 MP
XPP
X0 18 18 0 2402 1654 3 MP
XPP
X18 0 0 18 2402 1654 3 MP
XPP
X0 18 18 0 2402 1672 3 MP
XPP
X18 0 0 18 2402 1672 3 MP
XPP
X0 17 18 0 2402 1690 3 MP
XPP
X18 0 0 17 2402 1690 3 MP
XPP
X0 18 18 0 2402 1707 3 MP
XPP
X18 0 0 18 2402 1707 3 MP
XPP
X0 sg
X0 18 18 0 2402 1725 3 MP
XPP
X18 0 0 18 2402 1725 3 MP
XPP
X1 sg
X0 18 18 0 2402 1743 3 MP
XPP
X18 0 0 18 2402 1743 3 MP
XPP
X0 18 18 0 2402 1761 3 MP
XPP
X18 0 0 18 2402 1761 3 MP
XPP
X0 18 18 0 2402 1779 3 MP
XPP
X18 0 0 18 2402 1779 3 MP
XPP
X0 17 18 0 2402 1797 3 MP
XPP
X18 0 0 17 2402 1797 3 MP
XPP
X0 18 18 0 2402 1814 3 MP
XPP
X18 0 0 18 2402 1814 3 MP
XPP
X0 18 18 0 2402 1832 3 MP
XPP
X18 0 0 18 2402 1832 3 MP
XPP
X0 18 18 0 2402 1850 3 MP
XPP
X18 0 0 18 2402 1850 3 MP
XPP
X0 18 18 0 2402 1868 3 MP
XPP
X18 0 0 18 2402 1868 3 MP
XPP
X0 18 18 0 2402 1886 3 MP
XPP
X18 0 0 18 2402 1886 3 MP
XPP
X0 17 18 0 2402 1904 3 MP
XPP
X18 0 0 17 2402 1904 3 MP
XPP
X0 18 18 0 2402 1921 3 MP
XPP
X18 0 0 18 2402 1921 3 MP
XPP
X0 18 18 0 2402 1939 3 MP
XPP
X18 0 0 18 2402 1939 3 MP
XPP
X0 18 18 0 2402 1957 3 MP
XPP
X18 0 0 18 2402 1957 3 MP
XPP
X0 18 18 0 2402 1975 3 MP
XPP
X18 0 0 18 2402 1975 3 MP
XPP
X0 18 18 0 2402 1993 3 MP
XPP
X18 0 0 18 2402 1993 3 MP
XPP
X0 17 18 0 2402 2011 3 MP
XPP
X18 0 0 17 2402 2011 3 MP
XPP
X0 18 18 0 2402 2028 3 MP
XPP
X18 0 0 18 2402 2028 3 MP
XPP
X0 18 18 0 2402 2046 3 MP
XPP
X18 0 0 18 2402 2046 3 MP
XPP
X0 18 18 0 2402 2064 3 MP
XPP
X18 0 0 18 2402 2064 3 MP
XPP
X0 18 18 0 2402 2082 3 MP
XPP
X18 0 0 18 2402 2082 3 MP
XPP
X0 18 18 0 2402 2100 3 MP
XPP
X18 0 0 18 2402 2100 3 MP
XPP
X0 17 18 0 2402 2118 3 MP
XPP
X18 0 0 17 2402 2118 3 MP
XPP
X0 18 18 0 2402 2135 3 MP
XPP
X18 0 0 18 2402 2135 3 MP
XPP
X0 18 18 0 2402 2153 3 MP
XPP
X18 0 0 18 2402 2153 3 MP
XPP
X0 18 18 0 2420 388 3 MP
XPP
X18 0 0 18 2420 388 3 MP
XPP
X0 18 18 0 2420 406 3 MP
XPP
X18 0 0 18 2420 406 3 MP
XPP
X0 17 18 0 2420 424 3 MP
XPP
X18 0 0 17 2420 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2420 441 3 MP
XPP
X18 0 0 18 2420 441 3 MP
XPP
X0 18 18 0 2420 459 3 MP
XPP
X18 0 0 18 2420 459 3 MP
XPP
X0 18 18 0 2420 477 3 MP
XPP
X18 0 0 18 2420 477 3 MP
XPP
X0 18 18 0 2420 495 3 MP
XPP
X18 0 0 18 2420 495 3 MP
XPP
X0 18 18 0 2420 513 3 MP
XPP
X18 0 0 18 2420 513 3 MP
XPP
X0 17 18 0 2420 531 3 MP
XPP
X18 0 0 17 2420 531 3 MP
XPP
X0 18 18 0 2420 548 3 MP
XPP
X18 0 0 18 2420 548 3 MP
XPP
X0 18 18 0 2420 566 3 MP
XPP
X18 0 0 18 2420 566 3 MP
XPP
X0 18 18 0 2420 584 3 MP
XPP
X18 0 0 18 2420 584 3 MP
XPP
X0 18 18 0 2420 602 3 MP
XPP
X18 0 0 18 2420 602 3 MP
XPP
X0 18 18 0 2420 620 3 MP
XPP
X18 0 0 18 2420 620 3 MP
XPP
X0 17 18 0 2420 638 3 MP
XPP
X18 0 0 17 2420 638 3 MP
XPP
X0 18 18 0 2420 655 3 MP
XPP
X18 0 0 18 2420 655 3 MP
XPP
X0 18 18 0 2420 673 3 MP
XPP
X18 0 0 18 2420 673 3 MP
XPP
X0 18 18 0 2420 691 3 MP
XPP
X18 0 0 18 2420 691 3 MP
XPP
X0 18 18 0 2420 709 3 MP
XPP
X18 0 0 18 2420 709 3 MP
XPP
X0 18 18 0 2420 727 3 MP
XPP
X18 0 0 18 2420 727 3 MP
XPP
X0 17 18 0 2420 745 3 MP
XPP
X18 0 0 17 2420 745 3 MP
XPP
X0 18 18 0 2420 762 3 MP
XPP
X18 0 0 18 2420 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2420 780 3 MP
XPP
X18 0 0 18 2420 780 3 MP
XPP
X0 18 18 0 2420 798 3 MP
XPP
X18 0 0 18 2420 798 3 MP
XPP
X0 18 18 0 2420 816 3 MP
XPP
X18 0 0 18 2420 816 3 MP
XPP
X0 18 18 0 2420 834 3 MP
XPP
X18 0 0 18 2420 834 3 MP
XPP
X0 17 18 0 2420 852 3 MP
XPP
X18 0 0 17 2420 852 3 MP
XPP
X0 18 18 0 2420 869 3 MP
XPP
X18 0 0 18 2420 869 3 MP
XPP
X0 18 18 0 2420 887 3 MP
XPP
X18 0 0 18 2420 887 3 MP
XPP
X0 18 18 0 2420 905 3 MP
XPP
X18 0 0 18 2420 905 3 MP
XPP
X0 18 18 0 2420 923 3 MP
XPP
X18 0 0 18 2420 923 3 MP
XPP
X0 18 18 0 2420 941 3 MP
XPP
X18 0 0 18 2420 941 3 MP
XPP
X0 17 18 0 2420 959 3 MP
XPP
X18 0 0 17 2420 959 3 MP
XPP
X0 18 18 0 2420 976 3 MP
XPP
X18 0 0 18 2420 976 3 MP
XPP
X0 18 18 0 2420 994 3 MP
XPP
X18 0 0 18 2420 994 3 MP
XPP
X0 18 18 0 2420 1012 3 MP
XPP
X18 0 0 18 2420 1012 3 MP
XPP
X0 18 18 0 2420 1030 3 MP
XPP
X18 0 0 18 2420 1030 3 MP
XPP
X0 18 18 0 2420 1048 3 MP
XPP
X18 0 0 18 2420 1048 3 MP
XPP
X0 17 18 0 2420 1066 3 MP
XPP
X18 0 0 17 2420 1066 3 MP
XPP
X0 18 18 0 2420 1083 3 MP
XPP
X18 0 0 18 2420 1083 3 MP
XPP
X0 18 18 0 2420 1101 3 MP
XPP
X18 0 0 18 2420 1101 3 MP
XPP
X0 18 18 0 2420 1119 3 MP
XPP
X18 0 0 18 2420 1119 3 MP
XPP
X0 18 18 0 2420 1137 3 MP
XPP
X18 0 0 18 2420 1137 3 MP
XPP
X0 18 18 0 2420 1155 3 MP
XPP
X18 0 0 18 2420 1155 3 MP
XPP
X0 17 18 0 2420 1173 3 MP
XPP
X18 0 0 17 2420 1173 3 MP
XPP
X0 18 18 0 2420 1190 3 MP
XPP
X18 0 0 18 2420 1190 3 MP
XPP
X1 sg
X0 18 18 0 2420 1208 3 MP
XPP
X18 0 0 18 2420 1208 3 MP
XPP
X0 18 18 0 2420 1226 3 MP
XPP
X18 0 0 18 2420 1226 3 MP
XPP
X0 18 18 0 2420 1244 3 MP
XPP
X18 0 0 18 2420 1244 3 MP
XPP
X0 17 18 0 2420 1262 3 MP
XPP
X18 0 0 17 2420 1262 3 MP
XPP
X0 18 18 0 2420 1279 3 MP
XPP
X18 0 0 18 2420 1279 3 MP
XPP
X0 18 18 0 2420 1297 3 MP
XPP
X18 0 0 18 2420 1297 3 MP
XPP
X0 18 18 0 2420 1315 3 MP
XPP
X18 0 0 18 2420 1315 3 MP
XPP
X0 18 18 0 2420 1333 3 MP
XPP
X18 0 0 18 2420 1333 3 MP
XPP
X0 18 18 0 2420 1351 3 MP
XPP
X18 0 0 18 2420 1351 3 MP
XPP
X0 17 18 0 2420 1369 3 MP
XPP
X18 0 0 17 2420 1369 3 MP
XPP
X0 18 18 0 2420 1386 3 MP
XPP
X18 0 0 18 2420 1386 3 MP
XPP
X0 18 18 0 2420 1404 3 MP
XPP
X18 0 0 18 2420 1404 3 MP
XPP
X0 18 18 0 2420 1422 3 MP
XPP
X18 0 0 18 2420 1422 3 MP
XPP
X0 18 18 0 2420 1440 3 MP
XPP
X18 0 0 18 2420 1440 3 MP
XPP
X0 18 18 0 2420 1458 3 MP
XPP
X18 0 0 18 2420 1458 3 MP
XPP
X0 17 18 0 2420 1476 3 MP
XPP
X18 0 0 17 2420 1476 3 MP
XPP
X0 18 18 0 2420 1493 3 MP
XPP
X18 0 0 18 2420 1493 3 MP
XPP
X0 18 18 0 2420 1511 3 MP
XPP
X18 0 0 18 2420 1511 3 MP
XPP
X0 18 18 0 2420 1529 3 MP
XPP
X18 0 0 18 2420 1529 3 MP
XPP
X0 18 18 0 2420 1547 3 MP
XPP
X18 0 0 18 2420 1547 3 MP
XPP
X0 18 18 0 2420 1565 3 MP
XPP
X18 0 0 18 2420 1565 3 MP
XPP
X0 17 18 0 2420 1583 3 MP
XPP
X18 0 0 17 2420 1583 3 MP
XPP
X0 18 18 0 2420 1600 3 MP
XPP
X18 0 0 18 2420 1600 3 MP
XPP
X0 18 18 0 2420 1618 3 MP
XPP
X18 0 0 18 2420 1618 3 MP
XPP
X0 18 18 0 2420 1636 3 MP
XPP
X18 0 0 18 2420 1636 3 MP
XPP
X0 18 18 0 2420 1654 3 MP
XPP
X18 0 0 18 2420 1654 3 MP
XPP
X0 18 18 0 2420 1672 3 MP
XPP
X18 0 0 18 2420 1672 3 MP
XPP
X0 17 18 0 2420 1690 3 MP
XPP
X18 0 0 17 2420 1690 3 MP
XPP
X0 18 18 0 2420 1707 3 MP
XPP
X18 0 0 18 2420 1707 3 MP
XPP
X0 sg
X0 18 18 0 2420 1725 3 MP
XPP
X18 0 0 18 2420 1725 3 MP
XPP
X1 sg
X0 18 18 0 2420 1743 3 MP
XPP
X18 0 0 18 2420 1743 3 MP
XPP
X0 18 18 0 2420 1761 3 MP
XPP
X18 0 0 18 2420 1761 3 MP
XPP
X0 18 18 0 2420 1779 3 MP
XPP
X18 0 0 18 2420 1779 3 MP
XPP
X0 17 18 0 2420 1797 3 MP
XPP
X18 0 0 17 2420 1797 3 MP
XPP
X0 18 18 0 2420 1814 3 MP
XPP
X18 0 0 18 2420 1814 3 MP
XPP
X0 18 18 0 2420 1832 3 MP
XPP
X18 0 0 18 2420 1832 3 MP
XPP
X0 18 18 0 2420 1850 3 MP
XPP
X18 0 0 18 2420 1850 3 MP
XPP
X0 18 18 0 2420 1868 3 MP
XPP
X18 0 0 18 2420 1868 3 MP
XPP
X0 18 18 0 2420 1886 3 MP
XPP
X18 0 0 18 2420 1886 3 MP
XPP
X0 17 18 0 2420 1904 3 MP
XPP
X18 0 0 17 2420 1904 3 MP
XPP
X0 18 18 0 2420 1921 3 MP
XPP
X18 0 0 18 2420 1921 3 MP
XPP
X0 18 18 0 2420 1939 3 MP
XPP
X18 0 0 18 2420 1939 3 MP
XPP
X0 18 18 0 2420 1957 3 MP
XPP
X18 0 0 18 2420 1957 3 MP
XPP
X0 18 18 0 2420 1975 3 MP
XPP
X18 0 0 18 2420 1975 3 MP
XPP
X0 18 18 0 2420 1993 3 MP
XPP
X18 0 0 18 2420 1993 3 MP
XPP
X0 17 18 0 2420 2011 3 MP
XPP
X18 0 0 17 2420 2011 3 MP
XPP
X0 18 18 0 2420 2028 3 MP
XPP
X18 0 0 18 2420 2028 3 MP
XPP
X0 18 18 0 2420 2046 3 MP
XPP
X18 0 0 18 2420 2046 3 MP
XPP
X0 18 18 0 2420 2064 3 MP
XPP
X18 0 0 18 2420 2064 3 MP
XPP
X0 18 18 0 2420 2082 3 MP
XPP
X18 0 0 18 2420 2082 3 MP
XPP
X0 18 18 0 2420 2100 3 MP
XPP
X18 0 0 18 2420 2100 3 MP
XPP
X0 17 18 0 2420 2118 3 MP
XPP
X18 0 0 17 2420 2118 3 MP
XPP
X0 18 18 0 2420 2135 3 MP
XPP
X18 0 0 18 2420 2135 3 MP
XPP
X0 18 18 0 2420 2153 3 MP
XPP
X18 0 0 18 2420 2153 3 MP
XPP
X0 18 17 0 2438 388 3 MP
XPP
X17 0 0 18 2438 388 3 MP
XPP
X0 18 17 0 2438 406 3 MP
XPP
X17 0 0 18 2438 406 3 MP
XPP
X0 17 17 0 2438 424 3 MP
XPP
X17 0 0 17 2438 424 3 MP
XPP
X0.746032 sg
X0 18 17 0 2438 441 3 MP
XPP
X17 0 0 18 2438 441 3 MP
XPP
X0 18 17 0 2438 459 3 MP
XPP
X17 0 0 18 2438 459 3 MP
XPP
X0 18 17 0 2438 477 3 MP
XPP
X17 0 0 18 2438 477 3 MP
XPP
X0 18 17 0 2438 495 3 MP
XPP
X17 0 0 18 2438 495 3 MP
XPP
X0 18 17 0 2438 513 3 MP
XPP
X17 0 0 18 2438 513 3 MP
XPP
X0 17 17 0 2438 531 3 MP
XPP
X17 0 0 17 2438 531 3 MP
XPP
X0 18 17 0 2438 548 3 MP
XPP
X17 0 0 18 2438 548 3 MP
XPP
X0 18 17 0 2438 566 3 MP
XPP
X17 0 0 18 2438 566 3 MP
XPP
X0 18 17 0 2438 584 3 MP
XPP
X17 0 0 18 2438 584 3 MP
XPP
X0 18 17 0 2438 602 3 MP
XPP
X17 0 0 18 2438 602 3 MP
XPP
X0 18 17 0 2438 620 3 MP
XPP
X17 0 0 18 2438 620 3 MP
XPP
X0 17 17 0 2438 638 3 MP
XPP
X17 0 0 17 2438 638 3 MP
XPP
X0 18 17 0 2438 655 3 MP
XPP
X17 0 0 18 2438 655 3 MP
XPP
X0 18 17 0 2438 673 3 MP
XPP
X17 0 0 18 2438 673 3 MP
XPP
X0 18 17 0 2438 691 3 MP
XPP
X17 0 0 18 2438 691 3 MP
XPP
X0 18 17 0 2438 709 3 MP
XPP
X17 0 0 18 2438 709 3 MP
XPP
X0 18 17 0 2438 727 3 MP
XPP
X17 0 0 18 2438 727 3 MP
XPP
X0 17 17 0 2438 745 3 MP
XPP
X17 0 0 17 2438 745 3 MP
XPP
X0 18 17 0 2438 762 3 MP
XPP
X17 0 0 18 2438 762 3 MP
XPP
X0.492063 sg
X0 18 17 0 2438 780 3 MP
XPP
X17 0 0 18 2438 780 3 MP
XPP
X0 18 17 0 2438 798 3 MP
XPP
X17 0 0 18 2438 798 3 MP
XPP
X0 18 17 0 2438 816 3 MP
XPP
X17 0 0 18 2438 816 3 MP
XPP
X0 18 17 0 2438 834 3 MP
XPP
X17 0 0 18 2438 834 3 MP
XPP
X0 17 17 0 2438 852 3 MP
XPP
X17 0 0 17 2438 852 3 MP
XPP
X0 18 17 0 2438 869 3 MP
XPP
X17 0 0 18 2438 869 3 MP
XPP
X0 18 17 0 2438 887 3 MP
XPP
X17 0 0 18 2438 887 3 MP
XPP
X0 18 17 0 2438 905 3 MP
XPP
X17 0 0 18 2438 905 3 MP
XPP
X0 18 17 0 2438 923 3 MP
XPP
X17 0 0 18 2438 923 3 MP
XPP
X0 18 17 0 2438 941 3 MP
XPP
X17 0 0 18 2438 941 3 MP
XPP
X0 17 17 0 2438 959 3 MP
XPP
X17 0 0 17 2438 959 3 MP
XPP
X0 18 17 0 2438 976 3 MP
XPP
X17 0 0 18 2438 976 3 MP
XPP
X0 18 17 0 2438 994 3 MP
XPP
X17 0 0 18 2438 994 3 MP
XPP
X0 18 17 0 2438 1012 3 MP
XPP
X17 0 0 18 2438 1012 3 MP
XPP
X0 18 17 0 2438 1030 3 MP
XPP
X17 0 0 18 2438 1030 3 MP
XPP
X0 18 17 0 2438 1048 3 MP
XPP
X17 0 0 18 2438 1048 3 MP
XPP
X0 17 17 0 2438 1066 3 MP
XPP
X17 0 0 17 2438 1066 3 MP
XPP
X0 18 17 0 2438 1083 3 MP
XPP
X17 0 0 18 2438 1083 3 MP
XPP
X0 18 17 0 2438 1101 3 MP
XPP
X17 0 0 18 2438 1101 3 MP
XPP
X0 18 17 0 2438 1119 3 MP
XPP
X17 0 0 18 2438 1119 3 MP
XPP
X0 18 17 0 2438 1137 3 MP
XPP
X17 0 0 18 2438 1137 3 MP
XPP
X0 18 17 0 2438 1155 3 MP
XPP
X17 0 0 18 2438 1155 3 MP
XPP
X0 17 17 0 2438 1173 3 MP
XPP
X17 0 0 17 2438 1173 3 MP
XPP
X0 18 17 0 2438 1190 3 MP
XPP
X17 0 0 18 2438 1190 3 MP
XPP
X1 sg
X0 18 17 0 2438 1208 3 MP
XPP
X17 0 0 18 2438 1208 3 MP
XPP
X0 18 17 0 2438 1226 3 MP
XPP
X17 0 0 18 2438 1226 3 MP
XPP
X0 18 17 0 2438 1244 3 MP
XPP
X17 0 0 18 2438 1244 3 MP
XPP
X0 17 17 0 2438 1262 3 MP
XPP
X17 0 0 17 2438 1262 3 MP
XPP
X0 18 17 0 2438 1279 3 MP
XPP
X17 0 0 18 2438 1279 3 MP
XPP
X0 18 17 0 2438 1297 3 MP
XPP
X17 0 0 18 2438 1297 3 MP
XPP
X0 18 17 0 2438 1315 3 MP
XPP
X17 0 0 18 2438 1315 3 MP
XPP
X0 18 17 0 2438 1333 3 MP
XPP
X17 0 0 18 2438 1333 3 MP
XPP
X0 18 17 0 2438 1351 3 MP
XPP
X17 0 0 18 2438 1351 3 MP
XPP
X0 17 17 0 2438 1369 3 MP
XPP
X17 0 0 17 2438 1369 3 MP
XPP
X0 18 17 0 2438 1386 3 MP
XPP
X17 0 0 18 2438 1386 3 MP
XPP
X0 18 17 0 2438 1404 3 MP
XPP
X17 0 0 18 2438 1404 3 MP
XPP
X0 18 17 0 2438 1422 3 MP
XPP
X17 0 0 18 2438 1422 3 MP
XPP
X0 18 17 0 2438 1440 3 MP
XPP
X17 0 0 18 2438 1440 3 MP
XPP
X0 18 17 0 2438 1458 3 MP
XPP
X17 0 0 18 2438 1458 3 MP
XPP
X0 17 17 0 2438 1476 3 MP
XPP
X17 0 0 17 2438 1476 3 MP
XPP
X0 18 17 0 2438 1493 3 MP
XPP
X17 0 0 18 2438 1493 3 MP
XPP
X0 18 17 0 2438 1511 3 MP
XPP
X17 0 0 18 2438 1511 3 MP
XPP
X0 18 17 0 2438 1529 3 MP
XPP
X17 0 0 18 2438 1529 3 MP
XPP
X0 18 17 0 2438 1547 3 MP
XPP
X17 0 0 18 2438 1547 3 MP
XPP
X0 18 17 0 2438 1565 3 MP
XPP
X17 0 0 18 2438 1565 3 MP
XPP
X0 17 17 0 2438 1583 3 MP
XPP
X17 0 0 17 2438 1583 3 MP
XPP
X0 18 17 0 2438 1600 3 MP
XPP
X17 0 0 18 2438 1600 3 MP
XPP
X0 18 17 0 2438 1618 3 MP
XPP
X17 0 0 18 2438 1618 3 MP
XPP
X0 18 17 0 2438 1636 3 MP
XPP
X17 0 0 18 2438 1636 3 MP
XPP
X0 18 17 0 2438 1654 3 MP
XPP
X17 0 0 18 2438 1654 3 MP
XPP
X0 18 17 0 2438 1672 3 MP
XPP
X17 0 0 18 2438 1672 3 MP
XPP
X0 17 17 0 2438 1690 3 MP
XPP
X17 0 0 17 2438 1690 3 MP
XPP
X0 18 17 0 2438 1707 3 MP
XPP
X17 0 0 18 2438 1707 3 MP
XPP
X0 sg
X0 18 17 0 2438 1725 3 MP
XPP
X17 0 0 18 2438 1725 3 MP
XPP
X1 sg
X0 18 17 0 2438 1743 3 MP
XPP
X17 0 0 18 2438 1743 3 MP
XPP
X0 18 17 0 2438 1761 3 MP
XPP
X17 0 0 18 2438 1761 3 MP
XPP
X0 18 17 0 2438 1779 3 MP
XPP
X17 0 0 18 2438 1779 3 MP
XPP
X0 17 17 0 2438 1797 3 MP
XPP
X17 0 0 17 2438 1797 3 MP
XPP
X0 18 17 0 2438 1814 3 MP
XPP
X17 0 0 18 2438 1814 3 MP
XPP
X0 18 17 0 2438 1832 3 MP
XPP
X17 0 0 18 2438 1832 3 MP
XPP
X0 18 17 0 2438 1850 3 MP
XPP
X17 0 0 18 2438 1850 3 MP
XPP
X0 18 17 0 2438 1868 3 MP
XPP
X17 0 0 18 2438 1868 3 MP
XPP
X0 18 17 0 2438 1886 3 MP
XPP
X17 0 0 18 2438 1886 3 MP
XPP
X0 17 17 0 2438 1904 3 MP
XPP
X17 0 0 17 2438 1904 3 MP
XPP
X0 18 17 0 2438 1921 3 MP
XPP
X17 0 0 18 2438 1921 3 MP
XPP
X0 18 17 0 2438 1939 3 MP
XPP
X17 0 0 18 2438 1939 3 MP
XPP
X0 18 17 0 2438 1957 3 MP
XPP
X17 0 0 18 2438 1957 3 MP
XPP
X0 18 17 0 2438 1975 3 MP
XPP
X17 0 0 18 2438 1975 3 MP
XPP
X0 18 17 0 2438 1993 3 MP
XPP
X17 0 0 18 2438 1993 3 MP
XPP
X0 17 17 0 2438 2011 3 MP
XPP
X17 0 0 17 2438 2011 3 MP
XPP
X0 18 17 0 2438 2028 3 MP
XPP
X17 0 0 18 2438 2028 3 MP
XPP
X0 18 17 0 2438 2046 3 MP
XPP
X17 0 0 18 2438 2046 3 MP
XPP
X0 18 17 0 2438 2064 3 MP
XPP
X17 0 0 18 2438 2064 3 MP
XPP
X0 18 17 0 2438 2082 3 MP
XPP
X17 0 0 18 2438 2082 3 MP
XPP
X0 18 17 0 2438 2100 3 MP
XPP
X17 0 0 18 2438 2100 3 MP
XPP
X0 17 17 0 2438 2118 3 MP
XPP
X17 0 0 17 2438 2118 3 MP
XPP
X0 18 17 0 2438 2135 3 MP
XPP
X17 0 0 18 2438 2135 3 MP
XPP
X0 18 17 0 2438 2153 3 MP
XPP
X17 0 0 18 2438 2153 3 MP
XPP
X0 18 18 0 2455 388 3 MP
XPP
X18 0 0 18 2455 388 3 MP
XPP
X0 18 18 0 2455 406 3 MP
XPP
X18 0 0 18 2455 406 3 MP
XPP
X0 17 18 0 2455 424 3 MP
XPP
X18 0 0 17 2455 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2455 441 3 MP
XPP
X18 0 0 18 2455 441 3 MP
XPP
X0 18 18 0 2455 459 3 MP
XPP
X18 0 0 18 2455 459 3 MP
XPP
X0 18 18 0 2455 477 3 MP
XPP
X18 0 0 18 2455 477 3 MP
XPP
X0 18 18 0 2455 495 3 MP
XPP
X18 0 0 18 2455 495 3 MP
XPP
X0 18 18 0 2455 513 3 MP
XPP
X18 0 0 18 2455 513 3 MP
XPP
X0 17 18 0 2455 531 3 MP
XPP
X18 0 0 17 2455 531 3 MP
XPP
X0 18 18 0 2455 548 3 MP
XPP
X18 0 0 18 2455 548 3 MP
XPP
X0 18 18 0 2455 566 3 MP
XPP
X18 0 0 18 2455 566 3 MP
XPP
X0 18 18 0 2455 584 3 MP
XPP
X18 0 0 18 2455 584 3 MP
XPP
X0 18 18 0 2455 602 3 MP
XPP
X18 0 0 18 2455 602 3 MP
XPP
X0 18 18 0 2455 620 3 MP
XPP
X18 0 0 18 2455 620 3 MP
XPP
X0 17 18 0 2455 638 3 MP
XPP
X18 0 0 17 2455 638 3 MP
XPP
X0 18 18 0 2455 655 3 MP
XPP
X18 0 0 18 2455 655 3 MP
XPP
X0 18 18 0 2455 673 3 MP
XPP
X18 0 0 18 2455 673 3 MP
XPP
X0 18 18 0 2455 691 3 MP
XPP
X18 0 0 18 2455 691 3 MP
XPP
X0 18 18 0 2455 709 3 MP
XPP
X18 0 0 18 2455 709 3 MP
XPP
X0 18 18 0 2455 727 3 MP
XPP
X18 0 0 18 2455 727 3 MP
XPP
X0 17 18 0 2455 745 3 MP
XPP
X18 0 0 17 2455 745 3 MP
XPP
X0 18 18 0 2455 762 3 MP
XPP
X18 0 0 18 2455 762 3 MP
XPP
X0.492063 sg
X0 18 18 0 2455 780 3 MP
XPP
X18 0 0 18 2455 780 3 MP
XPP
X0 18 18 0 2455 798 3 MP
XPP
X18 0 0 18 2455 798 3 MP
XPP
X0 18 18 0 2455 816 3 MP
XPP
X18 0 0 18 2455 816 3 MP
XPP
X0 18 18 0 2455 834 3 MP
XPP
X18 0 0 18 2455 834 3 MP
XPP
X0 17 18 0 2455 852 3 MP
XPP
X18 0 0 17 2455 852 3 MP
XPP
X0 18 18 0 2455 869 3 MP
XPP
X18 0 0 18 2455 869 3 MP
XPP
X0 18 18 0 2455 887 3 MP
XPP
X18 0 0 18 2455 887 3 MP
XPP
X0 18 18 0 2455 905 3 MP
XPP
X18 0 0 18 2455 905 3 MP
XPP
X0 18 18 0 2455 923 3 MP
XPP
X18 0 0 18 2455 923 3 MP
XPP
X0 18 18 0 2455 941 3 MP
XPP
X18 0 0 18 2455 941 3 MP
XPP
X0 17 18 0 2455 959 3 MP
XPP
X18 0 0 17 2455 959 3 MP
XPP
X0 18 18 0 2455 976 3 MP
XPP
X18 0 0 18 2455 976 3 MP
XPP
X0 18 18 0 2455 994 3 MP
XPP
X18 0 0 18 2455 994 3 MP
XPP
X0 18 18 0 2455 1012 3 MP
XPP
X18 0 0 18 2455 1012 3 MP
XPP
X0 18 18 0 2455 1030 3 MP
XPP
X18 0 0 18 2455 1030 3 MP
XPP
X0 18 18 0 2455 1048 3 MP
XPP
X18 0 0 18 2455 1048 3 MP
XPP
X0 17 18 0 2455 1066 3 MP
XPP
X18 0 0 17 2455 1066 3 MP
XPP
X0 18 18 0 2455 1083 3 MP
XPP
X18 0 0 18 2455 1083 3 MP
XPP
X0 18 18 0 2455 1101 3 MP
XPP
X18 0 0 18 2455 1101 3 MP
XPP
X0 18 18 0 2455 1119 3 MP
XPP
X18 0 0 18 2455 1119 3 MP
XPP
X0 18 18 0 2455 1137 3 MP
XPP
X18 0 0 18 2455 1137 3 MP
XPP
X0 18 18 0 2455 1155 3 MP
XPP
X18 0 0 18 2455 1155 3 MP
XPP
X0 17 18 0 2455 1173 3 MP
XPP
X18 0 0 17 2455 1173 3 MP
XPP
X0 18 18 0 2455 1190 3 MP
XPP
X18 0 0 18 2455 1190 3 MP
XPP
X1 sg
X0 18 18 0 2455 1208 3 MP
XPP
X18 0 0 18 2455 1208 3 MP
XPP
X0 18 18 0 2455 1226 3 MP
XPP
X18 0 0 18 2455 1226 3 MP
XPP
X0 18 18 0 2455 1244 3 MP
XPP
X18 0 0 18 2455 1244 3 MP
XPP
X0 17 18 0 2455 1262 3 MP
XPP
X18 0 0 17 2455 1262 3 MP
XPP
X0 18 18 0 2455 1279 3 MP
XPP
X18 0 0 18 2455 1279 3 MP
XPP
X0 18 18 0 2455 1297 3 MP
XPP
X18 0 0 18 2455 1297 3 MP
XPP
X0 18 18 0 2455 1315 3 MP
XPP
X18 0 0 18 2455 1315 3 MP
XPP
X0 18 18 0 2455 1333 3 MP
XPP
X18 0 0 18 2455 1333 3 MP
XPP
X0 18 18 0 2455 1351 3 MP
XPP
X18 0 0 18 2455 1351 3 MP
XPP
X0 17 18 0 2455 1369 3 MP
XPP
X18 0 0 17 2455 1369 3 MP
XPP
X0 18 18 0 2455 1386 3 MP
XPP
X18 0 0 18 2455 1386 3 MP
XPP
X0 18 18 0 2455 1404 3 MP
XPP
X18 0 0 18 2455 1404 3 MP
XPP
X0 18 18 0 2455 1422 3 MP
XPP
X18 0 0 18 2455 1422 3 MP
XPP
X0 18 18 0 2455 1440 3 MP
XPP
X18 0 0 18 2455 1440 3 MP
XPP
X0 18 18 0 2455 1458 3 MP
XPP
X18 0 0 18 2455 1458 3 MP
XPP
X0 17 18 0 2455 1476 3 MP
XPP
X18 0 0 17 2455 1476 3 MP
XPP
X0 18 18 0 2455 1493 3 MP
XPP
X18 0 0 18 2455 1493 3 MP
XPP
X0 18 18 0 2455 1511 3 MP
XPP
X18 0 0 18 2455 1511 3 MP
XPP
X0 18 18 0 2455 1529 3 MP
XPP
X18 0 0 18 2455 1529 3 MP
XPP
X0 18 18 0 2455 1547 3 MP
XPP
X18 0 0 18 2455 1547 3 MP
XPP
X0 18 18 0 2455 1565 3 MP
XPP
X18 0 0 18 2455 1565 3 MP
XPP
X0 17 18 0 2455 1583 3 MP
XPP
X18 0 0 17 2455 1583 3 MP
XPP
X0 18 18 0 2455 1600 3 MP
XPP
X18 0 0 18 2455 1600 3 MP
XPP
X0 18 18 0 2455 1618 3 MP
XPP
X18 0 0 18 2455 1618 3 MP
XPP
X0 18 18 0 2455 1636 3 MP
XPP
X18 0 0 18 2455 1636 3 MP
XPP
X0 18 18 0 2455 1654 3 MP
XPP
X18 0 0 18 2455 1654 3 MP
XPP
X0 18 18 0 2455 1672 3 MP
XPP
X18 0 0 18 2455 1672 3 MP
XPP
X0 17 18 0 2455 1690 3 MP
XPP
X18 0 0 17 2455 1690 3 MP
XPP
X0 18 18 0 2455 1707 3 MP
XPP
X18 0 0 18 2455 1707 3 MP
XPP
X0 sg
X0 18 18 0 2455 1725 3 MP
XPP
X18 0 0 18 2455 1725 3 MP
XPP
X1 sg
X0 18 18 0 2455 1743 3 MP
XPP
X18 0 0 18 2455 1743 3 MP
XPP
X0 18 18 0 2455 1761 3 MP
XPP
X18 0 0 18 2455 1761 3 MP
XPP
X0 18 18 0 2455 1779 3 MP
XPP
X18 0 0 18 2455 1779 3 MP
XPP
X0 17 18 0 2455 1797 3 MP
XPP
X18 0 0 17 2455 1797 3 MP
XPP
X0 18 18 0 2455 1814 3 MP
XPP
X18 0 0 18 2455 1814 3 MP
XPP
X0 18 18 0 2455 1832 3 MP
XPP
X18 0 0 18 2455 1832 3 MP
XPP
X0 18 18 0 2455 1850 3 MP
XPP
X18 0 0 18 2455 1850 3 MP
XPP
X0 18 18 0 2455 1868 3 MP
XPP
X18 0 0 18 2455 1868 3 MP
XPP
X0 18 18 0 2455 1886 3 MP
XPP
X18 0 0 18 2455 1886 3 MP
XPP
X0 17 18 0 2455 1904 3 MP
XPP
X18 0 0 17 2455 1904 3 MP
XPP
X0 18 18 0 2455 1921 3 MP
XPP
X18 0 0 18 2455 1921 3 MP
XPP
X0 18 18 0 2455 1939 3 MP
XPP
X18 0 0 18 2455 1939 3 MP
XPP
X0 18 18 0 2455 1957 3 MP
XPP
X18 0 0 18 2455 1957 3 MP
XPP
X0 18 18 0 2455 1975 3 MP
XPP
X18 0 0 18 2455 1975 3 MP
XPP
X0 18 18 0 2455 1993 3 MP
XPP
X18 0 0 18 2455 1993 3 MP
XPP
X0 17 18 0 2455 2011 3 MP
XPP
X18 0 0 17 2455 2011 3 MP
XPP
X0 18 18 0 2455 2028 3 MP
XPP
X18 0 0 18 2455 2028 3 MP
XPP
X0 18 18 0 2455 2046 3 MP
XPP
X18 0 0 18 2455 2046 3 MP
XPP
X0 18 18 0 2455 2064 3 MP
XPP
X18 0 0 18 2455 2064 3 MP
XPP
X0 18 18 0 2455 2082 3 MP
XPP
X18 0 0 18 2455 2082 3 MP
XPP
X0 18 18 0 2455 2100 3 MP
XPP
X18 0 0 18 2455 2100 3 MP
XPP
X0 17 18 0 2455 2118 3 MP
XPP
X18 0 0 17 2455 2118 3 MP
XPP
X0 18 18 0 2455 2135 3 MP
XPP
X18 0 0 18 2455 2135 3 MP
XPP
X0 18 18 0 2455 2153 3 MP
XPP
X18 0 0 18 2455 2153 3 MP
XPP
X0 18 18 0 2473 388 3 MP
XPP
X18 0 0 18 2473 388 3 MP
XPP
X0 18 18 0 2473 406 3 MP
XPP
X18 0 0 18 2473 406 3 MP
XPP
X0 17 18 0 2473 424 3 MP
XPP
X18 0 0 17 2473 424 3 MP
XPP
X0.746032 sg
X0 18 18 0 2473 441 3 MP
XPP
X18 0 0 18 2473 441 3 MP
XPP
X0 18 18 0 2473 459 3 MP
XPP
X18 0 0 18 2473 459 3 MP
XPP
X0 18 18 0 2473 477 3 MP
XPP
X18 0 0 18 2473 477 3 MP
XPP
X0 18 18 0 2473 495 3 MP
XPP
X18 0 0 18 2473 495 3 MP
XPP
X0 18 18 0 2473 513 3 MP
XPP
X18 0 0 18 2473 513 3 MP
XPP
X0 17 18 0 2473 531 3 MP
XPP
X18 0 0 17 2473 531 3 MP
XPP
X0 18 18 0 2473 548 3 MP
XPP
X18 0 0 18 2473 548 3 MP
XPP
X0 18 18 0 2473 566 3 MP
XPP
X18 0 0 18 2473 566 3 MP
XPP
X0 18 18 0 2473 584 3 MP
XPP
X18 0 0 18 2473 584 3 MP
XPP
X0 18 18 0 2473 602 3 MP
XPP
X18 0 0 18 2473 602 3 MP
XPP
X0 18 18 0 2473 620 3 MP
XPP
X18 0 0 18 2473 620 3 MP
XPP
X0 17 18 0 2473 638 3 MP
XPP
X18 0 0 17 2473 638 3 MP
XPP
X0 18 18 0 2473 655 3 MP
XPP
X18 0 0 18 2473 655 3 MP
XPP
X0 18 18 0 2473 673 3 MP
XPP
X18 0 0 18 2473 673 3 MP
XPP
X0 18 18 0 2473 691 3 MP
XPP
X18 0 0 18 2473 691 3 MP
XPP
X0 18 18 0 2473 709 3 MP
XPP
X18 0 0 18 2473 709 3 MP
XPP
X0 18 18 0 2473 727 3 MP
XPP
X18 0 0 18 2473 727 3 MP
XPP
X0 17 18 0 2473 745 3 MP
XPP
X18 0 0 17 2473 745 3 MP
XPP
X0 18 18 0 2473 762 3 MP
XPP
X18 0 0 18 2473 762 3 MP
XPP
X0 18 18 0 2473 780 3 MP
XPP
X18 0 0 18 2473 780 3 MP
XPP
X0.492063 sg
X0 18 18 0 2473 798 3 MP
XPP
X18 0 0 18 2473 798 3 MP
XPP
X0 18 18 0 2473 816 3 MP
XPP
X18 0 0 18 2473 816 3 MP
XPP
X0 18 18 0 2473 834 3 MP
XPP
X18 0 0 18 2473 834 3 MP
XPP
X0 17 18 0 2473 852 3 MP
XPP
X18 0 0 17 2473 852 3 MP
XPP
X0 18 18 0 2473 869 3 MP
XPP
X18 0 0 18 2473 869 3 MP
XPP
X0 18 18 0 2473 887 3 MP
XPP
X18 0 0 18 2473 887 3 MP
XPP
X0 18 18 0 2473 905 3 MP
XPP
X18 0 0 18 2473 905 3 MP
XPP
X0 18 18 0 2473 923 3 MP
XPP
X18 0 0 18 2473 923 3 MP
XPP
X0 18 18 0 2473 941 3 MP
XPP
X18 0 0 18 2473 941 3 MP
XPP
X0 17 18 0 2473 959 3 MP
XPP
X18 0 0 17 2473 959 3 MP
XPP
X0 18 18 0 2473 976 3 MP
XPP
X18 0 0 18 2473 976 3 MP
XPP
X0 18 18 0 2473 994 3 MP
XPP
X18 0 0 18 2473 994 3 MP
XPP
X0 18 18 0 2473 1012 3 MP
XPP
X18 0 0 18 2473 1012 3 MP
XPP
X0 18 18 0 2473 1030 3 MP
XPP
X18 0 0 18 2473 1030 3 MP
XPP
X0 18 18 0 2473 1048 3 MP
XPP
X18 0 0 18 2473 1048 3 MP
XPP
X0 17 18 0 2473 1066 3 MP
XPP
X18 0 0 17 2473 1066 3 MP
XPP
X0 18 18 0 2473 1083 3 MP
XPP
X18 0 0 18 2473 1083 3 MP
XPP
X0 18 18 0 2473 1101 3 MP
XPP
X18 0 0 18 2473 1101 3 MP
XPP
X0 18 18 0 2473 1119 3 MP
XPP
X18 0 0 18 2473 1119 3 MP
XPP
X0 18 18 0 2473 1137 3 MP
XPP
X18 0 0 18 2473 1137 3 MP
XPP
X0 18 18 0 2473 1155 3 MP
XPP
X18 0 0 18 2473 1155 3 MP
XPP
X0 17 18 0 2473 1173 3 MP
XPP
X18 0 0 17 2473 1173 3 MP
XPP
X1 sg
X0 18 18 0 2473 1190 3 MP
XPP
X18 0 0 18 2473 1190 3 MP
XPP
X0 18 18 0 2473 1208 3 MP
XPP
X18 0 0 18 2473 1208 3 MP
XPP
X0 18 18 0 2473 1226 3 MP
XPP
X18 0 0 18 2473 1226 3 MP
XPP
X0 18 18 0 2473 1244 3 MP
XPP
X18 0 0 18 2473 1244 3 MP
XPP
X0 17 18 0 2473 1262 3 MP
XPP
X18 0 0 17 2473 1262 3 MP
XPP
X0 18 18 0 2473 1279 3 MP
XPP
X18 0 0 18 2473 1279 3 MP
XPP
X0 18 18 0 2473 1297 3 MP
XPP
X18 0 0 18 2473 1297 3 MP
XPP
X0 18 18 0 2473 1315 3 MP
XPP
X18 0 0 18 2473 1315 3 MP
XPP
X0 18 18 0 2473 1333 3 MP
XPP
X18 0 0 18 2473 1333 3 MP
XPP
X0 18 18 0 2473 1351 3 MP
XPP
X18 0 0 18 2473 1351 3 MP
XPP
X0 17 18 0 2473 1369 3 MP
XPP
X18 0 0 17 2473 1369 3 MP
XPP
X0 18 18 0 2473 1386 3 MP
XPP
X18 0 0 18 2473 1386 3 MP
XPP
X0 18 18 0 2473 1404 3 MP
XPP
X18 0 0 18 2473 1404 3 MP
XPP
X0 18 18 0 2473 1422 3 MP
XPP
X18 0 0 18 2473 1422 3 MP
XPP
X0 18 18 0 2473 1440 3 MP
XPP
X18 0 0 18 2473 1440 3 MP
XPP
X0 18 18 0 2473 1458 3 MP
XPP
X18 0 0 18 2473 1458 3 MP
XPP
X0 17 18 0 2473 1476 3 MP
XPP
X18 0 0 17 2473 1476 3 MP
XPP
X0 18 18 0 2473 1493 3 MP
XPP
X18 0 0 18 2473 1493 3 MP
XPP
X0 18 18 0 2473 1511 3 MP
XPP
X18 0 0 18 2473 1511 3 MP
XPP
X0 18 18 0 2473 1529 3 MP
XPP
X18 0 0 18 2473 1529 3 MP
XPP
X0 18 18 0 2473 1547 3 MP
XPP
X18 0 0 18 2473 1547 3 MP
XPP
X0 18 18 0 2473 1565 3 MP
XPP
X18 0 0 18 2473 1565 3 MP
XPP
X0 17 18 0 2473 1583 3 MP
XPP
X18 0 0 17 2473 1583 3 MP
XPP
X0 18 18 0 2473 1600 3 MP
XPP
X18 0 0 18 2473 1600 3 MP
XPP
X0 18 18 0 2473 1618 3 MP
XPP
X18 0 0 18 2473 1618 3 MP
XPP
X0 18 18 0 2473 1636 3 MP
XPP
X18 0 0 18 2473 1636 3 MP
XPP
X0 18 18 0 2473 1654 3 MP
XPP
X18 0 0 18 2473 1654 3 MP
XPP
X0 18 18 0 2473 1672 3 MP
XPP
X18 0 0 18 2473 1672 3 MP
XPP
X0 17 18 0 2473 1690 3 MP
XPP
X18 0 0 17 2473 1690 3 MP
XPP
X0 18 18 0 2473 1707 3 MP
XPP
X18 0 0 18 2473 1707 3 MP
XPP
X0 sg
X0 18 18 0 2473 1725 3 MP
XPP
X18 0 0 18 2473 1725 3 MP
XPP
X1 sg
X0 18 18 0 2473 1743 3 MP
XPP
X18 0 0 18 2473 1743 3 MP
XPP
X0 18 18 0 2473 1761 3 MP
XPP
X18 0 0 18 2473 1761 3 MP
XPP
X0 18 18 0 2473 1779 3 MP
XPP
X18 0 0 18 2473 1779 3 MP
XPP
X0 17 18 0 2473 1797 3 MP
XPP
X18 0 0 17 2473 1797 3 MP
XPP
X0 18 18 0 2473 1814 3 MP
XPP
X18 0 0 18 2473 1814 3 MP
XPP
X0 18 18 0 2473 1832 3 MP
XPP
X18 0 0 18 2473 1832 3 MP
XPP
X0 18 18 0 2473 1850 3 MP
XPP
X18 0 0 18 2473 1850 3 MP
XPP
X0 18 18 0 2473 1868 3 MP
XPP
X18 0 0 18 2473 1868 3 MP
XPP
X0 18 18 0 2473 1886 3 MP
XPP
X18 0 0 18 2473 1886 3 MP
XPP
X0 17 18 0 2473 1904 3 MP
XPP
X18 0 0 17 2473 1904 3 MP
XPP
X0 18 18 0 2473 1921 3 MP
XPP
X18 0 0 18 2473 1921 3 MP
XPP
X0 18 18 0 2473 1939 3 MP
XPP
X18 0 0 18 2473 1939 3 MP
XPP
X0 18 18 0 2473 1957 3 MP
XPP
X18 0 0 18 2473 1957 3 MP
XPP
X0 18 18 0 2473 1975 3 MP
XPP
X18 0 0 18 2473 1975 3 MP
XPP
X0 18 18 0 2473 1993 3 MP
XPP
X18 0 0 18 2473 1993 3 MP
XPP
X0 17 18 0 2473 2011 3 MP
XPP
X18 0 0 17 2473 2011 3 MP
XPP
X0 18 18 0 2473 2028 3 MP
XPP
X18 0 0 18 2473 2028 3 MP
XPP
X0 18 18 0 2473 2046 3 MP
XPP
X18 0 0 18 2473 2046 3 MP
XPP
X0 18 18 0 2473 2064 3 MP
XPP
X18 0 0 18 2473 2064 3 MP
XPP
X0 18 18 0 2473 2082 3 MP
XPP
X18 0 0 18 2473 2082 3 MP
XPP
X0 18 18 0 2473 2100 3 MP
XPP
X18 0 0 18 2473 2100 3 MP
XPP
X0 17 18 0 2473 2118 3 MP
XPP
X18 0 0 17 2473 2118 3 MP
XPP
X0 18 18 0 2473 2135 3 MP
XPP
X18 0 0 18 2473 2135 3 MP
XPP
X0 18 18 0 2473 2153 3 MP
XPP
X18 0 0 18 2473 2153 3 MP
XPP
X0 18 18 0 2491 388 3 MP
XPP
X18 0 0 18 2491 388 3 MP
XPP
X0 18 18 0 2491 406 3 MP
XPP
X18 0 0 18 2491 406 3 MP
XPP
X0 17 18 0 2491 424 3 MP
XPP
X18 0 0 17 2491 424 3 MP
XPP
X0 18 18 0 2491 441 3 MP
XPP
X18 0 0 18 2491 441 3 MP
XPP
X0.746032 sg
X0 18 18 0 2491 459 3 MP
XPP
X18 0 0 18 2491 459 3 MP
XPP
X0 18 18 0 2491 477 3 MP
XPP
X18 0 0 18 2491 477 3 MP
XPP
X0 18 18 0 2491 495 3 MP
XPP
X18 0 0 18 2491 495 3 MP
XPP
X0 18 18 0 2491 513 3 MP
XPP
X18 0 0 18 2491 513 3 MP
XPP
X0 17 18 0 2491 531 3 MP
XPP
X18 0 0 17 2491 531 3 MP
XPP
X0 18 18 0 2491 548 3 MP
XPP
X18 0 0 18 2491 548 3 MP
XPP
X0 18 18 0 2491 566 3 MP
XPP
X18 0 0 18 2491 566 3 MP
XPP
X0 18 18 0 2491 584 3 MP
XPP
X18 0 0 18 2491 584 3 MP
XPP
X0 18 18 0 2491 602 3 MP
XPP
X18 0 0 18 2491 602 3 MP
XPP
X0 18 18 0 2491 620 3 MP
XPP
X18 0 0 18 2491 620 3 MP
XPP
X0 17 18 0 2491 638 3 MP
XPP
X18 0 0 17 2491 638 3 MP
XPP
X0 18 18 0 2491 655 3 MP
XPP
X18 0 0 18 2491 655 3 MP
XPP
X0 18 18 0 2491 673 3 MP
XPP
X18 0 0 18 2491 673 3 MP
XPP
X0 18 18 0 2491 691 3 MP
XPP
X18 0 0 18 2491 691 3 MP
XPP
X0 18 18 0 2491 709 3 MP
XPP
X18 0 0 18 2491 709 3 MP
XPP
X0 18 18 0 2491 727 3 MP
XPP
X18 0 0 18 2491 727 3 MP
XPP
X0 17 18 0 2491 745 3 MP
XPP
X18 0 0 17 2491 745 3 MP
XPP
X0 18 18 0 2491 762 3 MP
XPP
X18 0 0 18 2491 762 3 MP
XPP
X0 18 18 0 2491 780 3 MP
XPP
X18 0 0 18 2491 780 3 MP
XPP
X0.492063 sg
X0 18 18 0 2491 798 3 MP
XPP
X18 0 0 18 2491 798 3 MP
XPP
X0 18 18 0 2491 816 3 MP
XPP
X18 0 0 18 2491 816 3 MP
XPP
X0 18 18 0 2491 834 3 MP
XPP
X18 0 0 18 2491 834 3 MP
XPP
X0 17 18 0 2491 852 3 MP
XPP
X18 0 0 17 2491 852 3 MP
XPP
X0 18 18 0 2491 869 3 MP
XPP
X18 0 0 18 2491 869 3 MP
XPP
X0 18 18 0 2491 887 3 MP
XPP
X18 0 0 18 2491 887 3 MP
XPP
X0 18 18 0 2491 905 3 MP
XPP
X18 0 0 18 2491 905 3 MP
XPP
X0 18 18 0 2491 923 3 MP
XPP
X18 0 0 18 2491 923 3 MP
XPP
X0 18 18 0 2491 941 3 MP
XPP
X18 0 0 18 2491 941 3 MP
XPP
X0 17 18 0 2491 959 3 MP
XPP
X18 0 0 17 2491 959 3 MP
XPP
X0 18 18 0 2491 976 3 MP
XPP
X18 0 0 18 2491 976 3 MP
XPP
X0 18 18 0 2491 994 3 MP
XPP
X18 0 0 18 2491 994 3 MP
XPP
X0 18 18 0 2491 1012 3 MP
XPP
X18 0 0 18 2491 1012 3 MP
XPP
X0 18 18 0 2491 1030 3 MP
XPP
X18 0 0 18 2491 1030 3 MP
XPP
X0 18 18 0 2491 1048 3 MP
XPP
X18 0 0 18 2491 1048 3 MP
XPP
X0 17 18 0 2491 1066 3 MP
XPP
X18 0 0 17 2491 1066 3 MP
XPP
X0 18 18 0 2491 1083 3 MP
XPP
X18 0 0 18 2491 1083 3 MP
XPP
X0 18 18 0 2491 1101 3 MP
XPP
X18 0 0 18 2491 1101 3 MP
XPP
X0 18 18 0 2491 1119 3 MP
XPP
X18 0 0 18 2491 1119 3 MP
XPP
X0 18 18 0 2491 1137 3 MP
XPP
X18 0 0 18 2491 1137 3 MP
XPP
X0 18 18 0 2491 1155 3 MP
XPP
X18 0 0 18 2491 1155 3 MP
XPP
X0 17 18 0 2491 1173 3 MP
XPP
X18 0 0 17 2491 1173 3 MP
XPP
X1 sg
X0 18 18 0 2491 1190 3 MP
XPP
X18 0 0 18 2491 1190 3 MP
XPP
X0 18 18 0 2491 1208 3 MP
XPP
X18 0 0 18 2491 1208 3 MP
XPP
X0 18 18 0 2491 1226 3 MP
XPP
X18 0 0 18 2491 1226 3 MP
XPP
X0 18 18 0 2491 1244 3 MP
XPP
X18 0 0 18 2491 1244 3 MP
XPP
X0 17 18 0 2491 1262 3 MP
XPP
X18 0 0 17 2491 1262 3 MP
XPP
X0 18 18 0 2491 1279 3 MP
XPP
X18 0 0 18 2491 1279 3 MP
XPP
X0 18 18 0 2491 1297 3 MP
XPP
X18 0 0 18 2491 1297 3 MP
XPP
X0 18 18 0 2491 1315 3 MP
XPP
X18 0 0 18 2491 1315 3 MP
XPP
X0 18 18 0 2491 1333 3 MP
XPP
X18 0 0 18 2491 1333 3 MP
XPP
X0 18 18 0 2491 1351 3 MP
XPP
X18 0 0 18 2491 1351 3 MP
XPP
X0 17 18 0 2491 1369 3 MP
XPP
X18 0 0 17 2491 1369 3 MP
XPP
X0 18 18 0 2491 1386 3 MP
XPP
X18 0 0 18 2491 1386 3 MP
XPP
X0 18 18 0 2491 1404 3 MP
XPP
X18 0 0 18 2491 1404 3 MP
XPP
X0 18 18 0 2491 1422 3 MP
XPP
X18 0 0 18 2491 1422 3 MP
XPP
X0 18 18 0 2491 1440 3 MP
XPP
X18 0 0 18 2491 1440 3 MP
XPP
X0 18 18 0 2491 1458 3 MP
XPP
X18 0 0 18 2491 1458 3 MP
XPP
X0 17 18 0 2491 1476 3 MP
XPP
X18 0 0 17 2491 1476 3 MP
XPP
X0 18 18 0 2491 1493 3 MP
XPP
X18 0 0 18 2491 1493 3 MP
XPP
X0 18 18 0 2491 1511 3 MP
XPP
X18 0 0 18 2491 1511 3 MP
XPP
X0 18 18 0 2491 1529 3 MP
XPP
X18 0 0 18 2491 1529 3 MP
XPP
X0 18 18 0 2491 1547 3 MP
XPP
X18 0 0 18 2491 1547 3 MP
XPP
X0 18 18 0 2491 1565 3 MP
XPP
X18 0 0 18 2491 1565 3 MP
XPP
X0 17 18 0 2491 1583 3 MP
XPP
X18 0 0 17 2491 1583 3 MP
XPP
X0 18 18 0 2491 1600 3 MP
XPP
X18 0 0 18 2491 1600 3 MP
XPP
X0 18 18 0 2491 1618 3 MP
XPP
X18 0 0 18 2491 1618 3 MP
XPP
X0 18 18 0 2491 1636 3 MP
XPP
X18 0 0 18 2491 1636 3 MP
XPP
X0 18 18 0 2491 1654 3 MP
XPP
X18 0 0 18 2491 1654 3 MP
XPP
X0 18 18 0 2491 1672 3 MP
XPP
X18 0 0 18 2491 1672 3 MP
XPP
X0 17 18 0 2491 1690 3 MP
XPP
X18 0 0 17 2491 1690 3 MP
XPP
X0 18 18 0 2491 1707 3 MP
XPP
X18 0 0 18 2491 1707 3 MP
XPP
X0 sg
X0 18 18 0 2491 1725 3 MP
XPP
X18 0 0 18 2491 1725 3 MP
XPP
X1 sg
X0 18 18 0 2491 1743 3 MP
XPP
X18 0 0 18 2491 1743 3 MP
XPP
X0 18 18 0 2491 1761 3 MP
XPP
X18 0 0 18 2491 1761 3 MP
XPP
X0 18 18 0 2491 1779 3 MP
XPP
X18 0 0 18 2491 1779 3 MP
XPP
X0 17 18 0 2491 1797 3 MP
XPP
X18 0 0 17 2491 1797 3 MP
XPP
X0 18 18 0 2491 1814 3 MP
XPP
X18 0 0 18 2491 1814 3 MP
XPP
X0 18 18 0 2491 1832 3 MP
XPP
X18 0 0 18 2491 1832 3 MP
XPP
X0 18 18 0 2491 1850 3 MP
XPP
X18 0 0 18 2491 1850 3 MP
XPP
X0 18 18 0 2491 1868 3 MP
XPP
X18 0 0 18 2491 1868 3 MP
XPP
X0 18 18 0 2491 1886 3 MP
XPP
X18 0 0 18 2491 1886 3 MP
XPP
X0 17 18 0 2491 1904 3 MP
XPP
X18 0 0 17 2491 1904 3 MP
XPP
X0 18 18 0 2491 1921 3 MP
XPP
X18 0 0 18 2491 1921 3 MP
XPP
X0 18 18 0 2491 1939 3 MP
XPP
X18 0 0 18 2491 1939 3 MP
XPP
X0 18 18 0 2491 1957 3 MP
XPP
X18 0 0 18 2491 1957 3 MP
XPP
X0 18 18 0 2491 1975 3 MP
XPP
X18 0 0 18 2491 1975 3 MP
XPP
X0 18 18 0 2491 1993 3 MP
XPP
X18 0 0 18 2491 1993 3 MP
XPP
X0 17 18 0 2491 2011 3 MP
XPP
X18 0 0 17 2491 2011 3 MP
XPP
X0 18 18 0 2491 2028 3 MP
XPP
X18 0 0 18 2491 2028 3 MP
XPP
X0 18 18 0 2491 2046 3 MP
XPP
X18 0 0 18 2491 2046 3 MP
XPP
X0 18 18 0 2491 2064 3 MP
XPP
X18 0 0 18 2491 2064 3 MP
XPP
X0 18 18 0 2491 2082 3 MP
XPP
X18 0 0 18 2491 2082 3 MP
XPP
X0 18 18 0 2491 2100 3 MP
XPP
X18 0 0 18 2491 2100 3 MP
XPP
X0 17 18 0 2491 2118 3 MP
XPP
X18 0 0 17 2491 2118 3 MP
XPP
X0 18 18 0 2491 2135 3 MP
XPP
X18 0 0 18 2491 2135 3 MP
XPP
X0 18 18 0 2491 2153 3 MP
XPP
X18 0 0 18 2491 2153 3 MP
XPP
X0 18 18 0 2509 388 3 MP
XPP
X18 0 0 18 2509 388 3 MP
XPP
X0 18 18 0 2509 406 3 MP
XPP
X18 0 0 18 2509 406 3 MP
XPP
X0 17 18 0 2509 424 3 MP
XPP
X18 0 0 17 2509 424 3 MP
XPP
X0 18 18 0 2509 441 3 MP
XPP
X18 0 0 18 2509 441 3 MP
XPP
X0.746032 sg
X0 18 18 0 2509 459 3 MP
XPP
X18 0 0 18 2509 459 3 MP
XPP
X0 18 18 0 2509 477 3 MP
XPP
X18 0 0 18 2509 477 3 MP
XPP
X0 18 18 0 2509 495 3 MP
XPP
X18 0 0 18 2509 495 3 MP
XPP
X0 18 18 0 2509 513 3 MP
XPP
X18 0 0 18 2509 513 3 MP
XPP
X0 17 18 0 2509 531 3 MP
XPP
X18 0 0 17 2509 531 3 MP
XPP
X0 18 18 0 2509 548 3 MP
XPP
X18 0 0 18 2509 548 3 MP
XPP
X0 18 18 0 2509 566 3 MP
XPP
X18 0 0 18 2509 566 3 MP
XPP
X0 18 18 0 2509 584 3 MP
XPP
X18 0 0 18 2509 584 3 MP
XPP
X0 18 18 0 2509 602 3 MP
XPP
X18 0 0 18 2509 602 3 MP
XPP
X0 18 18 0 2509 620 3 MP
XPP
X18 0 0 18 2509 620 3 MP
XPP
X0 17 18 0 2509 638 3 MP
XPP
X18 0 0 17 2509 638 3 MP
XPP
X0 18 18 0 2509 655 3 MP
XPP
X18 0 0 18 2509 655 3 MP
XPP
X0 18 18 0 2509 673 3 MP
XPP
X18 0 0 18 2509 673 3 MP
XPP
X0 18 18 0 2509 691 3 MP
XPP
X18 0 0 18 2509 691 3 MP
XPP
X0 18 18 0 2509 709 3 MP
XPP
X18 0 0 18 2509 709 3 MP
XPP
X0 18 18 0 2509 727 3 MP
XPP
X18 0 0 18 2509 727 3 MP
XPP
X0 17 18 0 2509 745 3 MP
XPP
X18 0 0 17 2509 745 3 MP
XPP
X0 18 18 0 2509 762 3 MP
XPP
X18 0 0 18 2509 762 3 MP
XPP
X0 18 18 0 2509 780 3 MP
XPP
X18 0 0 18 2509 780 3 MP
XPP
X0.492063 sg
X0 18 18 0 2509 798 3 MP
XPP
X18 0 0 18 2509 798 3 MP
XPP
X0 18 18 0 2509 816 3 MP
XPP
X18 0 0 18 2509 816 3 MP
XPP
X0 18 18 0 2509 834 3 MP
XPP
X18 0 0 18 2509 834 3 MP
XPP
X0 17 18 0 2509 852 3 MP
XPP
X18 0 0 17 2509 852 3 MP
XPP
X0 18 18 0 2509 869 3 MP
XPP
X18 0 0 18 2509 869 3 MP
XPP
X0 18 18 0 2509 887 3 MP
XPP
X18 0 0 18 2509 887 3 MP
XPP
X0 18 18 0 2509 905 3 MP
XPP
X18 0 0 18 2509 905 3 MP
XPP
X0 18 18 0 2509 923 3 MP
XPP
X18 0 0 18 2509 923 3 MP
XPP
X0 18 18 0 2509 941 3 MP
XPP
X18 0 0 18 2509 941 3 MP
XPP
X0 17 18 0 2509 959 3 MP
XPP
X18 0 0 17 2509 959 3 MP
XPP
X0 18 18 0 2509 976 3 MP
XPP
X18 0 0 18 2509 976 3 MP
XPP
X0 18 18 0 2509 994 3 MP
XPP
X18 0 0 18 2509 994 3 MP
XPP
X0 18 18 0 2509 1012 3 MP
XPP
X18 0 0 18 2509 1012 3 MP
XPP
X0 18 18 0 2509 1030 3 MP
XPP
X18 0 0 18 2509 1030 3 MP
XPP
X0 18 18 0 2509 1048 3 MP
XPP
X18 0 0 18 2509 1048 3 MP
XPP
X0 17 18 0 2509 1066 3 MP
XPP
X18 0 0 17 2509 1066 3 MP
XPP
X0 18 18 0 2509 1083 3 MP
XPP
X18 0 0 18 2509 1083 3 MP
XPP
X0 18 18 0 2509 1101 3 MP
XPP
X18 0 0 18 2509 1101 3 MP
XPP
X0 18 18 0 2509 1119 3 MP
XPP
X18 0 0 18 2509 1119 3 MP
XPP
X0 18 18 0 2509 1137 3 MP
XPP
X18 0 0 18 2509 1137 3 MP
XPP
X0 18 18 0 2509 1155 3 MP
XPP
X18 0 0 18 2509 1155 3 MP
XPP
X0 17 18 0 2509 1173 3 MP
XPP
X18 0 0 17 2509 1173 3 MP
XPP
X1 sg
X0 18 18 0 2509 1190 3 MP
XPP
X18 0 0 18 2509 1190 3 MP
XPP
X0 18 18 0 2509 1208 3 MP
XPP
X18 0 0 18 2509 1208 3 MP
XPP
X0 18 18 0 2509 1226 3 MP
XPP
X18 0 0 18 2509 1226 3 MP
XPP
X0 18 18 0 2509 1244 3 MP
XPP
X18 0 0 18 2509 1244 3 MP
XPP
X0 17 18 0 2509 1262 3 MP
XPP
X18 0 0 17 2509 1262 3 MP
XPP
X0 18 18 0 2509 1279 3 MP
XPP
X18 0 0 18 2509 1279 3 MP
XPP
X0 18 18 0 2509 1297 3 MP
XPP
X18 0 0 18 2509 1297 3 MP
XPP
X0 18 18 0 2509 1315 3 MP
XPP
X18 0 0 18 2509 1315 3 MP
XPP
X0 18 18 0 2509 1333 3 MP
XPP
X18 0 0 18 2509 1333 3 MP
XPP
X0 18 18 0 2509 1351 3 MP
XPP
X18 0 0 18 2509 1351 3 MP
XPP
X0 17 18 0 2509 1369 3 MP
XPP
X18 0 0 17 2509 1369 3 MP
XPP
X0 18 18 0 2509 1386 3 MP
XPP
X18 0 0 18 2509 1386 3 MP
XPP
X0 18 18 0 2509 1404 3 MP
XPP
X18 0 0 18 2509 1404 3 MP
XPP
X0 18 18 0 2509 1422 3 MP
XPP
X18 0 0 18 2509 1422 3 MP
XPP
X0 18 18 0 2509 1440 3 MP
XPP
X18 0 0 18 2509 1440 3 MP
XPP
X0 18 18 0 2509 1458 3 MP
XPP
X18 0 0 18 2509 1458 3 MP
XPP
X0 17 18 0 2509 1476 3 MP
XPP
X18 0 0 17 2509 1476 3 MP
XPP
X0 18 18 0 2509 1493 3 MP
XPP
X18 0 0 18 2509 1493 3 MP
XPP
X0 18 18 0 2509 1511 3 MP
XPP
X18 0 0 18 2509 1511 3 MP
XPP
X0 18 18 0 2509 1529 3 MP
XPP
X18 0 0 18 2509 1529 3 MP
XPP
X0 18 18 0 2509 1547 3 MP
XPP
X18 0 0 18 2509 1547 3 MP
XPP
X0 18 18 0 2509 1565 3 MP
XPP
X18 0 0 18 2509 1565 3 MP
XPP
X0 17 18 0 2509 1583 3 MP
XPP
X18 0 0 17 2509 1583 3 MP
XPP
X0 18 18 0 2509 1600 3 MP
XPP
X18 0 0 18 2509 1600 3 MP
XPP
X0 18 18 0 2509 1618 3 MP
XPP
X18 0 0 18 2509 1618 3 MP
XPP
X0 18 18 0 2509 1636 3 MP
XPP
X18 0 0 18 2509 1636 3 MP
XPP
X0 18 18 0 2509 1654 3 MP
XPP
X18 0 0 18 2509 1654 3 MP
XPP
X0 18 18 0 2509 1672 3 MP
XPP
X18 0 0 18 2509 1672 3 MP
XPP
X0 17 18 0 2509 1690 3 MP
XPP
X18 0 0 17 2509 1690 3 MP
XPP
X0 18 18 0 2509 1707 3 MP
XPP
X18 0 0 18 2509 1707 3 MP
XPP
X0 sg
X0 18 18 0 2509 1725 3 MP
XPP
X18 0 0 18 2509 1725 3 MP
XPP
X1 sg
X0 18 18 0 2509 1743 3 MP
XPP
X18 0 0 18 2509 1743 3 MP
XPP
X0 18 18 0 2509 1761 3 MP
XPP
X18 0 0 18 2509 1761 3 MP
XPP
X0 18 18 0 2509 1779 3 MP
XPP
X18 0 0 18 2509 1779 3 MP
XPP
X0 17 18 0 2509 1797 3 MP
XPP
X18 0 0 17 2509 1797 3 MP
XPP
X0 18 18 0 2509 1814 3 MP
XPP
X18 0 0 18 2509 1814 3 MP
XPP
X0 18 18 0 2509 1832 3 MP
XPP
X18 0 0 18 2509 1832 3 MP
XPP
X0 18 18 0 2509 1850 3 MP
XPP
X18 0 0 18 2509 1850 3 MP
XPP
X0 18 18 0 2509 1868 3 MP
XPP
X18 0 0 18 2509 1868 3 MP
XPP
X0 18 18 0 2509 1886 3 MP
XPP
X18 0 0 18 2509 1886 3 MP
XPP
X0 17 18 0 2509 1904 3 MP
XPP
X18 0 0 17 2509 1904 3 MP
XPP
X0 18 18 0 2509 1921 3 MP
XPP
X18 0 0 18 2509 1921 3 MP
XPP
X0 18 18 0 2509 1939 3 MP
XPP
X18 0 0 18 2509 1939 3 MP
XPP
X0 18 18 0 2509 1957 3 MP
XPP
X18 0 0 18 2509 1957 3 MP
XPP
X0 18 18 0 2509 1975 3 MP
XPP
X18 0 0 18 2509 1975 3 MP
XPP
X0 18 18 0 2509 1993 3 MP
XPP
X18 0 0 18 2509 1993 3 MP
XPP
X0 17 18 0 2509 2011 3 MP
XPP
X18 0 0 17 2509 2011 3 MP
XPP
X0 18 18 0 2509 2028 3 MP
XPP
X18 0 0 18 2509 2028 3 MP
XPP
X0 18 18 0 2509 2046 3 MP
XPP
X18 0 0 18 2509 2046 3 MP
XPP
X0 18 18 0 2509 2064 3 MP
XPP
X18 0 0 18 2509 2064 3 MP
XPP
X0 18 18 0 2509 2082 3 MP
XPP
X18 0 0 18 2509 2082 3 MP
XPP
X0 18 18 0 2509 2100 3 MP
XPP
X18 0 0 18 2509 2100 3 MP
XPP
X0 17 18 0 2509 2118 3 MP
XPP
X18 0 0 17 2509 2118 3 MP
XPP
X0 18 18 0 2509 2135 3 MP
XPP
X18 0 0 18 2509 2135 3 MP
XPP
X0 18 18 0 2509 2153 3 MP
XPP
X18 0 0 18 2509 2153 3 MP
XPP
X0 18 18 0 2527 388 3 MP
XPP
X18 0 0 18 2527 388 3 MP
XPP
X0 18 18 0 2527 406 3 MP
XPP
X18 0 0 18 2527 406 3 MP
XPP
X0 17 18 0 2527 424 3 MP
XPP
X18 0 0 17 2527 424 3 MP
XPP
X0 18 18 0 2527 441 3 MP
XPP
X18 0 0 18 2527 441 3 MP
XPP
X0.746032 sg
X0 18 18 0 2527 459 3 MP
XPP
X18 0 0 18 2527 459 3 MP
XPP
X0 18 18 0 2527 477 3 MP
XPP
X18 0 0 18 2527 477 3 MP
XPP
X0 18 18 0 2527 495 3 MP
XPP
X18 0 0 18 2527 495 3 MP
XPP
X0 18 18 0 2527 513 3 MP
XPP
X18 0 0 18 2527 513 3 MP
XPP
X0 17 18 0 2527 531 3 MP
XPP
X18 0 0 17 2527 531 3 MP
XPP
X0 18 18 0 2527 548 3 MP
XPP
X18 0 0 18 2527 548 3 MP
XPP
X0 18 18 0 2527 566 3 MP
XPP
X18 0 0 18 2527 566 3 MP
XPP
X0 18 18 0 2527 584 3 MP
XPP
X18 0 0 18 2527 584 3 MP
XPP
X0 18 18 0 2527 602 3 MP
XPP
X18 0 0 18 2527 602 3 MP
XPP
X0 18 18 0 2527 620 3 MP
XPP
X18 0 0 18 2527 620 3 MP
XPP
X0 17 18 0 2527 638 3 MP
XPP
X18 0 0 17 2527 638 3 MP
XPP
X0 18 18 0 2527 655 3 MP
XPP
X18 0 0 18 2527 655 3 MP
XPP
X0 18 18 0 2527 673 3 MP
XPP
X18 0 0 18 2527 673 3 MP
XPP
X0 18 18 0 2527 691 3 MP
XPP
X18 0 0 18 2527 691 3 MP
XPP
X0 18 18 0 2527 709 3 MP
XPP
X18 0 0 18 2527 709 3 MP
XPP
X0 18 18 0 2527 727 3 MP
XPP
X18 0 0 18 2527 727 3 MP
XPP
X0 17 18 0 2527 745 3 MP
XPP
X18 0 0 17 2527 745 3 MP
XPP
X0 18 18 0 2527 762 3 MP
XPP
X18 0 0 18 2527 762 3 MP
XPP
X0 18 18 0 2527 780 3 MP
XPP
X18 0 0 18 2527 780 3 MP
XPP
X0.492063 sg
X0 18 18 0 2527 798 3 MP
XPP
X18 0 0 18 2527 798 3 MP
XPP
X0 18 18 0 2527 816 3 MP
XPP
X18 0 0 18 2527 816 3 MP
XPP
X0 18 18 0 2527 834 3 MP
XPP
X18 0 0 18 2527 834 3 MP
XPP
X0 17 18 0 2527 852 3 MP
XPP
X18 0 0 17 2527 852 3 MP
XPP
X0 18 18 0 2527 869 3 MP
XPP
X18 0 0 18 2527 869 3 MP
XPP
X0 18 18 0 2527 887 3 MP
XPP
X18 0 0 18 2527 887 3 MP
XPP
X0 18 18 0 2527 905 3 MP
XPP
X18 0 0 18 2527 905 3 MP
XPP
X0 18 18 0 2527 923 3 MP
XPP
X18 0 0 18 2527 923 3 MP
XPP
X0 18 18 0 2527 941 3 MP
XPP
X18 0 0 18 2527 941 3 MP
XPP
X0 17 18 0 2527 959 3 MP
XPP
X18 0 0 17 2527 959 3 MP
XPP
X0 18 18 0 2527 976 3 MP
XPP
X18 0 0 18 2527 976 3 MP
XPP
X0 18 18 0 2527 994 3 MP
XPP
X18 0 0 18 2527 994 3 MP
XPP
X0 18 18 0 2527 1012 3 MP
XPP
X18 0 0 18 2527 1012 3 MP
XPP
X0 18 18 0 2527 1030 3 MP
XPP
X18 0 0 18 2527 1030 3 MP
XPP
X0 18 18 0 2527 1048 3 MP
XPP
X18 0 0 18 2527 1048 3 MP
XPP
X0 17 18 0 2527 1066 3 MP
XPP
X18 0 0 17 2527 1066 3 MP
XPP
X0 18 18 0 2527 1083 3 MP
XPP
X18 0 0 18 2527 1083 3 MP
XPP
X0 18 18 0 2527 1101 3 MP
XPP
X18 0 0 18 2527 1101 3 MP
XPP
X0 18 18 0 2527 1119 3 MP
XPP
X18 0 0 18 2527 1119 3 MP
XPP
X0 18 18 0 2527 1137 3 MP
XPP
X18 0 0 18 2527 1137 3 MP
XPP
X0 18 18 0 2527 1155 3 MP
XPP
X18 0 0 18 2527 1155 3 MP
XPP
X0 17 18 0 2527 1173 3 MP
XPP
X18 0 0 17 2527 1173 3 MP
XPP
X1 sg
X0 18 18 0 2527 1190 3 MP
XPP
X18 0 0 18 2527 1190 3 MP
XPP
X0 18 18 0 2527 1208 3 MP
XPP
X18 0 0 18 2527 1208 3 MP
XPP
X0 18 18 0 2527 1226 3 MP
XPP
X18 0 0 18 2527 1226 3 MP
XPP
X0 18 18 0 2527 1244 3 MP
XPP
X18 0 0 18 2527 1244 3 MP
XPP
X0 17 18 0 2527 1262 3 MP
XPP
X18 0 0 17 2527 1262 3 MP
XPP
X0 18 18 0 2527 1279 3 MP
XPP
X18 0 0 18 2527 1279 3 MP
XPP
X0 18 18 0 2527 1297 3 MP
XPP
X18 0 0 18 2527 1297 3 MP
XPP
X0 18 18 0 2527 1315 3 MP
XPP
X18 0 0 18 2527 1315 3 MP
XPP
X0 18 18 0 2527 1333 3 MP
XPP
X18 0 0 18 2527 1333 3 MP
XPP
X0 18 18 0 2527 1351 3 MP
XPP
X18 0 0 18 2527 1351 3 MP
XPP
X0 17 18 0 2527 1369 3 MP
XPP
X18 0 0 17 2527 1369 3 MP
XPP
X0 18 18 0 2527 1386 3 MP
XPP
X18 0 0 18 2527 1386 3 MP
XPP
X0 18 18 0 2527 1404 3 MP
XPP
X18 0 0 18 2527 1404 3 MP
XPP
X0 18 18 0 2527 1422 3 MP
XPP
X18 0 0 18 2527 1422 3 MP
XPP
X0 18 18 0 2527 1440 3 MP
XPP
X18 0 0 18 2527 1440 3 MP
XPP
X0 18 18 0 2527 1458 3 MP
XPP
X18 0 0 18 2527 1458 3 MP
XPP
X0 17 18 0 2527 1476 3 MP
XPP
X18 0 0 17 2527 1476 3 MP
XPP
X0 18 18 0 2527 1493 3 MP
XPP
X18 0 0 18 2527 1493 3 MP
XPP
X0 18 18 0 2527 1511 3 MP
XPP
X18 0 0 18 2527 1511 3 MP
XPP
X0 18 18 0 2527 1529 3 MP
XPP
X18 0 0 18 2527 1529 3 MP
XPP
X0 18 18 0 2527 1547 3 MP
XPP
X18 0 0 18 2527 1547 3 MP
XPP
X0 18 18 0 2527 1565 3 MP
XPP
X18 0 0 18 2527 1565 3 MP
XPP
X0 17 18 0 2527 1583 3 MP
XPP
X18 0 0 17 2527 1583 3 MP
XPP
X0 18 18 0 2527 1600 3 MP
XPP
X18 0 0 18 2527 1600 3 MP
XPP
X0 18 18 0 2527 1618 3 MP
XPP
X18 0 0 18 2527 1618 3 MP
XPP
X0 18 18 0 2527 1636 3 MP
XPP
X18 0 0 18 2527 1636 3 MP
XPP
X0 18 18 0 2527 1654 3 MP
XPP
X18 0 0 18 2527 1654 3 MP
XPP
X0 18 18 0 2527 1672 3 MP
XPP
X18 0 0 18 2527 1672 3 MP
XPP
X0 17 18 0 2527 1690 3 MP
XPP
X18 0 0 17 2527 1690 3 MP
XPP
X0 18 18 0 2527 1707 3 MP
XPP
X18 0 0 18 2527 1707 3 MP
XPP
X0 sg
X0 18 18 0 2527 1725 3 MP
XPP
X18 0 0 18 2527 1725 3 MP
XPP
X1 sg
X0 18 18 0 2527 1743 3 MP
XPP
X18 0 0 18 2527 1743 3 MP
XPP
X0 18 18 0 2527 1761 3 MP
XPP
X18 0 0 18 2527 1761 3 MP
XPP
X0 18 18 0 2527 1779 3 MP
XPP
X18 0 0 18 2527 1779 3 MP
XPP
X0 17 18 0 2527 1797 3 MP
XPP
X18 0 0 17 2527 1797 3 MP
XPP
X0 18 18 0 2527 1814 3 MP
XPP
X18 0 0 18 2527 1814 3 MP
XPP
X0 18 18 0 2527 1832 3 MP
XPP
X18 0 0 18 2527 1832 3 MP
XPP
X0 18 18 0 2527 1850 3 MP
XPP
X18 0 0 18 2527 1850 3 MP
XPP
X0 18 18 0 2527 1868 3 MP
XPP
X18 0 0 18 2527 1868 3 MP
XPP
X0 18 18 0 2527 1886 3 MP
XPP
X18 0 0 18 2527 1886 3 MP
XPP
X0 17 18 0 2527 1904 3 MP
XPP
X18 0 0 17 2527 1904 3 MP
XPP
X0 18 18 0 2527 1921 3 MP
XPP
X18 0 0 18 2527 1921 3 MP
XPP
X0 18 18 0 2527 1939 3 MP
XPP
X18 0 0 18 2527 1939 3 MP
XPP
X0 18 18 0 2527 1957 3 MP
XPP
X18 0 0 18 2527 1957 3 MP
XPP
X0 18 18 0 2527 1975 3 MP
XPP
X18 0 0 18 2527 1975 3 MP
XPP
X0 18 18 0 2527 1993 3 MP
XPP
X18 0 0 18 2527 1993 3 MP
XPP
X0 17 18 0 2527 2011 3 MP
XPP
X18 0 0 17 2527 2011 3 MP
XPP
X0 18 18 0 2527 2028 3 MP
XPP
X18 0 0 18 2527 2028 3 MP
XPP
X0 18 18 0 2527 2046 3 MP
XPP
X18 0 0 18 2527 2046 3 MP
XPP
X0 18 18 0 2527 2064 3 MP
XPP
X18 0 0 18 2527 2064 3 MP
XPP
X0 18 18 0 2527 2082 3 MP
XPP
X18 0 0 18 2527 2082 3 MP
XPP
X0 18 18 0 2527 2100 3 MP
XPP
X18 0 0 18 2527 2100 3 MP
XPP
X0 17 18 0 2527 2118 3 MP
XPP
X18 0 0 17 2527 2118 3 MP
XPP
X0 18 18 0 2527 2135 3 MP
XPP
X18 0 0 18 2527 2135 3 MP
XPP
X0 18 18 0 2527 2153 3 MP
XPP
X18 0 0 18 2527 2153 3 MP
XPP
X0 18 17 0 2545 388 3 MP
XPP
X17 0 0 18 2545 388 3 MP
XPP
X0 18 17 0 2545 406 3 MP
XPP
X17 0 0 18 2545 406 3 MP
XPP
X0 17 17 0 2545 424 3 MP
XPP
X17 0 0 17 2545 424 3 MP
XPP
X0 18 17 0 2545 441 3 MP
XPP
X17 0 0 18 2545 441 3 MP
XPP
X0.746032 sg
X0 18 17 0 2545 459 3 MP
XPP
X17 0 0 18 2545 459 3 MP
XPP
X0 18 17 0 2545 477 3 MP
XPP
X17 0 0 18 2545 477 3 MP
XPP
X0 18 17 0 2545 495 3 MP
XPP
X17 0 0 18 2545 495 3 MP
XPP
X0 18 17 0 2545 513 3 MP
XPP
X17 0 0 18 2545 513 3 MP
XPP
X0 17 17 0 2545 531 3 MP
XPP
X17 0 0 17 2545 531 3 MP
XPP
X0 18 17 0 2545 548 3 MP
XPP
X17 0 0 18 2545 548 3 MP
XPP
X0 18 17 0 2545 566 3 MP
XPP
X17 0 0 18 2545 566 3 MP
XPP
X0 18 17 0 2545 584 3 MP
XPP
X17 0 0 18 2545 584 3 MP
XPP
X0 18 17 0 2545 602 3 MP
XPP
X17 0 0 18 2545 602 3 MP
XPP
X0 18 17 0 2545 620 3 MP
XPP
X17 0 0 18 2545 620 3 MP
XPP
X0 17 17 0 2545 638 3 MP
XPP
X17 0 0 17 2545 638 3 MP
XPP
X0 18 17 0 2545 655 3 MP
XPP
X17 0 0 18 2545 655 3 MP
XPP
X0 18 17 0 2545 673 3 MP
XPP
X17 0 0 18 2545 673 3 MP
XPP
X0 18 17 0 2545 691 3 MP
XPP
X17 0 0 18 2545 691 3 MP
XPP
X0 18 17 0 2545 709 3 MP
XPP
X17 0 0 18 2545 709 3 MP
XPP
X0 18 17 0 2545 727 3 MP
XPP
X17 0 0 18 2545 727 3 MP
XPP
X0 17 17 0 2545 745 3 MP
XPP
X17 0 0 17 2545 745 3 MP
XPP
X0 18 17 0 2545 762 3 MP
XPP
X17 0 0 18 2545 762 3 MP
XPP
X0 18 17 0 2545 780 3 MP
XPP
X17 0 0 18 2545 780 3 MP
XPP
X0 18 17 0 2545 798 3 MP
XPP
X17 0 0 18 2545 798 3 MP
XPP
X0.492063 sg
X0 18 17 0 2545 816 3 MP
XPP
X17 0 0 18 2545 816 3 MP
XPP
X0 18 17 0 2545 834 3 MP
XPP
X17 0 0 18 2545 834 3 MP
XPP
X0 17 17 0 2545 852 3 MP
XPP
X17 0 0 17 2545 852 3 MP
XPP
X0 18 17 0 2545 869 3 MP
XPP
X17 0 0 18 2545 869 3 MP
XPP
X0 18 17 0 2545 887 3 MP
XPP
X17 0 0 18 2545 887 3 MP
XPP
X0 18 17 0 2545 905 3 MP
XPP
X17 0 0 18 2545 905 3 MP
XPP
X0 18 17 0 2545 923 3 MP
XPP
X17 0 0 18 2545 923 3 MP
XPP
X0 18 17 0 2545 941 3 MP
XPP
X17 0 0 18 2545 941 3 MP
XPP
X0 17 17 0 2545 959 3 MP
XPP
X17 0 0 17 2545 959 3 MP
XPP
X0 18 17 0 2545 976 3 MP
XPP
X17 0 0 18 2545 976 3 MP
XPP
X0 18 17 0 2545 994 3 MP
XPP
X17 0 0 18 2545 994 3 MP
XPP
X0 18 17 0 2545 1012 3 MP
XPP
X17 0 0 18 2545 1012 3 MP
XPP
X0 18 17 0 2545 1030 3 MP
XPP
X17 0 0 18 2545 1030 3 MP
XPP
X0 18 17 0 2545 1048 3 MP
XPP
X17 0 0 18 2545 1048 3 MP
XPP
X0 17 17 0 2545 1066 3 MP
XPP
X17 0 0 17 2545 1066 3 MP
XPP
X0 18 17 0 2545 1083 3 MP
XPP
X17 0 0 18 2545 1083 3 MP
XPP
X0 18 17 0 2545 1101 3 MP
XPP
X17 0 0 18 2545 1101 3 MP
XPP
X0 18 17 0 2545 1119 3 MP
XPP
X17 0 0 18 2545 1119 3 MP
XPP
X0 18 17 0 2545 1137 3 MP
XPP
X17 0 0 18 2545 1137 3 MP
XPP
X0 18 17 0 2545 1155 3 MP
XPP
X17 0 0 18 2545 1155 3 MP
XPP
X1 sg
X0 17 17 0 2545 1173 3 MP
XPP
X17 0 0 17 2545 1173 3 MP
XPP
X0 18 17 0 2545 1190 3 MP
XPP
X17 0 0 18 2545 1190 3 MP
XPP
X0 18 17 0 2545 1208 3 MP
XPP
X17 0 0 18 2545 1208 3 MP
XPP
X0 18 17 0 2545 1226 3 MP
XPP
X17 0 0 18 2545 1226 3 MP
XPP
X0 18 17 0 2545 1244 3 MP
XPP
X17 0 0 18 2545 1244 3 MP
XPP
X0 17 17 0 2545 1262 3 MP
XPP
X17 0 0 17 2545 1262 3 MP
XPP
X0 18 17 0 2545 1279 3 MP
XPP
X17 0 0 18 2545 1279 3 MP
XPP
X0 18 17 0 2545 1297 3 MP
XPP
X17 0 0 18 2545 1297 3 MP
XPP
X0 18 17 0 2545 1315 3 MP
XPP
X17 0 0 18 2545 1315 3 MP
XPP
X0 18 17 0 2545 1333 3 MP
XPP
X17 0 0 18 2545 1333 3 MP
XPP
X0 18 17 0 2545 1351 3 MP
XPP
X17 0 0 18 2545 1351 3 MP
XPP
X0 17 17 0 2545 1369 3 MP
XPP
X17 0 0 17 2545 1369 3 MP
XPP
X0 18 17 0 2545 1386 3 MP
XPP
X17 0 0 18 2545 1386 3 MP
XPP
X0 18 17 0 2545 1404 3 MP
XPP
X17 0 0 18 2545 1404 3 MP
XPP
X0 18 17 0 2545 1422 3 MP
XPP
X17 0 0 18 2545 1422 3 MP
XPP
X0 18 17 0 2545 1440 3 MP
XPP
X17 0 0 18 2545 1440 3 MP
XPP
X0 18 17 0 2545 1458 3 MP
XPP
X17 0 0 18 2545 1458 3 MP
XPP
X0 17 17 0 2545 1476 3 MP
XPP
X17 0 0 17 2545 1476 3 MP
XPP
X0 18 17 0 2545 1493 3 MP
XPP
X17 0 0 18 2545 1493 3 MP
XPP
X0 18 17 0 2545 1511 3 MP
XPP
X17 0 0 18 2545 1511 3 MP
XPP
X0 18 17 0 2545 1529 3 MP
XPP
X17 0 0 18 2545 1529 3 MP
XPP
X0 18 17 0 2545 1547 3 MP
XPP
X17 0 0 18 2545 1547 3 MP
XPP
X0 18 17 0 2545 1565 3 MP
XPP
X17 0 0 18 2545 1565 3 MP
XPP
X0 17 17 0 2545 1583 3 MP
XPP
X17 0 0 17 2545 1583 3 MP
XPP
X0 18 17 0 2545 1600 3 MP
XPP
X17 0 0 18 2545 1600 3 MP
XPP
X0 18 17 0 2545 1618 3 MP
XPP
X17 0 0 18 2545 1618 3 MP
XPP
X0 18 17 0 2545 1636 3 MP
XPP
X17 0 0 18 2545 1636 3 MP
XPP
X0 18 17 0 2545 1654 3 MP
XPP
X17 0 0 18 2545 1654 3 MP
XPP
X0 18 17 0 2545 1672 3 MP
XPP
X17 0 0 18 2545 1672 3 MP
XPP
X0 17 17 0 2545 1690 3 MP
XPP
X17 0 0 17 2545 1690 3 MP
XPP
X0 18 17 0 2545 1707 3 MP
XPP
X17 0 0 18 2545 1707 3 MP
XPP
X0 sg
X0 18 17 0 2545 1725 3 MP
XPP
X17 0 0 18 2545 1725 3 MP
XPP
X1 sg
X0 18 17 0 2545 1743 3 MP
XPP
X17 0 0 18 2545 1743 3 MP
XPP
X0 18 17 0 2545 1761 3 MP
XPP
X17 0 0 18 2545 1761 3 MP
XPP
X0 18 17 0 2545 1779 3 MP
XPP
X17 0 0 18 2545 1779 3 MP
XPP
X0 17 17 0 2545 1797 3 MP
XPP
X17 0 0 17 2545 1797 3 MP
XPP
X0 18 17 0 2545 1814 3 MP
XPP
X17 0 0 18 2545 1814 3 MP
XPP
X0 18 17 0 2545 1832 3 MP
XPP
X17 0 0 18 2545 1832 3 MP
XPP
X0 18 17 0 2545 1850 3 MP
XPP
X17 0 0 18 2545 1850 3 MP
XPP
X0 18 17 0 2545 1868 3 MP
XPP
X17 0 0 18 2545 1868 3 MP
XPP
X0 18 17 0 2545 1886 3 MP
XPP
X17 0 0 18 2545 1886 3 MP
XPP
X0 17 17 0 2545 1904 3 MP
XPP
X17 0 0 17 2545 1904 3 MP
XPP
X0 18 17 0 2545 1921 3 MP
XPP
X17 0 0 18 2545 1921 3 MP
XPP
X0 18 17 0 2545 1939 3 MP
XPP
X17 0 0 18 2545 1939 3 MP
XPP
X0 18 17 0 2545 1957 3 MP
XPP
X17 0 0 18 2545 1957 3 MP
XPP
X0 18 17 0 2545 1975 3 MP
XPP
X17 0 0 18 2545 1975 3 MP
XPP
X0 18 17 0 2545 1993 3 MP
XPP
X17 0 0 18 2545 1993 3 MP
XPP
X0 17 17 0 2545 2011 3 MP
XPP
X17 0 0 17 2545 2011 3 MP
XPP
X0 18 17 0 2545 2028 3 MP
XPP
X17 0 0 18 2545 2028 3 MP
XPP
X0 18 17 0 2545 2046 3 MP
XPP
X17 0 0 18 2545 2046 3 MP
XPP
X0 18 17 0 2545 2064 3 MP
XPP
X17 0 0 18 2545 2064 3 MP
XPP
X0 18 17 0 2545 2082 3 MP
XPP
X17 0 0 18 2545 2082 3 MP
XPP
X0 18 17 0 2545 2100 3 MP
XPP
X17 0 0 18 2545 2100 3 MP
XPP
X0 17 17 0 2545 2118 3 MP
XPP
X17 0 0 17 2545 2118 3 MP
XPP
X0 18 17 0 2545 2135 3 MP
XPP
X17 0 0 18 2545 2135 3 MP
XPP
X0 18 17 0 2545 2153 3 MP
XPP
X17 0 0 18 2545 2153 3 MP
XPP
X0 18 18 0 2562 388 3 MP
XPP
X18 0 0 18 2562 388 3 MP
XPP
X0 18 18 0 2562 406 3 MP
XPP
X18 0 0 18 2562 406 3 MP
XPP
X0 17 18 0 2562 424 3 MP
XPP
X18 0 0 17 2562 424 3 MP
XPP
X0 18 18 0 2562 441 3 MP
XPP
X18 0 0 18 2562 441 3 MP
XPP
X0 18 18 0 2562 459 3 MP
XPP
X18 0 0 18 2562 459 3 MP
XPP
X0.746032 sg
X0 18 18 0 2562 477 3 MP
XPP
X18 0 0 18 2562 477 3 MP
XPP
X0 18 18 0 2562 495 3 MP
XPP
X18 0 0 18 2562 495 3 MP
XPP
X0 18 18 0 2562 513 3 MP
XPP
X18 0 0 18 2562 513 3 MP
XPP
X0 17 18 0 2562 531 3 MP
XPP
X18 0 0 17 2562 531 3 MP
XPP
X0 18 18 0 2562 548 3 MP
XPP
X18 0 0 18 2562 548 3 MP
XPP
X0 18 18 0 2562 566 3 MP
XPP
X18 0 0 18 2562 566 3 MP
XPP
X0 18 18 0 2562 584 3 MP
XPP
X18 0 0 18 2562 584 3 MP
XPP
X0 18 18 0 2562 602 3 MP
XPP
X18 0 0 18 2562 602 3 MP
XPP
X0 18 18 0 2562 620 3 MP
XPP
X18 0 0 18 2562 620 3 MP
XPP
X0 17 18 0 2562 638 3 MP
XPP
X18 0 0 17 2562 638 3 MP
XPP
X0 18 18 0 2562 655 3 MP
XPP
X18 0 0 18 2562 655 3 MP
XPP
X0 18 18 0 2562 673 3 MP
XPP
X18 0 0 18 2562 673 3 MP
XPP
X0 18 18 0 2562 691 3 MP
XPP
X18 0 0 18 2562 691 3 MP
XPP
X0 18 18 0 2562 709 3 MP
XPP
X18 0 0 18 2562 709 3 MP
XPP
X0 18 18 0 2562 727 3 MP
XPP
X18 0 0 18 2562 727 3 MP
XPP
X0 17 18 0 2562 745 3 MP
XPP
X18 0 0 17 2562 745 3 MP
XPP
X0 18 18 0 2562 762 3 MP
XPP
X18 0 0 18 2562 762 3 MP
XPP
X0 18 18 0 2562 780 3 MP
XPP
X18 0 0 18 2562 780 3 MP
XPP
X0 18 18 0 2562 798 3 MP
XPP
X18 0 0 18 2562 798 3 MP
XPP
X0.492063 sg
X0 18 18 0 2562 816 3 MP
XPP
X18 0 0 18 2562 816 3 MP
XPP
X0 18 18 0 2562 834 3 MP
XPP
X18 0 0 18 2562 834 3 MP
XPP
X0 17 18 0 2562 852 3 MP
XPP
X18 0 0 17 2562 852 3 MP
XPP
X0 18 18 0 2562 869 3 MP
XPP
X18 0 0 18 2562 869 3 MP
XPP
X0 18 18 0 2562 887 3 MP
XPP
X18 0 0 18 2562 887 3 MP
XPP
X0 18 18 0 2562 905 3 MP
XPP
X18 0 0 18 2562 905 3 MP
XPP
X0 18 18 0 2562 923 3 MP
XPP
X18 0 0 18 2562 923 3 MP
XPP
X0 18 18 0 2562 941 3 MP
XPP
X18 0 0 18 2562 941 3 MP
XPP
X0 17 18 0 2562 959 3 MP
XPP
X18 0 0 17 2562 959 3 MP
XPP
X0 18 18 0 2562 976 3 MP
XPP
X18 0 0 18 2562 976 3 MP
XPP
X0 18 18 0 2562 994 3 MP
XPP
X18 0 0 18 2562 994 3 MP
XPP
X0 18 18 0 2562 1012 3 MP
XPP
X18 0 0 18 2562 1012 3 MP
XPP
X0 18 18 0 2562 1030 3 MP
XPP
X18 0 0 18 2562 1030 3 MP
XPP
X0 18 18 0 2562 1048 3 MP
XPP
X18 0 0 18 2562 1048 3 MP
XPP
X0 17 18 0 2562 1066 3 MP
XPP
X18 0 0 17 2562 1066 3 MP
XPP
X0 18 18 0 2562 1083 3 MP
XPP
X18 0 0 18 2562 1083 3 MP
XPP
X0 18 18 0 2562 1101 3 MP
XPP
X18 0 0 18 2562 1101 3 MP
XPP
X0 18 18 0 2562 1119 3 MP
XPP
X18 0 0 18 2562 1119 3 MP
XPP
X0 18 18 0 2562 1137 3 MP
XPP
X18 0 0 18 2562 1137 3 MP
XPP
X0 18 18 0 2562 1155 3 MP
XPP
X18 0 0 18 2562 1155 3 MP
XPP
X1 sg
X0 17 18 0 2562 1173 3 MP
XPP
X18 0 0 17 2562 1173 3 MP
XPP
X0 18 18 0 2562 1190 3 MP
XPP
X18 0 0 18 2562 1190 3 MP
XPP
X0 18 18 0 2562 1208 3 MP
XPP
X18 0 0 18 2562 1208 3 MP
XPP
X0 18 18 0 2562 1226 3 MP
XPP
X18 0 0 18 2562 1226 3 MP
XPP
X0 18 18 0 2562 1244 3 MP
XPP
X18 0 0 18 2562 1244 3 MP
XPP
X0 17 18 0 2562 1262 3 MP
XPP
X18 0 0 17 2562 1262 3 MP
XPP
X0 18 18 0 2562 1279 3 MP
XPP
X18 0 0 18 2562 1279 3 MP
XPP
X0 18 18 0 2562 1297 3 MP
XPP
X18 0 0 18 2562 1297 3 MP
XPP
X0 18 18 0 2562 1315 3 MP
XPP
X18 0 0 18 2562 1315 3 MP
XPP
X0 18 18 0 2562 1333 3 MP
XPP
X18 0 0 18 2562 1333 3 MP
XPP
X0 18 18 0 2562 1351 3 MP
XPP
X18 0 0 18 2562 1351 3 MP
XPP
X0 17 18 0 2562 1369 3 MP
XPP
X18 0 0 17 2562 1369 3 MP
XPP
X0 18 18 0 2562 1386 3 MP
XPP
X18 0 0 18 2562 1386 3 MP
XPP
X0 18 18 0 2562 1404 3 MP
XPP
X18 0 0 18 2562 1404 3 MP
XPP
X0 18 18 0 2562 1422 3 MP
XPP
X18 0 0 18 2562 1422 3 MP
XPP
X0 18 18 0 2562 1440 3 MP
XPP
X18 0 0 18 2562 1440 3 MP
XPP
X0 18 18 0 2562 1458 3 MP
XPP
X18 0 0 18 2562 1458 3 MP
XPP
X0 17 18 0 2562 1476 3 MP
XPP
X18 0 0 17 2562 1476 3 MP
XPP
X0 18 18 0 2562 1493 3 MP
XPP
X18 0 0 18 2562 1493 3 MP
XPP
X0 18 18 0 2562 1511 3 MP
XPP
X18 0 0 18 2562 1511 3 MP
XPP
X0 18 18 0 2562 1529 3 MP
XPP
X18 0 0 18 2562 1529 3 MP
XPP
X0 18 18 0 2562 1547 3 MP
XPP
X18 0 0 18 2562 1547 3 MP
XPP
X0 18 18 0 2562 1565 3 MP
XPP
X18 0 0 18 2562 1565 3 MP
XPP
X0 17 18 0 2562 1583 3 MP
XPP
X18 0 0 17 2562 1583 3 MP
XPP
X0 18 18 0 2562 1600 3 MP
XPP
X18 0 0 18 2562 1600 3 MP
XPP
X0 18 18 0 2562 1618 3 MP
XPP
X18 0 0 18 2562 1618 3 MP
XPP
X0 18 18 0 2562 1636 3 MP
XPP
X18 0 0 18 2562 1636 3 MP
XPP
X0 18 18 0 2562 1654 3 MP
XPP
X18 0 0 18 2562 1654 3 MP
XPP
X0 18 18 0 2562 1672 3 MP
XPP
X18 0 0 18 2562 1672 3 MP
XPP
X0 17 18 0 2562 1690 3 MP
XPP
X18 0 0 17 2562 1690 3 MP
XPP
X0 18 18 0 2562 1707 3 MP
XPP
X18 0 0 18 2562 1707 3 MP
XPP
X0 sg
X0 18 18 0 2562 1725 3 MP
XPP
X18 0 0 18 2562 1725 3 MP
XPP
X1 sg
X0 18 18 0 2562 1743 3 MP
XPP
X18 0 0 18 2562 1743 3 MP
XPP
X0 18 18 0 2562 1761 3 MP
XPP
X18 0 0 18 2562 1761 3 MP
XPP
X0 18 18 0 2562 1779 3 MP
XPP
X18 0 0 18 2562 1779 3 MP
XPP
X0 17 18 0 2562 1797 3 MP
XPP
X18 0 0 17 2562 1797 3 MP
XPP
X0 18 18 0 2562 1814 3 MP
XPP
X18 0 0 18 2562 1814 3 MP
XPP
X0 18 18 0 2562 1832 3 MP
XPP
X18 0 0 18 2562 1832 3 MP
XPP
X0 18 18 0 2562 1850 3 MP
XPP
X18 0 0 18 2562 1850 3 MP
XPP
X0 18 18 0 2562 1868 3 MP
XPP
X18 0 0 18 2562 1868 3 MP
XPP
X0 18 18 0 2562 1886 3 MP
XPP
X18 0 0 18 2562 1886 3 MP
XPP
X0 17 18 0 2562 1904 3 MP
XPP
X18 0 0 17 2562 1904 3 MP
XPP
X0 18 18 0 2562 1921 3 MP
XPP
X18 0 0 18 2562 1921 3 MP
XPP
X0 18 18 0 2562 1939 3 MP
XPP
X18 0 0 18 2562 1939 3 MP
XPP
X0 18 18 0 2562 1957 3 MP
XPP
X18 0 0 18 2562 1957 3 MP
XPP
X0 18 18 0 2562 1975 3 MP
XPP
X18 0 0 18 2562 1975 3 MP
XPP
X0 18 18 0 2562 1993 3 MP
XPP
X18 0 0 18 2562 1993 3 MP
XPP
X0 17 18 0 2562 2011 3 MP
XPP
X18 0 0 17 2562 2011 3 MP
XPP
X0 18 18 0 2562 2028 3 MP
XPP
X18 0 0 18 2562 2028 3 MP
XPP
X0 18 18 0 2562 2046 3 MP
XPP
X18 0 0 18 2562 2046 3 MP
XPP
X0 18 18 0 2562 2064 3 MP
XPP
X18 0 0 18 2562 2064 3 MP
XPP
X0 18 18 0 2562 2082 3 MP
XPP
X18 0 0 18 2562 2082 3 MP
XPP
X0 18 18 0 2562 2100 3 MP
XPP
X18 0 0 18 2562 2100 3 MP
XPP
X0 17 18 0 2562 2118 3 MP
XPP
X18 0 0 17 2562 2118 3 MP
XPP
X0 18 18 0 2562 2135 3 MP
XPP
X18 0 0 18 2562 2135 3 MP
XPP
X0 18 18 0 2562 2153 3 MP
XPP
X18 0 0 18 2562 2153 3 MP
XPP
X0 18 18 0 2580 388 3 MP
XPP
X18 0 0 18 2580 388 3 MP
XPP
X0 18 18 0 2580 406 3 MP
XPP
X18 0 0 18 2580 406 3 MP
XPP
X0 17 18 0 2580 424 3 MP
XPP
X18 0 0 17 2580 424 3 MP
XPP
X0 18 18 0 2580 441 3 MP
XPP
X18 0 0 18 2580 441 3 MP
XPP
X0 18 18 0 2580 459 3 MP
XPP
X18 0 0 18 2580 459 3 MP
XPP
X0.746032 sg
X0 18 18 0 2580 477 3 MP
XPP
X18 0 0 18 2580 477 3 MP
XPP
X0 18 18 0 2580 495 3 MP
XPP
X18 0 0 18 2580 495 3 MP
XPP
X0 18 18 0 2580 513 3 MP
XPP
X18 0 0 18 2580 513 3 MP
XPP
X0 17 18 0 2580 531 3 MP
XPP
X18 0 0 17 2580 531 3 MP
XPP
X0 18 18 0 2580 548 3 MP
XPP
X18 0 0 18 2580 548 3 MP
XPP
X0 18 18 0 2580 566 3 MP
XPP
X18 0 0 18 2580 566 3 MP
XPP
X0 18 18 0 2580 584 3 MP
XPP
X18 0 0 18 2580 584 3 MP
XPP
X0 18 18 0 2580 602 3 MP
XPP
X18 0 0 18 2580 602 3 MP
XPP
X0 18 18 0 2580 620 3 MP
XPP
X18 0 0 18 2580 620 3 MP
XPP
X0 17 18 0 2580 638 3 MP
XPP
X18 0 0 17 2580 638 3 MP
XPP
X0 18 18 0 2580 655 3 MP
XPP
X18 0 0 18 2580 655 3 MP
XPP
X0 18 18 0 2580 673 3 MP
XPP
X18 0 0 18 2580 673 3 MP
XPP
X0 18 18 0 2580 691 3 MP
XPP
X18 0 0 18 2580 691 3 MP
XPP
X0 18 18 0 2580 709 3 MP
XPP
X18 0 0 18 2580 709 3 MP
XPP
X0 18 18 0 2580 727 3 MP
XPP
X18 0 0 18 2580 727 3 MP
XPP
X0 17 18 0 2580 745 3 MP
XPP
X18 0 0 17 2580 745 3 MP
XPP
X0 18 18 0 2580 762 3 MP
XPP
X18 0 0 18 2580 762 3 MP
XPP
X0 18 18 0 2580 780 3 MP
XPP
X18 0 0 18 2580 780 3 MP
XPP
X0 18 18 0 2580 798 3 MP
XPP
X18 0 0 18 2580 798 3 MP
XPP
X0 18 18 0 2580 816 3 MP
XPP
X18 0 0 18 2580 816 3 MP
XPP
X0.492063 sg
X0 18 18 0 2580 834 3 MP
XPP
X18 0 0 18 2580 834 3 MP
XPP
X0 17 18 0 2580 852 3 MP
XPP
X18 0 0 17 2580 852 3 MP
XPP
X0 18 18 0 2580 869 3 MP
XPP
X18 0 0 18 2580 869 3 MP
XPP
X0 18 18 0 2580 887 3 MP
XPP
X18 0 0 18 2580 887 3 MP
XPP
X0 18 18 0 2580 905 3 MP
XPP
X18 0 0 18 2580 905 3 MP
XPP
X0 18 18 0 2580 923 3 MP
XPP
X18 0 0 18 2580 923 3 MP
XPP
X0 18 18 0 2580 941 3 MP
XPP
X18 0 0 18 2580 941 3 MP
XPP
X0 17 18 0 2580 959 3 MP
XPP
X18 0 0 17 2580 959 3 MP
XPP
X0 18 18 0 2580 976 3 MP
XPP
X18 0 0 18 2580 976 3 MP
XPP
X0 18 18 0 2580 994 3 MP
XPP
X18 0 0 18 2580 994 3 MP
XPP
X0 18 18 0 2580 1012 3 MP
XPP
X18 0 0 18 2580 1012 3 MP
XPP
X0 18 18 0 2580 1030 3 MP
XPP
X18 0 0 18 2580 1030 3 MP
XPP
X0 18 18 0 2580 1048 3 MP
XPP
X18 0 0 18 2580 1048 3 MP
XPP
X0 17 18 0 2580 1066 3 MP
XPP
X18 0 0 17 2580 1066 3 MP
XPP
X0 18 18 0 2580 1083 3 MP
XPP
X18 0 0 18 2580 1083 3 MP
XPP
X0 18 18 0 2580 1101 3 MP
XPP
X18 0 0 18 2580 1101 3 MP
XPP
X0 18 18 0 2580 1119 3 MP
XPP
X18 0 0 18 2580 1119 3 MP
XPP
X0 18 18 0 2580 1137 3 MP
XPP
X18 0 0 18 2580 1137 3 MP
XPP
X1 sg
X0 18 18 0 2580 1155 3 MP
XPP
X18 0 0 18 2580 1155 3 MP
XPP
X0 17 18 0 2580 1173 3 MP
XPP
X18 0 0 17 2580 1173 3 MP
XPP
X0 18 18 0 2580 1190 3 MP
XPP
X18 0 0 18 2580 1190 3 MP
XPP
X0 18 18 0 2580 1208 3 MP
XPP
X18 0 0 18 2580 1208 3 MP
XPP
X0 18 18 0 2580 1226 3 MP
XPP
X18 0 0 18 2580 1226 3 MP
XPP
X0 18 18 0 2580 1244 3 MP
XPP
X18 0 0 18 2580 1244 3 MP
XPP
X0 17 18 0 2580 1262 3 MP
XPP
X18 0 0 17 2580 1262 3 MP
XPP
X0 18 18 0 2580 1279 3 MP
XPP
X18 0 0 18 2580 1279 3 MP
XPP
X0 18 18 0 2580 1297 3 MP
XPP
X18 0 0 18 2580 1297 3 MP
XPP
X0 18 18 0 2580 1315 3 MP
XPP
X18 0 0 18 2580 1315 3 MP
XPP
X0 18 18 0 2580 1333 3 MP
XPP
X18 0 0 18 2580 1333 3 MP
XPP
X0 18 18 0 2580 1351 3 MP
XPP
X18 0 0 18 2580 1351 3 MP
XPP
X0 17 18 0 2580 1369 3 MP
XPP
X18 0 0 17 2580 1369 3 MP
XPP
X0 18 18 0 2580 1386 3 MP
XPP
X18 0 0 18 2580 1386 3 MP
XPP
X0 18 18 0 2580 1404 3 MP
XPP
X18 0 0 18 2580 1404 3 MP
XPP
X0 18 18 0 2580 1422 3 MP
XPP
X18 0 0 18 2580 1422 3 MP
XPP
X0 18 18 0 2580 1440 3 MP
XPP
X18 0 0 18 2580 1440 3 MP
XPP
X0 18 18 0 2580 1458 3 MP
XPP
X18 0 0 18 2580 1458 3 MP
XPP
X0 17 18 0 2580 1476 3 MP
XPP
X18 0 0 17 2580 1476 3 MP
XPP
X0 18 18 0 2580 1493 3 MP
XPP
X18 0 0 18 2580 1493 3 MP
XPP
X0 18 18 0 2580 1511 3 MP
XPP
X18 0 0 18 2580 1511 3 MP
XPP
X0 18 18 0 2580 1529 3 MP
XPP
X18 0 0 18 2580 1529 3 MP
XPP
X0 18 18 0 2580 1547 3 MP
XPP
X18 0 0 18 2580 1547 3 MP
XPP
X0 18 18 0 2580 1565 3 MP
XPP
X18 0 0 18 2580 1565 3 MP
XPP
X0 17 18 0 2580 1583 3 MP
XPP
X18 0 0 17 2580 1583 3 MP
XPP
X0 18 18 0 2580 1600 3 MP
XPP
X18 0 0 18 2580 1600 3 MP
XPP
X0 18 18 0 2580 1618 3 MP
XPP
X18 0 0 18 2580 1618 3 MP
XPP
X0 18 18 0 2580 1636 3 MP
XPP
X18 0 0 18 2580 1636 3 MP
XPP
X0 18 18 0 2580 1654 3 MP
XPP
X18 0 0 18 2580 1654 3 MP
XPP
X0 18 18 0 2580 1672 3 MP
XPP
X18 0 0 18 2580 1672 3 MP
XPP
X0 17 18 0 2580 1690 3 MP
XPP
X18 0 0 17 2580 1690 3 MP
XPP
X0 18 18 0 2580 1707 3 MP
XPP
X18 0 0 18 2580 1707 3 MP
XPP
X0 sg
X0 18 18 0 2580 1725 3 MP
XPP
X18 0 0 18 2580 1725 3 MP
XPP
X1 sg
X0 18 18 0 2580 1743 3 MP
XPP
X18 0 0 18 2580 1743 3 MP
XPP
X0 18 18 0 2580 1761 3 MP
XPP
X18 0 0 18 2580 1761 3 MP
XPP
X0 18 18 0 2580 1779 3 MP
XPP
X18 0 0 18 2580 1779 3 MP
XPP
X0 17 18 0 2580 1797 3 MP
XPP
X18 0 0 17 2580 1797 3 MP
XPP
X0 18 18 0 2580 1814 3 MP
XPP
X18 0 0 18 2580 1814 3 MP
XPP
X0 18 18 0 2580 1832 3 MP
XPP
X18 0 0 18 2580 1832 3 MP
XPP
X0 18 18 0 2580 1850 3 MP
XPP
X18 0 0 18 2580 1850 3 MP
XPP
X0 18 18 0 2580 1868 3 MP
XPP
X18 0 0 18 2580 1868 3 MP
XPP
X0 18 18 0 2580 1886 3 MP
XPP
X18 0 0 18 2580 1886 3 MP
XPP
X0 17 18 0 2580 1904 3 MP
XPP
X18 0 0 17 2580 1904 3 MP
XPP
X0 18 18 0 2580 1921 3 MP
XPP
X18 0 0 18 2580 1921 3 MP
XPP
X0 18 18 0 2580 1939 3 MP
XPP
X18 0 0 18 2580 1939 3 MP
XPP
X0 18 18 0 2580 1957 3 MP
XPP
X18 0 0 18 2580 1957 3 MP
XPP
X0 18 18 0 2580 1975 3 MP
XPP
X18 0 0 18 2580 1975 3 MP
XPP
X0 18 18 0 2580 1993 3 MP
XPP
X18 0 0 18 2580 1993 3 MP
XPP
X0 17 18 0 2580 2011 3 MP
XPP
X18 0 0 17 2580 2011 3 MP
XPP
X0 18 18 0 2580 2028 3 MP
XPP
X18 0 0 18 2580 2028 3 MP
XPP
X0 18 18 0 2580 2046 3 MP
XPP
X18 0 0 18 2580 2046 3 MP
XPP
X0 18 18 0 2580 2064 3 MP
XPP
X18 0 0 18 2580 2064 3 MP
XPP
X0 18 18 0 2580 2082 3 MP
XPP
X18 0 0 18 2580 2082 3 MP
XPP
X0 18 18 0 2580 2100 3 MP
XPP
X18 0 0 18 2580 2100 3 MP
XPP
X0 17 18 0 2580 2118 3 MP
XPP
X18 0 0 17 2580 2118 3 MP
XPP
X0 18 18 0 2580 2135 3 MP
XPP
X18 0 0 18 2580 2135 3 MP
XPP
X0 18 18 0 2580 2153 3 MP
XPP
X18 0 0 18 2580 2153 3 MP
XPP
X0 18 18 0 2598 388 3 MP
XPP
X18 0 0 18 2598 388 3 MP
XPP
X0 18 18 0 2598 406 3 MP
XPP
X18 0 0 18 2598 406 3 MP
XPP
X0 17 18 0 2598 424 3 MP
XPP
X18 0 0 17 2598 424 3 MP
XPP
X0 18 18 0 2598 441 3 MP
XPP
X18 0 0 18 2598 441 3 MP
XPP
X0 18 18 0 2598 459 3 MP
XPP
X18 0 0 18 2598 459 3 MP
XPP
X0.746032 sg
X0 18 18 0 2598 477 3 MP
XPP
X18 0 0 18 2598 477 3 MP
XPP
X0 18 18 0 2598 495 3 MP
XPP
X18 0 0 18 2598 495 3 MP
XPP
X0 18 18 0 2598 513 3 MP
XPP
X18 0 0 18 2598 513 3 MP
XPP
X0 17 18 0 2598 531 3 MP
XPP
X18 0 0 17 2598 531 3 MP
XPP
X0 18 18 0 2598 548 3 MP
XPP
X18 0 0 18 2598 548 3 MP
XPP
X0 18 18 0 2598 566 3 MP
XPP
X18 0 0 18 2598 566 3 MP
XPP
X0 18 18 0 2598 584 3 MP
XPP
X18 0 0 18 2598 584 3 MP
XPP
X0 18 18 0 2598 602 3 MP
XPP
X18 0 0 18 2598 602 3 MP
XPP
X0 18 18 0 2598 620 3 MP
XPP
X18 0 0 18 2598 620 3 MP
XPP
X0 17 18 0 2598 638 3 MP
XPP
X18 0 0 17 2598 638 3 MP
XPP
X0 18 18 0 2598 655 3 MP
XPP
X18 0 0 18 2598 655 3 MP
XPP
X0 18 18 0 2598 673 3 MP
XPP
X18 0 0 18 2598 673 3 MP
XPP
X0 18 18 0 2598 691 3 MP
XPP
X18 0 0 18 2598 691 3 MP
XPP
X0 18 18 0 2598 709 3 MP
XPP
X18 0 0 18 2598 709 3 MP
XPP
X0 18 18 0 2598 727 3 MP
XPP
X18 0 0 18 2598 727 3 MP
XPP
X0 17 18 0 2598 745 3 MP
XPP
X18 0 0 17 2598 745 3 MP
XPP
X0 18 18 0 2598 762 3 MP
XPP
X18 0 0 18 2598 762 3 MP
XPP
X0 18 18 0 2598 780 3 MP
XPP
X18 0 0 18 2598 780 3 MP
XPP
X0 18 18 0 2598 798 3 MP
XPP
X18 0 0 18 2598 798 3 MP
XPP
X0 18 18 0 2598 816 3 MP
XPP
X18 0 0 18 2598 816 3 MP
XPP
X0.492063 sg
X0 18 18 0 2598 834 3 MP
XPP
X18 0 0 18 2598 834 3 MP
XPP
X0 17 18 0 2598 852 3 MP
XPP
X18 0 0 17 2598 852 3 MP
XPP
X0 18 18 0 2598 869 3 MP
XPP
X18 0 0 18 2598 869 3 MP
XPP
X0 18 18 0 2598 887 3 MP
XPP
X18 0 0 18 2598 887 3 MP
XPP
X0 18 18 0 2598 905 3 MP
XPP
X18 0 0 18 2598 905 3 MP
XPP
X0 18 18 0 2598 923 3 MP
XPP
X18 0 0 18 2598 923 3 MP
XPP
X0 18 18 0 2598 941 3 MP
XPP
X18 0 0 18 2598 941 3 MP
XPP
X0 17 18 0 2598 959 3 MP
XPP
X18 0 0 17 2598 959 3 MP
XPP
X0 18 18 0 2598 976 3 MP
XPP
X18 0 0 18 2598 976 3 MP
XPP
X0 18 18 0 2598 994 3 MP
XPP
X18 0 0 18 2598 994 3 MP
XPP
X0 18 18 0 2598 1012 3 MP
XPP
X18 0 0 18 2598 1012 3 MP
XPP
X0 18 18 0 2598 1030 3 MP
XPP
X18 0 0 18 2598 1030 3 MP
XPP
X0 18 18 0 2598 1048 3 MP
XPP
X18 0 0 18 2598 1048 3 MP
XPP
X0 17 18 0 2598 1066 3 MP
XPP
X18 0 0 17 2598 1066 3 MP
XPP
X0 18 18 0 2598 1083 3 MP
XPP
X18 0 0 18 2598 1083 3 MP
XPP
X0 18 18 0 2598 1101 3 MP
XPP
X18 0 0 18 2598 1101 3 MP
XPP
X0 18 18 0 2598 1119 3 MP
XPP
X18 0 0 18 2598 1119 3 MP
XPP
X0 18 18 0 2598 1137 3 MP
XPP
X18 0 0 18 2598 1137 3 MP
XPP
X1 sg
X0 18 18 0 2598 1155 3 MP
XPP
X18 0 0 18 2598 1155 3 MP
XPP
X0 17 18 0 2598 1173 3 MP
XPP
X18 0 0 17 2598 1173 3 MP
XPP
X0 18 18 0 2598 1190 3 MP
XPP
X18 0 0 18 2598 1190 3 MP
XPP
X0 18 18 0 2598 1208 3 MP
XPP
X18 0 0 18 2598 1208 3 MP
XPP
X0 18 18 0 2598 1226 3 MP
XPP
X18 0 0 18 2598 1226 3 MP
XPP
X0 18 18 0 2598 1244 3 MP
XPP
X18 0 0 18 2598 1244 3 MP
XPP
X0 17 18 0 2598 1262 3 MP
XPP
X18 0 0 17 2598 1262 3 MP
XPP
X0 18 18 0 2598 1279 3 MP
XPP
X18 0 0 18 2598 1279 3 MP
XPP
X0 18 18 0 2598 1297 3 MP
XPP
X18 0 0 18 2598 1297 3 MP
XPP
X0 18 18 0 2598 1315 3 MP
XPP
X18 0 0 18 2598 1315 3 MP
XPP
X0 18 18 0 2598 1333 3 MP
XPP
X18 0 0 18 2598 1333 3 MP
XPP
X0 18 18 0 2598 1351 3 MP
XPP
X18 0 0 18 2598 1351 3 MP
XPP
X0 17 18 0 2598 1369 3 MP
XPP
X18 0 0 17 2598 1369 3 MP
XPP
X0 18 18 0 2598 1386 3 MP
XPP
X18 0 0 18 2598 1386 3 MP
XPP
X0 18 18 0 2598 1404 3 MP
XPP
X18 0 0 18 2598 1404 3 MP
XPP
X0 18 18 0 2598 1422 3 MP
XPP
X18 0 0 18 2598 1422 3 MP
XPP
X0 18 18 0 2598 1440 3 MP
XPP
X18 0 0 18 2598 1440 3 MP
XPP
X0 18 18 0 2598 1458 3 MP
XPP
X18 0 0 18 2598 1458 3 MP
XPP
X0 17 18 0 2598 1476 3 MP
XPP
X18 0 0 17 2598 1476 3 MP
XPP
X0 18 18 0 2598 1493 3 MP
XPP
X18 0 0 18 2598 1493 3 MP
XPP
X0 18 18 0 2598 1511 3 MP
XPP
X18 0 0 18 2598 1511 3 MP
XPP
X0 18 18 0 2598 1529 3 MP
XPP
X18 0 0 18 2598 1529 3 MP
XPP
X0 18 18 0 2598 1547 3 MP
XPP
X18 0 0 18 2598 1547 3 MP
XPP
X0 18 18 0 2598 1565 3 MP
XPP
X18 0 0 18 2598 1565 3 MP
XPP
X0 17 18 0 2598 1583 3 MP
XPP
X18 0 0 17 2598 1583 3 MP
XPP
X0 18 18 0 2598 1600 3 MP
XPP
X18 0 0 18 2598 1600 3 MP
XPP
X0 18 18 0 2598 1618 3 MP
XPP
X18 0 0 18 2598 1618 3 MP
XPP
X0 18 18 0 2598 1636 3 MP
XPP
X18 0 0 18 2598 1636 3 MP
XPP
X0 18 18 0 2598 1654 3 MP
XPP
X18 0 0 18 2598 1654 3 MP
XPP
X0 18 18 0 2598 1672 3 MP
XPP
X18 0 0 18 2598 1672 3 MP
XPP
X0 17 18 0 2598 1690 3 MP
XPP
X18 0 0 17 2598 1690 3 MP
XPP
X0 18 18 0 2598 1707 3 MP
XPP
X18 0 0 18 2598 1707 3 MP
XPP
X0 sg
X0 18 18 0 2598 1725 3 MP
XPP
X18 0 0 18 2598 1725 3 MP
XPP
X1 sg
X0 18 18 0 2598 1743 3 MP
XPP
X18 0 0 18 2598 1743 3 MP
XPP
X0 18 18 0 2598 1761 3 MP
XPP
X18 0 0 18 2598 1761 3 MP
XPP
X0 18 18 0 2598 1779 3 MP
XPP
X18 0 0 18 2598 1779 3 MP
XPP
X0 17 18 0 2598 1797 3 MP
XPP
X18 0 0 17 2598 1797 3 MP
XPP
X0 18 18 0 2598 1814 3 MP
XPP
X18 0 0 18 2598 1814 3 MP
XPP
X0 18 18 0 2598 1832 3 MP
XPP
X18 0 0 18 2598 1832 3 MP
XPP
X0 18 18 0 2598 1850 3 MP
XPP
X18 0 0 18 2598 1850 3 MP
XPP
X0 18 18 0 2598 1868 3 MP
XPP
X18 0 0 18 2598 1868 3 MP
XPP
X0 18 18 0 2598 1886 3 MP
XPP
X18 0 0 18 2598 1886 3 MP
XPP
X0 17 18 0 2598 1904 3 MP
XPP
X18 0 0 17 2598 1904 3 MP
XPP
X0 18 18 0 2598 1921 3 MP
XPP
X18 0 0 18 2598 1921 3 MP
XPP
X0 18 18 0 2598 1939 3 MP
XPP
X18 0 0 18 2598 1939 3 MP
XPP
X0 18 18 0 2598 1957 3 MP
XPP
X18 0 0 18 2598 1957 3 MP
XPP
X0 18 18 0 2598 1975 3 MP
XPP
X18 0 0 18 2598 1975 3 MP
XPP
X0 18 18 0 2598 1993 3 MP
XPP
X18 0 0 18 2598 1993 3 MP
XPP
X0 17 18 0 2598 2011 3 MP
XPP
X18 0 0 17 2598 2011 3 MP
XPP
X0 18 18 0 2598 2028 3 MP
XPP
X18 0 0 18 2598 2028 3 MP
XPP
X0 18 18 0 2598 2046 3 MP
XPP
X18 0 0 18 2598 2046 3 MP
XPP
X0 18 18 0 2598 2064 3 MP
XPP
X18 0 0 18 2598 2064 3 MP
XPP
X0 18 18 0 2598 2082 3 MP
XPP
X18 0 0 18 2598 2082 3 MP
XPP
X0 18 18 0 2598 2100 3 MP
XPP
X18 0 0 18 2598 2100 3 MP
XPP
X0 17 18 0 2598 2118 3 MP
XPP
X18 0 0 17 2598 2118 3 MP
XPP
X0 18 18 0 2598 2135 3 MP
XPP
X18 0 0 18 2598 2135 3 MP
XPP
X0 18 18 0 2598 2153 3 MP
XPP
X18 0 0 18 2598 2153 3 MP
XPP
X0 18 18 0 2616 388 3 MP
XPP
X18 0 0 18 2616 388 3 MP
XPP
X0 18 18 0 2616 406 3 MP
XPP
X18 0 0 18 2616 406 3 MP
XPP
X0 17 18 0 2616 424 3 MP
XPP
X18 0 0 17 2616 424 3 MP
XPP
X0 18 18 0 2616 441 3 MP
XPP
X18 0 0 18 2616 441 3 MP
XPP
X0 18 18 0 2616 459 3 MP
XPP
X18 0 0 18 2616 459 3 MP
XPP
X0 18 18 0 2616 477 3 MP
XPP
X18 0 0 18 2616 477 3 MP
XPP
X0.746032 sg
X0 18 18 0 2616 495 3 MP
XPP
X18 0 0 18 2616 495 3 MP
XPP
X0 18 18 0 2616 513 3 MP
XPP
X18 0 0 18 2616 513 3 MP
XPP
X0 17 18 0 2616 531 3 MP
XPP
X18 0 0 17 2616 531 3 MP
XPP
X0 18 18 0 2616 548 3 MP
XPP
X18 0 0 18 2616 548 3 MP
XPP
X0 18 18 0 2616 566 3 MP
XPP
X18 0 0 18 2616 566 3 MP
XPP
X0 18 18 0 2616 584 3 MP
XPP
X18 0 0 18 2616 584 3 MP
XPP
X0 18 18 0 2616 602 3 MP
XPP
X18 0 0 18 2616 602 3 MP
XPP
X0 18 18 0 2616 620 3 MP
XPP
X18 0 0 18 2616 620 3 MP
XPP
X0 17 18 0 2616 638 3 MP
XPP
X18 0 0 17 2616 638 3 MP
XPP
X0 18 18 0 2616 655 3 MP
XPP
X18 0 0 18 2616 655 3 MP
XPP
X0 18 18 0 2616 673 3 MP
XPP
X18 0 0 18 2616 673 3 MP
XPP
X0 18 18 0 2616 691 3 MP
XPP
X18 0 0 18 2616 691 3 MP
XPP
X0 18 18 0 2616 709 3 MP
XPP
X18 0 0 18 2616 709 3 MP
XPP
X0 18 18 0 2616 727 3 MP
XPP
X18 0 0 18 2616 727 3 MP
XPP
X0 17 18 0 2616 745 3 MP
XPP
X18 0 0 17 2616 745 3 MP
XPP
X0 18 18 0 2616 762 3 MP
XPP
X18 0 0 18 2616 762 3 MP
XPP
X0 18 18 0 2616 780 3 MP
XPP
X18 0 0 18 2616 780 3 MP
XPP
X0 18 18 0 2616 798 3 MP
XPP
X18 0 0 18 2616 798 3 MP
XPP
X0 18 18 0 2616 816 3 MP
XPP
X18 0 0 18 2616 816 3 MP
XPP
X0 18 18 0 2616 834 3 MP
XPP
X18 0 0 18 2616 834 3 MP
XPP
X0.492063 sg
X0 17 18 0 2616 852 3 MP
XPP
X18 0 0 17 2616 852 3 MP
XPP
X0 18 18 0 2616 869 3 MP
XPP
X18 0 0 18 2616 869 3 MP
XPP
X0 18 18 0 2616 887 3 MP
XPP
X18 0 0 18 2616 887 3 MP
XPP
X0 18 18 0 2616 905 3 MP
XPP
X18 0 0 18 2616 905 3 MP
XPP
X0 18 18 0 2616 923 3 MP
XPP
X18 0 0 18 2616 923 3 MP
XPP
X0 18 18 0 2616 941 3 MP
XPP
X18 0 0 18 2616 941 3 MP
XPP
X0 17 18 0 2616 959 3 MP
XPP
X18 0 0 17 2616 959 3 MP
XPP
X0 18 18 0 2616 976 3 MP
XPP
X18 0 0 18 2616 976 3 MP
XPP
X0 18 18 0 2616 994 3 MP
XPP
X18 0 0 18 2616 994 3 MP
XPP
X0 18 18 0 2616 1012 3 MP
XPP
X18 0 0 18 2616 1012 3 MP
XPP
X0 18 18 0 2616 1030 3 MP
XPP
X18 0 0 18 2616 1030 3 MP
XPP
X0 18 18 0 2616 1048 3 MP
XPP
X18 0 0 18 2616 1048 3 MP
XPP
X0 17 18 0 2616 1066 3 MP
XPP
X18 0 0 17 2616 1066 3 MP
XPP
X0 18 18 0 2616 1083 3 MP
XPP
X18 0 0 18 2616 1083 3 MP
XPP
X0 18 18 0 2616 1101 3 MP
XPP
X18 0 0 18 2616 1101 3 MP
XPP
X0 18 18 0 2616 1119 3 MP
XPP
X18 0 0 18 2616 1119 3 MP
XPP
X1 sg
X0 18 18 0 2616 1137 3 MP
XPP
X18 0 0 18 2616 1137 3 MP
XPP
X0 18 18 0 2616 1155 3 MP
XPP
X18 0 0 18 2616 1155 3 MP
XPP
X0 17 18 0 2616 1173 3 MP
XPP
X18 0 0 17 2616 1173 3 MP
XPP
X0 18 18 0 2616 1190 3 MP
XPP
X18 0 0 18 2616 1190 3 MP
XPP
X0 18 18 0 2616 1208 3 MP
XPP
X18 0 0 18 2616 1208 3 MP
XPP
X0 18 18 0 2616 1226 3 MP
XPP
X18 0 0 18 2616 1226 3 MP
XPP
X0 18 18 0 2616 1244 3 MP
XPP
X18 0 0 18 2616 1244 3 MP
XPP
X0 17 18 0 2616 1262 3 MP
XPP
X18 0 0 17 2616 1262 3 MP
XPP
X0 18 18 0 2616 1279 3 MP
XPP
X18 0 0 18 2616 1279 3 MP
XPP
X0 18 18 0 2616 1297 3 MP
XPP
X18 0 0 18 2616 1297 3 MP
XPP
X0 18 18 0 2616 1315 3 MP
XPP
X18 0 0 18 2616 1315 3 MP
XPP
X0 18 18 0 2616 1333 3 MP
XPP
X18 0 0 18 2616 1333 3 MP
XPP
X0 18 18 0 2616 1351 3 MP
XPP
X18 0 0 18 2616 1351 3 MP
XPP
X0 17 18 0 2616 1369 3 MP
XPP
X18 0 0 17 2616 1369 3 MP
XPP
X0 18 18 0 2616 1386 3 MP
XPP
X18 0 0 18 2616 1386 3 MP
XPP
X0 18 18 0 2616 1404 3 MP
XPP
X18 0 0 18 2616 1404 3 MP
XPP
X0 18 18 0 2616 1422 3 MP
XPP
X18 0 0 18 2616 1422 3 MP
XPP
X0 18 18 0 2616 1440 3 MP
XPP
X18 0 0 18 2616 1440 3 MP
XPP
X0 18 18 0 2616 1458 3 MP
XPP
X18 0 0 18 2616 1458 3 MP
XPP
X0 17 18 0 2616 1476 3 MP
XPP
X18 0 0 17 2616 1476 3 MP
XPP
X0 18 18 0 2616 1493 3 MP
XPP
X18 0 0 18 2616 1493 3 MP
XPP
X0 18 18 0 2616 1511 3 MP
XPP
X18 0 0 18 2616 1511 3 MP
XPP
X0 18 18 0 2616 1529 3 MP
XPP
X18 0 0 18 2616 1529 3 MP
XPP
X0 18 18 0 2616 1547 3 MP
XPP
X18 0 0 18 2616 1547 3 MP
XPP
X0 18 18 0 2616 1565 3 MP
XPP
X18 0 0 18 2616 1565 3 MP
XPP
X0 17 18 0 2616 1583 3 MP
XPP
X18 0 0 17 2616 1583 3 MP
XPP
X0 18 18 0 2616 1600 3 MP
XPP
X18 0 0 18 2616 1600 3 MP
XPP
X0 18 18 0 2616 1618 3 MP
XPP
X18 0 0 18 2616 1618 3 MP
XPP
X0 18 18 0 2616 1636 3 MP
XPP
X18 0 0 18 2616 1636 3 MP
XPP
X0 18 18 0 2616 1654 3 MP
XPP
X18 0 0 18 2616 1654 3 MP
XPP
X0 18 18 0 2616 1672 3 MP
XPP
X18 0 0 18 2616 1672 3 MP
XPP
X0 17 18 0 2616 1690 3 MP
XPP
X18 0 0 17 2616 1690 3 MP
XPP
X0 18 18 0 2616 1707 3 MP
XPP
X18 0 0 18 2616 1707 3 MP
XPP
X0 sg
X0 18 18 0 2616 1725 3 MP
XPP
X18 0 0 18 2616 1725 3 MP
XPP
X1 sg
X0 18 18 0 2616 1743 3 MP
XPP
X18 0 0 18 2616 1743 3 MP
XPP
X0 18 18 0 2616 1761 3 MP
XPP
X18 0 0 18 2616 1761 3 MP
XPP
X0 18 18 0 2616 1779 3 MP
XPP
X18 0 0 18 2616 1779 3 MP
XPP
X0 17 18 0 2616 1797 3 MP
XPP
X18 0 0 17 2616 1797 3 MP
XPP
X0 18 18 0 2616 1814 3 MP
XPP
X18 0 0 18 2616 1814 3 MP
XPP
X0 18 18 0 2616 1832 3 MP
XPP
X18 0 0 18 2616 1832 3 MP
XPP
X0 18 18 0 2616 1850 3 MP
XPP
X18 0 0 18 2616 1850 3 MP
XPP
X0 18 18 0 2616 1868 3 MP
XPP
X18 0 0 18 2616 1868 3 MP
XPP
X0 18 18 0 2616 1886 3 MP
XPP
X18 0 0 18 2616 1886 3 MP
XPP
X0 17 18 0 2616 1904 3 MP
XPP
X18 0 0 17 2616 1904 3 MP
XPP
X0 18 18 0 2616 1921 3 MP
XPP
X18 0 0 18 2616 1921 3 MP
XPP
X0 18 18 0 2616 1939 3 MP
XPP
X18 0 0 18 2616 1939 3 MP
XPP
X0 18 18 0 2616 1957 3 MP
XPP
X18 0 0 18 2616 1957 3 MP
XPP
X0 18 18 0 2616 1975 3 MP
XPP
X18 0 0 18 2616 1975 3 MP
XPP
X0 18 18 0 2616 1993 3 MP
XPP
X18 0 0 18 2616 1993 3 MP
XPP
X0 17 18 0 2616 2011 3 MP
XPP
X18 0 0 17 2616 2011 3 MP
XPP
X0 18 18 0 2616 2028 3 MP
XPP
X18 0 0 18 2616 2028 3 MP
XPP
X0 18 18 0 2616 2046 3 MP
XPP
X18 0 0 18 2616 2046 3 MP
XPP
X0 18 18 0 2616 2064 3 MP
XPP
X18 0 0 18 2616 2064 3 MP
XPP
X0 18 18 0 2616 2082 3 MP
XPP
X18 0 0 18 2616 2082 3 MP
XPP
X0 18 18 0 2616 2100 3 MP
XPP
X18 0 0 18 2616 2100 3 MP
XPP
X0 17 18 0 2616 2118 3 MP
XPP
X18 0 0 17 2616 2118 3 MP
XPP
X0 18 18 0 2616 2135 3 MP
XPP
X18 0 0 18 2616 2135 3 MP
XPP
X0 18 18 0 2616 2153 3 MP
XPP
X18 0 0 18 2616 2153 3 MP
XPP
X0 18 18 0 2634 388 3 MP
XPP
X18 0 0 18 2634 388 3 MP
XPP
X0 18 18 0 2634 406 3 MP
XPP
X18 0 0 18 2634 406 3 MP
XPP
X0 17 18 0 2634 424 3 MP
XPP
X18 0 0 17 2634 424 3 MP
XPP
X0 18 18 0 2634 441 3 MP
XPP
X18 0 0 18 2634 441 3 MP
XPP
X0 18 18 0 2634 459 3 MP
XPP
X18 0 0 18 2634 459 3 MP
XPP
X0 18 18 0 2634 477 3 MP
XPP
X18 0 0 18 2634 477 3 MP
XPP
X0.746032 sg
X0 18 18 0 2634 495 3 MP
XPP
X18 0 0 18 2634 495 3 MP
XPP
X0 18 18 0 2634 513 3 MP
XPP
X18 0 0 18 2634 513 3 MP
XPP
X0 17 18 0 2634 531 3 MP
XPP
X18 0 0 17 2634 531 3 MP
XPP
X0 18 18 0 2634 548 3 MP
XPP
X18 0 0 18 2634 548 3 MP
XPP
X0 18 18 0 2634 566 3 MP
XPP
X18 0 0 18 2634 566 3 MP
XPP
X0 18 18 0 2634 584 3 MP
XPP
X18 0 0 18 2634 584 3 MP
XPP
X0 18 18 0 2634 602 3 MP
XPP
X18 0 0 18 2634 602 3 MP
XPP
X0 18 18 0 2634 620 3 MP
XPP
X18 0 0 18 2634 620 3 MP
XPP
X0 17 18 0 2634 638 3 MP
XPP
X18 0 0 17 2634 638 3 MP
XPP
X0 18 18 0 2634 655 3 MP
XPP
X18 0 0 18 2634 655 3 MP
XPP
X0 18 18 0 2634 673 3 MP
XPP
X18 0 0 18 2634 673 3 MP
XPP
X0 18 18 0 2634 691 3 MP
XPP
X18 0 0 18 2634 691 3 MP
XPP
X0 18 18 0 2634 709 3 MP
XPP
X18 0 0 18 2634 709 3 MP
XPP
X0 18 18 0 2634 727 3 MP
XPP
X18 0 0 18 2634 727 3 MP
XPP
X0 17 18 0 2634 745 3 MP
XPP
X18 0 0 17 2634 745 3 MP
XPP
X0 18 18 0 2634 762 3 MP
XPP
X18 0 0 18 2634 762 3 MP
XPP
X0 18 18 0 2634 780 3 MP
XPP
X18 0 0 18 2634 780 3 MP
XPP
X0 18 18 0 2634 798 3 MP
XPP
X18 0 0 18 2634 798 3 MP
XPP
X0 18 18 0 2634 816 3 MP
XPP
X18 0 0 18 2634 816 3 MP
XPP
X0 18 18 0 2634 834 3 MP
XPP
X18 0 0 18 2634 834 3 MP
XPP
X0.492063 sg
X0 17 18 0 2634 852 3 MP
XPP
X18 0 0 17 2634 852 3 MP
XPP
X0 18 18 0 2634 869 3 MP
XPP
X18 0 0 18 2634 869 3 MP
XPP
X0 18 18 0 2634 887 3 MP
XPP
X18 0 0 18 2634 887 3 MP
XPP
X0 18 18 0 2634 905 3 MP
XPP
X18 0 0 18 2634 905 3 MP
XPP
X0 18 18 0 2634 923 3 MP
XPP
X18 0 0 18 2634 923 3 MP
XPP
X0 18 18 0 2634 941 3 MP
XPP
X18 0 0 18 2634 941 3 MP
XPP
X0 17 18 0 2634 959 3 MP
XPP
X18 0 0 17 2634 959 3 MP
XPP
X0 18 18 0 2634 976 3 MP
XPP
X18 0 0 18 2634 976 3 MP
XPP
X0 18 18 0 2634 994 3 MP
XPP
X18 0 0 18 2634 994 3 MP
XPP
X0 18 18 0 2634 1012 3 MP
XPP
X18 0 0 18 2634 1012 3 MP
XPP
X0 18 18 0 2634 1030 3 MP
XPP
X18 0 0 18 2634 1030 3 MP
XPP
X0 18 18 0 2634 1048 3 MP
XPP
X18 0 0 18 2634 1048 3 MP
XPP
X0 17 18 0 2634 1066 3 MP
XPP
X18 0 0 17 2634 1066 3 MP
XPP
X0 18 18 0 2634 1083 3 MP
XPP
X18 0 0 18 2634 1083 3 MP
XPP
X0 18 18 0 2634 1101 3 MP
XPP
X18 0 0 18 2634 1101 3 MP
XPP
X0 18 18 0 2634 1119 3 MP
XPP
X18 0 0 18 2634 1119 3 MP
XPP
X1 sg
X0 18 18 0 2634 1137 3 MP
XPP
X18 0 0 18 2634 1137 3 MP
XPP
X0 18 18 0 2634 1155 3 MP
XPP
X18 0 0 18 2634 1155 3 MP
XPP
X0 17 18 0 2634 1173 3 MP
XPP
X18 0 0 17 2634 1173 3 MP
XPP
X0 18 18 0 2634 1190 3 MP
XPP
X18 0 0 18 2634 1190 3 MP
XPP
X0 18 18 0 2634 1208 3 MP
XPP
X18 0 0 18 2634 1208 3 MP
XPP
X0 18 18 0 2634 1226 3 MP
XPP
X18 0 0 18 2634 1226 3 MP
XPP
X0 18 18 0 2634 1244 3 MP
XPP
X18 0 0 18 2634 1244 3 MP
XPP
X0 17 18 0 2634 1262 3 MP
XPP
X18 0 0 17 2634 1262 3 MP
XPP
X0 18 18 0 2634 1279 3 MP
XPP
X18 0 0 18 2634 1279 3 MP
XPP
X0 18 18 0 2634 1297 3 MP
XPP
X18 0 0 18 2634 1297 3 MP
XPP
X0 18 18 0 2634 1315 3 MP
XPP
X18 0 0 18 2634 1315 3 MP
XPP
X0 18 18 0 2634 1333 3 MP
XPP
X18 0 0 18 2634 1333 3 MP
XPP
X0 18 18 0 2634 1351 3 MP
XPP
X18 0 0 18 2634 1351 3 MP
XPP
X0 17 18 0 2634 1369 3 MP
XPP
X18 0 0 17 2634 1369 3 MP
XPP
X0 18 18 0 2634 1386 3 MP
XPP
X18 0 0 18 2634 1386 3 MP
XPP
X0 18 18 0 2634 1404 3 MP
XPP
X18 0 0 18 2634 1404 3 MP
XPP
X0 18 18 0 2634 1422 3 MP
XPP
X18 0 0 18 2634 1422 3 MP
XPP
X0 18 18 0 2634 1440 3 MP
XPP
X18 0 0 18 2634 1440 3 MP
XPP
X0 18 18 0 2634 1458 3 MP
XPP
X18 0 0 18 2634 1458 3 MP
XPP
X0 17 18 0 2634 1476 3 MP
XPP
X18 0 0 17 2634 1476 3 MP
XPP
X0 18 18 0 2634 1493 3 MP
XPP
X18 0 0 18 2634 1493 3 MP
XPP
X0 18 18 0 2634 1511 3 MP
XPP
X18 0 0 18 2634 1511 3 MP
XPP
X0 18 18 0 2634 1529 3 MP
XPP
X18 0 0 18 2634 1529 3 MP
XPP
X0 18 18 0 2634 1547 3 MP
XPP
X18 0 0 18 2634 1547 3 MP
XPP
X0 18 18 0 2634 1565 3 MP
XPP
X18 0 0 18 2634 1565 3 MP
XPP
X0 17 18 0 2634 1583 3 MP
XPP
X18 0 0 17 2634 1583 3 MP
XPP
X0 18 18 0 2634 1600 3 MP
XPP
X18 0 0 18 2634 1600 3 MP
XPP
X0 18 18 0 2634 1618 3 MP
XPP
X18 0 0 18 2634 1618 3 MP
XPP
X0 18 18 0 2634 1636 3 MP
XPP
X18 0 0 18 2634 1636 3 MP
XPP
X0 18 18 0 2634 1654 3 MP
XPP
X18 0 0 18 2634 1654 3 MP
XPP
X0 18 18 0 2634 1672 3 MP
XPP
X18 0 0 18 2634 1672 3 MP
XPP
X0 17 18 0 2634 1690 3 MP
XPP
X18 0 0 17 2634 1690 3 MP
XPP
X0 18 18 0 2634 1707 3 MP
XPP
X18 0 0 18 2634 1707 3 MP
XPP
X0 sg
X0 18 18 0 2634 1725 3 MP
XPP
X18 0 0 18 2634 1725 3 MP
XPP
X1 sg
X0 18 18 0 2634 1743 3 MP
XPP
X18 0 0 18 2634 1743 3 MP
XPP
X0 18 18 0 2634 1761 3 MP
XPP
X18 0 0 18 2634 1761 3 MP
XPP
X0 18 18 0 2634 1779 3 MP
XPP
X18 0 0 18 2634 1779 3 MP
XPP
X0 17 18 0 2634 1797 3 MP
XPP
X18 0 0 17 2634 1797 3 MP
XPP
X0 18 18 0 2634 1814 3 MP
XPP
X18 0 0 18 2634 1814 3 MP
XPP
X0 18 18 0 2634 1832 3 MP
XPP
X18 0 0 18 2634 1832 3 MP
XPP
X0 18 18 0 2634 1850 3 MP
XPP
X18 0 0 18 2634 1850 3 MP
XPP
X0 18 18 0 2634 1868 3 MP
XPP
X18 0 0 18 2634 1868 3 MP
XPP
X0 18 18 0 2634 1886 3 MP
XPP
X18 0 0 18 2634 1886 3 MP
XPP
X0 17 18 0 2634 1904 3 MP
XPP
X18 0 0 17 2634 1904 3 MP
XPP
X0 18 18 0 2634 1921 3 MP
XPP
X18 0 0 18 2634 1921 3 MP
XPP
X0 18 18 0 2634 1939 3 MP
XPP
X18 0 0 18 2634 1939 3 MP
XPP
X0 18 18 0 2634 1957 3 MP
XPP
X18 0 0 18 2634 1957 3 MP
XPP
X0 18 18 0 2634 1975 3 MP
XPP
X18 0 0 18 2634 1975 3 MP
XPP
X0 18 18 0 2634 1993 3 MP
XPP
X18 0 0 18 2634 1993 3 MP
XPP
X0 17 18 0 2634 2011 3 MP
XPP
X18 0 0 17 2634 2011 3 MP
XPP
X0 18 18 0 2634 2028 3 MP
XPP
X18 0 0 18 2634 2028 3 MP
XPP
X0 18 18 0 2634 2046 3 MP
XPP
X18 0 0 18 2634 2046 3 MP
XPP
X0 18 18 0 2634 2064 3 MP
XPP
X18 0 0 18 2634 2064 3 MP
XPP
X0 18 18 0 2634 2082 3 MP
XPP
X18 0 0 18 2634 2082 3 MP
XPP
X0 18 18 0 2634 2100 3 MP
XPP
X18 0 0 18 2634 2100 3 MP
XPP
X0 17 18 0 2634 2118 3 MP
XPP
X18 0 0 17 2634 2118 3 MP
XPP
X0 18 18 0 2634 2135 3 MP
XPP
X18 0 0 18 2634 2135 3 MP
XPP
X0 18 18 0 2634 2153 3 MP
XPP
X18 0 0 18 2634 2153 3 MP
XPP
X0 18 17 0 2652 388 3 MP
XPP
X17 0 0 18 2652 388 3 MP
XPP
X0 18 17 0 2652 406 3 MP
XPP
X17 0 0 18 2652 406 3 MP
XPP
X0 17 17 0 2652 424 3 MP
XPP
X17 0 0 17 2652 424 3 MP
XPP
X0 18 17 0 2652 441 3 MP
XPP
X17 0 0 18 2652 441 3 MP
XPP
X0 18 17 0 2652 459 3 MP
XPP
X17 0 0 18 2652 459 3 MP
XPP
X0 18 17 0 2652 477 3 MP
XPP
X17 0 0 18 2652 477 3 MP
XPP
X0.746032 sg
X0 18 17 0 2652 495 3 MP
XPP
X17 0 0 18 2652 495 3 MP
XPP
X0 18 17 0 2652 513 3 MP
XPP
X17 0 0 18 2652 513 3 MP
XPP
X0 17 17 0 2652 531 3 MP
XPP
X17 0 0 17 2652 531 3 MP
XPP
X0 18 17 0 2652 548 3 MP
XPP
X17 0 0 18 2652 548 3 MP
XPP
X0 18 17 0 2652 566 3 MP
XPP
X17 0 0 18 2652 566 3 MP
XPP
X0 18 17 0 2652 584 3 MP
XPP
X17 0 0 18 2652 584 3 MP
XPP
X0 18 17 0 2652 602 3 MP
XPP
X17 0 0 18 2652 602 3 MP
XPP
X0 18 17 0 2652 620 3 MP
XPP
X17 0 0 18 2652 620 3 MP
XPP
X0 17 17 0 2652 638 3 MP
XPP
X17 0 0 17 2652 638 3 MP
XPP
X0 18 17 0 2652 655 3 MP
XPP
X17 0 0 18 2652 655 3 MP
XPP
X0 18 17 0 2652 673 3 MP
XPP
X17 0 0 18 2652 673 3 MP
XPP
X0 18 17 0 2652 691 3 MP
XPP
X17 0 0 18 2652 691 3 MP
XPP
X0 18 17 0 2652 709 3 MP
XPP
X17 0 0 18 2652 709 3 MP
XPP
X0 18 17 0 2652 727 3 MP
XPP
X17 0 0 18 2652 727 3 MP
XPP
X0 17 17 0 2652 745 3 MP
XPP
X17 0 0 17 2652 745 3 MP
XPP
X0 18 17 0 2652 762 3 MP
XPP
X17 0 0 18 2652 762 3 MP
XPP
X0 18 17 0 2652 780 3 MP
XPP
X17 0 0 18 2652 780 3 MP
XPP
X0 18 17 0 2652 798 3 MP
XPP
X17 0 0 18 2652 798 3 MP
XPP
X0 18 17 0 2652 816 3 MP
XPP
X17 0 0 18 2652 816 3 MP
XPP
X0 18 17 0 2652 834 3 MP
XPP
X17 0 0 18 2652 834 3 MP
XPP
X0 17 17 0 2652 852 3 MP
XPP
X17 0 0 17 2652 852 3 MP
XPP
X0.492063 sg
X0 18 17 0 2652 869 3 MP
XPP
X17 0 0 18 2652 869 3 MP
XPP
X0 18 17 0 2652 887 3 MP
XPP
X17 0 0 18 2652 887 3 MP
XPP
X0 18 17 0 2652 905 3 MP
XPP
X17 0 0 18 2652 905 3 MP
XPP
X0 18 17 0 2652 923 3 MP
XPP
X17 0 0 18 2652 923 3 MP
XPP
X0 18 17 0 2652 941 3 MP
XPP
X17 0 0 18 2652 941 3 MP
XPP
X0 17 17 0 2652 959 3 MP
XPP
X17 0 0 17 2652 959 3 MP
XPP
X0 18 17 0 2652 976 3 MP
XPP
X17 0 0 18 2652 976 3 MP
XPP
X0 18 17 0 2652 994 3 MP
XPP
X17 0 0 18 2652 994 3 MP
XPP
X0 18 17 0 2652 1012 3 MP
XPP
X17 0 0 18 2652 1012 3 MP
XPP
X0 18 17 0 2652 1030 3 MP
XPP
X17 0 0 18 2652 1030 3 MP
XPP
X0 18 17 0 2652 1048 3 MP
XPP
X17 0 0 18 2652 1048 3 MP
XPP
X0 17 17 0 2652 1066 3 MP
XPP
X17 0 0 17 2652 1066 3 MP
XPP
X0 18 17 0 2652 1083 3 MP
XPP
X17 0 0 18 2652 1083 3 MP
XPP
X0 18 17 0 2652 1101 3 MP
XPP
X17 0 0 18 2652 1101 3 MP
XPP
X1 sg
X0 18 17 0 2652 1119 3 MP
XPP
X17 0 0 18 2652 1119 3 MP
XPP
X0 18 17 0 2652 1137 3 MP
XPP
X17 0 0 18 2652 1137 3 MP
XPP
X0 18 17 0 2652 1155 3 MP
XPP
X17 0 0 18 2652 1155 3 MP
XPP
X0 17 17 0 2652 1173 3 MP
XPP
X17 0 0 17 2652 1173 3 MP
XPP
X0 18 17 0 2652 1190 3 MP
XPP
X17 0 0 18 2652 1190 3 MP
XPP
X0 18 17 0 2652 1208 3 MP
XPP
X17 0 0 18 2652 1208 3 MP
XPP
X0 18 17 0 2652 1226 3 MP
XPP
X17 0 0 18 2652 1226 3 MP
XPP
X0 18 17 0 2652 1244 3 MP
XPP
X17 0 0 18 2652 1244 3 MP
XPP
X0 17 17 0 2652 1262 3 MP
XPP
X17 0 0 17 2652 1262 3 MP
XPP
X0 18 17 0 2652 1279 3 MP
XPP
X17 0 0 18 2652 1279 3 MP
XPP
X0 18 17 0 2652 1297 3 MP
XPP
X17 0 0 18 2652 1297 3 MP
XPP
X0 18 17 0 2652 1315 3 MP
XPP
X17 0 0 18 2652 1315 3 MP
XPP
X0 18 17 0 2652 1333 3 MP
XPP
X17 0 0 18 2652 1333 3 MP
XPP
X0 18 17 0 2652 1351 3 MP
XPP
X17 0 0 18 2652 1351 3 MP
XPP
X0 17 17 0 2652 1369 3 MP
XPP
X17 0 0 17 2652 1369 3 MP
XPP
X0 18 17 0 2652 1386 3 MP
XPP
X17 0 0 18 2652 1386 3 MP
XPP
X0 18 17 0 2652 1404 3 MP
XPP
X17 0 0 18 2652 1404 3 MP
XPP
X0 18 17 0 2652 1422 3 MP
XPP
X17 0 0 18 2652 1422 3 MP
XPP
X0 18 17 0 2652 1440 3 MP
XPP
X17 0 0 18 2652 1440 3 MP
XPP
X0 18 17 0 2652 1458 3 MP
XPP
X17 0 0 18 2652 1458 3 MP
XPP
X0 17 17 0 2652 1476 3 MP
XPP
X17 0 0 17 2652 1476 3 MP
XPP
X0 18 17 0 2652 1493 3 MP
XPP
X17 0 0 18 2652 1493 3 MP
XPP
X0 18 17 0 2652 1511 3 MP
XPP
X17 0 0 18 2652 1511 3 MP
XPP
X0 18 17 0 2652 1529 3 MP
XPP
X17 0 0 18 2652 1529 3 MP
XPP
X0 18 17 0 2652 1547 3 MP
XPP
X17 0 0 18 2652 1547 3 MP
XPP
X0 18 17 0 2652 1565 3 MP
XPP
X17 0 0 18 2652 1565 3 MP
XPP
X0 17 17 0 2652 1583 3 MP
XPP
X17 0 0 17 2652 1583 3 MP
XPP
X0 18 17 0 2652 1600 3 MP
XPP
X17 0 0 18 2652 1600 3 MP
XPP
X0 18 17 0 2652 1618 3 MP
XPP
X17 0 0 18 2652 1618 3 MP
XPP
X0 18 17 0 2652 1636 3 MP
XPP
X17 0 0 18 2652 1636 3 MP
XPP
X0 18 17 0 2652 1654 3 MP
XPP
X17 0 0 18 2652 1654 3 MP
XPP
X0 18 17 0 2652 1672 3 MP
XPP
X17 0 0 18 2652 1672 3 MP
XPP
X0 17 17 0 2652 1690 3 MP
XPP
X17 0 0 17 2652 1690 3 MP
XPP
X0 18 17 0 2652 1707 3 MP
XPP
X17 0 0 18 2652 1707 3 MP
XPP
X0 18 17 0 2652 1725 3 MP
XPP
X17 0 0 18 2652 1725 3 MP
XPP
X0 18 17 0 2652 1743 3 MP
XPP
X17 0 0 18 2652 1743 3 MP
XPP
X0 18 17 0 2652 1761 3 MP
XPP
X17 0 0 18 2652 1761 3 MP
XPP
X0 18 17 0 2652 1779 3 MP
XPP
X17 0 0 18 2652 1779 3 MP
XPP
X0 17 17 0 2652 1797 3 MP
XPP
X17 0 0 17 2652 1797 3 MP
XPP
X0 18 17 0 2652 1814 3 MP
XPP
X17 0 0 18 2652 1814 3 MP
XPP
X0 18 17 0 2652 1832 3 MP
XPP
X17 0 0 18 2652 1832 3 MP
XPP
X0 18 17 0 2652 1850 3 MP
XPP
X17 0 0 18 2652 1850 3 MP
XPP
X0 18 17 0 2652 1868 3 MP
XPP
X17 0 0 18 2652 1868 3 MP
XPP
X0 18 17 0 2652 1886 3 MP
XPP
X17 0 0 18 2652 1886 3 MP
XPP
X0 17 17 0 2652 1904 3 MP
XPP
X17 0 0 17 2652 1904 3 MP
XPP
X0 18 17 0 2652 1921 3 MP
XPP
X17 0 0 18 2652 1921 3 MP
XPP
X0 18 17 0 2652 1939 3 MP
XPP
X17 0 0 18 2652 1939 3 MP
XPP
X0 18 17 0 2652 1957 3 MP
XPP
X17 0 0 18 2652 1957 3 MP
XPP
X0 18 17 0 2652 1975 3 MP
XPP
X17 0 0 18 2652 1975 3 MP
XPP
X0 18 17 0 2652 1993 3 MP
XPP
X17 0 0 18 2652 1993 3 MP
XPP
X0 17 17 0 2652 2011 3 MP
XPP
X17 0 0 17 2652 2011 3 MP
XPP
X0 18 17 0 2652 2028 3 MP
XPP
X17 0 0 18 2652 2028 3 MP
XPP
X0 18 17 0 2652 2046 3 MP
XPP
X17 0 0 18 2652 2046 3 MP
XPP
X0 18 17 0 2652 2064 3 MP
XPP
X17 0 0 18 2652 2064 3 MP
XPP
X0 18 17 0 2652 2082 3 MP
XPP
X17 0 0 18 2652 2082 3 MP
XPP
X0 18 17 0 2652 2100 3 MP
XPP
X17 0 0 18 2652 2100 3 MP
XPP
X0 17 17 0 2652 2118 3 MP
XPP
X17 0 0 17 2652 2118 3 MP
XPP
X0 18 17 0 2652 2135 3 MP
XPP
X17 0 0 18 2652 2135 3 MP
XPP
X0 18 17 0 2652 2153 3 MP
XPP
X17 0 0 18 2652 2153 3 MP
XPP
X0 18 18 0 2669 388 3 MP
XPP
X18 0 0 18 2669 388 3 MP
XPP
X0 18 18 0 2669 406 3 MP
XPP
X18 0 0 18 2669 406 3 MP
XPP
X0 17 18 0 2669 424 3 MP
XPP
X18 0 0 17 2669 424 3 MP
XPP
X0 18 18 0 2669 441 3 MP
XPP
X18 0 0 18 2669 441 3 MP
XPP
X0 18 18 0 2669 459 3 MP
XPP
X18 0 0 18 2669 459 3 MP
XPP
X0 18 18 0 2669 477 3 MP
XPP
X18 0 0 18 2669 477 3 MP
XPP
X0 18 18 0 2669 495 3 MP
XPP
X18 0 0 18 2669 495 3 MP
XPP
X0.746032 sg
X0 18 18 0 2669 513 3 MP
XPP
X18 0 0 18 2669 513 3 MP
XPP
X0 17 18 0 2669 531 3 MP
XPP
X18 0 0 17 2669 531 3 MP
XPP
X0 18 18 0 2669 548 3 MP
XPP
X18 0 0 18 2669 548 3 MP
XPP
X0 18 18 0 2669 566 3 MP
XPP
X18 0 0 18 2669 566 3 MP
XPP
X0 18 18 0 2669 584 3 MP
XPP
X18 0 0 18 2669 584 3 MP
XPP
X0 18 18 0 2669 602 3 MP
XPP
X18 0 0 18 2669 602 3 MP
XPP
X0 18 18 0 2669 620 3 MP
XPP
X18 0 0 18 2669 620 3 MP
XPP
X0 17 18 0 2669 638 3 MP
XPP
X18 0 0 17 2669 638 3 MP
XPP
X0 18 18 0 2669 655 3 MP
XPP
X18 0 0 18 2669 655 3 MP
XPP
X0 18 18 0 2669 673 3 MP
XPP
X18 0 0 18 2669 673 3 MP
XPP
X0 18 18 0 2669 691 3 MP
XPP
X18 0 0 18 2669 691 3 MP
XPP
X0 18 18 0 2669 709 3 MP
XPP
X18 0 0 18 2669 709 3 MP
XPP
X0 18 18 0 2669 727 3 MP
XPP
X18 0 0 18 2669 727 3 MP
XPP
X0 17 18 0 2669 745 3 MP
XPP
X18 0 0 17 2669 745 3 MP
XPP
X0 18 18 0 2669 762 3 MP
XPP
X18 0 0 18 2669 762 3 MP
XPP
X0 18 18 0 2669 780 3 MP
XPP
X18 0 0 18 2669 780 3 MP
XPP
X0 18 18 0 2669 798 3 MP
XPP
X18 0 0 18 2669 798 3 MP
XPP
X0 18 18 0 2669 816 3 MP
XPP
X18 0 0 18 2669 816 3 MP
XPP
X0 18 18 0 2669 834 3 MP
XPP
X18 0 0 18 2669 834 3 MP
XPP
X0 17 18 0 2669 852 3 MP
XPP
X18 0 0 17 2669 852 3 MP
XPP
X0 18 18 0 2669 869 3 MP
XPP
X18 0 0 18 2669 869 3 MP
XPP
X0.492063 sg
X0 18 18 0 2669 887 3 MP
XPP
X18 0 0 18 2669 887 3 MP
XPP
X0 18 18 0 2669 905 3 MP
XPP
X18 0 0 18 2669 905 3 MP
XPP
X0 18 18 0 2669 923 3 MP
XPP
X18 0 0 18 2669 923 3 MP
XPP
X0 18 18 0 2669 941 3 MP
XPP
X18 0 0 18 2669 941 3 MP
XPP
X0 17 18 0 2669 959 3 MP
XPP
X18 0 0 17 2669 959 3 MP
XPP
X0 18 18 0 2669 976 3 MP
XPP
X18 0 0 18 2669 976 3 MP
XPP
X0 18 18 0 2669 994 3 MP
XPP
X18 0 0 18 2669 994 3 MP
XPP
X0 18 18 0 2669 1012 3 MP
XPP
X18 0 0 18 2669 1012 3 MP
XPP
X0 18 18 0 2669 1030 3 MP
XPP
X18 0 0 18 2669 1030 3 MP
XPP
X0 18 18 0 2669 1048 3 MP
XPP
X18 0 0 18 2669 1048 3 MP
XPP
X0 17 18 0 2669 1066 3 MP
XPP
X18 0 0 17 2669 1066 3 MP
XPP
X0 18 18 0 2669 1083 3 MP
XPP
X18 0 0 18 2669 1083 3 MP
XPP
X1 sg
X0 18 18 0 2669 1101 3 MP
XPP
X18 0 0 18 2669 1101 3 MP
XPP
X0 18 18 0 2669 1119 3 MP
XPP
X18 0 0 18 2669 1119 3 MP
XPP
X0 18 18 0 2669 1137 3 MP
XPP
X18 0 0 18 2669 1137 3 MP
XPP
X0 18 18 0 2669 1155 3 MP
XPP
X18 0 0 18 2669 1155 3 MP
XPP
X0 17 18 0 2669 1173 3 MP
XPP
X18 0 0 17 2669 1173 3 MP
XPP
X0 18 18 0 2669 1190 3 MP
XPP
X18 0 0 18 2669 1190 3 MP
XPP
X0 18 18 0 2669 1208 3 MP
XPP
X18 0 0 18 2669 1208 3 MP
XPP
X0 18 18 0 2669 1226 3 MP
XPP
X18 0 0 18 2669 1226 3 MP
XPP
X0 18 18 0 2669 1244 3 MP
XPP
X18 0 0 18 2669 1244 3 MP
XPP
X0 17 18 0 2669 1262 3 MP
XPP
X18 0 0 17 2669 1262 3 MP
XPP
X0 18 18 0 2669 1279 3 MP
XPP
X18 0 0 18 2669 1279 3 MP
XPP
X0 18 18 0 2669 1297 3 MP
XPP
X18 0 0 18 2669 1297 3 MP
XPP
X0 18 18 0 2669 1315 3 MP
XPP
X18 0 0 18 2669 1315 3 MP
XPP
X0 18 18 0 2669 1333 3 MP
XPP
X18 0 0 18 2669 1333 3 MP
XPP
X0 18 18 0 2669 1351 3 MP
XPP
X18 0 0 18 2669 1351 3 MP
XPP
X0 17 18 0 2669 1369 3 MP
XPP
X18 0 0 17 2669 1369 3 MP
XPP
X0 18 18 0 2669 1386 3 MP
XPP
X18 0 0 18 2669 1386 3 MP
XPP
X0 18 18 0 2669 1404 3 MP
XPP
X18 0 0 18 2669 1404 3 MP
XPP
X0 18 18 0 2669 1422 3 MP
XPP
X18 0 0 18 2669 1422 3 MP
XPP
X0 18 18 0 2669 1440 3 MP
XPP
X18 0 0 18 2669 1440 3 MP
XPP
X0 18 18 0 2669 1458 3 MP
XPP
X18 0 0 18 2669 1458 3 MP
XPP
X0 17 18 0 2669 1476 3 MP
XPP
X18 0 0 17 2669 1476 3 MP
XPP
X0 18 18 0 2669 1493 3 MP
XPP
X18 0 0 18 2669 1493 3 MP
XPP
X0 18 18 0 2669 1511 3 MP
XPP
X18 0 0 18 2669 1511 3 MP
XPP
X0 18 18 0 2669 1529 3 MP
XPP
X18 0 0 18 2669 1529 3 MP
XPP
X0 18 18 0 2669 1547 3 MP
XPP
X18 0 0 18 2669 1547 3 MP
XPP
X0 18 18 0 2669 1565 3 MP
XPP
X18 0 0 18 2669 1565 3 MP
XPP
X0 17 18 0 2669 1583 3 MP
XPP
X18 0 0 17 2669 1583 3 MP
XPP
X0 18 18 0 2669 1600 3 MP
XPP
X18 0 0 18 2669 1600 3 MP
XPP
X0 18 18 0 2669 1618 3 MP
XPP
X18 0 0 18 2669 1618 3 MP
XPP
X0 18 18 0 2669 1636 3 MP
XPP
X18 0 0 18 2669 1636 3 MP
XPP
X0 18 18 0 2669 1654 3 MP
XPP
X18 0 0 18 2669 1654 3 MP
XPP
X0 18 18 0 2669 1672 3 MP
XPP
X18 0 0 18 2669 1672 3 MP
XPP
X0 17 18 0 2669 1690 3 MP
XPP
X18 0 0 17 2669 1690 3 MP
XPP
X0 18 18 0 2669 1707 3 MP
XPP
X18 0 0 18 2669 1707 3 MP
XPP
X0 18 18 0 2669 1725 3 MP
XPP
X18 0 0 18 2669 1725 3 MP
XPP
X0 18 18 0 2669 1743 3 MP
XPP
X18 0 0 18 2669 1743 3 MP
XPP
X0 18 18 0 2669 1761 3 MP
XPP
X18 0 0 18 2669 1761 3 MP
XPP
X0 18 18 0 2669 1779 3 MP
XPP
X18 0 0 18 2669 1779 3 MP
XPP
X0 17 18 0 2669 1797 3 MP
XPP
X18 0 0 17 2669 1797 3 MP
XPP
X0 18 18 0 2669 1814 3 MP
XPP
X18 0 0 18 2669 1814 3 MP
XPP
X0 18 18 0 2669 1832 3 MP
XPP
X18 0 0 18 2669 1832 3 MP
XPP
X0 18 18 0 2669 1850 3 MP
XPP
X18 0 0 18 2669 1850 3 MP
XPP
X0 18 18 0 2669 1868 3 MP
XPP
X18 0 0 18 2669 1868 3 MP
XPP
X0 18 18 0 2669 1886 3 MP
XPP
X18 0 0 18 2669 1886 3 MP
XPP
X0 17 18 0 2669 1904 3 MP
XPP
X18 0 0 17 2669 1904 3 MP
XPP
X0 18 18 0 2669 1921 3 MP
XPP
X18 0 0 18 2669 1921 3 MP
XPP
X0 18 18 0 2669 1939 3 MP
XPP
X18 0 0 18 2669 1939 3 MP
XPP
X0 18 18 0 2669 1957 3 MP
XPP
X18 0 0 18 2669 1957 3 MP
XPP
X0 18 18 0 2669 1975 3 MP
XPP
X18 0 0 18 2669 1975 3 MP
XPP
X0 18 18 0 2669 1993 3 MP
XPP
X18 0 0 18 2669 1993 3 MP
XPP
X0 17 18 0 2669 2011 3 MP
XPP
X18 0 0 17 2669 2011 3 MP
XPP
X0 18 18 0 2669 2028 3 MP
XPP
X18 0 0 18 2669 2028 3 MP
XPP
X0 18 18 0 2669 2046 3 MP
XPP
X18 0 0 18 2669 2046 3 MP
XPP
X0 18 18 0 2669 2064 3 MP
XPP
X18 0 0 18 2669 2064 3 MP
XPP
X0 18 18 0 2669 2082 3 MP
XPP
X18 0 0 18 2669 2082 3 MP
XPP
X0 18 18 0 2669 2100 3 MP
XPP
X18 0 0 18 2669 2100 3 MP
XPP
X0 17 18 0 2669 2118 3 MP
XPP
X18 0 0 17 2669 2118 3 MP
XPP
X0 18 18 0 2669 2135 3 MP
XPP
X18 0 0 18 2669 2135 3 MP
XPP
X0 18 18 0 2669 2153 3 MP
XPP
X18 0 0 18 2669 2153 3 MP
XPP
X0 18 18 0 2687 388 3 MP
XPP
X18 0 0 18 2687 388 3 MP
XPP
X0 18 18 0 2687 406 3 MP
XPP
X18 0 0 18 2687 406 3 MP
XPP
X0 17 18 0 2687 424 3 MP
XPP
X18 0 0 17 2687 424 3 MP
XPP
X0 18 18 0 2687 441 3 MP
XPP
X18 0 0 18 2687 441 3 MP
XPP
X0 18 18 0 2687 459 3 MP
XPP
X18 0 0 18 2687 459 3 MP
XPP
X0 18 18 0 2687 477 3 MP
XPP
X18 0 0 18 2687 477 3 MP
XPP
X0 18 18 0 2687 495 3 MP
XPP
X18 0 0 18 2687 495 3 MP
XPP
X0.746032 sg
X0 18 18 0 2687 513 3 MP
XPP
X18 0 0 18 2687 513 3 MP
XPP
X0 17 18 0 2687 531 3 MP
XPP
X18 0 0 17 2687 531 3 MP
XPP
X0 18 18 0 2687 548 3 MP
XPP
X18 0 0 18 2687 548 3 MP
XPP
X0 18 18 0 2687 566 3 MP
XPP
X18 0 0 18 2687 566 3 MP
XPP
X0 18 18 0 2687 584 3 MP
XPP
X18 0 0 18 2687 584 3 MP
XPP
X0 18 18 0 2687 602 3 MP
XPP
X18 0 0 18 2687 602 3 MP
XPP
X0 18 18 0 2687 620 3 MP
XPP
X18 0 0 18 2687 620 3 MP
XPP
X0 17 18 0 2687 638 3 MP
XPP
X18 0 0 17 2687 638 3 MP
XPP
X0 18 18 0 2687 655 3 MP
XPP
X18 0 0 18 2687 655 3 MP
XPP
X0 18 18 0 2687 673 3 MP
XPP
X18 0 0 18 2687 673 3 MP
XPP
X0 18 18 0 2687 691 3 MP
XPP
X18 0 0 18 2687 691 3 MP
XPP
X0 18 18 0 2687 709 3 MP
XPP
X18 0 0 18 2687 709 3 MP
XPP
X0 18 18 0 2687 727 3 MP
XPP
X18 0 0 18 2687 727 3 MP
XPP
X0 17 18 0 2687 745 3 MP
XPP
X18 0 0 17 2687 745 3 MP
XPP
X0 18 18 0 2687 762 3 MP
XPP
X18 0 0 18 2687 762 3 MP
XPP
X0 18 18 0 2687 780 3 MP
XPP
X18 0 0 18 2687 780 3 MP
XPP
X0 18 18 0 2687 798 3 MP
XPP
X18 0 0 18 2687 798 3 MP
XPP
X0 18 18 0 2687 816 3 MP
XPP
X18 0 0 18 2687 816 3 MP
XPP
X0 18 18 0 2687 834 3 MP
XPP
X18 0 0 18 2687 834 3 MP
XPP
X0 17 18 0 2687 852 3 MP
XPP
X18 0 0 17 2687 852 3 MP
XPP
X0 18 18 0 2687 869 3 MP
XPP
X18 0 0 18 2687 869 3 MP
XPP
X0 18 18 0 2687 887 3 MP
XPP
X18 0 0 18 2687 887 3 MP
XPP
X0.492063 sg
X0 18 18 0 2687 905 3 MP
XPP
X18 0 0 18 2687 905 3 MP
XPP
X0 18 18 0 2687 923 3 MP
XPP
X18 0 0 18 2687 923 3 MP
XPP
X0 18 18 0 2687 941 3 MP
XPP
X18 0 0 18 2687 941 3 MP
XPP
X0 17 18 0 2687 959 3 MP
XPP
X18 0 0 17 2687 959 3 MP
XPP
X0 18 18 0 2687 976 3 MP
XPP
X18 0 0 18 2687 976 3 MP
XPP
X0 18 18 0 2687 994 3 MP
XPP
X18 0 0 18 2687 994 3 MP
XPP
X0 18 18 0 2687 1012 3 MP
XPP
X18 0 0 18 2687 1012 3 MP
XPP
X0 18 18 0 2687 1030 3 MP
XPP
X18 0 0 18 2687 1030 3 MP
XPP
X0 18 18 0 2687 1048 3 MP
XPP
X18 0 0 18 2687 1048 3 MP
XPP
X0 17 18 0 2687 1066 3 MP
XPP
X18 0 0 17 2687 1066 3 MP
XPP
X1 sg
X0 18 18 0 2687 1083 3 MP
XPP
X18 0 0 18 2687 1083 3 MP
XPP
X0 18 18 0 2687 1101 3 MP
XPP
X18 0 0 18 2687 1101 3 MP
XPP
X0 18 18 0 2687 1119 3 MP
XPP
X18 0 0 18 2687 1119 3 MP
XPP
X0 18 18 0 2687 1137 3 MP
XPP
X18 0 0 18 2687 1137 3 MP
XPP
X0 18 18 0 2687 1155 3 MP
XPP
X18 0 0 18 2687 1155 3 MP
XPP
X0 17 18 0 2687 1173 3 MP
XPP
X18 0 0 17 2687 1173 3 MP
XPP
X0 18 18 0 2687 1190 3 MP
XPP
X18 0 0 18 2687 1190 3 MP
XPP
X0 18 18 0 2687 1208 3 MP
XPP
X18 0 0 18 2687 1208 3 MP
XPP
X0 18 18 0 2687 1226 3 MP
XPP
X18 0 0 18 2687 1226 3 MP
XPP
X0 18 18 0 2687 1244 3 MP
XPP
X18 0 0 18 2687 1244 3 MP
XPP
X0 17 18 0 2687 1262 3 MP
XPP
X18 0 0 17 2687 1262 3 MP
XPP
X0 18 18 0 2687 1279 3 MP
XPP
X18 0 0 18 2687 1279 3 MP
XPP
X0 18 18 0 2687 1297 3 MP
XPP
X18 0 0 18 2687 1297 3 MP
XPP
X0 18 18 0 2687 1315 3 MP
XPP
X18 0 0 18 2687 1315 3 MP
XPP
X0 18 18 0 2687 1333 3 MP
XPP
X18 0 0 18 2687 1333 3 MP
XPP
X0 18 18 0 2687 1351 3 MP
XPP
X18 0 0 18 2687 1351 3 MP
XPP
X0 17 18 0 2687 1369 3 MP
XPP
X18 0 0 17 2687 1369 3 MP
XPP
X0 18 18 0 2687 1386 3 MP
XPP
X18 0 0 18 2687 1386 3 MP
XPP
X0 18 18 0 2687 1404 3 MP
XPP
X18 0 0 18 2687 1404 3 MP
XPP
X0 18 18 0 2687 1422 3 MP
XPP
X18 0 0 18 2687 1422 3 MP
XPP
X0 18 18 0 2687 1440 3 MP
XPP
X18 0 0 18 2687 1440 3 MP
XPP
X0 18 18 0 2687 1458 3 MP
XPP
X18 0 0 18 2687 1458 3 MP
XPP
X0 17 18 0 2687 1476 3 MP
XPP
X18 0 0 17 2687 1476 3 MP
XPP
X0 18 18 0 2687 1493 3 MP
XPP
X18 0 0 18 2687 1493 3 MP
XPP
X0 18 18 0 2687 1511 3 MP
XPP
X18 0 0 18 2687 1511 3 MP
XPP
X0 18 18 0 2687 1529 3 MP
XPP
X18 0 0 18 2687 1529 3 MP
XPP
X0 18 18 0 2687 1547 3 MP
XPP
X18 0 0 18 2687 1547 3 MP
XPP
X0 18 18 0 2687 1565 3 MP
XPP
X18 0 0 18 2687 1565 3 MP
XPP
X0 17 18 0 2687 1583 3 MP
XPP
X18 0 0 17 2687 1583 3 MP
XPP
X0 18 18 0 2687 1600 3 MP
XPP
X18 0 0 18 2687 1600 3 MP
XPP
X0 18 18 0 2687 1618 3 MP
XPP
X18 0 0 18 2687 1618 3 MP
XPP
X0 18 18 0 2687 1636 3 MP
XPP
X18 0 0 18 2687 1636 3 MP
XPP
X0 18 18 0 2687 1654 3 MP
XPP
X18 0 0 18 2687 1654 3 MP
XPP
X0 18 18 0 2687 1672 3 MP
XPP
X18 0 0 18 2687 1672 3 MP
XPP
X0 17 18 0 2687 1690 3 MP
XPP
X18 0 0 17 2687 1690 3 MP
XPP
X0 18 18 0 2687 1707 3 MP
XPP
X18 0 0 18 2687 1707 3 MP
XPP
X0 18 18 0 2687 1725 3 MP
XPP
X18 0 0 18 2687 1725 3 MP
XPP
X0 18 18 0 2687 1743 3 MP
XPP
X18 0 0 18 2687 1743 3 MP
XPP
X0 18 18 0 2687 1761 3 MP
XPP
X18 0 0 18 2687 1761 3 MP
XPP
X0 18 18 0 2687 1779 3 MP
XPP
X18 0 0 18 2687 1779 3 MP
XPP
X0 17 18 0 2687 1797 3 MP
XPP
X18 0 0 17 2687 1797 3 MP
XPP
X0 18 18 0 2687 1814 3 MP
XPP
X18 0 0 18 2687 1814 3 MP
XPP
X0 18 18 0 2687 1832 3 MP
XPP
X18 0 0 18 2687 1832 3 MP
XPP
X0 18 18 0 2687 1850 3 MP
XPP
X18 0 0 18 2687 1850 3 MP
XPP
X0 18 18 0 2687 1868 3 MP
XPP
X18 0 0 18 2687 1868 3 MP
XPP
X0 18 18 0 2687 1886 3 MP
XPP
X18 0 0 18 2687 1886 3 MP
XPP
X0 17 18 0 2687 1904 3 MP
XPP
X18 0 0 17 2687 1904 3 MP
XPP
X0 18 18 0 2687 1921 3 MP
XPP
X18 0 0 18 2687 1921 3 MP
XPP
X0 18 18 0 2687 1939 3 MP
XPP
X18 0 0 18 2687 1939 3 MP
XPP
X0 18 18 0 2687 1957 3 MP
XPP
X18 0 0 18 2687 1957 3 MP
XPP
X0 18 18 0 2687 1975 3 MP
XPP
X18 0 0 18 2687 1975 3 MP
XPP
X0 18 18 0 2687 1993 3 MP
XPP
X18 0 0 18 2687 1993 3 MP
XPP
X0 17 18 0 2687 2011 3 MP
XPP
X18 0 0 17 2687 2011 3 MP
XPP
X0 18 18 0 2687 2028 3 MP
XPP
X18 0 0 18 2687 2028 3 MP
XPP
X0 18 18 0 2687 2046 3 MP
XPP
X18 0 0 18 2687 2046 3 MP
XPP
X0 18 18 0 2687 2064 3 MP
XPP
X18 0 0 18 2687 2064 3 MP
XPP
X0 18 18 0 2687 2082 3 MP
XPP
X18 0 0 18 2687 2082 3 MP
XPP
X0 18 18 0 2687 2100 3 MP
XPP
X18 0 0 18 2687 2100 3 MP
XPP
X0 17 18 0 2687 2118 3 MP
XPP
X18 0 0 17 2687 2118 3 MP
XPP
X0 18 18 0 2687 2135 3 MP
XPP
X18 0 0 18 2687 2135 3 MP
XPP
X0 18 18 0 2687 2153 3 MP
XPP
X18 0 0 18 2687 2153 3 MP
XPP
X0 18 18 0 2705 388 3 MP
XPP
X18 0 0 18 2705 388 3 MP
XPP
X0 18 18 0 2705 406 3 MP
XPP
X18 0 0 18 2705 406 3 MP
XPP
X0 17 18 0 2705 424 3 MP
XPP
X18 0 0 17 2705 424 3 MP
XPP
X0 18 18 0 2705 441 3 MP
XPP
X18 0 0 18 2705 441 3 MP
XPP
X0 18 18 0 2705 459 3 MP
XPP
X18 0 0 18 2705 459 3 MP
XPP
X0 18 18 0 2705 477 3 MP
XPP
X18 0 0 18 2705 477 3 MP
XPP
X0 18 18 0 2705 495 3 MP
XPP
X18 0 0 18 2705 495 3 MP
XPP
X0 18 18 0 2705 513 3 MP
XPP
X18 0 0 18 2705 513 3 MP
XPP
X0.746032 sg
X0 17 18 0 2705 531 3 MP
XPP
X18 0 0 17 2705 531 3 MP
XPP
X0 18 18 0 2705 548 3 MP
XPP
X18 0 0 18 2705 548 3 MP
XPP
X0 18 18 0 2705 566 3 MP
XPP
X18 0 0 18 2705 566 3 MP
XPP
X0 18 18 0 2705 584 3 MP
XPP
X18 0 0 18 2705 584 3 MP
XPP
X0 18 18 0 2705 602 3 MP
XPP
X18 0 0 18 2705 602 3 MP
XPP
X0 18 18 0 2705 620 3 MP
XPP
X18 0 0 18 2705 620 3 MP
XPP
X0 17 18 0 2705 638 3 MP
XPP
X18 0 0 17 2705 638 3 MP
XPP
X0 18 18 0 2705 655 3 MP
XPP
X18 0 0 18 2705 655 3 MP
XPP
X0 18 18 0 2705 673 3 MP
XPP
X18 0 0 18 2705 673 3 MP
XPP
X0 18 18 0 2705 691 3 MP
XPP
X18 0 0 18 2705 691 3 MP
XPP
X0 18 18 0 2705 709 3 MP
XPP
X18 0 0 18 2705 709 3 MP
XPP
X0 18 18 0 2705 727 3 MP
XPP
X18 0 0 18 2705 727 3 MP
XPP
X0 17 18 0 2705 745 3 MP
XPP
X18 0 0 17 2705 745 3 MP
XPP
X0 18 18 0 2705 762 3 MP
XPP
X18 0 0 18 2705 762 3 MP
XPP
X0 18 18 0 2705 780 3 MP
XPP
X18 0 0 18 2705 780 3 MP
XPP
X0 18 18 0 2705 798 3 MP
XPP
X18 0 0 18 2705 798 3 MP
XPP
X0 18 18 0 2705 816 3 MP
XPP
X18 0 0 18 2705 816 3 MP
XPP
X0 18 18 0 2705 834 3 MP
XPP
X18 0 0 18 2705 834 3 MP
XPP
X0 17 18 0 2705 852 3 MP
XPP
X18 0 0 17 2705 852 3 MP
XPP
X0 18 18 0 2705 869 3 MP
XPP
X18 0 0 18 2705 869 3 MP
XPP
X0 18 18 0 2705 887 3 MP
XPP
X18 0 0 18 2705 887 3 MP
XPP
X0 18 18 0 2705 905 3 MP
XPP
X18 0 0 18 2705 905 3 MP
XPP
X0.492063 sg
X0 18 18 0 2705 923 3 MP
XPP
X18 0 0 18 2705 923 3 MP
XPP
X0 18 18 0 2705 941 3 MP
XPP
X18 0 0 18 2705 941 3 MP
XPP
X0 17 18 0 2705 959 3 MP
XPP
X18 0 0 17 2705 959 3 MP
XPP
X0 18 18 0 2705 976 3 MP
XPP
X18 0 0 18 2705 976 3 MP
XPP
X0 18 18 0 2705 994 3 MP
XPP
X18 0 0 18 2705 994 3 MP
XPP
X0 18 18 0 2705 1012 3 MP
XPP
X18 0 0 18 2705 1012 3 MP
XPP
X0 18 18 0 2705 1030 3 MP
XPP
X18 0 0 18 2705 1030 3 MP
XPP
X0 18 18 0 2705 1048 3 MP
XPP
X18 0 0 18 2705 1048 3 MP
XPP
X1 sg
X0 17 18 0 2705 1066 3 MP
XPP
X18 0 0 17 2705 1066 3 MP
XPP
X0 18 18 0 2705 1083 3 MP
XPP
X18 0 0 18 2705 1083 3 MP
XPP
X0 18 18 0 2705 1101 3 MP
XPP
X18 0 0 18 2705 1101 3 MP
XPP
X0 18 18 0 2705 1119 3 MP
XPP
X18 0 0 18 2705 1119 3 MP
XPP
X0 18 18 0 2705 1137 3 MP
XPP
X18 0 0 18 2705 1137 3 MP
XPP
X0 18 18 0 2705 1155 3 MP
XPP
X18 0 0 18 2705 1155 3 MP
XPP
X0 17 18 0 2705 1173 3 MP
XPP
X18 0 0 17 2705 1173 3 MP
XPP
X0 18 18 0 2705 1190 3 MP
XPP
X18 0 0 18 2705 1190 3 MP
XPP
X0 18 18 0 2705 1208 3 MP
XPP
X18 0 0 18 2705 1208 3 MP
XPP
X0 18 18 0 2705 1226 3 MP
XPP
X18 0 0 18 2705 1226 3 MP
XPP
X0 18 18 0 2705 1244 3 MP
XPP
X18 0 0 18 2705 1244 3 MP
XPP
X0 17 18 0 2705 1262 3 MP
XPP
X18 0 0 17 2705 1262 3 MP
XPP
X0 18 18 0 2705 1279 3 MP
XPP
X18 0 0 18 2705 1279 3 MP
XPP
X0 18 18 0 2705 1297 3 MP
XPP
X18 0 0 18 2705 1297 3 MP
XPP
X0 18 18 0 2705 1315 3 MP
XPP
X18 0 0 18 2705 1315 3 MP
XPP
X0 18 18 0 2705 1333 3 MP
XPP
X18 0 0 18 2705 1333 3 MP
XPP
X0 18 18 0 2705 1351 3 MP
XPP
X18 0 0 18 2705 1351 3 MP
XPP
X0 17 18 0 2705 1369 3 MP
XPP
X18 0 0 17 2705 1369 3 MP
XPP
X0 18 18 0 2705 1386 3 MP
XPP
X18 0 0 18 2705 1386 3 MP
XPP
X0 18 18 0 2705 1404 3 MP
XPP
X18 0 0 18 2705 1404 3 MP
XPP
X0 18 18 0 2705 1422 3 MP
XPP
X18 0 0 18 2705 1422 3 MP
XPP
X0 18 18 0 2705 1440 3 MP
XPP
X18 0 0 18 2705 1440 3 MP
XPP
X0 18 18 0 2705 1458 3 MP
XPP
X18 0 0 18 2705 1458 3 MP
XPP
X0 17 18 0 2705 1476 3 MP
XPP
X18 0 0 17 2705 1476 3 MP
XPP
X0 18 18 0 2705 1493 3 MP
XPP
X18 0 0 18 2705 1493 3 MP
XPP
X0 18 18 0 2705 1511 3 MP
XPP
X18 0 0 18 2705 1511 3 MP
XPP
X0 18 18 0 2705 1529 3 MP
XPP
X18 0 0 18 2705 1529 3 MP
XPP
X0 18 18 0 2705 1547 3 MP
XPP
X18 0 0 18 2705 1547 3 MP
XPP
X0 18 18 0 2705 1565 3 MP
XPP
X18 0 0 18 2705 1565 3 MP
XPP
X0 17 18 0 2705 1583 3 MP
XPP
X18 0 0 17 2705 1583 3 MP
XPP
X0 18 18 0 2705 1600 3 MP
XPP
X18 0 0 18 2705 1600 3 MP
XPP
X0 18 18 0 2705 1618 3 MP
XPP
X18 0 0 18 2705 1618 3 MP
XPP
X0 18 18 0 2705 1636 3 MP
XPP
X18 0 0 18 2705 1636 3 MP
XPP
X0 18 18 0 2705 1654 3 MP
XPP
X18 0 0 18 2705 1654 3 MP
XPP
X0 18 18 0 2705 1672 3 MP
XPP
X18 0 0 18 2705 1672 3 MP
XPP
X0 17 18 0 2705 1690 3 MP
XPP
X18 0 0 17 2705 1690 3 MP
XPP
X0 18 18 0 2705 1707 3 MP
XPP
X18 0 0 18 2705 1707 3 MP
XPP
X0 18 18 0 2705 1725 3 MP
XPP
X18 0 0 18 2705 1725 3 MP
XPP
X0 18 18 0 2705 1743 3 MP
XPP
X18 0 0 18 2705 1743 3 MP
XPP
X0 18 18 0 2705 1761 3 MP
XPP
X18 0 0 18 2705 1761 3 MP
XPP
X0 18 18 0 2705 1779 3 MP
XPP
X18 0 0 18 2705 1779 3 MP
XPP
X0 17 18 0 2705 1797 3 MP
XPP
X18 0 0 17 2705 1797 3 MP
XPP
X0 18 18 0 2705 1814 3 MP
XPP
X18 0 0 18 2705 1814 3 MP
XPP
X0 18 18 0 2705 1832 3 MP
XPP
X18 0 0 18 2705 1832 3 MP
XPP
X0 18 18 0 2705 1850 3 MP
XPP
X18 0 0 18 2705 1850 3 MP
XPP
X0 18 18 0 2705 1868 3 MP
XPP
X18 0 0 18 2705 1868 3 MP
XPP
X0 18 18 0 2705 1886 3 MP
XPP
X18 0 0 18 2705 1886 3 MP
XPP
X0 17 18 0 2705 1904 3 MP
XPP
X18 0 0 17 2705 1904 3 MP
XPP
X0 18 18 0 2705 1921 3 MP
XPP
X18 0 0 18 2705 1921 3 MP
XPP
X0 18 18 0 2705 1939 3 MP
XPP
X18 0 0 18 2705 1939 3 MP
XPP
X0 18 18 0 2705 1957 3 MP
XPP
X18 0 0 18 2705 1957 3 MP
XPP
X0 18 18 0 2705 1975 3 MP
XPP
X18 0 0 18 2705 1975 3 MP
XPP
X0 18 18 0 2705 1993 3 MP
XPP
X18 0 0 18 2705 1993 3 MP
XPP
X0 17 18 0 2705 2011 3 MP
XPP
X18 0 0 17 2705 2011 3 MP
XPP
X0 18 18 0 2705 2028 3 MP
XPP
X18 0 0 18 2705 2028 3 MP
XPP
X0 18 18 0 2705 2046 3 MP
XPP
X18 0 0 18 2705 2046 3 MP
XPP
X0 18 18 0 2705 2064 3 MP
XPP
X18 0 0 18 2705 2064 3 MP
XPP
X0 18 18 0 2705 2082 3 MP
XPP
X18 0 0 18 2705 2082 3 MP
XPP
X0 18 18 0 2705 2100 3 MP
XPP
X18 0 0 18 2705 2100 3 MP
XPP
X0 17 18 0 2705 2118 3 MP
XPP
X18 0 0 17 2705 2118 3 MP
XPP
X0 18 18 0 2705 2135 3 MP
XPP
X18 0 0 18 2705 2135 3 MP
XPP
X0 18 18 0 2705 2153 3 MP
XPP
X18 0 0 18 2705 2153 3 MP
XPP
X0 18 18 0 2723 388 3 MP
XPP
X18 0 0 18 2723 388 3 MP
XPP
X0 18 18 0 2723 406 3 MP
XPP
X18 0 0 18 2723 406 3 MP
XPP
X0 17 18 0 2723 424 3 MP
XPP
X18 0 0 17 2723 424 3 MP
XPP
X0 18 18 0 2723 441 3 MP
XPP
X18 0 0 18 2723 441 3 MP
XPP
X0 18 18 0 2723 459 3 MP
XPP
X18 0 0 18 2723 459 3 MP
XPP
X0 18 18 0 2723 477 3 MP
XPP
X18 0 0 18 2723 477 3 MP
XPP
X0 18 18 0 2723 495 3 MP
XPP
X18 0 0 18 2723 495 3 MP
XPP
X0 18 18 0 2723 513 3 MP
XPP
X18 0 0 18 2723 513 3 MP
XPP
X0.746032 sg
X0 17 18 0 2723 531 3 MP
XPP
X18 0 0 17 2723 531 3 MP
XPP
X0 18 18 0 2723 548 3 MP
XPP
X18 0 0 18 2723 548 3 MP
XPP
X0 18 18 0 2723 566 3 MP
XPP
X18 0 0 18 2723 566 3 MP
XPP
X0 18 18 0 2723 584 3 MP
XPP
X18 0 0 18 2723 584 3 MP
XPP
X0 18 18 0 2723 602 3 MP
XPP
X18 0 0 18 2723 602 3 MP
XPP
X0 18 18 0 2723 620 3 MP
XPP
X18 0 0 18 2723 620 3 MP
XPP
X0 17 18 0 2723 638 3 MP
XPP
X18 0 0 17 2723 638 3 MP
XPP
X0 18 18 0 2723 655 3 MP
XPP
X18 0 0 18 2723 655 3 MP
XPP
X0 18 18 0 2723 673 3 MP
XPP
X18 0 0 18 2723 673 3 MP
XPP
X0 18 18 0 2723 691 3 MP
XPP
X18 0 0 18 2723 691 3 MP
XPP
X0 18 18 0 2723 709 3 MP
XPP
X18 0 0 18 2723 709 3 MP
XPP
X0 18 18 0 2723 727 3 MP
XPP
X18 0 0 18 2723 727 3 MP
XPP
X0 17 18 0 2723 745 3 MP
XPP
X18 0 0 17 2723 745 3 MP
XPP
X0 18 18 0 2723 762 3 MP
XPP
X18 0 0 18 2723 762 3 MP
XPP
X0 18 18 0 2723 780 3 MP
XPP
X18 0 0 18 2723 780 3 MP
XPP
X0 18 18 0 2723 798 3 MP
XPP
X18 0 0 18 2723 798 3 MP
XPP
X0 18 18 0 2723 816 3 MP
XPP
X18 0 0 18 2723 816 3 MP
XPP
X0 18 18 0 2723 834 3 MP
XPP
X18 0 0 18 2723 834 3 MP
XPP
X0 17 18 0 2723 852 3 MP
XPP
X18 0 0 17 2723 852 3 MP
XPP
X0 18 18 0 2723 869 3 MP
XPP
X18 0 0 18 2723 869 3 MP
XPP
X0 18 18 0 2723 887 3 MP
XPP
X18 0 0 18 2723 887 3 MP
XPP
X0 18 18 0 2723 905 3 MP
XPP
X18 0 0 18 2723 905 3 MP
XPP
X1 sg
X0 18 18 0 2723 923 3 MP
XPP
X18 0 0 18 2723 923 3 MP
XPP
X0 18 18 0 2723 941 3 MP
XPP
X18 0 0 18 2723 941 3 MP
XPP
X0.492063 sg
X0 17 18 0 2723 959 3 MP
XPP
X18 0 0 17 2723 959 3 MP
XPP
X0 18 18 0 2723 976 3 MP
XPP
X18 0 0 18 2723 976 3 MP
XPP
X0 18 18 0 2723 994 3 MP
XPP
X18 0 0 18 2723 994 3 MP
XPP
X0 18 18 0 2723 1012 3 MP
XPP
X18 0 0 18 2723 1012 3 MP
XPP
X1 sg
X0 18 18 0 2723 1030 3 MP
XPP
X18 0 0 18 2723 1030 3 MP
XPP
X0 18 18 0 2723 1048 3 MP
XPP
X18 0 0 18 2723 1048 3 MP
XPP
X0 17 18 0 2723 1066 3 MP
XPP
X18 0 0 17 2723 1066 3 MP
XPP
X0 18 18 0 2723 1083 3 MP
XPP
X18 0 0 18 2723 1083 3 MP
XPP
X0 18 18 0 2723 1101 3 MP
XPP
X18 0 0 18 2723 1101 3 MP
XPP
X0 18 18 0 2723 1119 3 MP
XPP
X18 0 0 18 2723 1119 3 MP
XPP
X0 18 18 0 2723 1137 3 MP
XPP
X18 0 0 18 2723 1137 3 MP
XPP
X0 18 18 0 2723 1155 3 MP
XPP
X18 0 0 18 2723 1155 3 MP
XPP
X0 17 18 0 2723 1173 3 MP
XPP
X18 0 0 17 2723 1173 3 MP
XPP
X0 18 18 0 2723 1190 3 MP
XPP
X18 0 0 18 2723 1190 3 MP
XPP
X0 18 18 0 2723 1208 3 MP
XPP
X18 0 0 18 2723 1208 3 MP
XPP
X0 18 18 0 2723 1226 3 MP
XPP
X18 0 0 18 2723 1226 3 MP
XPP
X0 18 18 0 2723 1244 3 MP
XPP
X18 0 0 18 2723 1244 3 MP
XPP
X0 17 18 0 2723 1262 3 MP
XPP
X18 0 0 17 2723 1262 3 MP
XPP
X0 18 18 0 2723 1279 3 MP
XPP
X18 0 0 18 2723 1279 3 MP
XPP
X0 18 18 0 2723 1297 3 MP
XPP
X18 0 0 18 2723 1297 3 MP
XPP
X0 18 18 0 2723 1315 3 MP
XPP
X18 0 0 18 2723 1315 3 MP
XPP
X0 18 18 0 2723 1333 3 MP
XPP
X18 0 0 18 2723 1333 3 MP
XPP
X0 18 18 0 2723 1351 3 MP
XPP
X18 0 0 18 2723 1351 3 MP
XPP
X0 17 18 0 2723 1369 3 MP
XPP
X18 0 0 17 2723 1369 3 MP
XPP
X0 18 18 0 2723 1386 3 MP
XPP
X18 0 0 18 2723 1386 3 MP
XPP
X0 18 18 0 2723 1404 3 MP
XPP
X18 0 0 18 2723 1404 3 MP
XPP
X0 18 18 0 2723 1422 3 MP
XPP
X18 0 0 18 2723 1422 3 MP
XPP
X0 18 18 0 2723 1440 3 MP
XPP
X18 0 0 18 2723 1440 3 MP
XPP
X0 18 18 0 2723 1458 3 MP
XPP
X18 0 0 18 2723 1458 3 MP
XPP
X0 17 18 0 2723 1476 3 MP
XPP
X18 0 0 17 2723 1476 3 MP
XPP
X0 18 18 0 2723 1493 3 MP
XPP
X18 0 0 18 2723 1493 3 MP
XPP
X0 18 18 0 2723 1511 3 MP
XPP
X18 0 0 18 2723 1511 3 MP
XPP
X0 18 18 0 2723 1529 3 MP
XPP
X18 0 0 18 2723 1529 3 MP
XPP
X0 18 18 0 2723 1547 3 MP
XPP
X18 0 0 18 2723 1547 3 MP
XPP
X0 18 18 0 2723 1565 3 MP
XPP
X18 0 0 18 2723 1565 3 MP
XPP
X0 17 18 0 2723 1583 3 MP
XPP
X18 0 0 17 2723 1583 3 MP
XPP
X0 18 18 0 2723 1600 3 MP
XPP
X18 0 0 18 2723 1600 3 MP
XPP
X0 18 18 0 2723 1618 3 MP
XPP
X18 0 0 18 2723 1618 3 MP
XPP
X0 18 18 0 2723 1636 3 MP
XPP
X18 0 0 18 2723 1636 3 MP
XPP
X0 18 18 0 2723 1654 3 MP
XPP
X18 0 0 18 2723 1654 3 MP
XPP
X0 18 18 0 2723 1672 3 MP
XPP
X18 0 0 18 2723 1672 3 MP
XPP
X0 17 18 0 2723 1690 3 MP
XPP
X18 0 0 17 2723 1690 3 MP
XPP
X0 18 18 0 2723 1707 3 MP
XPP
X18 0 0 18 2723 1707 3 MP
XPP
X0 18 18 0 2723 1725 3 MP
XPP
X18 0 0 18 2723 1725 3 MP
XPP
X0 18 18 0 2723 1743 3 MP
XPP
X18 0 0 18 2723 1743 3 MP
XPP
X0 18 18 0 2723 1761 3 MP
XPP
X18 0 0 18 2723 1761 3 MP
XPP
X0 18 18 0 2723 1779 3 MP
XPP
X18 0 0 18 2723 1779 3 MP
XPP
X0 17 18 0 2723 1797 3 MP
XPP
X18 0 0 17 2723 1797 3 MP
XPP
X0 18 18 0 2723 1814 3 MP
XPP
X18 0 0 18 2723 1814 3 MP
XPP
X0 18 18 0 2723 1832 3 MP
XPP
X18 0 0 18 2723 1832 3 MP
XPP
X0 18 18 0 2723 1850 3 MP
XPP
X18 0 0 18 2723 1850 3 MP
XPP
X0 18 18 0 2723 1868 3 MP
XPP
X18 0 0 18 2723 1868 3 MP
XPP
X0 18 18 0 2723 1886 3 MP
XPP
X18 0 0 18 2723 1886 3 MP
XPP
X0 17 18 0 2723 1904 3 MP
XPP
X18 0 0 17 2723 1904 3 MP
XPP
X0 18 18 0 2723 1921 3 MP
XPP
X18 0 0 18 2723 1921 3 MP
XPP
X0 18 18 0 2723 1939 3 MP
XPP
X18 0 0 18 2723 1939 3 MP
XPP
X0 18 18 0 2723 1957 3 MP
XPP
X18 0 0 18 2723 1957 3 MP
XPP
X0 18 18 0 2723 1975 3 MP
XPP
X18 0 0 18 2723 1975 3 MP
XPP
X0 18 18 0 2723 1993 3 MP
XPP
X18 0 0 18 2723 1993 3 MP
XPP
X0 17 18 0 2723 2011 3 MP
XPP
X18 0 0 17 2723 2011 3 MP
XPP
X0 18 18 0 2723 2028 3 MP
XPP
X18 0 0 18 2723 2028 3 MP
XPP
X0 18 18 0 2723 2046 3 MP
XPP
X18 0 0 18 2723 2046 3 MP
XPP
X0 18 18 0 2723 2064 3 MP
XPP
X18 0 0 18 2723 2064 3 MP
XPP
X0 18 18 0 2723 2082 3 MP
XPP
X18 0 0 18 2723 2082 3 MP
XPP
X0 18 18 0 2723 2100 3 MP
XPP
X18 0 0 18 2723 2100 3 MP
XPP
X0 17 18 0 2723 2118 3 MP
XPP
X18 0 0 17 2723 2118 3 MP
XPP
X0 18 18 0 2723 2135 3 MP
XPP
X18 0 0 18 2723 2135 3 MP
XPP
X0 18 18 0 2723 2153 3 MP
XPP
X18 0 0 18 2723 2153 3 MP
XPP
X0 18 18 0 2741 388 3 MP
XPP
X18 0 0 18 2741 388 3 MP
XPP
X0 18 18 0 2741 406 3 MP
XPP
X18 0 0 18 2741 406 3 MP
XPP
X0 17 18 0 2741 424 3 MP
XPP
X18 0 0 17 2741 424 3 MP
XPP
X0 18 18 0 2741 441 3 MP
XPP
X18 0 0 18 2741 441 3 MP
XPP
X0 18 18 0 2741 459 3 MP
XPP
X18 0 0 18 2741 459 3 MP
XPP
X0 18 18 0 2741 477 3 MP
XPP
X18 0 0 18 2741 477 3 MP
XPP
X0 18 18 0 2741 495 3 MP
XPP
X18 0 0 18 2741 495 3 MP
XPP
X0 18 18 0 2741 513 3 MP
XPP
X18 0 0 18 2741 513 3 MP
XPP
X0 17 18 0 2741 531 3 MP
XPP
X18 0 0 17 2741 531 3 MP
XPP
X0.746032 sg
X0 18 18 0 2741 548 3 MP
XPP
X18 0 0 18 2741 548 3 MP
XPP
X0 18 18 0 2741 566 3 MP
XPP
X18 0 0 18 2741 566 3 MP
XPP
X0 18 18 0 2741 584 3 MP
XPP
X18 0 0 18 2741 584 3 MP
XPP
X0 18 18 0 2741 602 3 MP
XPP
X18 0 0 18 2741 602 3 MP
XPP
X0 18 18 0 2741 620 3 MP
XPP
X18 0 0 18 2741 620 3 MP
XPP
X0 17 18 0 2741 638 3 MP
XPP
X18 0 0 17 2741 638 3 MP
XPP
X0 18 18 0 2741 655 3 MP
XPP
X18 0 0 18 2741 655 3 MP
XPP
X0 18 18 0 2741 673 3 MP
XPP
X18 0 0 18 2741 673 3 MP
XPP
X0 18 18 0 2741 691 3 MP
XPP
X18 0 0 18 2741 691 3 MP
XPP
X0 18 18 0 2741 709 3 MP
XPP
X18 0 0 18 2741 709 3 MP
XPP
X0 18 18 0 2741 727 3 MP
XPP
X18 0 0 18 2741 727 3 MP
XPP
X0 17 18 0 2741 745 3 MP
XPP
X18 0 0 17 2741 745 3 MP
XPP
X0 18 18 0 2741 762 3 MP
XPP
X18 0 0 18 2741 762 3 MP
XPP
X0 18 18 0 2741 780 3 MP
XPP
X18 0 0 18 2741 780 3 MP
XPP
X0 18 18 0 2741 798 3 MP
XPP
X18 0 0 18 2741 798 3 MP
XPP
X0 18 18 0 2741 816 3 MP
XPP
X18 0 0 18 2741 816 3 MP
XPP
X0 18 18 0 2741 834 3 MP
XPP
X18 0 0 18 2741 834 3 MP
XPP
X0 17 18 0 2741 852 3 MP
XPP
X18 0 0 17 2741 852 3 MP
XPP
X0 18 18 0 2741 869 3 MP
XPP
X18 0 0 18 2741 869 3 MP
XPP
X0 18 18 0 2741 887 3 MP
XPP
X18 0 0 18 2741 887 3 MP
XPP
X1 sg
X0 18 18 0 2741 905 3 MP
XPP
X18 0 0 18 2741 905 3 MP
XPP
X0 18 18 0 2741 923 3 MP
XPP
X18 0 0 18 2741 923 3 MP
XPP
X0 18 18 0 2741 941 3 MP
XPP
X18 0 0 18 2741 941 3 MP
XPP
X0 17 18 0 2741 959 3 MP
XPP
X18 0 0 17 2741 959 3 MP
XPP
X0 18 18 0 2741 976 3 MP
XPP
X18 0 0 18 2741 976 3 MP
XPP
X0 18 18 0 2741 994 3 MP
XPP
X18 0 0 18 2741 994 3 MP
XPP
X0 18 18 0 2741 1012 3 MP
XPP
X18 0 0 18 2741 1012 3 MP
XPP
X0 18 18 0 2741 1030 3 MP
XPP
X18 0 0 18 2741 1030 3 MP
XPP
X0 18 18 0 2741 1048 3 MP
XPP
X18 0 0 18 2741 1048 3 MP
XPP
X0 17 18 0 2741 1066 3 MP
XPP
X18 0 0 17 2741 1066 3 MP
XPP
X0 18 18 0 2741 1083 3 MP
XPP
X18 0 0 18 2741 1083 3 MP
XPP
X0 18 18 0 2741 1101 3 MP
XPP
X18 0 0 18 2741 1101 3 MP
XPP
X0 18 18 0 2741 1119 3 MP
XPP
X18 0 0 18 2741 1119 3 MP
XPP
X0 18 18 0 2741 1137 3 MP
XPP
X18 0 0 18 2741 1137 3 MP
XPP
X0 18 18 0 2741 1155 3 MP
XPP
X18 0 0 18 2741 1155 3 MP
XPP
X0 17 18 0 2741 1173 3 MP
XPP
X18 0 0 17 2741 1173 3 MP
XPP
X0 18 18 0 2741 1190 3 MP
XPP
X18 0 0 18 2741 1190 3 MP
XPP
X0 18 18 0 2741 1208 3 MP
XPP
X18 0 0 18 2741 1208 3 MP
XPP
X0 18 18 0 2741 1226 3 MP
XPP
X18 0 0 18 2741 1226 3 MP
XPP
X0 18 18 0 2741 1244 3 MP
XPP
X18 0 0 18 2741 1244 3 MP
XPP
X0 17 18 0 2741 1262 3 MP
XPP
X18 0 0 17 2741 1262 3 MP
XPP
X0 18 18 0 2741 1279 3 MP
XPP
X18 0 0 18 2741 1279 3 MP
XPP
X0 18 18 0 2741 1297 3 MP
XPP
X18 0 0 18 2741 1297 3 MP
XPP
X0 18 18 0 2741 1315 3 MP
XPP
X18 0 0 18 2741 1315 3 MP
XPP
X0 18 18 0 2741 1333 3 MP
XPP
X18 0 0 18 2741 1333 3 MP
XPP
X0 18 18 0 2741 1351 3 MP
XPP
X18 0 0 18 2741 1351 3 MP
XPP
X0 17 18 0 2741 1369 3 MP
XPP
X18 0 0 17 2741 1369 3 MP
XPP
X0 18 18 0 2741 1386 3 MP
XPP
X18 0 0 18 2741 1386 3 MP
XPP
X0 18 18 0 2741 1404 3 MP
XPP
X18 0 0 18 2741 1404 3 MP
XPP
X0 18 18 0 2741 1422 3 MP
XPP
X18 0 0 18 2741 1422 3 MP
XPP
X0 18 18 0 2741 1440 3 MP
XPP
X18 0 0 18 2741 1440 3 MP
XPP
X0 18 18 0 2741 1458 3 MP
XPP
X18 0 0 18 2741 1458 3 MP
XPP
X0 17 18 0 2741 1476 3 MP
XPP
X18 0 0 17 2741 1476 3 MP
XPP
X0 18 18 0 2741 1493 3 MP
XPP
X18 0 0 18 2741 1493 3 MP
XPP
X0 18 18 0 2741 1511 3 MP
XPP
X18 0 0 18 2741 1511 3 MP
XPP
X0 18 18 0 2741 1529 3 MP
XPP
X18 0 0 18 2741 1529 3 MP
XPP
X0 18 18 0 2741 1547 3 MP
XPP
X18 0 0 18 2741 1547 3 MP
XPP
X0 18 18 0 2741 1565 3 MP
XPP
X18 0 0 18 2741 1565 3 MP
XPP
X0 17 18 0 2741 1583 3 MP
XPP
X18 0 0 17 2741 1583 3 MP
XPP
X0 18 18 0 2741 1600 3 MP
XPP
X18 0 0 18 2741 1600 3 MP
XPP
X0 18 18 0 2741 1618 3 MP
XPP
X18 0 0 18 2741 1618 3 MP
XPP
X0 18 18 0 2741 1636 3 MP
XPP
X18 0 0 18 2741 1636 3 MP
XPP
X0 18 18 0 2741 1654 3 MP
XPP
X18 0 0 18 2741 1654 3 MP
XPP
X0 18 18 0 2741 1672 3 MP
XPP
X18 0 0 18 2741 1672 3 MP
XPP
X0 17 18 0 2741 1690 3 MP
XPP
X18 0 0 17 2741 1690 3 MP
XPP
X0 18 18 0 2741 1707 3 MP
XPP
X18 0 0 18 2741 1707 3 MP
XPP
X0 18 18 0 2741 1725 3 MP
XPP
X18 0 0 18 2741 1725 3 MP
XPP
X0 18 18 0 2741 1743 3 MP
XPP
X18 0 0 18 2741 1743 3 MP
XPP
X0 18 18 0 2741 1761 3 MP
XPP
X18 0 0 18 2741 1761 3 MP
XPP
X0 18 18 0 2741 1779 3 MP
XPP
X18 0 0 18 2741 1779 3 MP
XPP
X0 17 18 0 2741 1797 3 MP
XPP
X18 0 0 17 2741 1797 3 MP
XPP
X0 18 18 0 2741 1814 3 MP
XPP
X18 0 0 18 2741 1814 3 MP
XPP
X0 18 18 0 2741 1832 3 MP
XPP
X18 0 0 18 2741 1832 3 MP
XPP
X0 18 18 0 2741 1850 3 MP
XPP
X18 0 0 18 2741 1850 3 MP
XPP
X0 18 18 0 2741 1868 3 MP
XPP
X18 0 0 18 2741 1868 3 MP
XPP
X0 18 18 0 2741 1886 3 MP
XPP
X18 0 0 18 2741 1886 3 MP
XPP
X0 17 18 0 2741 1904 3 MP
XPP
X18 0 0 17 2741 1904 3 MP
XPP
X0 18 18 0 2741 1921 3 MP
XPP
X18 0 0 18 2741 1921 3 MP
XPP
X0 18 18 0 2741 1939 3 MP
XPP
X18 0 0 18 2741 1939 3 MP
XPP
X0 18 18 0 2741 1957 3 MP
XPP
X18 0 0 18 2741 1957 3 MP
XPP
X0 18 18 0 2741 1975 3 MP
XPP
X18 0 0 18 2741 1975 3 MP
XPP
X0 18 18 0 2741 1993 3 MP
XPP
X18 0 0 18 2741 1993 3 MP
XPP
X0 17 18 0 2741 2011 3 MP
XPP
X18 0 0 17 2741 2011 3 MP
XPP
X0 18 18 0 2741 2028 3 MP
XPP
X18 0 0 18 2741 2028 3 MP
XPP
X0 18 18 0 2741 2046 3 MP
XPP
X18 0 0 18 2741 2046 3 MP
XPP
X0 18 18 0 2741 2064 3 MP
XPP
X18 0 0 18 2741 2064 3 MP
XPP
X0 18 18 0 2741 2082 3 MP
XPP
X18 0 0 18 2741 2082 3 MP
XPP
X0 18 18 0 2741 2100 3 MP
XPP
X18 0 0 18 2741 2100 3 MP
XPP
X0 17 18 0 2741 2118 3 MP
XPP
X18 0 0 17 2741 2118 3 MP
XPP
X0 18 18 0 2741 2135 3 MP
XPP
X18 0 0 18 2741 2135 3 MP
XPP
X0 18 18 0 2741 2153 3 MP
XPP
X18 0 0 18 2741 2153 3 MP
XPP
X0 18 17 0 2759 388 3 MP
XPP
X17 0 0 18 2759 388 3 MP
XPP
X0 18 17 0 2759 406 3 MP
XPP
X17 0 0 18 2759 406 3 MP
XPP
X0 17 17 0 2759 424 3 MP
XPP
X17 0 0 17 2759 424 3 MP
XPP
X0 18 17 0 2759 441 3 MP
XPP
X17 0 0 18 2759 441 3 MP
XPP
X0 18 17 0 2759 459 3 MP
XPP
X17 0 0 18 2759 459 3 MP
XPP
X0 18 17 0 2759 477 3 MP
XPP
X17 0 0 18 2759 477 3 MP
XPP
X0 18 17 0 2759 495 3 MP
XPP
X17 0 0 18 2759 495 3 MP
XPP
X0 18 17 0 2759 513 3 MP
XPP
X17 0 0 18 2759 513 3 MP
XPP
X0 17 17 0 2759 531 3 MP
XPP
X17 0 0 17 2759 531 3 MP
XPP
X0 18 17 0 2759 548 3 MP
XPP
X17 0 0 18 2759 548 3 MP
XPP
X0.746032 sg
X0 18 17 0 2759 566 3 MP
XPP
X17 0 0 18 2759 566 3 MP
XPP
X0 18 17 0 2759 584 3 MP
XPP
X17 0 0 18 2759 584 3 MP
XPP
X0 18 17 0 2759 602 3 MP
XPP
X17 0 0 18 2759 602 3 MP
XPP
X0 18 17 0 2759 620 3 MP
XPP
X17 0 0 18 2759 620 3 MP
XPP
X0 17 17 0 2759 638 3 MP
XPP
X17 0 0 17 2759 638 3 MP
XPP
X0 18 17 0 2759 655 3 MP
XPP
X17 0 0 18 2759 655 3 MP
XPP
X0 18 17 0 2759 673 3 MP
XPP
X17 0 0 18 2759 673 3 MP
XPP
X0 18 17 0 2759 691 3 MP
XPP
X17 0 0 18 2759 691 3 MP
XPP
X0 18 17 0 2759 709 3 MP
XPP
X17 0 0 18 2759 709 3 MP
XPP
X0 18 17 0 2759 727 3 MP
XPP
X17 0 0 18 2759 727 3 MP
XPP
X0 17 17 0 2759 745 3 MP
XPP
X17 0 0 17 2759 745 3 MP
XPP
X0 18 17 0 2759 762 3 MP
XPP
X17 0 0 18 2759 762 3 MP
XPP
X0 18 17 0 2759 780 3 MP
XPP
X17 0 0 18 2759 780 3 MP
XPP
X0 18 17 0 2759 798 3 MP
XPP
X17 0 0 18 2759 798 3 MP
XPP
X0 18 17 0 2759 816 3 MP
XPP
X17 0 0 18 2759 816 3 MP
XPP
X0 18 17 0 2759 834 3 MP
XPP
X17 0 0 18 2759 834 3 MP
XPP
X0 17 17 0 2759 852 3 MP
XPP
X17 0 0 17 2759 852 3 MP
XPP
X0 18 17 0 2759 869 3 MP
XPP
X17 0 0 18 2759 869 3 MP
XPP
X1 sg
X0 18 17 0 2759 887 3 MP
XPP
X17 0 0 18 2759 887 3 MP
XPP
X0 18 17 0 2759 905 3 MP
XPP
X17 0 0 18 2759 905 3 MP
XPP
X0 18 17 0 2759 923 3 MP
XPP
X17 0 0 18 2759 923 3 MP
XPP
X0 18 17 0 2759 941 3 MP
XPP
X17 0 0 18 2759 941 3 MP
XPP
X0 17 17 0 2759 959 3 MP
XPP
X17 0 0 17 2759 959 3 MP
XPP
X0 18 17 0 2759 976 3 MP
XPP
X17 0 0 18 2759 976 3 MP
XPP
X0 18 17 0 2759 994 3 MP
XPP
X17 0 0 18 2759 994 3 MP
XPP
X0 18 17 0 2759 1012 3 MP
XPP
X17 0 0 18 2759 1012 3 MP
XPP
X0 18 17 0 2759 1030 3 MP
XPP
X17 0 0 18 2759 1030 3 MP
XPP
X0 18 17 0 2759 1048 3 MP
XPP
X17 0 0 18 2759 1048 3 MP
XPP
X0 17 17 0 2759 1066 3 MP
XPP
X17 0 0 17 2759 1066 3 MP
XPP
X0 18 17 0 2759 1083 3 MP
XPP
X17 0 0 18 2759 1083 3 MP
XPP
X0 18 17 0 2759 1101 3 MP
XPP
X17 0 0 18 2759 1101 3 MP
XPP
X0 18 17 0 2759 1119 3 MP
XPP
X17 0 0 18 2759 1119 3 MP
XPP
X0 18 17 0 2759 1137 3 MP
XPP
X17 0 0 18 2759 1137 3 MP
XPP
X0 18 17 0 2759 1155 3 MP
XPP
X17 0 0 18 2759 1155 3 MP
XPP
X0 17 17 0 2759 1173 3 MP
XPP
X17 0 0 17 2759 1173 3 MP
XPP
X0 18 17 0 2759 1190 3 MP
XPP
X17 0 0 18 2759 1190 3 MP
XPP
X0 18 17 0 2759 1208 3 MP
XPP
X17 0 0 18 2759 1208 3 MP
XPP
X0 18 17 0 2759 1226 3 MP
XPP
X17 0 0 18 2759 1226 3 MP
XPP
X0 18 17 0 2759 1244 3 MP
XPP
X17 0 0 18 2759 1244 3 MP
XPP
X0 17 17 0 2759 1262 3 MP
XPP
X17 0 0 17 2759 1262 3 MP
XPP
X0 18 17 0 2759 1279 3 MP
XPP
X17 0 0 18 2759 1279 3 MP
XPP
X0 18 17 0 2759 1297 3 MP
XPP
X17 0 0 18 2759 1297 3 MP
XPP
X0 18 17 0 2759 1315 3 MP
XPP
X17 0 0 18 2759 1315 3 MP
XPP
X0 18 17 0 2759 1333 3 MP
XPP
X17 0 0 18 2759 1333 3 MP
XPP
X0 18 17 0 2759 1351 3 MP
XPP
X17 0 0 18 2759 1351 3 MP
XPP
X0 17 17 0 2759 1369 3 MP
XPP
X17 0 0 17 2759 1369 3 MP
XPP
X0 18 17 0 2759 1386 3 MP
XPP
X17 0 0 18 2759 1386 3 MP
XPP
X0 18 17 0 2759 1404 3 MP
XPP
X17 0 0 18 2759 1404 3 MP
XPP
X0 18 17 0 2759 1422 3 MP
XPP
X17 0 0 18 2759 1422 3 MP
XPP
X0 18 17 0 2759 1440 3 MP
XPP
X17 0 0 18 2759 1440 3 MP
XPP
X0 18 17 0 2759 1458 3 MP
XPP
X17 0 0 18 2759 1458 3 MP
XPP
X0 17 17 0 2759 1476 3 MP
XPP
X17 0 0 17 2759 1476 3 MP
XPP
X0 18 17 0 2759 1493 3 MP
XPP
X17 0 0 18 2759 1493 3 MP
XPP
X0 18 17 0 2759 1511 3 MP
XPP
X17 0 0 18 2759 1511 3 MP
XPP
X0 18 17 0 2759 1529 3 MP
XPP
X17 0 0 18 2759 1529 3 MP
XPP
X0 18 17 0 2759 1547 3 MP
XPP
X17 0 0 18 2759 1547 3 MP
XPP
X0 18 17 0 2759 1565 3 MP
XPP
X17 0 0 18 2759 1565 3 MP
XPP
X0 17 17 0 2759 1583 3 MP
XPP
X17 0 0 17 2759 1583 3 MP
XPP
X0 18 17 0 2759 1600 3 MP
XPP
X17 0 0 18 2759 1600 3 MP
XPP
X0 18 17 0 2759 1618 3 MP
XPP
X17 0 0 18 2759 1618 3 MP
XPP
X0 18 17 0 2759 1636 3 MP
XPP
X17 0 0 18 2759 1636 3 MP
XPP
X0 18 17 0 2759 1654 3 MP
XPP
X17 0 0 18 2759 1654 3 MP
XPP
X0 18 17 0 2759 1672 3 MP
XPP
X17 0 0 18 2759 1672 3 MP
XPP
X0 17 17 0 2759 1690 3 MP
XPP
X17 0 0 17 2759 1690 3 MP
XPP
X0 18 17 0 2759 1707 3 MP
XPP
X17 0 0 18 2759 1707 3 MP
XPP
X0 18 17 0 2759 1725 3 MP
XPP
X17 0 0 18 2759 1725 3 MP
XPP
X0 18 17 0 2759 1743 3 MP
XPP
X17 0 0 18 2759 1743 3 MP
XPP
X0 18 17 0 2759 1761 3 MP
XPP
X17 0 0 18 2759 1761 3 MP
XPP
X0 18 17 0 2759 1779 3 MP
XPP
X17 0 0 18 2759 1779 3 MP
XPP
X0 17 17 0 2759 1797 3 MP
XPP
X17 0 0 17 2759 1797 3 MP
XPP
X0 18 17 0 2759 1814 3 MP
XPP
X17 0 0 18 2759 1814 3 MP
XPP
X0 18 17 0 2759 1832 3 MP
XPP
X17 0 0 18 2759 1832 3 MP
XPP
X0 18 17 0 2759 1850 3 MP
XPP
X17 0 0 18 2759 1850 3 MP
XPP
X0 18 17 0 2759 1868 3 MP
XPP
X17 0 0 18 2759 1868 3 MP
XPP
X0 18 17 0 2759 1886 3 MP
XPP
X17 0 0 18 2759 1886 3 MP
XPP
X0 17 17 0 2759 1904 3 MP
XPP
X17 0 0 17 2759 1904 3 MP
XPP
X0 18 17 0 2759 1921 3 MP
XPP
X17 0 0 18 2759 1921 3 MP
XPP
X0 18 17 0 2759 1939 3 MP
XPP
X17 0 0 18 2759 1939 3 MP
XPP
X0 18 17 0 2759 1957 3 MP
XPP
X17 0 0 18 2759 1957 3 MP
XPP
X0 18 17 0 2759 1975 3 MP
XPP
X17 0 0 18 2759 1975 3 MP
XPP
X0 18 17 0 2759 1993 3 MP
XPP
X17 0 0 18 2759 1993 3 MP
XPP
X0 17 17 0 2759 2011 3 MP
XPP
X17 0 0 17 2759 2011 3 MP
XPP
X0 18 17 0 2759 2028 3 MP
XPP
X17 0 0 18 2759 2028 3 MP
XPP
X0 18 17 0 2759 2046 3 MP
XPP
X17 0 0 18 2759 2046 3 MP
XPP
X0 18 17 0 2759 2064 3 MP
XPP
X17 0 0 18 2759 2064 3 MP
XPP
X0 18 17 0 2759 2082 3 MP
XPP
X17 0 0 18 2759 2082 3 MP
XPP
X0 18 17 0 2759 2100 3 MP
XPP
X17 0 0 18 2759 2100 3 MP
XPP
X0 17 17 0 2759 2118 3 MP
XPP
X17 0 0 17 2759 2118 3 MP
XPP
X0 18 17 0 2759 2135 3 MP
XPP
X17 0 0 18 2759 2135 3 MP
XPP
X0 18 17 0 2759 2153 3 MP
XPP
X17 0 0 18 2759 2153 3 MP
XPP
X0 18 18 0 2776 388 3 MP
XPP
X18 0 0 18 2776 388 3 MP
XPP
X0 18 18 0 2776 406 3 MP
XPP
X18 0 0 18 2776 406 3 MP
XPP
X0 17 18 0 2776 424 3 MP
XPP
X18 0 0 17 2776 424 3 MP
XPP
X0 18 18 0 2776 441 3 MP
XPP
X18 0 0 18 2776 441 3 MP
XPP
X0 18 18 0 2776 459 3 MP
XPP
X18 0 0 18 2776 459 3 MP
XPP
X0 18 18 0 2776 477 3 MP
XPP
X18 0 0 18 2776 477 3 MP
XPP
X0 18 18 0 2776 495 3 MP
XPP
X18 0 0 18 2776 495 3 MP
XPP
X0 18 18 0 2776 513 3 MP
XPP
X18 0 0 18 2776 513 3 MP
XPP
X0 17 18 0 2776 531 3 MP
XPP
X18 0 0 17 2776 531 3 MP
XPP
X0 18 18 0 2776 548 3 MP
XPP
X18 0 0 18 2776 548 3 MP
XPP
X0 18 18 0 2776 566 3 MP
XPP
X18 0 0 18 2776 566 3 MP
XPP
X0.746032 sg
X0 18 18 0 2776 584 3 MP
XPP
X18 0 0 18 2776 584 3 MP
XPP
X0 18 18 0 2776 602 3 MP
XPP
X18 0 0 18 2776 602 3 MP
XPP
X0 18 18 0 2776 620 3 MP
XPP
X18 0 0 18 2776 620 3 MP
XPP
X0 17 18 0 2776 638 3 MP
XPP
X18 0 0 17 2776 638 3 MP
XPP
X0 18 18 0 2776 655 3 MP
XPP
X18 0 0 18 2776 655 3 MP
XPP
X0 18 18 0 2776 673 3 MP
XPP
X18 0 0 18 2776 673 3 MP
XPP
X0 18 18 0 2776 691 3 MP
XPP
X18 0 0 18 2776 691 3 MP
XPP
X0 18 18 0 2776 709 3 MP
XPP
X18 0 0 18 2776 709 3 MP
XPP
X0 18 18 0 2776 727 3 MP
XPP
X18 0 0 18 2776 727 3 MP
XPP
X0 17 18 0 2776 745 3 MP
XPP
X18 0 0 17 2776 745 3 MP
XPP
X0 18 18 0 2776 762 3 MP
XPP
X18 0 0 18 2776 762 3 MP
XPP
X0 18 18 0 2776 780 3 MP
XPP
X18 0 0 18 2776 780 3 MP
XPP
X0 18 18 0 2776 798 3 MP
XPP
X18 0 0 18 2776 798 3 MP
XPP
X0 18 18 0 2776 816 3 MP
XPP
X18 0 0 18 2776 816 3 MP
XPP
X0 18 18 0 2776 834 3 MP
XPP
X18 0 0 18 2776 834 3 MP
XPP
X0 17 18 0 2776 852 3 MP
XPP
X18 0 0 17 2776 852 3 MP
XPP
X1 sg
X0 18 18 0 2776 869 3 MP
XPP
X18 0 0 18 2776 869 3 MP
XPP
X0 18 18 0 2776 887 3 MP
XPP
X18 0 0 18 2776 887 3 MP
XPP
X0 18 18 0 2776 905 3 MP
XPP
X18 0 0 18 2776 905 3 MP
XPP
X0 18 18 0 2776 923 3 MP
XPP
X18 0 0 18 2776 923 3 MP
XPP
X0 18 18 0 2776 941 3 MP
XPP
X18 0 0 18 2776 941 3 MP
XPP
X0 17 18 0 2776 959 3 MP
XPP
X18 0 0 17 2776 959 3 MP
XPP
X0 18 18 0 2776 976 3 MP
XPP
X18 0 0 18 2776 976 3 MP
XPP
X0 18 18 0 2776 994 3 MP
XPP
X18 0 0 18 2776 994 3 MP
XPP
X0 18 18 0 2776 1012 3 MP
XPP
X18 0 0 18 2776 1012 3 MP
XPP
X0 18 18 0 2776 1030 3 MP
XPP
X18 0 0 18 2776 1030 3 MP
XPP
X0 18 18 0 2776 1048 3 MP
XPP
X18 0 0 18 2776 1048 3 MP
XPP
X0 17 18 0 2776 1066 3 MP
XPP
X18 0 0 17 2776 1066 3 MP
XPP
X0 18 18 0 2776 1083 3 MP
XPP
X18 0 0 18 2776 1083 3 MP
XPP
X0 18 18 0 2776 1101 3 MP
XPP
X18 0 0 18 2776 1101 3 MP
XPP
X0 18 18 0 2776 1119 3 MP
XPP
X18 0 0 18 2776 1119 3 MP
XPP
X0 18 18 0 2776 1137 3 MP
XPP
X18 0 0 18 2776 1137 3 MP
XPP
X0 18 18 0 2776 1155 3 MP
XPP
X18 0 0 18 2776 1155 3 MP
XPP
X0 17 18 0 2776 1173 3 MP
XPP
X18 0 0 17 2776 1173 3 MP
XPP
X0 18 18 0 2776 1190 3 MP
XPP
X18 0 0 18 2776 1190 3 MP
XPP
X0 18 18 0 2776 1208 3 MP
XPP
X18 0 0 18 2776 1208 3 MP
XPP
X0 18 18 0 2776 1226 3 MP
XPP
X18 0 0 18 2776 1226 3 MP
XPP
X0 18 18 0 2776 1244 3 MP
XPP
X18 0 0 18 2776 1244 3 MP
XPP
X0 17 18 0 2776 1262 3 MP
XPP
X18 0 0 17 2776 1262 3 MP
XPP
X0 18 18 0 2776 1279 3 MP
XPP
X18 0 0 18 2776 1279 3 MP
XPP
X0 18 18 0 2776 1297 3 MP
XPP
X18 0 0 18 2776 1297 3 MP
XPP
X0 18 18 0 2776 1315 3 MP
XPP
X18 0 0 18 2776 1315 3 MP
XPP
X0 18 18 0 2776 1333 3 MP
XPP
X18 0 0 18 2776 1333 3 MP
XPP
X0 18 18 0 2776 1351 3 MP
XPP
X18 0 0 18 2776 1351 3 MP
XPP
X0 17 18 0 2776 1369 3 MP
XPP
X18 0 0 17 2776 1369 3 MP
XPP
X0 18 18 0 2776 1386 3 MP
XPP
X18 0 0 18 2776 1386 3 MP
XPP
X0 18 18 0 2776 1404 3 MP
XPP
X18 0 0 18 2776 1404 3 MP
XPP
X0 18 18 0 2776 1422 3 MP
XPP
X18 0 0 18 2776 1422 3 MP
XPP
X0 18 18 0 2776 1440 3 MP
XPP
X18 0 0 18 2776 1440 3 MP
XPP
X0 18 18 0 2776 1458 3 MP
XPP
X18 0 0 18 2776 1458 3 MP
XPP
X0 17 18 0 2776 1476 3 MP
XPP
X18 0 0 17 2776 1476 3 MP
XPP
X0 18 18 0 2776 1493 3 MP
XPP
X18 0 0 18 2776 1493 3 MP
XPP
X0 18 18 0 2776 1511 3 MP
XPP
X18 0 0 18 2776 1511 3 MP
XPP
X0 18 18 0 2776 1529 3 MP
XPP
X18 0 0 18 2776 1529 3 MP
XPP
X0 18 18 0 2776 1547 3 MP
XPP
X18 0 0 18 2776 1547 3 MP
XPP
X0 18 18 0 2776 1565 3 MP
XPP
X18 0 0 18 2776 1565 3 MP
XPP
X0 17 18 0 2776 1583 3 MP
XPP
X18 0 0 17 2776 1583 3 MP
XPP
X0 18 18 0 2776 1600 3 MP
XPP
X18 0 0 18 2776 1600 3 MP
XPP
X0 18 18 0 2776 1618 3 MP
XPP
X18 0 0 18 2776 1618 3 MP
XPP
X0 18 18 0 2776 1636 3 MP
XPP
X18 0 0 18 2776 1636 3 MP
XPP
X0 18 18 0 2776 1654 3 MP
XPP
X18 0 0 18 2776 1654 3 MP
XPP
X0 18 18 0 2776 1672 3 MP
XPP
X18 0 0 18 2776 1672 3 MP
XPP
X0 17 18 0 2776 1690 3 MP
XPP
X18 0 0 17 2776 1690 3 MP
XPP
X0 18 18 0 2776 1707 3 MP
XPP
X18 0 0 18 2776 1707 3 MP
XPP
X0 18 18 0 2776 1725 3 MP
XPP
X18 0 0 18 2776 1725 3 MP
XPP
X0 18 18 0 2776 1743 3 MP
XPP
X18 0 0 18 2776 1743 3 MP
XPP
X0 18 18 0 2776 1761 3 MP
XPP
X18 0 0 18 2776 1761 3 MP
XPP
X0 18 18 0 2776 1779 3 MP
XPP
X18 0 0 18 2776 1779 3 MP
XPP
X0 17 18 0 2776 1797 3 MP
XPP
X18 0 0 17 2776 1797 3 MP
XPP
X0 18 18 0 2776 1814 3 MP
XPP
X18 0 0 18 2776 1814 3 MP
XPP
X0 18 18 0 2776 1832 3 MP
XPP
X18 0 0 18 2776 1832 3 MP
XPP
X0 18 18 0 2776 1850 3 MP
XPP
X18 0 0 18 2776 1850 3 MP
XPP
X0 18 18 0 2776 1868 3 MP
XPP
X18 0 0 18 2776 1868 3 MP
XPP
X0 18 18 0 2776 1886 3 MP
XPP
X18 0 0 18 2776 1886 3 MP
XPP
X0 17 18 0 2776 1904 3 MP
XPP
X18 0 0 17 2776 1904 3 MP
XPP
X0 18 18 0 2776 1921 3 MP
XPP
X18 0 0 18 2776 1921 3 MP
XPP
X0 18 18 0 2776 1939 3 MP
XPP
X18 0 0 18 2776 1939 3 MP
XPP
X0 18 18 0 2776 1957 3 MP
XPP
X18 0 0 18 2776 1957 3 MP
XPP
X0 18 18 0 2776 1975 3 MP
XPP
X18 0 0 18 2776 1975 3 MP
XPP
X0 18 18 0 2776 1993 3 MP
XPP
X18 0 0 18 2776 1993 3 MP
XPP
X0 17 18 0 2776 2011 3 MP
XPP
X18 0 0 17 2776 2011 3 MP
XPP
X0 18 18 0 2776 2028 3 MP
XPP
X18 0 0 18 2776 2028 3 MP
XPP
X0 18 18 0 2776 2046 3 MP
XPP
X18 0 0 18 2776 2046 3 MP
XPP
X0 18 18 0 2776 2064 3 MP
XPP
X18 0 0 18 2776 2064 3 MP
XPP
X0 18 18 0 2776 2082 3 MP
XPP
X18 0 0 18 2776 2082 3 MP
XPP
X0 18 18 0 2776 2100 3 MP
XPP
X18 0 0 18 2776 2100 3 MP
XPP
X0 17 18 0 2776 2118 3 MP
XPP
X18 0 0 17 2776 2118 3 MP
XPP
X0 18 18 0 2776 2135 3 MP
XPP
X18 0 0 18 2776 2135 3 MP
XPP
X0 18 18 0 2776 2153 3 MP
XPP
X18 0 0 18 2776 2153 3 MP
XPP
X0 18 18 0 2794 388 3 MP
XPP
X18 0 0 18 2794 388 3 MP
XPP
X0 18 18 0 2794 406 3 MP
XPP
X18 0 0 18 2794 406 3 MP
XPP
X0 17 18 0 2794 424 3 MP
XPP
X18 0 0 17 2794 424 3 MP
XPP
X0 18 18 0 2794 441 3 MP
XPP
X18 0 0 18 2794 441 3 MP
XPP
X0 18 18 0 2794 459 3 MP
XPP
X18 0 0 18 2794 459 3 MP
XPP
X0 18 18 0 2794 477 3 MP
XPP
X18 0 0 18 2794 477 3 MP
XPP
X0 18 18 0 2794 495 3 MP
XPP
X18 0 0 18 2794 495 3 MP
XPP
X0 18 18 0 2794 513 3 MP
XPP
X18 0 0 18 2794 513 3 MP
XPP
X0 17 18 0 2794 531 3 MP
XPP
X18 0 0 17 2794 531 3 MP
XPP
X0 18 18 0 2794 548 3 MP
XPP
X18 0 0 18 2794 548 3 MP
XPP
X0 18 18 0 2794 566 3 MP
XPP
X18 0 0 18 2794 566 3 MP
XPP
X0.746032 sg
X0 18 18 0 2794 584 3 MP
XPP
X18 0 0 18 2794 584 3 MP
XPP
X0 18 18 0 2794 602 3 MP
XPP
X18 0 0 18 2794 602 3 MP
XPP
X0 18 18 0 2794 620 3 MP
XPP
X18 0 0 18 2794 620 3 MP
XPP
X0 17 18 0 2794 638 3 MP
XPP
X18 0 0 17 2794 638 3 MP
XPP
X0 18 18 0 2794 655 3 MP
XPP
X18 0 0 18 2794 655 3 MP
XPP
X0 18 18 0 2794 673 3 MP
XPP
X18 0 0 18 2794 673 3 MP
XPP
X0 18 18 0 2794 691 3 MP
XPP
X18 0 0 18 2794 691 3 MP
XPP
X0 18 18 0 2794 709 3 MP
XPP
X18 0 0 18 2794 709 3 MP
XPP
X0 18 18 0 2794 727 3 MP
XPP
X18 0 0 18 2794 727 3 MP
XPP
X0 17 18 0 2794 745 3 MP
XPP
X18 0 0 17 2794 745 3 MP
XPP
X0 18 18 0 2794 762 3 MP
XPP
X18 0 0 18 2794 762 3 MP
XPP
X0 18 18 0 2794 780 3 MP
XPP
X18 0 0 18 2794 780 3 MP
XPP
X0 18 18 0 2794 798 3 MP
XPP
X18 0 0 18 2794 798 3 MP
XPP
X0 18 18 0 2794 816 3 MP
XPP
X18 0 0 18 2794 816 3 MP
XPP
X0 18 18 0 2794 834 3 MP
XPP
X18 0 0 18 2794 834 3 MP
XPP
X0 17 18 0 2794 852 3 MP
XPP
X18 0 0 17 2794 852 3 MP
XPP
X1 sg
X0 18 18 0 2794 869 3 MP
XPP
X18 0 0 18 2794 869 3 MP
XPP
X0 18 18 0 2794 887 3 MP
XPP
X18 0 0 18 2794 887 3 MP
XPP
X0 18 18 0 2794 905 3 MP
XPP
X18 0 0 18 2794 905 3 MP
XPP
X0 18 18 0 2794 923 3 MP
XPP
X18 0 0 18 2794 923 3 MP
XPP
X0 18 18 0 2794 941 3 MP
XPP
X18 0 0 18 2794 941 3 MP
XPP
X0 17 18 0 2794 959 3 MP
XPP
X18 0 0 17 2794 959 3 MP
XPP
X0 18 18 0 2794 976 3 MP
XPP
X18 0 0 18 2794 976 3 MP
XPP
X0 18 18 0 2794 994 3 MP
XPP
X18 0 0 18 2794 994 3 MP
XPP
X0 18 18 0 2794 1012 3 MP
XPP
X18 0 0 18 2794 1012 3 MP
XPP
X0 18 18 0 2794 1030 3 MP
XPP
X18 0 0 18 2794 1030 3 MP
XPP
X0 18 18 0 2794 1048 3 MP
XPP
X18 0 0 18 2794 1048 3 MP
XPP
X0 17 18 0 2794 1066 3 MP
XPP
X18 0 0 17 2794 1066 3 MP
XPP
X0 18 18 0 2794 1083 3 MP
XPP
X18 0 0 18 2794 1083 3 MP
XPP
X0 18 18 0 2794 1101 3 MP
XPP
X18 0 0 18 2794 1101 3 MP
XPP
X0 18 18 0 2794 1119 3 MP
XPP
X18 0 0 18 2794 1119 3 MP
XPP
X0 18 18 0 2794 1137 3 MP
XPP
X18 0 0 18 2794 1137 3 MP
XPP
X0 18 18 0 2794 1155 3 MP
XPP
X18 0 0 18 2794 1155 3 MP
XPP
X0 17 18 0 2794 1173 3 MP
XPP
X18 0 0 17 2794 1173 3 MP
XPP
X0 18 18 0 2794 1190 3 MP
XPP
X18 0 0 18 2794 1190 3 MP
XPP
X0 18 18 0 2794 1208 3 MP
XPP
X18 0 0 18 2794 1208 3 MP
XPP
X0 18 18 0 2794 1226 3 MP
XPP
X18 0 0 18 2794 1226 3 MP
XPP
X0 18 18 0 2794 1244 3 MP
XPP
X18 0 0 18 2794 1244 3 MP
XPP
X0 17 18 0 2794 1262 3 MP
XPP
X18 0 0 17 2794 1262 3 MP
XPP
X0 18 18 0 2794 1279 3 MP
XPP
X18 0 0 18 2794 1279 3 MP
XPP
X0 18 18 0 2794 1297 3 MP
XPP
X18 0 0 18 2794 1297 3 MP
XPP
X0 18 18 0 2794 1315 3 MP
XPP
X18 0 0 18 2794 1315 3 MP
XPP
X0 18 18 0 2794 1333 3 MP
XPP
X18 0 0 18 2794 1333 3 MP
XPP
X0 18 18 0 2794 1351 3 MP
XPP
X18 0 0 18 2794 1351 3 MP
XPP
X0 17 18 0 2794 1369 3 MP
XPP
X18 0 0 17 2794 1369 3 MP
XPP
X0 18 18 0 2794 1386 3 MP
XPP
X18 0 0 18 2794 1386 3 MP
XPP
X0 18 18 0 2794 1404 3 MP
XPP
X18 0 0 18 2794 1404 3 MP
XPP
X0 18 18 0 2794 1422 3 MP
XPP
X18 0 0 18 2794 1422 3 MP
XPP
X0 18 18 0 2794 1440 3 MP
XPP
X18 0 0 18 2794 1440 3 MP
XPP
X0 18 18 0 2794 1458 3 MP
XPP
X18 0 0 18 2794 1458 3 MP
XPP
X0 17 18 0 2794 1476 3 MP
XPP
X18 0 0 17 2794 1476 3 MP
XPP
X0 18 18 0 2794 1493 3 MP
XPP
X18 0 0 18 2794 1493 3 MP
XPP
X0 18 18 0 2794 1511 3 MP
XPP
X18 0 0 18 2794 1511 3 MP
XPP
X0 18 18 0 2794 1529 3 MP
XPP
X18 0 0 18 2794 1529 3 MP
XPP
X0 18 18 0 2794 1547 3 MP
XPP
X18 0 0 18 2794 1547 3 MP
XPP
X0 18 18 0 2794 1565 3 MP
XPP
X18 0 0 18 2794 1565 3 MP
XPP
X0 17 18 0 2794 1583 3 MP
XPP
X18 0 0 17 2794 1583 3 MP
XPP
X0 18 18 0 2794 1600 3 MP
XPP
X18 0 0 18 2794 1600 3 MP
XPP
X0 18 18 0 2794 1618 3 MP
XPP
X18 0 0 18 2794 1618 3 MP
XPP
X0 18 18 0 2794 1636 3 MP
XPP
X18 0 0 18 2794 1636 3 MP
XPP
X0 18 18 0 2794 1654 3 MP
XPP
X18 0 0 18 2794 1654 3 MP
XPP
X0 18 18 0 2794 1672 3 MP
XPP
X18 0 0 18 2794 1672 3 MP
XPP
X0 17 18 0 2794 1690 3 MP
XPP
X18 0 0 17 2794 1690 3 MP
XPP
X0 18 18 0 2794 1707 3 MP
XPP
X18 0 0 18 2794 1707 3 MP
XPP
X0 18 18 0 2794 1725 3 MP
XPP
X18 0 0 18 2794 1725 3 MP
XPP
X0 18 18 0 2794 1743 3 MP
XPP
X18 0 0 18 2794 1743 3 MP
XPP
X0 18 18 0 2794 1761 3 MP
XPP
X18 0 0 18 2794 1761 3 MP
XPP
X0 18 18 0 2794 1779 3 MP
XPP
X18 0 0 18 2794 1779 3 MP
XPP
X0 17 18 0 2794 1797 3 MP
XPP
X18 0 0 17 2794 1797 3 MP
XPP
X0 18 18 0 2794 1814 3 MP
XPP
X18 0 0 18 2794 1814 3 MP
XPP
X0 18 18 0 2794 1832 3 MP
XPP
X18 0 0 18 2794 1832 3 MP
XPP
X0 18 18 0 2794 1850 3 MP
XPP
X18 0 0 18 2794 1850 3 MP
XPP
X0 18 18 0 2794 1868 3 MP
XPP
X18 0 0 18 2794 1868 3 MP
XPP
X0 18 18 0 2794 1886 3 MP
XPP
X18 0 0 18 2794 1886 3 MP
XPP
X0 17 18 0 2794 1904 3 MP
XPP
X18 0 0 17 2794 1904 3 MP
XPP
X0 18 18 0 2794 1921 3 MP
XPP
X18 0 0 18 2794 1921 3 MP
XPP
X0 18 18 0 2794 1939 3 MP
XPP
X18 0 0 18 2794 1939 3 MP
XPP
X0 18 18 0 2794 1957 3 MP
XPP
X18 0 0 18 2794 1957 3 MP
XPP
X0 18 18 0 2794 1975 3 MP
XPP
X18 0 0 18 2794 1975 3 MP
XPP
X0 18 18 0 2794 1993 3 MP
XPP
X18 0 0 18 2794 1993 3 MP
XPP
X0 17 18 0 2794 2011 3 MP
XPP
X18 0 0 17 2794 2011 3 MP
XPP
X0 18 18 0 2794 2028 3 MP
XPP
X18 0 0 18 2794 2028 3 MP
XPP
X0 18 18 0 2794 2046 3 MP
XPP
X18 0 0 18 2794 2046 3 MP
XPP
X0 18 18 0 2794 2064 3 MP
XPP
X18 0 0 18 2794 2064 3 MP
XPP
X0 18 18 0 2794 2082 3 MP
XPP
X18 0 0 18 2794 2082 3 MP
XPP
X0 18 18 0 2794 2100 3 MP
XPP
X18 0 0 18 2794 2100 3 MP
XPP
X0 17 18 0 2794 2118 3 MP
XPP
X18 0 0 17 2794 2118 3 MP
XPP
X0 18 18 0 2794 2135 3 MP
XPP
X18 0 0 18 2794 2135 3 MP
XPP
X0 18 18 0 2794 2153 3 MP
XPP
X18 0 0 18 2794 2153 3 MP
XPP
X0 18 18 0 2812 388 3 MP
XPP
X18 0 0 18 2812 388 3 MP
XPP
X0 18 18 0 2812 406 3 MP
XPP
X18 0 0 18 2812 406 3 MP
XPP
X0 17 18 0 2812 424 3 MP
XPP
X18 0 0 17 2812 424 3 MP
XPP
X0 18 18 0 2812 441 3 MP
XPP
X18 0 0 18 2812 441 3 MP
XPP
X0 18 18 0 2812 459 3 MP
XPP
X18 0 0 18 2812 459 3 MP
XPP
X0 18 18 0 2812 477 3 MP
XPP
X18 0 0 18 2812 477 3 MP
XPP
X0 18 18 0 2812 495 3 MP
XPP
X18 0 0 18 2812 495 3 MP
XPP
X0 18 18 0 2812 513 3 MP
XPP
X18 0 0 18 2812 513 3 MP
XPP
X0 17 18 0 2812 531 3 MP
XPP
X18 0 0 17 2812 531 3 MP
XPP
X0 18 18 0 2812 548 3 MP
XPP
X18 0 0 18 2812 548 3 MP
XPP
X0 18 18 0 2812 566 3 MP
XPP
X18 0 0 18 2812 566 3 MP
XPP
X0 18 18 0 2812 584 3 MP
XPP
X18 0 0 18 2812 584 3 MP
XPP
X0.746032 sg
X0 18 18 0 2812 602 3 MP
XPP
X18 0 0 18 2812 602 3 MP
XPP
X0 18 18 0 2812 620 3 MP
XPP
X18 0 0 18 2812 620 3 MP
XPP
X0 17 18 0 2812 638 3 MP
XPP
X18 0 0 17 2812 638 3 MP
XPP
X0 18 18 0 2812 655 3 MP
XPP
X18 0 0 18 2812 655 3 MP
XPP
X0 18 18 0 2812 673 3 MP
XPP
X18 0 0 18 2812 673 3 MP
XPP
X0 18 18 0 2812 691 3 MP
XPP
X18 0 0 18 2812 691 3 MP
XPP
X0 18 18 0 2812 709 3 MP
XPP
X18 0 0 18 2812 709 3 MP
XPP
X0 18 18 0 2812 727 3 MP
XPP
X18 0 0 18 2812 727 3 MP
XPP
X0 17 18 0 2812 745 3 MP
XPP
X18 0 0 17 2812 745 3 MP
XPP
X0 18 18 0 2812 762 3 MP
XPP
X18 0 0 18 2812 762 3 MP
XPP
X0 18 18 0 2812 780 3 MP
XPP
X18 0 0 18 2812 780 3 MP
XPP
X0 18 18 0 2812 798 3 MP
XPP
X18 0 0 18 2812 798 3 MP
XPP
X0 18 18 0 2812 816 3 MP
XPP
X18 0 0 18 2812 816 3 MP
XPP
X0 18 18 0 2812 834 3 MP
XPP
X18 0 0 18 2812 834 3 MP
XPP
X1 sg
X0 17 18 0 2812 852 3 MP
XPP
X18 0 0 17 2812 852 3 MP
XPP
X0 18 18 0 2812 869 3 MP
XPP
X18 0 0 18 2812 869 3 MP
XPP
X0 18 18 0 2812 887 3 MP
XPP
X18 0 0 18 2812 887 3 MP
XPP
X0 18 18 0 2812 905 3 MP
XPP
X18 0 0 18 2812 905 3 MP
XPP
X0 18 18 0 2812 923 3 MP
XPP
X18 0 0 18 2812 923 3 MP
XPP
X0 18 18 0 2812 941 3 MP
XPP
X18 0 0 18 2812 941 3 MP
XPP
X0 17 18 0 2812 959 3 MP
XPP
X18 0 0 17 2812 959 3 MP
XPP
X0 18 18 0 2812 976 3 MP
XPP
X18 0 0 18 2812 976 3 MP
XPP
X0 18 18 0 2812 994 3 MP
XPP
X18 0 0 18 2812 994 3 MP
XPP
X0 18 18 0 2812 1012 3 MP
XPP
X18 0 0 18 2812 1012 3 MP
XPP
X0 18 18 0 2812 1030 3 MP
XPP
X18 0 0 18 2812 1030 3 MP
XPP
X0 18 18 0 2812 1048 3 MP
XPP
X18 0 0 18 2812 1048 3 MP
XPP
X0 17 18 0 2812 1066 3 MP
XPP
X18 0 0 17 2812 1066 3 MP
XPP
X0 18 18 0 2812 1083 3 MP
XPP
X18 0 0 18 2812 1083 3 MP
XPP
X0 18 18 0 2812 1101 3 MP
XPP
X18 0 0 18 2812 1101 3 MP
XPP
X0 18 18 0 2812 1119 3 MP
XPP
X18 0 0 18 2812 1119 3 MP
XPP
X0 18 18 0 2812 1137 3 MP
XPP
X18 0 0 18 2812 1137 3 MP
XPP
X0 18 18 0 2812 1155 3 MP
XPP
X18 0 0 18 2812 1155 3 MP
XPP
X0 17 18 0 2812 1173 3 MP
XPP
X18 0 0 17 2812 1173 3 MP
XPP
X0 18 18 0 2812 1190 3 MP
XPP
X18 0 0 18 2812 1190 3 MP
XPP
X0 18 18 0 2812 1208 3 MP
XPP
X18 0 0 18 2812 1208 3 MP
XPP
X0 18 18 0 2812 1226 3 MP
XPP
X18 0 0 18 2812 1226 3 MP
XPP
X0 18 18 0 2812 1244 3 MP
XPP
X18 0 0 18 2812 1244 3 MP
XPP
X0 17 18 0 2812 1262 3 MP
XPP
X18 0 0 17 2812 1262 3 MP
XPP
X0 18 18 0 2812 1279 3 MP
XPP
X18 0 0 18 2812 1279 3 MP
XPP
X0 18 18 0 2812 1297 3 MP
XPP
X18 0 0 18 2812 1297 3 MP
XPP
X0 18 18 0 2812 1315 3 MP
XPP
X18 0 0 18 2812 1315 3 MP
XPP
X0 18 18 0 2812 1333 3 MP
XPP
X18 0 0 18 2812 1333 3 MP
XPP
X0 18 18 0 2812 1351 3 MP
XPP
X18 0 0 18 2812 1351 3 MP
XPP
X0 17 18 0 2812 1369 3 MP
XPP
X18 0 0 17 2812 1369 3 MP
XPP
X0 18 18 0 2812 1386 3 MP
XPP
X18 0 0 18 2812 1386 3 MP
XPP
X0 18 18 0 2812 1404 3 MP
XPP
X18 0 0 18 2812 1404 3 MP
XPP
X0 18 18 0 2812 1422 3 MP
XPP
X18 0 0 18 2812 1422 3 MP
XPP
X0 18 18 0 2812 1440 3 MP
XPP
X18 0 0 18 2812 1440 3 MP
XPP
X0 18 18 0 2812 1458 3 MP
XPP
X18 0 0 18 2812 1458 3 MP
XPP
X0 17 18 0 2812 1476 3 MP
XPP
X18 0 0 17 2812 1476 3 MP
XPP
X0 18 18 0 2812 1493 3 MP
XPP
X18 0 0 18 2812 1493 3 MP
XPP
X0 18 18 0 2812 1511 3 MP
XPP
X18 0 0 18 2812 1511 3 MP
XPP
X0 18 18 0 2812 1529 3 MP
XPP
X18 0 0 18 2812 1529 3 MP
XPP
X0 18 18 0 2812 1547 3 MP
XPP
X18 0 0 18 2812 1547 3 MP
XPP
X0 18 18 0 2812 1565 3 MP
XPP
X18 0 0 18 2812 1565 3 MP
XPP
X0 17 18 0 2812 1583 3 MP
XPP
X18 0 0 17 2812 1583 3 MP
XPP
X0 18 18 0 2812 1600 3 MP
XPP
X18 0 0 18 2812 1600 3 MP
XPP
X0 18 18 0 2812 1618 3 MP
XPP
X18 0 0 18 2812 1618 3 MP
XPP
X0 18 18 0 2812 1636 3 MP
XPP
X18 0 0 18 2812 1636 3 MP
XPP
X0 18 18 0 2812 1654 3 MP
XPP
X18 0 0 18 2812 1654 3 MP
XPP
X0 18 18 0 2812 1672 3 MP
XPP
X18 0 0 18 2812 1672 3 MP
XPP
X0 17 18 0 2812 1690 3 MP
XPP
X18 0 0 17 2812 1690 3 MP
XPP
X0 18 18 0 2812 1707 3 MP
XPP
X18 0 0 18 2812 1707 3 MP
XPP
X0 18 18 0 2812 1725 3 MP
XPP
X18 0 0 18 2812 1725 3 MP
XPP
X0 18 18 0 2812 1743 3 MP
XPP
X18 0 0 18 2812 1743 3 MP
XPP
X0 18 18 0 2812 1761 3 MP
XPP
X18 0 0 18 2812 1761 3 MP
XPP
X0 18 18 0 2812 1779 3 MP
XPP
X18 0 0 18 2812 1779 3 MP
XPP
X0 17 18 0 2812 1797 3 MP
XPP
X18 0 0 17 2812 1797 3 MP
XPP
X0 18 18 0 2812 1814 3 MP
XPP
X18 0 0 18 2812 1814 3 MP
XPP
X0 18 18 0 2812 1832 3 MP
XPP
X18 0 0 18 2812 1832 3 MP
XPP
X0 18 18 0 2812 1850 3 MP
XPP
X18 0 0 18 2812 1850 3 MP
XPP
X0 18 18 0 2812 1868 3 MP
XPP
X18 0 0 18 2812 1868 3 MP
XPP
X0 18 18 0 2812 1886 3 MP
XPP
X18 0 0 18 2812 1886 3 MP
XPP
X0 17 18 0 2812 1904 3 MP
XPP
X18 0 0 17 2812 1904 3 MP
XPP
X0 18 18 0 2812 1921 3 MP
XPP
X18 0 0 18 2812 1921 3 MP
XPP
X0 18 18 0 2812 1939 3 MP
XPP
X18 0 0 18 2812 1939 3 MP
XPP
X0 18 18 0 2812 1957 3 MP
XPP
X18 0 0 18 2812 1957 3 MP
XPP
X0 18 18 0 2812 1975 3 MP
XPP
X18 0 0 18 2812 1975 3 MP
XPP
X0 18 18 0 2812 1993 3 MP
XPP
X18 0 0 18 2812 1993 3 MP
XPP
X0 17 18 0 2812 2011 3 MP
XPP
X18 0 0 17 2812 2011 3 MP
XPP
X0 18 18 0 2812 2028 3 MP
XPP
X18 0 0 18 2812 2028 3 MP
XPP
X0 18 18 0 2812 2046 3 MP
XPP
X18 0 0 18 2812 2046 3 MP
XPP
X0 18 18 0 2812 2064 3 MP
XPP
X18 0 0 18 2812 2064 3 MP
XPP
X0 18 18 0 2812 2082 3 MP
XPP
X18 0 0 18 2812 2082 3 MP
XPP
X0 18 18 0 2812 2100 3 MP
XPP
X18 0 0 18 2812 2100 3 MP
XPP
X0 17 18 0 2812 2118 3 MP
XPP
X18 0 0 17 2812 2118 3 MP
XPP
X0 18 18 0 2812 2135 3 MP
XPP
X18 0 0 18 2812 2135 3 MP
XPP
X0 18 18 0 2812 2153 3 MP
XPP
X18 0 0 18 2812 2153 3 MP
XPP
X0 18 18 0 2830 388 3 MP
XPP
X18 0 0 18 2830 388 3 MP
XPP
X0 18 18 0 2830 406 3 MP
XPP
X18 0 0 18 2830 406 3 MP
XPP
X0 17 18 0 2830 424 3 MP
XPP
X18 0 0 17 2830 424 3 MP
XPP
X0 18 18 0 2830 441 3 MP
XPP
X18 0 0 18 2830 441 3 MP
XPP
X0 18 18 0 2830 459 3 MP
XPP
X18 0 0 18 2830 459 3 MP
XPP
X0 18 18 0 2830 477 3 MP
XPP
X18 0 0 18 2830 477 3 MP
XPP
X0 18 18 0 2830 495 3 MP
XPP
X18 0 0 18 2830 495 3 MP
XPP
X0 18 18 0 2830 513 3 MP
XPP
X18 0 0 18 2830 513 3 MP
XPP
X0 17 18 0 2830 531 3 MP
XPP
X18 0 0 17 2830 531 3 MP
XPP
X0 18 18 0 2830 548 3 MP
XPP
X18 0 0 18 2830 548 3 MP
XPP
X0 18 18 0 2830 566 3 MP
XPP
X18 0 0 18 2830 566 3 MP
XPP
X0 18 18 0 2830 584 3 MP
XPP
X18 0 0 18 2830 584 3 MP
XPP
X0 18 18 0 2830 602 3 MP
XPP
X18 0 0 18 2830 602 3 MP
XPP
X0 18 18 0 2830 620 3 MP
XPP
X18 0 0 18 2830 620 3 MP
XPP
X0.746032 sg
X0 17 18 0 2830 638 3 MP
XPP
X18 0 0 17 2830 638 3 MP
XPP
X0 18 18 0 2830 655 3 MP
XPP
X18 0 0 18 2830 655 3 MP
XPP
X0 18 18 0 2830 673 3 MP
XPP
X18 0 0 18 2830 673 3 MP
XPP
X0 18 18 0 2830 691 3 MP
XPP
X18 0 0 18 2830 691 3 MP
XPP
X0 18 18 0 2830 709 3 MP
XPP
X18 0 0 18 2830 709 3 MP
XPP
X0 18 18 0 2830 727 3 MP
XPP
X18 0 0 18 2830 727 3 MP
XPP
X0 17 18 0 2830 745 3 MP
XPP
X18 0 0 17 2830 745 3 MP
XPP
X0 18 18 0 2830 762 3 MP
XPP
X18 0 0 18 2830 762 3 MP
XPP
X0 18 18 0 2830 780 3 MP
XPP
X18 0 0 18 2830 780 3 MP
XPP
X0 18 18 0 2830 798 3 MP
XPP
X18 0 0 18 2830 798 3 MP
XPP
X1 sg
X0 18 18 0 2830 816 3 MP
XPP
X18 0 0 18 2830 816 3 MP
XPP
X0 18 18 0 2830 834 3 MP
XPP
X18 0 0 18 2830 834 3 MP
XPP
X0 17 18 0 2830 852 3 MP
XPP
X18 0 0 17 2830 852 3 MP
XPP
X0 18 18 0 2830 869 3 MP
XPP
X18 0 0 18 2830 869 3 MP
XPP
X0 18 18 0 2830 887 3 MP
XPP
X18 0 0 18 2830 887 3 MP
XPP
X0 18 18 0 2830 905 3 MP
XPP
X18 0 0 18 2830 905 3 MP
XPP
X0 18 18 0 2830 923 3 MP
XPP
X18 0 0 18 2830 923 3 MP
XPP
X0 18 18 0 2830 941 3 MP
XPP
X18 0 0 18 2830 941 3 MP
XPP
X0 17 18 0 2830 959 3 MP
XPP
X18 0 0 17 2830 959 3 MP
XPP
X0 18 18 0 2830 976 3 MP
XPP
X18 0 0 18 2830 976 3 MP
XPP
X0 18 18 0 2830 994 3 MP
XPP
X18 0 0 18 2830 994 3 MP
XPP
X0 18 18 0 2830 1012 3 MP
XPP
X18 0 0 18 2830 1012 3 MP
XPP
X0 18 18 0 2830 1030 3 MP
XPP
X18 0 0 18 2830 1030 3 MP
XPP
X0 18 18 0 2830 1048 3 MP
XPP
X18 0 0 18 2830 1048 3 MP
XPP
X0 17 18 0 2830 1066 3 MP
XPP
X18 0 0 17 2830 1066 3 MP
XPP
X0 18 18 0 2830 1083 3 MP
XPP
X18 0 0 18 2830 1083 3 MP
XPP
X0 18 18 0 2830 1101 3 MP
XPP
X18 0 0 18 2830 1101 3 MP
XPP
X0 18 18 0 2830 1119 3 MP
XPP
X18 0 0 18 2830 1119 3 MP
XPP
X0 18 18 0 2830 1137 3 MP
XPP
X18 0 0 18 2830 1137 3 MP
XPP
X0 18 18 0 2830 1155 3 MP
XPP
X18 0 0 18 2830 1155 3 MP
XPP
X0 17 18 0 2830 1173 3 MP
XPP
X18 0 0 17 2830 1173 3 MP
XPP
X0 18 18 0 2830 1190 3 MP
XPP
X18 0 0 18 2830 1190 3 MP
XPP
X0 18 18 0 2830 1208 3 MP
XPP
X18 0 0 18 2830 1208 3 MP
XPP
X0 18 18 0 2830 1226 3 MP
XPP
X18 0 0 18 2830 1226 3 MP
XPP
X0 18 18 0 2830 1244 3 MP
XPP
X18 0 0 18 2830 1244 3 MP
XPP
X0 17 18 0 2830 1262 3 MP
XPP
X18 0 0 17 2830 1262 3 MP
XPP
X0 18 18 0 2830 1279 3 MP
XPP
X18 0 0 18 2830 1279 3 MP
XPP
X0 18 18 0 2830 1297 3 MP
XPP
X18 0 0 18 2830 1297 3 MP
XPP
X0 18 18 0 2830 1315 3 MP
XPP
X18 0 0 18 2830 1315 3 MP
XPP
X0 18 18 0 2830 1333 3 MP
XPP
X18 0 0 18 2830 1333 3 MP
XPP
X0 18 18 0 2830 1351 3 MP
XPP
X18 0 0 18 2830 1351 3 MP
XPP
X0 17 18 0 2830 1369 3 MP
XPP
X18 0 0 17 2830 1369 3 MP
XPP
X0 18 18 0 2830 1386 3 MP
XPP
X18 0 0 18 2830 1386 3 MP
XPP
X0 18 18 0 2830 1404 3 MP
XPP
X18 0 0 18 2830 1404 3 MP
XPP
X0 18 18 0 2830 1422 3 MP
XPP
X18 0 0 18 2830 1422 3 MP
XPP
X0 18 18 0 2830 1440 3 MP
XPP
X18 0 0 18 2830 1440 3 MP
XPP
X0 18 18 0 2830 1458 3 MP
XPP
X18 0 0 18 2830 1458 3 MP
XPP
X0 17 18 0 2830 1476 3 MP
XPP
X18 0 0 17 2830 1476 3 MP
XPP
X0 18 18 0 2830 1493 3 MP
XPP
X18 0 0 18 2830 1493 3 MP
XPP
X0 18 18 0 2830 1511 3 MP
XPP
X18 0 0 18 2830 1511 3 MP
XPP
X0 18 18 0 2830 1529 3 MP
XPP
X18 0 0 18 2830 1529 3 MP
XPP
X0 18 18 0 2830 1547 3 MP
XPP
X18 0 0 18 2830 1547 3 MP
XPP
X0 18 18 0 2830 1565 3 MP
XPP
X18 0 0 18 2830 1565 3 MP
XPP
X0 17 18 0 2830 1583 3 MP
XPP
X18 0 0 17 2830 1583 3 MP
XPP
X0 18 18 0 2830 1600 3 MP
XPP
X18 0 0 18 2830 1600 3 MP
XPP
X0 18 18 0 2830 1618 3 MP
XPP
X18 0 0 18 2830 1618 3 MP
XPP
X0 18 18 0 2830 1636 3 MP
XPP
X18 0 0 18 2830 1636 3 MP
XPP
X0 18 18 0 2830 1654 3 MP
XPP
X18 0 0 18 2830 1654 3 MP
XPP
X0 18 18 0 2830 1672 3 MP
XPP
X18 0 0 18 2830 1672 3 MP
XPP
X0 17 18 0 2830 1690 3 MP
XPP
X18 0 0 17 2830 1690 3 MP
XPP
X0 18 18 0 2830 1707 3 MP
XPP
X18 0 0 18 2830 1707 3 MP
XPP
X0 18 18 0 2830 1725 3 MP
XPP
X18 0 0 18 2830 1725 3 MP
XPP
X0 18 18 0 2830 1743 3 MP
XPP
X18 0 0 18 2830 1743 3 MP
XPP
X0 18 18 0 2830 1761 3 MP
XPP
X18 0 0 18 2830 1761 3 MP
XPP
X0 18 18 0 2830 1779 3 MP
XPP
X18 0 0 18 2830 1779 3 MP
XPP
X0 17 18 0 2830 1797 3 MP
XPP
X18 0 0 17 2830 1797 3 MP
XPP
X0 18 18 0 2830 1814 3 MP
XPP
X18 0 0 18 2830 1814 3 MP
XPP
X0 18 18 0 2830 1832 3 MP
XPP
X18 0 0 18 2830 1832 3 MP
XPP
X0 18 18 0 2830 1850 3 MP
XPP
X18 0 0 18 2830 1850 3 MP
XPP
X0 18 18 0 2830 1868 3 MP
XPP
X18 0 0 18 2830 1868 3 MP
XPP
X0 18 18 0 2830 1886 3 MP
XPP
X18 0 0 18 2830 1886 3 MP
XPP
X0 17 18 0 2830 1904 3 MP
XPP
X18 0 0 17 2830 1904 3 MP
XPP
X0 18 18 0 2830 1921 3 MP
XPP
X18 0 0 18 2830 1921 3 MP
XPP
X0 18 18 0 2830 1939 3 MP
XPP
X18 0 0 18 2830 1939 3 MP
XPP
X0 18 18 0 2830 1957 3 MP
XPP
X18 0 0 18 2830 1957 3 MP
XPP
X0 18 18 0 2830 1975 3 MP
XPP
X18 0 0 18 2830 1975 3 MP
XPP
X0 18 18 0 2830 1993 3 MP
XPP
X18 0 0 18 2830 1993 3 MP
XPP
X0 17 18 0 2830 2011 3 MP
XPP
X18 0 0 17 2830 2011 3 MP
XPP
X0 18 18 0 2830 2028 3 MP
XPP
X18 0 0 18 2830 2028 3 MP
XPP
X0 18 18 0 2830 2046 3 MP
XPP
X18 0 0 18 2830 2046 3 MP
XPP
X0 18 18 0 2830 2064 3 MP
XPP
X18 0 0 18 2830 2064 3 MP
XPP
X0 18 18 0 2830 2082 3 MP
XPP
X18 0 0 18 2830 2082 3 MP
XPP
X0 18 18 0 2830 2100 3 MP
XPP
X18 0 0 18 2830 2100 3 MP
XPP
X0 17 18 0 2830 2118 3 MP
XPP
X18 0 0 17 2830 2118 3 MP
XPP
X0 18 18 0 2830 2135 3 MP
XPP
X18 0 0 18 2830 2135 3 MP
XPP
X0 18 18 0 2830 2153 3 MP
XPP
X18 0 0 18 2830 2153 3 MP
XPP
X0 18 18 0 2848 388 3 MP
XPP
X18 0 0 18 2848 388 3 MP
XPP
X0 18 18 0 2848 406 3 MP
XPP
X18 0 0 18 2848 406 3 MP
XPP
X0 17 18 0 2848 424 3 MP
XPP
X18 0 0 17 2848 424 3 MP
XPP
X0 18 18 0 2848 441 3 MP
XPP
X18 0 0 18 2848 441 3 MP
XPP
X0 18 18 0 2848 459 3 MP
XPP
X18 0 0 18 2848 459 3 MP
XPP
X0 18 18 0 2848 477 3 MP
XPP
X18 0 0 18 2848 477 3 MP
XPP
X0 18 18 0 2848 495 3 MP
XPP
X18 0 0 18 2848 495 3 MP
XPP
X0 18 18 0 2848 513 3 MP
XPP
X18 0 0 18 2848 513 3 MP
XPP
X0 17 18 0 2848 531 3 MP
XPP
X18 0 0 17 2848 531 3 MP
XPP
X0 18 18 0 2848 548 3 MP
XPP
X18 0 0 18 2848 548 3 MP
XPP
X0 18 18 0 2848 566 3 MP
XPP
X18 0 0 18 2848 566 3 MP
XPP
X0 18 18 0 2848 584 3 MP
XPP
X18 0 0 18 2848 584 3 MP
XPP
X0 18 18 0 2848 602 3 MP
XPP
X18 0 0 18 2848 602 3 MP
XPP
X0 18 18 0 2848 620 3 MP
XPP
X18 0 0 18 2848 620 3 MP
XPP
X0 17 18 0 2848 638 3 MP
XPP
X18 0 0 17 2848 638 3 MP
XPP
X0.746032 sg
X0 18 18 0 2848 655 3 MP
XPP
X18 0 0 18 2848 655 3 MP
XPP
X0 18 18 0 2848 673 3 MP
XPP
X18 0 0 18 2848 673 3 MP
XPP
X0 18 18 0 2848 691 3 MP
XPP
X18 0 0 18 2848 691 3 MP
XPP
X0 18 18 0 2848 709 3 MP
XPP
X18 0 0 18 2848 709 3 MP
XPP
X0 18 18 0 2848 727 3 MP
XPP
X18 0 0 18 2848 727 3 MP
XPP
X0 17 18 0 2848 745 3 MP
XPP
X18 0 0 17 2848 745 3 MP
XPP
X0 18 18 0 2848 762 3 MP
XPP
X18 0 0 18 2848 762 3 MP
XPP
X0 18 18 0 2848 780 3 MP
XPP
X18 0 0 18 2848 780 3 MP
XPP
X1 sg
X0 18 18 0 2848 798 3 MP
XPP
X18 0 0 18 2848 798 3 MP
XPP
X0 18 18 0 2848 816 3 MP
XPP
X18 0 0 18 2848 816 3 MP
XPP
X0 18 18 0 2848 834 3 MP
XPP
X18 0 0 18 2848 834 3 MP
XPP
X0 17 18 0 2848 852 3 MP
XPP
X18 0 0 17 2848 852 3 MP
XPP
X0 18 18 0 2848 869 3 MP
XPP
X18 0 0 18 2848 869 3 MP
XPP
X0 18 18 0 2848 887 3 MP
XPP
X18 0 0 18 2848 887 3 MP
XPP
X0 18 18 0 2848 905 3 MP
XPP
X18 0 0 18 2848 905 3 MP
XPP
X0 18 18 0 2848 923 3 MP
XPP
X18 0 0 18 2848 923 3 MP
XPP
X0 18 18 0 2848 941 3 MP
XPP
X18 0 0 18 2848 941 3 MP
XPP
X0 17 18 0 2848 959 3 MP
XPP
X18 0 0 17 2848 959 3 MP
XPP
X0 18 18 0 2848 976 3 MP
XPP
X18 0 0 18 2848 976 3 MP
XPP
X0 18 18 0 2848 994 3 MP
XPP
X18 0 0 18 2848 994 3 MP
XPP
X0 18 18 0 2848 1012 3 MP
XPP
X18 0 0 18 2848 1012 3 MP
XPP
X0 18 18 0 2848 1030 3 MP
XPP
X18 0 0 18 2848 1030 3 MP
XPP
X0 18 18 0 2848 1048 3 MP
XPP
X18 0 0 18 2848 1048 3 MP
XPP
X0 17 18 0 2848 1066 3 MP
XPP
X18 0 0 17 2848 1066 3 MP
XPP
X0 18 18 0 2848 1083 3 MP
XPP
X18 0 0 18 2848 1083 3 MP
XPP
X0 18 18 0 2848 1101 3 MP
XPP
X18 0 0 18 2848 1101 3 MP
XPP
X0 18 18 0 2848 1119 3 MP
XPP
X18 0 0 18 2848 1119 3 MP
XPP
X0 18 18 0 2848 1137 3 MP
XPP
X18 0 0 18 2848 1137 3 MP
XPP
X0 18 18 0 2848 1155 3 MP
XPP
X18 0 0 18 2848 1155 3 MP
XPP
X0 17 18 0 2848 1173 3 MP
XPP
X18 0 0 17 2848 1173 3 MP
XPP
X0 18 18 0 2848 1190 3 MP
XPP
X18 0 0 18 2848 1190 3 MP
XPP
X0 18 18 0 2848 1208 3 MP
XPP
X18 0 0 18 2848 1208 3 MP
XPP
X0 18 18 0 2848 1226 3 MP
XPP
X18 0 0 18 2848 1226 3 MP
XPP
X0 18 18 0 2848 1244 3 MP
XPP
X18 0 0 18 2848 1244 3 MP
XPP
X0 17 18 0 2848 1262 3 MP
XPP
X18 0 0 17 2848 1262 3 MP
XPP
X0 18 18 0 2848 1279 3 MP
XPP
X18 0 0 18 2848 1279 3 MP
XPP
X0 18 18 0 2848 1297 3 MP
XPP
X18 0 0 18 2848 1297 3 MP
XPP
X0 18 18 0 2848 1315 3 MP
XPP
X18 0 0 18 2848 1315 3 MP
XPP
X0 18 18 0 2848 1333 3 MP
XPP
X18 0 0 18 2848 1333 3 MP
XPP
X0 18 18 0 2848 1351 3 MP
XPP
X18 0 0 18 2848 1351 3 MP
XPP
X0 17 18 0 2848 1369 3 MP
XPP
X18 0 0 17 2848 1369 3 MP
XPP
X0 18 18 0 2848 1386 3 MP
XPP
X18 0 0 18 2848 1386 3 MP
XPP
X0 18 18 0 2848 1404 3 MP
XPP
X18 0 0 18 2848 1404 3 MP
XPP
X0 18 18 0 2848 1422 3 MP
XPP
X18 0 0 18 2848 1422 3 MP
XPP
X0 18 18 0 2848 1440 3 MP
XPP
X18 0 0 18 2848 1440 3 MP
XPP
X0 18 18 0 2848 1458 3 MP
XPP
X18 0 0 18 2848 1458 3 MP
XPP
X0 17 18 0 2848 1476 3 MP
XPP
X18 0 0 17 2848 1476 3 MP
XPP
X0 18 18 0 2848 1493 3 MP
XPP
X18 0 0 18 2848 1493 3 MP
XPP
X0 18 18 0 2848 1511 3 MP
XPP
X18 0 0 18 2848 1511 3 MP
XPP
X0 18 18 0 2848 1529 3 MP
XPP
X18 0 0 18 2848 1529 3 MP
XPP
X0 18 18 0 2848 1547 3 MP
XPP
X18 0 0 18 2848 1547 3 MP
XPP
X0 18 18 0 2848 1565 3 MP
XPP
X18 0 0 18 2848 1565 3 MP
XPP
X0 17 18 0 2848 1583 3 MP
XPP
X18 0 0 17 2848 1583 3 MP
XPP
X0 18 18 0 2848 1600 3 MP
XPP
X18 0 0 18 2848 1600 3 MP
XPP
X0 18 18 0 2848 1618 3 MP
XPP
X18 0 0 18 2848 1618 3 MP
XPP
X0 18 18 0 2848 1636 3 MP
XPP
X18 0 0 18 2848 1636 3 MP
XPP
X0 18 18 0 2848 1654 3 MP
XPP
X18 0 0 18 2848 1654 3 MP
XPP
X0 18 18 0 2848 1672 3 MP
XPP
X18 0 0 18 2848 1672 3 MP
XPP
X0 17 18 0 2848 1690 3 MP
XPP
X18 0 0 17 2848 1690 3 MP
XPP
X0 18 18 0 2848 1707 3 MP
XPP
X18 0 0 18 2848 1707 3 MP
XPP
X0 18 18 0 2848 1725 3 MP
XPP
X18 0 0 18 2848 1725 3 MP
XPP
X0 18 18 0 2848 1743 3 MP
XPP
X18 0 0 18 2848 1743 3 MP
XPP
X0 18 18 0 2848 1761 3 MP
XPP
X18 0 0 18 2848 1761 3 MP
XPP
X0 18 18 0 2848 1779 3 MP
XPP
X18 0 0 18 2848 1779 3 MP
XPP
X0 17 18 0 2848 1797 3 MP
XPP
X18 0 0 17 2848 1797 3 MP
XPP
X0 18 18 0 2848 1814 3 MP
XPP
X18 0 0 18 2848 1814 3 MP
XPP
X0 18 18 0 2848 1832 3 MP
XPP
X18 0 0 18 2848 1832 3 MP
XPP
X0 18 18 0 2848 1850 3 MP
XPP
X18 0 0 18 2848 1850 3 MP
XPP
X0 18 18 0 2848 1868 3 MP
XPP
X18 0 0 18 2848 1868 3 MP
XPP
X0 18 18 0 2848 1886 3 MP
XPP
X18 0 0 18 2848 1886 3 MP
XPP
X0 17 18 0 2848 1904 3 MP
XPP
X18 0 0 17 2848 1904 3 MP
XPP
X0 18 18 0 2848 1921 3 MP
XPP
X18 0 0 18 2848 1921 3 MP
XPP
X0 18 18 0 2848 1939 3 MP
XPP
X18 0 0 18 2848 1939 3 MP
XPP
X0 18 18 0 2848 1957 3 MP
XPP
X18 0 0 18 2848 1957 3 MP
XPP
X0 18 18 0 2848 1975 3 MP
XPP
X18 0 0 18 2848 1975 3 MP
XPP
X0 18 18 0 2848 1993 3 MP
XPP
X18 0 0 18 2848 1993 3 MP
XPP
X0 17 18 0 2848 2011 3 MP
XPP
X18 0 0 17 2848 2011 3 MP
XPP
X0 18 18 0 2848 2028 3 MP
XPP
X18 0 0 18 2848 2028 3 MP
XPP
X0 18 18 0 2848 2046 3 MP
XPP
X18 0 0 18 2848 2046 3 MP
XPP
X0 18 18 0 2848 2064 3 MP
XPP
X18 0 0 18 2848 2064 3 MP
XPP
X0 18 18 0 2848 2082 3 MP
XPP
X18 0 0 18 2848 2082 3 MP
XPP
X0 18 18 0 2848 2100 3 MP
XPP
X18 0 0 18 2848 2100 3 MP
XPP
X0 17 18 0 2848 2118 3 MP
XPP
X18 0 0 17 2848 2118 3 MP
XPP
X0 18 18 0 2848 2135 3 MP
XPP
X18 0 0 18 2848 2135 3 MP
XPP
X0 18 18 0 2848 2153 3 MP
XPP
X18 0 0 18 2848 2153 3 MP
XPP
X0 18 17 0 2866 388 3 MP
XPP
X17 0 0 18 2866 388 3 MP
XPP
X0 18 17 0 2866 406 3 MP
XPP
X17 0 0 18 2866 406 3 MP
XPP
X0 17 17 0 2866 424 3 MP
XPP
X17 0 0 17 2866 424 3 MP
XPP
X0 18 17 0 2866 441 3 MP
XPP
X17 0 0 18 2866 441 3 MP
XPP
X0 18 17 0 2866 459 3 MP
XPP
X17 0 0 18 2866 459 3 MP
XPP
X0 18 17 0 2866 477 3 MP
XPP
X17 0 0 18 2866 477 3 MP
XPP
X0 18 17 0 2866 495 3 MP
XPP
X17 0 0 18 2866 495 3 MP
XPP
X0 18 17 0 2866 513 3 MP
XPP
X17 0 0 18 2866 513 3 MP
XPP
X0 17 17 0 2866 531 3 MP
XPP
X17 0 0 17 2866 531 3 MP
XPP
X0 18 17 0 2866 548 3 MP
XPP
X17 0 0 18 2866 548 3 MP
XPP
X0 18 17 0 2866 566 3 MP
XPP
X17 0 0 18 2866 566 3 MP
XPP
X0 18 17 0 2866 584 3 MP
XPP
X17 0 0 18 2866 584 3 MP
XPP
X0 18 17 0 2866 602 3 MP
XPP
X17 0 0 18 2866 602 3 MP
XPP
X0 18 17 0 2866 620 3 MP
XPP
X17 0 0 18 2866 620 3 MP
XPP
X0 17 17 0 2866 638 3 MP
XPP
X17 0 0 17 2866 638 3 MP
XPP
X0 18 17 0 2866 655 3 MP
XPP
X17 0 0 18 2866 655 3 MP
XPP
X0 18 17 0 2866 673 3 MP
XPP
X17 0 0 18 2866 673 3 MP
XPP
X0 18 17 0 2866 691 3 MP
XPP
X17 0 0 18 2866 691 3 MP
XPP
X0 18 17 0 2866 709 3 MP
XPP
X17 0 0 18 2866 709 3 MP
XPP
X0 18 17 0 2866 727 3 MP
XPP
X17 0 0 18 2866 727 3 MP
XPP
X0 17 17 0 2866 745 3 MP
XPP
X17 0 0 17 2866 745 3 MP
XPP
X0 18 17 0 2866 762 3 MP
XPP
X17 0 0 18 2866 762 3 MP
XPP
X0 18 17 0 2866 780 3 MP
XPP
X17 0 0 18 2866 780 3 MP
XPP
X0 18 17 0 2866 798 3 MP
XPP
X17 0 0 18 2866 798 3 MP
XPP
X0 18 17 0 2866 816 3 MP
XPP
X17 0 0 18 2866 816 3 MP
XPP
X0 18 17 0 2866 834 3 MP
XPP
X17 0 0 18 2866 834 3 MP
XPP
X0 17 17 0 2866 852 3 MP
XPP
X17 0 0 17 2866 852 3 MP
XPP
X0 18 17 0 2866 869 3 MP
XPP
X17 0 0 18 2866 869 3 MP
XPP
X0 18 17 0 2866 887 3 MP
XPP
X17 0 0 18 2866 887 3 MP
XPP
X0 18 17 0 2866 905 3 MP
XPP
X17 0 0 18 2866 905 3 MP
XPP
X0 18 17 0 2866 923 3 MP
XPP
X17 0 0 18 2866 923 3 MP
XPP
X0 18 17 0 2866 941 3 MP
XPP
X17 0 0 18 2866 941 3 MP
XPP
X0 17 17 0 2866 959 3 MP
XPP
X17 0 0 17 2866 959 3 MP
XPP
X0 18 17 0 2866 976 3 MP
XPP
X17 0 0 18 2866 976 3 MP
XPP
X0 18 17 0 2866 994 3 MP
XPP
X17 0 0 18 2866 994 3 MP
XPP
X0 18 17 0 2866 1012 3 MP
XPP
X17 0 0 18 2866 1012 3 MP
XPP
X0 18 17 0 2866 1030 3 MP
XPP
X17 0 0 18 2866 1030 3 MP
XPP
X0 18 17 0 2866 1048 3 MP
XPP
X17 0 0 18 2866 1048 3 MP
XPP
X0 17 17 0 2866 1066 3 MP
XPP
X17 0 0 17 2866 1066 3 MP
XPP
X0 18 17 0 2866 1083 3 MP
XPP
X17 0 0 18 2866 1083 3 MP
XPP
X0 18 17 0 2866 1101 3 MP
XPP
X17 0 0 18 2866 1101 3 MP
XPP
X0 18 17 0 2866 1119 3 MP
XPP
X17 0 0 18 2866 1119 3 MP
XPP
X0 18 17 0 2866 1137 3 MP
XPP
X17 0 0 18 2866 1137 3 MP
XPP
X0 18 17 0 2866 1155 3 MP
XPP
X17 0 0 18 2866 1155 3 MP
XPP
X0 17 17 0 2866 1173 3 MP
XPP
X17 0 0 17 2866 1173 3 MP
XPP
X0 18 17 0 2866 1190 3 MP
XPP
X17 0 0 18 2866 1190 3 MP
XPP
X0 18 17 0 2866 1208 3 MP
XPP
X17 0 0 18 2866 1208 3 MP
XPP
X0 18 17 0 2866 1226 3 MP
XPP
X17 0 0 18 2866 1226 3 MP
XPP
X0 18 17 0 2866 1244 3 MP
XPP
X17 0 0 18 2866 1244 3 MP
XPP
X0 17 17 0 2866 1262 3 MP
XPP
X17 0 0 17 2866 1262 3 MP
XPP
X0 18 17 0 2866 1279 3 MP
XPP
X17 0 0 18 2866 1279 3 MP
XPP
X0 18 17 0 2866 1297 3 MP
XPP
X17 0 0 18 2866 1297 3 MP
XPP
X0 18 17 0 2866 1315 3 MP
XPP
X17 0 0 18 2866 1315 3 MP
XPP
X0 18 17 0 2866 1333 3 MP
XPP
X17 0 0 18 2866 1333 3 MP
XPP
X0 18 17 0 2866 1351 3 MP
XPP
X17 0 0 18 2866 1351 3 MP
XPP
X0 17 17 0 2866 1369 3 MP
XPP
X17 0 0 17 2866 1369 3 MP
XPP
X0 18 17 0 2866 1386 3 MP
XPP
X17 0 0 18 2866 1386 3 MP
XPP
X0 18 17 0 2866 1404 3 MP
XPP
X17 0 0 18 2866 1404 3 MP
XPP
X0 18 17 0 2866 1422 3 MP
XPP
X17 0 0 18 2866 1422 3 MP
XPP
X0 18 17 0 2866 1440 3 MP
XPP
X17 0 0 18 2866 1440 3 MP
XPP
X0 18 17 0 2866 1458 3 MP
XPP
X17 0 0 18 2866 1458 3 MP
XPP
X0 17 17 0 2866 1476 3 MP
XPP
X17 0 0 17 2866 1476 3 MP
XPP
X0 18 17 0 2866 1493 3 MP
XPP
X17 0 0 18 2866 1493 3 MP
XPP
X0 18 17 0 2866 1511 3 MP
XPP
X17 0 0 18 2866 1511 3 MP
XPP
X0 18 17 0 2866 1529 3 MP
XPP
X17 0 0 18 2866 1529 3 MP
XPP
X0 18 17 0 2866 1547 3 MP
XPP
X17 0 0 18 2866 1547 3 MP
XPP
X0 18 17 0 2866 1565 3 MP
XPP
X17 0 0 18 2866 1565 3 MP
XPP
X0 17 17 0 2866 1583 3 MP
XPP
X17 0 0 17 2866 1583 3 MP
XPP
X0 18 17 0 2866 1600 3 MP
XPP
X17 0 0 18 2866 1600 3 MP
XPP
X0 18 17 0 2866 1618 3 MP
XPP
X17 0 0 18 2866 1618 3 MP
XPP
X0 18 17 0 2866 1636 3 MP
XPP
X17 0 0 18 2866 1636 3 MP
XPP
X0 18 17 0 2866 1654 3 MP
XPP
X17 0 0 18 2866 1654 3 MP
XPP
X0 18 17 0 2866 1672 3 MP
XPP
X17 0 0 18 2866 1672 3 MP
XPP
X0 17 17 0 2866 1690 3 MP
XPP
X17 0 0 17 2866 1690 3 MP
XPP
X0 18 17 0 2866 1707 3 MP
XPP
X17 0 0 18 2866 1707 3 MP
XPP
X0 18 17 0 2866 1725 3 MP
XPP
X17 0 0 18 2866 1725 3 MP
XPP
X0 18 17 0 2866 1743 3 MP
XPP
X17 0 0 18 2866 1743 3 MP
XPP
X0 18 17 0 2866 1761 3 MP
XPP
X17 0 0 18 2866 1761 3 MP
XPP
X0 18 17 0 2866 1779 3 MP
XPP
X17 0 0 18 2866 1779 3 MP
XPP
X0 17 17 0 2866 1797 3 MP
XPP
X17 0 0 17 2866 1797 3 MP
XPP
X0 18 17 0 2866 1814 3 MP
XPP
X17 0 0 18 2866 1814 3 MP
XPP
X0 18 17 0 2866 1832 3 MP
XPP
X17 0 0 18 2866 1832 3 MP
XPP
X0 18 17 0 2866 1850 3 MP
XPP
X17 0 0 18 2866 1850 3 MP
XPP
X0 18 17 0 2866 1868 3 MP
XPP
X17 0 0 18 2866 1868 3 MP
XPP
X0 18 17 0 2866 1886 3 MP
XPP
X17 0 0 18 2866 1886 3 MP
XPP
X0 17 17 0 2866 1904 3 MP
XPP
X17 0 0 17 2866 1904 3 MP
XPP
X0 18 17 0 2866 1921 3 MP
XPP
X17 0 0 18 2866 1921 3 MP
XPP
X0 18 17 0 2866 1939 3 MP
XPP
X17 0 0 18 2866 1939 3 MP
XPP
X0 18 17 0 2866 1957 3 MP
XPP
X17 0 0 18 2866 1957 3 MP
XPP
X0 18 17 0 2866 1975 3 MP
XPP
X17 0 0 18 2866 1975 3 MP
XPP
X0 18 17 0 2866 1993 3 MP
XPP
X17 0 0 18 2866 1993 3 MP
XPP
X0 17 17 0 2866 2011 3 MP
XPP
X17 0 0 17 2866 2011 3 MP
XPP
X0 18 17 0 2866 2028 3 MP
XPP
X17 0 0 18 2866 2028 3 MP
XPP
X0 18 17 0 2866 2046 3 MP
XPP
X17 0 0 18 2866 2046 3 MP
XPP
X0 18 17 0 2866 2064 3 MP
XPP
X17 0 0 18 2866 2064 3 MP
XPP
X0 18 17 0 2866 2082 3 MP
XPP
X17 0 0 18 2866 2082 3 MP
XPP
X0 18 17 0 2866 2100 3 MP
XPP
X17 0 0 18 2866 2100 3 MP
XPP
X0 17 17 0 2866 2118 3 MP
XPP
X17 0 0 17 2866 2118 3 MP
XPP
X0 18 17 0 2866 2135 3 MP
XPP
X17 0 0 18 2866 2135 3 MP
XPP
X0 18 17 0 2866 2153 3 MP
XPP
X17 0 0 18 2866 2153 3 MP
XPP
X0 18 18 0 2883 388 3 MP
XPP
X18 0 0 18 2883 388 3 MP
XPP
X0 18 18 0 2883 406 3 MP
XPP
X18 0 0 18 2883 406 3 MP
XPP
X0 17 18 0 2883 424 3 MP
XPP
X18 0 0 17 2883 424 3 MP
XPP
X0 18 18 0 2883 441 3 MP
XPP
X18 0 0 18 2883 441 3 MP
XPP
X0 18 18 0 2883 459 3 MP
XPP
X18 0 0 18 2883 459 3 MP
XPP
X0 18 18 0 2883 477 3 MP
XPP
X18 0 0 18 2883 477 3 MP
XPP
X0 18 18 0 2883 495 3 MP
XPP
X18 0 0 18 2883 495 3 MP
XPP
X0 18 18 0 2883 513 3 MP
XPP
X18 0 0 18 2883 513 3 MP
XPP
X0 17 18 0 2883 531 3 MP
XPP
X18 0 0 17 2883 531 3 MP
XPP
X0 18 18 0 2883 548 3 MP
XPP
X18 0 0 18 2883 548 3 MP
XPP
X0 18 18 0 2883 566 3 MP
XPP
X18 0 0 18 2883 566 3 MP
XPP
X0 18 18 0 2883 584 3 MP
XPP
X18 0 0 18 2883 584 3 MP
XPP
X0 18 18 0 2883 602 3 MP
XPP
X18 0 0 18 2883 602 3 MP
XPP
X0 18 18 0 2883 620 3 MP
XPP
X18 0 0 18 2883 620 3 MP
XPP
X0 17 18 0 2883 638 3 MP
XPP
X18 0 0 17 2883 638 3 MP
XPP
X0 18 18 0 2883 655 3 MP
XPP
X18 0 0 18 2883 655 3 MP
XPP
X0 18 18 0 2883 673 3 MP
XPP
X18 0 0 18 2883 673 3 MP
XPP
X0 18 18 0 2883 691 3 MP
XPP
X18 0 0 18 2883 691 3 MP
XPP
X0 18 18 0 2883 709 3 MP
XPP
X18 0 0 18 2883 709 3 MP
XPP
X0 18 18 0 2883 727 3 MP
XPP
X18 0 0 18 2883 727 3 MP
XPP
X0 17 18 0 2883 745 3 MP
XPP
X18 0 0 17 2883 745 3 MP
XPP
X0 18 18 0 2883 762 3 MP
XPP
X18 0 0 18 2883 762 3 MP
XPP
X0 18 18 0 2883 780 3 MP
XPP
X18 0 0 18 2883 780 3 MP
XPP
X0 18 18 0 2883 798 3 MP
XPP
X18 0 0 18 2883 798 3 MP
XPP
X0 18 18 0 2883 816 3 MP
XPP
X18 0 0 18 2883 816 3 MP
XPP
X0 18 18 0 2883 834 3 MP
XPP
X18 0 0 18 2883 834 3 MP
XPP
X0 17 18 0 2883 852 3 MP
XPP
X18 0 0 17 2883 852 3 MP
XPP
X0 18 18 0 2883 869 3 MP
XPP
X18 0 0 18 2883 869 3 MP
XPP
X0 18 18 0 2883 887 3 MP
XPP
X18 0 0 18 2883 887 3 MP
XPP
X0 18 18 0 2883 905 3 MP
XPP
X18 0 0 18 2883 905 3 MP
XPP
X0 18 18 0 2883 923 3 MP
XPP
X18 0 0 18 2883 923 3 MP
XPP
X0 18 18 0 2883 941 3 MP
XPP
X18 0 0 18 2883 941 3 MP
XPP
X0 17 18 0 2883 959 3 MP
XPP
X18 0 0 17 2883 959 3 MP
XPP
X0 18 18 0 2883 976 3 MP
XPP
X18 0 0 18 2883 976 3 MP
XPP
X0 18 18 0 2883 994 3 MP
XPP
X18 0 0 18 2883 994 3 MP
XPP
X0 18 18 0 2883 1012 3 MP
XPP
X18 0 0 18 2883 1012 3 MP
XPP
X0 18 18 0 2883 1030 3 MP
XPP
X18 0 0 18 2883 1030 3 MP
XPP
X0 18 18 0 2883 1048 3 MP
XPP
X18 0 0 18 2883 1048 3 MP
XPP
X0 17 18 0 2883 1066 3 MP
XPP
X18 0 0 17 2883 1066 3 MP
XPP
X0 18 18 0 2883 1083 3 MP
XPP
X18 0 0 18 2883 1083 3 MP
XPP
X0 18 18 0 2883 1101 3 MP
XPP
X18 0 0 18 2883 1101 3 MP
XPP
X0 18 18 0 2883 1119 3 MP
XPP
X18 0 0 18 2883 1119 3 MP
XPP
X0 18 18 0 2883 1137 3 MP
XPP
X18 0 0 18 2883 1137 3 MP
XPP
X0 18 18 0 2883 1155 3 MP
XPP
X18 0 0 18 2883 1155 3 MP
XPP
X0 17 18 0 2883 1173 3 MP
XPP
X18 0 0 17 2883 1173 3 MP
XPP
X0 18 18 0 2883 1190 3 MP
XPP
X18 0 0 18 2883 1190 3 MP
XPP
X0 18 18 0 2883 1208 3 MP
XPP
X18 0 0 18 2883 1208 3 MP
XPP
X0 18 18 0 2883 1226 3 MP
XPP
X18 0 0 18 2883 1226 3 MP
XPP
X0 18 18 0 2883 1244 3 MP
XPP
X18 0 0 18 2883 1244 3 MP
XPP
X0 17 18 0 2883 1262 3 MP
XPP
X18 0 0 17 2883 1262 3 MP
XPP
X0 18 18 0 2883 1279 3 MP
XPP
X18 0 0 18 2883 1279 3 MP
XPP
X0 18 18 0 2883 1297 3 MP
XPP
X18 0 0 18 2883 1297 3 MP
XPP
X0 18 18 0 2883 1315 3 MP
XPP
X18 0 0 18 2883 1315 3 MP
XPP
X0 18 18 0 2883 1333 3 MP
XPP
X18 0 0 18 2883 1333 3 MP
XPP
X0 18 18 0 2883 1351 3 MP
XPP
X18 0 0 18 2883 1351 3 MP
XPP
X0 17 18 0 2883 1369 3 MP
XPP
X18 0 0 17 2883 1369 3 MP
XPP
X0 18 18 0 2883 1386 3 MP
XPP
X18 0 0 18 2883 1386 3 MP
XPP
X0 18 18 0 2883 1404 3 MP
XPP
X18 0 0 18 2883 1404 3 MP
XPP
X0 18 18 0 2883 1422 3 MP
XPP
X18 0 0 18 2883 1422 3 MP
XPP
X0 18 18 0 2883 1440 3 MP
XPP
X18 0 0 18 2883 1440 3 MP
XPP
X0 18 18 0 2883 1458 3 MP
XPP
X18 0 0 18 2883 1458 3 MP
XPP
X0 17 18 0 2883 1476 3 MP
XPP
X18 0 0 17 2883 1476 3 MP
XPP
X0 18 18 0 2883 1493 3 MP
XPP
X18 0 0 18 2883 1493 3 MP
XPP
X0 18 18 0 2883 1511 3 MP
XPP
X18 0 0 18 2883 1511 3 MP
XPP
X0 18 18 0 2883 1529 3 MP
XPP
X18 0 0 18 2883 1529 3 MP
XPP
X0 18 18 0 2883 1547 3 MP
XPP
X18 0 0 18 2883 1547 3 MP
XPP
X0 18 18 0 2883 1565 3 MP
XPP
X18 0 0 18 2883 1565 3 MP
XPP
X0 17 18 0 2883 1583 3 MP
XPP
X18 0 0 17 2883 1583 3 MP
XPP
X0 18 18 0 2883 1600 3 MP
XPP
X18 0 0 18 2883 1600 3 MP
XPP
X0 18 18 0 2883 1618 3 MP
XPP
X18 0 0 18 2883 1618 3 MP
XPP
X0 18 18 0 2883 1636 3 MP
XPP
X18 0 0 18 2883 1636 3 MP
XPP
X0 18 18 0 2883 1654 3 MP
XPP
X18 0 0 18 2883 1654 3 MP
XPP
X0 18 18 0 2883 1672 3 MP
XPP
X18 0 0 18 2883 1672 3 MP
XPP
X0 17 18 0 2883 1690 3 MP
XPP
X18 0 0 17 2883 1690 3 MP
XPP
X0 18 18 0 2883 1707 3 MP
XPP
X18 0 0 18 2883 1707 3 MP
XPP
X0 18 18 0 2883 1725 3 MP
XPP
X18 0 0 18 2883 1725 3 MP
XPP
X0 18 18 0 2883 1743 3 MP
XPP
X18 0 0 18 2883 1743 3 MP
XPP
X0 18 18 0 2883 1761 3 MP
XPP
X18 0 0 18 2883 1761 3 MP
XPP
X0 18 18 0 2883 1779 3 MP
XPP
X18 0 0 18 2883 1779 3 MP
XPP
X0 17 18 0 2883 1797 3 MP
XPP
X18 0 0 17 2883 1797 3 MP
XPP
X0 18 18 0 2883 1814 3 MP
XPP
X18 0 0 18 2883 1814 3 MP
XPP
X0 18 18 0 2883 1832 3 MP
XPP
X18 0 0 18 2883 1832 3 MP
XPP
X0 18 18 0 2883 1850 3 MP
XPP
X18 0 0 18 2883 1850 3 MP
XPP
X0 18 18 0 2883 1868 3 MP
XPP
X18 0 0 18 2883 1868 3 MP
XPP
X0 18 18 0 2883 1886 3 MP
XPP
X18 0 0 18 2883 1886 3 MP
XPP
X0 17 18 0 2883 1904 3 MP
XPP
X18 0 0 17 2883 1904 3 MP
XPP
X0 18 18 0 2883 1921 3 MP
XPP
X18 0 0 18 2883 1921 3 MP
XPP
X0 18 18 0 2883 1939 3 MP
XPP
X18 0 0 18 2883 1939 3 MP
XPP
X0 18 18 0 2883 1957 3 MP
XPP
X18 0 0 18 2883 1957 3 MP
XPP
X0 18 18 0 2883 1975 3 MP
XPP
X18 0 0 18 2883 1975 3 MP
XPP
X0 18 18 0 2883 1993 3 MP
XPP
X18 0 0 18 2883 1993 3 MP
XPP
X0 17 18 0 2883 2011 3 MP
XPP
X18 0 0 17 2883 2011 3 MP
XPP
X0 18 18 0 2883 2028 3 MP
XPP
X18 0 0 18 2883 2028 3 MP
XPP
X0 18 18 0 2883 2046 3 MP
XPP
X18 0 0 18 2883 2046 3 MP
XPP
X0 18 18 0 2883 2064 3 MP
XPP
X18 0 0 18 2883 2064 3 MP
XPP
X0 18 18 0 2883 2082 3 MP
XPP
X18 0 0 18 2883 2082 3 MP
XPP
X0 18 18 0 2883 2100 3 MP
XPP
X18 0 0 18 2883 2100 3 MP
XPP
X0 17 18 0 2883 2118 3 MP
XPP
X18 0 0 17 2883 2118 3 MP
XPP
X0 18 18 0 2883 2135 3 MP
XPP
X18 0 0 18 2883 2135 3 MP
XPP
X0 18 18 0 2883 2153 3 MP
XPP
X18 0 0 18 2883 2153 3 MP
XPP
X0 18 18 0 2901 388 3 MP
XPP
X18 0 0 18 2901 388 3 MP
XPP
X0 18 18 0 2901 406 3 MP
XPP
X18 0 0 18 2901 406 3 MP
XPP
X0 17 18 0 2901 424 3 MP
XPP
X18 0 0 17 2901 424 3 MP
XPP
X0 18 18 0 2901 441 3 MP
XPP
X18 0 0 18 2901 441 3 MP
XPP
X0 18 18 0 2901 459 3 MP
XPP
X18 0 0 18 2901 459 3 MP
XPP
X0 18 18 0 2901 477 3 MP
XPP
X18 0 0 18 2901 477 3 MP
XPP
X0 18 18 0 2901 495 3 MP
XPP
X18 0 0 18 2901 495 3 MP
XPP
X0 18 18 0 2901 513 3 MP
XPP
X18 0 0 18 2901 513 3 MP
XPP
X0 17 18 0 2901 531 3 MP
XPP
X18 0 0 17 2901 531 3 MP
XPP
X0 18 18 0 2901 548 3 MP
XPP
X18 0 0 18 2901 548 3 MP
XPP
X0 18 18 0 2901 566 3 MP
XPP
X18 0 0 18 2901 566 3 MP
XPP
X0 18 18 0 2901 584 3 MP
XPP
X18 0 0 18 2901 584 3 MP
XPP
X0 18 18 0 2901 602 3 MP
XPP
X18 0 0 18 2901 602 3 MP
XPP
X0 18 18 0 2901 620 3 MP
XPP
X18 0 0 18 2901 620 3 MP
XPP
X0 17 18 0 2901 638 3 MP
XPP
X18 0 0 17 2901 638 3 MP
XPP
X0 18 18 0 2901 655 3 MP
XPP
X18 0 0 18 2901 655 3 MP
XPP
X0 18 18 0 2901 673 3 MP
XPP
X18 0 0 18 2901 673 3 MP
XPP
X0 18 18 0 2901 691 3 MP
XPP
X18 0 0 18 2901 691 3 MP
XPP
X0 18 18 0 2901 709 3 MP
XPP
X18 0 0 18 2901 709 3 MP
XPP
X0 18 18 0 2901 727 3 MP
XPP
X18 0 0 18 2901 727 3 MP
XPP
X0 17 18 0 2901 745 3 MP
XPP
X18 0 0 17 2901 745 3 MP
XPP
X0 18 18 0 2901 762 3 MP
XPP
X18 0 0 18 2901 762 3 MP
XPP
X0 18 18 0 2901 780 3 MP
XPP
X18 0 0 18 2901 780 3 MP
XPP
X0 18 18 0 2901 798 3 MP
XPP
X18 0 0 18 2901 798 3 MP
XPP
X0 18 18 0 2901 816 3 MP
XPP
X18 0 0 18 2901 816 3 MP
XPP
X0 18 18 0 2901 834 3 MP
XPP
X18 0 0 18 2901 834 3 MP
XPP
X0 17 18 0 2901 852 3 MP
XPP
X18 0 0 17 2901 852 3 MP
XPP
X0 18 18 0 2901 869 3 MP
XPP
X18 0 0 18 2901 869 3 MP
XPP
X0 18 18 0 2901 887 3 MP
XPP
X18 0 0 18 2901 887 3 MP
XPP
X0 18 18 0 2901 905 3 MP
XPP
X18 0 0 18 2901 905 3 MP
XPP
X0 18 18 0 2901 923 3 MP
XPP
X18 0 0 18 2901 923 3 MP
XPP
X0 18 18 0 2901 941 3 MP
XPP
X18 0 0 18 2901 941 3 MP
XPP
X0 17 18 0 2901 959 3 MP
XPP
X18 0 0 17 2901 959 3 MP
XPP
X0 18 18 0 2901 976 3 MP
XPP
X18 0 0 18 2901 976 3 MP
XPP
X0 18 18 0 2901 994 3 MP
XPP
X18 0 0 18 2901 994 3 MP
XPP
X0 18 18 0 2901 1012 3 MP
XPP
X18 0 0 18 2901 1012 3 MP
XPP
X0 18 18 0 2901 1030 3 MP
XPP
X18 0 0 18 2901 1030 3 MP
XPP
X0 18 18 0 2901 1048 3 MP
XPP
X18 0 0 18 2901 1048 3 MP
XPP
X0 17 18 0 2901 1066 3 MP
XPP
X18 0 0 17 2901 1066 3 MP
XPP
X0 18 18 0 2901 1083 3 MP
XPP
X18 0 0 18 2901 1083 3 MP
XPP
X0 18 18 0 2901 1101 3 MP
XPP
X18 0 0 18 2901 1101 3 MP
XPP
X0 18 18 0 2901 1119 3 MP
XPP
X18 0 0 18 2901 1119 3 MP
XPP
X0 18 18 0 2901 1137 3 MP
XPP
X18 0 0 18 2901 1137 3 MP
XPP
X0 18 18 0 2901 1155 3 MP
XPP
X18 0 0 18 2901 1155 3 MP
XPP
X0 17 18 0 2901 1173 3 MP
XPP
X18 0 0 17 2901 1173 3 MP
XPP
X0 18 18 0 2901 1190 3 MP
XPP
X18 0 0 18 2901 1190 3 MP
XPP
X0 18 18 0 2901 1208 3 MP
XPP
X18 0 0 18 2901 1208 3 MP
XPP
X0 18 18 0 2901 1226 3 MP
XPP
X18 0 0 18 2901 1226 3 MP
XPP
X0 18 18 0 2901 1244 3 MP
XPP
X18 0 0 18 2901 1244 3 MP
XPP
X0 17 18 0 2901 1262 3 MP
XPP
X18 0 0 17 2901 1262 3 MP
XPP
X0 18 18 0 2901 1279 3 MP
XPP
X18 0 0 18 2901 1279 3 MP
XPP
X0 18 18 0 2901 1297 3 MP
XPP
X18 0 0 18 2901 1297 3 MP
XPP
X0 18 18 0 2901 1315 3 MP
XPP
X18 0 0 18 2901 1315 3 MP
XPP
X0 18 18 0 2901 1333 3 MP
XPP
X18 0 0 18 2901 1333 3 MP
XPP
X0 18 18 0 2901 1351 3 MP
XPP
X18 0 0 18 2901 1351 3 MP
XPP
X0 17 18 0 2901 1369 3 MP
XPP
X18 0 0 17 2901 1369 3 MP
XPP
X0 18 18 0 2901 1386 3 MP
XPP
X18 0 0 18 2901 1386 3 MP
XPP
X0 18 18 0 2901 1404 3 MP
XPP
X18 0 0 18 2901 1404 3 MP
XPP
X0 18 18 0 2901 1422 3 MP
XPP
X18 0 0 18 2901 1422 3 MP
XPP
X0 18 18 0 2901 1440 3 MP
XPP
X18 0 0 18 2901 1440 3 MP
XPP
X0 18 18 0 2901 1458 3 MP
XPP
X18 0 0 18 2901 1458 3 MP
XPP
X0 17 18 0 2901 1476 3 MP
XPP
X18 0 0 17 2901 1476 3 MP
XPP
X0 18 18 0 2901 1493 3 MP
XPP
X18 0 0 18 2901 1493 3 MP
XPP
X0 18 18 0 2901 1511 3 MP
XPP
X18 0 0 18 2901 1511 3 MP
XPP
X0 18 18 0 2901 1529 3 MP
XPP
X18 0 0 18 2901 1529 3 MP
XPP
X0 18 18 0 2901 1547 3 MP
XPP
X18 0 0 18 2901 1547 3 MP
XPP
X0 18 18 0 2901 1565 3 MP
XPP
X18 0 0 18 2901 1565 3 MP
XPP
X0 17 18 0 2901 1583 3 MP
XPP
X18 0 0 17 2901 1583 3 MP
XPP
X0 18 18 0 2901 1600 3 MP
XPP
X18 0 0 18 2901 1600 3 MP
XPP
X0 18 18 0 2901 1618 3 MP
XPP
X18 0 0 18 2901 1618 3 MP
XPP
X0 18 18 0 2901 1636 3 MP
XPP
X18 0 0 18 2901 1636 3 MP
XPP
X0 18 18 0 2901 1654 3 MP
XPP
X18 0 0 18 2901 1654 3 MP
XPP
X0 18 18 0 2901 1672 3 MP
XPP
X18 0 0 18 2901 1672 3 MP
XPP
X0 17 18 0 2901 1690 3 MP
XPP
X18 0 0 17 2901 1690 3 MP
XPP
X0 18 18 0 2901 1707 3 MP
XPP
X18 0 0 18 2901 1707 3 MP
XPP
X0 18 18 0 2901 1725 3 MP
XPP
X18 0 0 18 2901 1725 3 MP
XPP
X0 18 18 0 2901 1743 3 MP
XPP
X18 0 0 18 2901 1743 3 MP
XPP
X0 18 18 0 2901 1761 3 MP
XPP
X18 0 0 18 2901 1761 3 MP
XPP
X0 18 18 0 2901 1779 3 MP
XPP
X18 0 0 18 2901 1779 3 MP
XPP
X0 17 18 0 2901 1797 3 MP
XPP
X18 0 0 17 2901 1797 3 MP
XPP
X0 18 18 0 2901 1814 3 MP
XPP
X18 0 0 18 2901 1814 3 MP
XPP
X0 18 18 0 2901 1832 3 MP
XPP
X18 0 0 18 2901 1832 3 MP
XPP
X0 18 18 0 2901 1850 3 MP
XPP
X18 0 0 18 2901 1850 3 MP
XPP
X0 18 18 0 2901 1868 3 MP
XPP
X18 0 0 18 2901 1868 3 MP
XPP
X0 18 18 0 2901 1886 3 MP
XPP
X18 0 0 18 2901 1886 3 MP
XPP
X0 17 18 0 2901 1904 3 MP
XPP
X18 0 0 17 2901 1904 3 MP
XPP
X0 18 18 0 2901 1921 3 MP
XPP
X18 0 0 18 2901 1921 3 MP
XPP
X0 18 18 0 2901 1939 3 MP
XPP
X18 0 0 18 2901 1939 3 MP
XPP
X0 18 18 0 2901 1957 3 MP
XPP
X18 0 0 18 2901 1957 3 MP
XPP
X0 18 18 0 2901 1975 3 MP
XPP
X18 0 0 18 2901 1975 3 MP
XPP
X0 18 18 0 2901 1993 3 MP
XPP
X18 0 0 18 2901 1993 3 MP
XPP
X0 17 18 0 2901 2011 3 MP
XPP
X18 0 0 17 2901 2011 3 MP
XPP
X0 18 18 0 2901 2028 3 MP
XPP
X18 0 0 18 2901 2028 3 MP
XPP
X0 18 18 0 2901 2046 3 MP
XPP
X18 0 0 18 2901 2046 3 MP
XPP
X0 18 18 0 2901 2064 3 MP
XPP
X18 0 0 18 2901 2064 3 MP
XPP
X0 18 18 0 2901 2082 3 MP
XPP
X18 0 0 18 2901 2082 3 MP
XPP
X0 18 18 0 2901 2100 3 MP
XPP
X18 0 0 18 2901 2100 3 MP
XPP
X0 17 18 0 2901 2118 3 MP
XPP
X18 0 0 17 2901 2118 3 MP
XPP
X0 18 18 0 2901 2135 3 MP
XPP
X18 0 0 18 2901 2135 3 MP
XPP
X0 18 18 0 2901 2153 3 MP
XPP
X18 0 0 18 2901 2153 3 MP
XPP
X
Xgr 
X1 sg
X0 -1783 1783 0 0 1783 4233 388 4 MP
XPP
X-1783 0 0 -1783 1783 0 0 1783 4233 388 5 MP stroke
XDO
X4 w
XSO
X6 w
X0 sg
X4233  388 mt 6016  388 L
X4233 2171 mt 6016 2171 L
X6016  388 mt 6016 2171 L
X4233  388 mt 4233 2171 L
X4233 2171 mt 6016 2171 L
X4233  388 mt 4233 2171 L
X4571 2171 mt 4571 2153 L
X4571  388 mt 4571  406 L
X4555 2317 mt 
X( ) s
X4928 2171 mt 4928 2153 L
X4928  388 mt 4928  406 L
X4912 2317 mt 
X( ) s
X5284 2171 mt 5284 2153 L
X5284  388 mt 5284  406 L
X5268 2317 mt 
X( ) s
X5641 2171 mt 5641 2153 L
X5641  388 mt 5641  406 L
X5625 2317 mt 
X( ) s
X5998 2171 mt 5998 2153 L
X5998  388 mt 5998  406 L
X5982 2317 mt 
X( ) s
X4233  727 mt 4250  727 L
X6016  727 mt 5998  727 L
X4165  771 mt 
X( ) s
X4233 1083 mt 4250 1083 L
X6016 1083 mt 5998 1083 L
X4165 1127 mt 
X( ) s
X4233 1440 mt 4250 1440 L
X6016 1440 mt 5998 1440 L
X4165 1484 mt 
X( ) s
X4233 1797 mt 4250 1797 L
X6016 1797 mt 5998 1797 L
X4165 1841 mt 
X( ) s
X4233 2153 mt 4250 2153 L
X6016 2153 mt 5998 2153 L
X4165 2197 mt 
X( ) s
X4233 2171 mt 6016 2171 L
X4233  388 mt 6016  388 L
X4233  388 mt 4233 2171 L
X6016  388 mt 6016 2171 L
Xgs 4233 388 1784 1784 MR c np
X1 sg
X0 18 17 0 4233 388 3 MP
XPP
X17 0 0 18 4233 388 3 MP
XPP
X0 18 17 0 4233 406 3 MP
XPP
X17 0 0 18 4233 406 3 MP
XPP
X0 17 17 0 4233 424 3 MP
XPP
X17 0 0 17 4233 424 3 MP
XPP
X0 18 17 0 4233 441 3 MP
XPP
X17 0 0 18 4233 441 3 MP
XPP
X0 18 17 0 4233 459 3 MP
XPP
X17 0 0 18 4233 459 3 MP
XPP
X0 18 17 0 4233 477 3 MP
XPP
X17 0 0 18 4233 477 3 MP
XPP
X0 18 17 0 4233 495 3 MP
XPP
X17 0 0 18 4233 495 3 MP
XPP
X0 18 17 0 4233 513 3 MP
XPP
X17 0 0 18 4233 513 3 MP
XPP
X0 17 17 0 4233 531 3 MP
XPP
X17 0 0 17 4233 531 3 MP
XPP
X0 18 17 0 4233 548 3 MP
XPP
X17 0 0 18 4233 548 3 MP
XPP
X0 18 17 0 4233 566 3 MP
XPP
X17 0 0 18 4233 566 3 MP
XPP
X0 18 17 0 4233 584 3 MP
XPP
X17 0 0 18 4233 584 3 MP
XPP
X0 18 17 0 4233 602 3 MP
XPP
X17 0 0 18 4233 602 3 MP
XPP
X0 18 17 0 4233 620 3 MP
XPP
X17 0 0 18 4233 620 3 MP
XPP
X0 17 17 0 4233 638 3 MP
XPP
X17 0 0 17 4233 638 3 MP
XPP
X0 18 17 0 4233 655 3 MP
XPP
X17 0 0 18 4233 655 3 MP
XPP
X0 18 17 0 4233 673 3 MP
XPP
X17 0 0 18 4233 673 3 MP
XPP
X0 18 17 0 4233 691 3 MP
XPP
X17 0 0 18 4233 691 3 MP
XPP
X0 18 17 0 4233 709 3 MP
XPP
X17 0 0 18 4233 709 3 MP
XPP
X0 18 17 0 4233 727 3 MP
XPP
X17 0 0 18 4233 727 3 MP
XPP
X0 17 17 0 4233 745 3 MP
XPP
X17 0 0 17 4233 745 3 MP
XPP
X0 18 17 0 4233 762 3 MP
XPP
X17 0 0 18 4233 762 3 MP
XPP
X0 18 17 0 4233 780 3 MP
XPP
X17 0 0 18 4233 780 3 MP
XPP
X0 18 17 0 4233 798 3 MP
XPP
X17 0 0 18 4233 798 3 MP
XPP
X0 18 17 0 4233 816 3 MP
XPP
X17 0 0 18 4233 816 3 MP
XPP
X0 18 17 0 4233 834 3 MP
XPP
X17 0 0 18 4233 834 3 MP
XPP
X0 17 17 0 4233 852 3 MP
XPP
X17 0 0 17 4233 852 3 MP
XPP
X0 18 17 0 4233 869 3 MP
XPP
X17 0 0 18 4233 869 3 MP
XPP
X0 18 17 0 4233 887 3 MP
XPP
X17 0 0 18 4233 887 3 MP
XPP
X0 18 17 0 4233 905 3 MP
XPP
X17 0 0 18 4233 905 3 MP
XPP
X0 18 17 0 4233 923 3 MP
XPP
X17 0 0 18 4233 923 3 MP
XPP
X0 18 17 0 4233 941 3 MP
XPP
X17 0 0 18 4233 941 3 MP
XPP
X0 17 17 0 4233 959 3 MP
XPP
X17 0 0 17 4233 959 3 MP
XPP
X0 18 17 0 4233 976 3 MP
XPP
X17 0 0 18 4233 976 3 MP
XPP
X0 18 17 0 4233 994 3 MP
XPP
X17 0 0 18 4233 994 3 MP
XPP
X0 18 17 0 4233 1012 3 MP
XPP
X17 0 0 18 4233 1012 3 MP
XPP
X0 18 17 0 4233 1030 3 MP
XPP
X17 0 0 18 4233 1030 3 MP
XPP
X0 18 17 0 4233 1048 3 MP
XPP
X17 0 0 18 4233 1048 3 MP
XPP
X0 17 17 0 4233 1066 3 MP
XPP
X17 0 0 17 4233 1066 3 MP
XPP
X0.984127 sg
X0 18 17 0 4233 1083 3 MP
XPP
X17 0 0 18 4233 1083 3 MP
XPP
X0.920635 sg
X0 18 17 0 4233 1101 3 MP
XPP
X17 0 0 18 4233 1101 3 MP
XPP
X0.873016 sg
X0 18 17 0 4233 1119 3 MP
XPP
X17 0 0 18 4233 1119 3 MP
XPP
X0.904762 sg
X0 18 17 0 4233 1137 3 MP
XPP
X17 0 0 18 4233 1137 3 MP
XPP
X0.968254 sg
X0 18 17 0 4233 1155 3 MP
XPP
X17 0 0 18 4233 1155 3 MP
XPP
X1 sg
X0 17 17 0 4233 1173 3 MP
XPP
X17 0 0 17 4233 1173 3 MP
XPP
X0 18 17 0 4233 1190 3 MP
XPP
X17 0 0 18 4233 1190 3 MP
XPP
X0 18 17 0 4233 1208 3 MP
XPP
X17 0 0 18 4233 1208 3 MP
XPP
X0 18 17 0 4233 1226 3 MP
XPP
X17 0 0 18 4233 1226 3 MP
XPP
X0 18 17 0 4233 1244 3 MP
XPP
X17 0 0 18 4233 1244 3 MP
XPP
X0 17 17 0 4233 1262 3 MP
XPP
X17 0 0 17 4233 1262 3 MP
XPP
X0 18 17 0 4233 1279 3 MP
XPP
X17 0 0 18 4233 1279 3 MP
XPP
X0 18 17 0 4233 1297 3 MP
XPP
X17 0 0 18 4233 1297 3 MP
XPP
X0 18 17 0 4233 1315 3 MP
XPP
X17 0 0 18 4233 1315 3 MP
XPP
X0 18 17 0 4233 1333 3 MP
XPP
X17 0 0 18 4233 1333 3 MP
XPP
X0 18 17 0 4233 1351 3 MP
XPP
X17 0 0 18 4233 1351 3 MP
XPP
X0 17 17 0 4233 1369 3 MP
XPP
X17 0 0 17 4233 1369 3 MP
XPP
X0 18 17 0 4233 1386 3 MP
XPP
X17 0 0 18 4233 1386 3 MP
XPP
X0 18 17 0 4233 1404 3 MP
XPP
X17 0 0 18 4233 1404 3 MP
XPP
X0 18 17 0 4233 1422 3 MP
XPP
X17 0 0 18 4233 1422 3 MP
XPP
X0 18 17 0 4233 1440 3 MP
XPP
X17 0 0 18 4233 1440 3 MP
XPP
X0 18 17 0 4233 1458 3 MP
XPP
X17 0 0 18 4233 1458 3 MP
XPP
X0 17 17 0 4233 1476 3 MP
XPP
X17 0 0 17 4233 1476 3 MP
XPP
X0 18 17 0 4233 1493 3 MP
XPP
X17 0 0 18 4233 1493 3 MP
XPP
X0 18 17 0 4233 1511 3 MP
XPP
X17 0 0 18 4233 1511 3 MP
XPP
X0 18 17 0 4233 1529 3 MP
XPP
X17 0 0 18 4233 1529 3 MP
XPP
X0 18 17 0 4233 1547 3 MP
XPP
X17 0 0 18 4233 1547 3 MP
XPP
X0 18 17 0 4233 1565 3 MP
XPP
X17 0 0 18 4233 1565 3 MP
XPP
X0 17 17 0 4233 1583 3 MP
XPP
X17 0 0 17 4233 1583 3 MP
XPP
X0 18 17 0 4233 1600 3 MP
XPP
X17 0 0 18 4233 1600 3 MP
XPP
X0 18 17 0 4233 1618 3 MP
XPP
X17 0 0 18 4233 1618 3 MP
XPP
X0 18 17 0 4233 1636 3 MP
XPP
X17 0 0 18 4233 1636 3 MP
XPP
X0 18 17 0 4233 1654 3 MP
XPP
X17 0 0 18 4233 1654 3 MP
XPP
X0 18 17 0 4233 1672 3 MP
XPP
X17 0 0 18 4233 1672 3 MP
XPP
X0 17 17 0 4233 1690 3 MP
XPP
X17 0 0 17 4233 1690 3 MP
XPP
X0 18 17 0 4233 1707 3 MP
XPP
X17 0 0 18 4233 1707 3 MP
XPP
X0 18 17 0 4233 1725 3 MP
XPP
X17 0 0 18 4233 1725 3 MP
XPP
X0 18 17 0 4233 1743 3 MP
XPP
X17 0 0 18 4233 1743 3 MP
XPP
X0 18 17 0 4233 1761 3 MP
XPP
X17 0 0 18 4233 1761 3 MP
XPP
X0 18 17 0 4233 1779 3 MP
XPP
X17 0 0 18 4233 1779 3 MP
XPP
X0 17 17 0 4233 1797 3 MP
XPP
X17 0 0 17 4233 1797 3 MP
XPP
X0 18 17 0 4233 1814 3 MP
XPP
X17 0 0 18 4233 1814 3 MP
XPP
X0 18 17 0 4233 1832 3 MP
XPP
X17 0 0 18 4233 1832 3 MP
XPP
X0 18 17 0 4233 1850 3 MP
XPP
X17 0 0 18 4233 1850 3 MP
XPP
X0 18 17 0 4233 1868 3 MP
XPP
X17 0 0 18 4233 1868 3 MP
XPP
X0 18 17 0 4233 1886 3 MP
XPP
X17 0 0 18 4233 1886 3 MP
XPP
X0 17 17 0 4233 1904 3 MP
XPP
X17 0 0 17 4233 1904 3 MP
XPP
X0 18 17 0 4233 1921 3 MP
XPP
X17 0 0 18 4233 1921 3 MP
XPP
X0 18 17 0 4233 1939 3 MP
XPP
X17 0 0 18 4233 1939 3 MP
XPP
X0 18 17 0 4233 1957 3 MP
XPP
X17 0 0 18 4233 1957 3 MP
XPP
X0 18 17 0 4233 1975 3 MP
XPP
X17 0 0 18 4233 1975 3 MP
XPP
X0 18 17 0 4233 1993 3 MP
XPP
X17 0 0 18 4233 1993 3 MP
XPP
X0 17 17 0 4233 2011 3 MP
XPP
X17 0 0 17 4233 2011 3 MP
XPP
X0 18 17 0 4233 2028 3 MP
XPP
X17 0 0 18 4233 2028 3 MP
XPP
X0 18 17 0 4233 2046 3 MP
XPP
X17 0 0 18 4233 2046 3 MP
XPP
X0 18 17 0 4233 2064 3 MP
XPP
X17 0 0 18 4233 2064 3 MP
XPP
X0 18 17 0 4233 2082 3 MP
XPP
X17 0 0 18 4233 2082 3 MP
XPP
X0 18 17 0 4233 2100 3 MP
XPP
X17 0 0 18 4233 2100 3 MP
XPP
X0 17 17 0 4233 2118 3 MP
XPP
X17 0 0 17 4233 2118 3 MP
XPP
X0 18 17 0 4233 2135 3 MP
XPP
X17 0 0 18 4233 2135 3 MP
XPP
X0 18 17 0 4233 2153 3 MP
XPP
X17 0 0 18 4233 2153 3 MP
XPP
X0 18 18 0 4250 388 3 MP
XPP
X18 0 0 18 4250 388 3 MP
XPP
X0 18 18 0 4250 406 3 MP
XPP
X18 0 0 18 4250 406 3 MP
XPP
X0 17 18 0 4250 424 3 MP
XPP
X18 0 0 17 4250 424 3 MP
XPP
X0 18 18 0 4250 441 3 MP
XPP
X18 0 0 18 4250 441 3 MP
XPP
X0 18 18 0 4250 459 3 MP
XPP
X18 0 0 18 4250 459 3 MP
XPP
X0 18 18 0 4250 477 3 MP
XPP
X18 0 0 18 4250 477 3 MP
XPP
X0 18 18 0 4250 495 3 MP
XPP
X18 0 0 18 4250 495 3 MP
XPP
X0 18 18 0 4250 513 3 MP
XPP
X18 0 0 18 4250 513 3 MP
XPP
X0 17 18 0 4250 531 3 MP
XPP
X18 0 0 17 4250 531 3 MP
XPP
X0 18 18 0 4250 548 3 MP
XPP
X18 0 0 18 4250 548 3 MP
XPP
X0 18 18 0 4250 566 3 MP
XPP
X18 0 0 18 4250 566 3 MP
XPP
X0 18 18 0 4250 584 3 MP
XPP
X18 0 0 18 4250 584 3 MP
XPP
X0 18 18 0 4250 602 3 MP
XPP
X18 0 0 18 4250 602 3 MP
XPP
X0 18 18 0 4250 620 3 MP
XPP
X18 0 0 18 4250 620 3 MP
XPP
X0 17 18 0 4250 638 3 MP
XPP
X18 0 0 17 4250 638 3 MP
XPP
X0 18 18 0 4250 655 3 MP
XPP
X18 0 0 18 4250 655 3 MP
XPP
X0 18 18 0 4250 673 3 MP
XPP
X18 0 0 18 4250 673 3 MP
XPP
X0 18 18 0 4250 691 3 MP
XPP
X18 0 0 18 4250 691 3 MP
XPP
X0 18 18 0 4250 709 3 MP
XPP
X18 0 0 18 4250 709 3 MP
XPP
X0 18 18 0 4250 727 3 MP
XPP
X18 0 0 18 4250 727 3 MP
XPP
X0 17 18 0 4250 745 3 MP
XPP
X18 0 0 17 4250 745 3 MP
XPP
X0 18 18 0 4250 762 3 MP
XPP
X18 0 0 18 4250 762 3 MP
XPP
X0 18 18 0 4250 780 3 MP
XPP
X18 0 0 18 4250 780 3 MP
XPP
X0 18 18 0 4250 798 3 MP
XPP
X18 0 0 18 4250 798 3 MP
XPP
X0 18 18 0 4250 816 3 MP
XPP
X18 0 0 18 4250 816 3 MP
XPP
X0 18 18 0 4250 834 3 MP
XPP
X18 0 0 18 4250 834 3 MP
XPP
X0 17 18 0 4250 852 3 MP
XPP
X18 0 0 17 4250 852 3 MP
XPP
X0 18 18 0 4250 869 3 MP
XPP
X18 0 0 18 4250 869 3 MP
XPP
X0 18 18 0 4250 887 3 MP
XPP
X18 0 0 18 4250 887 3 MP
XPP
X0 18 18 0 4250 905 3 MP
XPP
X18 0 0 18 4250 905 3 MP
XPP
X0 18 18 0 4250 923 3 MP
XPP
X18 0 0 18 4250 923 3 MP
XPP
X0 18 18 0 4250 941 3 MP
XPP
X18 0 0 18 4250 941 3 MP
XPP
X0 17 18 0 4250 959 3 MP
XPP
X18 0 0 17 4250 959 3 MP
XPP
X0 18 18 0 4250 976 3 MP
XPP
X18 0 0 18 4250 976 3 MP
XPP
X0 18 18 0 4250 994 3 MP
XPP
X18 0 0 18 4250 994 3 MP
XPP
X0 18 18 0 4250 1012 3 MP
XPP
X18 0 0 18 4250 1012 3 MP
XPP
X0 18 18 0 4250 1030 3 MP
XPP
X18 0 0 18 4250 1030 3 MP
XPP
X0 18 18 0 4250 1048 3 MP
XPP
X18 0 0 18 4250 1048 3 MP
XPP
X0 17 18 0 4250 1066 3 MP
XPP
X18 0 0 17 4250 1066 3 MP
XPP
X0.952381 sg
X0 18 18 0 4250 1083 3 MP
XPP
X18 0 0 18 4250 1083 3 MP
XPP
X0.809524 sg
X0 18 18 0 4250 1101 3 MP
XPP
X18 0 0 18 4250 1101 3 MP
XPP
X0.666667 sg
X0 18 18 0 4250 1119 3 MP
XPP
X18 0 0 18 4250 1119 3 MP
XPP
X0.698413 sg
X0 18 18 0 4250 1137 3 MP
XPP
X18 0 0 18 4250 1137 3 MP
XPP
X0.857143 sg
X0 18 18 0 4250 1155 3 MP
XPP
X18 0 0 18 4250 1155 3 MP
XPP
X0.968254 sg
X0 17 18 0 4250 1173 3 MP
XPP
X18 0 0 17 4250 1173 3 MP
XPP
X1 sg
X0 18 18 0 4250 1190 3 MP
XPP
X18 0 0 18 4250 1190 3 MP
XPP
X0 18 18 0 4250 1208 3 MP
XPP
X18 0 0 18 4250 1208 3 MP
XPP
X0 18 18 0 4250 1226 3 MP
XPP
X18 0 0 18 4250 1226 3 MP
XPP
X0 18 18 0 4250 1244 3 MP
XPP
X18 0 0 18 4250 1244 3 MP
XPP
X0 17 18 0 4250 1262 3 MP
XPP
X18 0 0 17 4250 1262 3 MP
XPP
X0 18 18 0 4250 1279 3 MP
XPP
X18 0 0 18 4250 1279 3 MP
XPP
X0 18 18 0 4250 1297 3 MP
XPP
X18 0 0 18 4250 1297 3 MP
XPP
X0 18 18 0 4250 1315 3 MP
XPP
X18 0 0 18 4250 1315 3 MP
XPP
X0 18 18 0 4250 1333 3 MP
XPP
X18 0 0 18 4250 1333 3 MP
XPP
X0 18 18 0 4250 1351 3 MP
XPP
X18 0 0 18 4250 1351 3 MP
XPP
X0 17 18 0 4250 1369 3 MP
XPP
X18 0 0 17 4250 1369 3 MP
XPP
X0 18 18 0 4250 1386 3 MP
XPP
X18 0 0 18 4250 1386 3 MP
XPP
X0 18 18 0 4250 1404 3 MP
XPP
X18 0 0 18 4250 1404 3 MP
XPP
X0 18 18 0 4250 1422 3 MP
XPP
X18 0 0 18 4250 1422 3 MP
XPP
X0 18 18 0 4250 1440 3 MP
XPP
X18 0 0 18 4250 1440 3 MP
XPP
X0 18 18 0 4250 1458 3 MP
XPP
X18 0 0 18 4250 1458 3 MP
XPP
X0 17 18 0 4250 1476 3 MP
XPP
X18 0 0 17 4250 1476 3 MP
XPP
X0 18 18 0 4250 1493 3 MP
XPP
X18 0 0 18 4250 1493 3 MP
XPP
X0 18 18 0 4250 1511 3 MP
XPP
X18 0 0 18 4250 1511 3 MP
XPP
X0 18 18 0 4250 1529 3 MP
XPP
X18 0 0 18 4250 1529 3 MP
XPP
X0 18 18 0 4250 1547 3 MP
XPP
X18 0 0 18 4250 1547 3 MP
XPP
X0 18 18 0 4250 1565 3 MP
XPP
X18 0 0 18 4250 1565 3 MP
XPP
X0 17 18 0 4250 1583 3 MP
XPP
X18 0 0 17 4250 1583 3 MP
XPP
X0 18 18 0 4250 1600 3 MP
XPP
X18 0 0 18 4250 1600 3 MP
XPP
X0 18 18 0 4250 1618 3 MP
XPP
X18 0 0 18 4250 1618 3 MP
XPP
X0 18 18 0 4250 1636 3 MP
XPP
X18 0 0 18 4250 1636 3 MP
XPP
X0 18 18 0 4250 1654 3 MP
XPP
X18 0 0 18 4250 1654 3 MP
XPP
X0 18 18 0 4250 1672 3 MP
XPP
X18 0 0 18 4250 1672 3 MP
XPP
X0 17 18 0 4250 1690 3 MP
XPP
X18 0 0 17 4250 1690 3 MP
XPP
X0 18 18 0 4250 1707 3 MP
XPP
X18 0 0 18 4250 1707 3 MP
XPP
X0 18 18 0 4250 1725 3 MP
XPP
X18 0 0 18 4250 1725 3 MP
XPP
X0 18 18 0 4250 1743 3 MP
XPP
X18 0 0 18 4250 1743 3 MP
XPP
X0 18 18 0 4250 1761 3 MP
XPP
X18 0 0 18 4250 1761 3 MP
XPP
X0 18 18 0 4250 1779 3 MP
XPP
X18 0 0 18 4250 1779 3 MP
XPP
X0 17 18 0 4250 1797 3 MP
XPP
X18 0 0 17 4250 1797 3 MP
XPP
X0 18 18 0 4250 1814 3 MP
XPP
X18 0 0 18 4250 1814 3 MP
XPP
X0 18 18 0 4250 1832 3 MP
XPP
X18 0 0 18 4250 1832 3 MP
XPP
X0 18 18 0 4250 1850 3 MP
XPP
X18 0 0 18 4250 1850 3 MP
XPP
X0 18 18 0 4250 1868 3 MP
XPP
X18 0 0 18 4250 1868 3 MP
XPP
X0 18 18 0 4250 1886 3 MP
XPP
X18 0 0 18 4250 1886 3 MP
XPP
X0 17 18 0 4250 1904 3 MP
XPP
X18 0 0 17 4250 1904 3 MP
XPP
X0 18 18 0 4250 1921 3 MP
XPP
X18 0 0 18 4250 1921 3 MP
XPP
X0 18 18 0 4250 1939 3 MP
XPP
X18 0 0 18 4250 1939 3 MP
XPP
X0 18 18 0 4250 1957 3 MP
XPP
X18 0 0 18 4250 1957 3 MP
XPP
X0 18 18 0 4250 1975 3 MP
XPP
X18 0 0 18 4250 1975 3 MP
XPP
X0 18 18 0 4250 1993 3 MP
XPP
X18 0 0 18 4250 1993 3 MP
XPP
X0 17 18 0 4250 2011 3 MP
XPP
X18 0 0 17 4250 2011 3 MP
XPP
X0 18 18 0 4250 2028 3 MP
XPP
X18 0 0 18 4250 2028 3 MP
XPP
X0 18 18 0 4250 2046 3 MP
XPP
X18 0 0 18 4250 2046 3 MP
XPP
X0 18 18 0 4250 2064 3 MP
XPP
X18 0 0 18 4250 2064 3 MP
XPP
X0 18 18 0 4250 2082 3 MP
XPP
X18 0 0 18 4250 2082 3 MP
XPP
X0 18 18 0 4250 2100 3 MP
XPP
X18 0 0 18 4250 2100 3 MP
XPP
X0 17 18 0 4250 2118 3 MP
XPP
X18 0 0 17 4250 2118 3 MP
XPP
X0 18 18 0 4250 2135 3 MP
XPP
X18 0 0 18 4250 2135 3 MP
XPP
X0 18 18 0 4250 2153 3 MP
XPP
X18 0 0 18 4250 2153 3 MP
XPP
X0 18 18 0 4268 388 3 MP
XPP
X18 0 0 18 4268 388 3 MP
XPP
X0 18 18 0 4268 406 3 MP
XPP
X18 0 0 18 4268 406 3 MP
XPP
X0 17 18 0 4268 424 3 MP
XPP
X18 0 0 17 4268 424 3 MP
XPP
X0 18 18 0 4268 441 3 MP
XPP
X18 0 0 18 4268 441 3 MP
XPP
X0 18 18 0 4268 459 3 MP
XPP
X18 0 0 18 4268 459 3 MP
XPP
X0 18 18 0 4268 477 3 MP
XPP
X18 0 0 18 4268 477 3 MP
XPP
X0 18 18 0 4268 495 3 MP
XPP
X18 0 0 18 4268 495 3 MP
XPP
X0 18 18 0 4268 513 3 MP
XPP
X18 0 0 18 4268 513 3 MP
XPP
X0 17 18 0 4268 531 3 MP
XPP
X18 0 0 17 4268 531 3 MP
XPP
X0 18 18 0 4268 548 3 MP
XPP
X18 0 0 18 4268 548 3 MP
XPP
X0 18 18 0 4268 566 3 MP
XPP
X18 0 0 18 4268 566 3 MP
XPP
X0 18 18 0 4268 584 3 MP
XPP
X18 0 0 18 4268 584 3 MP
XPP
X0 18 18 0 4268 602 3 MP
XPP
X18 0 0 18 4268 602 3 MP
XPP
X0 18 18 0 4268 620 3 MP
XPP
X18 0 0 18 4268 620 3 MP
XPP
X0 17 18 0 4268 638 3 MP
XPP
X18 0 0 17 4268 638 3 MP
XPP
X0 18 18 0 4268 655 3 MP
XPP
X18 0 0 18 4268 655 3 MP
XPP
X0 18 18 0 4268 673 3 MP
XPP
X18 0 0 18 4268 673 3 MP
XPP
X0 18 18 0 4268 691 3 MP
XPP
X18 0 0 18 4268 691 3 MP
XPP
X0 18 18 0 4268 709 3 MP
XPP
X18 0 0 18 4268 709 3 MP
XPP
X0 18 18 0 4268 727 3 MP
XPP
X18 0 0 18 4268 727 3 MP
XPP
X0 17 18 0 4268 745 3 MP
XPP
X18 0 0 17 4268 745 3 MP
XPP
X0 18 18 0 4268 762 3 MP
XPP
X18 0 0 18 4268 762 3 MP
XPP
X0 18 18 0 4268 780 3 MP
XPP
X18 0 0 18 4268 780 3 MP
XPP
X0 18 18 0 4268 798 3 MP
XPP
X18 0 0 18 4268 798 3 MP
XPP
X0 18 18 0 4268 816 3 MP
XPP
X18 0 0 18 4268 816 3 MP
XPP
X0 18 18 0 4268 834 3 MP
XPP
X18 0 0 18 4268 834 3 MP
XPP
X0 17 18 0 4268 852 3 MP
XPP
X18 0 0 17 4268 852 3 MP
XPP
X0 18 18 0 4268 869 3 MP
XPP
X18 0 0 18 4268 869 3 MP
XPP
X0 18 18 0 4268 887 3 MP
XPP
X18 0 0 18 4268 887 3 MP
XPP
X0 18 18 0 4268 905 3 MP
XPP
X18 0 0 18 4268 905 3 MP
XPP
X0 18 18 0 4268 923 3 MP
XPP
X18 0 0 18 4268 923 3 MP
XPP
X0 18 18 0 4268 941 3 MP
XPP
X18 0 0 18 4268 941 3 MP
XPP
X0 17 18 0 4268 959 3 MP
XPP
X18 0 0 17 4268 959 3 MP
XPP
X0 18 18 0 4268 976 3 MP
XPP
X18 0 0 18 4268 976 3 MP
XPP
X0 18 18 0 4268 994 3 MP
XPP
X18 0 0 18 4268 994 3 MP
XPP
X0 18 18 0 4268 1012 3 MP
XPP
X18 0 0 18 4268 1012 3 MP
XPP
X0 18 18 0 4268 1030 3 MP
XPP
X18 0 0 18 4268 1030 3 MP
XPP
X0 18 18 0 4268 1048 3 MP
XPP
X18 0 0 18 4268 1048 3 MP
XPP
X0 17 18 0 4268 1066 3 MP
XPP
X18 0 0 17 4268 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4268 1083 3 MP
XPP
X18 0 0 18 4268 1083 3 MP
XPP
X0.730159 sg
X0 18 18 0 4268 1101 3 MP
XPP
X18 0 0 18 4268 1101 3 MP
XPP
X0.47619 sg
X0 18 18 0 4268 1119 3 MP
XPP
X18 0 0 18 4268 1119 3 MP
XPP
X0.444444 sg
X0 18 18 0 4268 1137 3 MP
XPP
X18 0 0 18 4268 1137 3 MP
XPP
X0.634921 sg
X0 18 18 0 4268 1155 3 MP
XPP
X18 0 0 18 4268 1155 3 MP
XPP
X0.857143 sg
X0 17 18 0 4268 1173 3 MP
XPP
X18 0 0 17 4268 1173 3 MP
XPP
X0.968254 sg
X0 18 18 0 4268 1190 3 MP
XPP
X18 0 0 18 4268 1190 3 MP
XPP
X1 sg
X0 18 18 0 4268 1208 3 MP
XPP
X18 0 0 18 4268 1208 3 MP
XPP
X0 18 18 0 4268 1226 3 MP
XPP
X18 0 0 18 4268 1226 3 MP
XPP
X0 18 18 0 4268 1244 3 MP
XPP
X18 0 0 18 4268 1244 3 MP
XPP
X0 17 18 0 4268 1262 3 MP
XPP
X18 0 0 17 4268 1262 3 MP
XPP
X0 18 18 0 4268 1279 3 MP
XPP
X18 0 0 18 4268 1279 3 MP
XPP
X0 18 18 0 4268 1297 3 MP
XPP
X18 0 0 18 4268 1297 3 MP
XPP
X0 18 18 0 4268 1315 3 MP
XPP
X18 0 0 18 4268 1315 3 MP
XPP
X0 18 18 0 4268 1333 3 MP
XPP
X18 0 0 18 4268 1333 3 MP
XPP
X0 18 18 0 4268 1351 3 MP
XPP
X18 0 0 18 4268 1351 3 MP
XPP
X0 17 18 0 4268 1369 3 MP
XPP
X18 0 0 17 4268 1369 3 MP
XPP
X0 18 18 0 4268 1386 3 MP
XPP
X18 0 0 18 4268 1386 3 MP
XPP
X0 18 18 0 4268 1404 3 MP
XPP
X18 0 0 18 4268 1404 3 MP
XPP
X0 18 18 0 4268 1422 3 MP
XPP
X18 0 0 18 4268 1422 3 MP
XPP
X0 18 18 0 4268 1440 3 MP
XPP
X18 0 0 18 4268 1440 3 MP
XPP
X0 18 18 0 4268 1458 3 MP
XPP
X18 0 0 18 4268 1458 3 MP
XPP
X0 17 18 0 4268 1476 3 MP
XPP
X18 0 0 17 4268 1476 3 MP
XPP
X0 18 18 0 4268 1493 3 MP
XPP
X18 0 0 18 4268 1493 3 MP
XPP
X0 18 18 0 4268 1511 3 MP
XPP
X18 0 0 18 4268 1511 3 MP
XPP
X0 18 18 0 4268 1529 3 MP
XPP
X18 0 0 18 4268 1529 3 MP
XPP
X0 18 18 0 4268 1547 3 MP
XPP
X18 0 0 18 4268 1547 3 MP
XPP
X0 18 18 0 4268 1565 3 MP
XPP
X18 0 0 18 4268 1565 3 MP
XPP
X0 17 18 0 4268 1583 3 MP
XPP
X18 0 0 17 4268 1583 3 MP
XPP
X0 18 18 0 4268 1600 3 MP
XPP
X18 0 0 18 4268 1600 3 MP
XPP
X0 18 18 0 4268 1618 3 MP
XPP
X18 0 0 18 4268 1618 3 MP
XPP
X0 18 18 0 4268 1636 3 MP
XPP
X18 0 0 18 4268 1636 3 MP
XPP
X0 18 18 0 4268 1654 3 MP
XPP
X18 0 0 18 4268 1654 3 MP
XPP
X0 18 18 0 4268 1672 3 MP
XPP
X18 0 0 18 4268 1672 3 MP
XPP
X0 17 18 0 4268 1690 3 MP
XPP
X18 0 0 17 4268 1690 3 MP
XPP
X0 18 18 0 4268 1707 3 MP
XPP
X18 0 0 18 4268 1707 3 MP
XPP
X0 18 18 0 4268 1725 3 MP
XPP
X18 0 0 18 4268 1725 3 MP
XPP
X0 18 18 0 4268 1743 3 MP
XPP
X18 0 0 18 4268 1743 3 MP
XPP
X0 18 18 0 4268 1761 3 MP
XPP
X18 0 0 18 4268 1761 3 MP
XPP
X0 18 18 0 4268 1779 3 MP
XPP
X18 0 0 18 4268 1779 3 MP
XPP
X0 17 18 0 4268 1797 3 MP
XPP
X18 0 0 17 4268 1797 3 MP
XPP
X0 18 18 0 4268 1814 3 MP
XPP
X18 0 0 18 4268 1814 3 MP
XPP
X0 18 18 0 4268 1832 3 MP
XPP
X18 0 0 18 4268 1832 3 MP
XPP
X0 18 18 0 4268 1850 3 MP
XPP
X18 0 0 18 4268 1850 3 MP
XPP
X0 18 18 0 4268 1868 3 MP
XPP
X18 0 0 18 4268 1868 3 MP
XPP
X0 18 18 0 4268 1886 3 MP
XPP
X18 0 0 18 4268 1886 3 MP
XPP
X0 17 18 0 4268 1904 3 MP
XPP
X18 0 0 17 4268 1904 3 MP
XPP
X0 18 18 0 4268 1921 3 MP
XPP
X18 0 0 18 4268 1921 3 MP
XPP
X0 18 18 0 4268 1939 3 MP
XPP
X18 0 0 18 4268 1939 3 MP
XPP
X0 18 18 0 4268 1957 3 MP
XPP
X18 0 0 18 4268 1957 3 MP
XPP
X0 18 18 0 4268 1975 3 MP
XPP
X18 0 0 18 4268 1975 3 MP
XPP
X0 18 18 0 4268 1993 3 MP
XPP
X18 0 0 18 4268 1993 3 MP
XPP
X0 17 18 0 4268 2011 3 MP
XPP
X18 0 0 17 4268 2011 3 MP
XPP
X0 18 18 0 4268 2028 3 MP
XPP
X18 0 0 18 4268 2028 3 MP
XPP
X0 18 18 0 4268 2046 3 MP
XPP
X18 0 0 18 4268 2046 3 MP
XPP
X0 18 18 0 4268 2064 3 MP
XPP
X18 0 0 18 4268 2064 3 MP
XPP
X0 18 18 0 4268 2082 3 MP
XPP
X18 0 0 18 4268 2082 3 MP
XPP
X0 18 18 0 4268 2100 3 MP
XPP
X18 0 0 18 4268 2100 3 MP
XPP
X0 17 18 0 4268 2118 3 MP
XPP
X18 0 0 17 4268 2118 3 MP
XPP
X0 18 18 0 4268 2135 3 MP
XPP
X18 0 0 18 4268 2135 3 MP
XPP
X0 18 18 0 4268 2153 3 MP
XPP
X18 0 0 18 4268 2153 3 MP
XPP
X0 18 18 0 4286 388 3 MP
XPP
X18 0 0 18 4286 388 3 MP
XPP
X0 18 18 0 4286 406 3 MP
XPP
X18 0 0 18 4286 406 3 MP
XPP
X0 17 18 0 4286 424 3 MP
XPP
X18 0 0 17 4286 424 3 MP
XPP
X0 18 18 0 4286 441 3 MP
XPP
X18 0 0 18 4286 441 3 MP
XPP
X0 18 18 0 4286 459 3 MP
XPP
X18 0 0 18 4286 459 3 MP
XPP
X0 18 18 0 4286 477 3 MP
XPP
X18 0 0 18 4286 477 3 MP
XPP
X0 18 18 0 4286 495 3 MP
XPP
X18 0 0 18 4286 495 3 MP
XPP
X0 18 18 0 4286 513 3 MP
XPP
X18 0 0 18 4286 513 3 MP
XPP
X0 17 18 0 4286 531 3 MP
XPP
X18 0 0 17 4286 531 3 MP
XPP
X0 18 18 0 4286 548 3 MP
XPP
X18 0 0 18 4286 548 3 MP
XPP
X0 18 18 0 4286 566 3 MP
XPP
X18 0 0 18 4286 566 3 MP
XPP
X0 18 18 0 4286 584 3 MP
XPP
X18 0 0 18 4286 584 3 MP
XPP
X0 18 18 0 4286 602 3 MP
XPP
X18 0 0 18 4286 602 3 MP
XPP
X0 18 18 0 4286 620 3 MP
XPP
X18 0 0 18 4286 620 3 MP
XPP
X0 17 18 0 4286 638 3 MP
XPP
X18 0 0 17 4286 638 3 MP
XPP
X0 18 18 0 4286 655 3 MP
XPP
X18 0 0 18 4286 655 3 MP
XPP
X0 18 18 0 4286 673 3 MP
XPP
X18 0 0 18 4286 673 3 MP
XPP
X0 18 18 0 4286 691 3 MP
XPP
X18 0 0 18 4286 691 3 MP
XPP
X0 18 18 0 4286 709 3 MP
XPP
X18 0 0 18 4286 709 3 MP
XPP
X0 18 18 0 4286 727 3 MP
XPP
X18 0 0 18 4286 727 3 MP
XPP
X0 17 18 0 4286 745 3 MP
XPP
X18 0 0 17 4286 745 3 MP
XPP
X0 18 18 0 4286 762 3 MP
XPP
X18 0 0 18 4286 762 3 MP
XPP
X0 18 18 0 4286 780 3 MP
XPP
X18 0 0 18 4286 780 3 MP
XPP
X0 18 18 0 4286 798 3 MP
XPP
X18 0 0 18 4286 798 3 MP
XPP
X0 18 18 0 4286 816 3 MP
XPP
X18 0 0 18 4286 816 3 MP
XPP
X0 18 18 0 4286 834 3 MP
XPP
X18 0 0 18 4286 834 3 MP
XPP
X0 17 18 0 4286 852 3 MP
XPP
X18 0 0 17 4286 852 3 MP
XPP
X0 18 18 0 4286 869 3 MP
XPP
X18 0 0 18 4286 869 3 MP
XPP
X0 18 18 0 4286 887 3 MP
XPP
X18 0 0 18 4286 887 3 MP
XPP
X0 18 18 0 4286 905 3 MP
XPP
X18 0 0 18 4286 905 3 MP
XPP
X0 18 18 0 4286 923 3 MP
XPP
X18 0 0 18 4286 923 3 MP
XPP
X0 18 18 0 4286 941 3 MP
XPP
X18 0 0 18 4286 941 3 MP
XPP
X0 17 18 0 4286 959 3 MP
XPP
X18 0 0 17 4286 959 3 MP
XPP
X0 18 18 0 4286 976 3 MP
XPP
X18 0 0 18 4286 976 3 MP
XPP
X0 18 18 0 4286 994 3 MP
XPP
X18 0 0 18 4286 994 3 MP
XPP
X0 18 18 0 4286 1012 3 MP
XPP
X18 0 0 18 4286 1012 3 MP
XPP
X0 18 18 0 4286 1030 3 MP
XPP
X18 0 0 18 4286 1030 3 MP
XPP
X0 18 18 0 4286 1048 3 MP
XPP
X18 0 0 18 4286 1048 3 MP
XPP
X0 17 18 0 4286 1066 3 MP
XPP
X18 0 0 17 4286 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4286 1083 3 MP
XPP
X18 0 0 18 4286 1083 3 MP
XPP
X0.698413 sg
X0 18 18 0 4286 1101 3 MP
XPP
X18 0 0 18 4286 1101 3 MP
XPP
X0.349206 sg
X0 18 18 0 4286 1119 3 MP
XPP
X18 0 0 18 4286 1119 3 MP
XPP
X0.222222 sg
X0 18 18 0 4286 1137 3 MP
XPP
X18 0 0 18 4286 1137 3 MP
XPP
X0.365079 sg
X0 18 18 0 4286 1155 3 MP
XPP
X18 0 0 18 4286 1155 3 MP
XPP
X0.634921 sg
X0 17 18 0 4286 1173 3 MP
XPP
X18 0 0 17 4286 1173 3 MP
XPP
X0.857143 sg
X0 18 18 0 4286 1190 3 MP
XPP
X18 0 0 18 4286 1190 3 MP
XPP
X0.968254 sg
X0 18 18 0 4286 1208 3 MP
XPP
X18 0 0 18 4286 1208 3 MP
XPP
X1 sg
X0 18 18 0 4286 1226 3 MP
XPP
X18 0 0 18 4286 1226 3 MP
XPP
X0 18 18 0 4286 1244 3 MP
XPP
X18 0 0 18 4286 1244 3 MP
XPP
X0 17 18 0 4286 1262 3 MP
XPP
X18 0 0 17 4286 1262 3 MP
XPP
X0 18 18 0 4286 1279 3 MP
XPP
X18 0 0 18 4286 1279 3 MP
XPP
X0 18 18 0 4286 1297 3 MP
XPP
X18 0 0 18 4286 1297 3 MP
XPP
X0 18 18 0 4286 1315 3 MP
XPP
X18 0 0 18 4286 1315 3 MP
XPP
X0 18 18 0 4286 1333 3 MP
XPP
X18 0 0 18 4286 1333 3 MP
XPP
X0 18 18 0 4286 1351 3 MP
XPP
X18 0 0 18 4286 1351 3 MP
XPP
X0 17 18 0 4286 1369 3 MP
XPP
X18 0 0 17 4286 1369 3 MP
XPP
X0 18 18 0 4286 1386 3 MP
XPP
X18 0 0 18 4286 1386 3 MP
XPP
X0 18 18 0 4286 1404 3 MP
XPP
X18 0 0 18 4286 1404 3 MP
XPP
X0 18 18 0 4286 1422 3 MP
XPP
X18 0 0 18 4286 1422 3 MP
XPP
X0 18 18 0 4286 1440 3 MP
XPP
X18 0 0 18 4286 1440 3 MP
XPP
X0 18 18 0 4286 1458 3 MP
XPP
X18 0 0 18 4286 1458 3 MP
XPP
X0 17 18 0 4286 1476 3 MP
XPP
X18 0 0 17 4286 1476 3 MP
XPP
X0 18 18 0 4286 1493 3 MP
XPP
X18 0 0 18 4286 1493 3 MP
XPP
X0 18 18 0 4286 1511 3 MP
XPP
X18 0 0 18 4286 1511 3 MP
XPP
X0 18 18 0 4286 1529 3 MP
XPP
X18 0 0 18 4286 1529 3 MP
XPP
X0 18 18 0 4286 1547 3 MP
XPP
X18 0 0 18 4286 1547 3 MP
XPP
X0 18 18 0 4286 1565 3 MP
XPP
X18 0 0 18 4286 1565 3 MP
XPP
X0 17 18 0 4286 1583 3 MP
XPP
X18 0 0 17 4286 1583 3 MP
XPP
X0 18 18 0 4286 1600 3 MP
XPP
X18 0 0 18 4286 1600 3 MP
XPP
X0 18 18 0 4286 1618 3 MP
XPP
X18 0 0 18 4286 1618 3 MP
XPP
X0 18 18 0 4286 1636 3 MP
XPP
X18 0 0 18 4286 1636 3 MP
XPP
X0 18 18 0 4286 1654 3 MP
XPP
X18 0 0 18 4286 1654 3 MP
XPP
X0 18 18 0 4286 1672 3 MP
XPP
X18 0 0 18 4286 1672 3 MP
XPP
X0 17 18 0 4286 1690 3 MP
XPP
X18 0 0 17 4286 1690 3 MP
XPP
X0 18 18 0 4286 1707 3 MP
XPP
X18 0 0 18 4286 1707 3 MP
XPP
X0 18 18 0 4286 1725 3 MP
XPP
X18 0 0 18 4286 1725 3 MP
XPP
X0 18 18 0 4286 1743 3 MP
XPP
X18 0 0 18 4286 1743 3 MP
XPP
X0 18 18 0 4286 1761 3 MP
XPP
X18 0 0 18 4286 1761 3 MP
XPP
X0 18 18 0 4286 1779 3 MP
XPP
X18 0 0 18 4286 1779 3 MP
XPP
X0 17 18 0 4286 1797 3 MP
XPP
X18 0 0 17 4286 1797 3 MP
XPP
X0 18 18 0 4286 1814 3 MP
XPP
X18 0 0 18 4286 1814 3 MP
XPP
X0 18 18 0 4286 1832 3 MP
XPP
X18 0 0 18 4286 1832 3 MP
XPP
X0 18 18 0 4286 1850 3 MP
XPP
X18 0 0 18 4286 1850 3 MP
XPP
X0 18 18 0 4286 1868 3 MP
XPP
X18 0 0 18 4286 1868 3 MP
XPP
X0 18 18 0 4286 1886 3 MP
XPP
X18 0 0 18 4286 1886 3 MP
XPP
X0 17 18 0 4286 1904 3 MP
XPP
X18 0 0 17 4286 1904 3 MP
XPP
X0 18 18 0 4286 1921 3 MP
XPP
X18 0 0 18 4286 1921 3 MP
XPP
X0 18 18 0 4286 1939 3 MP
XPP
X18 0 0 18 4286 1939 3 MP
XPP
X0 18 18 0 4286 1957 3 MP
XPP
X18 0 0 18 4286 1957 3 MP
XPP
X0 18 18 0 4286 1975 3 MP
XPP
X18 0 0 18 4286 1975 3 MP
XPP
X0 18 18 0 4286 1993 3 MP
XPP
X18 0 0 18 4286 1993 3 MP
XPP
X0 17 18 0 4286 2011 3 MP
XPP
X18 0 0 17 4286 2011 3 MP
XPP
X0 18 18 0 4286 2028 3 MP
XPP
X18 0 0 18 4286 2028 3 MP
XPP
X0 18 18 0 4286 2046 3 MP
XPP
X18 0 0 18 4286 2046 3 MP
XPP
X0 18 18 0 4286 2064 3 MP
XPP
X18 0 0 18 4286 2064 3 MP
XPP
X0 18 18 0 4286 2082 3 MP
XPP
X18 0 0 18 4286 2082 3 MP
XPP
X0 18 18 0 4286 2100 3 MP
XPP
X18 0 0 18 4286 2100 3 MP
XPP
X0 17 18 0 4286 2118 3 MP
XPP
X18 0 0 17 4286 2118 3 MP
XPP
X0 18 18 0 4286 2135 3 MP
XPP
X18 0 0 18 4286 2135 3 MP
XPP
X0 18 18 0 4286 2153 3 MP
XPP
X18 0 0 18 4286 2153 3 MP
XPP
X0 18 18 0 4304 388 3 MP
XPP
X18 0 0 18 4304 388 3 MP
XPP
X0 18 18 0 4304 406 3 MP
XPP
X18 0 0 18 4304 406 3 MP
XPP
X0 17 18 0 4304 424 3 MP
XPP
X18 0 0 17 4304 424 3 MP
XPP
X0 18 18 0 4304 441 3 MP
XPP
X18 0 0 18 4304 441 3 MP
XPP
X0 18 18 0 4304 459 3 MP
XPP
X18 0 0 18 4304 459 3 MP
XPP
X0 18 18 0 4304 477 3 MP
XPP
X18 0 0 18 4304 477 3 MP
XPP
X0 18 18 0 4304 495 3 MP
XPP
X18 0 0 18 4304 495 3 MP
XPP
X0 18 18 0 4304 513 3 MP
XPP
X18 0 0 18 4304 513 3 MP
XPP
X0 17 18 0 4304 531 3 MP
XPP
X18 0 0 17 4304 531 3 MP
XPP
X0 18 18 0 4304 548 3 MP
XPP
X18 0 0 18 4304 548 3 MP
XPP
X0 18 18 0 4304 566 3 MP
XPP
X18 0 0 18 4304 566 3 MP
XPP
X0 18 18 0 4304 584 3 MP
XPP
X18 0 0 18 4304 584 3 MP
XPP
X0 18 18 0 4304 602 3 MP
XPP
X18 0 0 18 4304 602 3 MP
XPP
X0 18 18 0 4304 620 3 MP
XPP
X18 0 0 18 4304 620 3 MP
XPP
X0 17 18 0 4304 638 3 MP
XPP
X18 0 0 17 4304 638 3 MP
XPP
X0 18 18 0 4304 655 3 MP
XPP
X18 0 0 18 4304 655 3 MP
XPP
X0 18 18 0 4304 673 3 MP
XPP
X18 0 0 18 4304 673 3 MP
XPP
X0 18 18 0 4304 691 3 MP
XPP
X18 0 0 18 4304 691 3 MP
XPP
X0 18 18 0 4304 709 3 MP
XPP
X18 0 0 18 4304 709 3 MP
XPP
X0 18 18 0 4304 727 3 MP
XPP
X18 0 0 18 4304 727 3 MP
XPP
X0 17 18 0 4304 745 3 MP
XPP
X18 0 0 17 4304 745 3 MP
XPP
X0 18 18 0 4304 762 3 MP
XPP
X18 0 0 18 4304 762 3 MP
XPP
X0 18 18 0 4304 780 3 MP
XPP
X18 0 0 18 4304 780 3 MP
XPP
X0 18 18 0 4304 798 3 MP
XPP
X18 0 0 18 4304 798 3 MP
XPP
X0 18 18 0 4304 816 3 MP
XPP
X18 0 0 18 4304 816 3 MP
XPP
X0 18 18 0 4304 834 3 MP
XPP
X18 0 0 18 4304 834 3 MP
XPP
X0 17 18 0 4304 852 3 MP
XPP
X18 0 0 17 4304 852 3 MP
XPP
X0 18 18 0 4304 869 3 MP
XPP
X18 0 0 18 4304 869 3 MP
XPP
X0 18 18 0 4304 887 3 MP
XPP
X18 0 0 18 4304 887 3 MP
XPP
X0 18 18 0 4304 905 3 MP
XPP
X18 0 0 18 4304 905 3 MP
XPP
X0 18 18 0 4304 923 3 MP
XPP
X18 0 0 18 4304 923 3 MP
XPP
X0 18 18 0 4304 941 3 MP
XPP
X18 0 0 18 4304 941 3 MP
XPP
X0 17 18 0 4304 959 3 MP
XPP
X18 0 0 17 4304 959 3 MP
XPP
X0 18 18 0 4304 976 3 MP
XPP
X18 0 0 18 4304 976 3 MP
XPP
X0 18 18 0 4304 994 3 MP
XPP
X18 0 0 18 4304 994 3 MP
XPP
X0 18 18 0 4304 1012 3 MP
XPP
X18 0 0 18 4304 1012 3 MP
XPP
X0 18 18 0 4304 1030 3 MP
XPP
X18 0 0 18 4304 1030 3 MP
XPP
X0 18 18 0 4304 1048 3 MP
XPP
X18 0 0 18 4304 1048 3 MP
XPP
X0 17 18 0 4304 1066 3 MP
XPP
X18 0 0 17 4304 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4304 1083 3 MP
XPP
X18 0 0 18 4304 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4304 1101 3 MP
XPP
X18 0 0 18 4304 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4304 1119 3 MP
XPP
X18 0 0 18 4304 1119 3 MP
XPP
X0.111111 sg
X0 18 18 0 4304 1137 3 MP
XPP
X18 0 0 18 4304 1137 3 MP
XPP
X0.142857 sg
X0 18 18 0 4304 1155 3 MP
XPP
X18 0 0 18 4304 1155 3 MP
XPP
X0.365079 sg
X0 17 18 0 4304 1173 3 MP
XPP
X18 0 0 17 4304 1173 3 MP
XPP
X0.634921 sg
X0 18 18 0 4304 1190 3 MP
XPP
X18 0 0 18 4304 1190 3 MP
XPP
X0.857143 sg
X0 18 18 0 4304 1208 3 MP
XPP
X18 0 0 18 4304 1208 3 MP
XPP
X0.968254 sg
X0 18 18 0 4304 1226 3 MP
XPP
X18 0 0 18 4304 1226 3 MP
XPP
X1 sg
X0 18 18 0 4304 1244 3 MP
XPP
X18 0 0 18 4304 1244 3 MP
XPP
X0 17 18 0 4304 1262 3 MP
XPP
X18 0 0 17 4304 1262 3 MP
XPP
X0 18 18 0 4304 1279 3 MP
XPP
X18 0 0 18 4304 1279 3 MP
XPP
X0 18 18 0 4304 1297 3 MP
XPP
X18 0 0 18 4304 1297 3 MP
XPP
X0 18 18 0 4304 1315 3 MP
XPP
X18 0 0 18 4304 1315 3 MP
XPP
X0 18 18 0 4304 1333 3 MP
XPP
X18 0 0 18 4304 1333 3 MP
XPP
X0 18 18 0 4304 1351 3 MP
XPP
X18 0 0 18 4304 1351 3 MP
XPP
X0 17 18 0 4304 1369 3 MP
XPP
X18 0 0 17 4304 1369 3 MP
XPP
X0 18 18 0 4304 1386 3 MP
XPP
X18 0 0 18 4304 1386 3 MP
XPP
X0 18 18 0 4304 1404 3 MP
XPP
X18 0 0 18 4304 1404 3 MP
XPP
X0 18 18 0 4304 1422 3 MP
XPP
X18 0 0 18 4304 1422 3 MP
XPP
X0 18 18 0 4304 1440 3 MP
XPP
X18 0 0 18 4304 1440 3 MP
XPP
X0 18 18 0 4304 1458 3 MP
XPP
X18 0 0 18 4304 1458 3 MP
XPP
X0 17 18 0 4304 1476 3 MP
XPP
X18 0 0 17 4304 1476 3 MP
XPP
X0 18 18 0 4304 1493 3 MP
XPP
X18 0 0 18 4304 1493 3 MP
XPP
X0 18 18 0 4304 1511 3 MP
XPP
X18 0 0 18 4304 1511 3 MP
XPP
X0 18 18 0 4304 1529 3 MP
XPP
X18 0 0 18 4304 1529 3 MP
XPP
X0 18 18 0 4304 1547 3 MP
XPP
X18 0 0 18 4304 1547 3 MP
XPP
X0 18 18 0 4304 1565 3 MP
XPP
X18 0 0 18 4304 1565 3 MP
XPP
X0 17 18 0 4304 1583 3 MP
XPP
X18 0 0 17 4304 1583 3 MP
XPP
X0 18 18 0 4304 1600 3 MP
XPP
X18 0 0 18 4304 1600 3 MP
XPP
X0 18 18 0 4304 1618 3 MP
XPP
X18 0 0 18 4304 1618 3 MP
XPP
X0 18 18 0 4304 1636 3 MP
XPP
X18 0 0 18 4304 1636 3 MP
XPP
X0 18 18 0 4304 1654 3 MP
XPP
X18 0 0 18 4304 1654 3 MP
XPP
X0 18 18 0 4304 1672 3 MP
XPP
X18 0 0 18 4304 1672 3 MP
XPP
X0 17 18 0 4304 1690 3 MP
XPP
X18 0 0 17 4304 1690 3 MP
XPP
X0 18 18 0 4304 1707 3 MP
XPP
X18 0 0 18 4304 1707 3 MP
XPP
X0 18 18 0 4304 1725 3 MP
XPP
X18 0 0 18 4304 1725 3 MP
XPP
X0 18 18 0 4304 1743 3 MP
XPP
X18 0 0 18 4304 1743 3 MP
XPP
X0 18 18 0 4304 1761 3 MP
XPP
X18 0 0 18 4304 1761 3 MP
XPP
X0 18 18 0 4304 1779 3 MP
XPP
X18 0 0 18 4304 1779 3 MP
XPP
X0 17 18 0 4304 1797 3 MP
XPP
X18 0 0 17 4304 1797 3 MP
XPP
X0 18 18 0 4304 1814 3 MP
XPP
X18 0 0 18 4304 1814 3 MP
XPP
X0 18 18 0 4304 1832 3 MP
XPP
X18 0 0 18 4304 1832 3 MP
XPP
X0 18 18 0 4304 1850 3 MP
XPP
X18 0 0 18 4304 1850 3 MP
XPP
X0 18 18 0 4304 1868 3 MP
XPP
X18 0 0 18 4304 1868 3 MP
XPP
X0 18 18 0 4304 1886 3 MP
XPP
X18 0 0 18 4304 1886 3 MP
XPP
X0 17 18 0 4304 1904 3 MP
XPP
X18 0 0 17 4304 1904 3 MP
XPP
X0 18 18 0 4304 1921 3 MP
XPP
X18 0 0 18 4304 1921 3 MP
XPP
X0 18 18 0 4304 1939 3 MP
XPP
X18 0 0 18 4304 1939 3 MP
XPP
X0 18 18 0 4304 1957 3 MP
XPP
X18 0 0 18 4304 1957 3 MP
XPP
X0 18 18 0 4304 1975 3 MP
XPP
X18 0 0 18 4304 1975 3 MP
XPP
X0 18 18 0 4304 1993 3 MP
XPP
X18 0 0 18 4304 1993 3 MP
XPP
X0 17 18 0 4304 2011 3 MP
XPP
X18 0 0 17 4304 2011 3 MP
XPP
X0 18 18 0 4304 2028 3 MP
XPP
X18 0 0 18 4304 2028 3 MP
XPP
X0 18 18 0 4304 2046 3 MP
XPP
X18 0 0 18 4304 2046 3 MP
XPP
X0 18 18 0 4304 2064 3 MP
XPP
X18 0 0 18 4304 2064 3 MP
XPP
X0 18 18 0 4304 2082 3 MP
XPP
X18 0 0 18 4304 2082 3 MP
XPP
X0 18 18 0 4304 2100 3 MP
XPP
X18 0 0 18 4304 2100 3 MP
XPP
X0 17 18 0 4304 2118 3 MP
XPP
X18 0 0 17 4304 2118 3 MP
XPP
X0 18 18 0 4304 2135 3 MP
XPP
X18 0 0 18 4304 2135 3 MP
XPP
X0 18 18 0 4304 2153 3 MP
XPP
X18 0 0 18 4304 2153 3 MP
XPP
X0 18 17 0 4322 388 3 MP
XPP
X17 0 0 18 4322 388 3 MP
XPP
X0 18 17 0 4322 406 3 MP
XPP
X17 0 0 18 4322 406 3 MP
XPP
X0 17 17 0 4322 424 3 MP
XPP
X17 0 0 17 4322 424 3 MP
XPP
X0 18 17 0 4322 441 3 MP
XPP
X17 0 0 18 4322 441 3 MP
XPP
X0 18 17 0 4322 459 3 MP
XPP
X17 0 0 18 4322 459 3 MP
XPP
X0 18 17 0 4322 477 3 MP
XPP
X17 0 0 18 4322 477 3 MP
XPP
X0 18 17 0 4322 495 3 MP
XPP
X17 0 0 18 4322 495 3 MP
XPP
X0 18 17 0 4322 513 3 MP
XPP
X17 0 0 18 4322 513 3 MP
XPP
X0 17 17 0 4322 531 3 MP
XPP
X17 0 0 17 4322 531 3 MP
XPP
X0 18 17 0 4322 548 3 MP
XPP
X17 0 0 18 4322 548 3 MP
XPP
X0 18 17 0 4322 566 3 MP
XPP
X17 0 0 18 4322 566 3 MP
XPP
X0 18 17 0 4322 584 3 MP
XPP
X17 0 0 18 4322 584 3 MP
XPP
X0 18 17 0 4322 602 3 MP
XPP
X17 0 0 18 4322 602 3 MP
XPP
X0 18 17 0 4322 620 3 MP
XPP
X17 0 0 18 4322 620 3 MP
XPP
X0 17 17 0 4322 638 3 MP
XPP
X17 0 0 17 4322 638 3 MP
XPP
X0 18 17 0 4322 655 3 MP
XPP
X17 0 0 18 4322 655 3 MP
XPP
X0 18 17 0 4322 673 3 MP
XPP
X17 0 0 18 4322 673 3 MP
XPP
X0 18 17 0 4322 691 3 MP
XPP
X17 0 0 18 4322 691 3 MP
XPP
X0 18 17 0 4322 709 3 MP
XPP
X17 0 0 18 4322 709 3 MP
XPP
X0 18 17 0 4322 727 3 MP
XPP
X17 0 0 18 4322 727 3 MP
XPP
X0 17 17 0 4322 745 3 MP
XPP
X17 0 0 17 4322 745 3 MP
XPP
X0 18 17 0 4322 762 3 MP
XPP
X17 0 0 18 4322 762 3 MP
XPP
X0 18 17 0 4322 780 3 MP
XPP
X17 0 0 18 4322 780 3 MP
XPP
X0 18 17 0 4322 798 3 MP
XPP
X17 0 0 18 4322 798 3 MP
XPP
X0 18 17 0 4322 816 3 MP
XPP
X17 0 0 18 4322 816 3 MP
XPP
X0 18 17 0 4322 834 3 MP
XPP
X17 0 0 18 4322 834 3 MP
XPP
X0 17 17 0 4322 852 3 MP
XPP
X17 0 0 17 4322 852 3 MP
XPP
X0 18 17 0 4322 869 3 MP
XPP
X17 0 0 18 4322 869 3 MP
XPP
X0 18 17 0 4322 887 3 MP
XPP
X17 0 0 18 4322 887 3 MP
XPP
X0 18 17 0 4322 905 3 MP
XPP
X17 0 0 18 4322 905 3 MP
XPP
X0 18 17 0 4322 923 3 MP
XPP
X17 0 0 18 4322 923 3 MP
XPP
X0 18 17 0 4322 941 3 MP
XPP
X17 0 0 18 4322 941 3 MP
XPP
X0 17 17 0 4322 959 3 MP
XPP
X17 0 0 17 4322 959 3 MP
XPP
X0 18 17 0 4322 976 3 MP
XPP
X17 0 0 18 4322 976 3 MP
XPP
X0 18 17 0 4322 994 3 MP
XPP
X17 0 0 18 4322 994 3 MP
XPP
X0 18 17 0 4322 1012 3 MP
XPP
X17 0 0 18 4322 1012 3 MP
XPP
X0 18 17 0 4322 1030 3 MP
XPP
X17 0 0 18 4322 1030 3 MP
XPP
X0 18 17 0 4322 1048 3 MP
XPP
X17 0 0 18 4322 1048 3 MP
XPP
X0 17 17 0 4322 1066 3 MP
XPP
X17 0 0 17 4322 1066 3 MP
XPP
X0.936508 sg
X0 18 17 0 4322 1083 3 MP
XPP
X17 0 0 18 4322 1083 3 MP
XPP
X0.68254 sg
X0 18 17 0 4322 1101 3 MP
XPP
X17 0 0 18 4322 1101 3 MP
XPP
X0.31746 sg
X0 18 17 0 4322 1119 3 MP
XPP
X17 0 0 18 4322 1119 3 MP
XPP
X0.0793651 sg
X0 18 17 0 4322 1137 3 MP
XPP
X17 0 0 18 4322 1137 3 MP
XPP
X0.031746 sg
X0 18 17 0 4322 1155 3 MP
XPP
X17 0 0 18 4322 1155 3 MP
XPP
X0.142857 sg
X0 17 17 0 4322 1173 3 MP
XPP
X17 0 0 17 4322 1173 3 MP
XPP
X0.365079 sg
X0 18 17 0 4322 1190 3 MP
XPP
X17 0 0 18 4322 1190 3 MP
XPP
X0.634921 sg
X0 18 17 0 4322 1208 3 MP
XPP
X17 0 0 18 4322 1208 3 MP
XPP
X0.857143 sg
X0 18 17 0 4322 1226 3 MP
XPP
X17 0 0 18 4322 1226 3 MP
XPP
X0.968254 sg
X0 18 17 0 4322 1244 3 MP
XPP
X17 0 0 18 4322 1244 3 MP
XPP
X1 sg
X0 17 17 0 4322 1262 3 MP
XPP
X17 0 0 17 4322 1262 3 MP
XPP
X0 18 17 0 4322 1279 3 MP
XPP
X17 0 0 18 4322 1279 3 MP
XPP
X0 18 17 0 4322 1297 3 MP
XPP
X17 0 0 18 4322 1297 3 MP
XPP
X0 18 17 0 4322 1315 3 MP
XPP
X17 0 0 18 4322 1315 3 MP
XPP
X0 18 17 0 4322 1333 3 MP
XPP
X17 0 0 18 4322 1333 3 MP
XPP
X0 18 17 0 4322 1351 3 MP
XPP
X17 0 0 18 4322 1351 3 MP
XPP
X0 17 17 0 4322 1369 3 MP
XPP
X17 0 0 17 4322 1369 3 MP
XPP
X0 18 17 0 4322 1386 3 MP
XPP
X17 0 0 18 4322 1386 3 MP
XPP
X0 18 17 0 4322 1404 3 MP
XPP
X17 0 0 18 4322 1404 3 MP
XPP
X0 18 17 0 4322 1422 3 MP
XPP
X17 0 0 18 4322 1422 3 MP
XPP
X0 18 17 0 4322 1440 3 MP
XPP
X17 0 0 18 4322 1440 3 MP
XPP
X0 18 17 0 4322 1458 3 MP
XPP
X17 0 0 18 4322 1458 3 MP
XPP
X0 17 17 0 4322 1476 3 MP
XPP
X17 0 0 17 4322 1476 3 MP
XPP
X0 18 17 0 4322 1493 3 MP
XPP
X17 0 0 18 4322 1493 3 MP
XPP
X0 18 17 0 4322 1511 3 MP
XPP
X17 0 0 18 4322 1511 3 MP
XPP
X0 18 17 0 4322 1529 3 MP
XPP
X17 0 0 18 4322 1529 3 MP
XPP
X0 18 17 0 4322 1547 3 MP
XPP
X17 0 0 18 4322 1547 3 MP
XPP
X0 18 17 0 4322 1565 3 MP
XPP
X17 0 0 18 4322 1565 3 MP
XPP
X0 17 17 0 4322 1583 3 MP
XPP
X17 0 0 17 4322 1583 3 MP
XPP
X0 18 17 0 4322 1600 3 MP
XPP
X17 0 0 18 4322 1600 3 MP
XPP
X0 18 17 0 4322 1618 3 MP
XPP
X17 0 0 18 4322 1618 3 MP
XPP
X0 18 17 0 4322 1636 3 MP
XPP
X17 0 0 18 4322 1636 3 MP
XPP
X0 18 17 0 4322 1654 3 MP
XPP
X17 0 0 18 4322 1654 3 MP
XPP
X0 18 17 0 4322 1672 3 MP
XPP
X17 0 0 18 4322 1672 3 MP
XPP
X0 17 17 0 4322 1690 3 MP
XPP
X17 0 0 17 4322 1690 3 MP
XPP
X0 18 17 0 4322 1707 3 MP
XPP
X17 0 0 18 4322 1707 3 MP
XPP
X0 18 17 0 4322 1725 3 MP
XPP
X17 0 0 18 4322 1725 3 MP
XPP
X0 18 17 0 4322 1743 3 MP
XPP
X17 0 0 18 4322 1743 3 MP
XPP
X0 18 17 0 4322 1761 3 MP
XPP
X17 0 0 18 4322 1761 3 MP
XPP
X0 18 17 0 4322 1779 3 MP
XPP
X17 0 0 18 4322 1779 3 MP
XPP
X0 17 17 0 4322 1797 3 MP
XPP
X17 0 0 17 4322 1797 3 MP
XPP
X0 18 17 0 4322 1814 3 MP
XPP
X17 0 0 18 4322 1814 3 MP
XPP
X0 18 17 0 4322 1832 3 MP
XPP
X17 0 0 18 4322 1832 3 MP
XPP
X0 18 17 0 4322 1850 3 MP
XPP
X17 0 0 18 4322 1850 3 MP
XPP
X0 18 17 0 4322 1868 3 MP
XPP
X17 0 0 18 4322 1868 3 MP
XPP
X0 18 17 0 4322 1886 3 MP
XPP
X17 0 0 18 4322 1886 3 MP
XPP
X0 17 17 0 4322 1904 3 MP
XPP
X17 0 0 17 4322 1904 3 MP
XPP
X0 18 17 0 4322 1921 3 MP
XPP
X17 0 0 18 4322 1921 3 MP
XPP
X0 18 17 0 4322 1939 3 MP
XPP
X17 0 0 18 4322 1939 3 MP
XPP
X0 18 17 0 4322 1957 3 MP
XPP
X17 0 0 18 4322 1957 3 MP
XPP
X0 18 17 0 4322 1975 3 MP
XPP
X17 0 0 18 4322 1975 3 MP
XPP
X0 18 17 0 4322 1993 3 MP
XPP
X17 0 0 18 4322 1993 3 MP
XPP
X0 17 17 0 4322 2011 3 MP
XPP
X17 0 0 17 4322 2011 3 MP
XPP
X0 18 17 0 4322 2028 3 MP
XPP
X17 0 0 18 4322 2028 3 MP
XPP
X0 18 17 0 4322 2046 3 MP
XPP
X17 0 0 18 4322 2046 3 MP
XPP
X0 18 17 0 4322 2064 3 MP
XPP
X17 0 0 18 4322 2064 3 MP
XPP
X0 18 17 0 4322 2082 3 MP
XPP
X17 0 0 18 4322 2082 3 MP
XPP
X0 18 17 0 4322 2100 3 MP
XPP
X17 0 0 18 4322 2100 3 MP
XPP
X0 17 17 0 4322 2118 3 MP
XPP
X17 0 0 17 4322 2118 3 MP
XPP
X0 18 17 0 4322 2135 3 MP
XPP
X17 0 0 18 4322 2135 3 MP
XPP
X0 18 17 0 4322 2153 3 MP
XPP
X17 0 0 18 4322 2153 3 MP
XPP
X0 18 18 0 4339 388 3 MP
XPP
X18 0 0 18 4339 388 3 MP
XPP
X0 18 18 0 4339 406 3 MP
XPP
X18 0 0 18 4339 406 3 MP
XPP
X0 17 18 0 4339 424 3 MP
XPP
X18 0 0 17 4339 424 3 MP
XPP
X0 18 18 0 4339 441 3 MP
XPP
X18 0 0 18 4339 441 3 MP
XPP
X0 18 18 0 4339 459 3 MP
XPP
X18 0 0 18 4339 459 3 MP
XPP
X0 18 18 0 4339 477 3 MP
XPP
X18 0 0 18 4339 477 3 MP
XPP
X0 18 18 0 4339 495 3 MP
XPP
X18 0 0 18 4339 495 3 MP
XPP
X0 18 18 0 4339 513 3 MP
XPP
X18 0 0 18 4339 513 3 MP
XPP
X0 17 18 0 4339 531 3 MP
XPP
X18 0 0 17 4339 531 3 MP
XPP
X0 18 18 0 4339 548 3 MP
XPP
X18 0 0 18 4339 548 3 MP
XPP
X0 18 18 0 4339 566 3 MP
XPP
X18 0 0 18 4339 566 3 MP
XPP
X0 18 18 0 4339 584 3 MP
XPP
X18 0 0 18 4339 584 3 MP
XPP
X0 18 18 0 4339 602 3 MP
XPP
X18 0 0 18 4339 602 3 MP
XPP
X0 18 18 0 4339 620 3 MP
XPP
X18 0 0 18 4339 620 3 MP
XPP
X0 17 18 0 4339 638 3 MP
XPP
X18 0 0 17 4339 638 3 MP
XPP
X0 18 18 0 4339 655 3 MP
XPP
X18 0 0 18 4339 655 3 MP
XPP
X0 18 18 0 4339 673 3 MP
XPP
X18 0 0 18 4339 673 3 MP
XPP
X0 18 18 0 4339 691 3 MP
XPP
X18 0 0 18 4339 691 3 MP
XPP
X0 18 18 0 4339 709 3 MP
XPP
X18 0 0 18 4339 709 3 MP
XPP
X0 18 18 0 4339 727 3 MP
XPP
X18 0 0 18 4339 727 3 MP
XPP
X0 17 18 0 4339 745 3 MP
XPP
X18 0 0 17 4339 745 3 MP
XPP
X0 18 18 0 4339 762 3 MP
XPP
X18 0 0 18 4339 762 3 MP
XPP
X0 18 18 0 4339 780 3 MP
XPP
X18 0 0 18 4339 780 3 MP
XPP
X0 18 18 0 4339 798 3 MP
XPP
X18 0 0 18 4339 798 3 MP
XPP
X0 18 18 0 4339 816 3 MP
XPP
X18 0 0 18 4339 816 3 MP
XPP
X0 18 18 0 4339 834 3 MP
XPP
X18 0 0 18 4339 834 3 MP
XPP
X0 17 18 0 4339 852 3 MP
XPP
X18 0 0 17 4339 852 3 MP
XPP
X0 18 18 0 4339 869 3 MP
XPP
X18 0 0 18 4339 869 3 MP
XPP
X0 18 18 0 4339 887 3 MP
XPP
X18 0 0 18 4339 887 3 MP
XPP
X0 18 18 0 4339 905 3 MP
XPP
X18 0 0 18 4339 905 3 MP
XPP
X0 18 18 0 4339 923 3 MP
XPP
X18 0 0 18 4339 923 3 MP
XPP
X0 18 18 0 4339 941 3 MP
XPP
X18 0 0 18 4339 941 3 MP
XPP
X0 17 18 0 4339 959 3 MP
XPP
X18 0 0 17 4339 959 3 MP
XPP
X0 18 18 0 4339 976 3 MP
XPP
X18 0 0 18 4339 976 3 MP
XPP
X0 18 18 0 4339 994 3 MP
XPP
X18 0 0 18 4339 994 3 MP
XPP
X0 18 18 0 4339 1012 3 MP
XPP
X18 0 0 18 4339 1012 3 MP
XPP
X0 18 18 0 4339 1030 3 MP
XPP
X18 0 0 18 4339 1030 3 MP
XPP
X0 18 18 0 4339 1048 3 MP
XPP
X18 0 0 18 4339 1048 3 MP
XPP
X0 17 18 0 4339 1066 3 MP
XPP
X18 0 0 17 4339 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4339 1083 3 MP
XPP
X18 0 0 18 4339 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4339 1101 3 MP
XPP
X18 0 0 18 4339 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4339 1119 3 MP
XPP
X18 0 0 18 4339 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4339 1137 3 MP
XPP
X18 0 0 18 4339 1137 3 MP
XPP
X0 sg
X0 18 18 0 4339 1155 3 MP
XPP
X18 0 0 18 4339 1155 3 MP
XPP
X0.031746 sg
X0 17 18 0 4339 1173 3 MP
XPP
X18 0 0 17 4339 1173 3 MP
XPP
X0.142857 sg
X0 18 18 0 4339 1190 3 MP
XPP
X18 0 0 18 4339 1190 3 MP
XPP
X0.365079 sg
X0 18 18 0 4339 1208 3 MP
XPP
X18 0 0 18 4339 1208 3 MP
XPP
X0.634921 sg
X0 18 18 0 4339 1226 3 MP
XPP
X18 0 0 18 4339 1226 3 MP
XPP
X0.857143 sg
X0 18 18 0 4339 1244 3 MP
XPP
X18 0 0 18 4339 1244 3 MP
XPP
X0.968254 sg
X0 17 18 0 4339 1262 3 MP
XPP
X18 0 0 17 4339 1262 3 MP
XPP
X1 sg
X0 18 18 0 4339 1279 3 MP
XPP
X18 0 0 18 4339 1279 3 MP
XPP
X0 18 18 0 4339 1297 3 MP
XPP
X18 0 0 18 4339 1297 3 MP
XPP
X0 18 18 0 4339 1315 3 MP
XPP
X18 0 0 18 4339 1315 3 MP
XPP
X0 18 18 0 4339 1333 3 MP
XPP
X18 0 0 18 4339 1333 3 MP
XPP
X0 18 18 0 4339 1351 3 MP
XPP
X18 0 0 18 4339 1351 3 MP
XPP
X0 17 18 0 4339 1369 3 MP
XPP
X18 0 0 17 4339 1369 3 MP
XPP
X0 18 18 0 4339 1386 3 MP
XPP
X18 0 0 18 4339 1386 3 MP
XPP
X0 18 18 0 4339 1404 3 MP
XPP
X18 0 0 18 4339 1404 3 MP
XPP
X0 18 18 0 4339 1422 3 MP
XPP
X18 0 0 18 4339 1422 3 MP
XPP
X0 18 18 0 4339 1440 3 MP
XPP
X18 0 0 18 4339 1440 3 MP
XPP
X0 18 18 0 4339 1458 3 MP
XPP
X18 0 0 18 4339 1458 3 MP
XPP
X0 17 18 0 4339 1476 3 MP
XPP
X18 0 0 17 4339 1476 3 MP
XPP
X0 18 18 0 4339 1493 3 MP
XPP
X18 0 0 18 4339 1493 3 MP
XPP
X0 18 18 0 4339 1511 3 MP
XPP
X18 0 0 18 4339 1511 3 MP
XPP
X0 18 18 0 4339 1529 3 MP
XPP
X18 0 0 18 4339 1529 3 MP
XPP
X0 18 18 0 4339 1547 3 MP
XPP
X18 0 0 18 4339 1547 3 MP
XPP
X0 18 18 0 4339 1565 3 MP
XPP
X18 0 0 18 4339 1565 3 MP
XPP
X0 17 18 0 4339 1583 3 MP
XPP
X18 0 0 17 4339 1583 3 MP
XPP
X0 18 18 0 4339 1600 3 MP
XPP
X18 0 0 18 4339 1600 3 MP
XPP
X0 18 18 0 4339 1618 3 MP
XPP
X18 0 0 18 4339 1618 3 MP
XPP
X0 18 18 0 4339 1636 3 MP
XPP
X18 0 0 18 4339 1636 3 MP
XPP
X0 18 18 0 4339 1654 3 MP
XPP
X18 0 0 18 4339 1654 3 MP
XPP
X0 18 18 0 4339 1672 3 MP
XPP
X18 0 0 18 4339 1672 3 MP
XPP
X0 17 18 0 4339 1690 3 MP
XPP
X18 0 0 17 4339 1690 3 MP
XPP
X0 18 18 0 4339 1707 3 MP
XPP
X18 0 0 18 4339 1707 3 MP
XPP
X0 18 18 0 4339 1725 3 MP
XPP
X18 0 0 18 4339 1725 3 MP
XPP
X0 18 18 0 4339 1743 3 MP
XPP
X18 0 0 18 4339 1743 3 MP
XPP
X0 18 18 0 4339 1761 3 MP
XPP
X18 0 0 18 4339 1761 3 MP
XPP
X0 18 18 0 4339 1779 3 MP
XPP
X18 0 0 18 4339 1779 3 MP
XPP
X0 17 18 0 4339 1797 3 MP
XPP
X18 0 0 17 4339 1797 3 MP
XPP
X0 18 18 0 4339 1814 3 MP
XPP
X18 0 0 18 4339 1814 3 MP
XPP
X0 18 18 0 4339 1832 3 MP
XPP
X18 0 0 18 4339 1832 3 MP
XPP
X0 18 18 0 4339 1850 3 MP
XPP
X18 0 0 18 4339 1850 3 MP
XPP
X0 18 18 0 4339 1868 3 MP
XPP
X18 0 0 18 4339 1868 3 MP
XPP
X0 18 18 0 4339 1886 3 MP
XPP
X18 0 0 18 4339 1886 3 MP
XPP
X0 17 18 0 4339 1904 3 MP
XPP
X18 0 0 17 4339 1904 3 MP
XPP
X0 18 18 0 4339 1921 3 MP
XPP
X18 0 0 18 4339 1921 3 MP
XPP
X0 18 18 0 4339 1939 3 MP
XPP
X18 0 0 18 4339 1939 3 MP
XPP
X0 18 18 0 4339 1957 3 MP
XPP
X18 0 0 18 4339 1957 3 MP
XPP
X0 18 18 0 4339 1975 3 MP
XPP
X18 0 0 18 4339 1975 3 MP
XPP
X0 18 18 0 4339 1993 3 MP
XPP
X18 0 0 18 4339 1993 3 MP
XPP
X0 17 18 0 4339 2011 3 MP
XPP
X18 0 0 17 4339 2011 3 MP
XPP
X0 18 18 0 4339 2028 3 MP
XPP
X18 0 0 18 4339 2028 3 MP
XPP
X0 18 18 0 4339 2046 3 MP
XPP
X18 0 0 18 4339 2046 3 MP
XPP
X0 18 18 0 4339 2064 3 MP
XPP
X18 0 0 18 4339 2064 3 MP
XPP
X0 18 18 0 4339 2082 3 MP
XPP
X18 0 0 18 4339 2082 3 MP
XPP
X0 18 18 0 4339 2100 3 MP
XPP
X18 0 0 18 4339 2100 3 MP
XPP
X0 17 18 0 4339 2118 3 MP
XPP
X18 0 0 17 4339 2118 3 MP
XPP
X0 18 18 0 4339 2135 3 MP
XPP
X18 0 0 18 4339 2135 3 MP
XPP
X0 18 18 0 4339 2153 3 MP
XPP
X18 0 0 18 4339 2153 3 MP
XPP
X0 18 18 0 4357 388 3 MP
XPP
X18 0 0 18 4357 388 3 MP
XPP
X0 18 18 0 4357 406 3 MP
XPP
X18 0 0 18 4357 406 3 MP
XPP
X0 17 18 0 4357 424 3 MP
XPP
X18 0 0 17 4357 424 3 MP
XPP
X0 18 18 0 4357 441 3 MP
XPP
X18 0 0 18 4357 441 3 MP
XPP
X0 18 18 0 4357 459 3 MP
XPP
X18 0 0 18 4357 459 3 MP
XPP
X0 18 18 0 4357 477 3 MP
XPP
X18 0 0 18 4357 477 3 MP
XPP
X0 18 18 0 4357 495 3 MP
XPP
X18 0 0 18 4357 495 3 MP
XPP
X0 18 18 0 4357 513 3 MP
XPP
X18 0 0 18 4357 513 3 MP
XPP
X0 17 18 0 4357 531 3 MP
XPP
X18 0 0 17 4357 531 3 MP
XPP
X0 18 18 0 4357 548 3 MP
XPP
X18 0 0 18 4357 548 3 MP
XPP
X0 18 18 0 4357 566 3 MP
XPP
X18 0 0 18 4357 566 3 MP
XPP
X0 18 18 0 4357 584 3 MP
XPP
X18 0 0 18 4357 584 3 MP
XPP
X0 18 18 0 4357 602 3 MP
XPP
X18 0 0 18 4357 602 3 MP
XPP
X0 18 18 0 4357 620 3 MP
XPP
X18 0 0 18 4357 620 3 MP
XPP
X0 17 18 0 4357 638 3 MP
XPP
X18 0 0 17 4357 638 3 MP
XPP
X0 18 18 0 4357 655 3 MP
XPP
X18 0 0 18 4357 655 3 MP
XPP
X0 18 18 0 4357 673 3 MP
XPP
X18 0 0 18 4357 673 3 MP
XPP
X0 18 18 0 4357 691 3 MP
XPP
X18 0 0 18 4357 691 3 MP
XPP
X0 18 18 0 4357 709 3 MP
XPP
X18 0 0 18 4357 709 3 MP
XPP
X0 18 18 0 4357 727 3 MP
XPP
X18 0 0 18 4357 727 3 MP
XPP
X0 17 18 0 4357 745 3 MP
XPP
X18 0 0 17 4357 745 3 MP
XPP
X0 18 18 0 4357 762 3 MP
XPP
X18 0 0 18 4357 762 3 MP
XPP
X0 18 18 0 4357 780 3 MP
XPP
X18 0 0 18 4357 780 3 MP
XPP
X0 18 18 0 4357 798 3 MP
XPP
X18 0 0 18 4357 798 3 MP
XPP
X0 18 18 0 4357 816 3 MP
XPP
X18 0 0 18 4357 816 3 MP
XPP
X0 18 18 0 4357 834 3 MP
XPP
X18 0 0 18 4357 834 3 MP
XPP
X0 17 18 0 4357 852 3 MP
XPP
X18 0 0 17 4357 852 3 MP
XPP
X0 18 18 0 4357 869 3 MP
XPP
X18 0 0 18 4357 869 3 MP
XPP
X0 18 18 0 4357 887 3 MP
XPP
X18 0 0 18 4357 887 3 MP
XPP
X0 18 18 0 4357 905 3 MP
XPP
X18 0 0 18 4357 905 3 MP
XPP
X0 18 18 0 4357 923 3 MP
XPP
X18 0 0 18 4357 923 3 MP
XPP
X0 18 18 0 4357 941 3 MP
XPP
X18 0 0 18 4357 941 3 MP
XPP
X0 17 18 0 4357 959 3 MP
XPP
X18 0 0 17 4357 959 3 MP
XPP
X0 18 18 0 4357 976 3 MP
XPP
X18 0 0 18 4357 976 3 MP
XPP
X0 18 18 0 4357 994 3 MP
XPP
X18 0 0 18 4357 994 3 MP
XPP
X0 18 18 0 4357 1012 3 MP
XPP
X18 0 0 18 4357 1012 3 MP
XPP
X0 18 18 0 4357 1030 3 MP
XPP
X18 0 0 18 4357 1030 3 MP
XPP
X0 18 18 0 4357 1048 3 MP
XPP
X18 0 0 18 4357 1048 3 MP
XPP
X0 17 18 0 4357 1066 3 MP
XPP
X18 0 0 17 4357 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4357 1083 3 MP
XPP
X18 0 0 18 4357 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4357 1101 3 MP
XPP
X18 0 0 18 4357 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4357 1119 3 MP
XPP
X18 0 0 18 4357 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4357 1137 3 MP
XPP
X18 0 0 18 4357 1137 3 MP
XPP
X0 sg
X0 18 18 0 4357 1155 3 MP
XPP
X18 0 0 18 4357 1155 3 MP
XPP
X0 17 18 0 4357 1173 3 MP
XPP
X18 0 0 17 4357 1173 3 MP
XPP
X0.031746 sg
X0 18 18 0 4357 1190 3 MP
XPP
X18 0 0 18 4357 1190 3 MP
XPP
X0.142857 sg
X0 18 18 0 4357 1208 3 MP
XPP
X18 0 0 18 4357 1208 3 MP
XPP
X0.365079 sg
X0 18 18 0 4357 1226 3 MP
XPP
X18 0 0 18 4357 1226 3 MP
XPP
X0.634921 sg
X0 18 18 0 4357 1244 3 MP
XPP
X18 0 0 18 4357 1244 3 MP
XPP
X0.857143 sg
X0 17 18 0 4357 1262 3 MP
XPP
X18 0 0 17 4357 1262 3 MP
XPP
X0.968254 sg
X0 18 18 0 4357 1279 3 MP
XPP
X18 0 0 18 4357 1279 3 MP
XPP
X1 sg
X0 18 18 0 4357 1297 3 MP
XPP
X18 0 0 18 4357 1297 3 MP
XPP
X0 18 18 0 4357 1315 3 MP
XPP
X18 0 0 18 4357 1315 3 MP
XPP
X0 18 18 0 4357 1333 3 MP
XPP
X18 0 0 18 4357 1333 3 MP
XPP
X0 18 18 0 4357 1351 3 MP
XPP
X18 0 0 18 4357 1351 3 MP
XPP
X0 17 18 0 4357 1369 3 MP
XPP
X18 0 0 17 4357 1369 3 MP
XPP
X0 18 18 0 4357 1386 3 MP
XPP
X18 0 0 18 4357 1386 3 MP
XPP
X0 18 18 0 4357 1404 3 MP
XPP
X18 0 0 18 4357 1404 3 MP
XPP
X0 18 18 0 4357 1422 3 MP
XPP
X18 0 0 18 4357 1422 3 MP
XPP
X0 18 18 0 4357 1440 3 MP
XPP
X18 0 0 18 4357 1440 3 MP
XPP
X0 18 18 0 4357 1458 3 MP
XPP
X18 0 0 18 4357 1458 3 MP
XPP
X0 17 18 0 4357 1476 3 MP
XPP
X18 0 0 17 4357 1476 3 MP
XPP
X0 18 18 0 4357 1493 3 MP
XPP
X18 0 0 18 4357 1493 3 MP
XPP
X0 18 18 0 4357 1511 3 MP
XPP
X18 0 0 18 4357 1511 3 MP
XPP
X0 18 18 0 4357 1529 3 MP
XPP
X18 0 0 18 4357 1529 3 MP
XPP
X0 18 18 0 4357 1547 3 MP
XPP
X18 0 0 18 4357 1547 3 MP
XPP
X0 18 18 0 4357 1565 3 MP
XPP
X18 0 0 18 4357 1565 3 MP
XPP
X0 17 18 0 4357 1583 3 MP
XPP
X18 0 0 17 4357 1583 3 MP
XPP
X0 18 18 0 4357 1600 3 MP
XPP
X18 0 0 18 4357 1600 3 MP
XPP
X0 18 18 0 4357 1618 3 MP
XPP
X18 0 0 18 4357 1618 3 MP
XPP
X0 18 18 0 4357 1636 3 MP
XPP
X18 0 0 18 4357 1636 3 MP
XPP
X0 18 18 0 4357 1654 3 MP
XPP
X18 0 0 18 4357 1654 3 MP
XPP
X0 18 18 0 4357 1672 3 MP
XPP
X18 0 0 18 4357 1672 3 MP
XPP
X0 17 18 0 4357 1690 3 MP
XPP
X18 0 0 17 4357 1690 3 MP
XPP
X0 18 18 0 4357 1707 3 MP
XPP
X18 0 0 18 4357 1707 3 MP
XPP
X0 18 18 0 4357 1725 3 MP
XPP
X18 0 0 18 4357 1725 3 MP
XPP
X0 18 18 0 4357 1743 3 MP
XPP
X18 0 0 18 4357 1743 3 MP
XPP
X0 18 18 0 4357 1761 3 MP
XPP
X18 0 0 18 4357 1761 3 MP
XPP
X0 18 18 0 4357 1779 3 MP
XPP
X18 0 0 18 4357 1779 3 MP
XPP
X0 17 18 0 4357 1797 3 MP
XPP
X18 0 0 17 4357 1797 3 MP
XPP
X0 18 18 0 4357 1814 3 MP
XPP
X18 0 0 18 4357 1814 3 MP
XPP
X0 18 18 0 4357 1832 3 MP
XPP
X18 0 0 18 4357 1832 3 MP
XPP
X0 18 18 0 4357 1850 3 MP
XPP
X18 0 0 18 4357 1850 3 MP
XPP
X0 18 18 0 4357 1868 3 MP
XPP
X18 0 0 18 4357 1868 3 MP
XPP
X0 18 18 0 4357 1886 3 MP
XPP
X18 0 0 18 4357 1886 3 MP
XPP
X0 17 18 0 4357 1904 3 MP
XPP
X18 0 0 17 4357 1904 3 MP
XPP
X0 18 18 0 4357 1921 3 MP
XPP
X18 0 0 18 4357 1921 3 MP
XPP
X0 18 18 0 4357 1939 3 MP
XPP
X18 0 0 18 4357 1939 3 MP
XPP
X0 18 18 0 4357 1957 3 MP
XPP
X18 0 0 18 4357 1957 3 MP
XPP
X0 18 18 0 4357 1975 3 MP
XPP
X18 0 0 18 4357 1975 3 MP
XPP
X0 18 18 0 4357 1993 3 MP
XPP
X18 0 0 18 4357 1993 3 MP
XPP
X0 17 18 0 4357 2011 3 MP
XPP
X18 0 0 17 4357 2011 3 MP
XPP
X0 18 18 0 4357 2028 3 MP
XPP
X18 0 0 18 4357 2028 3 MP
XPP
X0 18 18 0 4357 2046 3 MP
XPP
X18 0 0 18 4357 2046 3 MP
XPP
X0 18 18 0 4357 2064 3 MP
XPP
X18 0 0 18 4357 2064 3 MP
XPP
X0 18 18 0 4357 2082 3 MP
XPP
X18 0 0 18 4357 2082 3 MP
XPP
X0 18 18 0 4357 2100 3 MP
XPP
X18 0 0 18 4357 2100 3 MP
XPP
X0 17 18 0 4357 2118 3 MP
XPP
X18 0 0 17 4357 2118 3 MP
XPP
X0 18 18 0 4357 2135 3 MP
XPP
X18 0 0 18 4357 2135 3 MP
XPP
X0 18 18 0 4357 2153 3 MP
XPP
X18 0 0 18 4357 2153 3 MP
XPP
X0 18 18 0 4375 388 3 MP
XPP
X18 0 0 18 4375 388 3 MP
XPP
X0 18 18 0 4375 406 3 MP
XPP
X18 0 0 18 4375 406 3 MP
XPP
X0 17 18 0 4375 424 3 MP
XPP
X18 0 0 17 4375 424 3 MP
XPP
X0 18 18 0 4375 441 3 MP
XPP
X18 0 0 18 4375 441 3 MP
XPP
X0 18 18 0 4375 459 3 MP
XPP
X18 0 0 18 4375 459 3 MP
XPP
X0 18 18 0 4375 477 3 MP
XPP
X18 0 0 18 4375 477 3 MP
XPP
X0 18 18 0 4375 495 3 MP
XPP
X18 0 0 18 4375 495 3 MP
XPP
X0 18 18 0 4375 513 3 MP
XPP
X18 0 0 18 4375 513 3 MP
XPP
X0 17 18 0 4375 531 3 MP
XPP
X18 0 0 17 4375 531 3 MP
XPP
X0 18 18 0 4375 548 3 MP
XPP
X18 0 0 18 4375 548 3 MP
XPP
X0 18 18 0 4375 566 3 MP
XPP
X18 0 0 18 4375 566 3 MP
XPP
X0 18 18 0 4375 584 3 MP
XPP
X18 0 0 18 4375 584 3 MP
XPP
X0 18 18 0 4375 602 3 MP
XPP
X18 0 0 18 4375 602 3 MP
XPP
X0 18 18 0 4375 620 3 MP
XPP
X18 0 0 18 4375 620 3 MP
XPP
X0 17 18 0 4375 638 3 MP
XPP
X18 0 0 17 4375 638 3 MP
XPP
X0 18 18 0 4375 655 3 MP
XPP
X18 0 0 18 4375 655 3 MP
XPP
X0 18 18 0 4375 673 3 MP
XPP
X18 0 0 18 4375 673 3 MP
XPP
X0 18 18 0 4375 691 3 MP
XPP
X18 0 0 18 4375 691 3 MP
XPP
X0 18 18 0 4375 709 3 MP
XPP
X18 0 0 18 4375 709 3 MP
XPP
X0 18 18 0 4375 727 3 MP
XPP
X18 0 0 18 4375 727 3 MP
XPP
X0 17 18 0 4375 745 3 MP
XPP
X18 0 0 17 4375 745 3 MP
XPP
X0 18 18 0 4375 762 3 MP
XPP
X18 0 0 18 4375 762 3 MP
XPP
X0 18 18 0 4375 780 3 MP
XPP
X18 0 0 18 4375 780 3 MP
XPP
X0 18 18 0 4375 798 3 MP
XPP
X18 0 0 18 4375 798 3 MP
XPP
X0 18 18 0 4375 816 3 MP
XPP
X18 0 0 18 4375 816 3 MP
XPP
X0 18 18 0 4375 834 3 MP
XPP
X18 0 0 18 4375 834 3 MP
XPP
X0 17 18 0 4375 852 3 MP
XPP
X18 0 0 17 4375 852 3 MP
XPP
X0 18 18 0 4375 869 3 MP
XPP
X18 0 0 18 4375 869 3 MP
XPP
X0 18 18 0 4375 887 3 MP
XPP
X18 0 0 18 4375 887 3 MP
XPP
X0 18 18 0 4375 905 3 MP
XPP
X18 0 0 18 4375 905 3 MP
XPP
X0 18 18 0 4375 923 3 MP
XPP
X18 0 0 18 4375 923 3 MP
XPP
X0 18 18 0 4375 941 3 MP
XPP
X18 0 0 18 4375 941 3 MP
XPP
X0 17 18 0 4375 959 3 MP
XPP
X18 0 0 17 4375 959 3 MP
XPP
X0 18 18 0 4375 976 3 MP
XPP
X18 0 0 18 4375 976 3 MP
XPP
X0 18 18 0 4375 994 3 MP
XPP
X18 0 0 18 4375 994 3 MP
XPP
X0 18 18 0 4375 1012 3 MP
XPP
X18 0 0 18 4375 1012 3 MP
XPP
X0 18 18 0 4375 1030 3 MP
XPP
X18 0 0 18 4375 1030 3 MP
XPP
X0 18 18 0 4375 1048 3 MP
XPP
X18 0 0 18 4375 1048 3 MP
XPP
X0 17 18 0 4375 1066 3 MP
XPP
X18 0 0 17 4375 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4375 1083 3 MP
XPP
X18 0 0 18 4375 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4375 1101 3 MP
XPP
X18 0 0 18 4375 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4375 1119 3 MP
XPP
X18 0 0 18 4375 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4375 1137 3 MP
XPP
X18 0 0 18 4375 1137 3 MP
XPP
X0 sg
X0 18 18 0 4375 1155 3 MP
XPP
X18 0 0 18 4375 1155 3 MP
XPP
X0 17 18 0 4375 1173 3 MP
XPP
X18 0 0 17 4375 1173 3 MP
XPP
X0 18 18 0 4375 1190 3 MP
XPP
X18 0 0 18 4375 1190 3 MP
XPP
X0.031746 sg
X0 18 18 0 4375 1208 3 MP
XPP
X18 0 0 18 4375 1208 3 MP
XPP
X0.142857 sg
X0 18 18 0 4375 1226 3 MP
XPP
X18 0 0 18 4375 1226 3 MP
XPP
X0.365079 sg
X0 18 18 0 4375 1244 3 MP
XPP
X18 0 0 18 4375 1244 3 MP
XPP
X0.634921 sg
X0 17 18 0 4375 1262 3 MP
XPP
X18 0 0 17 4375 1262 3 MP
XPP
X0.857143 sg
X0 18 18 0 4375 1279 3 MP
XPP
X18 0 0 18 4375 1279 3 MP
XPP
X0.968254 sg
X0 18 18 0 4375 1297 3 MP
XPP
X18 0 0 18 4375 1297 3 MP
XPP
X1 sg
X0 18 18 0 4375 1315 3 MP
XPP
X18 0 0 18 4375 1315 3 MP
XPP
X0 18 18 0 4375 1333 3 MP
XPP
X18 0 0 18 4375 1333 3 MP
XPP
X0 18 18 0 4375 1351 3 MP
XPP
X18 0 0 18 4375 1351 3 MP
XPP
X0 17 18 0 4375 1369 3 MP
XPP
X18 0 0 17 4375 1369 3 MP
XPP
X0 18 18 0 4375 1386 3 MP
XPP
X18 0 0 18 4375 1386 3 MP
XPP
X0 18 18 0 4375 1404 3 MP
XPP
X18 0 0 18 4375 1404 3 MP
XPP
X0 18 18 0 4375 1422 3 MP
XPP
X18 0 0 18 4375 1422 3 MP
XPP
X0 18 18 0 4375 1440 3 MP
XPP
X18 0 0 18 4375 1440 3 MP
XPP
X0 18 18 0 4375 1458 3 MP
XPP
X18 0 0 18 4375 1458 3 MP
XPP
X0 17 18 0 4375 1476 3 MP
XPP
X18 0 0 17 4375 1476 3 MP
XPP
X0 18 18 0 4375 1493 3 MP
XPP
X18 0 0 18 4375 1493 3 MP
XPP
X0 18 18 0 4375 1511 3 MP
XPP
X18 0 0 18 4375 1511 3 MP
XPP
X0 18 18 0 4375 1529 3 MP
XPP
X18 0 0 18 4375 1529 3 MP
XPP
X0 18 18 0 4375 1547 3 MP
XPP
X18 0 0 18 4375 1547 3 MP
XPP
X0 18 18 0 4375 1565 3 MP
XPP
X18 0 0 18 4375 1565 3 MP
XPP
X0 17 18 0 4375 1583 3 MP
XPP
X18 0 0 17 4375 1583 3 MP
XPP
X0 18 18 0 4375 1600 3 MP
XPP
X18 0 0 18 4375 1600 3 MP
XPP
X0 18 18 0 4375 1618 3 MP
XPP
X18 0 0 18 4375 1618 3 MP
XPP
X0 18 18 0 4375 1636 3 MP
XPP
X18 0 0 18 4375 1636 3 MP
XPP
X0 18 18 0 4375 1654 3 MP
XPP
X18 0 0 18 4375 1654 3 MP
XPP
X0 18 18 0 4375 1672 3 MP
XPP
X18 0 0 18 4375 1672 3 MP
XPP
X0 17 18 0 4375 1690 3 MP
XPP
X18 0 0 17 4375 1690 3 MP
XPP
X0 18 18 0 4375 1707 3 MP
XPP
X18 0 0 18 4375 1707 3 MP
XPP
X0 18 18 0 4375 1725 3 MP
XPP
X18 0 0 18 4375 1725 3 MP
XPP
X0 18 18 0 4375 1743 3 MP
XPP
X18 0 0 18 4375 1743 3 MP
XPP
X0 18 18 0 4375 1761 3 MP
XPP
X18 0 0 18 4375 1761 3 MP
XPP
X0 18 18 0 4375 1779 3 MP
XPP
X18 0 0 18 4375 1779 3 MP
XPP
X0 17 18 0 4375 1797 3 MP
XPP
X18 0 0 17 4375 1797 3 MP
XPP
X0 18 18 0 4375 1814 3 MP
XPP
X18 0 0 18 4375 1814 3 MP
XPP
X0 18 18 0 4375 1832 3 MP
XPP
X18 0 0 18 4375 1832 3 MP
XPP
X0 18 18 0 4375 1850 3 MP
XPP
X18 0 0 18 4375 1850 3 MP
XPP
X0 18 18 0 4375 1868 3 MP
XPP
X18 0 0 18 4375 1868 3 MP
XPP
X0 18 18 0 4375 1886 3 MP
XPP
X18 0 0 18 4375 1886 3 MP
XPP
X0 17 18 0 4375 1904 3 MP
XPP
X18 0 0 17 4375 1904 3 MP
XPP
X0 18 18 0 4375 1921 3 MP
XPP
X18 0 0 18 4375 1921 3 MP
XPP
X0 18 18 0 4375 1939 3 MP
XPP
X18 0 0 18 4375 1939 3 MP
XPP
X0 18 18 0 4375 1957 3 MP
XPP
X18 0 0 18 4375 1957 3 MP
XPP
X0 18 18 0 4375 1975 3 MP
XPP
X18 0 0 18 4375 1975 3 MP
XPP
X0 18 18 0 4375 1993 3 MP
XPP
X18 0 0 18 4375 1993 3 MP
XPP
X0 17 18 0 4375 2011 3 MP
XPP
X18 0 0 17 4375 2011 3 MP
XPP
X0 18 18 0 4375 2028 3 MP
XPP
X18 0 0 18 4375 2028 3 MP
XPP
X0 18 18 0 4375 2046 3 MP
XPP
X18 0 0 18 4375 2046 3 MP
XPP
X0 18 18 0 4375 2064 3 MP
XPP
X18 0 0 18 4375 2064 3 MP
XPP
X0 18 18 0 4375 2082 3 MP
XPP
X18 0 0 18 4375 2082 3 MP
XPP
X0 18 18 0 4375 2100 3 MP
XPP
X18 0 0 18 4375 2100 3 MP
XPP
X0 17 18 0 4375 2118 3 MP
XPP
X18 0 0 17 4375 2118 3 MP
XPP
X0 18 18 0 4375 2135 3 MP
XPP
X18 0 0 18 4375 2135 3 MP
XPP
X0 18 18 0 4375 2153 3 MP
XPP
X18 0 0 18 4375 2153 3 MP
XPP
X0 18 18 0 4393 388 3 MP
XPP
X18 0 0 18 4393 388 3 MP
XPP
X0 18 18 0 4393 406 3 MP
XPP
X18 0 0 18 4393 406 3 MP
XPP
X0 17 18 0 4393 424 3 MP
XPP
X18 0 0 17 4393 424 3 MP
XPP
X0 18 18 0 4393 441 3 MP
XPP
X18 0 0 18 4393 441 3 MP
XPP
X0 18 18 0 4393 459 3 MP
XPP
X18 0 0 18 4393 459 3 MP
XPP
X0 18 18 0 4393 477 3 MP
XPP
X18 0 0 18 4393 477 3 MP
XPP
X0 18 18 0 4393 495 3 MP
XPP
X18 0 0 18 4393 495 3 MP
XPP
X0 18 18 0 4393 513 3 MP
XPP
X18 0 0 18 4393 513 3 MP
XPP
X0 17 18 0 4393 531 3 MP
XPP
X18 0 0 17 4393 531 3 MP
XPP
X0 18 18 0 4393 548 3 MP
XPP
X18 0 0 18 4393 548 3 MP
XPP
X0 18 18 0 4393 566 3 MP
XPP
X18 0 0 18 4393 566 3 MP
XPP
X0 18 18 0 4393 584 3 MP
XPP
X18 0 0 18 4393 584 3 MP
XPP
X0 18 18 0 4393 602 3 MP
XPP
X18 0 0 18 4393 602 3 MP
XPP
X0 18 18 0 4393 620 3 MP
XPP
X18 0 0 18 4393 620 3 MP
XPP
X0 17 18 0 4393 638 3 MP
XPP
X18 0 0 17 4393 638 3 MP
XPP
X0 18 18 0 4393 655 3 MP
XPP
X18 0 0 18 4393 655 3 MP
XPP
X0 18 18 0 4393 673 3 MP
XPP
X18 0 0 18 4393 673 3 MP
XPP
X0 18 18 0 4393 691 3 MP
XPP
X18 0 0 18 4393 691 3 MP
XPP
X0 18 18 0 4393 709 3 MP
XPP
X18 0 0 18 4393 709 3 MP
XPP
X0 18 18 0 4393 727 3 MP
XPP
X18 0 0 18 4393 727 3 MP
XPP
X0 17 18 0 4393 745 3 MP
XPP
X18 0 0 17 4393 745 3 MP
XPP
X0 18 18 0 4393 762 3 MP
XPP
X18 0 0 18 4393 762 3 MP
XPP
X0 18 18 0 4393 780 3 MP
XPP
X18 0 0 18 4393 780 3 MP
XPP
X0 18 18 0 4393 798 3 MP
XPP
X18 0 0 18 4393 798 3 MP
XPP
X0 18 18 0 4393 816 3 MP
XPP
X18 0 0 18 4393 816 3 MP
XPP
X0 18 18 0 4393 834 3 MP
XPP
X18 0 0 18 4393 834 3 MP
XPP
X0 17 18 0 4393 852 3 MP
XPP
X18 0 0 17 4393 852 3 MP
XPP
X0 18 18 0 4393 869 3 MP
XPP
X18 0 0 18 4393 869 3 MP
XPP
X0 18 18 0 4393 887 3 MP
XPP
X18 0 0 18 4393 887 3 MP
XPP
X0 18 18 0 4393 905 3 MP
XPP
X18 0 0 18 4393 905 3 MP
XPP
X0 18 18 0 4393 923 3 MP
XPP
X18 0 0 18 4393 923 3 MP
XPP
X0 18 18 0 4393 941 3 MP
XPP
X18 0 0 18 4393 941 3 MP
XPP
X0 17 18 0 4393 959 3 MP
XPP
X18 0 0 17 4393 959 3 MP
XPP
X0 18 18 0 4393 976 3 MP
XPP
X18 0 0 18 4393 976 3 MP
XPP
X0 18 18 0 4393 994 3 MP
XPP
X18 0 0 18 4393 994 3 MP
XPP
X0 18 18 0 4393 1012 3 MP
XPP
X18 0 0 18 4393 1012 3 MP
XPP
X0 18 18 0 4393 1030 3 MP
XPP
X18 0 0 18 4393 1030 3 MP
XPP
X0 18 18 0 4393 1048 3 MP
XPP
X18 0 0 18 4393 1048 3 MP
XPP
X0 17 18 0 4393 1066 3 MP
XPP
X18 0 0 17 4393 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4393 1083 3 MP
XPP
X18 0 0 18 4393 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4393 1101 3 MP
XPP
X18 0 0 18 4393 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4393 1119 3 MP
XPP
X18 0 0 18 4393 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4393 1137 3 MP
XPP
X18 0 0 18 4393 1137 3 MP
XPP
X0 sg
X0 18 18 0 4393 1155 3 MP
XPP
X18 0 0 18 4393 1155 3 MP
XPP
X0 17 18 0 4393 1173 3 MP
XPP
X18 0 0 17 4393 1173 3 MP
XPP
X0 18 18 0 4393 1190 3 MP
XPP
X18 0 0 18 4393 1190 3 MP
XPP
X0 18 18 0 4393 1208 3 MP
XPP
X18 0 0 18 4393 1208 3 MP
XPP
X0.031746 sg
X0 18 18 0 4393 1226 3 MP
XPP
X18 0 0 18 4393 1226 3 MP
XPP
X0.142857 sg
X0 18 18 0 4393 1244 3 MP
XPP
X18 0 0 18 4393 1244 3 MP
XPP
X0.365079 sg
X0 17 18 0 4393 1262 3 MP
XPP
X18 0 0 17 4393 1262 3 MP
XPP
X0.634921 sg
X0 18 18 0 4393 1279 3 MP
XPP
X18 0 0 18 4393 1279 3 MP
XPP
X0.857143 sg
X0 18 18 0 4393 1297 3 MP
XPP
X18 0 0 18 4393 1297 3 MP
XPP
X0.968254 sg
X0 18 18 0 4393 1315 3 MP
XPP
X18 0 0 18 4393 1315 3 MP
XPP
X1 sg
X0 18 18 0 4393 1333 3 MP
XPP
X18 0 0 18 4393 1333 3 MP
XPP
X0 18 18 0 4393 1351 3 MP
XPP
X18 0 0 18 4393 1351 3 MP
XPP
X0 17 18 0 4393 1369 3 MP
XPP
X18 0 0 17 4393 1369 3 MP
XPP
X0 18 18 0 4393 1386 3 MP
XPP
X18 0 0 18 4393 1386 3 MP
XPP
X0 18 18 0 4393 1404 3 MP
XPP
X18 0 0 18 4393 1404 3 MP
XPP
X0 18 18 0 4393 1422 3 MP
XPP
X18 0 0 18 4393 1422 3 MP
XPP
X0 18 18 0 4393 1440 3 MP
XPP
X18 0 0 18 4393 1440 3 MP
XPP
X0 18 18 0 4393 1458 3 MP
XPP
X18 0 0 18 4393 1458 3 MP
XPP
X0 17 18 0 4393 1476 3 MP
XPP
X18 0 0 17 4393 1476 3 MP
XPP
X0 18 18 0 4393 1493 3 MP
XPP
X18 0 0 18 4393 1493 3 MP
XPP
X0 18 18 0 4393 1511 3 MP
XPP
X18 0 0 18 4393 1511 3 MP
XPP
X0 18 18 0 4393 1529 3 MP
XPP
X18 0 0 18 4393 1529 3 MP
XPP
X0 18 18 0 4393 1547 3 MP
XPP
X18 0 0 18 4393 1547 3 MP
XPP
X0 18 18 0 4393 1565 3 MP
XPP
X18 0 0 18 4393 1565 3 MP
XPP
X0 17 18 0 4393 1583 3 MP
XPP
X18 0 0 17 4393 1583 3 MP
XPP
X0 18 18 0 4393 1600 3 MP
XPP
X18 0 0 18 4393 1600 3 MP
XPP
X0 18 18 0 4393 1618 3 MP
XPP
X18 0 0 18 4393 1618 3 MP
XPP
X0 18 18 0 4393 1636 3 MP
XPP
X18 0 0 18 4393 1636 3 MP
XPP
X0 18 18 0 4393 1654 3 MP
XPP
X18 0 0 18 4393 1654 3 MP
XPP
X0 18 18 0 4393 1672 3 MP
XPP
X18 0 0 18 4393 1672 3 MP
XPP
X0 17 18 0 4393 1690 3 MP
XPP
X18 0 0 17 4393 1690 3 MP
XPP
X0 18 18 0 4393 1707 3 MP
XPP
X18 0 0 18 4393 1707 3 MP
XPP
X0 18 18 0 4393 1725 3 MP
XPP
X18 0 0 18 4393 1725 3 MP
XPP
X0 18 18 0 4393 1743 3 MP
XPP
X18 0 0 18 4393 1743 3 MP
XPP
X0 18 18 0 4393 1761 3 MP
XPP
X18 0 0 18 4393 1761 3 MP
XPP
X0 18 18 0 4393 1779 3 MP
XPP
X18 0 0 18 4393 1779 3 MP
XPP
X0 17 18 0 4393 1797 3 MP
XPP
X18 0 0 17 4393 1797 3 MP
XPP
X0 18 18 0 4393 1814 3 MP
XPP
X18 0 0 18 4393 1814 3 MP
XPP
X0 18 18 0 4393 1832 3 MP
XPP
X18 0 0 18 4393 1832 3 MP
XPP
X0 18 18 0 4393 1850 3 MP
XPP
X18 0 0 18 4393 1850 3 MP
XPP
X0 18 18 0 4393 1868 3 MP
XPP
X18 0 0 18 4393 1868 3 MP
XPP
X0 18 18 0 4393 1886 3 MP
XPP
X18 0 0 18 4393 1886 3 MP
XPP
X0 17 18 0 4393 1904 3 MP
XPP
X18 0 0 17 4393 1904 3 MP
XPP
X0 18 18 0 4393 1921 3 MP
XPP
X18 0 0 18 4393 1921 3 MP
XPP
X0 18 18 0 4393 1939 3 MP
XPP
X18 0 0 18 4393 1939 3 MP
XPP
X0 18 18 0 4393 1957 3 MP
XPP
X18 0 0 18 4393 1957 3 MP
XPP
X0 18 18 0 4393 1975 3 MP
XPP
X18 0 0 18 4393 1975 3 MP
XPP
X0 18 18 0 4393 1993 3 MP
XPP
X18 0 0 18 4393 1993 3 MP
XPP
X0 17 18 0 4393 2011 3 MP
XPP
X18 0 0 17 4393 2011 3 MP
XPP
X0 18 18 0 4393 2028 3 MP
XPP
X18 0 0 18 4393 2028 3 MP
XPP
X0 18 18 0 4393 2046 3 MP
XPP
X18 0 0 18 4393 2046 3 MP
XPP
X0 18 18 0 4393 2064 3 MP
XPP
X18 0 0 18 4393 2064 3 MP
XPP
X0 18 18 0 4393 2082 3 MP
XPP
X18 0 0 18 4393 2082 3 MP
XPP
X0 18 18 0 4393 2100 3 MP
XPP
X18 0 0 18 4393 2100 3 MP
XPP
X0 17 18 0 4393 2118 3 MP
XPP
X18 0 0 17 4393 2118 3 MP
XPP
X0 18 18 0 4393 2135 3 MP
XPP
X18 0 0 18 4393 2135 3 MP
XPP
X0 18 18 0 4393 2153 3 MP
XPP
X18 0 0 18 4393 2153 3 MP
XPP
X0 18 18 0 4411 388 3 MP
XPP
X18 0 0 18 4411 388 3 MP
XPP
X0 18 18 0 4411 406 3 MP
XPP
X18 0 0 18 4411 406 3 MP
XPP
X0 17 18 0 4411 424 3 MP
XPP
X18 0 0 17 4411 424 3 MP
XPP
X0 18 18 0 4411 441 3 MP
XPP
X18 0 0 18 4411 441 3 MP
XPP
X0 18 18 0 4411 459 3 MP
XPP
X18 0 0 18 4411 459 3 MP
XPP
X0 18 18 0 4411 477 3 MP
XPP
X18 0 0 18 4411 477 3 MP
XPP
X0 18 18 0 4411 495 3 MP
XPP
X18 0 0 18 4411 495 3 MP
XPP
X0 18 18 0 4411 513 3 MP
XPP
X18 0 0 18 4411 513 3 MP
XPP
X0 17 18 0 4411 531 3 MP
XPP
X18 0 0 17 4411 531 3 MP
XPP
X0 18 18 0 4411 548 3 MP
XPP
X18 0 0 18 4411 548 3 MP
XPP
X0 18 18 0 4411 566 3 MP
XPP
X18 0 0 18 4411 566 3 MP
XPP
X0 18 18 0 4411 584 3 MP
XPP
X18 0 0 18 4411 584 3 MP
XPP
X0 18 18 0 4411 602 3 MP
XPP
X18 0 0 18 4411 602 3 MP
XPP
X0 18 18 0 4411 620 3 MP
XPP
X18 0 0 18 4411 620 3 MP
XPP
X0 17 18 0 4411 638 3 MP
XPP
X18 0 0 17 4411 638 3 MP
XPP
X0 18 18 0 4411 655 3 MP
XPP
X18 0 0 18 4411 655 3 MP
XPP
X0 18 18 0 4411 673 3 MP
XPP
X18 0 0 18 4411 673 3 MP
XPP
X0 18 18 0 4411 691 3 MP
XPP
X18 0 0 18 4411 691 3 MP
XPP
X0 18 18 0 4411 709 3 MP
XPP
X18 0 0 18 4411 709 3 MP
XPP
X0 18 18 0 4411 727 3 MP
XPP
X18 0 0 18 4411 727 3 MP
XPP
X0 17 18 0 4411 745 3 MP
XPP
X18 0 0 17 4411 745 3 MP
XPP
X0 18 18 0 4411 762 3 MP
XPP
X18 0 0 18 4411 762 3 MP
XPP
X0 18 18 0 4411 780 3 MP
XPP
X18 0 0 18 4411 780 3 MP
XPP
X0 18 18 0 4411 798 3 MP
XPP
X18 0 0 18 4411 798 3 MP
XPP
X0 18 18 0 4411 816 3 MP
XPP
X18 0 0 18 4411 816 3 MP
XPP
X0 18 18 0 4411 834 3 MP
XPP
X18 0 0 18 4411 834 3 MP
XPP
X0 17 18 0 4411 852 3 MP
XPP
X18 0 0 17 4411 852 3 MP
XPP
X0 18 18 0 4411 869 3 MP
XPP
X18 0 0 18 4411 869 3 MP
XPP
X0 18 18 0 4411 887 3 MP
XPP
X18 0 0 18 4411 887 3 MP
XPP
X0 18 18 0 4411 905 3 MP
XPP
X18 0 0 18 4411 905 3 MP
XPP
X0 18 18 0 4411 923 3 MP
XPP
X18 0 0 18 4411 923 3 MP
XPP
X0 18 18 0 4411 941 3 MP
XPP
X18 0 0 18 4411 941 3 MP
XPP
X0 17 18 0 4411 959 3 MP
XPP
X18 0 0 17 4411 959 3 MP
XPP
X0 18 18 0 4411 976 3 MP
XPP
X18 0 0 18 4411 976 3 MP
XPP
X0 18 18 0 4411 994 3 MP
XPP
X18 0 0 18 4411 994 3 MP
XPP
X0 18 18 0 4411 1012 3 MP
XPP
X18 0 0 18 4411 1012 3 MP
XPP
X0 18 18 0 4411 1030 3 MP
XPP
X18 0 0 18 4411 1030 3 MP
XPP
X0 18 18 0 4411 1048 3 MP
XPP
X18 0 0 18 4411 1048 3 MP
XPP
X0 17 18 0 4411 1066 3 MP
XPP
X18 0 0 17 4411 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4411 1083 3 MP
XPP
X18 0 0 18 4411 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4411 1101 3 MP
XPP
X18 0 0 18 4411 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4411 1119 3 MP
XPP
X18 0 0 18 4411 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4411 1137 3 MP
XPP
X18 0 0 18 4411 1137 3 MP
XPP
X0 sg
X0 18 18 0 4411 1155 3 MP
XPP
X18 0 0 18 4411 1155 3 MP
XPP
X0 17 18 0 4411 1173 3 MP
XPP
X18 0 0 17 4411 1173 3 MP
XPP
X0 18 18 0 4411 1190 3 MP
XPP
X18 0 0 18 4411 1190 3 MP
XPP
X0 18 18 0 4411 1208 3 MP
XPP
X18 0 0 18 4411 1208 3 MP
XPP
X0 18 18 0 4411 1226 3 MP
XPP
X18 0 0 18 4411 1226 3 MP
XPP
X0.031746 sg
X0 18 18 0 4411 1244 3 MP
XPP
X18 0 0 18 4411 1244 3 MP
XPP
X0.142857 sg
X0 17 18 0 4411 1262 3 MP
XPP
X18 0 0 17 4411 1262 3 MP
XPP
X0.365079 sg
X0 18 18 0 4411 1279 3 MP
XPP
X18 0 0 18 4411 1279 3 MP
XPP
X0.634921 sg
X0 18 18 0 4411 1297 3 MP
XPP
X18 0 0 18 4411 1297 3 MP
XPP
X0.857143 sg
X0 18 18 0 4411 1315 3 MP
XPP
X18 0 0 18 4411 1315 3 MP
XPP
X0.968254 sg
X0 18 18 0 4411 1333 3 MP
XPP
X18 0 0 18 4411 1333 3 MP
XPP
X1 sg
X0 18 18 0 4411 1351 3 MP
XPP
X18 0 0 18 4411 1351 3 MP
XPP
X0 17 18 0 4411 1369 3 MP
XPP
X18 0 0 17 4411 1369 3 MP
XPP
X0 18 18 0 4411 1386 3 MP
XPP
X18 0 0 18 4411 1386 3 MP
XPP
X0 18 18 0 4411 1404 3 MP
XPP
X18 0 0 18 4411 1404 3 MP
XPP
X0 18 18 0 4411 1422 3 MP
XPP
X18 0 0 18 4411 1422 3 MP
XPP
X0 18 18 0 4411 1440 3 MP
XPP
X18 0 0 18 4411 1440 3 MP
XPP
X0 18 18 0 4411 1458 3 MP
XPP
X18 0 0 18 4411 1458 3 MP
XPP
X0 17 18 0 4411 1476 3 MP
XPP
X18 0 0 17 4411 1476 3 MP
XPP
X0 18 18 0 4411 1493 3 MP
XPP
X18 0 0 18 4411 1493 3 MP
XPP
X0 18 18 0 4411 1511 3 MP
XPP
X18 0 0 18 4411 1511 3 MP
XPP
X0 18 18 0 4411 1529 3 MP
XPP
X18 0 0 18 4411 1529 3 MP
XPP
X0 18 18 0 4411 1547 3 MP
XPP
X18 0 0 18 4411 1547 3 MP
XPP
X0 18 18 0 4411 1565 3 MP
XPP
X18 0 0 18 4411 1565 3 MP
XPP
X0 17 18 0 4411 1583 3 MP
XPP
X18 0 0 17 4411 1583 3 MP
XPP
X0 18 18 0 4411 1600 3 MP
XPP
X18 0 0 18 4411 1600 3 MP
XPP
X0 18 18 0 4411 1618 3 MP
XPP
X18 0 0 18 4411 1618 3 MP
XPP
X0 18 18 0 4411 1636 3 MP
XPP
X18 0 0 18 4411 1636 3 MP
XPP
X0 18 18 0 4411 1654 3 MP
XPP
X18 0 0 18 4411 1654 3 MP
XPP
X0 18 18 0 4411 1672 3 MP
XPP
X18 0 0 18 4411 1672 3 MP
XPP
X0 17 18 0 4411 1690 3 MP
XPP
X18 0 0 17 4411 1690 3 MP
XPP
X0 18 18 0 4411 1707 3 MP
XPP
X18 0 0 18 4411 1707 3 MP
XPP
X0 18 18 0 4411 1725 3 MP
XPP
X18 0 0 18 4411 1725 3 MP
XPP
X0 18 18 0 4411 1743 3 MP
XPP
X18 0 0 18 4411 1743 3 MP
XPP
X0 18 18 0 4411 1761 3 MP
XPP
X18 0 0 18 4411 1761 3 MP
XPP
X0 18 18 0 4411 1779 3 MP
XPP
X18 0 0 18 4411 1779 3 MP
XPP
X0 17 18 0 4411 1797 3 MP
XPP
X18 0 0 17 4411 1797 3 MP
XPP
X0 18 18 0 4411 1814 3 MP
XPP
X18 0 0 18 4411 1814 3 MP
XPP
X0 18 18 0 4411 1832 3 MP
XPP
X18 0 0 18 4411 1832 3 MP
XPP
X0 18 18 0 4411 1850 3 MP
XPP
X18 0 0 18 4411 1850 3 MP
XPP
X0 18 18 0 4411 1868 3 MP
XPP
X18 0 0 18 4411 1868 3 MP
XPP
X0 18 18 0 4411 1886 3 MP
XPP
X18 0 0 18 4411 1886 3 MP
XPP
X0 17 18 0 4411 1904 3 MP
XPP
X18 0 0 17 4411 1904 3 MP
XPP
X0 18 18 0 4411 1921 3 MP
XPP
X18 0 0 18 4411 1921 3 MP
XPP
X0 18 18 0 4411 1939 3 MP
XPP
X18 0 0 18 4411 1939 3 MP
XPP
X0 18 18 0 4411 1957 3 MP
XPP
X18 0 0 18 4411 1957 3 MP
XPP
X0 18 18 0 4411 1975 3 MP
XPP
X18 0 0 18 4411 1975 3 MP
XPP
X0 18 18 0 4411 1993 3 MP
XPP
X18 0 0 18 4411 1993 3 MP
XPP
X0 17 18 0 4411 2011 3 MP
XPP
X18 0 0 17 4411 2011 3 MP
XPP
X0 18 18 0 4411 2028 3 MP
XPP
X18 0 0 18 4411 2028 3 MP
XPP
X0 18 18 0 4411 2046 3 MP
XPP
X18 0 0 18 4411 2046 3 MP
XPP
X0 18 18 0 4411 2064 3 MP
XPP
X18 0 0 18 4411 2064 3 MP
XPP
X0 18 18 0 4411 2082 3 MP
XPP
X18 0 0 18 4411 2082 3 MP
XPP
X0 18 18 0 4411 2100 3 MP
XPP
X18 0 0 18 4411 2100 3 MP
XPP
X0 17 18 0 4411 2118 3 MP
XPP
X18 0 0 17 4411 2118 3 MP
XPP
X0 18 18 0 4411 2135 3 MP
XPP
X18 0 0 18 4411 2135 3 MP
XPP
X0 18 18 0 4411 2153 3 MP
XPP
X18 0 0 18 4411 2153 3 MP
XPP
X0 18 17 0 4429 388 3 MP
XPP
X17 0 0 18 4429 388 3 MP
XPP
X0 18 17 0 4429 406 3 MP
XPP
X17 0 0 18 4429 406 3 MP
XPP
X0 17 17 0 4429 424 3 MP
XPP
X17 0 0 17 4429 424 3 MP
XPP
X0 18 17 0 4429 441 3 MP
XPP
X17 0 0 18 4429 441 3 MP
XPP
X0 18 17 0 4429 459 3 MP
XPP
X17 0 0 18 4429 459 3 MP
XPP
X0 18 17 0 4429 477 3 MP
XPP
X17 0 0 18 4429 477 3 MP
XPP
X0 18 17 0 4429 495 3 MP
XPP
X17 0 0 18 4429 495 3 MP
XPP
X0 18 17 0 4429 513 3 MP
XPP
X17 0 0 18 4429 513 3 MP
XPP
X0 17 17 0 4429 531 3 MP
XPP
X17 0 0 17 4429 531 3 MP
XPP
X0 18 17 0 4429 548 3 MP
XPP
X17 0 0 18 4429 548 3 MP
XPP
X0 18 17 0 4429 566 3 MP
XPP
X17 0 0 18 4429 566 3 MP
XPP
X0 18 17 0 4429 584 3 MP
XPP
X17 0 0 18 4429 584 3 MP
XPP
X0 18 17 0 4429 602 3 MP
XPP
X17 0 0 18 4429 602 3 MP
XPP
X0 18 17 0 4429 620 3 MP
XPP
X17 0 0 18 4429 620 3 MP
XPP
X0 17 17 0 4429 638 3 MP
XPP
X17 0 0 17 4429 638 3 MP
XPP
X0 18 17 0 4429 655 3 MP
XPP
X17 0 0 18 4429 655 3 MP
XPP
X0 18 17 0 4429 673 3 MP
XPP
X17 0 0 18 4429 673 3 MP
XPP
X0 18 17 0 4429 691 3 MP
XPP
X17 0 0 18 4429 691 3 MP
XPP
X0 18 17 0 4429 709 3 MP
XPP
X17 0 0 18 4429 709 3 MP
XPP
X0 18 17 0 4429 727 3 MP
XPP
X17 0 0 18 4429 727 3 MP
XPP
X0 17 17 0 4429 745 3 MP
XPP
X17 0 0 17 4429 745 3 MP
XPP
X0 18 17 0 4429 762 3 MP
XPP
X17 0 0 18 4429 762 3 MP
XPP
X0 18 17 0 4429 780 3 MP
XPP
X17 0 0 18 4429 780 3 MP
XPP
X0 18 17 0 4429 798 3 MP
XPP
X17 0 0 18 4429 798 3 MP
XPP
X0 18 17 0 4429 816 3 MP
XPP
X17 0 0 18 4429 816 3 MP
XPP
X0 18 17 0 4429 834 3 MP
XPP
X17 0 0 18 4429 834 3 MP
XPP
X0 17 17 0 4429 852 3 MP
XPP
X17 0 0 17 4429 852 3 MP
XPP
X0 18 17 0 4429 869 3 MP
XPP
X17 0 0 18 4429 869 3 MP
XPP
X0 18 17 0 4429 887 3 MP
XPP
X17 0 0 18 4429 887 3 MP
XPP
X0 18 17 0 4429 905 3 MP
XPP
X17 0 0 18 4429 905 3 MP
XPP
X0 18 17 0 4429 923 3 MP
XPP
X17 0 0 18 4429 923 3 MP
XPP
X0 18 17 0 4429 941 3 MP
XPP
X17 0 0 18 4429 941 3 MP
XPP
X0 17 17 0 4429 959 3 MP
XPP
X17 0 0 17 4429 959 3 MP
XPP
X0 18 17 0 4429 976 3 MP
XPP
X17 0 0 18 4429 976 3 MP
XPP
X0 18 17 0 4429 994 3 MP
XPP
X17 0 0 18 4429 994 3 MP
XPP
X0 18 17 0 4429 1012 3 MP
XPP
X17 0 0 18 4429 1012 3 MP
XPP
X0 18 17 0 4429 1030 3 MP
XPP
X17 0 0 18 4429 1030 3 MP
XPP
X0 18 17 0 4429 1048 3 MP
XPP
X17 0 0 18 4429 1048 3 MP
XPP
X0 17 17 0 4429 1066 3 MP
XPP
X17 0 0 17 4429 1066 3 MP
XPP
X0.936508 sg
X0 18 17 0 4429 1083 3 MP
XPP
X17 0 0 18 4429 1083 3 MP
XPP
X0.68254 sg
X0 18 17 0 4429 1101 3 MP
XPP
X17 0 0 18 4429 1101 3 MP
XPP
X0.31746 sg
X0 18 17 0 4429 1119 3 MP
XPP
X17 0 0 18 4429 1119 3 MP
XPP
X0.0634921 sg
X0 18 17 0 4429 1137 3 MP
XPP
X17 0 0 18 4429 1137 3 MP
XPP
X0 sg
X0 18 17 0 4429 1155 3 MP
XPP
X17 0 0 18 4429 1155 3 MP
XPP
X0 17 17 0 4429 1173 3 MP
XPP
X17 0 0 17 4429 1173 3 MP
XPP
X0 18 17 0 4429 1190 3 MP
XPP
X17 0 0 18 4429 1190 3 MP
XPP
X0 18 17 0 4429 1208 3 MP
XPP
X17 0 0 18 4429 1208 3 MP
XPP
X0 18 17 0 4429 1226 3 MP
XPP
X17 0 0 18 4429 1226 3 MP
XPP
X0 18 17 0 4429 1244 3 MP
XPP
X17 0 0 18 4429 1244 3 MP
XPP
X0.031746 sg
X0 17 17 0 4429 1262 3 MP
XPP
X17 0 0 17 4429 1262 3 MP
XPP
X0.142857 sg
X0 18 17 0 4429 1279 3 MP
XPP
X17 0 0 18 4429 1279 3 MP
XPP
X0.365079 sg
X0 18 17 0 4429 1297 3 MP
XPP
X17 0 0 18 4429 1297 3 MP
XPP
X0.634921 sg
X0 18 17 0 4429 1315 3 MP
XPP
X17 0 0 18 4429 1315 3 MP
XPP
X0.857143 sg
X0 18 17 0 4429 1333 3 MP
XPP
X17 0 0 18 4429 1333 3 MP
XPP
X0.968254 sg
X0 18 17 0 4429 1351 3 MP
XPP
X17 0 0 18 4429 1351 3 MP
XPP
X1 sg
X0 17 17 0 4429 1369 3 MP
XPP
X17 0 0 17 4429 1369 3 MP
XPP
X0 18 17 0 4429 1386 3 MP
XPP
X17 0 0 18 4429 1386 3 MP
XPP
X0 18 17 0 4429 1404 3 MP
XPP
X17 0 0 18 4429 1404 3 MP
XPP
X0 18 17 0 4429 1422 3 MP
XPP
X17 0 0 18 4429 1422 3 MP
XPP
X0 18 17 0 4429 1440 3 MP
XPP
X17 0 0 18 4429 1440 3 MP
XPP
X0 18 17 0 4429 1458 3 MP
XPP
X17 0 0 18 4429 1458 3 MP
XPP
X0 17 17 0 4429 1476 3 MP
XPP
X17 0 0 17 4429 1476 3 MP
XPP
X0 18 17 0 4429 1493 3 MP
XPP
X17 0 0 18 4429 1493 3 MP
XPP
X0 18 17 0 4429 1511 3 MP
XPP
X17 0 0 18 4429 1511 3 MP
XPP
X0 18 17 0 4429 1529 3 MP
XPP
X17 0 0 18 4429 1529 3 MP
XPP
X0 18 17 0 4429 1547 3 MP
XPP
X17 0 0 18 4429 1547 3 MP
XPP
X0 18 17 0 4429 1565 3 MP
XPP
X17 0 0 18 4429 1565 3 MP
XPP
X0 17 17 0 4429 1583 3 MP
XPP
X17 0 0 17 4429 1583 3 MP
XPP
X0 18 17 0 4429 1600 3 MP
XPP
X17 0 0 18 4429 1600 3 MP
XPP
X0 18 17 0 4429 1618 3 MP
XPP
X17 0 0 18 4429 1618 3 MP
XPP
X0 18 17 0 4429 1636 3 MP
XPP
X17 0 0 18 4429 1636 3 MP
XPP
X0 18 17 0 4429 1654 3 MP
XPP
X17 0 0 18 4429 1654 3 MP
XPP
X0 18 17 0 4429 1672 3 MP
XPP
X17 0 0 18 4429 1672 3 MP
XPP
X0 17 17 0 4429 1690 3 MP
XPP
X17 0 0 17 4429 1690 3 MP
XPP
X0 18 17 0 4429 1707 3 MP
XPP
X17 0 0 18 4429 1707 3 MP
XPP
X0 18 17 0 4429 1725 3 MP
XPP
X17 0 0 18 4429 1725 3 MP
XPP
X0 18 17 0 4429 1743 3 MP
XPP
X17 0 0 18 4429 1743 3 MP
XPP
X0 18 17 0 4429 1761 3 MP
XPP
X17 0 0 18 4429 1761 3 MP
XPP
X0 18 17 0 4429 1779 3 MP
XPP
X17 0 0 18 4429 1779 3 MP
XPP
X0 17 17 0 4429 1797 3 MP
XPP
X17 0 0 17 4429 1797 3 MP
XPP
X0 18 17 0 4429 1814 3 MP
XPP
X17 0 0 18 4429 1814 3 MP
XPP
X0 18 17 0 4429 1832 3 MP
XPP
X17 0 0 18 4429 1832 3 MP
XPP
X0 18 17 0 4429 1850 3 MP
XPP
X17 0 0 18 4429 1850 3 MP
XPP
X0 18 17 0 4429 1868 3 MP
XPP
X17 0 0 18 4429 1868 3 MP
XPP
X0 18 17 0 4429 1886 3 MP
XPP
X17 0 0 18 4429 1886 3 MP
XPP
X0 17 17 0 4429 1904 3 MP
XPP
X17 0 0 17 4429 1904 3 MP
XPP
X0 18 17 0 4429 1921 3 MP
XPP
X17 0 0 18 4429 1921 3 MP
XPP
X0 18 17 0 4429 1939 3 MP
XPP
X17 0 0 18 4429 1939 3 MP
XPP
X0 18 17 0 4429 1957 3 MP
XPP
X17 0 0 18 4429 1957 3 MP
XPP
X0 18 17 0 4429 1975 3 MP
XPP
X17 0 0 18 4429 1975 3 MP
XPP
X0 18 17 0 4429 1993 3 MP
XPP
X17 0 0 18 4429 1993 3 MP
XPP
X0 17 17 0 4429 2011 3 MP
XPP
X17 0 0 17 4429 2011 3 MP
XPP
X0 18 17 0 4429 2028 3 MP
XPP
X17 0 0 18 4429 2028 3 MP
XPP
X0 18 17 0 4429 2046 3 MP
XPP
X17 0 0 18 4429 2046 3 MP
XPP
X0 18 17 0 4429 2064 3 MP
XPP
X17 0 0 18 4429 2064 3 MP
XPP
X0 18 17 0 4429 2082 3 MP
XPP
X17 0 0 18 4429 2082 3 MP
XPP
X0 18 17 0 4429 2100 3 MP
XPP
X17 0 0 18 4429 2100 3 MP
XPP
X0 17 17 0 4429 2118 3 MP
XPP
X17 0 0 17 4429 2118 3 MP
XPP
X0 18 17 0 4429 2135 3 MP
XPP
X17 0 0 18 4429 2135 3 MP
XPP
X0 18 17 0 4429 2153 3 MP
XPP
X17 0 0 18 4429 2153 3 MP
XPP
X0 18 18 0 4446 388 3 MP
XPP
X18 0 0 18 4446 388 3 MP
XPP
X0 18 18 0 4446 406 3 MP
XPP
X18 0 0 18 4446 406 3 MP
XPP
X0 17 18 0 4446 424 3 MP
XPP
X18 0 0 17 4446 424 3 MP
XPP
X0 18 18 0 4446 441 3 MP
XPP
X18 0 0 18 4446 441 3 MP
XPP
X0 18 18 0 4446 459 3 MP
XPP
X18 0 0 18 4446 459 3 MP
XPP
X0 18 18 0 4446 477 3 MP
XPP
X18 0 0 18 4446 477 3 MP
XPP
X0 18 18 0 4446 495 3 MP
XPP
X18 0 0 18 4446 495 3 MP
XPP
X0 18 18 0 4446 513 3 MP
XPP
X18 0 0 18 4446 513 3 MP
XPP
X0 17 18 0 4446 531 3 MP
XPP
X18 0 0 17 4446 531 3 MP
XPP
X0 18 18 0 4446 548 3 MP
XPP
X18 0 0 18 4446 548 3 MP
XPP
X0 18 18 0 4446 566 3 MP
XPP
X18 0 0 18 4446 566 3 MP
XPP
X0 18 18 0 4446 584 3 MP
XPP
X18 0 0 18 4446 584 3 MP
XPP
X0 18 18 0 4446 602 3 MP
XPP
X18 0 0 18 4446 602 3 MP
XPP
X0 18 18 0 4446 620 3 MP
XPP
X18 0 0 18 4446 620 3 MP
XPP
X0 17 18 0 4446 638 3 MP
XPP
X18 0 0 17 4446 638 3 MP
XPP
X0 18 18 0 4446 655 3 MP
XPP
X18 0 0 18 4446 655 3 MP
XPP
X0 18 18 0 4446 673 3 MP
XPP
X18 0 0 18 4446 673 3 MP
XPP
X0 18 18 0 4446 691 3 MP
XPP
X18 0 0 18 4446 691 3 MP
XPP
X0 18 18 0 4446 709 3 MP
XPP
X18 0 0 18 4446 709 3 MP
XPP
X0 18 18 0 4446 727 3 MP
XPP
X18 0 0 18 4446 727 3 MP
XPP
X0 17 18 0 4446 745 3 MP
XPP
X18 0 0 17 4446 745 3 MP
XPP
X0 18 18 0 4446 762 3 MP
XPP
X18 0 0 18 4446 762 3 MP
XPP
X0 18 18 0 4446 780 3 MP
XPP
X18 0 0 18 4446 780 3 MP
XPP
X0 18 18 0 4446 798 3 MP
XPP
X18 0 0 18 4446 798 3 MP
XPP
X0 18 18 0 4446 816 3 MP
XPP
X18 0 0 18 4446 816 3 MP
XPP
X0 18 18 0 4446 834 3 MP
XPP
X18 0 0 18 4446 834 3 MP
XPP
X0 17 18 0 4446 852 3 MP
XPP
X18 0 0 17 4446 852 3 MP
XPP
X0 18 18 0 4446 869 3 MP
XPP
X18 0 0 18 4446 869 3 MP
XPP
X0 18 18 0 4446 887 3 MP
XPP
X18 0 0 18 4446 887 3 MP
XPP
X0 18 18 0 4446 905 3 MP
XPP
X18 0 0 18 4446 905 3 MP
XPP
X0 18 18 0 4446 923 3 MP
XPP
X18 0 0 18 4446 923 3 MP
XPP
X0 18 18 0 4446 941 3 MP
XPP
X18 0 0 18 4446 941 3 MP
XPP
X0 17 18 0 4446 959 3 MP
XPP
X18 0 0 17 4446 959 3 MP
XPP
X0 18 18 0 4446 976 3 MP
XPP
X18 0 0 18 4446 976 3 MP
XPP
X0 18 18 0 4446 994 3 MP
XPP
X18 0 0 18 4446 994 3 MP
XPP
X0 18 18 0 4446 1012 3 MP
XPP
X18 0 0 18 4446 1012 3 MP
XPP
X0 18 18 0 4446 1030 3 MP
XPP
X18 0 0 18 4446 1030 3 MP
XPP
X0 18 18 0 4446 1048 3 MP
XPP
X18 0 0 18 4446 1048 3 MP
XPP
X0 17 18 0 4446 1066 3 MP
XPP
X18 0 0 17 4446 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4446 1083 3 MP
XPP
X18 0 0 18 4446 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4446 1101 3 MP
XPP
X18 0 0 18 4446 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4446 1119 3 MP
XPP
X18 0 0 18 4446 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4446 1137 3 MP
XPP
X18 0 0 18 4446 1137 3 MP
XPP
X0 sg
X0 18 18 0 4446 1155 3 MP
XPP
X18 0 0 18 4446 1155 3 MP
XPP
X0 17 18 0 4446 1173 3 MP
XPP
X18 0 0 17 4446 1173 3 MP
XPP
X0 18 18 0 4446 1190 3 MP
XPP
X18 0 0 18 4446 1190 3 MP
XPP
X0 18 18 0 4446 1208 3 MP
XPP
X18 0 0 18 4446 1208 3 MP
XPP
X0 18 18 0 4446 1226 3 MP
XPP
X18 0 0 18 4446 1226 3 MP
XPP
X0 18 18 0 4446 1244 3 MP
XPP
X18 0 0 18 4446 1244 3 MP
XPP
X0 17 18 0 4446 1262 3 MP
XPP
X18 0 0 17 4446 1262 3 MP
XPP
X0.031746 sg
X0 18 18 0 4446 1279 3 MP
XPP
X18 0 0 18 4446 1279 3 MP
XPP
X0.142857 sg
X0 18 18 0 4446 1297 3 MP
XPP
X18 0 0 18 4446 1297 3 MP
XPP
X0.365079 sg
X0 18 18 0 4446 1315 3 MP
XPP
X18 0 0 18 4446 1315 3 MP
XPP
X0.634921 sg
X0 18 18 0 4446 1333 3 MP
XPP
X18 0 0 18 4446 1333 3 MP
XPP
X0.857143 sg
X0 18 18 0 4446 1351 3 MP
XPP
X18 0 0 18 4446 1351 3 MP
XPP
X0.968254 sg
X0 17 18 0 4446 1369 3 MP
XPP
X18 0 0 17 4446 1369 3 MP
XPP
X1 sg
X0 18 18 0 4446 1386 3 MP
XPP
X18 0 0 18 4446 1386 3 MP
XPP
X0 18 18 0 4446 1404 3 MP
XPP
X18 0 0 18 4446 1404 3 MP
XPP
X0 18 18 0 4446 1422 3 MP
XPP
X18 0 0 18 4446 1422 3 MP
XPP
X0 18 18 0 4446 1440 3 MP
XPP
X18 0 0 18 4446 1440 3 MP
XPP
X0 18 18 0 4446 1458 3 MP
XPP
X18 0 0 18 4446 1458 3 MP
XPP
X0 17 18 0 4446 1476 3 MP
XPP
X18 0 0 17 4446 1476 3 MP
XPP
X0 18 18 0 4446 1493 3 MP
XPP
X18 0 0 18 4446 1493 3 MP
XPP
X0 18 18 0 4446 1511 3 MP
XPP
X18 0 0 18 4446 1511 3 MP
XPP
X0 18 18 0 4446 1529 3 MP
XPP
X18 0 0 18 4446 1529 3 MP
XPP
X0 18 18 0 4446 1547 3 MP
XPP
X18 0 0 18 4446 1547 3 MP
XPP
X0 18 18 0 4446 1565 3 MP
XPP
X18 0 0 18 4446 1565 3 MP
XPP
X0 17 18 0 4446 1583 3 MP
XPP
X18 0 0 17 4446 1583 3 MP
XPP
X0 18 18 0 4446 1600 3 MP
XPP
X18 0 0 18 4446 1600 3 MP
XPP
X0 18 18 0 4446 1618 3 MP
XPP
X18 0 0 18 4446 1618 3 MP
XPP
X0 18 18 0 4446 1636 3 MP
XPP
X18 0 0 18 4446 1636 3 MP
XPP
X0 18 18 0 4446 1654 3 MP
XPP
X18 0 0 18 4446 1654 3 MP
XPP
X0 18 18 0 4446 1672 3 MP
XPP
X18 0 0 18 4446 1672 3 MP
XPP
X0 17 18 0 4446 1690 3 MP
XPP
X18 0 0 17 4446 1690 3 MP
XPP
X0 18 18 0 4446 1707 3 MP
XPP
X18 0 0 18 4446 1707 3 MP
XPP
X0 18 18 0 4446 1725 3 MP
XPP
X18 0 0 18 4446 1725 3 MP
XPP
X0 18 18 0 4446 1743 3 MP
XPP
X18 0 0 18 4446 1743 3 MP
XPP
X0 18 18 0 4446 1761 3 MP
XPP
X18 0 0 18 4446 1761 3 MP
XPP
X0 18 18 0 4446 1779 3 MP
XPP
X18 0 0 18 4446 1779 3 MP
XPP
X0 17 18 0 4446 1797 3 MP
XPP
X18 0 0 17 4446 1797 3 MP
XPP
X0 18 18 0 4446 1814 3 MP
XPP
X18 0 0 18 4446 1814 3 MP
XPP
X0 18 18 0 4446 1832 3 MP
XPP
X18 0 0 18 4446 1832 3 MP
XPP
X0 18 18 0 4446 1850 3 MP
XPP
X18 0 0 18 4446 1850 3 MP
XPP
X0 18 18 0 4446 1868 3 MP
XPP
X18 0 0 18 4446 1868 3 MP
XPP
X0 18 18 0 4446 1886 3 MP
XPP
X18 0 0 18 4446 1886 3 MP
XPP
X0 17 18 0 4446 1904 3 MP
XPP
X18 0 0 17 4446 1904 3 MP
XPP
X0 18 18 0 4446 1921 3 MP
XPP
X18 0 0 18 4446 1921 3 MP
XPP
X0 18 18 0 4446 1939 3 MP
XPP
X18 0 0 18 4446 1939 3 MP
XPP
X0 18 18 0 4446 1957 3 MP
XPP
X18 0 0 18 4446 1957 3 MP
XPP
X0 18 18 0 4446 1975 3 MP
XPP
X18 0 0 18 4446 1975 3 MP
XPP
X0 18 18 0 4446 1993 3 MP
XPP
X18 0 0 18 4446 1993 3 MP
XPP
X0 17 18 0 4446 2011 3 MP
XPP
X18 0 0 17 4446 2011 3 MP
XPP
X0 18 18 0 4446 2028 3 MP
XPP
X18 0 0 18 4446 2028 3 MP
XPP
X0 18 18 0 4446 2046 3 MP
XPP
X18 0 0 18 4446 2046 3 MP
XPP
X0 18 18 0 4446 2064 3 MP
XPP
X18 0 0 18 4446 2064 3 MP
XPP
X0 18 18 0 4446 2082 3 MP
XPP
X18 0 0 18 4446 2082 3 MP
XPP
X0 18 18 0 4446 2100 3 MP
XPP
X18 0 0 18 4446 2100 3 MP
XPP
X0 17 18 0 4446 2118 3 MP
XPP
X18 0 0 17 4446 2118 3 MP
XPP
X0 18 18 0 4446 2135 3 MP
XPP
X18 0 0 18 4446 2135 3 MP
XPP
X0 18 18 0 4446 2153 3 MP
XPP
X18 0 0 18 4446 2153 3 MP
XPP
X0 18 18 0 4464 388 3 MP
XPP
X18 0 0 18 4464 388 3 MP
XPP
X0 18 18 0 4464 406 3 MP
XPP
X18 0 0 18 4464 406 3 MP
XPP
X0 17 18 0 4464 424 3 MP
XPP
X18 0 0 17 4464 424 3 MP
XPP
X0 18 18 0 4464 441 3 MP
XPP
X18 0 0 18 4464 441 3 MP
XPP
X0 18 18 0 4464 459 3 MP
XPP
X18 0 0 18 4464 459 3 MP
XPP
X0 18 18 0 4464 477 3 MP
XPP
X18 0 0 18 4464 477 3 MP
XPP
X0 18 18 0 4464 495 3 MP
XPP
X18 0 0 18 4464 495 3 MP
XPP
X0 18 18 0 4464 513 3 MP
XPP
X18 0 0 18 4464 513 3 MP
XPP
X0 17 18 0 4464 531 3 MP
XPP
X18 0 0 17 4464 531 3 MP
XPP
X0 18 18 0 4464 548 3 MP
XPP
X18 0 0 18 4464 548 3 MP
XPP
X0 18 18 0 4464 566 3 MP
XPP
X18 0 0 18 4464 566 3 MP
XPP
X0 18 18 0 4464 584 3 MP
XPP
X18 0 0 18 4464 584 3 MP
XPP
X0 18 18 0 4464 602 3 MP
XPP
X18 0 0 18 4464 602 3 MP
XPP
X0 18 18 0 4464 620 3 MP
XPP
X18 0 0 18 4464 620 3 MP
XPP
X0 17 18 0 4464 638 3 MP
XPP
X18 0 0 17 4464 638 3 MP
XPP
X0 18 18 0 4464 655 3 MP
XPP
X18 0 0 18 4464 655 3 MP
XPP
X0 18 18 0 4464 673 3 MP
XPP
X18 0 0 18 4464 673 3 MP
XPP
X0 18 18 0 4464 691 3 MP
XPP
X18 0 0 18 4464 691 3 MP
XPP
X0 18 18 0 4464 709 3 MP
XPP
X18 0 0 18 4464 709 3 MP
XPP
X0 18 18 0 4464 727 3 MP
XPP
X18 0 0 18 4464 727 3 MP
XPP
X0 17 18 0 4464 745 3 MP
XPP
X18 0 0 17 4464 745 3 MP
XPP
X0 18 18 0 4464 762 3 MP
XPP
X18 0 0 18 4464 762 3 MP
XPP
X0 18 18 0 4464 780 3 MP
XPP
X18 0 0 18 4464 780 3 MP
XPP
X0 18 18 0 4464 798 3 MP
XPP
X18 0 0 18 4464 798 3 MP
XPP
X0 18 18 0 4464 816 3 MP
XPP
X18 0 0 18 4464 816 3 MP
XPP
X0 18 18 0 4464 834 3 MP
XPP
X18 0 0 18 4464 834 3 MP
XPP
X0 17 18 0 4464 852 3 MP
XPP
X18 0 0 17 4464 852 3 MP
XPP
X0 18 18 0 4464 869 3 MP
XPP
X18 0 0 18 4464 869 3 MP
XPP
X0 18 18 0 4464 887 3 MP
XPP
X18 0 0 18 4464 887 3 MP
XPP
X0 18 18 0 4464 905 3 MP
XPP
X18 0 0 18 4464 905 3 MP
XPP
X0 18 18 0 4464 923 3 MP
XPP
X18 0 0 18 4464 923 3 MP
XPP
X0 18 18 0 4464 941 3 MP
XPP
X18 0 0 18 4464 941 3 MP
XPP
X0 17 18 0 4464 959 3 MP
XPP
X18 0 0 17 4464 959 3 MP
XPP
X0 18 18 0 4464 976 3 MP
XPP
X18 0 0 18 4464 976 3 MP
XPP
X0 18 18 0 4464 994 3 MP
XPP
X18 0 0 18 4464 994 3 MP
XPP
X0 18 18 0 4464 1012 3 MP
XPP
X18 0 0 18 4464 1012 3 MP
XPP
X0 18 18 0 4464 1030 3 MP
XPP
X18 0 0 18 4464 1030 3 MP
XPP
X0 18 18 0 4464 1048 3 MP
XPP
X18 0 0 18 4464 1048 3 MP
XPP
X0 17 18 0 4464 1066 3 MP
XPP
X18 0 0 17 4464 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4464 1083 3 MP
XPP
X18 0 0 18 4464 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4464 1101 3 MP
XPP
X18 0 0 18 4464 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4464 1119 3 MP
XPP
X18 0 0 18 4464 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4464 1137 3 MP
XPP
X18 0 0 18 4464 1137 3 MP
XPP
X0 sg
X0 18 18 0 4464 1155 3 MP
XPP
X18 0 0 18 4464 1155 3 MP
XPP
X0 17 18 0 4464 1173 3 MP
XPP
X18 0 0 17 4464 1173 3 MP
XPP
X0 18 18 0 4464 1190 3 MP
XPP
X18 0 0 18 4464 1190 3 MP
XPP
X0 18 18 0 4464 1208 3 MP
XPP
X18 0 0 18 4464 1208 3 MP
XPP
X0 18 18 0 4464 1226 3 MP
XPP
X18 0 0 18 4464 1226 3 MP
XPP
X0 18 18 0 4464 1244 3 MP
XPP
X18 0 0 18 4464 1244 3 MP
XPP
X0 17 18 0 4464 1262 3 MP
XPP
X18 0 0 17 4464 1262 3 MP
XPP
X0 18 18 0 4464 1279 3 MP
XPP
X18 0 0 18 4464 1279 3 MP
XPP
X0.031746 sg
X0 18 18 0 4464 1297 3 MP
XPP
X18 0 0 18 4464 1297 3 MP
XPP
X0.142857 sg
X0 18 18 0 4464 1315 3 MP
XPP
X18 0 0 18 4464 1315 3 MP
XPP
X0.365079 sg
X0 18 18 0 4464 1333 3 MP
XPP
X18 0 0 18 4464 1333 3 MP
XPP
X0.634921 sg
X0 18 18 0 4464 1351 3 MP
XPP
X18 0 0 18 4464 1351 3 MP
XPP
X0.857143 sg
X0 17 18 0 4464 1369 3 MP
XPP
X18 0 0 17 4464 1369 3 MP
XPP
X0.968254 sg
X0 18 18 0 4464 1386 3 MP
XPP
X18 0 0 18 4464 1386 3 MP
XPP
X1 sg
X0 18 18 0 4464 1404 3 MP
XPP
X18 0 0 18 4464 1404 3 MP
XPP
X0 18 18 0 4464 1422 3 MP
XPP
X18 0 0 18 4464 1422 3 MP
XPP
X0 18 18 0 4464 1440 3 MP
XPP
X18 0 0 18 4464 1440 3 MP
XPP
X0 18 18 0 4464 1458 3 MP
XPP
X18 0 0 18 4464 1458 3 MP
XPP
X0 17 18 0 4464 1476 3 MP
XPP
X18 0 0 17 4464 1476 3 MP
XPP
X0 18 18 0 4464 1493 3 MP
XPP
X18 0 0 18 4464 1493 3 MP
XPP
X0 18 18 0 4464 1511 3 MP
XPP
X18 0 0 18 4464 1511 3 MP
XPP
X0 18 18 0 4464 1529 3 MP
XPP
X18 0 0 18 4464 1529 3 MP
XPP
X0 18 18 0 4464 1547 3 MP
XPP
X18 0 0 18 4464 1547 3 MP
XPP
X0 18 18 0 4464 1565 3 MP
XPP
X18 0 0 18 4464 1565 3 MP
XPP
X0 17 18 0 4464 1583 3 MP
XPP
X18 0 0 17 4464 1583 3 MP
XPP
X0 18 18 0 4464 1600 3 MP
XPP
X18 0 0 18 4464 1600 3 MP
XPP
X0 18 18 0 4464 1618 3 MP
XPP
X18 0 0 18 4464 1618 3 MP
XPP
X0 18 18 0 4464 1636 3 MP
XPP
X18 0 0 18 4464 1636 3 MP
XPP
X0 18 18 0 4464 1654 3 MP
XPP
X18 0 0 18 4464 1654 3 MP
XPP
X0 18 18 0 4464 1672 3 MP
XPP
X18 0 0 18 4464 1672 3 MP
XPP
X0 17 18 0 4464 1690 3 MP
XPP
X18 0 0 17 4464 1690 3 MP
XPP
X0 18 18 0 4464 1707 3 MP
XPP
X18 0 0 18 4464 1707 3 MP
XPP
X0 18 18 0 4464 1725 3 MP
XPP
X18 0 0 18 4464 1725 3 MP
XPP
X0 18 18 0 4464 1743 3 MP
XPP
X18 0 0 18 4464 1743 3 MP
XPP
X0 18 18 0 4464 1761 3 MP
XPP
X18 0 0 18 4464 1761 3 MP
XPP
X0 18 18 0 4464 1779 3 MP
XPP
X18 0 0 18 4464 1779 3 MP
XPP
X0 17 18 0 4464 1797 3 MP
XPP
X18 0 0 17 4464 1797 3 MP
XPP
X0 18 18 0 4464 1814 3 MP
XPP
X18 0 0 18 4464 1814 3 MP
XPP
X0 18 18 0 4464 1832 3 MP
XPP
X18 0 0 18 4464 1832 3 MP
XPP
X0 18 18 0 4464 1850 3 MP
XPP
X18 0 0 18 4464 1850 3 MP
XPP
X0 18 18 0 4464 1868 3 MP
XPP
X18 0 0 18 4464 1868 3 MP
XPP
X0 18 18 0 4464 1886 3 MP
XPP
X18 0 0 18 4464 1886 3 MP
XPP
X0 17 18 0 4464 1904 3 MP
XPP
X18 0 0 17 4464 1904 3 MP
XPP
X0 18 18 0 4464 1921 3 MP
XPP
X18 0 0 18 4464 1921 3 MP
XPP
X0 18 18 0 4464 1939 3 MP
XPP
X18 0 0 18 4464 1939 3 MP
XPP
X0 18 18 0 4464 1957 3 MP
XPP
X18 0 0 18 4464 1957 3 MP
XPP
X0 18 18 0 4464 1975 3 MP
XPP
X18 0 0 18 4464 1975 3 MP
XPP
X0 18 18 0 4464 1993 3 MP
XPP
X18 0 0 18 4464 1993 3 MP
XPP
X0 17 18 0 4464 2011 3 MP
XPP
X18 0 0 17 4464 2011 3 MP
XPP
X0 18 18 0 4464 2028 3 MP
XPP
X18 0 0 18 4464 2028 3 MP
XPP
X0 18 18 0 4464 2046 3 MP
XPP
X18 0 0 18 4464 2046 3 MP
XPP
X0 18 18 0 4464 2064 3 MP
XPP
X18 0 0 18 4464 2064 3 MP
XPP
X0 18 18 0 4464 2082 3 MP
XPP
X18 0 0 18 4464 2082 3 MP
XPP
X0 18 18 0 4464 2100 3 MP
XPP
X18 0 0 18 4464 2100 3 MP
XPP
X0 17 18 0 4464 2118 3 MP
XPP
X18 0 0 17 4464 2118 3 MP
XPP
X0 18 18 0 4464 2135 3 MP
XPP
X18 0 0 18 4464 2135 3 MP
XPP
X0 18 18 0 4464 2153 3 MP
XPP
X18 0 0 18 4464 2153 3 MP
XPP
X0 18 18 0 4482 388 3 MP
XPP
X18 0 0 18 4482 388 3 MP
XPP
X0 18 18 0 4482 406 3 MP
XPP
X18 0 0 18 4482 406 3 MP
XPP
X0 17 18 0 4482 424 3 MP
XPP
X18 0 0 17 4482 424 3 MP
XPP
X0 18 18 0 4482 441 3 MP
XPP
X18 0 0 18 4482 441 3 MP
XPP
X0 18 18 0 4482 459 3 MP
XPP
X18 0 0 18 4482 459 3 MP
XPP
X0 18 18 0 4482 477 3 MP
XPP
X18 0 0 18 4482 477 3 MP
XPP
X0 18 18 0 4482 495 3 MP
XPP
X18 0 0 18 4482 495 3 MP
XPP
X0 18 18 0 4482 513 3 MP
XPP
X18 0 0 18 4482 513 3 MP
XPP
X0 17 18 0 4482 531 3 MP
XPP
X18 0 0 17 4482 531 3 MP
XPP
X0 18 18 0 4482 548 3 MP
XPP
X18 0 0 18 4482 548 3 MP
XPP
X0 18 18 0 4482 566 3 MP
XPP
X18 0 0 18 4482 566 3 MP
XPP
X0 18 18 0 4482 584 3 MP
XPP
X18 0 0 18 4482 584 3 MP
XPP
X0 18 18 0 4482 602 3 MP
XPP
X18 0 0 18 4482 602 3 MP
XPP
X0 18 18 0 4482 620 3 MP
XPP
X18 0 0 18 4482 620 3 MP
XPP
X0 17 18 0 4482 638 3 MP
XPP
X18 0 0 17 4482 638 3 MP
XPP
X0 18 18 0 4482 655 3 MP
XPP
X18 0 0 18 4482 655 3 MP
XPP
X0 18 18 0 4482 673 3 MP
XPP
X18 0 0 18 4482 673 3 MP
XPP
X0 18 18 0 4482 691 3 MP
XPP
X18 0 0 18 4482 691 3 MP
XPP
X0 18 18 0 4482 709 3 MP
XPP
X18 0 0 18 4482 709 3 MP
XPP
X0 18 18 0 4482 727 3 MP
XPP
X18 0 0 18 4482 727 3 MP
XPP
X0 17 18 0 4482 745 3 MP
XPP
X18 0 0 17 4482 745 3 MP
XPP
X0 18 18 0 4482 762 3 MP
XPP
X18 0 0 18 4482 762 3 MP
XPP
X0 18 18 0 4482 780 3 MP
XPP
X18 0 0 18 4482 780 3 MP
XPP
X0 18 18 0 4482 798 3 MP
XPP
X18 0 0 18 4482 798 3 MP
XPP
X0 18 18 0 4482 816 3 MP
XPP
X18 0 0 18 4482 816 3 MP
XPP
X0 18 18 0 4482 834 3 MP
XPP
X18 0 0 18 4482 834 3 MP
XPP
X0 17 18 0 4482 852 3 MP
XPP
X18 0 0 17 4482 852 3 MP
XPP
X0 18 18 0 4482 869 3 MP
XPP
X18 0 0 18 4482 869 3 MP
XPP
X0 18 18 0 4482 887 3 MP
XPP
X18 0 0 18 4482 887 3 MP
XPP
X0 18 18 0 4482 905 3 MP
XPP
X18 0 0 18 4482 905 3 MP
XPP
X0 18 18 0 4482 923 3 MP
XPP
X18 0 0 18 4482 923 3 MP
XPP
X0 18 18 0 4482 941 3 MP
XPP
X18 0 0 18 4482 941 3 MP
XPP
X0 17 18 0 4482 959 3 MP
XPP
X18 0 0 17 4482 959 3 MP
XPP
X0 18 18 0 4482 976 3 MP
XPP
X18 0 0 18 4482 976 3 MP
XPP
X0 18 18 0 4482 994 3 MP
XPP
X18 0 0 18 4482 994 3 MP
XPP
X0 18 18 0 4482 1012 3 MP
XPP
X18 0 0 18 4482 1012 3 MP
XPP
X0 18 18 0 4482 1030 3 MP
XPP
X18 0 0 18 4482 1030 3 MP
XPP
X0 18 18 0 4482 1048 3 MP
XPP
X18 0 0 18 4482 1048 3 MP
XPP
X0 17 18 0 4482 1066 3 MP
XPP
X18 0 0 17 4482 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4482 1083 3 MP
XPP
X18 0 0 18 4482 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4482 1101 3 MP
XPP
X18 0 0 18 4482 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4482 1119 3 MP
XPP
X18 0 0 18 4482 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4482 1137 3 MP
XPP
X18 0 0 18 4482 1137 3 MP
XPP
X0 sg
X0 18 18 0 4482 1155 3 MP
XPP
X18 0 0 18 4482 1155 3 MP
XPP
X0 17 18 0 4482 1173 3 MP
XPP
X18 0 0 17 4482 1173 3 MP
XPP
X0 18 18 0 4482 1190 3 MP
XPP
X18 0 0 18 4482 1190 3 MP
XPP
X0 18 18 0 4482 1208 3 MP
XPP
X18 0 0 18 4482 1208 3 MP
XPP
X0 18 18 0 4482 1226 3 MP
XPP
X18 0 0 18 4482 1226 3 MP
XPP
X0 18 18 0 4482 1244 3 MP
XPP
X18 0 0 18 4482 1244 3 MP
XPP
X0 17 18 0 4482 1262 3 MP
XPP
X18 0 0 17 4482 1262 3 MP
XPP
X0 18 18 0 4482 1279 3 MP
XPP
X18 0 0 18 4482 1279 3 MP
XPP
X0 18 18 0 4482 1297 3 MP
XPP
X18 0 0 18 4482 1297 3 MP
XPP
X0.031746 sg
X0 18 18 0 4482 1315 3 MP
XPP
X18 0 0 18 4482 1315 3 MP
XPP
X0.142857 sg
X0 18 18 0 4482 1333 3 MP
XPP
X18 0 0 18 4482 1333 3 MP
XPP
X0.365079 sg
X0 18 18 0 4482 1351 3 MP
XPP
X18 0 0 18 4482 1351 3 MP
XPP
X0.634921 sg
X0 17 18 0 4482 1369 3 MP
XPP
X18 0 0 17 4482 1369 3 MP
XPP
X0.857143 sg
X0 18 18 0 4482 1386 3 MP
XPP
X18 0 0 18 4482 1386 3 MP
XPP
X0.968254 sg
X0 18 18 0 4482 1404 3 MP
XPP
X18 0 0 18 4482 1404 3 MP
XPP
X1 sg
X0 18 18 0 4482 1422 3 MP
XPP
X18 0 0 18 4482 1422 3 MP
XPP
X0 18 18 0 4482 1440 3 MP
XPP
X18 0 0 18 4482 1440 3 MP
XPP
X0 18 18 0 4482 1458 3 MP
XPP
X18 0 0 18 4482 1458 3 MP
XPP
X0 17 18 0 4482 1476 3 MP
XPP
X18 0 0 17 4482 1476 3 MP
XPP
X0 18 18 0 4482 1493 3 MP
XPP
X18 0 0 18 4482 1493 3 MP
XPP
X0 18 18 0 4482 1511 3 MP
XPP
X18 0 0 18 4482 1511 3 MP
XPP
X0 18 18 0 4482 1529 3 MP
XPP
X18 0 0 18 4482 1529 3 MP
XPP
X0 18 18 0 4482 1547 3 MP
XPP
X18 0 0 18 4482 1547 3 MP
XPP
X0 18 18 0 4482 1565 3 MP
XPP
X18 0 0 18 4482 1565 3 MP
XPP
X0 17 18 0 4482 1583 3 MP
XPP
X18 0 0 17 4482 1583 3 MP
XPP
X0 18 18 0 4482 1600 3 MP
XPP
X18 0 0 18 4482 1600 3 MP
XPP
X0 18 18 0 4482 1618 3 MP
XPP
X18 0 0 18 4482 1618 3 MP
XPP
X0 18 18 0 4482 1636 3 MP
XPP
X18 0 0 18 4482 1636 3 MP
XPP
X0 18 18 0 4482 1654 3 MP
XPP
X18 0 0 18 4482 1654 3 MP
XPP
X0 18 18 0 4482 1672 3 MP
XPP
X18 0 0 18 4482 1672 3 MP
XPP
X0 17 18 0 4482 1690 3 MP
XPP
X18 0 0 17 4482 1690 3 MP
XPP
X0 18 18 0 4482 1707 3 MP
XPP
X18 0 0 18 4482 1707 3 MP
XPP
X0 18 18 0 4482 1725 3 MP
XPP
X18 0 0 18 4482 1725 3 MP
XPP
X0 18 18 0 4482 1743 3 MP
XPP
X18 0 0 18 4482 1743 3 MP
XPP
X0 18 18 0 4482 1761 3 MP
XPP
X18 0 0 18 4482 1761 3 MP
XPP
X0 18 18 0 4482 1779 3 MP
XPP
X18 0 0 18 4482 1779 3 MP
XPP
X0 17 18 0 4482 1797 3 MP
XPP
X18 0 0 17 4482 1797 3 MP
XPP
X0 18 18 0 4482 1814 3 MP
XPP
X18 0 0 18 4482 1814 3 MP
XPP
X0 18 18 0 4482 1832 3 MP
XPP
X18 0 0 18 4482 1832 3 MP
XPP
X0 18 18 0 4482 1850 3 MP
XPP
X18 0 0 18 4482 1850 3 MP
XPP
X0 18 18 0 4482 1868 3 MP
XPP
X18 0 0 18 4482 1868 3 MP
XPP
X0 18 18 0 4482 1886 3 MP
XPP
X18 0 0 18 4482 1886 3 MP
XPP
X0 17 18 0 4482 1904 3 MP
XPP
X18 0 0 17 4482 1904 3 MP
XPP
X0 18 18 0 4482 1921 3 MP
XPP
X18 0 0 18 4482 1921 3 MP
XPP
X0 18 18 0 4482 1939 3 MP
XPP
X18 0 0 18 4482 1939 3 MP
XPP
X0 18 18 0 4482 1957 3 MP
XPP
X18 0 0 18 4482 1957 3 MP
XPP
X0 18 18 0 4482 1975 3 MP
XPP
X18 0 0 18 4482 1975 3 MP
XPP
X0 18 18 0 4482 1993 3 MP
XPP
X18 0 0 18 4482 1993 3 MP
XPP
X0 17 18 0 4482 2011 3 MP
XPP
X18 0 0 17 4482 2011 3 MP
XPP
X0 18 18 0 4482 2028 3 MP
XPP
X18 0 0 18 4482 2028 3 MP
XPP
X0 18 18 0 4482 2046 3 MP
XPP
X18 0 0 18 4482 2046 3 MP
XPP
X0 18 18 0 4482 2064 3 MP
XPP
X18 0 0 18 4482 2064 3 MP
XPP
X0 18 18 0 4482 2082 3 MP
XPP
X18 0 0 18 4482 2082 3 MP
XPP
X0 18 18 0 4482 2100 3 MP
XPP
X18 0 0 18 4482 2100 3 MP
XPP
X0 17 18 0 4482 2118 3 MP
XPP
X18 0 0 17 4482 2118 3 MP
XPP
X0 18 18 0 4482 2135 3 MP
XPP
X18 0 0 18 4482 2135 3 MP
XPP
X0 18 18 0 4482 2153 3 MP
XPP
X18 0 0 18 4482 2153 3 MP
XPP
X0 18 18 0 4500 388 3 MP
XPP
X18 0 0 18 4500 388 3 MP
XPP
X0 18 18 0 4500 406 3 MP
XPP
X18 0 0 18 4500 406 3 MP
XPP
X0 17 18 0 4500 424 3 MP
XPP
X18 0 0 17 4500 424 3 MP
XPP
X0 18 18 0 4500 441 3 MP
XPP
X18 0 0 18 4500 441 3 MP
XPP
X0 18 18 0 4500 459 3 MP
XPP
X18 0 0 18 4500 459 3 MP
XPP
X0 18 18 0 4500 477 3 MP
XPP
X18 0 0 18 4500 477 3 MP
XPP
X0 18 18 0 4500 495 3 MP
XPP
X18 0 0 18 4500 495 3 MP
XPP
X0 18 18 0 4500 513 3 MP
XPP
X18 0 0 18 4500 513 3 MP
XPP
X0 17 18 0 4500 531 3 MP
XPP
X18 0 0 17 4500 531 3 MP
XPP
X0 18 18 0 4500 548 3 MP
XPP
X18 0 0 18 4500 548 3 MP
XPP
X0 18 18 0 4500 566 3 MP
XPP
X18 0 0 18 4500 566 3 MP
XPP
X0 18 18 0 4500 584 3 MP
XPP
X18 0 0 18 4500 584 3 MP
XPP
X0 18 18 0 4500 602 3 MP
XPP
X18 0 0 18 4500 602 3 MP
XPP
X0 18 18 0 4500 620 3 MP
XPP
X18 0 0 18 4500 620 3 MP
XPP
X0 17 18 0 4500 638 3 MP
XPP
X18 0 0 17 4500 638 3 MP
XPP
X0 18 18 0 4500 655 3 MP
XPP
X18 0 0 18 4500 655 3 MP
XPP
X0 18 18 0 4500 673 3 MP
XPP
X18 0 0 18 4500 673 3 MP
XPP
X0 18 18 0 4500 691 3 MP
XPP
X18 0 0 18 4500 691 3 MP
XPP
X0 18 18 0 4500 709 3 MP
XPP
X18 0 0 18 4500 709 3 MP
XPP
X0 18 18 0 4500 727 3 MP
XPP
X18 0 0 18 4500 727 3 MP
XPP
X0 17 18 0 4500 745 3 MP
XPP
X18 0 0 17 4500 745 3 MP
XPP
X0 18 18 0 4500 762 3 MP
XPP
X18 0 0 18 4500 762 3 MP
XPP
X0 18 18 0 4500 780 3 MP
XPP
X18 0 0 18 4500 780 3 MP
XPP
X0 18 18 0 4500 798 3 MP
XPP
X18 0 0 18 4500 798 3 MP
XPP
X0 18 18 0 4500 816 3 MP
XPP
X18 0 0 18 4500 816 3 MP
XPP
X0 18 18 0 4500 834 3 MP
XPP
X18 0 0 18 4500 834 3 MP
XPP
X0 17 18 0 4500 852 3 MP
XPP
X18 0 0 17 4500 852 3 MP
XPP
X0 18 18 0 4500 869 3 MP
XPP
X18 0 0 18 4500 869 3 MP
XPP
X0 18 18 0 4500 887 3 MP
XPP
X18 0 0 18 4500 887 3 MP
XPP
X0 18 18 0 4500 905 3 MP
XPP
X18 0 0 18 4500 905 3 MP
XPP
X0 18 18 0 4500 923 3 MP
XPP
X18 0 0 18 4500 923 3 MP
XPP
X0 18 18 0 4500 941 3 MP
XPP
X18 0 0 18 4500 941 3 MP
XPP
X0 17 18 0 4500 959 3 MP
XPP
X18 0 0 17 4500 959 3 MP
XPP
X0 18 18 0 4500 976 3 MP
XPP
X18 0 0 18 4500 976 3 MP
XPP
X0 18 18 0 4500 994 3 MP
XPP
X18 0 0 18 4500 994 3 MP
XPP
X0 18 18 0 4500 1012 3 MP
XPP
X18 0 0 18 4500 1012 3 MP
XPP
X0 18 18 0 4500 1030 3 MP
XPP
X18 0 0 18 4500 1030 3 MP
XPP
X0 18 18 0 4500 1048 3 MP
XPP
X18 0 0 18 4500 1048 3 MP
XPP
X0 17 18 0 4500 1066 3 MP
XPP
X18 0 0 17 4500 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4500 1083 3 MP
XPP
X18 0 0 18 4500 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4500 1101 3 MP
XPP
X18 0 0 18 4500 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4500 1119 3 MP
XPP
X18 0 0 18 4500 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4500 1137 3 MP
XPP
X18 0 0 18 4500 1137 3 MP
XPP
X0 sg
X0 18 18 0 4500 1155 3 MP
XPP
X18 0 0 18 4500 1155 3 MP
XPP
X0 17 18 0 4500 1173 3 MP
XPP
X18 0 0 17 4500 1173 3 MP
XPP
X0 18 18 0 4500 1190 3 MP
XPP
X18 0 0 18 4500 1190 3 MP
XPP
X0 18 18 0 4500 1208 3 MP
XPP
X18 0 0 18 4500 1208 3 MP
XPP
X0 18 18 0 4500 1226 3 MP
XPP
X18 0 0 18 4500 1226 3 MP
XPP
X0 18 18 0 4500 1244 3 MP
XPP
X18 0 0 18 4500 1244 3 MP
XPP
X0 17 18 0 4500 1262 3 MP
XPP
X18 0 0 17 4500 1262 3 MP
XPP
X0 18 18 0 4500 1279 3 MP
XPP
X18 0 0 18 4500 1279 3 MP
XPP
X0 18 18 0 4500 1297 3 MP
XPP
X18 0 0 18 4500 1297 3 MP
XPP
X0 18 18 0 4500 1315 3 MP
XPP
X18 0 0 18 4500 1315 3 MP
XPP
X0.031746 sg
X0 18 18 0 4500 1333 3 MP
XPP
X18 0 0 18 4500 1333 3 MP
XPP
X0.142857 sg
X0 18 18 0 4500 1351 3 MP
XPP
X18 0 0 18 4500 1351 3 MP
XPP
X0.365079 sg
X0 17 18 0 4500 1369 3 MP
XPP
X18 0 0 17 4500 1369 3 MP
XPP
X0.634921 sg
X0 18 18 0 4500 1386 3 MP
XPP
X18 0 0 18 4500 1386 3 MP
XPP
X0.857143 sg
X0 18 18 0 4500 1404 3 MP
XPP
X18 0 0 18 4500 1404 3 MP
XPP
X0.968254 sg
X0 18 18 0 4500 1422 3 MP
XPP
X18 0 0 18 4500 1422 3 MP
XPP
X1 sg
X0 18 18 0 4500 1440 3 MP
XPP
X18 0 0 18 4500 1440 3 MP
XPP
X0 18 18 0 4500 1458 3 MP
XPP
X18 0 0 18 4500 1458 3 MP
XPP
X0 17 18 0 4500 1476 3 MP
XPP
X18 0 0 17 4500 1476 3 MP
XPP
X0 18 18 0 4500 1493 3 MP
XPP
X18 0 0 18 4500 1493 3 MP
XPP
X0 18 18 0 4500 1511 3 MP
XPP
X18 0 0 18 4500 1511 3 MP
XPP
X0 18 18 0 4500 1529 3 MP
XPP
X18 0 0 18 4500 1529 3 MP
XPP
X0 18 18 0 4500 1547 3 MP
XPP
X18 0 0 18 4500 1547 3 MP
XPP
X0 18 18 0 4500 1565 3 MP
XPP
X18 0 0 18 4500 1565 3 MP
XPP
X0 17 18 0 4500 1583 3 MP
XPP
X18 0 0 17 4500 1583 3 MP
XPP
X0 18 18 0 4500 1600 3 MP
XPP
X18 0 0 18 4500 1600 3 MP
XPP
X0 18 18 0 4500 1618 3 MP
XPP
X18 0 0 18 4500 1618 3 MP
XPP
X0 18 18 0 4500 1636 3 MP
XPP
X18 0 0 18 4500 1636 3 MP
XPP
X0 18 18 0 4500 1654 3 MP
XPP
X18 0 0 18 4500 1654 3 MP
XPP
X0 18 18 0 4500 1672 3 MP
XPP
X18 0 0 18 4500 1672 3 MP
XPP
X0 17 18 0 4500 1690 3 MP
XPP
X18 0 0 17 4500 1690 3 MP
XPP
X0 18 18 0 4500 1707 3 MP
XPP
X18 0 0 18 4500 1707 3 MP
XPP
X0 18 18 0 4500 1725 3 MP
XPP
X18 0 0 18 4500 1725 3 MP
XPP
X0 18 18 0 4500 1743 3 MP
XPP
X18 0 0 18 4500 1743 3 MP
XPP
X0 18 18 0 4500 1761 3 MP
XPP
X18 0 0 18 4500 1761 3 MP
XPP
X0 18 18 0 4500 1779 3 MP
XPP
X18 0 0 18 4500 1779 3 MP
XPP
X0 17 18 0 4500 1797 3 MP
XPP
X18 0 0 17 4500 1797 3 MP
XPP
X0 18 18 0 4500 1814 3 MP
XPP
X18 0 0 18 4500 1814 3 MP
XPP
X0 18 18 0 4500 1832 3 MP
XPP
X18 0 0 18 4500 1832 3 MP
XPP
X0 18 18 0 4500 1850 3 MP
XPP
X18 0 0 18 4500 1850 3 MP
XPP
X0 18 18 0 4500 1868 3 MP
XPP
X18 0 0 18 4500 1868 3 MP
XPP
X0 18 18 0 4500 1886 3 MP
XPP
X18 0 0 18 4500 1886 3 MP
XPP
X0 17 18 0 4500 1904 3 MP
XPP
X18 0 0 17 4500 1904 3 MP
XPP
X0 18 18 0 4500 1921 3 MP
XPP
X18 0 0 18 4500 1921 3 MP
XPP
X0 18 18 0 4500 1939 3 MP
XPP
X18 0 0 18 4500 1939 3 MP
XPP
X0 18 18 0 4500 1957 3 MP
XPP
X18 0 0 18 4500 1957 3 MP
XPP
X0 18 18 0 4500 1975 3 MP
XPP
X18 0 0 18 4500 1975 3 MP
XPP
X0 18 18 0 4500 1993 3 MP
XPP
X18 0 0 18 4500 1993 3 MP
XPP
X0 17 18 0 4500 2011 3 MP
XPP
X18 0 0 17 4500 2011 3 MP
XPP
X0 18 18 0 4500 2028 3 MP
XPP
X18 0 0 18 4500 2028 3 MP
XPP
X0 18 18 0 4500 2046 3 MP
XPP
X18 0 0 18 4500 2046 3 MP
XPP
X0 18 18 0 4500 2064 3 MP
XPP
X18 0 0 18 4500 2064 3 MP
XPP
X0 18 18 0 4500 2082 3 MP
XPP
X18 0 0 18 4500 2082 3 MP
XPP
X0 18 18 0 4500 2100 3 MP
XPP
X18 0 0 18 4500 2100 3 MP
XPP
X0 17 18 0 4500 2118 3 MP
XPP
X18 0 0 17 4500 2118 3 MP
XPP
X0 18 18 0 4500 2135 3 MP
XPP
X18 0 0 18 4500 2135 3 MP
XPP
X0 18 18 0 4500 2153 3 MP
XPP
X18 0 0 18 4500 2153 3 MP
XPP
X0 18 18 0 4518 388 3 MP
XPP
X18 0 0 18 4518 388 3 MP
XPP
X0 18 18 0 4518 406 3 MP
XPP
X18 0 0 18 4518 406 3 MP
XPP
X0 17 18 0 4518 424 3 MP
XPP
X18 0 0 17 4518 424 3 MP
XPP
X0 18 18 0 4518 441 3 MP
XPP
X18 0 0 18 4518 441 3 MP
XPP
X0 18 18 0 4518 459 3 MP
XPP
X18 0 0 18 4518 459 3 MP
XPP
X0 18 18 0 4518 477 3 MP
XPP
X18 0 0 18 4518 477 3 MP
XPP
X0 18 18 0 4518 495 3 MP
XPP
X18 0 0 18 4518 495 3 MP
XPP
X0 18 18 0 4518 513 3 MP
XPP
X18 0 0 18 4518 513 3 MP
XPP
X0 17 18 0 4518 531 3 MP
XPP
X18 0 0 17 4518 531 3 MP
XPP
X0 18 18 0 4518 548 3 MP
XPP
X18 0 0 18 4518 548 3 MP
XPP
X0 18 18 0 4518 566 3 MP
XPP
X18 0 0 18 4518 566 3 MP
XPP
X0 18 18 0 4518 584 3 MP
XPP
X18 0 0 18 4518 584 3 MP
XPP
X0 18 18 0 4518 602 3 MP
XPP
X18 0 0 18 4518 602 3 MP
XPP
X0 18 18 0 4518 620 3 MP
XPP
X18 0 0 18 4518 620 3 MP
XPP
X0 17 18 0 4518 638 3 MP
XPP
X18 0 0 17 4518 638 3 MP
XPP
X0 18 18 0 4518 655 3 MP
XPP
X18 0 0 18 4518 655 3 MP
XPP
X0 18 18 0 4518 673 3 MP
XPP
X18 0 0 18 4518 673 3 MP
XPP
X0 18 18 0 4518 691 3 MP
XPP
X18 0 0 18 4518 691 3 MP
XPP
X0 18 18 0 4518 709 3 MP
XPP
X18 0 0 18 4518 709 3 MP
XPP
X0 18 18 0 4518 727 3 MP
XPP
X18 0 0 18 4518 727 3 MP
XPP
X0 17 18 0 4518 745 3 MP
XPP
X18 0 0 17 4518 745 3 MP
XPP
X0 18 18 0 4518 762 3 MP
XPP
X18 0 0 18 4518 762 3 MP
XPP
X0 18 18 0 4518 780 3 MP
XPP
X18 0 0 18 4518 780 3 MP
XPP
X0 18 18 0 4518 798 3 MP
XPP
X18 0 0 18 4518 798 3 MP
XPP
X0 18 18 0 4518 816 3 MP
XPP
X18 0 0 18 4518 816 3 MP
XPP
X0 18 18 0 4518 834 3 MP
XPP
X18 0 0 18 4518 834 3 MP
XPP
X0 17 18 0 4518 852 3 MP
XPP
X18 0 0 17 4518 852 3 MP
XPP
X0 18 18 0 4518 869 3 MP
XPP
X18 0 0 18 4518 869 3 MP
XPP
X0 18 18 0 4518 887 3 MP
XPP
X18 0 0 18 4518 887 3 MP
XPP
X0 18 18 0 4518 905 3 MP
XPP
X18 0 0 18 4518 905 3 MP
XPP
X0 18 18 0 4518 923 3 MP
XPP
X18 0 0 18 4518 923 3 MP
XPP
X0 18 18 0 4518 941 3 MP
XPP
X18 0 0 18 4518 941 3 MP
XPP
X0 17 18 0 4518 959 3 MP
XPP
X18 0 0 17 4518 959 3 MP
XPP
X0 18 18 0 4518 976 3 MP
XPP
X18 0 0 18 4518 976 3 MP
XPP
X0 18 18 0 4518 994 3 MP
XPP
X18 0 0 18 4518 994 3 MP
XPP
X0 18 18 0 4518 1012 3 MP
XPP
X18 0 0 18 4518 1012 3 MP
XPP
X0 18 18 0 4518 1030 3 MP
XPP
X18 0 0 18 4518 1030 3 MP
XPP
X0 18 18 0 4518 1048 3 MP
XPP
X18 0 0 18 4518 1048 3 MP
XPP
X0 17 18 0 4518 1066 3 MP
XPP
X18 0 0 17 4518 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4518 1083 3 MP
XPP
X18 0 0 18 4518 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4518 1101 3 MP
XPP
X18 0 0 18 4518 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4518 1119 3 MP
XPP
X18 0 0 18 4518 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4518 1137 3 MP
XPP
X18 0 0 18 4518 1137 3 MP
XPP
X0 sg
X0 18 18 0 4518 1155 3 MP
XPP
X18 0 0 18 4518 1155 3 MP
XPP
X0 17 18 0 4518 1173 3 MP
XPP
X18 0 0 17 4518 1173 3 MP
XPP
X0 18 18 0 4518 1190 3 MP
XPP
X18 0 0 18 4518 1190 3 MP
XPP
X0 18 18 0 4518 1208 3 MP
XPP
X18 0 0 18 4518 1208 3 MP
XPP
X0 18 18 0 4518 1226 3 MP
XPP
X18 0 0 18 4518 1226 3 MP
XPP
X0 18 18 0 4518 1244 3 MP
XPP
X18 0 0 18 4518 1244 3 MP
XPP
X0 17 18 0 4518 1262 3 MP
XPP
X18 0 0 17 4518 1262 3 MP
XPP
X0 18 18 0 4518 1279 3 MP
XPP
X18 0 0 18 4518 1279 3 MP
XPP
X0 18 18 0 4518 1297 3 MP
XPP
X18 0 0 18 4518 1297 3 MP
XPP
X0 18 18 0 4518 1315 3 MP
XPP
X18 0 0 18 4518 1315 3 MP
XPP
X0 18 18 0 4518 1333 3 MP
XPP
X18 0 0 18 4518 1333 3 MP
XPP
X0.031746 sg
X0 18 18 0 4518 1351 3 MP
XPP
X18 0 0 18 4518 1351 3 MP
XPP
X0.142857 sg
X0 17 18 0 4518 1369 3 MP
XPP
X18 0 0 17 4518 1369 3 MP
XPP
X0.365079 sg
X0 18 18 0 4518 1386 3 MP
XPP
X18 0 0 18 4518 1386 3 MP
XPP
X0.634921 sg
X0 18 18 0 4518 1404 3 MP
XPP
X18 0 0 18 4518 1404 3 MP
XPP
X0.857143 sg
X0 18 18 0 4518 1422 3 MP
XPP
X18 0 0 18 4518 1422 3 MP
XPP
X0.968254 sg
X0 18 18 0 4518 1440 3 MP
XPP
X18 0 0 18 4518 1440 3 MP
XPP
X1 sg
X0 18 18 0 4518 1458 3 MP
XPP
X18 0 0 18 4518 1458 3 MP
XPP
X0 17 18 0 4518 1476 3 MP
XPP
X18 0 0 17 4518 1476 3 MP
XPP
X0 18 18 0 4518 1493 3 MP
XPP
X18 0 0 18 4518 1493 3 MP
XPP
X0 18 18 0 4518 1511 3 MP
XPP
X18 0 0 18 4518 1511 3 MP
XPP
X0 18 18 0 4518 1529 3 MP
XPP
X18 0 0 18 4518 1529 3 MP
XPP
X0 18 18 0 4518 1547 3 MP
XPP
X18 0 0 18 4518 1547 3 MP
XPP
X0 18 18 0 4518 1565 3 MP
XPP
X18 0 0 18 4518 1565 3 MP
XPP
X0 17 18 0 4518 1583 3 MP
XPP
X18 0 0 17 4518 1583 3 MP
XPP
X0 18 18 0 4518 1600 3 MP
XPP
X18 0 0 18 4518 1600 3 MP
XPP
X0 18 18 0 4518 1618 3 MP
XPP
X18 0 0 18 4518 1618 3 MP
XPP
X0 18 18 0 4518 1636 3 MP
XPP
X18 0 0 18 4518 1636 3 MP
XPP
X0 18 18 0 4518 1654 3 MP
XPP
X18 0 0 18 4518 1654 3 MP
XPP
X0 18 18 0 4518 1672 3 MP
XPP
X18 0 0 18 4518 1672 3 MP
XPP
X0 17 18 0 4518 1690 3 MP
XPP
X18 0 0 17 4518 1690 3 MP
XPP
X0 18 18 0 4518 1707 3 MP
XPP
X18 0 0 18 4518 1707 3 MP
XPP
X0 18 18 0 4518 1725 3 MP
XPP
X18 0 0 18 4518 1725 3 MP
XPP
X0 18 18 0 4518 1743 3 MP
XPP
X18 0 0 18 4518 1743 3 MP
XPP
X0 18 18 0 4518 1761 3 MP
XPP
X18 0 0 18 4518 1761 3 MP
XPP
X0 18 18 0 4518 1779 3 MP
XPP
X18 0 0 18 4518 1779 3 MP
XPP
X0 17 18 0 4518 1797 3 MP
XPP
X18 0 0 17 4518 1797 3 MP
XPP
X0 18 18 0 4518 1814 3 MP
XPP
X18 0 0 18 4518 1814 3 MP
XPP
X0 18 18 0 4518 1832 3 MP
XPP
X18 0 0 18 4518 1832 3 MP
XPP
X0 18 18 0 4518 1850 3 MP
XPP
X18 0 0 18 4518 1850 3 MP
XPP
X0 18 18 0 4518 1868 3 MP
XPP
X18 0 0 18 4518 1868 3 MP
XPP
X0 18 18 0 4518 1886 3 MP
XPP
X18 0 0 18 4518 1886 3 MP
XPP
X0 17 18 0 4518 1904 3 MP
XPP
X18 0 0 17 4518 1904 3 MP
XPP
X0 18 18 0 4518 1921 3 MP
XPP
X18 0 0 18 4518 1921 3 MP
XPP
X0 18 18 0 4518 1939 3 MP
XPP
X18 0 0 18 4518 1939 3 MP
XPP
X0 18 18 0 4518 1957 3 MP
XPP
X18 0 0 18 4518 1957 3 MP
XPP
X0 18 18 0 4518 1975 3 MP
XPP
X18 0 0 18 4518 1975 3 MP
XPP
X0 18 18 0 4518 1993 3 MP
XPP
X18 0 0 18 4518 1993 3 MP
XPP
X0 17 18 0 4518 2011 3 MP
XPP
X18 0 0 17 4518 2011 3 MP
XPP
X0 18 18 0 4518 2028 3 MP
XPP
X18 0 0 18 4518 2028 3 MP
XPP
X0 18 18 0 4518 2046 3 MP
XPP
X18 0 0 18 4518 2046 3 MP
XPP
X0 18 18 0 4518 2064 3 MP
XPP
X18 0 0 18 4518 2064 3 MP
XPP
X0 18 18 0 4518 2082 3 MP
XPP
X18 0 0 18 4518 2082 3 MP
XPP
X0 18 18 0 4518 2100 3 MP
XPP
X18 0 0 18 4518 2100 3 MP
XPP
X0 17 18 0 4518 2118 3 MP
XPP
X18 0 0 17 4518 2118 3 MP
XPP
X0 18 18 0 4518 2135 3 MP
XPP
X18 0 0 18 4518 2135 3 MP
XPP
X0 18 18 0 4518 2153 3 MP
XPP
X18 0 0 18 4518 2153 3 MP
XPP
X0 18 17 0 4536 388 3 MP
XPP
X17 0 0 18 4536 388 3 MP
XPP
X0 18 17 0 4536 406 3 MP
XPP
X17 0 0 18 4536 406 3 MP
XPP
X0 17 17 0 4536 424 3 MP
XPP
X17 0 0 17 4536 424 3 MP
XPP
X0 18 17 0 4536 441 3 MP
XPP
X17 0 0 18 4536 441 3 MP
XPP
X0 18 17 0 4536 459 3 MP
XPP
X17 0 0 18 4536 459 3 MP
XPP
X0 18 17 0 4536 477 3 MP
XPP
X17 0 0 18 4536 477 3 MP
XPP
X0 18 17 0 4536 495 3 MP
XPP
X17 0 0 18 4536 495 3 MP
XPP
X0 18 17 0 4536 513 3 MP
XPP
X17 0 0 18 4536 513 3 MP
XPP
X0 17 17 0 4536 531 3 MP
XPP
X17 0 0 17 4536 531 3 MP
XPP
X0 18 17 0 4536 548 3 MP
XPP
X17 0 0 18 4536 548 3 MP
XPP
X0 18 17 0 4536 566 3 MP
XPP
X17 0 0 18 4536 566 3 MP
XPP
X0 18 17 0 4536 584 3 MP
XPP
X17 0 0 18 4536 584 3 MP
XPP
X0 18 17 0 4536 602 3 MP
XPP
X17 0 0 18 4536 602 3 MP
XPP
X0 18 17 0 4536 620 3 MP
XPP
X17 0 0 18 4536 620 3 MP
XPP
X0 17 17 0 4536 638 3 MP
XPP
X17 0 0 17 4536 638 3 MP
XPP
X0 18 17 0 4536 655 3 MP
XPP
X17 0 0 18 4536 655 3 MP
XPP
X0 18 17 0 4536 673 3 MP
XPP
X17 0 0 18 4536 673 3 MP
XPP
X0 18 17 0 4536 691 3 MP
XPP
X17 0 0 18 4536 691 3 MP
XPP
X0 18 17 0 4536 709 3 MP
XPP
X17 0 0 18 4536 709 3 MP
XPP
X0 18 17 0 4536 727 3 MP
XPP
X17 0 0 18 4536 727 3 MP
XPP
X0 17 17 0 4536 745 3 MP
XPP
X17 0 0 17 4536 745 3 MP
XPP
X0 18 17 0 4536 762 3 MP
XPP
X17 0 0 18 4536 762 3 MP
XPP
X0 18 17 0 4536 780 3 MP
XPP
X17 0 0 18 4536 780 3 MP
XPP
X0 18 17 0 4536 798 3 MP
XPP
X17 0 0 18 4536 798 3 MP
XPP
X0 18 17 0 4536 816 3 MP
XPP
X17 0 0 18 4536 816 3 MP
XPP
X0 18 17 0 4536 834 3 MP
XPP
X17 0 0 18 4536 834 3 MP
XPP
X0 17 17 0 4536 852 3 MP
XPP
X17 0 0 17 4536 852 3 MP
XPP
X0 18 17 0 4536 869 3 MP
XPP
X17 0 0 18 4536 869 3 MP
XPP
X0 18 17 0 4536 887 3 MP
XPP
X17 0 0 18 4536 887 3 MP
XPP
X0 18 17 0 4536 905 3 MP
XPP
X17 0 0 18 4536 905 3 MP
XPP
X0 18 17 0 4536 923 3 MP
XPP
X17 0 0 18 4536 923 3 MP
XPP
X0 18 17 0 4536 941 3 MP
XPP
X17 0 0 18 4536 941 3 MP
XPP
X0 17 17 0 4536 959 3 MP
XPP
X17 0 0 17 4536 959 3 MP
XPP
X0 18 17 0 4536 976 3 MP
XPP
X17 0 0 18 4536 976 3 MP
XPP
X0 18 17 0 4536 994 3 MP
XPP
X17 0 0 18 4536 994 3 MP
XPP
X0 18 17 0 4536 1012 3 MP
XPP
X17 0 0 18 4536 1012 3 MP
XPP
X0 18 17 0 4536 1030 3 MP
XPP
X17 0 0 18 4536 1030 3 MP
XPP
X0 18 17 0 4536 1048 3 MP
XPP
X17 0 0 18 4536 1048 3 MP
XPP
X0 17 17 0 4536 1066 3 MP
XPP
X17 0 0 17 4536 1066 3 MP
XPP
X0.936508 sg
X0 18 17 0 4536 1083 3 MP
XPP
X17 0 0 18 4536 1083 3 MP
XPP
X0.68254 sg
X0 18 17 0 4536 1101 3 MP
XPP
X17 0 0 18 4536 1101 3 MP
XPP
X0.31746 sg
X0 18 17 0 4536 1119 3 MP
XPP
X17 0 0 18 4536 1119 3 MP
XPP
X0.0634921 sg
X0 18 17 0 4536 1137 3 MP
XPP
X17 0 0 18 4536 1137 3 MP
XPP
X0 sg
X0 18 17 0 4536 1155 3 MP
XPP
X17 0 0 18 4536 1155 3 MP
XPP
X0 17 17 0 4536 1173 3 MP
XPP
X17 0 0 17 4536 1173 3 MP
XPP
X0 18 17 0 4536 1190 3 MP
XPP
X17 0 0 18 4536 1190 3 MP
XPP
X0 18 17 0 4536 1208 3 MP
XPP
X17 0 0 18 4536 1208 3 MP
XPP
X0 18 17 0 4536 1226 3 MP
XPP
X17 0 0 18 4536 1226 3 MP
XPP
X0 18 17 0 4536 1244 3 MP
XPP
X17 0 0 18 4536 1244 3 MP
XPP
X0 17 17 0 4536 1262 3 MP
XPP
X17 0 0 17 4536 1262 3 MP
XPP
X0 18 17 0 4536 1279 3 MP
XPP
X17 0 0 18 4536 1279 3 MP
XPP
X0 18 17 0 4536 1297 3 MP
XPP
X17 0 0 18 4536 1297 3 MP
XPP
X0 18 17 0 4536 1315 3 MP
XPP
X17 0 0 18 4536 1315 3 MP
XPP
X0 18 17 0 4536 1333 3 MP
XPP
X17 0 0 18 4536 1333 3 MP
XPP
X0 18 17 0 4536 1351 3 MP
XPP
X17 0 0 18 4536 1351 3 MP
XPP
X0.031746 sg
X0 17 17 0 4536 1369 3 MP
XPP
X17 0 0 17 4536 1369 3 MP
XPP
X0.142857 sg
X0 18 17 0 4536 1386 3 MP
XPP
X17 0 0 18 4536 1386 3 MP
XPP
X0.365079 sg
X0 18 17 0 4536 1404 3 MP
XPP
X17 0 0 18 4536 1404 3 MP
XPP
X0.634921 sg
X0 18 17 0 4536 1422 3 MP
XPP
X17 0 0 18 4536 1422 3 MP
XPP
X0.857143 sg
X0 18 17 0 4536 1440 3 MP
XPP
X17 0 0 18 4536 1440 3 MP
XPP
X0.968254 sg
X0 18 17 0 4536 1458 3 MP
XPP
X17 0 0 18 4536 1458 3 MP
XPP
X1 sg
X0 17 17 0 4536 1476 3 MP
XPP
X17 0 0 17 4536 1476 3 MP
XPP
X0 18 17 0 4536 1493 3 MP
XPP
X17 0 0 18 4536 1493 3 MP
XPP
X0 18 17 0 4536 1511 3 MP
XPP
X17 0 0 18 4536 1511 3 MP
XPP
X0 18 17 0 4536 1529 3 MP
XPP
X17 0 0 18 4536 1529 3 MP
XPP
X0 18 17 0 4536 1547 3 MP
XPP
X17 0 0 18 4536 1547 3 MP
XPP
X0 18 17 0 4536 1565 3 MP
XPP
X17 0 0 18 4536 1565 3 MP
XPP
X0 17 17 0 4536 1583 3 MP
XPP
X17 0 0 17 4536 1583 3 MP
XPP
X0 18 17 0 4536 1600 3 MP
XPP
X17 0 0 18 4536 1600 3 MP
XPP
X0 18 17 0 4536 1618 3 MP
XPP
X17 0 0 18 4536 1618 3 MP
XPP
X0 18 17 0 4536 1636 3 MP
XPP
X17 0 0 18 4536 1636 3 MP
XPP
X0 18 17 0 4536 1654 3 MP
XPP
X17 0 0 18 4536 1654 3 MP
XPP
X0 18 17 0 4536 1672 3 MP
XPP
X17 0 0 18 4536 1672 3 MP
XPP
X0 17 17 0 4536 1690 3 MP
XPP
X17 0 0 17 4536 1690 3 MP
XPP
X0 18 17 0 4536 1707 3 MP
XPP
X17 0 0 18 4536 1707 3 MP
XPP
X0 18 17 0 4536 1725 3 MP
XPP
X17 0 0 18 4536 1725 3 MP
XPP
X0 18 17 0 4536 1743 3 MP
XPP
X17 0 0 18 4536 1743 3 MP
XPP
X0 18 17 0 4536 1761 3 MP
XPP
X17 0 0 18 4536 1761 3 MP
XPP
X0 18 17 0 4536 1779 3 MP
XPP
X17 0 0 18 4536 1779 3 MP
XPP
X0 17 17 0 4536 1797 3 MP
XPP
X17 0 0 17 4536 1797 3 MP
XPP
X0 18 17 0 4536 1814 3 MP
XPP
X17 0 0 18 4536 1814 3 MP
XPP
X0 18 17 0 4536 1832 3 MP
XPP
X17 0 0 18 4536 1832 3 MP
XPP
X0 18 17 0 4536 1850 3 MP
XPP
X17 0 0 18 4536 1850 3 MP
XPP
X0 18 17 0 4536 1868 3 MP
XPP
X17 0 0 18 4536 1868 3 MP
XPP
X0 18 17 0 4536 1886 3 MP
XPP
X17 0 0 18 4536 1886 3 MP
XPP
X0 17 17 0 4536 1904 3 MP
XPP
X17 0 0 17 4536 1904 3 MP
XPP
X0 18 17 0 4536 1921 3 MP
XPP
X17 0 0 18 4536 1921 3 MP
XPP
X0 18 17 0 4536 1939 3 MP
XPP
X17 0 0 18 4536 1939 3 MP
XPP
X0 18 17 0 4536 1957 3 MP
XPP
X17 0 0 18 4536 1957 3 MP
XPP
X0 18 17 0 4536 1975 3 MP
XPP
X17 0 0 18 4536 1975 3 MP
XPP
X0 18 17 0 4536 1993 3 MP
XPP
X17 0 0 18 4536 1993 3 MP
XPP
X0 17 17 0 4536 2011 3 MP
XPP
X17 0 0 17 4536 2011 3 MP
XPP
X0 18 17 0 4536 2028 3 MP
XPP
X17 0 0 18 4536 2028 3 MP
XPP
X0 18 17 0 4536 2046 3 MP
XPP
X17 0 0 18 4536 2046 3 MP
XPP
X0 18 17 0 4536 2064 3 MP
XPP
X17 0 0 18 4536 2064 3 MP
XPP
X0 18 17 0 4536 2082 3 MP
XPP
X17 0 0 18 4536 2082 3 MP
XPP
X0 18 17 0 4536 2100 3 MP
XPP
X17 0 0 18 4536 2100 3 MP
XPP
X0 17 17 0 4536 2118 3 MP
XPP
X17 0 0 17 4536 2118 3 MP
XPP
X0 18 17 0 4536 2135 3 MP
XPP
X17 0 0 18 4536 2135 3 MP
XPP
X0 18 17 0 4536 2153 3 MP
XPP
X17 0 0 18 4536 2153 3 MP
XPP
X0 18 18 0 4553 388 3 MP
XPP
X18 0 0 18 4553 388 3 MP
XPP
X0 18 18 0 4553 406 3 MP
XPP
X18 0 0 18 4553 406 3 MP
XPP
X0 17 18 0 4553 424 3 MP
XPP
X18 0 0 17 4553 424 3 MP
XPP
X0 18 18 0 4553 441 3 MP
XPP
X18 0 0 18 4553 441 3 MP
XPP
X0 18 18 0 4553 459 3 MP
XPP
X18 0 0 18 4553 459 3 MP
XPP
X0 18 18 0 4553 477 3 MP
XPP
X18 0 0 18 4553 477 3 MP
XPP
X0 18 18 0 4553 495 3 MP
XPP
X18 0 0 18 4553 495 3 MP
XPP
X0 18 18 0 4553 513 3 MP
XPP
X18 0 0 18 4553 513 3 MP
XPP
X0 17 18 0 4553 531 3 MP
XPP
X18 0 0 17 4553 531 3 MP
XPP
X0 18 18 0 4553 548 3 MP
XPP
X18 0 0 18 4553 548 3 MP
XPP
X0 18 18 0 4553 566 3 MP
XPP
X18 0 0 18 4553 566 3 MP
XPP
X0 18 18 0 4553 584 3 MP
XPP
X18 0 0 18 4553 584 3 MP
XPP
X0 18 18 0 4553 602 3 MP
XPP
X18 0 0 18 4553 602 3 MP
XPP
X0 18 18 0 4553 620 3 MP
XPP
X18 0 0 18 4553 620 3 MP
XPP
X0 17 18 0 4553 638 3 MP
XPP
X18 0 0 17 4553 638 3 MP
XPP
X0 18 18 0 4553 655 3 MP
XPP
X18 0 0 18 4553 655 3 MP
XPP
X0 18 18 0 4553 673 3 MP
XPP
X18 0 0 18 4553 673 3 MP
XPP
X0 18 18 0 4553 691 3 MP
XPP
X18 0 0 18 4553 691 3 MP
XPP
X0 18 18 0 4553 709 3 MP
XPP
X18 0 0 18 4553 709 3 MP
XPP
X0 18 18 0 4553 727 3 MP
XPP
X18 0 0 18 4553 727 3 MP
XPP
X0 17 18 0 4553 745 3 MP
XPP
X18 0 0 17 4553 745 3 MP
XPP
X0 18 18 0 4553 762 3 MP
XPP
X18 0 0 18 4553 762 3 MP
XPP
X0 18 18 0 4553 780 3 MP
XPP
X18 0 0 18 4553 780 3 MP
XPP
X0 18 18 0 4553 798 3 MP
XPP
X18 0 0 18 4553 798 3 MP
XPP
X0 18 18 0 4553 816 3 MP
XPP
X18 0 0 18 4553 816 3 MP
XPP
X0 18 18 0 4553 834 3 MP
XPP
X18 0 0 18 4553 834 3 MP
XPP
X0 17 18 0 4553 852 3 MP
XPP
X18 0 0 17 4553 852 3 MP
XPP
X0 18 18 0 4553 869 3 MP
XPP
X18 0 0 18 4553 869 3 MP
XPP
X0 18 18 0 4553 887 3 MP
XPP
X18 0 0 18 4553 887 3 MP
XPP
X0 18 18 0 4553 905 3 MP
XPP
X18 0 0 18 4553 905 3 MP
XPP
X0 18 18 0 4553 923 3 MP
XPP
X18 0 0 18 4553 923 3 MP
XPP
X0 18 18 0 4553 941 3 MP
XPP
X18 0 0 18 4553 941 3 MP
XPP
X0 17 18 0 4553 959 3 MP
XPP
X18 0 0 17 4553 959 3 MP
XPP
X0 18 18 0 4553 976 3 MP
XPP
X18 0 0 18 4553 976 3 MP
XPP
X0 18 18 0 4553 994 3 MP
XPP
X18 0 0 18 4553 994 3 MP
XPP
X0 18 18 0 4553 1012 3 MP
XPP
X18 0 0 18 4553 1012 3 MP
XPP
X0 18 18 0 4553 1030 3 MP
XPP
X18 0 0 18 4553 1030 3 MP
XPP
X0 18 18 0 4553 1048 3 MP
XPP
X18 0 0 18 4553 1048 3 MP
XPP
X0 17 18 0 4553 1066 3 MP
XPP
X18 0 0 17 4553 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4553 1083 3 MP
XPP
X18 0 0 18 4553 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4553 1101 3 MP
XPP
X18 0 0 18 4553 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4553 1119 3 MP
XPP
X18 0 0 18 4553 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4553 1137 3 MP
XPP
X18 0 0 18 4553 1137 3 MP
XPP
X0 sg
X0 18 18 0 4553 1155 3 MP
XPP
X18 0 0 18 4553 1155 3 MP
XPP
X0 17 18 0 4553 1173 3 MP
XPP
X18 0 0 17 4553 1173 3 MP
XPP
X0 18 18 0 4553 1190 3 MP
XPP
X18 0 0 18 4553 1190 3 MP
XPP
X0 18 18 0 4553 1208 3 MP
XPP
X18 0 0 18 4553 1208 3 MP
XPP
X0 18 18 0 4553 1226 3 MP
XPP
X18 0 0 18 4553 1226 3 MP
XPP
X0 18 18 0 4553 1244 3 MP
XPP
X18 0 0 18 4553 1244 3 MP
XPP
X0 17 18 0 4553 1262 3 MP
XPP
X18 0 0 17 4553 1262 3 MP
XPP
X0 18 18 0 4553 1279 3 MP
XPP
X18 0 0 18 4553 1279 3 MP
XPP
X0 18 18 0 4553 1297 3 MP
XPP
X18 0 0 18 4553 1297 3 MP
XPP
X0 18 18 0 4553 1315 3 MP
XPP
X18 0 0 18 4553 1315 3 MP
XPP
X0 18 18 0 4553 1333 3 MP
XPP
X18 0 0 18 4553 1333 3 MP
XPP
X0 18 18 0 4553 1351 3 MP
XPP
X18 0 0 18 4553 1351 3 MP
XPP
X0 17 18 0 4553 1369 3 MP
XPP
X18 0 0 17 4553 1369 3 MP
XPP
X0.031746 sg
X0 18 18 0 4553 1386 3 MP
XPP
X18 0 0 18 4553 1386 3 MP
XPP
X0.142857 sg
X0 18 18 0 4553 1404 3 MP
XPP
X18 0 0 18 4553 1404 3 MP
XPP
X0.365079 sg
X0 18 18 0 4553 1422 3 MP
XPP
X18 0 0 18 4553 1422 3 MP
XPP
X0.634921 sg
X0 18 18 0 4553 1440 3 MP
XPP
X18 0 0 18 4553 1440 3 MP
XPP
X0.857143 sg
X0 18 18 0 4553 1458 3 MP
XPP
X18 0 0 18 4553 1458 3 MP
XPP
X0.968254 sg
X0 17 18 0 4553 1476 3 MP
XPP
X18 0 0 17 4553 1476 3 MP
XPP
X1 sg
X0 18 18 0 4553 1493 3 MP
XPP
X18 0 0 18 4553 1493 3 MP
XPP
X0 18 18 0 4553 1511 3 MP
XPP
X18 0 0 18 4553 1511 3 MP
XPP
X0 18 18 0 4553 1529 3 MP
XPP
X18 0 0 18 4553 1529 3 MP
XPP
X0 18 18 0 4553 1547 3 MP
XPP
X18 0 0 18 4553 1547 3 MP
XPP
X0 18 18 0 4553 1565 3 MP
XPP
X18 0 0 18 4553 1565 3 MP
XPP
X0 17 18 0 4553 1583 3 MP
XPP
X18 0 0 17 4553 1583 3 MP
XPP
X0 18 18 0 4553 1600 3 MP
XPP
X18 0 0 18 4553 1600 3 MP
XPP
X0 18 18 0 4553 1618 3 MP
XPP
X18 0 0 18 4553 1618 3 MP
XPP
X0 18 18 0 4553 1636 3 MP
XPP
X18 0 0 18 4553 1636 3 MP
XPP
X0 18 18 0 4553 1654 3 MP
XPP
X18 0 0 18 4553 1654 3 MP
XPP
X0 18 18 0 4553 1672 3 MP
XPP
X18 0 0 18 4553 1672 3 MP
XPP
X0 17 18 0 4553 1690 3 MP
XPP
X18 0 0 17 4553 1690 3 MP
XPP
X0 18 18 0 4553 1707 3 MP
XPP
X18 0 0 18 4553 1707 3 MP
XPP
X0 18 18 0 4553 1725 3 MP
XPP
X18 0 0 18 4553 1725 3 MP
XPP
X0 18 18 0 4553 1743 3 MP
XPP
X18 0 0 18 4553 1743 3 MP
XPP
X0 18 18 0 4553 1761 3 MP
XPP
X18 0 0 18 4553 1761 3 MP
XPP
X0 18 18 0 4553 1779 3 MP
XPP
X18 0 0 18 4553 1779 3 MP
XPP
X0 17 18 0 4553 1797 3 MP
XPP
X18 0 0 17 4553 1797 3 MP
XPP
X0 18 18 0 4553 1814 3 MP
XPP
X18 0 0 18 4553 1814 3 MP
XPP
X0 18 18 0 4553 1832 3 MP
XPP
X18 0 0 18 4553 1832 3 MP
XPP
X0 18 18 0 4553 1850 3 MP
XPP
X18 0 0 18 4553 1850 3 MP
XPP
X0 18 18 0 4553 1868 3 MP
XPP
X18 0 0 18 4553 1868 3 MP
XPP
X0 18 18 0 4553 1886 3 MP
XPP
X18 0 0 18 4553 1886 3 MP
XPP
X0 17 18 0 4553 1904 3 MP
XPP
X18 0 0 17 4553 1904 3 MP
XPP
X0 18 18 0 4553 1921 3 MP
XPP
X18 0 0 18 4553 1921 3 MP
XPP
X0 18 18 0 4553 1939 3 MP
XPP
X18 0 0 18 4553 1939 3 MP
XPP
X0 18 18 0 4553 1957 3 MP
XPP
X18 0 0 18 4553 1957 3 MP
XPP
X0 18 18 0 4553 1975 3 MP
XPP
X18 0 0 18 4553 1975 3 MP
XPP
X0 18 18 0 4553 1993 3 MP
XPP
X18 0 0 18 4553 1993 3 MP
XPP
X0 17 18 0 4553 2011 3 MP
XPP
X18 0 0 17 4553 2011 3 MP
XPP
X0 18 18 0 4553 2028 3 MP
XPP
X18 0 0 18 4553 2028 3 MP
XPP
X0 18 18 0 4553 2046 3 MP
XPP
X18 0 0 18 4553 2046 3 MP
XPP
X0 18 18 0 4553 2064 3 MP
XPP
X18 0 0 18 4553 2064 3 MP
XPP
X0 18 18 0 4553 2082 3 MP
XPP
X18 0 0 18 4553 2082 3 MP
XPP
X0 18 18 0 4553 2100 3 MP
XPP
X18 0 0 18 4553 2100 3 MP
XPP
X0 17 18 0 4553 2118 3 MP
XPP
X18 0 0 17 4553 2118 3 MP
XPP
X0 18 18 0 4553 2135 3 MP
XPP
X18 0 0 18 4553 2135 3 MP
XPP
X0 18 18 0 4553 2153 3 MP
XPP
X18 0 0 18 4553 2153 3 MP
XPP
X0 18 18 0 4571 388 3 MP
XPP
X18 0 0 18 4571 388 3 MP
XPP
X0 18 18 0 4571 406 3 MP
XPP
X18 0 0 18 4571 406 3 MP
XPP
X0 17 18 0 4571 424 3 MP
XPP
X18 0 0 17 4571 424 3 MP
XPP
X0 18 18 0 4571 441 3 MP
XPP
X18 0 0 18 4571 441 3 MP
XPP
X0 18 18 0 4571 459 3 MP
XPP
X18 0 0 18 4571 459 3 MP
XPP
X0 18 18 0 4571 477 3 MP
XPP
X18 0 0 18 4571 477 3 MP
XPP
X0 18 18 0 4571 495 3 MP
XPP
X18 0 0 18 4571 495 3 MP
XPP
X0 18 18 0 4571 513 3 MP
XPP
X18 0 0 18 4571 513 3 MP
XPP
X0 17 18 0 4571 531 3 MP
XPP
X18 0 0 17 4571 531 3 MP
XPP
X0 18 18 0 4571 548 3 MP
XPP
X18 0 0 18 4571 548 3 MP
XPP
X0 18 18 0 4571 566 3 MP
XPP
X18 0 0 18 4571 566 3 MP
XPP
X0 18 18 0 4571 584 3 MP
XPP
X18 0 0 18 4571 584 3 MP
XPP
X0 18 18 0 4571 602 3 MP
XPP
X18 0 0 18 4571 602 3 MP
XPP
X0 18 18 0 4571 620 3 MP
XPP
X18 0 0 18 4571 620 3 MP
XPP
X0 17 18 0 4571 638 3 MP
XPP
X18 0 0 17 4571 638 3 MP
XPP
X0 18 18 0 4571 655 3 MP
XPP
X18 0 0 18 4571 655 3 MP
XPP
X0 18 18 0 4571 673 3 MP
XPP
X18 0 0 18 4571 673 3 MP
XPP
X0 18 18 0 4571 691 3 MP
XPP
X18 0 0 18 4571 691 3 MP
XPP
X0 18 18 0 4571 709 3 MP
XPP
X18 0 0 18 4571 709 3 MP
XPP
X0 18 18 0 4571 727 3 MP
XPP
X18 0 0 18 4571 727 3 MP
XPP
X0 17 18 0 4571 745 3 MP
XPP
X18 0 0 17 4571 745 3 MP
XPP
X0 18 18 0 4571 762 3 MP
XPP
X18 0 0 18 4571 762 3 MP
XPP
X0 18 18 0 4571 780 3 MP
XPP
X18 0 0 18 4571 780 3 MP
XPP
X0 18 18 0 4571 798 3 MP
XPP
X18 0 0 18 4571 798 3 MP
XPP
X0 18 18 0 4571 816 3 MP
XPP
X18 0 0 18 4571 816 3 MP
XPP
X0 18 18 0 4571 834 3 MP
XPP
X18 0 0 18 4571 834 3 MP
XPP
X0 17 18 0 4571 852 3 MP
XPP
X18 0 0 17 4571 852 3 MP
XPP
X0 18 18 0 4571 869 3 MP
XPP
X18 0 0 18 4571 869 3 MP
XPP
X0 18 18 0 4571 887 3 MP
XPP
X18 0 0 18 4571 887 3 MP
XPP
X0 18 18 0 4571 905 3 MP
XPP
X18 0 0 18 4571 905 3 MP
XPP
X0 18 18 0 4571 923 3 MP
XPP
X18 0 0 18 4571 923 3 MP
XPP
X0 18 18 0 4571 941 3 MP
XPP
X18 0 0 18 4571 941 3 MP
XPP
X0 17 18 0 4571 959 3 MP
XPP
X18 0 0 17 4571 959 3 MP
XPP
X0 18 18 0 4571 976 3 MP
XPP
X18 0 0 18 4571 976 3 MP
XPP
X0 18 18 0 4571 994 3 MP
XPP
X18 0 0 18 4571 994 3 MP
XPP
X0 18 18 0 4571 1012 3 MP
XPP
X18 0 0 18 4571 1012 3 MP
XPP
X0 18 18 0 4571 1030 3 MP
XPP
X18 0 0 18 4571 1030 3 MP
XPP
X0 18 18 0 4571 1048 3 MP
XPP
X18 0 0 18 4571 1048 3 MP
XPP
X0 17 18 0 4571 1066 3 MP
XPP
X18 0 0 17 4571 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4571 1083 3 MP
XPP
X18 0 0 18 4571 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4571 1101 3 MP
XPP
X18 0 0 18 4571 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4571 1119 3 MP
XPP
X18 0 0 18 4571 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4571 1137 3 MP
XPP
X18 0 0 18 4571 1137 3 MP
XPP
X0 sg
X0 18 18 0 4571 1155 3 MP
XPP
X18 0 0 18 4571 1155 3 MP
XPP
X0 17 18 0 4571 1173 3 MP
XPP
X18 0 0 17 4571 1173 3 MP
XPP
X0 18 18 0 4571 1190 3 MP
XPP
X18 0 0 18 4571 1190 3 MP
XPP
X0 18 18 0 4571 1208 3 MP
XPP
X18 0 0 18 4571 1208 3 MP
XPP
X0 18 18 0 4571 1226 3 MP
XPP
X18 0 0 18 4571 1226 3 MP
XPP
X0 18 18 0 4571 1244 3 MP
XPP
X18 0 0 18 4571 1244 3 MP
XPP
X0 17 18 0 4571 1262 3 MP
XPP
X18 0 0 17 4571 1262 3 MP
XPP
X0 18 18 0 4571 1279 3 MP
XPP
X18 0 0 18 4571 1279 3 MP
XPP
X0 18 18 0 4571 1297 3 MP
XPP
X18 0 0 18 4571 1297 3 MP
XPP
X0 18 18 0 4571 1315 3 MP
XPP
X18 0 0 18 4571 1315 3 MP
XPP
X0 18 18 0 4571 1333 3 MP
XPP
X18 0 0 18 4571 1333 3 MP
XPP
X0 18 18 0 4571 1351 3 MP
XPP
X18 0 0 18 4571 1351 3 MP
XPP
X0 17 18 0 4571 1369 3 MP
XPP
X18 0 0 17 4571 1369 3 MP
XPP
X0 18 18 0 4571 1386 3 MP
XPP
X18 0 0 18 4571 1386 3 MP
XPP
X0.031746 sg
X0 18 18 0 4571 1404 3 MP
XPP
X18 0 0 18 4571 1404 3 MP
XPP
X0.142857 sg
X0 18 18 0 4571 1422 3 MP
XPP
X18 0 0 18 4571 1422 3 MP
XPP
X0.365079 sg
X0 18 18 0 4571 1440 3 MP
XPP
X18 0 0 18 4571 1440 3 MP
XPP
X0.634921 sg
X0 18 18 0 4571 1458 3 MP
XPP
X18 0 0 18 4571 1458 3 MP
XPP
X0.857143 sg
X0 17 18 0 4571 1476 3 MP
XPP
X18 0 0 17 4571 1476 3 MP
XPP
X0.968254 sg
X0 18 18 0 4571 1493 3 MP
XPP
X18 0 0 18 4571 1493 3 MP
XPP
X1 sg
X0 18 18 0 4571 1511 3 MP
XPP
X18 0 0 18 4571 1511 3 MP
XPP
X0 18 18 0 4571 1529 3 MP
XPP
X18 0 0 18 4571 1529 3 MP
XPP
X0 18 18 0 4571 1547 3 MP
XPP
X18 0 0 18 4571 1547 3 MP
XPP
X0 18 18 0 4571 1565 3 MP
XPP
X18 0 0 18 4571 1565 3 MP
XPP
X0 17 18 0 4571 1583 3 MP
XPP
X18 0 0 17 4571 1583 3 MP
XPP
X0 18 18 0 4571 1600 3 MP
XPP
X18 0 0 18 4571 1600 3 MP
XPP
X0 18 18 0 4571 1618 3 MP
XPP
X18 0 0 18 4571 1618 3 MP
XPP
X0 18 18 0 4571 1636 3 MP
XPP
X18 0 0 18 4571 1636 3 MP
XPP
X0 18 18 0 4571 1654 3 MP
XPP
X18 0 0 18 4571 1654 3 MP
XPP
X0 18 18 0 4571 1672 3 MP
XPP
X18 0 0 18 4571 1672 3 MP
XPP
X0 17 18 0 4571 1690 3 MP
XPP
X18 0 0 17 4571 1690 3 MP
XPP
X0 18 18 0 4571 1707 3 MP
XPP
X18 0 0 18 4571 1707 3 MP
XPP
X0 18 18 0 4571 1725 3 MP
XPP
X18 0 0 18 4571 1725 3 MP
XPP
X0 18 18 0 4571 1743 3 MP
XPP
X18 0 0 18 4571 1743 3 MP
XPP
X0 18 18 0 4571 1761 3 MP
XPP
X18 0 0 18 4571 1761 3 MP
XPP
X0 18 18 0 4571 1779 3 MP
XPP
X18 0 0 18 4571 1779 3 MP
XPP
X0 17 18 0 4571 1797 3 MP
XPP
X18 0 0 17 4571 1797 3 MP
XPP
X0 18 18 0 4571 1814 3 MP
XPP
X18 0 0 18 4571 1814 3 MP
XPP
X0 18 18 0 4571 1832 3 MP
XPP
X18 0 0 18 4571 1832 3 MP
XPP
X0 18 18 0 4571 1850 3 MP
XPP
X18 0 0 18 4571 1850 3 MP
XPP
X0 18 18 0 4571 1868 3 MP
XPP
X18 0 0 18 4571 1868 3 MP
XPP
X0 18 18 0 4571 1886 3 MP
XPP
X18 0 0 18 4571 1886 3 MP
XPP
X0 17 18 0 4571 1904 3 MP
XPP
X18 0 0 17 4571 1904 3 MP
XPP
X0 18 18 0 4571 1921 3 MP
XPP
X18 0 0 18 4571 1921 3 MP
XPP
X0 18 18 0 4571 1939 3 MP
XPP
X18 0 0 18 4571 1939 3 MP
XPP
X0 18 18 0 4571 1957 3 MP
XPP
X18 0 0 18 4571 1957 3 MP
XPP
X0 18 18 0 4571 1975 3 MP
XPP
X18 0 0 18 4571 1975 3 MP
XPP
X0 18 18 0 4571 1993 3 MP
XPP
X18 0 0 18 4571 1993 3 MP
XPP
X0 17 18 0 4571 2011 3 MP
XPP
X18 0 0 17 4571 2011 3 MP
XPP
X0 18 18 0 4571 2028 3 MP
XPP
X18 0 0 18 4571 2028 3 MP
XPP
X0 18 18 0 4571 2046 3 MP
XPP
X18 0 0 18 4571 2046 3 MP
XPP
X0 18 18 0 4571 2064 3 MP
XPP
X18 0 0 18 4571 2064 3 MP
XPP
X0 18 18 0 4571 2082 3 MP
XPP
X18 0 0 18 4571 2082 3 MP
XPP
X0 18 18 0 4571 2100 3 MP
XPP
X18 0 0 18 4571 2100 3 MP
XPP
X0 17 18 0 4571 2118 3 MP
XPP
X18 0 0 17 4571 2118 3 MP
XPP
X0 18 18 0 4571 2135 3 MP
XPP
X18 0 0 18 4571 2135 3 MP
XPP
X0 18 18 0 4571 2153 3 MP
XPP
X18 0 0 18 4571 2153 3 MP
XPP
X0 18 18 0 4589 388 3 MP
XPP
X18 0 0 18 4589 388 3 MP
XPP
X0 18 18 0 4589 406 3 MP
XPP
X18 0 0 18 4589 406 3 MP
XPP
X0 17 18 0 4589 424 3 MP
XPP
X18 0 0 17 4589 424 3 MP
XPP
X0 18 18 0 4589 441 3 MP
XPP
X18 0 0 18 4589 441 3 MP
XPP
X0 18 18 0 4589 459 3 MP
XPP
X18 0 0 18 4589 459 3 MP
XPP
X0 18 18 0 4589 477 3 MP
XPP
X18 0 0 18 4589 477 3 MP
XPP
X0 18 18 0 4589 495 3 MP
XPP
X18 0 0 18 4589 495 3 MP
XPP
X0 18 18 0 4589 513 3 MP
XPP
X18 0 0 18 4589 513 3 MP
XPP
X0 17 18 0 4589 531 3 MP
XPP
X18 0 0 17 4589 531 3 MP
XPP
X0 18 18 0 4589 548 3 MP
XPP
X18 0 0 18 4589 548 3 MP
XPP
X0 18 18 0 4589 566 3 MP
XPP
X18 0 0 18 4589 566 3 MP
XPP
X0 18 18 0 4589 584 3 MP
XPP
X18 0 0 18 4589 584 3 MP
XPP
X0 18 18 0 4589 602 3 MP
XPP
X18 0 0 18 4589 602 3 MP
XPP
X0 18 18 0 4589 620 3 MP
XPP
X18 0 0 18 4589 620 3 MP
XPP
X0 17 18 0 4589 638 3 MP
XPP
X18 0 0 17 4589 638 3 MP
XPP
X0 18 18 0 4589 655 3 MP
XPP
X18 0 0 18 4589 655 3 MP
XPP
X0 18 18 0 4589 673 3 MP
XPP
X18 0 0 18 4589 673 3 MP
XPP
X0 18 18 0 4589 691 3 MP
XPP
X18 0 0 18 4589 691 3 MP
XPP
X0 18 18 0 4589 709 3 MP
XPP
X18 0 0 18 4589 709 3 MP
XPP
X0 18 18 0 4589 727 3 MP
XPP
X18 0 0 18 4589 727 3 MP
XPP
X0 17 18 0 4589 745 3 MP
XPP
X18 0 0 17 4589 745 3 MP
XPP
X0 18 18 0 4589 762 3 MP
XPP
X18 0 0 18 4589 762 3 MP
XPP
X0 18 18 0 4589 780 3 MP
XPP
X18 0 0 18 4589 780 3 MP
XPP
X0 18 18 0 4589 798 3 MP
XPP
X18 0 0 18 4589 798 3 MP
XPP
X0 18 18 0 4589 816 3 MP
XPP
X18 0 0 18 4589 816 3 MP
XPP
X0 18 18 0 4589 834 3 MP
XPP
X18 0 0 18 4589 834 3 MP
XPP
X0 17 18 0 4589 852 3 MP
XPP
X18 0 0 17 4589 852 3 MP
XPP
X0 18 18 0 4589 869 3 MP
XPP
X18 0 0 18 4589 869 3 MP
XPP
X0 18 18 0 4589 887 3 MP
XPP
X18 0 0 18 4589 887 3 MP
XPP
X0 18 18 0 4589 905 3 MP
XPP
X18 0 0 18 4589 905 3 MP
XPP
X0 18 18 0 4589 923 3 MP
XPP
X18 0 0 18 4589 923 3 MP
XPP
X0 18 18 0 4589 941 3 MP
XPP
X18 0 0 18 4589 941 3 MP
XPP
X0 17 18 0 4589 959 3 MP
XPP
X18 0 0 17 4589 959 3 MP
XPP
X0 18 18 0 4589 976 3 MP
XPP
X18 0 0 18 4589 976 3 MP
XPP
X0 18 18 0 4589 994 3 MP
XPP
X18 0 0 18 4589 994 3 MP
XPP
X0 18 18 0 4589 1012 3 MP
XPP
X18 0 0 18 4589 1012 3 MP
XPP
X0 18 18 0 4589 1030 3 MP
XPP
X18 0 0 18 4589 1030 3 MP
XPP
X0 18 18 0 4589 1048 3 MP
XPP
X18 0 0 18 4589 1048 3 MP
XPP
X0 17 18 0 4589 1066 3 MP
XPP
X18 0 0 17 4589 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4589 1083 3 MP
XPP
X18 0 0 18 4589 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4589 1101 3 MP
XPP
X18 0 0 18 4589 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4589 1119 3 MP
XPP
X18 0 0 18 4589 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4589 1137 3 MP
XPP
X18 0 0 18 4589 1137 3 MP
XPP
X0 sg
X0 18 18 0 4589 1155 3 MP
XPP
X18 0 0 18 4589 1155 3 MP
XPP
X0 17 18 0 4589 1173 3 MP
XPP
X18 0 0 17 4589 1173 3 MP
XPP
X0 18 18 0 4589 1190 3 MP
XPP
X18 0 0 18 4589 1190 3 MP
XPP
X0 18 18 0 4589 1208 3 MP
XPP
X18 0 0 18 4589 1208 3 MP
XPP
X0 18 18 0 4589 1226 3 MP
XPP
X18 0 0 18 4589 1226 3 MP
XPP
X0 18 18 0 4589 1244 3 MP
XPP
X18 0 0 18 4589 1244 3 MP
XPP
X0 17 18 0 4589 1262 3 MP
XPP
X18 0 0 17 4589 1262 3 MP
XPP
X0 18 18 0 4589 1279 3 MP
XPP
X18 0 0 18 4589 1279 3 MP
XPP
X0 18 18 0 4589 1297 3 MP
XPP
X18 0 0 18 4589 1297 3 MP
XPP
X0 18 18 0 4589 1315 3 MP
XPP
X18 0 0 18 4589 1315 3 MP
XPP
X0 18 18 0 4589 1333 3 MP
XPP
X18 0 0 18 4589 1333 3 MP
XPP
X0 18 18 0 4589 1351 3 MP
XPP
X18 0 0 18 4589 1351 3 MP
XPP
X0 17 18 0 4589 1369 3 MP
XPP
X18 0 0 17 4589 1369 3 MP
XPP
X0 18 18 0 4589 1386 3 MP
XPP
X18 0 0 18 4589 1386 3 MP
XPP
X0 18 18 0 4589 1404 3 MP
XPP
X18 0 0 18 4589 1404 3 MP
XPP
X0.031746 sg
X0 18 18 0 4589 1422 3 MP
XPP
X18 0 0 18 4589 1422 3 MP
XPP
X0.142857 sg
X0 18 18 0 4589 1440 3 MP
XPP
X18 0 0 18 4589 1440 3 MP
XPP
X0.365079 sg
X0 18 18 0 4589 1458 3 MP
XPP
X18 0 0 18 4589 1458 3 MP
XPP
X0.634921 sg
X0 17 18 0 4589 1476 3 MP
XPP
X18 0 0 17 4589 1476 3 MP
XPP
X0.857143 sg
X0 18 18 0 4589 1493 3 MP
XPP
X18 0 0 18 4589 1493 3 MP
XPP
X0.968254 sg
X0 18 18 0 4589 1511 3 MP
XPP
X18 0 0 18 4589 1511 3 MP
XPP
X1 sg
X0 18 18 0 4589 1529 3 MP
XPP
X18 0 0 18 4589 1529 3 MP
XPP
X0 18 18 0 4589 1547 3 MP
XPP
X18 0 0 18 4589 1547 3 MP
XPP
X0 18 18 0 4589 1565 3 MP
XPP
X18 0 0 18 4589 1565 3 MP
XPP
X0 17 18 0 4589 1583 3 MP
XPP
X18 0 0 17 4589 1583 3 MP
XPP
X0 18 18 0 4589 1600 3 MP
XPP
X18 0 0 18 4589 1600 3 MP
XPP
X0 18 18 0 4589 1618 3 MP
XPP
X18 0 0 18 4589 1618 3 MP
XPP
X0 18 18 0 4589 1636 3 MP
XPP
X18 0 0 18 4589 1636 3 MP
XPP
X0 18 18 0 4589 1654 3 MP
XPP
X18 0 0 18 4589 1654 3 MP
XPP
X0 18 18 0 4589 1672 3 MP
XPP
X18 0 0 18 4589 1672 3 MP
XPP
X0 17 18 0 4589 1690 3 MP
XPP
X18 0 0 17 4589 1690 3 MP
XPP
X0 18 18 0 4589 1707 3 MP
XPP
X18 0 0 18 4589 1707 3 MP
XPP
X0 18 18 0 4589 1725 3 MP
XPP
X18 0 0 18 4589 1725 3 MP
XPP
X0 18 18 0 4589 1743 3 MP
XPP
X18 0 0 18 4589 1743 3 MP
XPP
X0 18 18 0 4589 1761 3 MP
XPP
X18 0 0 18 4589 1761 3 MP
XPP
X0 18 18 0 4589 1779 3 MP
XPP
X18 0 0 18 4589 1779 3 MP
XPP
X0 17 18 0 4589 1797 3 MP
XPP
X18 0 0 17 4589 1797 3 MP
XPP
X0 18 18 0 4589 1814 3 MP
XPP
X18 0 0 18 4589 1814 3 MP
XPP
X0 18 18 0 4589 1832 3 MP
XPP
X18 0 0 18 4589 1832 3 MP
XPP
X0 18 18 0 4589 1850 3 MP
XPP
X18 0 0 18 4589 1850 3 MP
XPP
X0 18 18 0 4589 1868 3 MP
XPP
X18 0 0 18 4589 1868 3 MP
XPP
X0 18 18 0 4589 1886 3 MP
XPP
X18 0 0 18 4589 1886 3 MP
XPP
X0 17 18 0 4589 1904 3 MP
XPP
X18 0 0 17 4589 1904 3 MP
XPP
X0 18 18 0 4589 1921 3 MP
XPP
X18 0 0 18 4589 1921 3 MP
XPP
X0 18 18 0 4589 1939 3 MP
XPP
X18 0 0 18 4589 1939 3 MP
XPP
X0 18 18 0 4589 1957 3 MP
XPP
X18 0 0 18 4589 1957 3 MP
XPP
X0 18 18 0 4589 1975 3 MP
XPP
X18 0 0 18 4589 1975 3 MP
XPP
X0 18 18 0 4589 1993 3 MP
XPP
X18 0 0 18 4589 1993 3 MP
XPP
X0 17 18 0 4589 2011 3 MP
XPP
X18 0 0 17 4589 2011 3 MP
XPP
X0 18 18 0 4589 2028 3 MP
XPP
X18 0 0 18 4589 2028 3 MP
XPP
X0 18 18 0 4589 2046 3 MP
XPP
X18 0 0 18 4589 2046 3 MP
XPP
X0 18 18 0 4589 2064 3 MP
XPP
X18 0 0 18 4589 2064 3 MP
XPP
X0 18 18 0 4589 2082 3 MP
XPP
X18 0 0 18 4589 2082 3 MP
XPP
X0 18 18 0 4589 2100 3 MP
XPP
X18 0 0 18 4589 2100 3 MP
XPP
X0 17 18 0 4589 2118 3 MP
XPP
X18 0 0 17 4589 2118 3 MP
XPP
X0 18 18 0 4589 2135 3 MP
XPP
X18 0 0 18 4589 2135 3 MP
XPP
X0 18 18 0 4589 2153 3 MP
XPP
X18 0 0 18 4589 2153 3 MP
XPP
X0 18 18 0 4607 388 3 MP
XPP
X18 0 0 18 4607 388 3 MP
XPP
X0 18 18 0 4607 406 3 MP
XPP
X18 0 0 18 4607 406 3 MP
XPP
X0 17 18 0 4607 424 3 MP
XPP
X18 0 0 17 4607 424 3 MP
XPP
X0 18 18 0 4607 441 3 MP
XPP
X18 0 0 18 4607 441 3 MP
XPP
X0 18 18 0 4607 459 3 MP
XPP
X18 0 0 18 4607 459 3 MP
XPP
X0 18 18 0 4607 477 3 MP
XPP
X18 0 0 18 4607 477 3 MP
XPP
X0 18 18 0 4607 495 3 MP
XPP
X18 0 0 18 4607 495 3 MP
XPP
X0 18 18 0 4607 513 3 MP
XPP
X18 0 0 18 4607 513 3 MP
XPP
X0 17 18 0 4607 531 3 MP
XPP
X18 0 0 17 4607 531 3 MP
XPP
X0 18 18 0 4607 548 3 MP
XPP
X18 0 0 18 4607 548 3 MP
XPP
X0 18 18 0 4607 566 3 MP
XPP
X18 0 0 18 4607 566 3 MP
XPP
X0 18 18 0 4607 584 3 MP
XPP
X18 0 0 18 4607 584 3 MP
XPP
X0 18 18 0 4607 602 3 MP
XPP
X18 0 0 18 4607 602 3 MP
XPP
X0 18 18 0 4607 620 3 MP
XPP
X18 0 0 18 4607 620 3 MP
XPP
X0 17 18 0 4607 638 3 MP
XPP
X18 0 0 17 4607 638 3 MP
XPP
X0 18 18 0 4607 655 3 MP
XPP
X18 0 0 18 4607 655 3 MP
XPP
X0 18 18 0 4607 673 3 MP
XPP
X18 0 0 18 4607 673 3 MP
XPP
X0 18 18 0 4607 691 3 MP
XPP
X18 0 0 18 4607 691 3 MP
XPP
X0 18 18 0 4607 709 3 MP
XPP
X18 0 0 18 4607 709 3 MP
XPP
X0 18 18 0 4607 727 3 MP
XPP
X18 0 0 18 4607 727 3 MP
XPP
X0 17 18 0 4607 745 3 MP
XPP
X18 0 0 17 4607 745 3 MP
XPP
X0 18 18 0 4607 762 3 MP
XPP
X18 0 0 18 4607 762 3 MP
XPP
X0 18 18 0 4607 780 3 MP
XPP
X18 0 0 18 4607 780 3 MP
XPP
X0 18 18 0 4607 798 3 MP
XPP
X18 0 0 18 4607 798 3 MP
XPP
X0 18 18 0 4607 816 3 MP
XPP
X18 0 0 18 4607 816 3 MP
XPP
X0 18 18 0 4607 834 3 MP
XPP
X18 0 0 18 4607 834 3 MP
XPP
X0 17 18 0 4607 852 3 MP
XPP
X18 0 0 17 4607 852 3 MP
XPP
X0 18 18 0 4607 869 3 MP
XPP
X18 0 0 18 4607 869 3 MP
XPP
X0 18 18 0 4607 887 3 MP
XPP
X18 0 0 18 4607 887 3 MP
XPP
X0 18 18 0 4607 905 3 MP
XPP
X18 0 0 18 4607 905 3 MP
XPP
X0 18 18 0 4607 923 3 MP
XPP
X18 0 0 18 4607 923 3 MP
XPP
X0 18 18 0 4607 941 3 MP
XPP
X18 0 0 18 4607 941 3 MP
XPP
X0 17 18 0 4607 959 3 MP
XPP
X18 0 0 17 4607 959 3 MP
XPP
X0 18 18 0 4607 976 3 MP
XPP
X18 0 0 18 4607 976 3 MP
XPP
X0 18 18 0 4607 994 3 MP
XPP
X18 0 0 18 4607 994 3 MP
XPP
X0 18 18 0 4607 1012 3 MP
XPP
X18 0 0 18 4607 1012 3 MP
XPP
X0 18 18 0 4607 1030 3 MP
XPP
X18 0 0 18 4607 1030 3 MP
XPP
X0 18 18 0 4607 1048 3 MP
XPP
X18 0 0 18 4607 1048 3 MP
XPP
X0 17 18 0 4607 1066 3 MP
XPP
X18 0 0 17 4607 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4607 1083 3 MP
XPP
X18 0 0 18 4607 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4607 1101 3 MP
XPP
X18 0 0 18 4607 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4607 1119 3 MP
XPP
X18 0 0 18 4607 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4607 1137 3 MP
XPP
X18 0 0 18 4607 1137 3 MP
XPP
X0 sg
X0 18 18 0 4607 1155 3 MP
XPP
X18 0 0 18 4607 1155 3 MP
XPP
X0 17 18 0 4607 1173 3 MP
XPP
X18 0 0 17 4607 1173 3 MP
XPP
X0 18 18 0 4607 1190 3 MP
XPP
X18 0 0 18 4607 1190 3 MP
XPP
X0 18 18 0 4607 1208 3 MP
XPP
X18 0 0 18 4607 1208 3 MP
XPP
X0 18 18 0 4607 1226 3 MP
XPP
X18 0 0 18 4607 1226 3 MP
XPP
X0 18 18 0 4607 1244 3 MP
XPP
X18 0 0 18 4607 1244 3 MP
XPP
X0 17 18 0 4607 1262 3 MP
XPP
X18 0 0 17 4607 1262 3 MP
XPP
X0 18 18 0 4607 1279 3 MP
XPP
X18 0 0 18 4607 1279 3 MP
XPP
X0 18 18 0 4607 1297 3 MP
XPP
X18 0 0 18 4607 1297 3 MP
XPP
X0 18 18 0 4607 1315 3 MP
XPP
X18 0 0 18 4607 1315 3 MP
XPP
X0 18 18 0 4607 1333 3 MP
XPP
X18 0 0 18 4607 1333 3 MP
XPP
X0 18 18 0 4607 1351 3 MP
XPP
X18 0 0 18 4607 1351 3 MP
XPP
X0 17 18 0 4607 1369 3 MP
XPP
X18 0 0 17 4607 1369 3 MP
XPP
X0 18 18 0 4607 1386 3 MP
XPP
X18 0 0 18 4607 1386 3 MP
XPP
X0 18 18 0 4607 1404 3 MP
XPP
X18 0 0 18 4607 1404 3 MP
XPP
X0 18 18 0 4607 1422 3 MP
XPP
X18 0 0 18 4607 1422 3 MP
XPP
X0.031746 sg
X0 18 18 0 4607 1440 3 MP
XPP
X18 0 0 18 4607 1440 3 MP
XPP
X0.142857 sg
X0 18 18 0 4607 1458 3 MP
XPP
X18 0 0 18 4607 1458 3 MP
XPP
X0.365079 sg
X0 17 18 0 4607 1476 3 MP
XPP
X18 0 0 17 4607 1476 3 MP
XPP
X0.634921 sg
X0 18 18 0 4607 1493 3 MP
XPP
X18 0 0 18 4607 1493 3 MP
XPP
X0.857143 sg
X0 18 18 0 4607 1511 3 MP
XPP
X18 0 0 18 4607 1511 3 MP
XPP
X0.968254 sg
X0 18 18 0 4607 1529 3 MP
XPP
X18 0 0 18 4607 1529 3 MP
XPP
X1 sg
X0 18 18 0 4607 1547 3 MP
XPP
X18 0 0 18 4607 1547 3 MP
XPP
X0 18 18 0 4607 1565 3 MP
XPP
X18 0 0 18 4607 1565 3 MP
XPP
X0 17 18 0 4607 1583 3 MP
XPP
X18 0 0 17 4607 1583 3 MP
XPP
X0 18 18 0 4607 1600 3 MP
XPP
X18 0 0 18 4607 1600 3 MP
XPP
X0 18 18 0 4607 1618 3 MP
XPP
X18 0 0 18 4607 1618 3 MP
XPP
X0 18 18 0 4607 1636 3 MP
XPP
X18 0 0 18 4607 1636 3 MP
XPP
X0 18 18 0 4607 1654 3 MP
XPP
X18 0 0 18 4607 1654 3 MP
XPP
X0 18 18 0 4607 1672 3 MP
XPP
X18 0 0 18 4607 1672 3 MP
XPP
X0 17 18 0 4607 1690 3 MP
XPP
X18 0 0 17 4607 1690 3 MP
XPP
X0 18 18 0 4607 1707 3 MP
XPP
X18 0 0 18 4607 1707 3 MP
XPP
X0 18 18 0 4607 1725 3 MP
XPP
X18 0 0 18 4607 1725 3 MP
XPP
X0 18 18 0 4607 1743 3 MP
XPP
X18 0 0 18 4607 1743 3 MP
XPP
X0 18 18 0 4607 1761 3 MP
XPP
X18 0 0 18 4607 1761 3 MP
XPP
X0 18 18 0 4607 1779 3 MP
XPP
X18 0 0 18 4607 1779 3 MP
XPP
X0 17 18 0 4607 1797 3 MP
XPP
X18 0 0 17 4607 1797 3 MP
XPP
X0 18 18 0 4607 1814 3 MP
XPP
X18 0 0 18 4607 1814 3 MP
XPP
X0 18 18 0 4607 1832 3 MP
XPP
X18 0 0 18 4607 1832 3 MP
XPP
X0 18 18 0 4607 1850 3 MP
XPP
X18 0 0 18 4607 1850 3 MP
XPP
X0 18 18 0 4607 1868 3 MP
XPP
X18 0 0 18 4607 1868 3 MP
XPP
X0 18 18 0 4607 1886 3 MP
XPP
X18 0 0 18 4607 1886 3 MP
XPP
X0 17 18 0 4607 1904 3 MP
XPP
X18 0 0 17 4607 1904 3 MP
XPP
X0 18 18 0 4607 1921 3 MP
XPP
X18 0 0 18 4607 1921 3 MP
XPP
X0 18 18 0 4607 1939 3 MP
XPP
X18 0 0 18 4607 1939 3 MP
XPP
X0 18 18 0 4607 1957 3 MP
XPP
X18 0 0 18 4607 1957 3 MP
XPP
X0 18 18 0 4607 1975 3 MP
XPP
X18 0 0 18 4607 1975 3 MP
XPP
X0 18 18 0 4607 1993 3 MP
XPP
X18 0 0 18 4607 1993 3 MP
XPP
X0 17 18 0 4607 2011 3 MP
XPP
X18 0 0 17 4607 2011 3 MP
XPP
X0 18 18 0 4607 2028 3 MP
XPP
X18 0 0 18 4607 2028 3 MP
XPP
X0 18 18 0 4607 2046 3 MP
XPP
X18 0 0 18 4607 2046 3 MP
XPP
X0 18 18 0 4607 2064 3 MP
XPP
X18 0 0 18 4607 2064 3 MP
XPP
X0 18 18 0 4607 2082 3 MP
XPP
X18 0 0 18 4607 2082 3 MP
XPP
X0 18 18 0 4607 2100 3 MP
XPP
X18 0 0 18 4607 2100 3 MP
XPP
X0 17 18 0 4607 2118 3 MP
XPP
X18 0 0 17 4607 2118 3 MP
XPP
X0 18 18 0 4607 2135 3 MP
XPP
X18 0 0 18 4607 2135 3 MP
XPP
X0 18 18 0 4607 2153 3 MP
XPP
X18 0 0 18 4607 2153 3 MP
XPP
X0 18 18 0 4625 388 3 MP
XPP
X18 0 0 18 4625 388 3 MP
XPP
X0 18 18 0 4625 406 3 MP
XPP
X18 0 0 18 4625 406 3 MP
XPP
X0 17 18 0 4625 424 3 MP
XPP
X18 0 0 17 4625 424 3 MP
XPP
X0 18 18 0 4625 441 3 MP
XPP
X18 0 0 18 4625 441 3 MP
XPP
X0 18 18 0 4625 459 3 MP
XPP
X18 0 0 18 4625 459 3 MP
XPP
X0 18 18 0 4625 477 3 MP
XPP
X18 0 0 18 4625 477 3 MP
XPP
X0 18 18 0 4625 495 3 MP
XPP
X18 0 0 18 4625 495 3 MP
XPP
X0 18 18 0 4625 513 3 MP
XPP
X18 0 0 18 4625 513 3 MP
XPP
X0 17 18 0 4625 531 3 MP
XPP
X18 0 0 17 4625 531 3 MP
XPP
X0 18 18 0 4625 548 3 MP
XPP
X18 0 0 18 4625 548 3 MP
XPP
X0 18 18 0 4625 566 3 MP
XPP
X18 0 0 18 4625 566 3 MP
XPP
X0 18 18 0 4625 584 3 MP
XPP
X18 0 0 18 4625 584 3 MP
XPP
X0 18 18 0 4625 602 3 MP
XPP
X18 0 0 18 4625 602 3 MP
XPP
X0 18 18 0 4625 620 3 MP
XPP
X18 0 0 18 4625 620 3 MP
XPP
X0 17 18 0 4625 638 3 MP
XPP
X18 0 0 17 4625 638 3 MP
XPP
X0 18 18 0 4625 655 3 MP
XPP
X18 0 0 18 4625 655 3 MP
XPP
X0 18 18 0 4625 673 3 MP
XPP
X18 0 0 18 4625 673 3 MP
XPP
X0 18 18 0 4625 691 3 MP
XPP
X18 0 0 18 4625 691 3 MP
XPP
X0 18 18 0 4625 709 3 MP
XPP
X18 0 0 18 4625 709 3 MP
XPP
X0 18 18 0 4625 727 3 MP
XPP
X18 0 0 18 4625 727 3 MP
XPP
X0 17 18 0 4625 745 3 MP
XPP
X18 0 0 17 4625 745 3 MP
XPP
X0 18 18 0 4625 762 3 MP
XPP
X18 0 0 18 4625 762 3 MP
XPP
X0 18 18 0 4625 780 3 MP
XPP
X18 0 0 18 4625 780 3 MP
XPP
X0 18 18 0 4625 798 3 MP
XPP
X18 0 0 18 4625 798 3 MP
XPP
X0 18 18 0 4625 816 3 MP
XPP
X18 0 0 18 4625 816 3 MP
XPP
X0 18 18 0 4625 834 3 MP
XPP
X18 0 0 18 4625 834 3 MP
XPP
X0 17 18 0 4625 852 3 MP
XPP
X18 0 0 17 4625 852 3 MP
XPP
X0 18 18 0 4625 869 3 MP
XPP
X18 0 0 18 4625 869 3 MP
XPP
X0 18 18 0 4625 887 3 MP
XPP
X18 0 0 18 4625 887 3 MP
XPP
X0 18 18 0 4625 905 3 MP
XPP
X18 0 0 18 4625 905 3 MP
XPP
X0 18 18 0 4625 923 3 MP
XPP
X18 0 0 18 4625 923 3 MP
XPP
X0 18 18 0 4625 941 3 MP
XPP
X18 0 0 18 4625 941 3 MP
XPP
X0 17 18 0 4625 959 3 MP
XPP
X18 0 0 17 4625 959 3 MP
XPP
X0 18 18 0 4625 976 3 MP
XPP
X18 0 0 18 4625 976 3 MP
XPP
X0 18 18 0 4625 994 3 MP
XPP
X18 0 0 18 4625 994 3 MP
XPP
X0 18 18 0 4625 1012 3 MP
XPP
X18 0 0 18 4625 1012 3 MP
XPP
X0 18 18 0 4625 1030 3 MP
XPP
X18 0 0 18 4625 1030 3 MP
XPP
X0 18 18 0 4625 1048 3 MP
XPP
X18 0 0 18 4625 1048 3 MP
XPP
X0 17 18 0 4625 1066 3 MP
XPP
X18 0 0 17 4625 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4625 1083 3 MP
XPP
X18 0 0 18 4625 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4625 1101 3 MP
XPP
X18 0 0 18 4625 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4625 1119 3 MP
XPP
X18 0 0 18 4625 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4625 1137 3 MP
XPP
X18 0 0 18 4625 1137 3 MP
XPP
X0 sg
X0 18 18 0 4625 1155 3 MP
XPP
X18 0 0 18 4625 1155 3 MP
XPP
X0 17 18 0 4625 1173 3 MP
XPP
X18 0 0 17 4625 1173 3 MP
XPP
X0 18 18 0 4625 1190 3 MP
XPP
X18 0 0 18 4625 1190 3 MP
XPP
X0 18 18 0 4625 1208 3 MP
XPP
X18 0 0 18 4625 1208 3 MP
XPP
X0 18 18 0 4625 1226 3 MP
XPP
X18 0 0 18 4625 1226 3 MP
XPP
X0 18 18 0 4625 1244 3 MP
XPP
X18 0 0 18 4625 1244 3 MP
XPP
X0 17 18 0 4625 1262 3 MP
XPP
X18 0 0 17 4625 1262 3 MP
XPP
X0 18 18 0 4625 1279 3 MP
XPP
X18 0 0 18 4625 1279 3 MP
XPP
X0 18 18 0 4625 1297 3 MP
XPP
X18 0 0 18 4625 1297 3 MP
XPP
X0 18 18 0 4625 1315 3 MP
XPP
X18 0 0 18 4625 1315 3 MP
XPP
X0 18 18 0 4625 1333 3 MP
XPP
X18 0 0 18 4625 1333 3 MP
XPP
X0 18 18 0 4625 1351 3 MP
XPP
X18 0 0 18 4625 1351 3 MP
XPP
X0 17 18 0 4625 1369 3 MP
XPP
X18 0 0 17 4625 1369 3 MP
XPP
X0 18 18 0 4625 1386 3 MP
XPP
X18 0 0 18 4625 1386 3 MP
XPP
X0 18 18 0 4625 1404 3 MP
XPP
X18 0 0 18 4625 1404 3 MP
XPP
X0 18 18 0 4625 1422 3 MP
XPP
X18 0 0 18 4625 1422 3 MP
XPP
X0 18 18 0 4625 1440 3 MP
XPP
X18 0 0 18 4625 1440 3 MP
XPP
X0.031746 sg
X0 18 18 0 4625 1458 3 MP
XPP
X18 0 0 18 4625 1458 3 MP
XPP
X0.142857 sg
X0 17 18 0 4625 1476 3 MP
XPP
X18 0 0 17 4625 1476 3 MP
XPP
X0.365079 sg
X0 18 18 0 4625 1493 3 MP
XPP
X18 0 0 18 4625 1493 3 MP
XPP
X0.634921 sg
X0 18 18 0 4625 1511 3 MP
XPP
X18 0 0 18 4625 1511 3 MP
XPP
X0.857143 sg
X0 18 18 0 4625 1529 3 MP
XPP
X18 0 0 18 4625 1529 3 MP
XPP
X0.968254 sg
X0 18 18 0 4625 1547 3 MP
XPP
X18 0 0 18 4625 1547 3 MP
XPP
X1 sg
X0 18 18 0 4625 1565 3 MP
XPP
X18 0 0 18 4625 1565 3 MP
XPP
X0 17 18 0 4625 1583 3 MP
XPP
X18 0 0 17 4625 1583 3 MP
XPP
X0 18 18 0 4625 1600 3 MP
XPP
X18 0 0 18 4625 1600 3 MP
XPP
X0 18 18 0 4625 1618 3 MP
XPP
X18 0 0 18 4625 1618 3 MP
XPP
X0 18 18 0 4625 1636 3 MP
XPP
X18 0 0 18 4625 1636 3 MP
XPP
X0 18 18 0 4625 1654 3 MP
XPP
X18 0 0 18 4625 1654 3 MP
XPP
X0 18 18 0 4625 1672 3 MP
XPP
X18 0 0 18 4625 1672 3 MP
XPP
X0 17 18 0 4625 1690 3 MP
XPP
X18 0 0 17 4625 1690 3 MP
XPP
X0 18 18 0 4625 1707 3 MP
XPP
X18 0 0 18 4625 1707 3 MP
XPP
X0 18 18 0 4625 1725 3 MP
XPP
X18 0 0 18 4625 1725 3 MP
XPP
X0 18 18 0 4625 1743 3 MP
XPP
X18 0 0 18 4625 1743 3 MP
XPP
X0 18 18 0 4625 1761 3 MP
XPP
X18 0 0 18 4625 1761 3 MP
XPP
X0 18 18 0 4625 1779 3 MP
XPP
X18 0 0 18 4625 1779 3 MP
XPP
X0 17 18 0 4625 1797 3 MP
XPP
X18 0 0 17 4625 1797 3 MP
XPP
X0 18 18 0 4625 1814 3 MP
XPP
X18 0 0 18 4625 1814 3 MP
XPP
X0 18 18 0 4625 1832 3 MP
XPP
X18 0 0 18 4625 1832 3 MP
XPP
X0 18 18 0 4625 1850 3 MP
XPP
X18 0 0 18 4625 1850 3 MP
XPP
X0 18 18 0 4625 1868 3 MP
XPP
X18 0 0 18 4625 1868 3 MP
XPP
X0 18 18 0 4625 1886 3 MP
XPP
X18 0 0 18 4625 1886 3 MP
XPP
X0 17 18 0 4625 1904 3 MP
XPP
X18 0 0 17 4625 1904 3 MP
XPP
X0 18 18 0 4625 1921 3 MP
XPP
X18 0 0 18 4625 1921 3 MP
XPP
X0 18 18 0 4625 1939 3 MP
XPP
X18 0 0 18 4625 1939 3 MP
XPP
X0 18 18 0 4625 1957 3 MP
XPP
X18 0 0 18 4625 1957 3 MP
XPP
X0 18 18 0 4625 1975 3 MP
XPP
X18 0 0 18 4625 1975 3 MP
XPP
X0 18 18 0 4625 1993 3 MP
XPP
X18 0 0 18 4625 1993 3 MP
XPP
X0 17 18 0 4625 2011 3 MP
XPP
X18 0 0 17 4625 2011 3 MP
XPP
X0 18 18 0 4625 2028 3 MP
XPP
X18 0 0 18 4625 2028 3 MP
XPP
X0 18 18 0 4625 2046 3 MP
XPP
X18 0 0 18 4625 2046 3 MP
XPP
X0 18 18 0 4625 2064 3 MP
XPP
X18 0 0 18 4625 2064 3 MP
XPP
X0 18 18 0 4625 2082 3 MP
XPP
X18 0 0 18 4625 2082 3 MP
XPP
X0 18 18 0 4625 2100 3 MP
XPP
X18 0 0 18 4625 2100 3 MP
XPP
X0 17 18 0 4625 2118 3 MP
XPP
X18 0 0 17 4625 2118 3 MP
XPP
X0 18 18 0 4625 2135 3 MP
XPP
X18 0 0 18 4625 2135 3 MP
XPP
X0 18 18 0 4625 2153 3 MP
XPP
X18 0 0 18 4625 2153 3 MP
XPP
X0 18 17 0 4643 388 3 MP
XPP
X17 0 0 18 4643 388 3 MP
XPP
X0 18 17 0 4643 406 3 MP
XPP
X17 0 0 18 4643 406 3 MP
XPP
X0 17 17 0 4643 424 3 MP
XPP
X17 0 0 17 4643 424 3 MP
XPP
X0 18 17 0 4643 441 3 MP
XPP
X17 0 0 18 4643 441 3 MP
XPP
X0 18 17 0 4643 459 3 MP
XPP
X17 0 0 18 4643 459 3 MP
XPP
X0 18 17 0 4643 477 3 MP
XPP
X17 0 0 18 4643 477 3 MP
XPP
X0 18 17 0 4643 495 3 MP
XPP
X17 0 0 18 4643 495 3 MP
XPP
X0 18 17 0 4643 513 3 MP
XPP
X17 0 0 18 4643 513 3 MP
XPP
X0 17 17 0 4643 531 3 MP
XPP
X17 0 0 17 4643 531 3 MP
XPP
X0 18 17 0 4643 548 3 MP
XPP
X17 0 0 18 4643 548 3 MP
XPP
X0 18 17 0 4643 566 3 MP
XPP
X17 0 0 18 4643 566 3 MP
XPP
X0 18 17 0 4643 584 3 MP
XPP
X17 0 0 18 4643 584 3 MP
XPP
X0 18 17 0 4643 602 3 MP
XPP
X17 0 0 18 4643 602 3 MP
XPP
X0 18 17 0 4643 620 3 MP
XPP
X17 0 0 18 4643 620 3 MP
XPP
X0 17 17 0 4643 638 3 MP
XPP
X17 0 0 17 4643 638 3 MP
XPP
X0 18 17 0 4643 655 3 MP
XPP
X17 0 0 18 4643 655 3 MP
XPP
X0 18 17 0 4643 673 3 MP
XPP
X17 0 0 18 4643 673 3 MP
XPP
X0 18 17 0 4643 691 3 MP
XPP
X17 0 0 18 4643 691 3 MP
XPP
X0 18 17 0 4643 709 3 MP
XPP
X17 0 0 18 4643 709 3 MP
XPP
X0 18 17 0 4643 727 3 MP
XPP
X17 0 0 18 4643 727 3 MP
XPP
X0 17 17 0 4643 745 3 MP
XPP
X17 0 0 17 4643 745 3 MP
XPP
X0 18 17 0 4643 762 3 MP
XPP
X17 0 0 18 4643 762 3 MP
XPP
X0 18 17 0 4643 780 3 MP
XPP
X17 0 0 18 4643 780 3 MP
XPP
X0 18 17 0 4643 798 3 MP
XPP
X17 0 0 18 4643 798 3 MP
XPP
X0 18 17 0 4643 816 3 MP
XPP
X17 0 0 18 4643 816 3 MP
XPP
X0 18 17 0 4643 834 3 MP
XPP
X17 0 0 18 4643 834 3 MP
XPP
X0 17 17 0 4643 852 3 MP
XPP
X17 0 0 17 4643 852 3 MP
XPP
X0 18 17 0 4643 869 3 MP
XPP
X17 0 0 18 4643 869 3 MP
XPP
X0 18 17 0 4643 887 3 MP
XPP
X17 0 0 18 4643 887 3 MP
XPP
X0 18 17 0 4643 905 3 MP
XPP
X17 0 0 18 4643 905 3 MP
XPP
X0 18 17 0 4643 923 3 MP
XPP
X17 0 0 18 4643 923 3 MP
XPP
X0 18 17 0 4643 941 3 MP
XPP
X17 0 0 18 4643 941 3 MP
XPP
X0 17 17 0 4643 959 3 MP
XPP
X17 0 0 17 4643 959 3 MP
XPP
X0 18 17 0 4643 976 3 MP
XPP
X17 0 0 18 4643 976 3 MP
XPP
X0 18 17 0 4643 994 3 MP
XPP
X17 0 0 18 4643 994 3 MP
XPP
X0 18 17 0 4643 1012 3 MP
XPP
X17 0 0 18 4643 1012 3 MP
XPP
X0 18 17 0 4643 1030 3 MP
XPP
X17 0 0 18 4643 1030 3 MP
XPP
X0 18 17 0 4643 1048 3 MP
XPP
X17 0 0 18 4643 1048 3 MP
XPP
X0 17 17 0 4643 1066 3 MP
XPP
X17 0 0 17 4643 1066 3 MP
XPP
X0.936508 sg
X0 18 17 0 4643 1083 3 MP
XPP
X17 0 0 18 4643 1083 3 MP
XPP
X0.68254 sg
X0 18 17 0 4643 1101 3 MP
XPP
X17 0 0 18 4643 1101 3 MP
XPP
X0.31746 sg
X0 18 17 0 4643 1119 3 MP
XPP
X17 0 0 18 4643 1119 3 MP
XPP
X0.0634921 sg
X0 18 17 0 4643 1137 3 MP
XPP
X17 0 0 18 4643 1137 3 MP
XPP
X0 sg
X0 18 17 0 4643 1155 3 MP
XPP
X17 0 0 18 4643 1155 3 MP
XPP
X0 17 17 0 4643 1173 3 MP
XPP
X17 0 0 17 4643 1173 3 MP
XPP
X0 18 17 0 4643 1190 3 MP
XPP
X17 0 0 18 4643 1190 3 MP
XPP
X0 18 17 0 4643 1208 3 MP
XPP
X17 0 0 18 4643 1208 3 MP
XPP
X0 18 17 0 4643 1226 3 MP
XPP
X17 0 0 18 4643 1226 3 MP
XPP
X0 18 17 0 4643 1244 3 MP
XPP
X17 0 0 18 4643 1244 3 MP
XPP
X0 17 17 0 4643 1262 3 MP
XPP
X17 0 0 17 4643 1262 3 MP
XPP
X0 18 17 0 4643 1279 3 MP
XPP
X17 0 0 18 4643 1279 3 MP
XPP
X0 18 17 0 4643 1297 3 MP
XPP
X17 0 0 18 4643 1297 3 MP
XPP
X0 18 17 0 4643 1315 3 MP
XPP
X17 0 0 18 4643 1315 3 MP
XPP
X0 18 17 0 4643 1333 3 MP
XPP
X17 0 0 18 4643 1333 3 MP
XPP
X0 18 17 0 4643 1351 3 MP
XPP
X17 0 0 18 4643 1351 3 MP
XPP
X0 17 17 0 4643 1369 3 MP
XPP
X17 0 0 17 4643 1369 3 MP
XPP
X0 18 17 0 4643 1386 3 MP
XPP
X17 0 0 18 4643 1386 3 MP
XPP
X0 18 17 0 4643 1404 3 MP
XPP
X17 0 0 18 4643 1404 3 MP
XPP
X0 18 17 0 4643 1422 3 MP
XPP
X17 0 0 18 4643 1422 3 MP
XPP
X0 18 17 0 4643 1440 3 MP
XPP
X17 0 0 18 4643 1440 3 MP
XPP
X0 18 17 0 4643 1458 3 MP
XPP
X17 0 0 18 4643 1458 3 MP
XPP
X0.031746 sg
X0 17 17 0 4643 1476 3 MP
XPP
X17 0 0 17 4643 1476 3 MP
XPP
X0.142857 sg
X0 18 17 0 4643 1493 3 MP
XPP
X17 0 0 18 4643 1493 3 MP
XPP
X0.365079 sg
X0 18 17 0 4643 1511 3 MP
XPP
X17 0 0 18 4643 1511 3 MP
XPP
X0.634921 sg
X0 18 17 0 4643 1529 3 MP
XPP
X17 0 0 18 4643 1529 3 MP
XPP
X0.857143 sg
X0 18 17 0 4643 1547 3 MP
XPP
X17 0 0 18 4643 1547 3 MP
XPP
X0.968254 sg
X0 18 17 0 4643 1565 3 MP
XPP
X17 0 0 18 4643 1565 3 MP
XPP
X1 sg
X0 17 17 0 4643 1583 3 MP
XPP
X17 0 0 17 4643 1583 3 MP
XPP
X0 18 17 0 4643 1600 3 MP
XPP
X17 0 0 18 4643 1600 3 MP
XPP
X0 18 17 0 4643 1618 3 MP
XPP
X17 0 0 18 4643 1618 3 MP
XPP
X0 18 17 0 4643 1636 3 MP
XPP
X17 0 0 18 4643 1636 3 MP
XPP
X0 18 17 0 4643 1654 3 MP
XPP
X17 0 0 18 4643 1654 3 MP
XPP
X0 18 17 0 4643 1672 3 MP
XPP
X17 0 0 18 4643 1672 3 MP
XPP
X0 17 17 0 4643 1690 3 MP
XPP
X17 0 0 17 4643 1690 3 MP
XPP
X0 18 17 0 4643 1707 3 MP
XPP
X17 0 0 18 4643 1707 3 MP
XPP
X0 18 17 0 4643 1725 3 MP
XPP
X17 0 0 18 4643 1725 3 MP
XPP
X0 18 17 0 4643 1743 3 MP
XPP
X17 0 0 18 4643 1743 3 MP
XPP
X0 18 17 0 4643 1761 3 MP
XPP
X17 0 0 18 4643 1761 3 MP
XPP
X0 18 17 0 4643 1779 3 MP
XPP
X17 0 0 18 4643 1779 3 MP
XPP
X0 17 17 0 4643 1797 3 MP
XPP
X17 0 0 17 4643 1797 3 MP
XPP
X0 18 17 0 4643 1814 3 MP
XPP
X17 0 0 18 4643 1814 3 MP
XPP
X0 18 17 0 4643 1832 3 MP
XPP
X17 0 0 18 4643 1832 3 MP
XPP
X0 18 17 0 4643 1850 3 MP
XPP
X17 0 0 18 4643 1850 3 MP
XPP
X0 18 17 0 4643 1868 3 MP
XPP
X17 0 0 18 4643 1868 3 MP
XPP
X0 18 17 0 4643 1886 3 MP
XPP
X17 0 0 18 4643 1886 3 MP
XPP
X0 17 17 0 4643 1904 3 MP
XPP
X17 0 0 17 4643 1904 3 MP
XPP
X0 18 17 0 4643 1921 3 MP
XPP
X17 0 0 18 4643 1921 3 MP
XPP
X0 18 17 0 4643 1939 3 MP
XPP
X17 0 0 18 4643 1939 3 MP
XPP
X0 18 17 0 4643 1957 3 MP
XPP
X17 0 0 18 4643 1957 3 MP
XPP
X0 18 17 0 4643 1975 3 MP
XPP
X17 0 0 18 4643 1975 3 MP
XPP
X0 18 17 0 4643 1993 3 MP
XPP
X17 0 0 18 4643 1993 3 MP
XPP
X0 17 17 0 4643 2011 3 MP
XPP
X17 0 0 17 4643 2011 3 MP
XPP
X0 18 17 0 4643 2028 3 MP
XPP
X17 0 0 18 4643 2028 3 MP
XPP
X0 18 17 0 4643 2046 3 MP
XPP
X17 0 0 18 4643 2046 3 MP
XPP
X0 18 17 0 4643 2064 3 MP
XPP
X17 0 0 18 4643 2064 3 MP
XPP
X0 18 17 0 4643 2082 3 MP
XPP
X17 0 0 18 4643 2082 3 MP
XPP
X0 18 17 0 4643 2100 3 MP
XPP
X17 0 0 18 4643 2100 3 MP
XPP
X0 17 17 0 4643 2118 3 MP
XPP
X17 0 0 17 4643 2118 3 MP
XPP
X0 18 17 0 4643 2135 3 MP
XPP
X17 0 0 18 4643 2135 3 MP
XPP
X0 18 17 0 4643 2153 3 MP
XPP
X17 0 0 18 4643 2153 3 MP
XPP
X0 18 18 0 4660 388 3 MP
XPP
X18 0 0 18 4660 388 3 MP
XPP
X0 18 18 0 4660 406 3 MP
XPP
X18 0 0 18 4660 406 3 MP
XPP
X0 17 18 0 4660 424 3 MP
XPP
X18 0 0 17 4660 424 3 MP
XPP
X0 18 18 0 4660 441 3 MP
XPP
X18 0 0 18 4660 441 3 MP
XPP
X0 18 18 0 4660 459 3 MP
XPP
X18 0 0 18 4660 459 3 MP
XPP
X0 18 18 0 4660 477 3 MP
XPP
X18 0 0 18 4660 477 3 MP
XPP
X0 18 18 0 4660 495 3 MP
XPP
X18 0 0 18 4660 495 3 MP
XPP
X0 18 18 0 4660 513 3 MP
XPP
X18 0 0 18 4660 513 3 MP
XPP
X0 17 18 0 4660 531 3 MP
XPP
X18 0 0 17 4660 531 3 MP
XPP
X0 18 18 0 4660 548 3 MP
XPP
X18 0 0 18 4660 548 3 MP
XPP
X0 18 18 0 4660 566 3 MP
XPP
X18 0 0 18 4660 566 3 MP
XPP
X0 18 18 0 4660 584 3 MP
XPP
X18 0 0 18 4660 584 3 MP
XPP
X0 18 18 0 4660 602 3 MP
XPP
X18 0 0 18 4660 602 3 MP
XPP
X0 18 18 0 4660 620 3 MP
XPP
X18 0 0 18 4660 620 3 MP
XPP
X0 17 18 0 4660 638 3 MP
XPP
X18 0 0 17 4660 638 3 MP
XPP
X0 18 18 0 4660 655 3 MP
XPP
X18 0 0 18 4660 655 3 MP
XPP
X0 18 18 0 4660 673 3 MP
XPP
X18 0 0 18 4660 673 3 MP
XPP
X0 18 18 0 4660 691 3 MP
XPP
X18 0 0 18 4660 691 3 MP
XPP
X0 18 18 0 4660 709 3 MP
XPP
X18 0 0 18 4660 709 3 MP
XPP
X0 18 18 0 4660 727 3 MP
XPP
X18 0 0 18 4660 727 3 MP
XPP
X0 17 18 0 4660 745 3 MP
XPP
X18 0 0 17 4660 745 3 MP
XPP
X0 18 18 0 4660 762 3 MP
XPP
X18 0 0 18 4660 762 3 MP
XPP
X0 18 18 0 4660 780 3 MP
XPP
X18 0 0 18 4660 780 3 MP
XPP
X0 18 18 0 4660 798 3 MP
XPP
X18 0 0 18 4660 798 3 MP
XPP
X0 18 18 0 4660 816 3 MP
XPP
X18 0 0 18 4660 816 3 MP
XPP
X0 18 18 0 4660 834 3 MP
XPP
X18 0 0 18 4660 834 3 MP
XPP
X0 17 18 0 4660 852 3 MP
XPP
X18 0 0 17 4660 852 3 MP
XPP
X0 18 18 0 4660 869 3 MP
XPP
X18 0 0 18 4660 869 3 MP
XPP
X0 18 18 0 4660 887 3 MP
XPP
X18 0 0 18 4660 887 3 MP
XPP
X0 18 18 0 4660 905 3 MP
XPP
X18 0 0 18 4660 905 3 MP
XPP
X0 18 18 0 4660 923 3 MP
XPP
X18 0 0 18 4660 923 3 MP
XPP
X0 18 18 0 4660 941 3 MP
XPP
X18 0 0 18 4660 941 3 MP
XPP
X0 17 18 0 4660 959 3 MP
XPP
X18 0 0 17 4660 959 3 MP
XPP
X0 18 18 0 4660 976 3 MP
XPP
X18 0 0 18 4660 976 3 MP
XPP
X0 18 18 0 4660 994 3 MP
XPP
X18 0 0 18 4660 994 3 MP
XPP
X0 18 18 0 4660 1012 3 MP
XPP
X18 0 0 18 4660 1012 3 MP
XPP
X0 18 18 0 4660 1030 3 MP
XPP
X18 0 0 18 4660 1030 3 MP
XPP
X0 18 18 0 4660 1048 3 MP
XPP
X18 0 0 18 4660 1048 3 MP
XPP
X0 17 18 0 4660 1066 3 MP
XPP
X18 0 0 17 4660 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4660 1083 3 MP
XPP
X18 0 0 18 4660 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4660 1101 3 MP
XPP
X18 0 0 18 4660 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4660 1119 3 MP
XPP
X18 0 0 18 4660 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4660 1137 3 MP
XPP
X18 0 0 18 4660 1137 3 MP
XPP
X0 sg
X0 18 18 0 4660 1155 3 MP
XPP
X18 0 0 18 4660 1155 3 MP
XPP
X0 17 18 0 4660 1173 3 MP
XPP
X18 0 0 17 4660 1173 3 MP
XPP
X0 18 18 0 4660 1190 3 MP
XPP
X18 0 0 18 4660 1190 3 MP
XPP
X0 18 18 0 4660 1208 3 MP
XPP
X18 0 0 18 4660 1208 3 MP
XPP
X0 18 18 0 4660 1226 3 MP
XPP
X18 0 0 18 4660 1226 3 MP
XPP
X0 18 18 0 4660 1244 3 MP
XPP
X18 0 0 18 4660 1244 3 MP
XPP
X0 17 18 0 4660 1262 3 MP
XPP
X18 0 0 17 4660 1262 3 MP
XPP
X0 18 18 0 4660 1279 3 MP
XPP
X18 0 0 18 4660 1279 3 MP
XPP
X0 18 18 0 4660 1297 3 MP
XPP
X18 0 0 18 4660 1297 3 MP
XPP
X0 18 18 0 4660 1315 3 MP
XPP
X18 0 0 18 4660 1315 3 MP
XPP
X0 18 18 0 4660 1333 3 MP
XPP
X18 0 0 18 4660 1333 3 MP
XPP
X0 18 18 0 4660 1351 3 MP
XPP
X18 0 0 18 4660 1351 3 MP
XPP
X0 17 18 0 4660 1369 3 MP
XPP
X18 0 0 17 4660 1369 3 MP
XPP
X0 18 18 0 4660 1386 3 MP
XPP
X18 0 0 18 4660 1386 3 MP
XPP
X0 18 18 0 4660 1404 3 MP
XPP
X18 0 0 18 4660 1404 3 MP
XPP
X0 18 18 0 4660 1422 3 MP
XPP
X18 0 0 18 4660 1422 3 MP
XPP
X0 18 18 0 4660 1440 3 MP
XPP
X18 0 0 18 4660 1440 3 MP
XPP
X0 18 18 0 4660 1458 3 MP
XPP
X18 0 0 18 4660 1458 3 MP
XPP
X0 17 18 0 4660 1476 3 MP
XPP
X18 0 0 17 4660 1476 3 MP
XPP
X0.031746 sg
X0 18 18 0 4660 1493 3 MP
XPP
X18 0 0 18 4660 1493 3 MP
XPP
X0.142857 sg
X0 18 18 0 4660 1511 3 MP
XPP
X18 0 0 18 4660 1511 3 MP
XPP
X0.365079 sg
X0 18 18 0 4660 1529 3 MP
XPP
X18 0 0 18 4660 1529 3 MP
XPP
X0.634921 sg
X0 18 18 0 4660 1547 3 MP
XPP
X18 0 0 18 4660 1547 3 MP
XPP
X0.857143 sg
X0 18 18 0 4660 1565 3 MP
XPP
X18 0 0 18 4660 1565 3 MP
XPP
X0.968254 sg
X0 17 18 0 4660 1583 3 MP
XPP
X18 0 0 17 4660 1583 3 MP
XPP
X1 sg
X0 18 18 0 4660 1600 3 MP
XPP
X18 0 0 18 4660 1600 3 MP
XPP
X0 18 18 0 4660 1618 3 MP
XPP
X18 0 0 18 4660 1618 3 MP
XPP
X0 18 18 0 4660 1636 3 MP
XPP
X18 0 0 18 4660 1636 3 MP
XPP
X0 18 18 0 4660 1654 3 MP
XPP
X18 0 0 18 4660 1654 3 MP
XPP
X0 18 18 0 4660 1672 3 MP
XPP
X18 0 0 18 4660 1672 3 MP
XPP
X0 17 18 0 4660 1690 3 MP
XPP
X18 0 0 17 4660 1690 3 MP
XPP
X0 18 18 0 4660 1707 3 MP
XPP
X18 0 0 18 4660 1707 3 MP
XPP
X0 18 18 0 4660 1725 3 MP
XPP
X18 0 0 18 4660 1725 3 MP
XPP
X0 18 18 0 4660 1743 3 MP
XPP
X18 0 0 18 4660 1743 3 MP
XPP
X0 18 18 0 4660 1761 3 MP
XPP
X18 0 0 18 4660 1761 3 MP
XPP
X0 18 18 0 4660 1779 3 MP
XPP
X18 0 0 18 4660 1779 3 MP
XPP
X0 17 18 0 4660 1797 3 MP
XPP
X18 0 0 17 4660 1797 3 MP
XPP
X0 18 18 0 4660 1814 3 MP
XPP
X18 0 0 18 4660 1814 3 MP
XPP
X0 18 18 0 4660 1832 3 MP
XPP
X18 0 0 18 4660 1832 3 MP
XPP
X0 18 18 0 4660 1850 3 MP
XPP
X18 0 0 18 4660 1850 3 MP
XPP
X0 18 18 0 4660 1868 3 MP
XPP
X18 0 0 18 4660 1868 3 MP
XPP
X0 18 18 0 4660 1886 3 MP
XPP
X18 0 0 18 4660 1886 3 MP
XPP
X0 17 18 0 4660 1904 3 MP
XPP
X18 0 0 17 4660 1904 3 MP
XPP
X0 18 18 0 4660 1921 3 MP
XPP
X18 0 0 18 4660 1921 3 MP
XPP
X0 18 18 0 4660 1939 3 MP
XPP
X18 0 0 18 4660 1939 3 MP
XPP
X0 18 18 0 4660 1957 3 MP
XPP
X18 0 0 18 4660 1957 3 MP
XPP
X0 18 18 0 4660 1975 3 MP
XPP
X18 0 0 18 4660 1975 3 MP
XPP
X0 18 18 0 4660 1993 3 MP
XPP
X18 0 0 18 4660 1993 3 MP
XPP
X0 17 18 0 4660 2011 3 MP
XPP
X18 0 0 17 4660 2011 3 MP
XPP
X0 18 18 0 4660 2028 3 MP
XPP
X18 0 0 18 4660 2028 3 MP
XPP
X0 18 18 0 4660 2046 3 MP
XPP
X18 0 0 18 4660 2046 3 MP
XPP
X0 18 18 0 4660 2064 3 MP
XPP
X18 0 0 18 4660 2064 3 MP
XPP
X0 18 18 0 4660 2082 3 MP
XPP
X18 0 0 18 4660 2082 3 MP
XPP
X0 18 18 0 4660 2100 3 MP
XPP
X18 0 0 18 4660 2100 3 MP
XPP
X0 17 18 0 4660 2118 3 MP
XPP
X18 0 0 17 4660 2118 3 MP
XPP
X0 18 18 0 4660 2135 3 MP
XPP
X18 0 0 18 4660 2135 3 MP
XPP
X0 18 18 0 4660 2153 3 MP
XPP
X18 0 0 18 4660 2153 3 MP
XPP
X0 18 18 0 4678 388 3 MP
XPP
X18 0 0 18 4678 388 3 MP
XPP
X0 18 18 0 4678 406 3 MP
XPP
X18 0 0 18 4678 406 3 MP
XPP
X0 17 18 0 4678 424 3 MP
XPP
X18 0 0 17 4678 424 3 MP
XPP
X0 18 18 0 4678 441 3 MP
XPP
X18 0 0 18 4678 441 3 MP
XPP
X0 18 18 0 4678 459 3 MP
XPP
X18 0 0 18 4678 459 3 MP
XPP
X0 18 18 0 4678 477 3 MP
XPP
X18 0 0 18 4678 477 3 MP
XPP
X0 18 18 0 4678 495 3 MP
XPP
X18 0 0 18 4678 495 3 MP
XPP
X0 18 18 0 4678 513 3 MP
XPP
X18 0 0 18 4678 513 3 MP
XPP
X0 17 18 0 4678 531 3 MP
XPP
X18 0 0 17 4678 531 3 MP
XPP
X0 18 18 0 4678 548 3 MP
XPP
X18 0 0 18 4678 548 3 MP
XPP
X0 18 18 0 4678 566 3 MP
XPP
X18 0 0 18 4678 566 3 MP
XPP
X0 18 18 0 4678 584 3 MP
XPP
X18 0 0 18 4678 584 3 MP
XPP
X0 18 18 0 4678 602 3 MP
XPP
X18 0 0 18 4678 602 3 MP
XPP
X0 18 18 0 4678 620 3 MP
XPP
X18 0 0 18 4678 620 3 MP
XPP
X0 17 18 0 4678 638 3 MP
XPP
X18 0 0 17 4678 638 3 MP
XPP
X0 18 18 0 4678 655 3 MP
XPP
X18 0 0 18 4678 655 3 MP
XPP
X0 18 18 0 4678 673 3 MP
XPP
X18 0 0 18 4678 673 3 MP
XPP
X0 18 18 0 4678 691 3 MP
XPP
X18 0 0 18 4678 691 3 MP
XPP
X0 18 18 0 4678 709 3 MP
XPP
X18 0 0 18 4678 709 3 MP
XPP
X0 18 18 0 4678 727 3 MP
XPP
X18 0 0 18 4678 727 3 MP
XPP
X0 17 18 0 4678 745 3 MP
XPP
X18 0 0 17 4678 745 3 MP
XPP
X0 18 18 0 4678 762 3 MP
XPP
X18 0 0 18 4678 762 3 MP
XPP
X0 18 18 0 4678 780 3 MP
XPP
X18 0 0 18 4678 780 3 MP
XPP
X0 18 18 0 4678 798 3 MP
XPP
X18 0 0 18 4678 798 3 MP
XPP
X0 18 18 0 4678 816 3 MP
XPP
X18 0 0 18 4678 816 3 MP
XPP
X0 18 18 0 4678 834 3 MP
XPP
X18 0 0 18 4678 834 3 MP
XPP
X0 17 18 0 4678 852 3 MP
XPP
X18 0 0 17 4678 852 3 MP
XPP
X0 18 18 0 4678 869 3 MP
XPP
X18 0 0 18 4678 869 3 MP
XPP
X0 18 18 0 4678 887 3 MP
XPP
X18 0 0 18 4678 887 3 MP
XPP
X0 18 18 0 4678 905 3 MP
XPP
X18 0 0 18 4678 905 3 MP
XPP
X0 18 18 0 4678 923 3 MP
XPP
X18 0 0 18 4678 923 3 MP
XPP
X0 18 18 0 4678 941 3 MP
XPP
X18 0 0 18 4678 941 3 MP
XPP
X0 17 18 0 4678 959 3 MP
XPP
X18 0 0 17 4678 959 3 MP
XPP
X0 18 18 0 4678 976 3 MP
XPP
X18 0 0 18 4678 976 3 MP
XPP
X0 18 18 0 4678 994 3 MP
XPP
X18 0 0 18 4678 994 3 MP
XPP
X0 18 18 0 4678 1012 3 MP
XPP
X18 0 0 18 4678 1012 3 MP
XPP
X0 18 18 0 4678 1030 3 MP
XPP
X18 0 0 18 4678 1030 3 MP
XPP
X0 18 18 0 4678 1048 3 MP
XPP
X18 0 0 18 4678 1048 3 MP
XPP
X0 17 18 0 4678 1066 3 MP
XPP
X18 0 0 17 4678 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4678 1083 3 MP
XPP
X18 0 0 18 4678 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4678 1101 3 MP
XPP
X18 0 0 18 4678 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4678 1119 3 MP
XPP
X18 0 0 18 4678 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4678 1137 3 MP
XPP
X18 0 0 18 4678 1137 3 MP
XPP
X0 sg
X0 18 18 0 4678 1155 3 MP
XPP
X18 0 0 18 4678 1155 3 MP
XPP
X0 17 18 0 4678 1173 3 MP
XPP
X18 0 0 17 4678 1173 3 MP
XPP
X0 18 18 0 4678 1190 3 MP
XPP
X18 0 0 18 4678 1190 3 MP
XPP
X0 18 18 0 4678 1208 3 MP
XPP
X18 0 0 18 4678 1208 3 MP
XPP
X0 18 18 0 4678 1226 3 MP
XPP
X18 0 0 18 4678 1226 3 MP
XPP
X0 18 18 0 4678 1244 3 MP
XPP
X18 0 0 18 4678 1244 3 MP
XPP
X0 17 18 0 4678 1262 3 MP
XPP
X18 0 0 17 4678 1262 3 MP
XPP
X0 18 18 0 4678 1279 3 MP
XPP
X18 0 0 18 4678 1279 3 MP
XPP
X0 18 18 0 4678 1297 3 MP
XPP
X18 0 0 18 4678 1297 3 MP
XPP
X0 18 18 0 4678 1315 3 MP
XPP
X18 0 0 18 4678 1315 3 MP
XPP
X0 18 18 0 4678 1333 3 MP
XPP
X18 0 0 18 4678 1333 3 MP
XPP
X0 18 18 0 4678 1351 3 MP
XPP
X18 0 0 18 4678 1351 3 MP
XPP
X0 17 18 0 4678 1369 3 MP
XPP
X18 0 0 17 4678 1369 3 MP
XPP
X0 18 18 0 4678 1386 3 MP
XPP
X18 0 0 18 4678 1386 3 MP
XPP
X0 18 18 0 4678 1404 3 MP
XPP
X18 0 0 18 4678 1404 3 MP
XPP
X0 18 18 0 4678 1422 3 MP
XPP
X18 0 0 18 4678 1422 3 MP
XPP
X0 18 18 0 4678 1440 3 MP
XPP
X18 0 0 18 4678 1440 3 MP
XPP
X0 18 18 0 4678 1458 3 MP
XPP
X18 0 0 18 4678 1458 3 MP
XPP
X0 17 18 0 4678 1476 3 MP
XPP
X18 0 0 17 4678 1476 3 MP
XPP
X0 18 18 0 4678 1493 3 MP
XPP
X18 0 0 18 4678 1493 3 MP
XPP
X0.031746 sg
X0 18 18 0 4678 1511 3 MP
XPP
X18 0 0 18 4678 1511 3 MP
XPP
X0.142857 sg
X0 18 18 0 4678 1529 3 MP
XPP
X18 0 0 18 4678 1529 3 MP
XPP
X0.365079 sg
X0 18 18 0 4678 1547 3 MP
XPP
X18 0 0 18 4678 1547 3 MP
XPP
X0.634921 sg
X0 18 18 0 4678 1565 3 MP
XPP
X18 0 0 18 4678 1565 3 MP
XPP
X0.857143 sg
X0 17 18 0 4678 1583 3 MP
XPP
X18 0 0 17 4678 1583 3 MP
XPP
X0.968254 sg
X0 18 18 0 4678 1600 3 MP
XPP
X18 0 0 18 4678 1600 3 MP
XPP
X1 sg
X0 18 18 0 4678 1618 3 MP
XPP
X18 0 0 18 4678 1618 3 MP
XPP
X0 18 18 0 4678 1636 3 MP
XPP
X18 0 0 18 4678 1636 3 MP
XPP
X0 18 18 0 4678 1654 3 MP
XPP
X18 0 0 18 4678 1654 3 MP
XPP
X0 18 18 0 4678 1672 3 MP
XPP
X18 0 0 18 4678 1672 3 MP
XPP
X0 17 18 0 4678 1690 3 MP
XPP
X18 0 0 17 4678 1690 3 MP
XPP
X0 18 18 0 4678 1707 3 MP
XPP
X18 0 0 18 4678 1707 3 MP
XPP
X0 18 18 0 4678 1725 3 MP
XPP
X18 0 0 18 4678 1725 3 MP
XPP
X0 18 18 0 4678 1743 3 MP
XPP
X18 0 0 18 4678 1743 3 MP
XPP
X0 18 18 0 4678 1761 3 MP
XPP
X18 0 0 18 4678 1761 3 MP
XPP
X0 18 18 0 4678 1779 3 MP
XPP
X18 0 0 18 4678 1779 3 MP
XPP
X0 17 18 0 4678 1797 3 MP
XPP
X18 0 0 17 4678 1797 3 MP
XPP
X0 18 18 0 4678 1814 3 MP
XPP
X18 0 0 18 4678 1814 3 MP
XPP
X0 18 18 0 4678 1832 3 MP
XPP
X18 0 0 18 4678 1832 3 MP
XPP
X0 18 18 0 4678 1850 3 MP
XPP
X18 0 0 18 4678 1850 3 MP
XPP
X0 18 18 0 4678 1868 3 MP
XPP
X18 0 0 18 4678 1868 3 MP
XPP
X0 18 18 0 4678 1886 3 MP
XPP
X18 0 0 18 4678 1886 3 MP
XPP
X0 17 18 0 4678 1904 3 MP
XPP
X18 0 0 17 4678 1904 3 MP
XPP
X0 18 18 0 4678 1921 3 MP
XPP
X18 0 0 18 4678 1921 3 MP
XPP
X0 18 18 0 4678 1939 3 MP
XPP
X18 0 0 18 4678 1939 3 MP
XPP
X0 18 18 0 4678 1957 3 MP
XPP
X18 0 0 18 4678 1957 3 MP
XPP
X0 18 18 0 4678 1975 3 MP
XPP
X18 0 0 18 4678 1975 3 MP
XPP
X0 18 18 0 4678 1993 3 MP
XPP
X18 0 0 18 4678 1993 3 MP
XPP
X0 17 18 0 4678 2011 3 MP
XPP
X18 0 0 17 4678 2011 3 MP
XPP
X0 18 18 0 4678 2028 3 MP
XPP
X18 0 0 18 4678 2028 3 MP
XPP
X0 18 18 0 4678 2046 3 MP
XPP
X18 0 0 18 4678 2046 3 MP
XPP
X0 18 18 0 4678 2064 3 MP
XPP
X18 0 0 18 4678 2064 3 MP
XPP
X0 18 18 0 4678 2082 3 MP
XPP
X18 0 0 18 4678 2082 3 MP
XPP
X0 18 18 0 4678 2100 3 MP
XPP
X18 0 0 18 4678 2100 3 MP
XPP
X0 17 18 0 4678 2118 3 MP
XPP
X18 0 0 17 4678 2118 3 MP
XPP
X0 18 18 0 4678 2135 3 MP
XPP
X18 0 0 18 4678 2135 3 MP
XPP
X0 18 18 0 4678 2153 3 MP
XPP
X18 0 0 18 4678 2153 3 MP
XPP
X0 18 18 0 4696 388 3 MP
XPP
X18 0 0 18 4696 388 3 MP
XPP
X0 18 18 0 4696 406 3 MP
XPP
X18 0 0 18 4696 406 3 MP
XPP
X0 17 18 0 4696 424 3 MP
XPP
X18 0 0 17 4696 424 3 MP
XPP
X0 18 18 0 4696 441 3 MP
XPP
X18 0 0 18 4696 441 3 MP
XPP
X0 18 18 0 4696 459 3 MP
XPP
X18 0 0 18 4696 459 3 MP
XPP
X0 18 18 0 4696 477 3 MP
XPP
X18 0 0 18 4696 477 3 MP
XPP
X0 18 18 0 4696 495 3 MP
XPP
X18 0 0 18 4696 495 3 MP
XPP
X0 18 18 0 4696 513 3 MP
XPP
X18 0 0 18 4696 513 3 MP
XPP
X0 17 18 0 4696 531 3 MP
XPP
X18 0 0 17 4696 531 3 MP
XPP
X0 18 18 0 4696 548 3 MP
XPP
X18 0 0 18 4696 548 3 MP
XPP
X0 18 18 0 4696 566 3 MP
XPP
X18 0 0 18 4696 566 3 MP
XPP
X0 18 18 0 4696 584 3 MP
XPP
X18 0 0 18 4696 584 3 MP
XPP
X0 18 18 0 4696 602 3 MP
XPP
X18 0 0 18 4696 602 3 MP
XPP
X0 18 18 0 4696 620 3 MP
XPP
X18 0 0 18 4696 620 3 MP
XPP
X0 17 18 0 4696 638 3 MP
XPP
X18 0 0 17 4696 638 3 MP
XPP
X0 18 18 0 4696 655 3 MP
XPP
X18 0 0 18 4696 655 3 MP
XPP
X0 18 18 0 4696 673 3 MP
XPP
X18 0 0 18 4696 673 3 MP
XPP
X0 18 18 0 4696 691 3 MP
XPP
X18 0 0 18 4696 691 3 MP
XPP
X0 18 18 0 4696 709 3 MP
XPP
X18 0 0 18 4696 709 3 MP
XPP
X0 18 18 0 4696 727 3 MP
XPP
X18 0 0 18 4696 727 3 MP
XPP
X0 17 18 0 4696 745 3 MP
XPP
X18 0 0 17 4696 745 3 MP
XPP
X0 18 18 0 4696 762 3 MP
XPP
X18 0 0 18 4696 762 3 MP
XPP
X0 18 18 0 4696 780 3 MP
XPP
X18 0 0 18 4696 780 3 MP
XPP
X0 18 18 0 4696 798 3 MP
XPP
X18 0 0 18 4696 798 3 MP
XPP
X0 18 18 0 4696 816 3 MP
XPP
X18 0 0 18 4696 816 3 MP
XPP
X0 18 18 0 4696 834 3 MP
XPP
X18 0 0 18 4696 834 3 MP
XPP
X0 17 18 0 4696 852 3 MP
XPP
X18 0 0 17 4696 852 3 MP
XPP
X0 18 18 0 4696 869 3 MP
XPP
X18 0 0 18 4696 869 3 MP
XPP
X0 18 18 0 4696 887 3 MP
XPP
X18 0 0 18 4696 887 3 MP
XPP
X0 18 18 0 4696 905 3 MP
XPP
X18 0 0 18 4696 905 3 MP
XPP
X0 18 18 0 4696 923 3 MP
XPP
X18 0 0 18 4696 923 3 MP
XPP
X0 18 18 0 4696 941 3 MP
XPP
X18 0 0 18 4696 941 3 MP
XPP
X0 17 18 0 4696 959 3 MP
XPP
X18 0 0 17 4696 959 3 MP
XPP
X0 18 18 0 4696 976 3 MP
XPP
X18 0 0 18 4696 976 3 MP
XPP
X0 18 18 0 4696 994 3 MP
XPP
X18 0 0 18 4696 994 3 MP
XPP
X0 18 18 0 4696 1012 3 MP
XPP
X18 0 0 18 4696 1012 3 MP
XPP
X0 18 18 0 4696 1030 3 MP
XPP
X18 0 0 18 4696 1030 3 MP
XPP
X0 18 18 0 4696 1048 3 MP
XPP
X18 0 0 18 4696 1048 3 MP
XPP
X0 17 18 0 4696 1066 3 MP
XPP
X18 0 0 17 4696 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4696 1083 3 MP
XPP
X18 0 0 18 4696 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4696 1101 3 MP
XPP
X18 0 0 18 4696 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4696 1119 3 MP
XPP
X18 0 0 18 4696 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4696 1137 3 MP
XPP
X18 0 0 18 4696 1137 3 MP
XPP
X0 sg
X0 18 18 0 4696 1155 3 MP
XPP
X18 0 0 18 4696 1155 3 MP
XPP
X0 17 18 0 4696 1173 3 MP
XPP
X18 0 0 17 4696 1173 3 MP
XPP
X0 18 18 0 4696 1190 3 MP
XPP
X18 0 0 18 4696 1190 3 MP
XPP
X0 18 18 0 4696 1208 3 MP
XPP
X18 0 0 18 4696 1208 3 MP
XPP
X0 18 18 0 4696 1226 3 MP
XPP
X18 0 0 18 4696 1226 3 MP
XPP
X0 18 18 0 4696 1244 3 MP
XPP
X18 0 0 18 4696 1244 3 MP
XPP
X0 17 18 0 4696 1262 3 MP
XPP
X18 0 0 17 4696 1262 3 MP
XPP
X0 18 18 0 4696 1279 3 MP
XPP
X18 0 0 18 4696 1279 3 MP
XPP
X0 18 18 0 4696 1297 3 MP
XPP
X18 0 0 18 4696 1297 3 MP
XPP
X0 18 18 0 4696 1315 3 MP
XPP
X18 0 0 18 4696 1315 3 MP
XPP
X0 18 18 0 4696 1333 3 MP
XPP
X18 0 0 18 4696 1333 3 MP
XPP
X0 18 18 0 4696 1351 3 MP
XPP
X18 0 0 18 4696 1351 3 MP
XPP
X0 17 18 0 4696 1369 3 MP
XPP
X18 0 0 17 4696 1369 3 MP
XPP
X0 18 18 0 4696 1386 3 MP
XPP
X18 0 0 18 4696 1386 3 MP
XPP
X0 18 18 0 4696 1404 3 MP
XPP
X18 0 0 18 4696 1404 3 MP
XPP
X0 18 18 0 4696 1422 3 MP
XPP
X18 0 0 18 4696 1422 3 MP
XPP
X0 18 18 0 4696 1440 3 MP
XPP
X18 0 0 18 4696 1440 3 MP
XPP
X0 18 18 0 4696 1458 3 MP
XPP
X18 0 0 18 4696 1458 3 MP
XPP
X0 17 18 0 4696 1476 3 MP
XPP
X18 0 0 17 4696 1476 3 MP
XPP
X0 18 18 0 4696 1493 3 MP
XPP
X18 0 0 18 4696 1493 3 MP
XPP
X0 18 18 0 4696 1511 3 MP
XPP
X18 0 0 18 4696 1511 3 MP
XPP
X0.031746 sg
X0 18 18 0 4696 1529 3 MP
XPP
X18 0 0 18 4696 1529 3 MP
XPP
X0.142857 sg
X0 18 18 0 4696 1547 3 MP
XPP
X18 0 0 18 4696 1547 3 MP
XPP
X0.365079 sg
X0 18 18 0 4696 1565 3 MP
XPP
X18 0 0 18 4696 1565 3 MP
XPP
X0.634921 sg
X0 17 18 0 4696 1583 3 MP
XPP
X18 0 0 17 4696 1583 3 MP
XPP
X0.857143 sg
X0 18 18 0 4696 1600 3 MP
XPP
X18 0 0 18 4696 1600 3 MP
XPP
X0.968254 sg
X0 18 18 0 4696 1618 3 MP
XPP
X18 0 0 18 4696 1618 3 MP
XPP
X1 sg
X0 18 18 0 4696 1636 3 MP
XPP
X18 0 0 18 4696 1636 3 MP
XPP
X0 18 18 0 4696 1654 3 MP
XPP
X18 0 0 18 4696 1654 3 MP
XPP
X0 18 18 0 4696 1672 3 MP
XPP
X18 0 0 18 4696 1672 3 MP
XPP
X0 17 18 0 4696 1690 3 MP
XPP
X18 0 0 17 4696 1690 3 MP
XPP
X0 18 18 0 4696 1707 3 MP
XPP
X18 0 0 18 4696 1707 3 MP
XPP
X0 18 18 0 4696 1725 3 MP
XPP
X18 0 0 18 4696 1725 3 MP
XPP
X0 18 18 0 4696 1743 3 MP
XPP
X18 0 0 18 4696 1743 3 MP
XPP
X0 18 18 0 4696 1761 3 MP
XPP
X18 0 0 18 4696 1761 3 MP
XPP
X0 18 18 0 4696 1779 3 MP
XPP
X18 0 0 18 4696 1779 3 MP
XPP
X0 17 18 0 4696 1797 3 MP
XPP
X18 0 0 17 4696 1797 3 MP
XPP
X0 18 18 0 4696 1814 3 MP
XPP
X18 0 0 18 4696 1814 3 MP
XPP
X0 18 18 0 4696 1832 3 MP
XPP
X18 0 0 18 4696 1832 3 MP
XPP
X0 18 18 0 4696 1850 3 MP
XPP
X18 0 0 18 4696 1850 3 MP
XPP
X0 18 18 0 4696 1868 3 MP
XPP
X18 0 0 18 4696 1868 3 MP
XPP
X0 18 18 0 4696 1886 3 MP
XPP
X18 0 0 18 4696 1886 3 MP
XPP
X0 17 18 0 4696 1904 3 MP
XPP
X18 0 0 17 4696 1904 3 MP
XPP
X0 18 18 0 4696 1921 3 MP
XPP
X18 0 0 18 4696 1921 3 MP
XPP
X0 18 18 0 4696 1939 3 MP
XPP
X18 0 0 18 4696 1939 3 MP
XPP
X0 18 18 0 4696 1957 3 MP
XPP
X18 0 0 18 4696 1957 3 MP
XPP
X0 18 18 0 4696 1975 3 MP
XPP
X18 0 0 18 4696 1975 3 MP
XPP
X0 18 18 0 4696 1993 3 MP
XPP
X18 0 0 18 4696 1993 3 MP
XPP
X0 17 18 0 4696 2011 3 MP
XPP
X18 0 0 17 4696 2011 3 MP
XPP
X0 18 18 0 4696 2028 3 MP
XPP
X18 0 0 18 4696 2028 3 MP
XPP
X0 18 18 0 4696 2046 3 MP
XPP
X18 0 0 18 4696 2046 3 MP
XPP
X0 18 18 0 4696 2064 3 MP
XPP
X18 0 0 18 4696 2064 3 MP
XPP
X0 18 18 0 4696 2082 3 MP
XPP
X18 0 0 18 4696 2082 3 MP
XPP
X0 18 18 0 4696 2100 3 MP
XPP
X18 0 0 18 4696 2100 3 MP
XPP
X0 17 18 0 4696 2118 3 MP
XPP
X18 0 0 17 4696 2118 3 MP
XPP
X0 18 18 0 4696 2135 3 MP
XPP
X18 0 0 18 4696 2135 3 MP
XPP
X0 18 18 0 4696 2153 3 MP
XPP
X18 0 0 18 4696 2153 3 MP
XPP
X0 18 18 0 4714 388 3 MP
XPP
X18 0 0 18 4714 388 3 MP
XPP
X0 18 18 0 4714 406 3 MP
XPP
X18 0 0 18 4714 406 3 MP
XPP
X0 17 18 0 4714 424 3 MP
XPP
X18 0 0 17 4714 424 3 MP
XPP
X0 18 18 0 4714 441 3 MP
XPP
X18 0 0 18 4714 441 3 MP
XPP
X0 18 18 0 4714 459 3 MP
XPP
X18 0 0 18 4714 459 3 MP
XPP
X0 18 18 0 4714 477 3 MP
XPP
X18 0 0 18 4714 477 3 MP
XPP
X0 18 18 0 4714 495 3 MP
XPP
X18 0 0 18 4714 495 3 MP
XPP
X0 18 18 0 4714 513 3 MP
XPP
X18 0 0 18 4714 513 3 MP
XPP
X0 17 18 0 4714 531 3 MP
XPP
X18 0 0 17 4714 531 3 MP
XPP
X0 18 18 0 4714 548 3 MP
XPP
X18 0 0 18 4714 548 3 MP
XPP
X0 18 18 0 4714 566 3 MP
XPP
X18 0 0 18 4714 566 3 MP
XPP
X0 18 18 0 4714 584 3 MP
XPP
X18 0 0 18 4714 584 3 MP
XPP
X0 18 18 0 4714 602 3 MP
XPP
X18 0 0 18 4714 602 3 MP
XPP
X0 18 18 0 4714 620 3 MP
XPP
X18 0 0 18 4714 620 3 MP
XPP
X0 17 18 0 4714 638 3 MP
XPP
X18 0 0 17 4714 638 3 MP
XPP
X0 18 18 0 4714 655 3 MP
XPP
X18 0 0 18 4714 655 3 MP
XPP
X0 18 18 0 4714 673 3 MP
XPP
X18 0 0 18 4714 673 3 MP
XPP
X0 18 18 0 4714 691 3 MP
XPP
X18 0 0 18 4714 691 3 MP
XPP
X0 18 18 0 4714 709 3 MP
XPP
X18 0 0 18 4714 709 3 MP
XPP
X0 18 18 0 4714 727 3 MP
XPP
X18 0 0 18 4714 727 3 MP
XPP
X0 17 18 0 4714 745 3 MP
XPP
X18 0 0 17 4714 745 3 MP
XPP
X0 18 18 0 4714 762 3 MP
XPP
X18 0 0 18 4714 762 3 MP
XPP
X0 18 18 0 4714 780 3 MP
XPP
X18 0 0 18 4714 780 3 MP
XPP
X0 18 18 0 4714 798 3 MP
XPP
X18 0 0 18 4714 798 3 MP
XPP
X0 18 18 0 4714 816 3 MP
XPP
X18 0 0 18 4714 816 3 MP
XPP
X0 18 18 0 4714 834 3 MP
XPP
X18 0 0 18 4714 834 3 MP
XPP
X0 17 18 0 4714 852 3 MP
XPP
X18 0 0 17 4714 852 3 MP
XPP
X0 18 18 0 4714 869 3 MP
XPP
X18 0 0 18 4714 869 3 MP
XPP
X0 18 18 0 4714 887 3 MP
XPP
X18 0 0 18 4714 887 3 MP
XPP
X0 18 18 0 4714 905 3 MP
XPP
X18 0 0 18 4714 905 3 MP
XPP
X0 18 18 0 4714 923 3 MP
XPP
X18 0 0 18 4714 923 3 MP
XPP
X0 18 18 0 4714 941 3 MP
XPP
X18 0 0 18 4714 941 3 MP
XPP
X0 17 18 0 4714 959 3 MP
XPP
X18 0 0 17 4714 959 3 MP
XPP
X0 18 18 0 4714 976 3 MP
XPP
X18 0 0 18 4714 976 3 MP
XPP
X0 18 18 0 4714 994 3 MP
XPP
X18 0 0 18 4714 994 3 MP
XPP
X0 18 18 0 4714 1012 3 MP
XPP
X18 0 0 18 4714 1012 3 MP
XPP
X0 18 18 0 4714 1030 3 MP
XPP
X18 0 0 18 4714 1030 3 MP
XPP
X0 18 18 0 4714 1048 3 MP
XPP
X18 0 0 18 4714 1048 3 MP
XPP
X0 17 18 0 4714 1066 3 MP
XPP
X18 0 0 17 4714 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4714 1083 3 MP
XPP
X18 0 0 18 4714 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4714 1101 3 MP
XPP
X18 0 0 18 4714 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4714 1119 3 MP
XPP
X18 0 0 18 4714 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4714 1137 3 MP
XPP
X18 0 0 18 4714 1137 3 MP
XPP
X0 sg
X0 18 18 0 4714 1155 3 MP
XPP
X18 0 0 18 4714 1155 3 MP
XPP
X0 17 18 0 4714 1173 3 MP
XPP
X18 0 0 17 4714 1173 3 MP
XPP
X0 18 18 0 4714 1190 3 MP
XPP
X18 0 0 18 4714 1190 3 MP
XPP
X0 18 18 0 4714 1208 3 MP
XPP
X18 0 0 18 4714 1208 3 MP
XPP
X0 18 18 0 4714 1226 3 MP
XPP
X18 0 0 18 4714 1226 3 MP
XPP
X0 18 18 0 4714 1244 3 MP
XPP
X18 0 0 18 4714 1244 3 MP
XPP
X0 17 18 0 4714 1262 3 MP
XPP
X18 0 0 17 4714 1262 3 MP
XPP
X0 18 18 0 4714 1279 3 MP
XPP
X18 0 0 18 4714 1279 3 MP
XPP
X0 18 18 0 4714 1297 3 MP
XPP
X18 0 0 18 4714 1297 3 MP
XPP
X0 18 18 0 4714 1315 3 MP
XPP
X18 0 0 18 4714 1315 3 MP
XPP
X0 18 18 0 4714 1333 3 MP
XPP
X18 0 0 18 4714 1333 3 MP
XPP
X0 18 18 0 4714 1351 3 MP
XPP
X18 0 0 18 4714 1351 3 MP
XPP
X0 17 18 0 4714 1369 3 MP
XPP
X18 0 0 17 4714 1369 3 MP
XPP
X0 18 18 0 4714 1386 3 MP
XPP
X18 0 0 18 4714 1386 3 MP
XPP
X0 18 18 0 4714 1404 3 MP
XPP
X18 0 0 18 4714 1404 3 MP
XPP
X0 18 18 0 4714 1422 3 MP
XPP
X18 0 0 18 4714 1422 3 MP
XPP
X0 18 18 0 4714 1440 3 MP
XPP
X18 0 0 18 4714 1440 3 MP
XPP
X0 18 18 0 4714 1458 3 MP
XPP
X18 0 0 18 4714 1458 3 MP
XPP
X0 17 18 0 4714 1476 3 MP
XPP
X18 0 0 17 4714 1476 3 MP
XPP
X0 18 18 0 4714 1493 3 MP
XPP
X18 0 0 18 4714 1493 3 MP
XPP
X0 18 18 0 4714 1511 3 MP
XPP
X18 0 0 18 4714 1511 3 MP
XPP
X0 18 18 0 4714 1529 3 MP
XPP
X18 0 0 18 4714 1529 3 MP
XPP
X0.031746 sg
X0 18 18 0 4714 1547 3 MP
XPP
X18 0 0 18 4714 1547 3 MP
XPP
X0.142857 sg
X0 18 18 0 4714 1565 3 MP
XPP
X18 0 0 18 4714 1565 3 MP
XPP
X0.365079 sg
X0 17 18 0 4714 1583 3 MP
XPP
X18 0 0 17 4714 1583 3 MP
XPP
X0.634921 sg
X0 18 18 0 4714 1600 3 MP
XPP
X18 0 0 18 4714 1600 3 MP
XPP
X0.857143 sg
X0 18 18 0 4714 1618 3 MP
XPP
X18 0 0 18 4714 1618 3 MP
XPP
X0.968254 sg
X0 18 18 0 4714 1636 3 MP
XPP
X18 0 0 18 4714 1636 3 MP
XPP
X1 sg
X0 18 18 0 4714 1654 3 MP
XPP
X18 0 0 18 4714 1654 3 MP
XPP
X0 18 18 0 4714 1672 3 MP
XPP
X18 0 0 18 4714 1672 3 MP
XPP
X0 17 18 0 4714 1690 3 MP
XPP
X18 0 0 17 4714 1690 3 MP
XPP
X0 18 18 0 4714 1707 3 MP
XPP
X18 0 0 18 4714 1707 3 MP
XPP
X0 18 18 0 4714 1725 3 MP
XPP
X18 0 0 18 4714 1725 3 MP
XPP
X0 18 18 0 4714 1743 3 MP
XPP
X18 0 0 18 4714 1743 3 MP
XPP
X0 18 18 0 4714 1761 3 MP
XPP
X18 0 0 18 4714 1761 3 MP
XPP
X0 18 18 0 4714 1779 3 MP
XPP
X18 0 0 18 4714 1779 3 MP
XPP
X0 17 18 0 4714 1797 3 MP
XPP
X18 0 0 17 4714 1797 3 MP
XPP
X0 18 18 0 4714 1814 3 MP
XPP
X18 0 0 18 4714 1814 3 MP
XPP
X0 18 18 0 4714 1832 3 MP
XPP
X18 0 0 18 4714 1832 3 MP
XPP
X0 18 18 0 4714 1850 3 MP
XPP
X18 0 0 18 4714 1850 3 MP
XPP
X0 18 18 0 4714 1868 3 MP
XPP
X18 0 0 18 4714 1868 3 MP
XPP
X0 18 18 0 4714 1886 3 MP
XPP
X18 0 0 18 4714 1886 3 MP
XPP
X0 17 18 0 4714 1904 3 MP
XPP
X18 0 0 17 4714 1904 3 MP
XPP
X0 18 18 0 4714 1921 3 MP
XPP
X18 0 0 18 4714 1921 3 MP
XPP
X0 18 18 0 4714 1939 3 MP
XPP
X18 0 0 18 4714 1939 3 MP
XPP
X0 18 18 0 4714 1957 3 MP
XPP
X18 0 0 18 4714 1957 3 MP
XPP
X0 18 18 0 4714 1975 3 MP
XPP
X18 0 0 18 4714 1975 3 MP
XPP
X0 18 18 0 4714 1993 3 MP
XPP
X18 0 0 18 4714 1993 3 MP
XPP
X0 17 18 0 4714 2011 3 MP
XPP
X18 0 0 17 4714 2011 3 MP
XPP
X0 18 18 0 4714 2028 3 MP
XPP
X18 0 0 18 4714 2028 3 MP
XPP
X0 18 18 0 4714 2046 3 MP
XPP
X18 0 0 18 4714 2046 3 MP
XPP
X0 18 18 0 4714 2064 3 MP
XPP
X18 0 0 18 4714 2064 3 MP
XPP
X0 18 18 0 4714 2082 3 MP
XPP
X18 0 0 18 4714 2082 3 MP
XPP
X0 18 18 0 4714 2100 3 MP
XPP
X18 0 0 18 4714 2100 3 MP
XPP
X0 17 18 0 4714 2118 3 MP
XPP
X18 0 0 17 4714 2118 3 MP
XPP
X0 18 18 0 4714 2135 3 MP
XPP
X18 0 0 18 4714 2135 3 MP
XPP
X0 18 18 0 4714 2153 3 MP
XPP
X18 0 0 18 4714 2153 3 MP
XPP
X0 18 18 0 4732 388 3 MP
XPP
X18 0 0 18 4732 388 3 MP
XPP
X0 18 18 0 4732 406 3 MP
XPP
X18 0 0 18 4732 406 3 MP
XPP
X0 17 18 0 4732 424 3 MP
XPP
X18 0 0 17 4732 424 3 MP
XPP
X0 18 18 0 4732 441 3 MP
XPP
X18 0 0 18 4732 441 3 MP
XPP
X0 18 18 0 4732 459 3 MP
XPP
X18 0 0 18 4732 459 3 MP
XPP
X0 18 18 0 4732 477 3 MP
XPP
X18 0 0 18 4732 477 3 MP
XPP
X0 18 18 0 4732 495 3 MP
XPP
X18 0 0 18 4732 495 3 MP
XPP
X0 18 18 0 4732 513 3 MP
XPP
X18 0 0 18 4732 513 3 MP
XPP
X0 17 18 0 4732 531 3 MP
XPP
X18 0 0 17 4732 531 3 MP
XPP
X0 18 18 0 4732 548 3 MP
XPP
X18 0 0 18 4732 548 3 MP
XPP
X0 18 18 0 4732 566 3 MP
XPP
X18 0 0 18 4732 566 3 MP
XPP
X0 18 18 0 4732 584 3 MP
XPP
X18 0 0 18 4732 584 3 MP
XPP
X0 18 18 0 4732 602 3 MP
XPP
X18 0 0 18 4732 602 3 MP
XPP
X0 18 18 0 4732 620 3 MP
XPP
X18 0 0 18 4732 620 3 MP
XPP
X0 17 18 0 4732 638 3 MP
XPP
X18 0 0 17 4732 638 3 MP
XPP
X0 18 18 0 4732 655 3 MP
XPP
X18 0 0 18 4732 655 3 MP
XPP
X0 18 18 0 4732 673 3 MP
XPP
X18 0 0 18 4732 673 3 MP
XPP
X0 18 18 0 4732 691 3 MP
XPP
X18 0 0 18 4732 691 3 MP
XPP
X0 18 18 0 4732 709 3 MP
XPP
X18 0 0 18 4732 709 3 MP
XPP
X0 18 18 0 4732 727 3 MP
XPP
X18 0 0 18 4732 727 3 MP
XPP
X0 17 18 0 4732 745 3 MP
XPP
X18 0 0 17 4732 745 3 MP
XPP
X0 18 18 0 4732 762 3 MP
XPP
X18 0 0 18 4732 762 3 MP
XPP
X0 18 18 0 4732 780 3 MP
XPP
X18 0 0 18 4732 780 3 MP
XPP
X0 18 18 0 4732 798 3 MP
XPP
X18 0 0 18 4732 798 3 MP
XPP
X0 18 18 0 4732 816 3 MP
XPP
X18 0 0 18 4732 816 3 MP
XPP
X0 18 18 0 4732 834 3 MP
XPP
X18 0 0 18 4732 834 3 MP
XPP
X0 17 18 0 4732 852 3 MP
XPP
X18 0 0 17 4732 852 3 MP
XPP
X0 18 18 0 4732 869 3 MP
XPP
X18 0 0 18 4732 869 3 MP
XPP
X0 18 18 0 4732 887 3 MP
XPP
X18 0 0 18 4732 887 3 MP
XPP
X0 18 18 0 4732 905 3 MP
XPP
X18 0 0 18 4732 905 3 MP
XPP
X0 18 18 0 4732 923 3 MP
XPP
X18 0 0 18 4732 923 3 MP
XPP
X0 18 18 0 4732 941 3 MP
XPP
X18 0 0 18 4732 941 3 MP
XPP
X0 17 18 0 4732 959 3 MP
XPP
X18 0 0 17 4732 959 3 MP
XPP
X0 18 18 0 4732 976 3 MP
XPP
X18 0 0 18 4732 976 3 MP
XPP
X0 18 18 0 4732 994 3 MP
XPP
X18 0 0 18 4732 994 3 MP
XPP
X0 18 18 0 4732 1012 3 MP
XPP
X18 0 0 18 4732 1012 3 MP
XPP
X0 18 18 0 4732 1030 3 MP
XPP
X18 0 0 18 4732 1030 3 MP
XPP
X0 18 18 0 4732 1048 3 MP
XPP
X18 0 0 18 4732 1048 3 MP
XPP
X0 17 18 0 4732 1066 3 MP
XPP
X18 0 0 17 4732 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4732 1083 3 MP
XPP
X18 0 0 18 4732 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4732 1101 3 MP
XPP
X18 0 0 18 4732 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4732 1119 3 MP
XPP
X18 0 0 18 4732 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4732 1137 3 MP
XPP
X18 0 0 18 4732 1137 3 MP
XPP
X0 sg
X0 18 18 0 4732 1155 3 MP
XPP
X18 0 0 18 4732 1155 3 MP
XPP
X0 17 18 0 4732 1173 3 MP
XPP
X18 0 0 17 4732 1173 3 MP
XPP
X0 18 18 0 4732 1190 3 MP
XPP
X18 0 0 18 4732 1190 3 MP
XPP
X0 18 18 0 4732 1208 3 MP
XPP
X18 0 0 18 4732 1208 3 MP
XPP
X0 18 18 0 4732 1226 3 MP
XPP
X18 0 0 18 4732 1226 3 MP
XPP
X0 18 18 0 4732 1244 3 MP
XPP
X18 0 0 18 4732 1244 3 MP
XPP
X0 17 18 0 4732 1262 3 MP
XPP
X18 0 0 17 4732 1262 3 MP
XPP
X0 18 18 0 4732 1279 3 MP
XPP
X18 0 0 18 4732 1279 3 MP
XPP
X0 18 18 0 4732 1297 3 MP
XPP
X18 0 0 18 4732 1297 3 MP
XPP
X0 18 18 0 4732 1315 3 MP
XPP
X18 0 0 18 4732 1315 3 MP
XPP
X0 18 18 0 4732 1333 3 MP
XPP
X18 0 0 18 4732 1333 3 MP
XPP
X0 18 18 0 4732 1351 3 MP
XPP
X18 0 0 18 4732 1351 3 MP
XPP
X0 17 18 0 4732 1369 3 MP
XPP
X18 0 0 17 4732 1369 3 MP
XPP
X0 18 18 0 4732 1386 3 MP
XPP
X18 0 0 18 4732 1386 3 MP
XPP
X0 18 18 0 4732 1404 3 MP
XPP
X18 0 0 18 4732 1404 3 MP
XPP
X0 18 18 0 4732 1422 3 MP
XPP
X18 0 0 18 4732 1422 3 MP
XPP
X0 18 18 0 4732 1440 3 MP
XPP
X18 0 0 18 4732 1440 3 MP
XPP
X0 18 18 0 4732 1458 3 MP
XPP
X18 0 0 18 4732 1458 3 MP
XPP
X0 17 18 0 4732 1476 3 MP
XPP
X18 0 0 17 4732 1476 3 MP
XPP
X0 18 18 0 4732 1493 3 MP
XPP
X18 0 0 18 4732 1493 3 MP
XPP
X0 18 18 0 4732 1511 3 MP
XPP
X18 0 0 18 4732 1511 3 MP
XPP
X0 18 18 0 4732 1529 3 MP
XPP
X18 0 0 18 4732 1529 3 MP
XPP
X0 18 18 0 4732 1547 3 MP
XPP
X18 0 0 18 4732 1547 3 MP
XPP
X0.031746 sg
X0 18 18 0 4732 1565 3 MP
XPP
X18 0 0 18 4732 1565 3 MP
XPP
X0.142857 sg
X0 17 18 0 4732 1583 3 MP
XPP
X18 0 0 17 4732 1583 3 MP
XPP
X0.365079 sg
X0 18 18 0 4732 1600 3 MP
XPP
X18 0 0 18 4732 1600 3 MP
XPP
X0.634921 sg
X0 18 18 0 4732 1618 3 MP
XPP
X18 0 0 18 4732 1618 3 MP
XPP
X0.857143 sg
X0 18 18 0 4732 1636 3 MP
XPP
X18 0 0 18 4732 1636 3 MP
XPP
X0.968254 sg
X0 18 18 0 4732 1654 3 MP
XPP
X18 0 0 18 4732 1654 3 MP
XPP
X1 sg
X0 18 18 0 4732 1672 3 MP
XPP
X18 0 0 18 4732 1672 3 MP
XPP
X0 17 18 0 4732 1690 3 MP
XPP
X18 0 0 17 4732 1690 3 MP
XPP
X0 18 18 0 4732 1707 3 MP
XPP
X18 0 0 18 4732 1707 3 MP
XPP
X0 18 18 0 4732 1725 3 MP
XPP
X18 0 0 18 4732 1725 3 MP
XPP
X0 18 18 0 4732 1743 3 MP
XPP
X18 0 0 18 4732 1743 3 MP
XPP
X0 18 18 0 4732 1761 3 MP
XPP
X18 0 0 18 4732 1761 3 MP
XPP
X0 18 18 0 4732 1779 3 MP
XPP
X18 0 0 18 4732 1779 3 MP
XPP
X0 17 18 0 4732 1797 3 MP
XPP
X18 0 0 17 4732 1797 3 MP
XPP
X0 18 18 0 4732 1814 3 MP
XPP
X18 0 0 18 4732 1814 3 MP
XPP
X0 18 18 0 4732 1832 3 MP
XPP
X18 0 0 18 4732 1832 3 MP
XPP
X0 18 18 0 4732 1850 3 MP
XPP
X18 0 0 18 4732 1850 3 MP
XPP
X0 18 18 0 4732 1868 3 MP
XPP
X18 0 0 18 4732 1868 3 MP
XPP
X0 18 18 0 4732 1886 3 MP
XPP
X18 0 0 18 4732 1886 3 MP
XPP
X0 17 18 0 4732 1904 3 MP
XPP
X18 0 0 17 4732 1904 3 MP
XPP
X0 18 18 0 4732 1921 3 MP
XPP
X18 0 0 18 4732 1921 3 MP
XPP
X0 18 18 0 4732 1939 3 MP
XPP
X18 0 0 18 4732 1939 3 MP
XPP
X0 18 18 0 4732 1957 3 MP
XPP
X18 0 0 18 4732 1957 3 MP
XPP
X0 18 18 0 4732 1975 3 MP
XPP
X18 0 0 18 4732 1975 3 MP
XPP
X0 18 18 0 4732 1993 3 MP
XPP
X18 0 0 18 4732 1993 3 MP
XPP
X0 17 18 0 4732 2011 3 MP
XPP
X18 0 0 17 4732 2011 3 MP
XPP
X0 18 18 0 4732 2028 3 MP
XPP
X18 0 0 18 4732 2028 3 MP
XPP
X0 18 18 0 4732 2046 3 MP
XPP
X18 0 0 18 4732 2046 3 MP
XPP
X0 18 18 0 4732 2064 3 MP
XPP
X18 0 0 18 4732 2064 3 MP
XPP
X0 18 18 0 4732 2082 3 MP
XPP
X18 0 0 18 4732 2082 3 MP
XPP
X0 18 18 0 4732 2100 3 MP
XPP
X18 0 0 18 4732 2100 3 MP
XPP
X0 17 18 0 4732 2118 3 MP
XPP
X18 0 0 17 4732 2118 3 MP
XPP
X0 18 18 0 4732 2135 3 MP
XPP
X18 0 0 18 4732 2135 3 MP
XPP
X0 18 18 0 4732 2153 3 MP
XPP
X18 0 0 18 4732 2153 3 MP
XPP
X0 18 17 0 4750 388 3 MP
XPP
X17 0 0 18 4750 388 3 MP
XPP
X0 18 17 0 4750 406 3 MP
XPP
X17 0 0 18 4750 406 3 MP
XPP
X0 17 17 0 4750 424 3 MP
XPP
X17 0 0 17 4750 424 3 MP
XPP
X0 18 17 0 4750 441 3 MP
XPP
X17 0 0 18 4750 441 3 MP
XPP
X0 18 17 0 4750 459 3 MP
XPP
X17 0 0 18 4750 459 3 MP
XPP
X0 18 17 0 4750 477 3 MP
XPP
X17 0 0 18 4750 477 3 MP
XPP
X0 18 17 0 4750 495 3 MP
XPP
X17 0 0 18 4750 495 3 MP
XPP
X0 18 17 0 4750 513 3 MP
XPP
X17 0 0 18 4750 513 3 MP
XPP
X0 17 17 0 4750 531 3 MP
XPP
X17 0 0 17 4750 531 3 MP
XPP
X0 18 17 0 4750 548 3 MP
XPP
X17 0 0 18 4750 548 3 MP
XPP
X0 18 17 0 4750 566 3 MP
XPP
X17 0 0 18 4750 566 3 MP
XPP
X0 18 17 0 4750 584 3 MP
XPP
X17 0 0 18 4750 584 3 MP
XPP
X0 18 17 0 4750 602 3 MP
XPP
X17 0 0 18 4750 602 3 MP
XPP
X0 18 17 0 4750 620 3 MP
XPP
X17 0 0 18 4750 620 3 MP
XPP
X0 17 17 0 4750 638 3 MP
XPP
X17 0 0 17 4750 638 3 MP
XPP
X0 18 17 0 4750 655 3 MP
XPP
X17 0 0 18 4750 655 3 MP
XPP
X0 18 17 0 4750 673 3 MP
XPP
X17 0 0 18 4750 673 3 MP
XPP
X0 18 17 0 4750 691 3 MP
XPP
X17 0 0 18 4750 691 3 MP
XPP
X0 18 17 0 4750 709 3 MP
XPP
X17 0 0 18 4750 709 3 MP
XPP
X0 18 17 0 4750 727 3 MP
XPP
X17 0 0 18 4750 727 3 MP
XPP
X0 17 17 0 4750 745 3 MP
XPP
X17 0 0 17 4750 745 3 MP
XPP
X0 18 17 0 4750 762 3 MP
XPP
X17 0 0 18 4750 762 3 MP
XPP
X0 18 17 0 4750 780 3 MP
XPP
X17 0 0 18 4750 780 3 MP
XPP
X0 18 17 0 4750 798 3 MP
XPP
X17 0 0 18 4750 798 3 MP
XPP
X0 18 17 0 4750 816 3 MP
XPP
X17 0 0 18 4750 816 3 MP
XPP
X0 18 17 0 4750 834 3 MP
XPP
X17 0 0 18 4750 834 3 MP
XPP
X0 17 17 0 4750 852 3 MP
XPP
X17 0 0 17 4750 852 3 MP
XPP
X0 18 17 0 4750 869 3 MP
XPP
X17 0 0 18 4750 869 3 MP
XPP
X0 18 17 0 4750 887 3 MP
XPP
X17 0 0 18 4750 887 3 MP
XPP
X0 18 17 0 4750 905 3 MP
XPP
X17 0 0 18 4750 905 3 MP
XPP
X0 18 17 0 4750 923 3 MP
XPP
X17 0 0 18 4750 923 3 MP
XPP
X0 18 17 0 4750 941 3 MP
XPP
X17 0 0 18 4750 941 3 MP
XPP
X0 17 17 0 4750 959 3 MP
XPP
X17 0 0 17 4750 959 3 MP
XPP
X0 18 17 0 4750 976 3 MP
XPP
X17 0 0 18 4750 976 3 MP
XPP
X0 18 17 0 4750 994 3 MP
XPP
X17 0 0 18 4750 994 3 MP
XPP
X0 18 17 0 4750 1012 3 MP
XPP
X17 0 0 18 4750 1012 3 MP
XPP
X0 18 17 0 4750 1030 3 MP
XPP
X17 0 0 18 4750 1030 3 MP
XPP
X0 18 17 0 4750 1048 3 MP
XPP
X17 0 0 18 4750 1048 3 MP
XPP
X0 17 17 0 4750 1066 3 MP
XPP
X17 0 0 17 4750 1066 3 MP
XPP
X0.936508 sg
X0 18 17 0 4750 1083 3 MP
XPP
X17 0 0 18 4750 1083 3 MP
XPP
X0.68254 sg
X0 18 17 0 4750 1101 3 MP
XPP
X17 0 0 18 4750 1101 3 MP
XPP
X0.31746 sg
X0 18 17 0 4750 1119 3 MP
XPP
X17 0 0 18 4750 1119 3 MP
XPP
X0.0634921 sg
X0 18 17 0 4750 1137 3 MP
XPP
X17 0 0 18 4750 1137 3 MP
XPP
X0 sg
X0 18 17 0 4750 1155 3 MP
XPP
X17 0 0 18 4750 1155 3 MP
XPP
X0 17 17 0 4750 1173 3 MP
XPP
X17 0 0 17 4750 1173 3 MP
XPP
X0 18 17 0 4750 1190 3 MP
XPP
X17 0 0 18 4750 1190 3 MP
XPP
X0 18 17 0 4750 1208 3 MP
XPP
X17 0 0 18 4750 1208 3 MP
XPP
X0 18 17 0 4750 1226 3 MP
XPP
X17 0 0 18 4750 1226 3 MP
XPP
X0 18 17 0 4750 1244 3 MP
XPP
X17 0 0 18 4750 1244 3 MP
XPP
X0 17 17 0 4750 1262 3 MP
XPP
X17 0 0 17 4750 1262 3 MP
XPP
X0 18 17 0 4750 1279 3 MP
XPP
X17 0 0 18 4750 1279 3 MP
XPP
X0 18 17 0 4750 1297 3 MP
XPP
X17 0 0 18 4750 1297 3 MP
XPP
X0 18 17 0 4750 1315 3 MP
XPP
X17 0 0 18 4750 1315 3 MP
XPP
X0 18 17 0 4750 1333 3 MP
XPP
X17 0 0 18 4750 1333 3 MP
XPP
X0 18 17 0 4750 1351 3 MP
XPP
X17 0 0 18 4750 1351 3 MP
XPP
X0 17 17 0 4750 1369 3 MP
XPP
X17 0 0 17 4750 1369 3 MP
XPP
X0 18 17 0 4750 1386 3 MP
XPP
X17 0 0 18 4750 1386 3 MP
XPP
X0 18 17 0 4750 1404 3 MP
XPP
X17 0 0 18 4750 1404 3 MP
XPP
X0 18 17 0 4750 1422 3 MP
XPP
X17 0 0 18 4750 1422 3 MP
XPP
X0 18 17 0 4750 1440 3 MP
XPP
X17 0 0 18 4750 1440 3 MP
XPP
X0 18 17 0 4750 1458 3 MP
XPP
X17 0 0 18 4750 1458 3 MP
XPP
X0 17 17 0 4750 1476 3 MP
XPP
X17 0 0 17 4750 1476 3 MP
XPP
X0 18 17 0 4750 1493 3 MP
XPP
X17 0 0 18 4750 1493 3 MP
XPP
X0 18 17 0 4750 1511 3 MP
XPP
X17 0 0 18 4750 1511 3 MP
XPP
X0 18 17 0 4750 1529 3 MP
XPP
X17 0 0 18 4750 1529 3 MP
XPP
X0 18 17 0 4750 1547 3 MP
XPP
X17 0 0 18 4750 1547 3 MP
XPP
X0 18 17 0 4750 1565 3 MP
XPP
X17 0 0 18 4750 1565 3 MP
XPP
X0.031746 sg
X0 17 17 0 4750 1583 3 MP
XPP
X17 0 0 17 4750 1583 3 MP
XPP
X0.142857 sg
X0 18 17 0 4750 1600 3 MP
XPP
X17 0 0 18 4750 1600 3 MP
XPP
X0.365079 sg
X0 18 17 0 4750 1618 3 MP
XPP
X17 0 0 18 4750 1618 3 MP
XPP
X0.634921 sg
X0 18 17 0 4750 1636 3 MP
XPP
X17 0 0 18 4750 1636 3 MP
XPP
X0.857143 sg
X0 18 17 0 4750 1654 3 MP
XPP
X17 0 0 18 4750 1654 3 MP
XPP
X0.968254 sg
X0 18 17 0 4750 1672 3 MP
XPP
X17 0 0 18 4750 1672 3 MP
XPP
X1 sg
X0 17 17 0 4750 1690 3 MP
XPP
X17 0 0 17 4750 1690 3 MP
XPP
X0 18 17 0 4750 1707 3 MP
XPP
X17 0 0 18 4750 1707 3 MP
XPP
X0 18 17 0 4750 1725 3 MP
XPP
X17 0 0 18 4750 1725 3 MP
XPP
X0 18 17 0 4750 1743 3 MP
XPP
X17 0 0 18 4750 1743 3 MP
XPP
X0 18 17 0 4750 1761 3 MP
XPP
X17 0 0 18 4750 1761 3 MP
XPP
X0 18 17 0 4750 1779 3 MP
XPP
X17 0 0 18 4750 1779 3 MP
XPP
X0 17 17 0 4750 1797 3 MP
XPP
X17 0 0 17 4750 1797 3 MP
XPP
X0 18 17 0 4750 1814 3 MP
XPP
X17 0 0 18 4750 1814 3 MP
XPP
X0 18 17 0 4750 1832 3 MP
XPP
X17 0 0 18 4750 1832 3 MP
XPP
X0 18 17 0 4750 1850 3 MP
XPP
X17 0 0 18 4750 1850 3 MP
XPP
X0 18 17 0 4750 1868 3 MP
XPP
X17 0 0 18 4750 1868 3 MP
XPP
X0 18 17 0 4750 1886 3 MP
XPP
X17 0 0 18 4750 1886 3 MP
XPP
X0 17 17 0 4750 1904 3 MP
XPP
X17 0 0 17 4750 1904 3 MP
XPP
X0 18 17 0 4750 1921 3 MP
XPP
X17 0 0 18 4750 1921 3 MP
XPP
X0 18 17 0 4750 1939 3 MP
XPP
X17 0 0 18 4750 1939 3 MP
XPP
X0 18 17 0 4750 1957 3 MP
XPP
X17 0 0 18 4750 1957 3 MP
XPP
X0 18 17 0 4750 1975 3 MP
XPP
X17 0 0 18 4750 1975 3 MP
XPP
X0 18 17 0 4750 1993 3 MP
XPP
X17 0 0 18 4750 1993 3 MP
XPP
X0 17 17 0 4750 2011 3 MP
XPP
X17 0 0 17 4750 2011 3 MP
XPP
X0 18 17 0 4750 2028 3 MP
XPP
X17 0 0 18 4750 2028 3 MP
XPP
X0 18 17 0 4750 2046 3 MP
XPP
X17 0 0 18 4750 2046 3 MP
XPP
X0 18 17 0 4750 2064 3 MP
XPP
X17 0 0 18 4750 2064 3 MP
XPP
X0 18 17 0 4750 2082 3 MP
XPP
X17 0 0 18 4750 2082 3 MP
XPP
X0 18 17 0 4750 2100 3 MP
XPP
X17 0 0 18 4750 2100 3 MP
XPP
X0 17 17 0 4750 2118 3 MP
XPP
X17 0 0 17 4750 2118 3 MP
XPP
X0 18 17 0 4750 2135 3 MP
XPP
X17 0 0 18 4750 2135 3 MP
XPP
X0 18 17 0 4750 2153 3 MP
XPP
X17 0 0 18 4750 2153 3 MP
XPP
X0 18 18 0 4767 388 3 MP
XPP
X18 0 0 18 4767 388 3 MP
XPP
X0 18 18 0 4767 406 3 MP
XPP
X18 0 0 18 4767 406 3 MP
XPP
X0 17 18 0 4767 424 3 MP
XPP
X18 0 0 17 4767 424 3 MP
XPP
X0 18 18 0 4767 441 3 MP
XPP
X18 0 0 18 4767 441 3 MP
XPP
X0 18 18 0 4767 459 3 MP
XPP
X18 0 0 18 4767 459 3 MP
XPP
X0 18 18 0 4767 477 3 MP
XPP
X18 0 0 18 4767 477 3 MP
XPP
X0 18 18 0 4767 495 3 MP
XPP
X18 0 0 18 4767 495 3 MP
XPP
X0 18 18 0 4767 513 3 MP
XPP
X18 0 0 18 4767 513 3 MP
XPP
X0 17 18 0 4767 531 3 MP
XPP
X18 0 0 17 4767 531 3 MP
XPP
X0 18 18 0 4767 548 3 MP
XPP
X18 0 0 18 4767 548 3 MP
XPP
X0 18 18 0 4767 566 3 MP
XPP
X18 0 0 18 4767 566 3 MP
XPP
X0 18 18 0 4767 584 3 MP
XPP
X18 0 0 18 4767 584 3 MP
XPP
X0 18 18 0 4767 602 3 MP
XPP
X18 0 0 18 4767 602 3 MP
XPP
X0 18 18 0 4767 620 3 MP
XPP
X18 0 0 18 4767 620 3 MP
XPP
X0 17 18 0 4767 638 3 MP
XPP
X18 0 0 17 4767 638 3 MP
XPP
X0 18 18 0 4767 655 3 MP
XPP
X18 0 0 18 4767 655 3 MP
XPP
X0 18 18 0 4767 673 3 MP
XPP
X18 0 0 18 4767 673 3 MP
XPP
X0 18 18 0 4767 691 3 MP
XPP
X18 0 0 18 4767 691 3 MP
XPP
X0 18 18 0 4767 709 3 MP
XPP
X18 0 0 18 4767 709 3 MP
XPP
X0 18 18 0 4767 727 3 MP
XPP
X18 0 0 18 4767 727 3 MP
XPP
X0 17 18 0 4767 745 3 MP
XPP
X18 0 0 17 4767 745 3 MP
XPP
X0 18 18 0 4767 762 3 MP
XPP
X18 0 0 18 4767 762 3 MP
XPP
X0 18 18 0 4767 780 3 MP
XPP
X18 0 0 18 4767 780 3 MP
XPP
X0 18 18 0 4767 798 3 MP
XPP
X18 0 0 18 4767 798 3 MP
XPP
X0 18 18 0 4767 816 3 MP
XPP
X18 0 0 18 4767 816 3 MP
XPP
X0 18 18 0 4767 834 3 MP
XPP
X18 0 0 18 4767 834 3 MP
XPP
X0 17 18 0 4767 852 3 MP
XPP
X18 0 0 17 4767 852 3 MP
XPP
X0 18 18 0 4767 869 3 MP
XPP
X18 0 0 18 4767 869 3 MP
XPP
X0 18 18 0 4767 887 3 MP
XPP
X18 0 0 18 4767 887 3 MP
XPP
X0 18 18 0 4767 905 3 MP
XPP
X18 0 0 18 4767 905 3 MP
XPP
X0 18 18 0 4767 923 3 MP
XPP
X18 0 0 18 4767 923 3 MP
XPP
X0 18 18 0 4767 941 3 MP
XPP
X18 0 0 18 4767 941 3 MP
XPP
X0 17 18 0 4767 959 3 MP
XPP
X18 0 0 17 4767 959 3 MP
XPP
X0 18 18 0 4767 976 3 MP
XPP
X18 0 0 18 4767 976 3 MP
XPP
X0 18 18 0 4767 994 3 MP
XPP
X18 0 0 18 4767 994 3 MP
XPP
X0 18 18 0 4767 1012 3 MP
XPP
X18 0 0 18 4767 1012 3 MP
XPP
X0 18 18 0 4767 1030 3 MP
XPP
X18 0 0 18 4767 1030 3 MP
XPP
X0 18 18 0 4767 1048 3 MP
XPP
X18 0 0 18 4767 1048 3 MP
XPP
X0 17 18 0 4767 1066 3 MP
XPP
X18 0 0 17 4767 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4767 1083 3 MP
XPP
X18 0 0 18 4767 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4767 1101 3 MP
XPP
X18 0 0 18 4767 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4767 1119 3 MP
XPP
X18 0 0 18 4767 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4767 1137 3 MP
XPP
X18 0 0 18 4767 1137 3 MP
XPP
X0 sg
X0 18 18 0 4767 1155 3 MP
XPP
X18 0 0 18 4767 1155 3 MP
XPP
X0 17 18 0 4767 1173 3 MP
XPP
X18 0 0 17 4767 1173 3 MP
XPP
X0 18 18 0 4767 1190 3 MP
XPP
X18 0 0 18 4767 1190 3 MP
XPP
X0 18 18 0 4767 1208 3 MP
XPP
X18 0 0 18 4767 1208 3 MP
XPP
X0 18 18 0 4767 1226 3 MP
XPP
X18 0 0 18 4767 1226 3 MP
XPP
X0 18 18 0 4767 1244 3 MP
XPP
X18 0 0 18 4767 1244 3 MP
XPP
X0 17 18 0 4767 1262 3 MP
XPP
X18 0 0 17 4767 1262 3 MP
XPP
X0 18 18 0 4767 1279 3 MP
XPP
X18 0 0 18 4767 1279 3 MP
XPP
X0 18 18 0 4767 1297 3 MP
XPP
X18 0 0 18 4767 1297 3 MP
XPP
X0 18 18 0 4767 1315 3 MP
XPP
X18 0 0 18 4767 1315 3 MP
XPP
X0 18 18 0 4767 1333 3 MP
XPP
X18 0 0 18 4767 1333 3 MP
XPP
X0 18 18 0 4767 1351 3 MP
XPP
X18 0 0 18 4767 1351 3 MP
XPP
X0 17 18 0 4767 1369 3 MP
XPP
X18 0 0 17 4767 1369 3 MP
XPP
X0 18 18 0 4767 1386 3 MP
XPP
X18 0 0 18 4767 1386 3 MP
XPP
X0 18 18 0 4767 1404 3 MP
XPP
X18 0 0 18 4767 1404 3 MP
XPP
X0 18 18 0 4767 1422 3 MP
XPP
X18 0 0 18 4767 1422 3 MP
XPP
X0 18 18 0 4767 1440 3 MP
XPP
X18 0 0 18 4767 1440 3 MP
XPP
X0 18 18 0 4767 1458 3 MP
XPP
X18 0 0 18 4767 1458 3 MP
XPP
X0 17 18 0 4767 1476 3 MP
XPP
X18 0 0 17 4767 1476 3 MP
XPP
X0 18 18 0 4767 1493 3 MP
XPP
X18 0 0 18 4767 1493 3 MP
XPP
X0 18 18 0 4767 1511 3 MP
XPP
X18 0 0 18 4767 1511 3 MP
XPP
X0 18 18 0 4767 1529 3 MP
XPP
X18 0 0 18 4767 1529 3 MP
XPP
X0 18 18 0 4767 1547 3 MP
XPP
X18 0 0 18 4767 1547 3 MP
XPP
X0 18 18 0 4767 1565 3 MP
XPP
X18 0 0 18 4767 1565 3 MP
XPP
X0 17 18 0 4767 1583 3 MP
XPP
X18 0 0 17 4767 1583 3 MP
XPP
X0.031746 sg
X0 18 18 0 4767 1600 3 MP
XPP
X18 0 0 18 4767 1600 3 MP
XPP
X0.142857 sg
X0 18 18 0 4767 1618 3 MP
XPP
X18 0 0 18 4767 1618 3 MP
XPP
X0.365079 sg
X0 18 18 0 4767 1636 3 MP
XPP
X18 0 0 18 4767 1636 3 MP
XPP
X0.634921 sg
X0 18 18 0 4767 1654 3 MP
XPP
X18 0 0 18 4767 1654 3 MP
XPP
X0.857143 sg
X0 18 18 0 4767 1672 3 MP
XPP
X18 0 0 18 4767 1672 3 MP
XPP
X0.968254 sg
X0 17 18 0 4767 1690 3 MP
XPP
X18 0 0 17 4767 1690 3 MP
XPP
X1 sg
X0 18 18 0 4767 1707 3 MP
XPP
X18 0 0 18 4767 1707 3 MP
XPP
X0 18 18 0 4767 1725 3 MP
XPP
X18 0 0 18 4767 1725 3 MP
XPP
X0 18 18 0 4767 1743 3 MP
XPP
X18 0 0 18 4767 1743 3 MP
XPP
X0 18 18 0 4767 1761 3 MP
XPP
X18 0 0 18 4767 1761 3 MP
XPP
X0 18 18 0 4767 1779 3 MP
XPP
X18 0 0 18 4767 1779 3 MP
XPP
X0 17 18 0 4767 1797 3 MP
XPP
X18 0 0 17 4767 1797 3 MP
XPP
X0 18 18 0 4767 1814 3 MP
XPP
X18 0 0 18 4767 1814 3 MP
XPP
X0 18 18 0 4767 1832 3 MP
XPP
X18 0 0 18 4767 1832 3 MP
XPP
X0 18 18 0 4767 1850 3 MP
XPP
X18 0 0 18 4767 1850 3 MP
XPP
X0 18 18 0 4767 1868 3 MP
XPP
X18 0 0 18 4767 1868 3 MP
XPP
X0 18 18 0 4767 1886 3 MP
XPP
X18 0 0 18 4767 1886 3 MP
XPP
X0 17 18 0 4767 1904 3 MP
XPP
X18 0 0 17 4767 1904 3 MP
XPP
X0 18 18 0 4767 1921 3 MP
XPP
X18 0 0 18 4767 1921 3 MP
XPP
X0 18 18 0 4767 1939 3 MP
XPP
X18 0 0 18 4767 1939 3 MP
XPP
X0 18 18 0 4767 1957 3 MP
XPP
X18 0 0 18 4767 1957 3 MP
XPP
X0 18 18 0 4767 1975 3 MP
XPP
X18 0 0 18 4767 1975 3 MP
XPP
X0 18 18 0 4767 1993 3 MP
XPP
X18 0 0 18 4767 1993 3 MP
XPP
X0 17 18 0 4767 2011 3 MP
XPP
X18 0 0 17 4767 2011 3 MP
XPP
X0 18 18 0 4767 2028 3 MP
XPP
X18 0 0 18 4767 2028 3 MP
XPP
X0 18 18 0 4767 2046 3 MP
XPP
X18 0 0 18 4767 2046 3 MP
XPP
X0 18 18 0 4767 2064 3 MP
XPP
X18 0 0 18 4767 2064 3 MP
XPP
X0 18 18 0 4767 2082 3 MP
XPP
X18 0 0 18 4767 2082 3 MP
XPP
X0 18 18 0 4767 2100 3 MP
XPP
X18 0 0 18 4767 2100 3 MP
XPP
X0 17 18 0 4767 2118 3 MP
XPP
X18 0 0 17 4767 2118 3 MP
XPP
X0 18 18 0 4767 2135 3 MP
XPP
X18 0 0 18 4767 2135 3 MP
XPP
X0 18 18 0 4767 2153 3 MP
XPP
X18 0 0 18 4767 2153 3 MP
XPP
X0 18 18 0 4785 388 3 MP
XPP
X18 0 0 18 4785 388 3 MP
XPP
X0 18 18 0 4785 406 3 MP
XPP
X18 0 0 18 4785 406 3 MP
XPP
X0 17 18 0 4785 424 3 MP
XPP
X18 0 0 17 4785 424 3 MP
XPP
X0 18 18 0 4785 441 3 MP
XPP
X18 0 0 18 4785 441 3 MP
XPP
X0 18 18 0 4785 459 3 MP
XPP
X18 0 0 18 4785 459 3 MP
XPP
X0 18 18 0 4785 477 3 MP
XPP
X18 0 0 18 4785 477 3 MP
XPP
X0 18 18 0 4785 495 3 MP
XPP
X18 0 0 18 4785 495 3 MP
XPP
X0 18 18 0 4785 513 3 MP
XPP
X18 0 0 18 4785 513 3 MP
XPP
X0 17 18 0 4785 531 3 MP
XPP
X18 0 0 17 4785 531 3 MP
XPP
X0 18 18 0 4785 548 3 MP
XPP
X18 0 0 18 4785 548 3 MP
XPP
X0 18 18 0 4785 566 3 MP
XPP
X18 0 0 18 4785 566 3 MP
XPP
X0 18 18 0 4785 584 3 MP
XPP
X18 0 0 18 4785 584 3 MP
XPP
X0 18 18 0 4785 602 3 MP
XPP
X18 0 0 18 4785 602 3 MP
XPP
X0 18 18 0 4785 620 3 MP
XPP
X18 0 0 18 4785 620 3 MP
XPP
X0 17 18 0 4785 638 3 MP
XPP
X18 0 0 17 4785 638 3 MP
XPP
X0.984127 sg
X0 18 18 0 4785 655 3 MP
XPP
X18 0 0 18 4785 655 3 MP
XPP
X0 18 18 0 4785 673 3 MP
XPP
X18 0 0 18 4785 673 3 MP
XPP
X0 18 18 0 4785 691 3 MP
XPP
X18 0 0 18 4785 691 3 MP
XPP
X0 18 18 0 4785 709 3 MP
XPP
X18 0 0 18 4785 709 3 MP
XPP
X0 18 18 0 4785 727 3 MP
XPP
X18 0 0 18 4785 727 3 MP
XPP
X0 17 18 0 4785 745 3 MP
XPP
X18 0 0 17 4785 745 3 MP
XPP
X0 18 18 0 4785 762 3 MP
XPP
X18 0 0 18 4785 762 3 MP
XPP
X0 18 18 0 4785 780 3 MP
XPP
X18 0 0 18 4785 780 3 MP
XPP
X1 sg
X0 18 18 0 4785 798 3 MP
XPP
X18 0 0 18 4785 798 3 MP
XPP
X0 18 18 0 4785 816 3 MP
XPP
X18 0 0 18 4785 816 3 MP
XPP
X0 18 18 0 4785 834 3 MP
XPP
X18 0 0 18 4785 834 3 MP
XPP
X0 17 18 0 4785 852 3 MP
XPP
X18 0 0 17 4785 852 3 MP
XPP
X0 18 18 0 4785 869 3 MP
XPP
X18 0 0 18 4785 869 3 MP
XPP
X0 18 18 0 4785 887 3 MP
XPP
X18 0 0 18 4785 887 3 MP
XPP
X0 18 18 0 4785 905 3 MP
XPP
X18 0 0 18 4785 905 3 MP
XPP
X0 18 18 0 4785 923 3 MP
XPP
X18 0 0 18 4785 923 3 MP
XPP
X0 18 18 0 4785 941 3 MP
XPP
X18 0 0 18 4785 941 3 MP
XPP
X0 17 18 0 4785 959 3 MP
XPP
X18 0 0 17 4785 959 3 MP
XPP
X0 18 18 0 4785 976 3 MP
XPP
X18 0 0 18 4785 976 3 MP
XPP
X0 18 18 0 4785 994 3 MP
XPP
X18 0 0 18 4785 994 3 MP
XPP
X0 18 18 0 4785 1012 3 MP
XPP
X18 0 0 18 4785 1012 3 MP
XPP
X0 18 18 0 4785 1030 3 MP
XPP
X18 0 0 18 4785 1030 3 MP
XPP
X0 18 18 0 4785 1048 3 MP
XPP
X18 0 0 18 4785 1048 3 MP
XPP
X0 17 18 0 4785 1066 3 MP
XPP
X18 0 0 17 4785 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4785 1083 3 MP
XPP
X18 0 0 18 4785 1083 3 MP
XPP
X0.68254 sg
X0 18 18 0 4785 1101 3 MP
XPP
X18 0 0 18 4785 1101 3 MP
XPP
X0.31746 sg
X0 18 18 0 4785 1119 3 MP
XPP
X18 0 0 18 4785 1119 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4785 1137 3 MP
XPP
X18 0 0 18 4785 1137 3 MP
XPP
X0 sg
X0 18 18 0 4785 1155 3 MP
XPP
X18 0 0 18 4785 1155 3 MP
XPP
X0 17 18 0 4785 1173 3 MP
XPP
X18 0 0 17 4785 1173 3 MP
XPP
X0 18 18 0 4785 1190 3 MP
XPP
X18 0 0 18 4785 1190 3 MP
XPP
X0 18 18 0 4785 1208 3 MP
XPP
X18 0 0 18 4785 1208 3 MP
XPP
X0 18 18 0 4785 1226 3 MP
XPP
X18 0 0 18 4785 1226 3 MP
XPP
X0 18 18 0 4785 1244 3 MP
XPP
X18 0 0 18 4785 1244 3 MP
XPP
X0 17 18 0 4785 1262 3 MP
XPP
X18 0 0 17 4785 1262 3 MP
XPP
X0 18 18 0 4785 1279 3 MP
XPP
X18 0 0 18 4785 1279 3 MP
XPP
X0 18 18 0 4785 1297 3 MP
XPP
X18 0 0 18 4785 1297 3 MP
XPP
X0 18 18 0 4785 1315 3 MP
XPP
X18 0 0 18 4785 1315 3 MP
XPP
X0 18 18 0 4785 1333 3 MP
XPP
X18 0 0 18 4785 1333 3 MP
XPP
X0 18 18 0 4785 1351 3 MP
XPP
X18 0 0 18 4785 1351 3 MP
XPP
X0 17 18 0 4785 1369 3 MP
XPP
X18 0 0 17 4785 1369 3 MP
XPP
X0 18 18 0 4785 1386 3 MP
XPP
X18 0 0 18 4785 1386 3 MP
XPP
X0 18 18 0 4785 1404 3 MP
XPP
X18 0 0 18 4785 1404 3 MP
XPP
X0 18 18 0 4785 1422 3 MP
XPP
X18 0 0 18 4785 1422 3 MP
XPP
X0 18 18 0 4785 1440 3 MP
XPP
X18 0 0 18 4785 1440 3 MP
XPP
X0 18 18 0 4785 1458 3 MP
XPP
X18 0 0 18 4785 1458 3 MP
XPP
X0 17 18 0 4785 1476 3 MP
XPP
X18 0 0 17 4785 1476 3 MP
XPP
X0 18 18 0 4785 1493 3 MP
XPP
X18 0 0 18 4785 1493 3 MP
XPP
X0 18 18 0 4785 1511 3 MP
XPP
X18 0 0 18 4785 1511 3 MP
XPP
X0 18 18 0 4785 1529 3 MP
XPP
X18 0 0 18 4785 1529 3 MP
XPP
X0 18 18 0 4785 1547 3 MP
XPP
X18 0 0 18 4785 1547 3 MP
XPP
X0 18 18 0 4785 1565 3 MP
XPP
X18 0 0 18 4785 1565 3 MP
XPP
X0 17 18 0 4785 1583 3 MP
XPP
X18 0 0 17 4785 1583 3 MP
XPP
X0 18 18 0 4785 1600 3 MP
XPP
X18 0 0 18 4785 1600 3 MP
XPP
X0.031746 sg
X0 18 18 0 4785 1618 3 MP
XPP
X18 0 0 18 4785 1618 3 MP
XPP
X0.142857 sg
X0 18 18 0 4785 1636 3 MP
XPP
X18 0 0 18 4785 1636 3 MP
XPP
X0.365079 sg
X0 18 18 0 4785 1654 3 MP
XPP
X18 0 0 18 4785 1654 3 MP
XPP
X0.634921 sg
X0 18 18 0 4785 1672 3 MP
XPP
X18 0 0 18 4785 1672 3 MP
XPP
X0.857143 sg
X0 17 18 0 4785 1690 3 MP
XPP
X18 0 0 17 4785 1690 3 MP
XPP
X0.968254 sg
X0 18 18 0 4785 1707 3 MP
XPP
X18 0 0 18 4785 1707 3 MP
XPP
X1 sg
X0 18 18 0 4785 1725 3 MP
XPP
X18 0 0 18 4785 1725 3 MP
XPP
X0 18 18 0 4785 1743 3 MP
XPP
X18 0 0 18 4785 1743 3 MP
XPP
X0 18 18 0 4785 1761 3 MP
XPP
X18 0 0 18 4785 1761 3 MP
XPP
X0 18 18 0 4785 1779 3 MP
XPP
X18 0 0 18 4785 1779 3 MP
XPP
X0 17 18 0 4785 1797 3 MP
XPP
X18 0 0 17 4785 1797 3 MP
XPP
X0 18 18 0 4785 1814 3 MP
XPP
X18 0 0 18 4785 1814 3 MP
XPP
X0 18 18 0 4785 1832 3 MP
XPP
X18 0 0 18 4785 1832 3 MP
XPP
X0 18 18 0 4785 1850 3 MP
XPP
X18 0 0 18 4785 1850 3 MP
XPP
X0 18 18 0 4785 1868 3 MP
XPP
X18 0 0 18 4785 1868 3 MP
XPP
X0 18 18 0 4785 1886 3 MP
XPP
X18 0 0 18 4785 1886 3 MP
XPP
X0 17 18 0 4785 1904 3 MP
XPP
X18 0 0 17 4785 1904 3 MP
XPP
X0 18 18 0 4785 1921 3 MP
XPP
X18 0 0 18 4785 1921 3 MP
XPP
X0 18 18 0 4785 1939 3 MP
XPP
X18 0 0 18 4785 1939 3 MP
XPP
X0 18 18 0 4785 1957 3 MP
XPP
X18 0 0 18 4785 1957 3 MP
XPP
X0 18 18 0 4785 1975 3 MP
XPP
X18 0 0 18 4785 1975 3 MP
XPP
X0 18 18 0 4785 1993 3 MP
XPP
X18 0 0 18 4785 1993 3 MP
XPP
X0 17 18 0 4785 2011 3 MP
XPP
X18 0 0 17 4785 2011 3 MP
XPP
X0 18 18 0 4785 2028 3 MP
XPP
X18 0 0 18 4785 2028 3 MP
XPP
X0 18 18 0 4785 2046 3 MP
XPP
X18 0 0 18 4785 2046 3 MP
XPP
X0 18 18 0 4785 2064 3 MP
XPP
X18 0 0 18 4785 2064 3 MP
XPP
X0 18 18 0 4785 2082 3 MP
XPP
X18 0 0 18 4785 2082 3 MP
XPP
X0 18 18 0 4785 2100 3 MP
XPP
X18 0 0 18 4785 2100 3 MP
XPP
X0 17 18 0 4785 2118 3 MP
XPP
X18 0 0 17 4785 2118 3 MP
XPP
X0 18 18 0 4785 2135 3 MP
XPP
X18 0 0 18 4785 2135 3 MP
XPP
X0 18 18 0 4785 2153 3 MP
XPP
X18 0 0 18 4785 2153 3 MP
XPP
X0 18 18 0 4803 388 3 MP
XPP
X18 0 0 18 4803 388 3 MP
XPP
X0 18 18 0 4803 406 3 MP
XPP
X18 0 0 18 4803 406 3 MP
XPP
X0 17 18 0 4803 424 3 MP
XPP
X18 0 0 17 4803 424 3 MP
XPP
X0 18 18 0 4803 441 3 MP
XPP
X18 0 0 18 4803 441 3 MP
XPP
X0 18 18 0 4803 459 3 MP
XPP
X18 0 0 18 4803 459 3 MP
XPP
X0 18 18 0 4803 477 3 MP
XPP
X18 0 0 18 4803 477 3 MP
XPP
X0 18 18 0 4803 495 3 MP
XPP
X18 0 0 18 4803 495 3 MP
XPP
X0 18 18 0 4803 513 3 MP
XPP
X18 0 0 18 4803 513 3 MP
XPP
X0 17 18 0 4803 531 3 MP
XPP
X18 0 0 17 4803 531 3 MP
XPP
X0 18 18 0 4803 548 3 MP
XPP
X18 0 0 18 4803 548 3 MP
XPP
X0 18 18 0 4803 566 3 MP
XPP
X18 0 0 18 4803 566 3 MP
XPP
X0 18 18 0 4803 584 3 MP
XPP
X18 0 0 18 4803 584 3 MP
XPP
X0 18 18 0 4803 602 3 MP
XPP
X18 0 0 18 4803 602 3 MP
XPP
X0 18 18 0 4803 620 3 MP
XPP
X18 0 0 18 4803 620 3 MP
XPP
X0.968254 sg
X0 17 18 0 4803 638 3 MP
XPP
X18 0 0 17 4803 638 3 MP
XPP
X0.920635 sg
X0 18 18 0 4803 655 3 MP
XPP
X18 0 0 18 4803 655 3 MP
XPP
X0.904762 sg
X0 18 18 0 4803 673 3 MP
XPP
X18 0 0 18 4803 673 3 MP
XPP
X0 18 18 0 4803 691 3 MP
XPP
X18 0 0 18 4803 691 3 MP
XPP
X0 18 18 0 4803 709 3 MP
XPP
X18 0 0 18 4803 709 3 MP
XPP
X0 18 18 0 4803 727 3 MP
XPP
X18 0 0 18 4803 727 3 MP
XPP
X0 17 18 0 4803 745 3 MP
XPP
X18 0 0 17 4803 745 3 MP
XPP
X0 18 18 0 4803 762 3 MP
XPP
X18 0 0 18 4803 762 3 MP
XPP
X0.920635 sg
X0 18 18 0 4803 780 3 MP
XPP
X18 0 0 18 4803 780 3 MP
XPP
X0.968254 sg
X0 18 18 0 4803 798 3 MP
XPP
X18 0 0 18 4803 798 3 MP
XPP
X1 sg
X0 18 18 0 4803 816 3 MP
XPP
X18 0 0 18 4803 816 3 MP
XPP
X0 18 18 0 4803 834 3 MP
XPP
X18 0 0 18 4803 834 3 MP
XPP
X0 17 18 0 4803 852 3 MP
XPP
X18 0 0 17 4803 852 3 MP
XPP
X0 18 18 0 4803 869 3 MP
XPP
X18 0 0 18 4803 869 3 MP
XPP
X0 18 18 0 4803 887 3 MP
XPP
X18 0 0 18 4803 887 3 MP
XPP
X0 18 18 0 4803 905 3 MP
XPP
X18 0 0 18 4803 905 3 MP
XPP
X0 18 18 0 4803 923 3 MP
XPP
X18 0 0 18 4803 923 3 MP
XPP
X0 18 18 0 4803 941 3 MP
XPP
X18 0 0 18 4803 941 3 MP
XPP
X0 17 18 0 4803 959 3 MP
XPP
X18 0 0 17 4803 959 3 MP
XPP
X0 18 18 0 4803 976 3 MP
XPP
X18 0 0 18 4803 976 3 MP
XPP
X0 18 18 0 4803 994 3 MP
XPP
X18 0 0 18 4803 994 3 MP
XPP
X0 18 18 0 4803 1012 3 MP
XPP
X18 0 0 18 4803 1012 3 MP
XPP
X0 18 18 0 4803 1030 3 MP
XPP
X18 0 0 18 4803 1030 3 MP
XPP
X0 18 18 0 4803 1048 3 MP
XPP
X18 0 0 18 4803 1048 3 MP
XPP
X0 17 18 0 4803 1066 3 MP
XPP
X18 0 0 17 4803 1066 3 MP
XPP
X0.936508 sg
X0 18 18 0 4803 1083 3 MP
XPP
X18 0 0 18 4803 1083 3 MP
XPP
X0.714286 sg
X0 18 18 0 4803 1101 3 MP
XPP
X18 0 0 18 4803 1101 3 MP
XPP
X0.365079 sg
X0 18 18 0 4803 1119 3 MP
XPP
X18 0 0 18 4803 1119 3 MP
XPP
X0.142857 sg
X0 18 18 0 4803 1137 3 MP
XPP
X18 0 0 18 4803 1137 3 MP
XPP
X0.0634921 sg
X0 18 18 0 4803 1155 3 MP
XPP
X18 0 0 18 4803 1155 3 MP
XPP
X0 17 18 0 4803 1173 3 MP
XPP
X18 0 0 17 4803 1173 3 MP
XPP
X0 18 18 0 4803 1190 3 MP
XPP
X18 0 0 18 4803 1190 3 MP
XPP
X0 18 18 0 4803 1208 3 MP
XPP
X18 0 0 18 4803 1208 3 MP
XPP
X0 18 18 0 4803 1226 3 MP
XPP
X18 0 0 18 4803 1226 3 MP
XPP
X0 18 18 0 4803 1244 3 MP
XPP
X18 0 0 18 4803 1244 3 MP
XPP
X0 17 18 0 4803 1262 3 MP
XPP
X18 0 0 17 4803 1262 3 MP
XPP
X0 18 18 0 4803 1279 3 MP
XPP
X18 0 0 18 4803 1279 3 MP
XPP
X0 18 18 0 4803 1297 3 MP
XPP
X18 0 0 18 4803 1297 3 MP
XPP
X0 18 18 0 4803 1315 3 MP
XPP
X18 0 0 18 4803 1315 3 MP
XPP
X0 18 18 0 4803 1333 3 MP
XPP
X18 0 0 18 4803 1333 3 MP
XPP
X0 18 18 0 4803 1351 3 MP
XPP
X18 0 0 18 4803 1351 3 MP
XPP
X0 17 18 0 4803 1369 3 MP
XPP
X18 0 0 17 4803 1369 3 MP
XPP
X0 18 18 0 4803 1386 3 MP
XPP
X18 0 0 18 4803 1386 3 MP
XPP
X0 18 18 0 4803 1404 3 MP
XPP
X18 0 0 18 4803 1404 3 MP
XPP
X0 18 18 0 4803 1422 3 MP
XPP
X18 0 0 18 4803 1422 3 MP
XPP
X0 18 18 0 4803 1440 3 MP
XPP
X18 0 0 18 4803 1440 3 MP
XPP
X0 18 18 0 4803 1458 3 MP
XPP
X18 0 0 18 4803 1458 3 MP
XPP
X0 17 18 0 4803 1476 3 MP
XPP
X18 0 0 17 4803 1476 3 MP
XPP
X0 18 18 0 4803 1493 3 MP
XPP
X18 0 0 18 4803 1493 3 MP
XPP
X0 18 18 0 4803 1511 3 MP
XPP
X18 0 0 18 4803 1511 3 MP
XPP
X0 18 18 0 4803 1529 3 MP
XPP
X18 0 0 18 4803 1529 3 MP
XPP
X0 18 18 0 4803 1547 3 MP
XPP
X18 0 0 18 4803 1547 3 MP
XPP
X0 18 18 0 4803 1565 3 MP
XPP
X18 0 0 18 4803 1565 3 MP
XPP
X0 17 18 0 4803 1583 3 MP
XPP
X18 0 0 17 4803 1583 3 MP
XPP
X0 18 18 0 4803 1600 3 MP
XPP
X18 0 0 18 4803 1600 3 MP
XPP
X0.0793651 sg
X0 18 18 0 4803 1618 3 MP
XPP
X18 0 0 18 4803 1618 3 MP
XPP
X0.111111 sg
X0 18 18 0 4803 1636 3 MP
XPP
X18 0 0 18 4803 1636 3 MP
XPP
X0.222222 sg
X0 18 18 0 4803 1654 3 MP
XPP
X18 0 0 18 4803 1654 3 MP
XPP
X0.444444 sg
X0 18 18 0 4803 1672 3 MP
XPP
X18 0 0 18 4803 1672 3 MP
XPP
X0.698413 sg
X0 17 18 0 4803 1690 3 MP
XPP
X18 0 0 17 4803 1690 3 MP
XPP
X0.904762 sg
X0 18 18 0 4803 1707 3 MP
XPP
X18 0 0 18 4803 1707 3 MP
XPP
X0.984127 sg
X0 18 18 0 4803 1725 3 MP
XPP
X18 0 0 18 4803 1725 3 MP
XPP
X1 sg
X0 18 18 0 4803 1743 3 MP
XPP
X18 0 0 18 4803 1743 3 MP
XPP
X0 18 18 0 4803 1761 3 MP
XPP
X18 0 0 18 4803 1761 3 MP
XPP
X0 18 18 0 4803 1779 3 MP
XPP
X18 0 0 18 4803 1779 3 MP
XPP
X0 17 18 0 4803 1797 3 MP
XPP
X18 0 0 17 4803 1797 3 MP
XPP
X0 18 18 0 4803 1814 3 MP
XPP
X18 0 0 18 4803 1814 3 MP
XPP
X0 18 18 0 4803 1832 3 MP
XPP
X18 0 0 18 4803 1832 3 MP
XPP
X0 18 18 0 4803 1850 3 MP
XPP
X18 0 0 18 4803 1850 3 MP
XPP
X0 18 18 0 4803 1868 3 MP
XPP
X18 0 0 18 4803 1868 3 MP
XPP
X0 18 18 0 4803 1886 3 MP
XPP
X18 0 0 18 4803 1886 3 MP
XPP
X0 17 18 0 4803 1904 3 MP
XPP
X18 0 0 17 4803 1904 3 MP
XPP
X0 18 18 0 4803 1921 3 MP
XPP
X18 0 0 18 4803 1921 3 MP
XPP
X0 18 18 0 4803 1939 3 MP
XPP
X18 0 0 18 4803 1939 3 MP
XPP
X0 18 18 0 4803 1957 3 MP
XPP
X18 0 0 18 4803 1957 3 MP
XPP
X0 18 18 0 4803 1975 3 MP
XPP
X18 0 0 18 4803 1975 3 MP
XPP
X0 18 18 0 4803 1993 3 MP
XPP
X18 0 0 18 4803 1993 3 MP
XPP
X0 17 18 0 4803 2011 3 MP
XPP
X18 0 0 17 4803 2011 3 MP
XPP
X0 18 18 0 4803 2028 3 MP
XPP
X18 0 0 18 4803 2028 3 MP
XPP
X0 18 18 0 4803 2046 3 MP
XPP
X18 0 0 18 4803 2046 3 MP
XPP
X0 18 18 0 4803 2064 3 MP
XPP
X18 0 0 18 4803 2064 3 MP
XPP
X0 18 18 0 4803 2082 3 MP
XPP
X18 0 0 18 4803 2082 3 MP
XPP
X0 18 18 0 4803 2100 3 MP
XPP
X18 0 0 18 4803 2100 3 MP
XPP
X0 17 18 0 4803 2118 3 MP
XPP
X18 0 0 17 4803 2118 3 MP
XPP
X0 18 18 0 4803 2135 3 MP
XPP
X18 0 0 18 4803 2135 3 MP
XPP
X0 18 18 0 4803 2153 3 MP
XPP
X18 0 0 18 4803 2153 3 MP
XPP
X0 18 18 0 4821 388 3 MP
XPP
X18 0 0 18 4821 388 3 MP
XPP
X0 18 18 0 4821 406 3 MP
XPP
X18 0 0 18 4821 406 3 MP
XPP
X0 17 18 0 4821 424 3 MP
XPP
X18 0 0 17 4821 424 3 MP
XPP
X0 18 18 0 4821 441 3 MP
XPP
X18 0 0 18 4821 441 3 MP
XPP
X0 18 18 0 4821 459 3 MP
XPP
X18 0 0 18 4821 459 3 MP
XPP
X0 18 18 0 4821 477 3 MP
XPP
X18 0 0 18 4821 477 3 MP
XPP
X0 18 18 0 4821 495 3 MP
XPP
X18 0 0 18 4821 495 3 MP
XPP
X0 18 18 0 4821 513 3 MP
XPP
X18 0 0 18 4821 513 3 MP
XPP
X0 17 18 0 4821 531 3 MP
XPP
X18 0 0 17 4821 531 3 MP
XPP
X0 18 18 0 4821 548 3 MP
XPP
X18 0 0 18 4821 548 3 MP
XPP
X0 18 18 0 4821 566 3 MP
XPP
X18 0 0 18 4821 566 3 MP
XPP
X0 18 18 0 4821 584 3 MP
XPP
X18 0 0 18 4821 584 3 MP
XPP
X0.984127 sg
X0 18 18 0 4821 602 3 MP
XPP
X18 0 0 18 4821 602 3 MP
XPP
X0.952381 sg
X0 18 18 0 4821 620 3 MP
XPP
X18 0 0 18 4821 620 3 MP
XPP
X0.888889 sg
X0 17 18 0 4821 638 3 MP
XPP
X18 0 0 17 4821 638 3 MP
XPP
X0.825397 sg
X0 18 18 0 4821 655 3 MP
XPP
X18 0 0 18 4821 655 3 MP
XPP
X0.793651 sg
X0 18 18 0 4821 673 3 MP
XPP
X18 0 0 18 4821 673 3 MP
XPP
X0.777778 sg
X0 18 18 0 4821 691 3 MP
XPP
X18 0 0 18 4821 691 3 MP
XPP
X0 18 18 0 4821 709 3 MP
XPP
X18 0 0 18 4821 709 3 MP
XPP
X0 18 18 0 4821 727 3 MP
XPP
X18 0 0 18 4821 727 3 MP
XPP
X0 17 18 0 4821 745 3 MP
XPP
X18 0 0 17 4821 745 3 MP
XPP
X0.793651 sg
X0 18 18 0 4821 762 3 MP
XPP
X18 0 0 18 4821 762 3 MP
XPP
X0.825397 sg
X0 18 18 0 4821 780 3 MP
XPP
X18 0 0 18 4821 780 3 MP
XPP
X0.888889 sg
X0 18 18 0 4821 798 3 MP
XPP
X18 0 0 18 4821 798 3 MP
XPP
X0.952381 sg
X0 18 18 0 4821 816 3 MP
XPP
X18 0 0 18 4821 816 3 MP
XPP
X0.984127 sg
X0 18 18 0 4821 834 3 MP
XPP
X18 0 0 18 4821 834 3 MP
XPP
X1 sg
X0 17 18 0 4821 852 3 MP
XPP
X18 0 0 17 4821 852 3 MP
XPP
X0 18 18 0 4821 869 3 MP
XPP
X18 0 0 18 4821 869 3 MP
XPP
X0 18 18 0 4821 887 3 MP
XPP
X18 0 0 18 4821 887 3 MP
XPP
X0 18 18 0 4821 905 3 MP
XPP
X18 0 0 18 4821 905 3 MP
XPP
X0 18 18 0 4821 923 3 MP
XPP
X18 0 0 18 4821 923 3 MP
XPP
X0 18 18 0 4821 941 3 MP
XPP
X18 0 0 18 4821 941 3 MP
XPP
X0 17 18 0 4821 959 3 MP
XPP
X18 0 0 17 4821 959 3 MP
XPP
X0 18 18 0 4821 976 3 MP
XPP
X18 0 0 18 4821 976 3 MP
XPP
X0 18 18 0 4821 994 3 MP
XPP
X18 0 0 18 4821 994 3 MP
XPP
X0 18 18 0 4821 1012 3 MP
XPP
X18 0 0 18 4821 1012 3 MP
XPP
X0 18 18 0 4821 1030 3 MP
XPP
X18 0 0 18 4821 1030 3 MP
XPP
X0 18 18 0 4821 1048 3 MP
XPP
X18 0 0 18 4821 1048 3 MP
XPP
X0 17 18 0 4821 1066 3 MP
XPP
X18 0 0 17 4821 1066 3 MP
XPP
X0.952381 sg
X0 18 18 0 4821 1083 3 MP
XPP
X18 0 0 18 4821 1083 3 MP
XPP
X0.793651 sg
X0 18 18 0 4821 1101 3 MP
XPP
X18 0 0 18 4821 1101 3 MP
XPP
X0.539683 sg
X0 18 18 0 4821 1119 3 MP
XPP
X18 0 0 18 4821 1119 3 MP
XPP
X0.365079 sg
X0 18 18 0 4821 1137 3 MP
XPP
X18 0 0 18 4821 1137 3 MP
XPP
X0.31746 sg
X0 18 18 0 4821 1155 3 MP
XPP
X18 0 0 18 4821 1155 3 MP
XPP
X0 17 18 0 4821 1173 3 MP
XPP
X18 0 0 17 4821 1173 3 MP
XPP
X0 18 18 0 4821 1190 3 MP
XPP
X18 0 0 18 4821 1190 3 MP
XPP
X0 18 18 0 4821 1208 3 MP
XPP
X18 0 0 18 4821 1208 3 MP
XPP
X0 18 18 0 4821 1226 3 MP
XPP
X18 0 0 18 4821 1226 3 MP
XPP
X0 18 18 0 4821 1244 3 MP
XPP
X18 0 0 18 4821 1244 3 MP
XPP
X0 17 18 0 4821 1262 3 MP
XPP
X18 0 0 17 4821 1262 3 MP
XPP
X0 18 18 0 4821 1279 3 MP
XPP
X18 0 0 18 4821 1279 3 MP
XPP
X0 18 18 0 4821 1297 3 MP
XPP
X18 0 0 18 4821 1297 3 MP
XPP
X0 18 18 0 4821 1315 3 MP
XPP
X18 0 0 18 4821 1315 3 MP
XPP
X0 18 18 0 4821 1333 3 MP
XPP
X18 0 0 18 4821 1333 3 MP
XPP
X0 18 18 0 4821 1351 3 MP
XPP
X18 0 0 18 4821 1351 3 MP
XPP
X0 17 18 0 4821 1369 3 MP
XPP
X18 0 0 17 4821 1369 3 MP
XPP
X0 18 18 0 4821 1386 3 MP
XPP
X18 0 0 18 4821 1386 3 MP
XPP
X0 18 18 0 4821 1404 3 MP
XPP
X18 0 0 18 4821 1404 3 MP
XPP
X0 18 18 0 4821 1422 3 MP
XPP
X18 0 0 18 4821 1422 3 MP
XPP
X0 18 18 0 4821 1440 3 MP
XPP
X18 0 0 18 4821 1440 3 MP
XPP
X0 18 18 0 4821 1458 3 MP
XPP
X18 0 0 18 4821 1458 3 MP
XPP
X0 17 18 0 4821 1476 3 MP
XPP
X18 0 0 17 4821 1476 3 MP
XPP
X0 18 18 0 4821 1493 3 MP
XPP
X18 0 0 18 4821 1493 3 MP
XPP
X0 18 18 0 4821 1511 3 MP
XPP
X18 0 0 18 4821 1511 3 MP
XPP
X0 18 18 0 4821 1529 3 MP
XPP
X18 0 0 18 4821 1529 3 MP
XPP
X0 18 18 0 4821 1547 3 MP
XPP
X18 0 0 18 4821 1547 3 MP
XPP
X0 18 18 0 4821 1565 3 MP
XPP
X18 0 0 18 4821 1565 3 MP
XPP
X0 17 18 0 4821 1583 3 MP
XPP
X18 0 0 17 4821 1583 3 MP
XPP
X0 18 18 0 4821 1600 3 MP
XPP
X18 0 0 18 4821 1600 3 MP
XPP
X0 18 18 0 4821 1618 3 MP
XPP
X18 0 0 18 4821 1618 3 MP
XPP
X0 18 18 0 4821 1636 3 MP
XPP
X18 0 0 18 4821 1636 3 MP
XPP
X0.349206 sg
X0 18 18 0 4821 1654 3 MP
XPP
X18 0 0 18 4821 1654 3 MP
XPP
X0.47619 sg
X0 18 18 0 4821 1672 3 MP
XPP
X18 0 0 18 4821 1672 3 MP
XPP
X0.666667 sg
X0 17 18 0 4821 1690 3 MP
XPP
X18 0 0 17 4821 1690 3 MP
XPP
X0.873016 sg
X0 18 18 0 4821 1707 3 MP
XPP
X18 0 0 18 4821 1707 3 MP
XPP
X0.984127 sg
X0 18 18 0 4821 1725 3 MP
XPP
X18 0 0 18 4821 1725 3 MP
XPP
X1 sg
X0 18 18 0 4821 1743 3 MP
XPP
X18 0 0 18 4821 1743 3 MP
XPP
X0 18 18 0 4821 1761 3 MP
XPP
X18 0 0 18 4821 1761 3 MP
XPP
X0 18 18 0 4821 1779 3 MP
XPP
X18 0 0 18 4821 1779 3 MP
XPP
X0 17 18 0 4821 1797 3 MP
XPP
X18 0 0 17 4821 1797 3 MP
XPP
X0 18 18 0 4821 1814 3 MP
XPP
X18 0 0 18 4821 1814 3 MP
XPP
X0 18 18 0 4821 1832 3 MP
XPP
X18 0 0 18 4821 1832 3 MP
XPP
X0 18 18 0 4821 1850 3 MP
XPP
X18 0 0 18 4821 1850 3 MP
XPP
X0 18 18 0 4821 1868 3 MP
XPP
X18 0 0 18 4821 1868 3 MP
XPP
X0 18 18 0 4821 1886 3 MP
XPP
X18 0 0 18 4821 1886 3 MP
XPP
X0 17 18 0 4821 1904 3 MP
XPP
X18 0 0 17 4821 1904 3 MP
XPP
X0 18 18 0 4821 1921 3 MP
XPP
X18 0 0 18 4821 1921 3 MP
XPP
X0 18 18 0 4821 1939 3 MP
XPP
X18 0 0 18 4821 1939 3 MP
XPP
X0 18 18 0 4821 1957 3 MP
XPP
X18 0 0 18 4821 1957 3 MP
XPP
X0 18 18 0 4821 1975 3 MP
XPP
X18 0 0 18 4821 1975 3 MP
XPP
X0 18 18 0 4821 1993 3 MP
XPP
X18 0 0 18 4821 1993 3 MP
XPP
X0 17 18 0 4821 2011 3 MP
XPP
X18 0 0 17 4821 2011 3 MP
XPP
X0 18 18 0 4821 2028 3 MP
XPP
X18 0 0 18 4821 2028 3 MP
XPP
X0 18 18 0 4821 2046 3 MP
XPP
X18 0 0 18 4821 2046 3 MP
XPP
X0 18 18 0 4821 2064 3 MP
XPP
X18 0 0 18 4821 2064 3 MP
XPP
X0 18 18 0 4821 2082 3 MP
XPP
X18 0 0 18 4821 2082 3 MP
XPP
X0 18 18 0 4821 2100 3 MP
XPP
X18 0 0 18 4821 2100 3 MP
XPP
X0 17 18 0 4821 2118 3 MP
XPP
X18 0 0 17 4821 2118 3 MP
XPP
X0 18 18 0 4821 2135 3 MP
XPP
X18 0 0 18 4821 2135 3 MP
XPP
X0 18 18 0 4821 2153 3 MP
XPP
X18 0 0 18 4821 2153 3 MP
XPP
X0 18 18 0 4839 388 3 MP
XPP
X18 0 0 18 4839 388 3 MP
XPP
X0 18 18 0 4839 406 3 MP
XPP
X18 0 0 18 4839 406 3 MP
XPP
X0 17 18 0 4839 424 3 MP
XPP
X18 0 0 17 4839 424 3 MP
XPP
X0 18 18 0 4839 441 3 MP
XPP
X18 0 0 18 4839 441 3 MP
XPP
X0 18 18 0 4839 459 3 MP
XPP
X18 0 0 18 4839 459 3 MP
XPP
X0 18 18 0 4839 477 3 MP
XPP
X18 0 0 18 4839 477 3 MP
XPP
X0 18 18 0 4839 495 3 MP
XPP
X18 0 0 18 4839 495 3 MP
XPP
X0 18 18 0 4839 513 3 MP
XPP
X18 0 0 18 4839 513 3 MP
XPP
X0 17 18 0 4839 531 3 MP
XPP
X18 0 0 17 4839 531 3 MP
XPP
X0 18 18 0 4839 548 3 MP
XPP
X18 0 0 18 4839 548 3 MP
XPP
X0 18 18 0 4839 566 3 MP
XPP
X18 0 0 18 4839 566 3 MP
XPP
X0.968254 sg
X0 18 18 0 4839 584 3 MP
XPP
X18 0 0 18 4839 584 3 MP
XPP
X0.920635 sg
X0 18 18 0 4839 602 3 MP
XPP
X18 0 0 18 4839 602 3 MP
XPP
X0.857143 sg
X0 18 18 0 4839 620 3 MP
XPP
X18 0 0 18 4839 620 3 MP
XPP
X0.793651 sg
X0 17 18 0 4839 638 3 MP
XPP
X18 0 0 17 4839 638 3 MP
XPP
X0.730159 sg
X0 18 18 0 4839 655 3 MP
XPP
X18 0 0 18 4839 655 3 MP
XPP
X0.698413 sg
X0 18 18 0 4839 673 3 MP
XPP
X18 0 0 18 4839 673 3 MP
XPP
X0 18 18 0 4839 691 3 MP
XPP
X18 0 0 18 4839 691 3 MP
XPP
X0 18 18 0 4839 709 3 MP
XPP
X18 0 0 18 4839 709 3 MP
XPP
X0 18 18 0 4839 727 3 MP
XPP
X18 0 0 18 4839 727 3 MP
XPP
X0 17 18 0 4839 745 3 MP
XPP
X18 0 0 17 4839 745 3 MP
XPP
X0 18 18 0 4839 762 3 MP
XPP
X18 0 0 18 4839 762 3 MP
XPP
X0.730159 sg
X0 18 18 0 4839 780 3 MP
XPP
X18 0 0 18 4839 780 3 MP
XPP
X0.793651 sg
X0 18 18 0 4839 798 3 MP
XPP
X18 0 0 18 4839 798 3 MP
XPP
X0.857143 sg
X0 18 18 0 4839 816 3 MP
XPP
X18 0 0 18 4839 816 3 MP
XPP
X0.920635 sg
X0 18 18 0 4839 834 3 MP
XPP
X18 0 0 18 4839 834 3 MP
XPP
X0.968254 sg
X0 17 18 0 4839 852 3 MP
XPP
X18 0 0 17 4839 852 3 MP
XPP
X1 sg
X0 18 18 0 4839 869 3 MP
XPP
X18 0 0 18 4839 869 3 MP
XPP
X0 18 18 0 4839 887 3 MP
XPP
X18 0 0 18 4839 887 3 MP
XPP
X0 18 18 0 4839 905 3 MP
XPP
X18 0 0 18 4839 905 3 MP
XPP
X0 18 18 0 4839 923 3 MP
XPP
X18 0 0 18 4839 923 3 MP
XPP
X0 18 18 0 4839 941 3 MP
XPP
X18 0 0 18 4839 941 3 MP
XPP
X0 17 18 0 4839 959 3 MP
XPP
X18 0 0 17 4839 959 3 MP
XPP
X0 18 18 0 4839 976 3 MP
XPP
X18 0 0 18 4839 976 3 MP
XPP
X0 18 18 0 4839 994 3 MP
XPP
X18 0 0 18 4839 994 3 MP
XPP
X0 18 18 0 4839 1012 3 MP
XPP
X18 0 0 18 4839 1012 3 MP
XPP
X0 18 18 0 4839 1030 3 MP
XPP
X18 0 0 18 4839 1030 3 MP
XPP
X0 18 18 0 4839 1048 3 MP
XPP
X18 0 0 18 4839 1048 3 MP
XPP
X0 17 18 0 4839 1066 3 MP
XPP
X18 0 0 17 4839 1066 3 MP
XPP
X0.984127 sg
X0 18 18 0 4839 1083 3 MP
XPP
X18 0 0 18 4839 1083 3 MP
XPP
X0.904762 sg
X0 18 18 0 4839 1101 3 MP
XPP
X18 0 0 18 4839 1101 3 MP
XPP
X0.793651 sg
X0 18 18 0 4839 1119 3 MP
XPP
X18 0 0 18 4839 1119 3 MP
XPP
X0.714286 sg
X0 18 18 0 4839 1137 3 MP
XPP
X18 0 0 18 4839 1137 3 MP
XPP
X0.68254 sg
X0 18 18 0 4839 1155 3 MP
XPP
X18 0 0 18 4839 1155 3 MP
XPP
X0 17 18 0 4839 1173 3 MP
XPP
X18 0 0 17 4839 1173 3 MP
XPP
X0 18 18 0 4839 1190 3 MP
XPP
X18 0 0 18 4839 1190 3 MP
XPP
X0 18 18 0 4839 1208 3 MP
XPP
X18 0 0 18 4839 1208 3 MP
XPP
X0 18 18 0 4839 1226 3 MP
XPP
X18 0 0 18 4839 1226 3 MP
XPP
X0 18 18 0 4839 1244 3 MP
XPP
X18 0 0 18 4839 1244 3 MP
XPP
X0 17 18 0 4839 1262 3 MP
XPP
X18 0 0 17 4839 1262 3 MP
XPP
X0 18 18 0 4839 1279 3 MP
XPP
X18 0 0 18 4839 1279 3 MP
XPP
X0 18 18 0 4839 1297 3 MP
XPP
X18 0 0 18 4839 1297 3 MP
XPP
X0 18 18 0 4839 1315 3 MP
XPP
X18 0 0 18 4839 1315 3 MP
XPP
X0 18 18 0 4839 1333 3 MP
XPP
X18 0 0 18 4839 1333 3 MP
XPP
X0 18 18 0 4839 1351 3 MP
XPP
X18 0 0 18 4839 1351 3 MP
XPP
X0 17 18 0 4839 1369 3 MP
XPP
X18 0 0 17 4839 1369 3 MP
XPP
X0 18 18 0 4839 1386 3 MP
XPP
X18 0 0 18 4839 1386 3 MP
XPP
X0 18 18 0 4839 1404 3 MP
XPP
X18 0 0 18 4839 1404 3 MP
XPP
X0 18 18 0 4839 1422 3 MP
XPP
X18 0 0 18 4839 1422 3 MP
XPP
X0 18 18 0 4839 1440 3 MP
XPP
X18 0 0 18 4839 1440 3 MP
XPP
X0 18 18 0 4839 1458 3 MP
XPP
X18 0 0 18 4839 1458 3 MP
XPP
X0 17 18 0 4839 1476 3 MP
XPP
X18 0 0 17 4839 1476 3 MP
XPP
X0 18 18 0 4839 1493 3 MP
XPP
X18 0 0 18 4839 1493 3 MP
XPP
X0 18 18 0 4839 1511 3 MP
XPP
X18 0 0 18 4839 1511 3 MP
XPP
X0 18 18 0 4839 1529 3 MP
XPP
X18 0 0 18 4839 1529 3 MP
XPP
X0 18 18 0 4839 1547 3 MP
XPP
X18 0 0 18 4839 1547 3 MP
XPP
X0 18 18 0 4839 1565 3 MP
XPP
X18 0 0 18 4839 1565 3 MP
XPP
X0 17 18 0 4839 1583 3 MP
XPP
X18 0 0 17 4839 1583 3 MP
XPP
X0 18 18 0 4839 1600 3 MP
XPP
X18 0 0 18 4839 1600 3 MP
XPP
X0 18 18 0 4839 1618 3 MP
XPP
X18 0 0 18 4839 1618 3 MP
XPP
X0 18 18 0 4839 1636 3 MP
XPP
X18 0 0 18 4839 1636 3 MP
XPP
X0.698413 sg
X0 18 18 0 4839 1654 3 MP
XPP
X18 0 0 18 4839 1654 3 MP
XPP
X0.730159 sg
X0 18 18 0 4839 1672 3 MP
XPP
X18 0 0 18 4839 1672 3 MP
XPP
X0.809524 sg
X0 17 18 0 4839 1690 3 MP
XPP
X18 0 0 17 4839 1690 3 MP
XPP
X0.920635 sg
X0 18 18 0 4839 1707 3 MP
XPP
X18 0 0 18 4839 1707 3 MP
XPP
X0.984127 sg
X0 18 18 0 4839 1725 3 MP
XPP
X18 0 0 18 4839 1725 3 MP
XPP
X1 sg
X0 18 18 0 4839 1743 3 MP
XPP
X18 0 0 18 4839 1743 3 MP
XPP
X0 18 18 0 4839 1761 3 MP
XPP
X18 0 0 18 4839 1761 3 MP
XPP
X0 18 18 0 4839 1779 3 MP
XPP
X18 0 0 18 4839 1779 3 MP
XPP
X0 17 18 0 4839 1797 3 MP
XPP
X18 0 0 17 4839 1797 3 MP
XPP
X0 18 18 0 4839 1814 3 MP
XPP
X18 0 0 18 4839 1814 3 MP
XPP
X0 18 18 0 4839 1832 3 MP
XPP
X18 0 0 18 4839 1832 3 MP
XPP
X0 18 18 0 4839 1850 3 MP
XPP
X18 0 0 18 4839 1850 3 MP
XPP
X0 18 18 0 4839 1868 3 MP
XPP
X18 0 0 18 4839 1868 3 MP
XPP
X0 18 18 0 4839 1886 3 MP
XPP
X18 0 0 18 4839 1886 3 MP
XPP
X0 17 18 0 4839 1904 3 MP
XPP
X18 0 0 17 4839 1904 3 MP
XPP
X0 18 18 0 4839 1921 3 MP
XPP
X18 0 0 18 4839 1921 3 MP
XPP
X0 18 18 0 4839 1939 3 MP
XPP
X18 0 0 18 4839 1939 3 MP
XPP
X0 18 18 0 4839 1957 3 MP
XPP
X18 0 0 18 4839 1957 3 MP
XPP
X0 18 18 0 4839 1975 3 MP
XPP
X18 0 0 18 4839 1975 3 MP
XPP
X0 18 18 0 4839 1993 3 MP
XPP
X18 0 0 18 4839 1993 3 MP
XPP
X0 17 18 0 4839 2011 3 MP
XPP
X18 0 0 17 4839 2011 3 MP
XPP
X0 18 18 0 4839 2028 3 MP
XPP
X18 0 0 18 4839 2028 3 MP
XPP
X0 18 18 0 4839 2046 3 MP
XPP
X18 0 0 18 4839 2046 3 MP
XPP
X0 18 18 0 4839 2064 3 MP
XPP
X18 0 0 18 4839 2064 3 MP
XPP
X0 18 18 0 4839 2082 3 MP
XPP
X18 0 0 18 4839 2082 3 MP
XPP
X0 18 18 0 4839 2100 3 MP
XPP
X18 0 0 18 4839 2100 3 MP
XPP
X0 17 18 0 4839 2118 3 MP
XPP
X18 0 0 17 4839 2118 3 MP
XPP
X0 18 18 0 4839 2135 3 MP
XPP
X18 0 0 18 4839 2135 3 MP
XPP
X0 18 18 0 4839 2153 3 MP
XPP
X18 0 0 18 4839 2153 3 MP
XPP
X0 18 17 0 4857 388 3 MP
XPP
X17 0 0 18 4857 388 3 MP
XPP
X0 18 17 0 4857 406 3 MP
XPP
X17 0 0 18 4857 406 3 MP
XPP
X0 17 17 0 4857 424 3 MP
XPP
X17 0 0 17 4857 424 3 MP
XPP
X0 18 17 0 4857 441 3 MP
XPP
X17 0 0 18 4857 441 3 MP
XPP
X0 18 17 0 4857 459 3 MP
XPP
X17 0 0 18 4857 459 3 MP
XPP
X0 18 17 0 4857 477 3 MP
XPP
X17 0 0 18 4857 477 3 MP
XPP
X0 18 17 0 4857 495 3 MP
XPP
X17 0 0 18 4857 495 3 MP
XPP
X0 18 17 0 4857 513 3 MP
XPP
X17 0 0 18 4857 513 3 MP
XPP
X0 17 17 0 4857 531 3 MP
XPP
X17 0 0 17 4857 531 3 MP
XPP
X0 18 17 0 4857 548 3 MP
XPP
X17 0 0 18 4857 548 3 MP
XPP
X0.968254 sg
X0 18 17 0 4857 566 3 MP
XPP
X17 0 0 18 4857 566 3 MP
XPP
X0.888889 sg
X0 18 17 0 4857 584 3 MP
XPP
X17 0 0 18 4857 584 3 MP
XPP
X0.825397 sg
X0 18 17 0 4857 602 3 MP
XPP
X17 0 0 18 4857 602 3 MP
XPP
X0.761905 sg
X0 18 17 0 4857 620 3 MP
XPP
X17 0 0 18 4857 620 3 MP
XPP
X0.714286 sg
X0 17 17 0 4857 638 3 MP
XPP
X17 0 0 17 4857 638 3 MP
XPP
X0.68254 sg
X0 18 17 0 4857 655 3 MP
XPP
X17 0 0 18 4857 655 3 MP
XPP
X0.666667 sg
X0 18 17 0 4857 673 3 MP
XPP
X17 0 0 18 4857 673 3 MP
XPP
X0 18 17 0 4857 691 3 MP
XPP
X17 0 0 18 4857 691 3 MP
XPP
X0 18 17 0 4857 709 3 MP
XPP
X17 0 0 18 4857 709 3 MP
XPP
X0 18 17 0 4857 727 3 MP
XPP
X17 0 0 18 4857 727 3 MP
XPP
X0 17 17 0 4857 745 3 MP
XPP
X17 0 0 17 4857 745 3 MP
XPP
X0 18 17 0 4857 762 3 MP
XPP
X17 0 0 18 4857 762 3 MP
XPP
X0.68254 sg
X0 18 17 0 4857 780 3 MP
XPP
X17 0 0 18 4857 780 3 MP
XPP
X0.714286 sg
X0 18 17 0 4857 798 3 MP
XPP
X17 0 0 18 4857 798 3 MP
XPP
X0.761905 sg
X0 18 17 0 4857 816 3 MP
XPP
X17 0 0 18 4857 816 3 MP
XPP
X0.825397 sg
X0 18 17 0 4857 834 3 MP
XPP
X17 0 0 18 4857 834 3 MP
XPP
X0.888889 sg
X0 17 17 0 4857 852 3 MP
XPP
X17 0 0 17 4857 852 3 MP
XPP
X0.968254 sg
X0 18 17 0 4857 869 3 MP
XPP
X17 0 0 18 4857 869 3 MP
XPP
X1 sg
X0 18 17 0 4857 887 3 MP
XPP
X17 0 0 18 4857 887 3 MP
XPP
X0 18 17 0 4857 905 3 MP
XPP
X17 0 0 18 4857 905 3 MP
XPP
X0 18 17 0 4857 923 3 MP
XPP
X17 0 0 18 4857 923 3 MP
XPP
X0 18 17 0 4857 941 3 MP
XPP
X17 0 0 18 4857 941 3 MP
XPP
X0 17 17 0 4857 959 3 MP
XPP
X17 0 0 17 4857 959 3 MP
XPP
X0 18 17 0 4857 976 3 MP
XPP
X17 0 0 18 4857 976 3 MP
XPP
X0 18 17 0 4857 994 3 MP
XPP
X17 0 0 18 4857 994 3 MP
XPP
X0 18 17 0 4857 1012 3 MP
XPP
X17 0 0 18 4857 1012 3 MP
XPP
X0 18 17 0 4857 1030 3 MP
XPP
X17 0 0 18 4857 1030 3 MP
XPP
X0 18 17 0 4857 1048 3 MP
XPP
X17 0 0 18 4857 1048 3 MP
XPP
X0 17 17 0 4857 1066 3 MP
XPP
X17 0 0 17 4857 1066 3 MP
XPP
X0 18 17 0 4857 1083 3 MP
XPP
X17 0 0 18 4857 1083 3 MP
XPP
X0.984127 sg
X0 18 17 0 4857 1101 3 MP
XPP
X17 0 0 18 4857 1101 3 MP
XPP
X0.952381 sg
X0 18 17 0 4857 1119 3 MP
XPP
X17 0 0 18 4857 1119 3 MP
XPP
X0.936508 sg
X0 18 17 0 4857 1137 3 MP
XPP
X17 0 0 18 4857 1137 3 MP
XPP
X0 18 17 0 4857 1155 3 MP
XPP
X17 0 0 18 4857 1155 3 MP
XPP
X0 17 17 0 4857 1173 3 MP
XPP
X17 0 0 17 4857 1173 3 MP
XPP
X0 18 17 0 4857 1190 3 MP
XPP
X17 0 0 18 4857 1190 3 MP
XPP
X0 18 17 0 4857 1208 3 MP
XPP
X17 0 0 18 4857 1208 3 MP
XPP
X0 18 17 0 4857 1226 3 MP
XPP
X17 0 0 18 4857 1226 3 MP
XPP
X0 18 17 0 4857 1244 3 MP
XPP
X17 0 0 18 4857 1244 3 MP
XPP
X0 17 17 0 4857 1262 3 MP
XPP
X17 0 0 17 4857 1262 3 MP
XPP
X0 18 17 0 4857 1279 3 MP
XPP
X17 0 0 18 4857 1279 3 MP
XPP
X0 18 17 0 4857 1297 3 MP
XPP
X17 0 0 18 4857 1297 3 MP
XPP
X0 18 17 0 4857 1315 3 MP
XPP
X17 0 0 18 4857 1315 3 MP
XPP
X0 18 17 0 4857 1333 3 MP
XPP
X17 0 0 18 4857 1333 3 MP
XPP
X0 18 17 0 4857 1351 3 MP
XPP
X17 0 0 18 4857 1351 3 MP
XPP
X0 17 17 0 4857 1369 3 MP
XPP
X17 0 0 17 4857 1369 3 MP
XPP
X0 18 17 0 4857 1386 3 MP
XPP
X17 0 0 18 4857 1386 3 MP
XPP
X0 18 17 0 4857 1404 3 MP
XPP
X17 0 0 18 4857 1404 3 MP
XPP
X0 18 17 0 4857 1422 3 MP
XPP
X17 0 0 18 4857 1422 3 MP
XPP
X0 18 17 0 4857 1440 3 MP
XPP
X17 0 0 18 4857 1440 3 MP
XPP
X0 18 17 0 4857 1458 3 MP
XPP
X17 0 0 18 4857 1458 3 MP
XPP
X0 17 17 0 4857 1476 3 MP
XPP
X17 0 0 17 4857 1476 3 MP
XPP
X0 18 17 0 4857 1493 3 MP
XPP
X17 0 0 18 4857 1493 3 MP
XPP
X0 18 17 0 4857 1511 3 MP
XPP
X17 0 0 18 4857 1511 3 MP
XPP
X0 18 17 0 4857 1529 3 MP
XPP
X17 0 0 18 4857 1529 3 MP
XPP
X0 18 17 0 4857 1547 3 MP
XPP
X17 0 0 18 4857 1547 3 MP
XPP
X0 18 17 0 4857 1565 3 MP
XPP
X17 0 0 18 4857 1565 3 MP
XPP
X0 17 17 0 4857 1583 3 MP
XPP
X17 0 0 17 4857 1583 3 MP
XPP
X0 18 17 0 4857 1600 3 MP
XPP
X17 0 0 18 4857 1600 3 MP
XPP
X0 18 17 0 4857 1618 3 MP
XPP
X17 0 0 18 4857 1618 3 MP
XPP
X0 18 17 0 4857 1636 3 MP
XPP
X17 0 0 18 4857 1636 3 MP
XPP
X0 18 17 0 4857 1654 3 MP
XPP
X17 0 0 18 4857 1654 3 MP
XPP
X0 18 17 0 4857 1672 3 MP
XPP
X17 0 0 18 4857 1672 3 MP
XPP
X0.952381 sg
X0 17 17 0 4857 1690 3 MP
XPP
X17 0 0 17 4857 1690 3 MP
XPP
X0.984127 sg
X0 18 17 0 4857 1707 3 MP
XPP
X17 0 0 18 4857 1707 3 MP
XPP
X1 sg
X0 18 17 0 4857 1725 3 MP
XPP
X17 0 0 18 4857 1725 3 MP
XPP
X0 18 17 0 4857 1743 3 MP
XPP
X17 0 0 18 4857 1743 3 MP
XPP
X0 18 17 0 4857 1761 3 MP
XPP
X17 0 0 18 4857 1761 3 MP
XPP
X0 18 17 0 4857 1779 3 MP
XPP
X17 0 0 18 4857 1779 3 MP
XPP
X0 17 17 0 4857 1797 3 MP
XPP
X17 0 0 17 4857 1797 3 MP
XPP
X0 18 17 0 4857 1814 3 MP
XPP
X17 0 0 18 4857 1814 3 MP
XPP
X0 18 17 0 4857 1832 3 MP
XPP
X17 0 0 18 4857 1832 3 MP
XPP
X0 18 17 0 4857 1850 3 MP
XPP
X17 0 0 18 4857 1850 3 MP
XPP
X0 18 17 0 4857 1868 3 MP
XPP
X17 0 0 18 4857 1868 3 MP
XPP
X0 18 17 0 4857 1886 3 MP
XPP
X17 0 0 18 4857 1886 3 MP
XPP
X0 17 17 0 4857 1904 3 MP
XPP
X17 0 0 17 4857 1904 3 MP
XPP
X0 18 17 0 4857 1921 3 MP
XPP
X17 0 0 18 4857 1921 3 MP
XPP
X0 18 17 0 4857 1939 3 MP
XPP
X17 0 0 18 4857 1939 3 MP
XPP
X0 18 17 0 4857 1957 3 MP
XPP
X17 0 0 18 4857 1957 3 MP
XPP
X0 18 17 0 4857 1975 3 MP
XPP
X17 0 0 18 4857 1975 3 MP
XPP
X0 18 17 0 4857 1993 3 MP
XPP
X17 0 0 18 4857 1993 3 MP
XPP
X0 17 17 0 4857 2011 3 MP
XPP
X17 0 0 17 4857 2011 3 MP
XPP
X0 18 17 0 4857 2028 3 MP
XPP
X17 0 0 18 4857 2028 3 MP
XPP
X0 18 17 0 4857 2046 3 MP
XPP
X17 0 0 18 4857 2046 3 MP
XPP
X0 18 17 0 4857 2064 3 MP
XPP
X17 0 0 18 4857 2064 3 MP
XPP
X0 18 17 0 4857 2082 3 MP
XPP
X17 0 0 18 4857 2082 3 MP
XPP
X0 18 17 0 4857 2100 3 MP
XPP
X17 0 0 18 4857 2100 3 MP
XPP
X0 17 17 0 4857 2118 3 MP
XPP
X17 0 0 17 4857 2118 3 MP
XPP
X0 18 17 0 4857 2135 3 MP
XPP
X17 0 0 18 4857 2135 3 MP
XPP
X0 18 17 0 4857 2153 3 MP
XPP
X17 0 0 18 4857 2153 3 MP
XPP
X0 18 18 0 4874 388 3 MP
XPP
X18 0 0 18 4874 388 3 MP
XPP
X0 18 18 0 4874 406 3 MP
XPP
X18 0 0 18 4874 406 3 MP
XPP
X0 17 18 0 4874 424 3 MP
XPP
X18 0 0 17 4874 424 3 MP
XPP
X0 18 18 0 4874 441 3 MP
XPP
X18 0 0 18 4874 441 3 MP
XPP
X0 18 18 0 4874 459 3 MP
XPP
X18 0 0 18 4874 459 3 MP
XPP
X0 18 18 0 4874 477 3 MP
XPP
X18 0 0 18 4874 477 3 MP
XPP
X0 18 18 0 4874 495 3 MP
XPP
X18 0 0 18 4874 495 3 MP
XPP
X0 18 18 0 4874 513 3 MP
XPP
X18 0 0 18 4874 513 3 MP
XPP
X0 17 18 0 4874 531 3 MP
XPP
X18 0 0 17 4874 531 3 MP
XPP
X0.984127 sg
X0 18 18 0 4874 548 3 MP
XPP
X18 0 0 18 4874 548 3 MP
XPP
X0.920635 sg
X0 18 18 0 4874 566 3 MP
XPP
X18 0 0 18 4874 566 3 MP
XPP
X0.825397 sg
X0 18 18 0 4874 584 3 MP
XPP
X18 0 0 18 4874 584 3 MP
XPP
X0.730159 sg
X0 18 18 0 4874 602 3 MP
XPP
X18 0 0 18 4874 602 3 MP
XPP
X0.698413 sg
X0 18 18 0 4874 620 3 MP
XPP
X18 0 0 18 4874 620 3 MP
XPP
X0.68254 sg
X0 17 18 0 4874 638 3 MP
XPP
X18 0 0 17 4874 638 3 MP
XPP
X0.666667 sg
X0 18 18 0 4874 655 3 MP
XPP
X18 0 0 18 4874 655 3 MP
XPP
X0 18 18 0 4874 673 3 MP
XPP
X18 0 0 18 4874 673 3 MP
XPP
X0 18 18 0 4874 691 3 MP
XPP
X18 0 0 18 4874 691 3 MP
XPP
X0 18 18 0 4874 709 3 MP
XPP
X18 0 0 18 4874 709 3 MP
XPP
X0 18 18 0 4874 727 3 MP
XPP
X18 0 0 18 4874 727 3 MP
XPP
X0 17 18 0 4874 745 3 MP
XPP
X18 0 0 17 4874 745 3 MP
XPP
X0 18 18 0 4874 762 3 MP
XPP
X18 0 0 18 4874 762 3 MP
XPP
X0 18 18 0 4874 780 3 MP
XPP
X18 0 0 18 4874 780 3 MP
XPP
X0.68254 sg
X0 18 18 0 4874 798 3 MP
XPP
X18 0 0 18 4874 798 3 MP
XPP
X0.698413 sg
X0 18 18 0 4874 816 3 MP
XPP
X18 0 0 18 4874 816 3 MP
XPP
X0.730159 sg
X0 18 18 0 4874 834 3 MP
XPP
X18 0 0 18 4874 834 3 MP
XPP
X0.825397 sg
X0 17 18 0 4874 852 3 MP
XPP
X18 0 0 17 4874 852 3 MP
XPP
X0.920635 sg
X0 18 18 0 4874 869 3 MP
XPP
X18 0 0 18 4874 869 3 MP
XPP
X0.984127 sg
X0 18 18 0 4874 887 3 MP
XPP
X18 0 0 18 4874 887 3 MP
XPP
X1 sg
X0 18 18 0 4874 905 3 MP
XPP
X18 0 0 18 4874 905 3 MP
XPP
X0 18 18 0 4874 923 3 MP
XPP
X18 0 0 18 4874 923 3 MP
XPP
X0 18 18 0 4874 941 3 MP
XPP
X18 0 0 18 4874 941 3 MP
XPP
X0 17 18 0 4874 959 3 MP
XPP
X18 0 0 17 4874 959 3 MP
XPP
X0 18 18 0 4874 976 3 MP
XPP
X18 0 0 18 4874 976 3 MP
XPP
X0 18 18 0 4874 994 3 MP
XPP
X18 0 0 18 4874 994 3 MP
XPP
X0 18 18 0 4874 1012 3 MP
XPP
X18 0 0 18 4874 1012 3 MP
XPP
X0 18 18 0 4874 1030 3 MP
XPP
X18 0 0 18 4874 1030 3 MP
XPP
X0 18 18 0 4874 1048 3 MP
XPP
X18 0 0 18 4874 1048 3 MP
XPP
X0 17 18 0 4874 1066 3 MP
XPP
X18 0 0 17 4874 1066 3 MP
XPP
X0 18 18 0 4874 1083 3 MP
XPP
X18 0 0 18 4874 1083 3 MP
XPP
X0 18 18 0 4874 1101 3 MP
XPP
X18 0 0 18 4874 1101 3 MP
XPP
X0 18 18 0 4874 1119 3 MP
XPP
X18 0 0 18 4874 1119 3 MP
XPP
X0 18 18 0 4874 1137 3 MP
XPP
X18 0 0 18 4874 1137 3 MP
XPP
X0 18 18 0 4874 1155 3 MP
XPP
X18 0 0 18 4874 1155 3 MP
XPP
X0 17 18 0 4874 1173 3 MP
XPP
X18 0 0 17 4874 1173 3 MP
XPP
X0 18 18 0 4874 1190 3 MP
XPP
X18 0 0 18 4874 1190 3 MP
XPP
X0 18 18 0 4874 1208 3 MP
XPP
X18 0 0 18 4874 1208 3 MP
XPP
X0 18 18 0 4874 1226 3 MP
XPP
X18 0 0 18 4874 1226 3 MP
XPP
X0 18 18 0 4874 1244 3 MP
XPP
X18 0 0 18 4874 1244 3 MP
XPP
X0 17 18 0 4874 1262 3 MP
XPP
X18 0 0 17 4874 1262 3 MP
XPP
X0 18 18 0 4874 1279 3 MP
XPP
X18 0 0 18 4874 1279 3 MP
XPP
X0 18 18 0 4874 1297 3 MP
XPP
X18 0 0 18 4874 1297 3 MP
XPP
X0 18 18 0 4874 1315 3 MP
XPP
X18 0 0 18 4874 1315 3 MP
XPP
X0 18 18 0 4874 1333 3 MP
XPP
X18 0 0 18 4874 1333 3 MP
XPP
X0 18 18 0 4874 1351 3 MP
XPP
X18 0 0 18 4874 1351 3 MP
XPP
X0 17 18 0 4874 1369 3 MP
XPP
X18 0 0 17 4874 1369 3 MP
XPP
X0 18 18 0 4874 1386 3 MP
XPP
X18 0 0 18 4874 1386 3 MP
XPP
X0 18 18 0 4874 1404 3 MP
XPP
X18 0 0 18 4874 1404 3 MP
XPP
X0 18 18 0 4874 1422 3 MP
XPP
X18 0 0 18 4874 1422 3 MP
XPP
X0 18 18 0 4874 1440 3 MP
XPP
X18 0 0 18 4874 1440 3 MP
XPP
X0 18 18 0 4874 1458 3 MP
XPP
X18 0 0 18 4874 1458 3 MP
XPP
X0 17 18 0 4874 1476 3 MP
XPP
X18 0 0 17 4874 1476 3 MP
XPP
X0 18 18 0 4874 1493 3 MP
XPP
X18 0 0 18 4874 1493 3 MP
XPP
X0 18 18 0 4874 1511 3 MP
XPP
X18 0 0 18 4874 1511 3 MP
XPP
X0 18 18 0 4874 1529 3 MP
XPP
X18 0 0 18 4874 1529 3 MP
XPP
X0 18 18 0 4874 1547 3 MP
XPP
X18 0 0 18 4874 1547 3 MP
XPP
X0 18 18 0 4874 1565 3 MP
XPP
X18 0 0 18 4874 1565 3 MP
XPP
X0 17 18 0 4874 1583 3 MP
XPP
X18 0 0 17 4874 1583 3 MP
XPP
X0 18 18 0 4874 1600 3 MP
XPP
X18 0 0 18 4874 1600 3 MP
XPP
X0 18 18 0 4874 1618 3 MP
XPP
X18 0 0 18 4874 1618 3 MP
XPP
X0 18 18 0 4874 1636 3 MP
XPP
X18 0 0 18 4874 1636 3 MP
XPP
X0 18 18 0 4874 1654 3 MP
XPP
X18 0 0 18 4874 1654 3 MP
XPP
X0 18 18 0 4874 1672 3 MP
XPP
X18 0 0 18 4874 1672 3 MP
XPP
X0 17 18 0 4874 1690 3 MP
XPP
X18 0 0 17 4874 1690 3 MP
XPP
X0 18 18 0 4874 1707 3 MP
XPP
X18 0 0 18 4874 1707 3 MP
XPP
X0 18 18 0 4874 1725 3 MP
XPP
X18 0 0 18 4874 1725 3 MP
XPP
X0 18 18 0 4874 1743 3 MP
XPP
X18 0 0 18 4874 1743 3 MP
XPP
X0 18 18 0 4874 1761 3 MP
XPP
X18 0 0 18 4874 1761 3 MP
XPP
X0 18 18 0 4874 1779 3 MP
XPP
X18 0 0 18 4874 1779 3 MP
XPP
X0 17 18 0 4874 1797 3 MP
XPP
X18 0 0 17 4874 1797 3 MP
XPP
X0 18 18 0 4874 1814 3 MP
XPP
X18 0 0 18 4874 1814 3 MP
XPP
X0 18 18 0 4874 1832 3 MP
XPP
X18 0 0 18 4874 1832 3 MP
XPP
X0 18 18 0 4874 1850 3 MP
XPP
X18 0 0 18 4874 1850 3 MP
XPP
X0 18 18 0 4874 1868 3 MP
XPP
X18 0 0 18 4874 1868 3 MP
XPP
X0 18 18 0 4874 1886 3 MP
XPP
X18 0 0 18 4874 1886 3 MP
XPP
X0 17 18 0 4874 1904 3 MP
XPP
X18 0 0 17 4874 1904 3 MP
XPP
X0 18 18 0 4874 1921 3 MP
XPP
X18 0 0 18 4874 1921 3 MP
XPP
X0 18 18 0 4874 1939 3 MP
XPP
X18 0 0 18 4874 1939 3 MP
XPP
X0 18 18 0 4874 1957 3 MP
XPP
X18 0 0 18 4874 1957 3 MP
XPP
X0 18 18 0 4874 1975 3 MP
XPP
X18 0 0 18 4874 1975 3 MP
XPP
X0 18 18 0 4874 1993 3 MP
XPP
X18 0 0 18 4874 1993 3 MP
XPP
X0 17 18 0 4874 2011 3 MP
XPP
X18 0 0 17 4874 2011 3 MP
XPP
X0 18 18 0 4874 2028 3 MP
XPP
X18 0 0 18 4874 2028 3 MP
XPP
X0 18 18 0 4874 2046 3 MP
XPP
X18 0 0 18 4874 2046 3 MP
XPP
X0 18 18 0 4874 2064 3 MP
XPP
X18 0 0 18 4874 2064 3 MP
XPP
X0 18 18 0 4874 2082 3 MP
XPP
X18 0 0 18 4874 2082 3 MP
XPP
X0 18 18 0 4874 2100 3 MP
XPP
X18 0 0 18 4874 2100 3 MP
XPP
X0 17 18 0 4874 2118 3 MP
XPP
X18 0 0 17 4874 2118 3 MP
XPP
X0 18 18 0 4874 2135 3 MP
XPP
X18 0 0 18 4874 2135 3 MP
XPP
X0 18 18 0 4874 2153 3 MP
XPP
X18 0 0 18 4874 2153 3 MP
XPP
X0 18 18 0 4892 388 3 MP
XPP
X18 0 0 18 4892 388 3 MP
XPP
X0 18 18 0 4892 406 3 MP
XPP
X18 0 0 18 4892 406 3 MP
XPP
X0 17 18 0 4892 424 3 MP
XPP
X18 0 0 17 4892 424 3 MP
XPP
X0 18 18 0 4892 441 3 MP
XPP
X18 0 0 18 4892 441 3 MP
XPP
X0 18 18 0 4892 459 3 MP
XPP
X18 0 0 18 4892 459 3 MP
XPP
X0 18 18 0 4892 477 3 MP
XPP
X18 0 0 18 4892 477 3 MP
XPP
X0 18 18 0 4892 495 3 MP
XPP
X18 0 0 18 4892 495 3 MP
XPP
X0 18 18 0 4892 513 3 MP
XPP
X18 0 0 18 4892 513 3 MP
XPP
X0 17 18 0 4892 531 3 MP
XPP
X18 0 0 17 4892 531 3 MP
XPP
X0.952381 sg
X0 18 18 0 4892 548 3 MP
XPP
X18 0 0 18 4892 548 3 MP
XPP
X0.857143 sg
X0 18 18 0 4892 566 3 MP
XPP
X18 0 0 18 4892 566 3 MP
XPP
X0.761905 sg
X0 18 18 0 4892 584 3 MP
XPP
X18 0 0 18 4892 584 3 MP
XPP
X0.698413 sg
X0 18 18 0 4892 602 3 MP
XPP
X18 0 0 18 4892 602 3 MP
XPP
X0.666667 sg
X0 18 18 0 4892 620 3 MP
XPP
X18 0 0 18 4892 620 3 MP
XPP
X0 17 18 0 4892 638 3 MP
XPP
X18 0 0 17 4892 638 3 MP
XPP
X0 18 18 0 4892 655 3 MP
XPP
X18 0 0 18 4892 655 3 MP
XPP
X0 18 18 0 4892 673 3 MP
XPP
X18 0 0 18 4892 673 3 MP
XPP
X0 18 18 0 4892 691 3 MP
XPP
X18 0 0 18 4892 691 3 MP
XPP
X0 18 18 0 4892 709 3 MP
XPP
X18 0 0 18 4892 709 3 MP
XPP
X0 18 18 0 4892 727 3 MP
XPP
X18 0 0 18 4892 727 3 MP
XPP
X0 17 18 0 4892 745 3 MP
XPP
X18 0 0 17 4892 745 3 MP
XPP
X0 18 18 0 4892 762 3 MP
XPP
X18 0 0 18 4892 762 3 MP
XPP
X0 18 18 0 4892 780 3 MP
XPP
X18 0 0 18 4892 780 3 MP
XPP
X0 18 18 0 4892 798 3 MP
XPP
X18 0 0 18 4892 798 3 MP
XPP
X0 18 18 0 4892 816 3 MP
XPP
X18 0 0 18 4892 816 3 MP
XPP
X0.698413 sg
X0 18 18 0 4892 834 3 MP
XPP
X18 0 0 18 4892 834 3 MP
XPP
X0.761905 sg
X0 17 18 0 4892 852 3 MP
XPP
X18 0 0 17 4892 852 3 MP
XPP
X0.857143 sg
X0 18 18 0 4892 869 3 MP
XPP
X18 0 0 18 4892 869 3 MP
XPP
X0.952381 sg
X0 18 18 0 4892 887 3 MP
XPP
X18 0 0 18 4892 887 3 MP
XPP
X1 sg
X0 18 18 0 4892 905 3 MP
XPP
X18 0 0 18 4892 905 3 MP
XPP
X0 18 18 0 4892 923 3 MP
XPP
X18 0 0 18 4892 923 3 MP
XPP
X0 18 18 0 4892 941 3 MP
XPP
X18 0 0 18 4892 941 3 MP
XPP
X0 17 18 0 4892 959 3 MP
XPP
X18 0 0 17 4892 959 3 MP
XPP
X0 18 18 0 4892 976 3 MP
XPP
X18 0 0 18 4892 976 3 MP
XPP
X0 18 18 0 4892 994 3 MP
XPP
X18 0 0 18 4892 994 3 MP
XPP
X0 18 18 0 4892 1012 3 MP
XPP
X18 0 0 18 4892 1012 3 MP
XPP
X0 18 18 0 4892 1030 3 MP
XPP
X18 0 0 18 4892 1030 3 MP
XPP
X0 18 18 0 4892 1048 3 MP
XPP
X18 0 0 18 4892 1048 3 MP
XPP
X0 17 18 0 4892 1066 3 MP
XPP
X18 0 0 17 4892 1066 3 MP
XPP
X0 18 18 0 4892 1083 3 MP
XPP
X18 0 0 18 4892 1083 3 MP
XPP
X0 18 18 0 4892 1101 3 MP
XPP
X18 0 0 18 4892 1101 3 MP
XPP
X0 18 18 0 4892 1119 3 MP
XPP
X18 0 0 18 4892 1119 3 MP
XPP
X0 18 18 0 4892 1137 3 MP
XPP
X18 0 0 18 4892 1137 3 MP
XPP
X0 18 18 0 4892 1155 3 MP
XPP
X18 0 0 18 4892 1155 3 MP
XPP
X0 17 18 0 4892 1173 3 MP
XPP
X18 0 0 17 4892 1173 3 MP
XPP
X0 18 18 0 4892 1190 3 MP
XPP
X18 0 0 18 4892 1190 3 MP
XPP
X0 18 18 0 4892 1208 3 MP
XPP
X18 0 0 18 4892 1208 3 MP
XPP
X0 18 18 0 4892 1226 3 MP
XPP
X18 0 0 18 4892 1226 3 MP
XPP
X0 18 18 0 4892 1244 3 MP
XPP
X18 0 0 18 4892 1244 3 MP
XPP
X0 17 18 0 4892 1262 3 MP
XPP
X18 0 0 17 4892 1262 3 MP
XPP
X0 18 18 0 4892 1279 3 MP
XPP
X18 0 0 18 4892 1279 3 MP
XPP
X0 18 18 0 4892 1297 3 MP
XPP
X18 0 0 18 4892 1297 3 MP
XPP
X0 18 18 0 4892 1315 3 MP
XPP
X18 0 0 18 4892 1315 3 MP
XPP
X0 18 18 0 4892 1333 3 MP
XPP
X18 0 0 18 4892 1333 3 MP
XPP
X0 18 18 0 4892 1351 3 MP
XPP
X18 0 0 18 4892 1351 3 MP
XPP
X0 17 18 0 4892 1369 3 MP
XPP
X18 0 0 17 4892 1369 3 MP
XPP
X0 18 18 0 4892 1386 3 MP
XPP
X18 0 0 18 4892 1386 3 MP
XPP
X0 18 18 0 4892 1404 3 MP
XPP
X18 0 0 18 4892 1404 3 MP
XPP
X0 18 18 0 4892 1422 3 MP
XPP
X18 0 0 18 4892 1422 3 MP
XPP
X0 18 18 0 4892 1440 3 MP
XPP
X18 0 0 18 4892 1440 3 MP
XPP
X0 18 18 0 4892 1458 3 MP
XPP
X18 0 0 18 4892 1458 3 MP
XPP
X0 17 18 0 4892 1476 3 MP
XPP
X18 0 0 17 4892 1476 3 MP
XPP
X0 18 18 0 4892 1493 3 MP
XPP
X18 0 0 18 4892 1493 3 MP
XPP
X0 18 18 0 4892 1511 3 MP
XPP
X18 0 0 18 4892 1511 3 MP
XPP
X0 18 18 0 4892 1529 3 MP
XPP
X18 0 0 18 4892 1529 3 MP
XPP
X0 18 18 0 4892 1547 3 MP
XPP
X18 0 0 18 4892 1547 3 MP
XPP
X0 18 18 0 4892 1565 3 MP
XPP
X18 0 0 18 4892 1565 3 MP
XPP
X0 17 18 0 4892 1583 3 MP
XPP
X18 0 0 17 4892 1583 3 MP
XPP
X0 18 18 0 4892 1600 3 MP
XPP
X18 0 0 18 4892 1600 3 MP
XPP
X0 18 18 0 4892 1618 3 MP
XPP
X18 0 0 18 4892 1618 3 MP
XPP
X0 18 18 0 4892 1636 3 MP
XPP
X18 0 0 18 4892 1636 3 MP
XPP
X0 18 18 0 4892 1654 3 MP
XPP
X18 0 0 18 4892 1654 3 MP
XPP
X0 18 18 0 4892 1672 3 MP
XPP
X18 0 0 18 4892 1672 3 MP
XPP
X0 17 18 0 4892 1690 3 MP
XPP
X18 0 0 17 4892 1690 3 MP
XPP
X0 18 18 0 4892 1707 3 MP
XPP
X18 0 0 18 4892 1707 3 MP
XPP
X0 18 18 0 4892 1725 3 MP
XPP
X18 0 0 18 4892 1725 3 MP
XPP
X0 18 18 0 4892 1743 3 MP
XPP
X18 0 0 18 4892 1743 3 MP
XPP
X0 18 18 0 4892 1761 3 MP
XPP
X18 0 0 18 4892 1761 3 MP
XPP
X0 18 18 0 4892 1779 3 MP
XPP
X18 0 0 18 4892 1779 3 MP
XPP
X0 17 18 0 4892 1797 3 MP
XPP
X18 0 0 17 4892 1797 3 MP
XPP
X0 18 18 0 4892 1814 3 MP
XPP
X18 0 0 18 4892 1814 3 MP
XPP
X0 18 18 0 4892 1832 3 MP
XPP
X18 0 0 18 4892 1832 3 MP
XPP
X0 18 18 0 4892 1850 3 MP
XPP
X18 0 0 18 4892 1850 3 MP
XPP
X0 18 18 0 4892 1868 3 MP
XPP
X18 0 0 18 4892 1868 3 MP
XPP
X0 18 18 0 4892 1886 3 MP
XPP
X18 0 0 18 4892 1886 3 MP
XPP
X0 17 18 0 4892 1904 3 MP
XPP
X18 0 0 17 4892 1904 3 MP
XPP
X0 18 18 0 4892 1921 3 MP
XPP
X18 0 0 18 4892 1921 3 MP
XPP
X0 18 18 0 4892 1939 3 MP
XPP
X18 0 0 18 4892 1939 3 MP
XPP
X0 18 18 0 4892 1957 3 MP
XPP
X18 0 0 18 4892 1957 3 MP
XPP
X0 18 18 0 4892 1975 3 MP
XPP
X18 0 0 18 4892 1975 3 MP
XPP
X0 18 18 0 4892 1993 3 MP
XPP
X18 0 0 18 4892 1993 3 MP
XPP
X0 17 18 0 4892 2011 3 MP
XPP
X18 0 0 17 4892 2011 3 MP
XPP
X0 18 18 0 4892 2028 3 MP
XPP
X18 0 0 18 4892 2028 3 MP
XPP
X0 18 18 0 4892 2046 3 MP
XPP
X18 0 0 18 4892 2046 3 MP
XPP
X0 18 18 0 4892 2064 3 MP
XPP
X18 0 0 18 4892 2064 3 MP
XPP
X0 18 18 0 4892 2082 3 MP
XPP
X18 0 0 18 4892 2082 3 MP
XPP
X0 18 18 0 4892 2100 3 MP
XPP
X18 0 0 18 4892 2100 3 MP
XPP
X0 17 18 0 4892 2118 3 MP
XPP
X18 0 0 17 4892 2118 3 MP
XPP
X0 18 18 0 4892 2135 3 MP
XPP
X18 0 0 18 4892 2135 3 MP
XPP
X0 18 18 0 4892 2153 3 MP
XPP
X18 0 0 18 4892 2153 3 MP
XPP
X0 18 18 0 4910 388 3 MP
XPP
X18 0 0 18 4910 388 3 MP
XPP
X0 18 18 0 4910 406 3 MP
XPP
X18 0 0 18 4910 406 3 MP
XPP
X0 17 18 0 4910 424 3 MP
XPP
X18 0 0 17 4910 424 3 MP
XPP
X0 18 18 0 4910 441 3 MP
XPP
X18 0 0 18 4910 441 3 MP
XPP
X0 18 18 0 4910 459 3 MP
XPP
X18 0 0 18 4910 459 3 MP
XPP
X0 18 18 0 4910 477 3 MP
XPP
X18 0 0 18 4910 477 3 MP
XPP
X0 18 18 0 4910 495 3 MP
XPP
X18 0 0 18 4910 495 3 MP
XPP
X0 18 18 0 4910 513 3 MP
XPP
X18 0 0 18 4910 513 3 MP
XPP
X0.952381 sg
X0 17 18 0 4910 531 3 MP
XPP
X18 0 0 17 4910 531 3 MP
XPP
X0.888889 sg
X0 18 18 0 4910 548 3 MP
XPP
X18 0 0 18 4910 548 3 MP
XPP
X0.793651 sg
X0 18 18 0 4910 566 3 MP
XPP
X18 0 0 18 4910 566 3 MP
XPP
X0.714286 sg
X0 18 18 0 4910 584 3 MP
XPP
X18 0 0 18 4910 584 3 MP
XPP
X0.68254 sg
X0 18 18 0 4910 602 3 MP
XPP
X18 0 0 18 4910 602 3 MP
XPP
X0.666667 sg
X0 18 18 0 4910 620 3 MP
XPP
X18 0 0 18 4910 620 3 MP
XPP
X0 17 18 0 4910 638 3 MP
XPP
X18 0 0 17 4910 638 3 MP
XPP
X0 18 18 0 4910 655 3 MP
XPP
X18 0 0 18 4910 655 3 MP
XPP
X0 18 18 0 4910 673 3 MP
XPP
X18 0 0 18 4910 673 3 MP
XPP
X0 18 18 0 4910 691 3 MP
XPP
X18 0 0 18 4910 691 3 MP
XPP
X0 18 18 0 4910 709 3 MP
XPP
X18 0 0 18 4910 709 3 MP
XPP
X0 18 18 0 4910 727 3 MP
XPP
X18 0 0 18 4910 727 3 MP
XPP
X0 17 18 0 4910 745 3 MP
XPP
X18 0 0 17 4910 745 3 MP
XPP
X0 18 18 0 4910 762 3 MP
XPP
X18 0 0 18 4910 762 3 MP
XPP
X0 18 18 0 4910 780 3 MP
XPP
X18 0 0 18 4910 780 3 MP
XPP
X0 18 18 0 4910 798 3 MP
XPP
X18 0 0 18 4910 798 3 MP
XPP
X0 18 18 0 4910 816 3 MP
XPP
X18 0 0 18 4910 816 3 MP
XPP
X0.68254 sg
X0 18 18 0 4910 834 3 MP
XPP
X18 0 0 18 4910 834 3 MP
XPP
X0.714286 sg
X0 17 18 0 4910 852 3 MP
XPP
X18 0 0 17 4910 852 3 MP
XPP
X0.793651 sg
X0 18 18 0 4910 869 3 MP
XPP
X18 0 0 18 4910 869 3 MP
XPP
X0.888889 sg
X0 18 18 0 4910 887 3 MP
XPP
X18 0 0 18 4910 887 3 MP
XPP
X0.952381 sg
X0 18 18 0 4910 905 3 MP
XPP
X18 0 0 18 4910 905 3 MP
XPP
X0.984127 sg
X0 18 18 0 4910 923 3 MP
XPP
X18 0 0 18 4910 923 3 MP
XPP
X0 18 18 0 4910 941 3 MP
XPP
X18 0 0 18 4910 941 3 MP
XPP
X0.968254 sg
X0 17 18 0 4910 959 3 MP
XPP
X18 0 0 17 4910 959 3 MP
XPP
X0 18 18 0 4910 976 3 MP
XPP
X18 0 0 18 4910 976 3 MP
XPP
X0 18 18 0 4910 994 3 MP
XPP
X18 0 0 18 4910 994 3 MP
XPP
X0 18 18 0 4910 1012 3 MP
XPP
X18 0 0 18 4910 1012 3 MP
XPP
X1 sg
X0 18 18 0 4910 1030 3 MP
XPP
X18 0 0 18 4910 1030 3 MP
XPP
X0 18 18 0 4910 1048 3 MP
XPP
X18 0 0 18 4910 1048 3 MP
XPP
X0 17 18 0 4910 1066 3 MP
XPP
X18 0 0 17 4910 1066 3 MP
XPP
X0 18 18 0 4910 1083 3 MP
XPP
X18 0 0 18 4910 1083 3 MP
XPP
X0 18 18 0 4910 1101 3 MP
XPP
X18 0 0 18 4910 1101 3 MP
XPP
X0 18 18 0 4910 1119 3 MP
XPP
X18 0 0 18 4910 1119 3 MP
XPP
X0 18 18 0 4910 1137 3 MP
XPP
X18 0 0 18 4910 1137 3 MP
XPP
X0 18 18 0 4910 1155 3 MP
XPP
X18 0 0 18 4910 1155 3 MP
XPP
X0 17 18 0 4910 1173 3 MP
XPP
X18 0 0 17 4910 1173 3 MP
XPP
X0 18 18 0 4910 1190 3 MP
XPP
X18 0 0 18 4910 1190 3 MP
XPP
X0 18 18 0 4910 1208 3 MP
XPP
X18 0 0 18 4910 1208 3 MP
XPP
X0 18 18 0 4910 1226 3 MP
XPP
X18 0 0 18 4910 1226 3 MP
XPP
X0 18 18 0 4910 1244 3 MP
XPP
X18 0 0 18 4910 1244 3 MP
XPP
X0 17 18 0 4910 1262 3 MP
XPP
X18 0 0 17 4910 1262 3 MP
XPP
X0 18 18 0 4910 1279 3 MP
XPP
X18 0 0 18 4910 1279 3 MP
XPP
X0 18 18 0 4910 1297 3 MP
XPP
X18 0 0 18 4910 1297 3 MP
XPP
X0 18 18 0 4910 1315 3 MP
XPP
X18 0 0 18 4910 1315 3 MP
XPP
X0 18 18 0 4910 1333 3 MP
XPP
X18 0 0 18 4910 1333 3 MP
XPP
X0 18 18 0 4910 1351 3 MP
XPP
X18 0 0 18 4910 1351 3 MP
XPP
X0 17 18 0 4910 1369 3 MP
XPP
X18 0 0 17 4910 1369 3 MP
XPP
X0 18 18 0 4910 1386 3 MP
XPP
X18 0 0 18 4910 1386 3 MP
XPP
X0 18 18 0 4910 1404 3 MP
XPP
X18 0 0 18 4910 1404 3 MP
XPP
X0 18 18 0 4910 1422 3 MP
XPP
X18 0 0 18 4910 1422 3 MP
XPP
X0 18 18 0 4910 1440 3 MP
XPP
X18 0 0 18 4910 1440 3 MP
XPP
X0 18 18 0 4910 1458 3 MP
XPP
X18 0 0 18 4910 1458 3 MP
XPP
X0 17 18 0 4910 1476 3 MP
XPP
X18 0 0 17 4910 1476 3 MP
XPP
X0 18 18 0 4910 1493 3 MP
XPP
X18 0 0 18 4910 1493 3 MP
XPP
X0 18 18 0 4910 1511 3 MP
XPP
X18 0 0 18 4910 1511 3 MP
XPP
X0 18 18 0 4910 1529 3 MP
XPP
X18 0 0 18 4910 1529 3 MP
XPP
X0 18 18 0 4910 1547 3 MP
XPP
X18 0 0 18 4910 1547 3 MP
XPP
X0 18 18 0 4910 1565 3 MP
XPP
X18 0 0 18 4910 1565 3 MP
XPP
X0 17 18 0 4910 1583 3 MP
XPP
X18 0 0 17 4910 1583 3 MP
XPP
X0 18 18 0 4910 1600 3 MP
XPP
X18 0 0 18 4910 1600 3 MP
XPP
X0 18 18 0 4910 1618 3 MP
XPP
X18 0 0 18 4910 1618 3 MP
XPP
X0 18 18 0 4910 1636 3 MP
XPP
X18 0 0 18 4910 1636 3 MP
XPP
X0 18 18 0 4910 1654 3 MP
XPP
X18 0 0 18 4910 1654 3 MP
XPP
X0 18 18 0 4910 1672 3 MP
XPP
X18 0 0 18 4910 1672 3 MP
XPP
X0 17 18 0 4910 1690 3 MP
XPP
X18 0 0 17 4910 1690 3 MP
XPP
X0 18 18 0 4910 1707 3 MP
XPP
X18 0 0 18 4910 1707 3 MP
XPP
X0 18 18 0 4910 1725 3 MP
XPP
X18 0 0 18 4910 1725 3 MP
XPP
X0 18 18 0 4910 1743 3 MP
XPP
X18 0 0 18 4910 1743 3 MP
XPP
X0 18 18 0 4910 1761 3 MP
XPP
X18 0 0 18 4910 1761 3 MP
XPP
X0 18 18 0 4910 1779 3 MP
XPP
X18 0 0 18 4910 1779 3 MP
XPP
X0 17 18 0 4910 1797 3 MP
XPP
X18 0 0 17 4910 1797 3 MP
XPP
X0 18 18 0 4910 1814 3 MP
XPP
X18 0 0 18 4910 1814 3 MP
XPP
X0 18 18 0 4910 1832 3 MP
XPP
X18 0 0 18 4910 1832 3 MP
XPP
X0 18 18 0 4910 1850 3 MP
XPP
X18 0 0 18 4910 1850 3 MP
XPP
X0 18 18 0 4910 1868 3 MP
XPP
X18 0 0 18 4910 1868 3 MP
XPP
X0 18 18 0 4910 1886 3 MP
XPP
X18 0 0 18 4910 1886 3 MP
XPP
X0 17 18 0 4910 1904 3 MP
XPP
X18 0 0 17 4910 1904 3 MP
XPP
X0 18 18 0 4910 1921 3 MP
XPP
X18 0 0 18 4910 1921 3 MP
XPP
X0 18 18 0 4910 1939 3 MP
XPP
X18 0 0 18 4910 1939 3 MP
XPP
X0 18 18 0 4910 1957 3 MP
XPP
X18 0 0 18 4910 1957 3 MP
XPP
X0 18 18 0 4910 1975 3 MP
XPP
X18 0 0 18 4910 1975 3 MP
XPP
X0 18 18 0 4910 1993 3 MP
XPP
X18 0 0 18 4910 1993 3 MP
XPP
X0 17 18 0 4910 2011 3 MP
XPP
X18 0 0 17 4910 2011 3 MP
XPP
X0 18 18 0 4910 2028 3 MP
XPP
X18 0 0 18 4910 2028 3 MP
XPP
X0 18 18 0 4910 2046 3 MP
XPP
X18 0 0 18 4910 2046 3 MP
XPP
X0 18 18 0 4910 2064 3 MP
XPP
X18 0 0 18 4910 2064 3 MP
XPP
X0 18 18 0 4910 2082 3 MP
XPP
X18 0 0 18 4910 2082 3 MP
XPP
X0 18 18 0 4910 2100 3 MP
XPP
X18 0 0 18 4910 2100 3 MP
XPP
X0 17 18 0 4910 2118 3 MP
XPP
X18 0 0 17 4910 2118 3 MP
XPP
X0 18 18 0 4910 2135 3 MP
XPP
X18 0 0 18 4910 2135 3 MP
XPP
X0 18 18 0 4910 2153 3 MP
XPP
X18 0 0 18 4910 2153 3 MP
XPP
X0 18 18 0 4928 388 3 MP
XPP
X18 0 0 18 4928 388 3 MP
XPP
X0 18 18 0 4928 406 3 MP
XPP
X18 0 0 18 4928 406 3 MP
XPP
X0 17 18 0 4928 424 3 MP
XPP
X18 0 0 17 4928 424 3 MP
XPP
X0 18 18 0 4928 441 3 MP
XPP
X18 0 0 18 4928 441 3 MP
XPP
X0 18 18 0 4928 459 3 MP
XPP
X18 0 0 18 4928 459 3 MP
XPP
X0 18 18 0 4928 477 3 MP
XPP
X18 0 0 18 4928 477 3 MP
XPP
X0 18 18 0 4928 495 3 MP
XPP
X18 0 0 18 4928 495 3 MP
XPP
X0.968254 sg
X0 18 18 0 4928 513 3 MP
XPP
X18 0 0 18 4928 513 3 MP
XPP
X0.888889 sg
X0 17 18 0 4928 531 3 MP
XPP
X18 0 0 17 4928 531 3 MP
XPP
X0.793651 sg
X0 18 18 0 4928 548 3 MP
XPP
X18 0 0 18 4928 548 3 MP
XPP
X0.714286 sg
X0 18 18 0 4928 566 3 MP
XPP
X18 0 0 18 4928 566 3 MP
XPP
X0.68254 sg
X0 18 18 0 4928 584 3 MP
XPP
X18 0 0 18 4928 584 3 MP
XPP
X0.666667 sg
X0 18 18 0 4928 602 3 MP
XPP
X18 0 0 18 4928 602 3 MP
XPP
X0 18 18 0 4928 620 3 MP
XPP
X18 0 0 18 4928 620 3 MP
XPP
X0 17 18 0 4928 638 3 MP
XPP
X18 0 0 17 4928 638 3 MP
XPP
X0 18 18 0 4928 655 3 MP
XPP
X18 0 0 18 4928 655 3 MP
XPP
X0 18 18 0 4928 673 3 MP
XPP
X18 0 0 18 4928 673 3 MP
XPP
X0 18 18 0 4928 691 3 MP
XPP
X18 0 0 18 4928 691 3 MP
XPP
X0 18 18 0 4928 709 3 MP
XPP
X18 0 0 18 4928 709 3 MP
XPP
X0 18 18 0 4928 727 3 MP
XPP
X18 0 0 18 4928 727 3 MP
XPP
X0 17 18 0 4928 745 3 MP
XPP
X18 0 0 17 4928 745 3 MP
XPP
X0 18 18 0 4928 762 3 MP
XPP
X18 0 0 18 4928 762 3 MP
XPP
X0 18 18 0 4928 780 3 MP
XPP
X18 0 0 18 4928 780 3 MP
XPP
X0 18 18 0 4928 798 3 MP
XPP
X18 0 0 18 4928 798 3 MP
XPP
X0 18 18 0 4928 816 3 MP
XPP
X18 0 0 18 4928 816 3 MP
XPP
X0 18 18 0 4928 834 3 MP
XPP
X18 0 0 18 4928 834 3 MP
XPP
X0.68254 sg
X0 17 18 0 4928 852 3 MP
XPP
X18 0 0 17 4928 852 3 MP
XPP
X0.714286 sg
X0 18 18 0 4928 869 3 MP
XPP
X18 0 0 18 4928 869 3 MP
XPP
X0.793651 sg
X0 18 18 0 4928 887 3 MP
XPP
X18 0 0 18 4928 887 3 MP
XPP
X0.873016 sg
X0 18 18 0 4928 905 3 MP
XPP
X18 0 0 18 4928 905 3 MP
XPP
X0.920635 sg
X0 18 18 0 4928 923 3 MP
XPP
X18 0 0 18 4928 923 3 MP
XPP
X0.904762 sg
X0 18 18 0 4928 941 3 MP
XPP
X18 0 0 18 4928 941 3 MP
XPP
X0.84127 sg
X0 17 18 0 4928 959 3 MP
XPP
X18 0 0 17 4928 959 3 MP
XPP
X0.809524 sg
X0 18 18 0 4928 976 3 MP
XPP
X18 0 0 18 4928 976 3 MP
XPP
X0 18 18 0 4928 994 3 MP
XPP
X18 0 0 18 4928 994 3 MP
XPP
X0.84127 sg
X0 18 18 0 4928 1012 3 MP
XPP
X18 0 0 18 4928 1012 3 MP
XPP
X0.904762 sg
X0 18 18 0 4928 1030 3 MP
XPP
X18 0 0 18 4928 1030 3 MP
XPP
X0.968254 sg
X0 18 18 0 4928 1048 3 MP
XPP
X18 0 0 18 4928 1048 3 MP
XPP
X1 sg
X0 17 18 0 4928 1066 3 MP
XPP
X18 0 0 17 4928 1066 3 MP
XPP
X0 18 18 0 4928 1083 3 MP
XPP
X18 0 0 18 4928 1083 3 MP
XPP
X0 18 18 0 4928 1101 3 MP
XPP
X18 0 0 18 4928 1101 3 MP
XPP
X0 18 18 0 4928 1119 3 MP
XPP
X18 0 0 18 4928 1119 3 MP
XPP
X0 18 18 0 4928 1137 3 MP
XPP
X18 0 0 18 4928 1137 3 MP
XPP
X0 18 18 0 4928 1155 3 MP
XPP
X18 0 0 18 4928 1155 3 MP
XPP
X0 17 18 0 4928 1173 3 MP
XPP
X18 0 0 17 4928 1173 3 MP
XPP
X0 18 18 0 4928 1190 3 MP
XPP
X18 0 0 18 4928 1190 3 MP
XPP
X0 18 18 0 4928 1208 3 MP
XPP
X18 0 0 18 4928 1208 3 MP
XPP
X0 18 18 0 4928 1226 3 MP
XPP
X18 0 0 18 4928 1226 3 MP
XPP
X0 18 18 0 4928 1244 3 MP
XPP
X18 0 0 18 4928 1244 3 MP
XPP
X0 17 18 0 4928 1262 3 MP
XPP
X18 0 0 17 4928 1262 3 MP
XPP
X0 18 18 0 4928 1279 3 MP
XPP
X18 0 0 18 4928 1279 3 MP
XPP
X0 18 18 0 4928 1297 3 MP
XPP
X18 0 0 18 4928 1297 3 MP
XPP
X0 18 18 0 4928 1315 3 MP
XPP
X18 0 0 18 4928 1315 3 MP
XPP
X0 18 18 0 4928 1333 3 MP
XPP
X18 0 0 18 4928 1333 3 MP
XPP
X0 18 18 0 4928 1351 3 MP
XPP
X18 0 0 18 4928 1351 3 MP
XPP
X0 17 18 0 4928 1369 3 MP
XPP
X18 0 0 17 4928 1369 3 MP
XPP
X0 18 18 0 4928 1386 3 MP
XPP
X18 0 0 18 4928 1386 3 MP
XPP
X0 18 18 0 4928 1404 3 MP
XPP
X18 0 0 18 4928 1404 3 MP
XPP
X0 18 18 0 4928 1422 3 MP
XPP
X18 0 0 18 4928 1422 3 MP
XPP
X0 18 18 0 4928 1440 3 MP
XPP
X18 0 0 18 4928 1440 3 MP
XPP
X0 18 18 0 4928 1458 3 MP
XPP
X18 0 0 18 4928 1458 3 MP
XPP
X0 17 18 0 4928 1476 3 MP
XPP
X18 0 0 17 4928 1476 3 MP
XPP
X0 18 18 0 4928 1493 3 MP
XPP
X18 0 0 18 4928 1493 3 MP
XPP
X0 18 18 0 4928 1511 3 MP
XPP
X18 0 0 18 4928 1511 3 MP
XPP
X0 18 18 0 4928 1529 3 MP
XPP
X18 0 0 18 4928 1529 3 MP
XPP
X0 18 18 0 4928 1547 3 MP
XPP
X18 0 0 18 4928 1547 3 MP
XPP
X0 18 18 0 4928 1565 3 MP
XPP
X18 0 0 18 4928 1565 3 MP
XPP
X0 17 18 0 4928 1583 3 MP
XPP
X18 0 0 17 4928 1583 3 MP
XPP
X0 18 18 0 4928 1600 3 MP
XPP
X18 0 0 18 4928 1600 3 MP
XPP
X0 18 18 0 4928 1618 3 MP
XPP
X18 0 0 18 4928 1618 3 MP
XPP
X0 18 18 0 4928 1636 3 MP
XPP
X18 0 0 18 4928 1636 3 MP
XPP
X0 18 18 0 4928 1654 3 MP
XPP
X18 0 0 18 4928 1654 3 MP
XPP
X0 18 18 0 4928 1672 3 MP
XPP
X18 0 0 18 4928 1672 3 MP
XPP
X0 17 18 0 4928 1690 3 MP
XPP
X18 0 0 17 4928 1690 3 MP
XPP
X0 18 18 0 4928 1707 3 MP
XPP
X18 0 0 18 4928 1707 3 MP
XPP
X0 18 18 0 4928 1725 3 MP
XPP
X18 0 0 18 4928 1725 3 MP
XPP
X0 18 18 0 4928 1743 3 MP
XPP
X18 0 0 18 4928 1743 3 MP
XPP
X0 18 18 0 4928 1761 3 MP
XPP
X18 0 0 18 4928 1761 3 MP
XPP
X0 18 18 0 4928 1779 3 MP
XPP
X18 0 0 18 4928 1779 3 MP
XPP
X0 17 18 0 4928 1797 3 MP
XPP
X18 0 0 17 4928 1797 3 MP
XPP
X0 18 18 0 4928 1814 3 MP
XPP
X18 0 0 18 4928 1814 3 MP
XPP
X0 18 18 0 4928 1832 3 MP
XPP
X18 0 0 18 4928 1832 3 MP
XPP
X0 18 18 0 4928 1850 3 MP
XPP
X18 0 0 18 4928 1850 3 MP
XPP
X0 18 18 0 4928 1868 3 MP
XPP
X18 0 0 18 4928 1868 3 MP
XPP
X0 18 18 0 4928 1886 3 MP
XPP
X18 0 0 18 4928 1886 3 MP
XPP
X0 17 18 0 4928 1904 3 MP
XPP
X18 0 0 17 4928 1904 3 MP
XPP
X0 18 18 0 4928 1921 3 MP
XPP
X18 0 0 18 4928 1921 3 MP
XPP
X0 18 18 0 4928 1939 3 MP
XPP
X18 0 0 18 4928 1939 3 MP
XPP
X0 18 18 0 4928 1957 3 MP
XPP
X18 0 0 18 4928 1957 3 MP
XPP
X0 18 18 0 4928 1975 3 MP
XPP
X18 0 0 18 4928 1975 3 MP
XPP
X0 18 18 0 4928 1993 3 MP
XPP
X18 0 0 18 4928 1993 3 MP
XPP
X0 17 18 0 4928 2011 3 MP
XPP
X18 0 0 17 4928 2011 3 MP
XPP
X0 18 18 0 4928 2028 3 MP
XPP
X18 0 0 18 4928 2028 3 MP
XPP
X0 18 18 0 4928 2046 3 MP
XPP
X18 0 0 18 4928 2046 3 MP
XPP
X0 18 18 0 4928 2064 3 MP
XPP
X18 0 0 18 4928 2064 3 MP
XPP
X0 18 18 0 4928 2082 3 MP
XPP
X18 0 0 18 4928 2082 3 MP
XPP
X0 18 18 0 4928 2100 3 MP
XPP
X18 0 0 18 4928 2100 3 MP
XPP
X0 17 18 0 4928 2118 3 MP
XPP
X18 0 0 17 4928 2118 3 MP
XPP
X0 18 18 0 4928 2135 3 MP
XPP
X18 0 0 18 4928 2135 3 MP
XPP
X0 18 18 0 4928 2153 3 MP
XPP
X18 0 0 18 4928 2153 3 MP
XPP
X0 18 18 0 4946 388 3 MP
XPP
X18 0 0 18 4946 388 3 MP
XPP
X0 18 18 0 4946 406 3 MP
XPP
X18 0 0 18 4946 406 3 MP
XPP
X0 17 18 0 4946 424 3 MP
XPP
X18 0 0 17 4946 424 3 MP
XPP
X0 18 18 0 4946 441 3 MP
XPP
X18 0 0 18 4946 441 3 MP
XPP
X0 18 18 0 4946 459 3 MP
XPP
X18 0 0 18 4946 459 3 MP
XPP
X0 18 18 0 4946 477 3 MP
XPP
X18 0 0 18 4946 477 3 MP
XPP
X0.984127 sg
X0 18 18 0 4946 495 3 MP
XPP
X18 0 0 18 4946 495 3 MP
XPP
X0.920635 sg
X0 18 18 0 4946 513 3 MP
XPP
X18 0 0 18 4946 513 3 MP
XPP
X0.809524 sg
X0 17 18 0 4946 531 3 MP
XPP
X18 0 0 17 4946 531 3 MP
XPP
X0.730159 sg
X0 18 18 0 4946 548 3 MP
XPP
X18 0 0 18 4946 548 3 MP
XPP
X0.68254 sg
X0 18 18 0 4946 566 3 MP
XPP
X18 0 0 18 4946 566 3 MP
XPP
X0.666667 sg
X0 18 18 0 4946 584 3 MP
XPP
X18 0 0 18 4946 584 3 MP
XPP
X0 18 18 0 4946 602 3 MP
XPP
X18 0 0 18 4946 602 3 MP
XPP
X0 18 18 0 4946 620 3 MP
XPP
X18 0 0 18 4946 620 3 MP
XPP
X0 17 18 0 4946 638 3 MP
XPP
X18 0 0 17 4946 638 3 MP
XPP
X0 18 18 0 4946 655 3 MP
XPP
X18 0 0 18 4946 655 3 MP
XPP
X0 18 18 0 4946 673 3 MP
XPP
X18 0 0 18 4946 673 3 MP
XPP
X0 18 18 0 4946 691 3 MP
XPP
X18 0 0 18 4946 691 3 MP
XPP
X0 18 18 0 4946 709 3 MP
XPP
X18 0 0 18 4946 709 3 MP
XPP
X0 18 18 0 4946 727 3 MP
XPP
X18 0 0 18 4946 727 3 MP
XPP
X0 17 18 0 4946 745 3 MP
XPP
X18 0 0 17 4946 745 3 MP
XPP
X0 18 18 0 4946 762 3 MP
XPP
X18 0 0 18 4946 762 3 MP
XPP
X0 18 18 0 4946 780 3 MP
XPP
X18 0 0 18 4946 780 3 MP
XPP
X0 18 18 0 4946 798 3 MP
XPP
X18 0 0 18 4946 798 3 MP
XPP
X0 18 18 0 4946 816 3 MP
XPP
X18 0 0 18 4946 816 3 MP
XPP
X0 18 18 0 4946 834 3 MP
XPP
X18 0 0 18 4946 834 3 MP
XPP
X0 17 18 0 4946 852 3 MP
XPP
X18 0 0 17 4946 852 3 MP
XPP
X0.68254 sg
X0 18 18 0 4946 869 3 MP
XPP
X18 0 0 18 4946 869 3 MP
XPP
X0.714286 sg
X0 18 18 0 4946 887 3 MP
XPP
X18 0 0 18 4946 887 3 MP
XPP
X0.746032 sg
X0 18 18 0 4946 905 3 MP
XPP
X18 0 0 18 4946 905 3 MP
XPP
X0.761905 sg
X0 18 18 0 4946 923 3 MP
XPP
X18 0 0 18 4946 923 3 MP
XPP
X0.714286 sg
X0 18 18 0 4946 941 3 MP
XPP
X18 0 0 18 4946 941 3 MP
XPP
X0.619048 sg
X0 17 18 0 4946 959 3 MP
XPP
X18 0 0 17 4946 959 3 MP
XPP
X0.571429 sg
X0 18 18 0 4946 976 3 MP
XPP
X18 0 0 18 4946 976 3 MP
XPP
X0 18 18 0 4946 994 3 MP
XPP
X18 0 0 18 4946 994 3 MP
XPP
X0.619048 sg
X0 18 18 0 4946 1012 3 MP
XPP
X18 0 0 18 4946 1012 3 MP
XPP
X0.730159 sg
X0 18 18 0 4946 1030 3 MP
XPP
X18 0 0 18 4946 1030 3 MP
XPP
X0.825397 sg
X0 18 18 0 4946 1048 3 MP
XPP
X18 0 0 18 4946 1048 3 MP
XPP
X0.920635 sg
X0 17 18 0 4946 1066 3 MP
XPP
X18 0 0 17 4946 1066 3 MP
XPP
X0.984127 sg
X0 18 18 0 4946 1083 3 MP
XPP
X18 0 0 18 4946 1083 3 MP
XPP
X1 sg
X0 18 18 0 4946 1101 3 MP
XPP
X18 0 0 18 4946 1101 3 MP
XPP
X0 18 18 0 4946 1119 3 MP
XPP
X18 0 0 18 4946 1119 3 MP
XPP
X0 18 18 0 4946 1137 3 MP
XPP
X18 0 0 18 4946 1137 3 MP
XPP
X0 18 18 0 4946 1155 3 MP
XPP
X18 0 0 18 4946 1155 3 MP
XPP
X0 17 18 0 4946 1173 3 MP
XPP
X18 0 0 17 4946 1173 3 MP
XPP
X0 18 18 0 4946 1190 3 MP
XPP
X18 0 0 18 4946 1190 3 MP
XPP
X0 18 18 0 4946 1208 3 MP
XPP
X18 0 0 18 4946 1208 3 MP
XPP
X0 18 18 0 4946 1226 3 MP
XPP
X18 0 0 18 4946 1226 3 MP
XPP
X0 18 18 0 4946 1244 3 MP
XPP
X18 0 0 18 4946 1244 3 MP
XPP
X0 17 18 0 4946 1262 3 MP
XPP
X18 0 0 17 4946 1262 3 MP
XPP
X0 18 18 0 4946 1279 3 MP
XPP
X18 0 0 18 4946 1279 3 MP
XPP
X0 18 18 0 4946 1297 3 MP
XPP
X18 0 0 18 4946 1297 3 MP
XPP
X0 18 18 0 4946 1315 3 MP
XPP
X18 0 0 18 4946 1315 3 MP
XPP
X0 18 18 0 4946 1333 3 MP
XPP
X18 0 0 18 4946 1333 3 MP
XPP
X0 18 18 0 4946 1351 3 MP
XPP
X18 0 0 18 4946 1351 3 MP
XPP
X0 17 18 0 4946 1369 3 MP
XPP
X18 0 0 17 4946 1369 3 MP
XPP
X0 18 18 0 4946 1386 3 MP
XPP
X18 0 0 18 4946 1386 3 MP
XPP
X0 18 18 0 4946 1404 3 MP
XPP
X18 0 0 18 4946 1404 3 MP
XPP
X0 18 18 0 4946 1422 3 MP
XPP
X18 0 0 18 4946 1422 3 MP
XPP
X0 18 18 0 4946 1440 3 MP
XPP
X18 0 0 18 4946 1440 3 MP
XPP
X0 18 18 0 4946 1458 3 MP
XPP
X18 0 0 18 4946 1458 3 MP
XPP
X0 17 18 0 4946 1476 3 MP
XPP
X18 0 0 17 4946 1476 3 MP
XPP
X0 18 18 0 4946 1493 3 MP
XPP
X18 0 0 18 4946 1493 3 MP
XPP
X0 18 18 0 4946 1511 3 MP
XPP
X18 0 0 18 4946 1511 3 MP
XPP
X0 18 18 0 4946 1529 3 MP
XPP
X18 0 0 18 4946 1529 3 MP
XPP
X0 18 18 0 4946 1547 3 MP
XPP
X18 0 0 18 4946 1547 3 MP
XPP
X0 18 18 0 4946 1565 3 MP
XPP
X18 0 0 18 4946 1565 3 MP
XPP
X0 17 18 0 4946 1583 3 MP
XPP
X18 0 0 17 4946 1583 3 MP
XPP
X0 18 18 0 4946 1600 3 MP
XPP
X18 0 0 18 4946 1600 3 MP
XPP
X0 18 18 0 4946 1618 3 MP
XPP
X18 0 0 18 4946 1618 3 MP
XPP
X0 18 18 0 4946 1636 3 MP
XPP
X18 0 0 18 4946 1636 3 MP
XPP
X0 18 18 0 4946 1654 3 MP
XPP
X18 0 0 18 4946 1654 3 MP
XPP
X0 18 18 0 4946 1672 3 MP
XPP
X18 0 0 18 4946 1672 3 MP
XPP
X0 17 18 0 4946 1690 3 MP
XPP
X18 0 0 17 4946 1690 3 MP
XPP
X0 18 18 0 4946 1707 3 MP
XPP
X18 0 0 18 4946 1707 3 MP
XPP
X0 18 18 0 4946 1725 3 MP
XPP
X18 0 0 18 4946 1725 3 MP
XPP
X0 18 18 0 4946 1743 3 MP
XPP
X18 0 0 18 4946 1743 3 MP
XPP
X0 18 18 0 4946 1761 3 MP
XPP
X18 0 0 18 4946 1761 3 MP
XPP
X0 18 18 0 4946 1779 3 MP
XPP
X18 0 0 18 4946 1779 3 MP
XPP
X0 17 18 0 4946 1797 3 MP
XPP
X18 0 0 17 4946 1797 3 MP
XPP
X0 18 18 0 4946 1814 3 MP
XPP
X18 0 0 18 4946 1814 3 MP
XPP
X0 18 18 0 4946 1832 3 MP
XPP
X18 0 0 18 4946 1832 3 MP
XPP
X0 18 18 0 4946 1850 3 MP
XPP
X18 0 0 18 4946 1850 3 MP
XPP
X0 18 18 0 4946 1868 3 MP
XPP
X18 0 0 18 4946 1868 3 MP
XPP
X0 18 18 0 4946 1886 3 MP
XPP
X18 0 0 18 4946 1886 3 MP
XPP
X0 17 18 0 4946 1904 3 MP
XPP
X18 0 0 17 4946 1904 3 MP
XPP
X0 18 18 0 4946 1921 3 MP
XPP
X18 0 0 18 4946 1921 3 MP
XPP
X0 18 18 0 4946 1939 3 MP
XPP
X18 0 0 18 4946 1939 3 MP
XPP
X0 18 18 0 4946 1957 3 MP
XPP
X18 0 0 18 4946 1957 3 MP
XPP
X0 18 18 0 4946 1975 3 MP
XPP
X18 0 0 18 4946 1975 3 MP
XPP
X0 18 18 0 4946 1993 3 MP
XPP
X18 0 0 18 4946 1993 3 MP
XPP
X0 17 18 0 4946 2011 3 MP
XPP
X18 0 0 17 4946 2011 3 MP
XPP
X0 18 18 0 4946 2028 3 MP
XPP
X18 0 0 18 4946 2028 3 MP
XPP
X0 18 18 0 4946 2046 3 MP
XPP
X18 0 0 18 4946 2046 3 MP
XPP
X0 18 18 0 4946 2064 3 MP
XPP
X18 0 0 18 4946 2064 3 MP
XPP
X0 18 18 0 4946 2082 3 MP
XPP
X18 0 0 18 4946 2082 3 MP
XPP
X0 18 18 0 4946 2100 3 MP
XPP
X18 0 0 18 4946 2100 3 MP
XPP
X0 17 18 0 4946 2118 3 MP
XPP
X18 0 0 17 4946 2118 3 MP
XPP
X0 18 18 0 4946 2135 3 MP
XPP
X18 0 0 18 4946 2135 3 MP
XPP
X0 18 18 0 4946 2153 3 MP
XPP
X18 0 0 18 4946 2153 3 MP
XPP
X0 18 17 0 4964 388 3 MP
XPP
X17 0 0 18 4964 388 3 MP
XPP
X0 18 17 0 4964 406 3 MP
XPP
X17 0 0 18 4964 406 3 MP
XPP
X0 17 17 0 4964 424 3 MP
XPP
X17 0 0 17 4964 424 3 MP
XPP
X0 18 17 0 4964 441 3 MP
XPP
X17 0 0 18 4964 441 3 MP
XPP
X0 18 17 0 4964 459 3 MP
XPP
X17 0 0 18 4964 459 3 MP
XPP
X0 18 17 0 4964 477 3 MP
XPP
X17 0 0 18 4964 477 3 MP
XPP
X0.952381 sg
X0 18 17 0 4964 495 3 MP
XPP
X17 0 0 18 4964 495 3 MP
XPP
X0.873016 sg
X0 18 17 0 4964 513 3 MP
XPP
X17 0 0 18 4964 513 3 MP
XPP
X0.761905 sg
X0 17 17 0 4964 531 3 MP
XPP
X17 0 0 17 4964 531 3 MP
XPP
X0.698413 sg
X0 18 17 0 4964 548 3 MP
XPP
X17 0 0 18 4964 548 3 MP
XPP
X0.666667 sg
X0 18 17 0 4964 566 3 MP
XPP
X17 0 0 18 4964 566 3 MP
XPP
X0 18 17 0 4964 584 3 MP
XPP
X17 0 0 18 4964 584 3 MP
XPP
X0 18 17 0 4964 602 3 MP
XPP
X17 0 0 18 4964 602 3 MP
XPP
X0 18 17 0 4964 620 3 MP
XPP
X17 0 0 18 4964 620 3 MP
XPP
X0 17 17 0 4964 638 3 MP
XPP
X17 0 0 17 4964 638 3 MP
XPP
X0 18 17 0 4964 655 3 MP
XPP
X17 0 0 18 4964 655 3 MP
XPP
X0 18 17 0 4964 673 3 MP
XPP
X17 0 0 18 4964 673 3 MP
XPP
X0 18 17 0 4964 691 3 MP
XPP
X17 0 0 18 4964 691 3 MP
XPP
X0 18 17 0 4964 709 3 MP
XPP
X17 0 0 18 4964 709 3 MP
XPP
X0 18 17 0 4964 727 3 MP
XPP
X17 0 0 18 4964 727 3 MP
XPP
X0 17 17 0 4964 745 3 MP
XPP
X17 0 0 17 4964 745 3 MP
XPP
X0 18 17 0 4964 762 3 MP
XPP
X17 0 0 18 4964 762 3 MP
XPP
X0 18 17 0 4964 780 3 MP
XPP
X17 0 0 18 4964 780 3 MP
XPP
X0 18 17 0 4964 798 3 MP
XPP
X17 0 0 18 4964 798 3 MP
XPP
X0 18 17 0 4964 816 3 MP
XPP
X17 0 0 18 4964 816 3 MP
XPP
X0 18 17 0 4964 834 3 MP
XPP
X17 0 0 18 4964 834 3 MP
XPP
X0 17 17 0 4964 852 3 MP
XPP
X17 0 0 17 4964 852 3 MP
XPP
X0.650794 sg
X0 18 17 0 4964 869 3 MP
XPP
X17 0 0 18 4964 869 3 MP
XPP
X0.634921 sg
X0 18 17 0 4964 887 3 MP
XPP
X17 0 0 18 4964 887 3 MP
XPP
X0.587302 sg
X0 18 17 0 4964 905 3 MP
XPP
X17 0 0 18 4964 905 3 MP
XPP
X0.555556 sg
X0 18 17 0 4964 923 3 MP
XPP
X17 0 0 18 4964 923 3 MP
XPP
X0.492063 sg
X0 18 17 0 4964 941 3 MP
XPP
X17 0 0 18 4964 941 3 MP
XPP
X0.428571 sg
X0 17 17 0 4964 959 3 MP
XPP
X17 0 0 17 4964 959 3 MP
XPP
X0.396825 sg
X0 18 17 0 4964 976 3 MP
XPP
X17 0 0 18 4964 976 3 MP
XPP
X0 18 17 0 4964 994 3 MP
XPP
X17 0 0 18 4964 994 3 MP
XPP
X0.428571 sg
X0 18 17 0 4964 1012 3 MP
XPP
X17 0 0 18 4964 1012 3 MP
XPP
X0.507937 sg
X0 18 17 0 4964 1030 3 MP
XPP
X17 0 0 18 4964 1030 3 MP
XPP
X0.619048 sg
X0 18 17 0 4964 1048 3 MP
XPP
X17 0 0 18 4964 1048 3 MP
XPP
X0.777778 sg
X0 17 17 0 4964 1066 3 MP
XPP
X17 0 0 17 4964 1066 3 MP
XPP
X0.904762 sg
X0 18 17 0 4964 1083 3 MP
XPP
X17 0 0 18 4964 1083 3 MP
XPP
X0.984127 sg
X0 18 17 0 4964 1101 3 MP
XPP
X17 0 0 18 4964 1101 3 MP
XPP
X1 sg
X0 18 17 0 4964 1119 3 MP
XPP
X17 0 0 18 4964 1119 3 MP
XPP
X0 18 17 0 4964 1137 3 MP
XPP
X17 0 0 18 4964 1137 3 MP
XPP
X0 18 17 0 4964 1155 3 MP
XPP
X17 0 0 18 4964 1155 3 MP
XPP
X0 17 17 0 4964 1173 3 MP
XPP
X17 0 0 17 4964 1173 3 MP
XPP
X0 18 17 0 4964 1190 3 MP
XPP
X17 0 0 18 4964 1190 3 MP
XPP
X0 18 17 0 4964 1208 3 MP
XPP
X17 0 0 18 4964 1208 3 MP
XPP
X0 18 17 0 4964 1226 3 MP
XPP
X17 0 0 18 4964 1226 3 MP
XPP
X0 18 17 0 4964 1244 3 MP
XPP
X17 0 0 18 4964 1244 3 MP
XPP
X0 17 17 0 4964 1262 3 MP
XPP
X17 0 0 17 4964 1262 3 MP
XPP
X0 18 17 0 4964 1279 3 MP
XPP
X17 0 0 18 4964 1279 3 MP
XPP
X0 18 17 0 4964 1297 3 MP
XPP
X17 0 0 18 4964 1297 3 MP
XPP
X0 18 17 0 4964 1315 3 MP
XPP
X17 0 0 18 4964 1315 3 MP
XPP
X0 18 17 0 4964 1333 3 MP
XPP
X17 0 0 18 4964 1333 3 MP
XPP
X0 18 17 0 4964 1351 3 MP
XPP
X17 0 0 18 4964 1351 3 MP
XPP
X0 17 17 0 4964 1369 3 MP
XPP
X17 0 0 17 4964 1369 3 MP
XPP
X0 18 17 0 4964 1386 3 MP
XPP
X17 0 0 18 4964 1386 3 MP
XPP
X0 18 17 0 4964 1404 3 MP
XPP
X17 0 0 18 4964 1404 3 MP
XPP
X0 18 17 0 4964 1422 3 MP
XPP
X17 0 0 18 4964 1422 3 MP
XPP
X0 18 17 0 4964 1440 3 MP
XPP
X17 0 0 18 4964 1440 3 MP
XPP
X0 18 17 0 4964 1458 3 MP
XPP
X17 0 0 18 4964 1458 3 MP
XPP
X0 17 17 0 4964 1476 3 MP
XPP
X17 0 0 17 4964 1476 3 MP
XPP
X0 18 17 0 4964 1493 3 MP
XPP
X17 0 0 18 4964 1493 3 MP
XPP
X0 18 17 0 4964 1511 3 MP
XPP
X17 0 0 18 4964 1511 3 MP
XPP
X0 18 17 0 4964 1529 3 MP
XPP
X17 0 0 18 4964 1529 3 MP
XPP
X0 18 17 0 4964 1547 3 MP
XPP
X17 0 0 18 4964 1547 3 MP
XPP
X0 18 17 0 4964 1565 3 MP
XPP
X17 0 0 18 4964 1565 3 MP
XPP
X0 17 17 0 4964 1583 3 MP
XPP
X17 0 0 17 4964 1583 3 MP
XPP
X0 18 17 0 4964 1600 3 MP
XPP
X17 0 0 18 4964 1600 3 MP
XPP
X0 18 17 0 4964 1618 3 MP
XPP
X17 0 0 18 4964 1618 3 MP
XPP
X0 18 17 0 4964 1636 3 MP
XPP
X17 0 0 18 4964 1636 3 MP
XPP
X0 18 17 0 4964 1654 3 MP
XPP
X17 0 0 18 4964 1654 3 MP
XPP
X0 18 17 0 4964 1672 3 MP
XPP
X17 0 0 18 4964 1672 3 MP
XPP
X0 17 17 0 4964 1690 3 MP
XPP
X17 0 0 17 4964 1690 3 MP
XPP
X0 18 17 0 4964 1707 3 MP
XPP
X17 0 0 18 4964 1707 3 MP
XPP
X0 18 17 0 4964 1725 3 MP
XPP
X17 0 0 18 4964 1725 3 MP
XPP
X0 18 17 0 4964 1743 3 MP
XPP
X17 0 0 18 4964 1743 3 MP
XPP
X0 18 17 0 4964 1761 3 MP
XPP
X17 0 0 18 4964 1761 3 MP
XPP
X0 18 17 0 4964 1779 3 MP
XPP
X17 0 0 18 4964 1779 3 MP
XPP
X0 17 17 0 4964 1797 3 MP
XPP
X17 0 0 17 4964 1797 3 MP
XPP
X0 18 17 0 4964 1814 3 MP
XPP
X17 0 0 18 4964 1814 3 MP
XPP
X0 18 17 0 4964 1832 3 MP
XPP
X17 0 0 18 4964 1832 3 MP
XPP
X0 18 17 0 4964 1850 3 MP
XPP
X17 0 0 18 4964 1850 3 MP
XPP
X0 18 17 0 4964 1868 3 MP
XPP
X17 0 0 18 4964 1868 3 MP
XPP
X0 18 17 0 4964 1886 3 MP
XPP
X17 0 0 18 4964 1886 3 MP
XPP
X0 17 17 0 4964 1904 3 MP
XPP
X17 0 0 17 4964 1904 3 MP
XPP
X0 18 17 0 4964 1921 3 MP
XPP
X17 0 0 18 4964 1921 3 MP
XPP
X0 18 17 0 4964 1939 3 MP
XPP
X17 0 0 18 4964 1939 3 MP
XPP
X0 18 17 0 4964 1957 3 MP
XPP
X17 0 0 18 4964 1957 3 MP
XPP
X0 18 17 0 4964 1975 3 MP
XPP
X17 0 0 18 4964 1975 3 MP
XPP
X0 18 17 0 4964 1993 3 MP
XPP
X17 0 0 18 4964 1993 3 MP
XPP
X0 17 17 0 4964 2011 3 MP
XPP
X17 0 0 17 4964 2011 3 MP
XPP
X0 18 17 0 4964 2028 3 MP
XPP
X17 0 0 18 4964 2028 3 MP
XPP
X0 18 17 0 4964 2046 3 MP
XPP
X17 0 0 18 4964 2046 3 MP
XPP
X0 18 17 0 4964 2064 3 MP
XPP
X17 0 0 18 4964 2064 3 MP
XPP
X0 18 17 0 4964 2082 3 MP
XPP
X17 0 0 18 4964 2082 3 MP
XPP
X0 18 17 0 4964 2100 3 MP
XPP
X17 0 0 18 4964 2100 3 MP
XPP
X0 17 17 0 4964 2118 3 MP
XPP
X17 0 0 17 4964 2118 3 MP
XPP
X0 18 17 0 4964 2135 3 MP
XPP
X17 0 0 18 4964 2135 3 MP
XPP
X0 18 17 0 4964 2153 3 MP
XPP
X17 0 0 18 4964 2153 3 MP
XPP
X0 18 18 0 4981 388 3 MP
XPP
X18 0 0 18 4981 388 3 MP
XPP
X0 18 18 0 4981 406 3 MP
XPP
X18 0 0 18 4981 406 3 MP
XPP
X0 17 18 0 4981 424 3 MP
XPP
X18 0 0 17 4981 424 3 MP
XPP
X0 18 18 0 4981 441 3 MP
XPP
X18 0 0 18 4981 441 3 MP
XPP
X0 18 18 0 4981 459 3 MP
XPP
X18 0 0 18 4981 459 3 MP
XPP
X0.984127 sg
X0 18 18 0 4981 477 3 MP
XPP
X18 0 0 18 4981 477 3 MP
XPP
X0.920635 sg
X0 18 18 0 4981 495 3 MP
XPP
X18 0 0 18 4981 495 3 MP
XPP
X0.809524 sg
X0 18 18 0 4981 513 3 MP
XPP
X18 0 0 18 4981 513 3 MP
XPP
X0.714286 sg
X0 17 18 0 4981 531 3 MP
XPP
X18 0 0 17 4981 531 3 MP
XPP
X0.68254 sg
X0 18 18 0 4981 548 3 MP
XPP
X18 0 0 18 4981 548 3 MP
XPP
X0.666667 sg
X0 18 18 0 4981 566 3 MP
XPP
X18 0 0 18 4981 566 3 MP
XPP
X0 18 18 0 4981 584 3 MP
XPP
X18 0 0 18 4981 584 3 MP
XPP
X0 18 18 0 4981 602 3 MP
XPP
X18 0 0 18 4981 602 3 MP
XPP
X0 18 18 0 4981 620 3 MP
XPP
X18 0 0 18 4981 620 3 MP
XPP
X0 17 18 0 4981 638 3 MP
XPP
X18 0 0 17 4981 638 3 MP
XPP
X0 18 18 0 4981 655 3 MP
XPP
X18 0 0 18 4981 655 3 MP
XPP
X0 18 18 0 4981 673 3 MP
XPP
X18 0 0 18 4981 673 3 MP
XPP
X0 18 18 0 4981 691 3 MP
XPP
X18 0 0 18 4981 691 3 MP
XPP
X0 18 18 0 4981 709 3 MP
XPP
X18 0 0 18 4981 709 3 MP
XPP
X0 18 18 0 4981 727 3 MP
XPP
X18 0 0 18 4981 727 3 MP
XPP
X0 17 18 0 4981 745 3 MP
XPP
X18 0 0 17 4981 745 3 MP
XPP
X0 18 18 0 4981 762 3 MP
XPP
X18 0 0 18 4981 762 3 MP
XPP
X0 18 18 0 4981 780 3 MP
XPP
X18 0 0 18 4981 780 3 MP
XPP
X0 18 18 0 4981 798 3 MP
XPP
X18 0 0 18 4981 798 3 MP
XPP
X0 18 18 0 4981 816 3 MP
XPP
X18 0 0 18 4981 816 3 MP
XPP
X0 18 18 0 4981 834 3 MP
XPP
X18 0 0 18 4981 834 3 MP
XPP
X0.650794 sg
X0 17 18 0 4981 852 3 MP
XPP
X18 0 0 17 4981 852 3 MP
XPP
X0.619048 sg
X0 18 18 0 4981 869 3 MP
XPP
X18 0 0 18 4981 869 3 MP
XPP
X0.539683 sg
X0 18 18 0 4981 887 3 MP
XPP
X18 0 0 18 4981 887 3 MP
XPP
X0.460317 sg
X0 18 18 0 4981 905 3 MP
XPP
X18 0 0 18 4981 905 3 MP
XPP
X0.396825 sg
X0 18 18 0 4981 923 3 MP
XPP
X18 0 0 18 4981 923 3 MP
XPP
X0.365079 sg
X0 18 18 0 4981 941 3 MP
XPP
X18 0 0 18 4981 941 3 MP
XPP
X0.349206 sg
X0 17 18 0 4981 959 3 MP
XPP
X18 0 0 17 4981 959 3 MP
XPP
X0.333333 sg
X0 18 18 0 4981 976 3 MP
XPP
X18 0 0 18 4981 976 3 MP
XPP
X0 18 18 0 4981 994 3 MP
XPP
X18 0 0 18 4981 994 3 MP
XPP
X0.349206 sg
X0 18 18 0 4981 1012 3 MP
XPP
X18 0 0 18 4981 1012 3 MP
XPP
X0.380952 sg
X0 18 18 0 4981 1030 3 MP
XPP
X18 0 0 18 4981 1030 3 MP
XPP
X0.444444 sg
X0 18 18 0 4981 1048 3 MP
XPP
X18 0 0 18 4981 1048 3 MP
XPP
X0.587302 sg
X0 17 18 0 4981 1066 3 MP
XPP
X18 0 0 17 4981 1066 3 MP
XPP
X0.761905 sg
X0 18 18 0 4981 1083 3 MP
XPP
X18 0 0 18 4981 1083 3 MP
XPP
X0.904762 sg
X0 18 18 0 4981 1101 3 MP
XPP
X18 0 0 18 4981 1101 3 MP
XPP
X0.984127 sg
X0 18 18 0 4981 1119 3 MP
XPP
X18 0 0 18 4981 1119 3 MP
XPP
X1 sg
X0 18 18 0 4981 1137 3 MP
XPP
X18 0 0 18 4981 1137 3 MP
XPP
X0 18 18 0 4981 1155 3 MP
XPP
X18 0 0 18 4981 1155 3 MP
XPP
X0 17 18 0 4981 1173 3 MP
XPP
X18 0 0 17 4981 1173 3 MP
XPP
X0 18 18 0 4981 1190 3 MP
XPP
X18 0 0 18 4981 1190 3 MP
XPP
X0 18 18 0 4981 1208 3 MP
XPP
X18 0 0 18 4981 1208 3 MP
XPP
X0 18 18 0 4981 1226 3 MP
XPP
X18 0 0 18 4981 1226 3 MP
XPP
X0 18 18 0 4981 1244 3 MP
XPP
X18 0 0 18 4981 1244 3 MP
XPP
X0 17 18 0 4981 1262 3 MP
XPP
X18 0 0 17 4981 1262 3 MP
XPP
X0 18 18 0 4981 1279 3 MP
XPP
X18 0 0 18 4981 1279 3 MP
XPP
X0 18 18 0 4981 1297 3 MP
XPP
X18 0 0 18 4981 1297 3 MP
XPP
X0 18 18 0 4981 1315 3 MP
XPP
X18 0 0 18 4981 1315 3 MP
XPP
X0 18 18 0 4981 1333 3 MP
XPP
X18 0 0 18 4981 1333 3 MP
XPP
X0 18 18 0 4981 1351 3 MP
XPP
X18 0 0 18 4981 1351 3 MP
XPP
X0 17 18 0 4981 1369 3 MP
XPP
X18 0 0 17 4981 1369 3 MP
XPP
X0 18 18 0 4981 1386 3 MP
XPP
X18 0 0 18 4981 1386 3 MP
XPP
X0 18 18 0 4981 1404 3 MP
XPP
X18 0 0 18 4981 1404 3 MP
XPP
X0 18 18 0 4981 1422 3 MP
XPP
X18 0 0 18 4981 1422 3 MP
XPP
X0 18 18 0 4981 1440 3 MP
XPP
X18 0 0 18 4981 1440 3 MP
XPP
X0 18 18 0 4981 1458 3 MP
XPP
X18 0 0 18 4981 1458 3 MP
XPP
X0 17 18 0 4981 1476 3 MP
XPP
X18 0 0 17 4981 1476 3 MP
XPP
X0 18 18 0 4981 1493 3 MP
XPP
X18 0 0 18 4981 1493 3 MP
XPP
X0 18 18 0 4981 1511 3 MP
XPP
X18 0 0 18 4981 1511 3 MP
XPP
X0 18 18 0 4981 1529 3 MP
XPP
X18 0 0 18 4981 1529 3 MP
XPP
X0 18 18 0 4981 1547 3 MP
XPP
X18 0 0 18 4981 1547 3 MP
XPP
X0 18 18 0 4981 1565 3 MP
XPP
X18 0 0 18 4981 1565 3 MP
XPP
X0 17 18 0 4981 1583 3 MP
XPP
X18 0 0 17 4981 1583 3 MP
XPP
X0 18 18 0 4981 1600 3 MP
XPP
X18 0 0 18 4981 1600 3 MP
XPP
X0 18 18 0 4981 1618 3 MP
XPP
X18 0 0 18 4981 1618 3 MP
XPP
X0 18 18 0 4981 1636 3 MP
XPP
X18 0 0 18 4981 1636 3 MP
XPP
X0 18 18 0 4981 1654 3 MP
XPP
X18 0 0 18 4981 1654 3 MP
XPP
X0 18 18 0 4981 1672 3 MP
XPP
X18 0 0 18 4981 1672 3 MP
XPP
X0 17 18 0 4981 1690 3 MP
XPP
X18 0 0 17 4981 1690 3 MP
XPP
X0 18 18 0 4981 1707 3 MP
XPP
X18 0 0 18 4981 1707 3 MP
XPP
X0 18 18 0 4981 1725 3 MP
XPP
X18 0 0 18 4981 1725 3 MP
XPP
X0 18 18 0 4981 1743 3 MP
XPP
X18 0 0 18 4981 1743 3 MP
XPP
X0 18 18 0 4981 1761 3 MP
XPP
X18 0 0 18 4981 1761 3 MP
XPP
X0 18 18 0 4981 1779 3 MP
XPP
X18 0 0 18 4981 1779 3 MP
XPP
X0 17 18 0 4981 1797 3 MP
XPP
X18 0 0 17 4981 1797 3 MP
XPP
X0 18 18 0 4981 1814 3 MP
XPP
X18 0 0 18 4981 1814 3 MP
XPP
X0 18 18 0 4981 1832 3 MP
XPP
X18 0 0 18 4981 1832 3 MP
XPP
X0 18 18 0 4981 1850 3 MP
XPP
X18 0 0 18 4981 1850 3 MP
XPP
X0 18 18 0 4981 1868 3 MP
XPP
X18 0 0 18 4981 1868 3 MP
XPP
X0 18 18 0 4981 1886 3 MP
XPP
X18 0 0 18 4981 1886 3 MP
XPP
X0 17 18 0 4981 1904 3 MP
XPP
X18 0 0 17 4981 1904 3 MP
XPP
X0 18 18 0 4981 1921 3 MP
XPP
X18 0 0 18 4981 1921 3 MP
XPP
X0 18 18 0 4981 1939 3 MP
XPP
X18 0 0 18 4981 1939 3 MP
XPP
X0 18 18 0 4981 1957 3 MP
XPP
X18 0 0 18 4981 1957 3 MP
XPP
X0 18 18 0 4981 1975 3 MP
XPP
X18 0 0 18 4981 1975 3 MP
XPP
X0 18 18 0 4981 1993 3 MP
XPP
X18 0 0 18 4981 1993 3 MP
XPP
X0 17 18 0 4981 2011 3 MP
XPP
X18 0 0 17 4981 2011 3 MP
XPP
X0 18 18 0 4981 2028 3 MP
XPP
X18 0 0 18 4981 2028 3 MP
XPP
X0 18 18 0 4981 2046 3 MP
XPP
X18 0 0 18 4981 2046 3 MP
XPP
X0 18 18 0 4981 2064 3 MP
XPP
X18 0 0 18 4981 2064 3 MP
XPP
X0 18 18 0 4981 2082 3 MP
XPP
X18 0 0 18 4981 2082 3 MP
XPP
X0 18 18 0 4981 2100 3 MP
XPP
X18 0 0 18 4981 2100 3 MP
XPP
X0 17 18 0 4981 2118 3 MP
XPP
X18 0 0 17 4981 2118 3 MP
XPP
X0 18 18 0 4981 2135 3 MP
XPP
X18 0 0 18 4981 2135 3 MP
XPP
X0 18 18 0 4981 2153 3 MP
XPP
X18 0 0 18 4981 2153 3 MP
XPP
X0 18 18 0 4999 388 3 MP
XPP
X18 0 0 18 4999 388 3 MP
XPP
X0 18 18 0 4999 406 3 MP
XPP
X18 0 0 18 4999 406 3 MP
XPP
X0 17 18 0 4999 424 3 MP
XPP
X18 0 0 17 4999 424 3 MP
XPP
X0 18 18 0 4999 441 3 MP
XPP
X18 0 0 18 4999 441 3 MP
XPP
X0 18 18 0 4999 459 3 MP
XPP
X18 0 0 18 4999 459 3 MP
XPP
X0.952381 sg
X0 18 18 0 4999 477 3 MP
XPP
X18 0 0 18 4999 477 3 MP
XPP
X0.873016 sg
X0 18 18 0 4999 495 3 MP
XPP
X18 0 0 18 4999 495 3 MP
XPP
X0.761905 sg
X0 18 18 0 4999 513 3 MP
XPP
X18 0 0 18 4999 513 3 MP
XPP
X0.698413 sg
X0 17 18 0 4999 531 3 MP
XPP
X18 0 0 17 4999 531 3 MP
XPP
X0.666667 sg
X0 18 18 0 4999 548 3 MP
XPP
X18 0 0 18 4999 548 3 MP
XPP
X0 18 18 0 4999 566 3 MP
XPP
X18 0 0 18 4999 566 3 MP
XPP
X0 18 18 0 4999 584 3 MP
XPP
X18 0 0 18 4999 584 3 MP
XPP
X0 18 18 0 4999 602 3 MP
XPP
X18 0 0 18 4999 602 3 MP
XPP
X0 18 18 0 4999 620 3 MP
XPP
X18 0 0 18 4999 620 3 MP
XPP
X0 17 18 0 4999 638 3 MP
XPP
X18 0 0 17 4999 638 3 MP
XPP
X0 18 18 0 4999 655 3 MP
XPP
X18 0 0 18 4999 655 3 MP
XPP
X0 18 18 0 4999 673 3 MP
XPP
X18 0 0 18 4999 673 3 MP
XPP
X0 18 18 0 4999 691 3 MP
XPP
X18 0 0 18 4999 691 3 MP
XPP
X0 18 18 0 4999 709 3 MP
XPP
X18 0 0 18 4999 709 3 MP
XPP
X0 18 18 0 4999 727 3 MP
XPP
X18 0 0 18 4999 727 3 MP
XPP
X0 17 18 0 4999 745 3 MP
XPP
X18 0 0 17 4999 745 3 MP
XPP
X0 18 18 0 4999 762 3 MP
XPP
X18 0 0 18 4999 762 3 MP
XPP
X0 18 18 0 4999 780 3 MP
XPP
X18 0 0 18 4999 780 3 MP
XPP
X0 18 18 0 4999 798 3 MP
XPP
X18 0 0 18 4999 798 3 MP
XPP
X0 18 18 0 4999 816 3 MP
XPP
X18 0 0 18 4999 816 3 MP
XPP
X0.650794 sg
X0 18 18 0 4999 834 3 MP
XPP
X18 0 0 18 4999 834 3 MP
XPP
X0.619048 sg
X0 17 18 0 4999 852 3 MP
XPP
X18 0 0 17 4999 852 3 MP
XPP
X0.539683 sg
X0 18 18 0 4999 869 3 MP
XPP
X18 0 0 18 4999 869 3 MP
XPP
X0.460317 sg
X0 18 18 0 4999 887 3 MP
XPP
X18 0 0 18 4999 887 3 MP
XPP
X0.380952 sg
X0 18 18 0 4999 905 3 MP
XPP
X18 0 0 18 4999 905 3 MP
XPP
X0.349206 sg
X0 18 18 0 4999 923 3 MP
XPP
X18 0 0 18 4999 923 3 MP
XPP
X0.333333 sg
X0 18 18 0 4999 941 3 MP
XPP
X18 0 0 18 4999 941 3 MP
XPP
X0 17 18 0 4999 959 3 MP
XPP
X18 0 0 17 4999 959 3 MP
XPP
X0 18 18 0 4999 976 3 MP
XPP
X18 0 0 18 4999 976 3 MP
XPP
X0 18 18 0 4999 994 3 MP
XPP
X18 0 0 18 4999 994 3 MP
XPP
X0 18 18 0 4999 1012 3 MP
XPP
X18 0 0 18 4999 1012 3 MP
XPP
X0 18 18 0 4999 1030 3 MP
XPP
X18 0 0 18 4999 1030 3 MP
XPP
X0.365079 sg
X0 18 18 0 4999 1048 3 MP
XPP
X18 0 0 18 4999 1048 3 MP
XPP
X0.428571 sg
X0 17 18 0 4999 1066 3 MP
XPP
X18 0 0 17 4999 1066 3 MP
XPP
X0.587302 sg
X0 18 18 0 4999 1083 3 MP
XPP
X18 0 0 18 4999 1083 3 MP
XPP
X0.761905 sg
X0 18 18 0 4999 1101 3 MP
XPP
X18 0 0 18 4999 1101 3 MP
XPP
X0.904762 sg
X0 18 18 0 4999 1119 3 MP
XPP
X18 0 0 18 4999 1119 3 MP
XPP
X0.984127 sg
X0 18 18 0 4999 1137 3 MP
XPP
X18 0 0 18 4999 1137 3 MP
XPP
X1 sg
X0 18 18 0 4999 1155 3 MP
XPP
X18 0 0 18 4999 1155 3 MP
XPP
X0 17 18 0 4999 1173 3 MP
XPP
X18 0 0 17 4999 1173 3 MP
XPP
X0 18 18 0 4999 1190 3 MP
XPP
X18 0 0 18 4999 1190 3 MP
XPP
X0 18 18 0 4999 1208 3 MP
XPP
X18 0 0 18 4999 1208 3 MP
XPP
X0 18 18 0 4999 1226 3 MP
XPP
X18 0 0 18 4999 1226 3 MP
XPP
X0 18 18 0 4999 1244 3 MP
XPP
X18 0 0 18 4999 1244 3 MP
XPP
X0 17 18 0 4999 1262 3 MP
XPP
X18 0 0 17 4999 1262 3 MP
XPP
X0 18 18 0 4999 1279 3 MP
XPP
X18 0 0 18 4999 1279 3 MP
XPP
X0 18 18 0 4999 1297 3 MP
XPP
X18 0 0 18 4999 1297 3 MP
XPP
X0 18 18 0 4999 1315 3 MP
XPP
X18 0 0 18 4999 1315 3 MP
XPP
X0 18 18 0 4999 1333 3 MP
XPP
X18 0 0 18 4999 1333 3 MP
XPP
X0 18 18 0 4999 1351 3 MP
XPP
X18 0 0 18 4999 1351 3 MP
XPP
X0 17 18 0 4999 1369 3 MP
XPP
X18 0 0 17 4999 1369 3 MP
XPP
X0 18 18 0 4999 1386 3 MP
XPP
X18 0 0 18 4999 1386 3 MP
XPP
X0 18 18 0 4999 1404 3 MP
XPP
X18 0 0 18 4999 1404 3 MP
XPP
X0 18 18 0 4999 1422 3 MP
XPP
X18 0 0 18 4999 1422 3 MP
XPP
X0 18 18 0 4999 1440 3 MP
XPP
X18 0 0 18 4999 1440 3 MP
XPP
X0 18 18 0 4999 1458 3 MP
XPP
X18 0 0 18 4999 1458 3 MP
XPP
X0 17 18 0 4999 1476 3 MP
XPP
X18 0 0 17 4999 1476 3 MP
XPP
X0 18 18 0 4999 1493 3 MP
XPP
X18 0 0 18 4999 1493 3 MP
XPP
X0 18 18 0 4999 1511 3 MP
XPP
X18 0 0 18 4999 1511 3 MP
XPP
X0 18 18 0 4999 1529 3 MP
XPP
X18 0 0 18 4999 1529 3 MP
XPP
X0 18 18 0 4999 1547 3 MP
XPP
X18 0 0 18 4999 1547 3 MP
XPP
X0 18 18 0 4999 1565 3 MP
XPP
X18 0 0 18 4999 1565 3 MP
XPP
X0 17 18 0 4999 1583 3 MP
XPP
X18 0 0 17 4999 1583 3 MP
XPP
X0 18 18 0 4999 1600 3 MP
XPP
X18 0 0 18 4999 1600 3 MP
XPP
X0 18 18 0 4999 1618 3 MP
XPP
X18 0 0 18 4999 1618 3 MP
XPP
X0 18 18 0 4999 1636 3 MP
XPP
X18 0 0 18 4999 1636 3 MP
XPP
X0 18 18 0 4999 1654 3 MP
XPP
X18 0 0 18 4999 1654 3 MP
XPP
X0 18 18 0 4999 1672 3 MP
XPP
X18 0 0 18 4999 1672 3 MP
XPP
X0 17 18 0 4999 1690 3 MP
XPP
X18 0 0 17 4999 1690 3 MP
XPP
X0 18 18 0 4999 1707 3 MP
XPP
X18 0 0 18 4999 1707 3 MP
XPP
X0 18 18 0 4999 1725 3 MP
XPP
X18 0 0 18 4999 1725 3 MP
XPP
X0 18 18 0 4999 1743 3 MP
XPP
X18 0 0 18 4999 1743 3 MP
XPP
X0 18 18 0 4999 1761 3 MP
XPP
X18 0 0 18 4999 1761 3 MP
XPP
X0 18 18 0 4999 1779 3 MP
XPP
X18 0 0 18 4999 1779 3 MP
XPP
X0 17 18 0 4999 1797 3 MP
XPP
X18 0 0 17 4999 1797 3 MP
XPP
X0 18 18 0 4999 1814 3 MP
XPP
X18 0 0 18 4999 1814 3 MP
XPP
X0 18 18 0 4999 1832 3 MP
XPP
X18 0 0 18 4999 1832 3 MP
XPP
X0 18 18 0 4999 1850 3 MP
XPP
X18 0 0 18 4999 1850 3 MP
XPP
X0 18 18 0 4999 1868 3 MP
XPP
X18 0 0 18 4999 1868 3 MP
XPP
X0 18 18 0 4999 1886 3 MP
XPP
X18 0 0 18 4999 1886 3 MP
XPP
X0 17 18 0 4999 1904 3 MP
XPP
X18 0 0 17 4999 1904 3 MP
XPP
X0 18 18 0 4999 1921 3 MP
XPP
X18 0 0 18 4999 1921 3 MP
XPP
X0 18 18 0 4999 1939 3 MP
XPP
X18 0 0 18 4999 1939 3 MP
XPP
X0 18 18 0 4999 1957 3 MP
XPP
X18 0 0 18 4999 1957 3 MP
XPP
X0 18 18 0 4999 1975 3 MP
XPP
X18 0 0 18 4999 1975 3 MP
XPP
X0 18 18 0 4999 1993 3 MP
XPP
X18 0 0 18 4999 1993 3 MP
XPP
X0 17 18 0 4999 2011 3 MP
XPP
X18 0 0 17 4999 2011 3 MP
XPP
X0 18 18 0 4999 2028 3 MP
XPP
X18 0 0 18 4999 2028 3 MP
XPP
X0 18 18 0 4999 2046 3 MP
XPP
X18 0 0 18 4999 2046 3 MP
XPP
X0 18 18 0 4999 2064 3 MP
XPP
X18 0 0 18 4999 2064 3 MP
XPP
X0 18 18 0 4999 2082 3 MP
XPP
X18 0 0 18 4999 2082 3 MP
XPP
X0 18 18 0 4999 2100 3 MP
XPP
X18 0 0 18 4999 2100 3 MP
XPP
X0 17 18 0 4999 2118 3 MP
XPP
X18 0 0 17 4999 2118 3 MP
XPP
X0 18 18 0 4999 2135 3 MP
XPP
X18 0 0 18 4999 2135 3 MP
XPP
X0 18 18 0 4999 2153 3 MP
XPP
X18 0 0 18 4999 2153 3 MP
XPP
X0 18 18 0 5017 388 3 MP
XPP
X18 0 0 18 5017 388 3 MP
XPP
X0 18 18 0 5017 406 3 MP
XPP
X18 0 0 18 5017 406 3 MP
XPP
X0 17 18 0 5017 424 3 MP
XPP
X18 0 0 17 5017 424 3 MP
XPP
X0 18 18 0 5017 441 3 MP
XPP
X18 0 0 18 5017 441 3 MP
XPP
X0.984127 sg
X0 18 18 0 5017 459 3 MP
XPP
X18 0 0 18 5017 459 3 MP
XPP
X0.920635 sg
X0 18 18 0 5017 477 3 MP
XPP
X18 0 0 18 5017 477 3 MP
XPP
X0.809524 sg
X0 18 18 0 5017 495 3 MP
XPP
X18 0 0 18 5017 495 3 MP
XPP
X0.714286 sg
X0 18 18 0 5017 513 3 MP
XPP
X18 0 0 18 5017 513 3 MP
XPP
X0.68254 sg
X0 17 18 0 5017 531 3 MP
XPP
X18 0 0 17 5017 531 3 MP
XPP
X0.666667 sg
X0 18 18 0 5017 548 3 MP
XPP
X18 0 0 18 5017 548 3 MP
XPP
X0 18 18 0 5017 566 3 MP
XPP
X18 0 0 18 5017 566 3 MP
XPP
X0 18 18 0 5017 584 3 MP
XPP
X18 0 0 18 5017 584 3 MP
XPP
X0 18 18 0 5017 602 3 MP
XPP
X18 0 0 18 5017 602 3 MP
XPP
X0 18 18 0 5017 620 3 MP
XPP
X18 0 0 18 5017 620 3 MP
XPP
X0 17 18 0 5017 638 3 MP
XPP
X18 0 0 17 5017 638 3 MP
XPP
X0 18 18 0 5017 655 3 MP
XPP
X18 0 0 18 5017 655 3 MP
XPP
X0 18 18 0 5017 673 3 MP
XPP
X18 0 0 18 5017 673 3 MP
XPP
X0 18 18 0 5017 691 3 MP
XPP
X18 0 0 18 5017 691 3 MP
XPP
X0 18 18 0 5017 709 3 MP
XPP
X18 0 0 18 5017 709 3 MP
XPP
X0 18 18 0 5017 727 3 MP
XPP
X18 0 0 18 5017 727 3 MP
XPP
X0 17 18 0 5017 745 3 MP
XPP
X18 0 0 17 5017 745 3 MP
XPP
X0 18 18 0 5017 762 3 MP
XPP
X18 0 0 18 5017 762 3 MP
XPP
X0 18 18 0 5017 780 3 MP
XPP
X18 0 0 18 5017 780 3 MP
XPP
X0 18 18 0 5017 798 3 MP
XPP
X18 0 0 18 5017 798 3 MP
XPP
X0 18 18 0 5017 816 3 MP
XPP
X18 0 0 18 5017 816 3 MP
XPP
X0.619048 sg
X0 18 18 0 5017 834 3 MP
XPP
X18 0 0 18 5017 834 3 MP
XPP
X0.555556 sg
X0 17 18 0 5017 852 3 MP
XPP
X18 0 0 17 5017 852 3 MP
XPP
X0.460317 sg
X0 18 18 0 5017 869 3 MP
XPP
X18 0 0 18 5017 869 3 MP
XPP
X0.380952 sg
X0 18 18 0 5017 887 3 MP
XPP
X18 0 0 18 5017 887 3 MP
XPP
X0.349206 sg
X0 18 18 0 5017 905 3 MP
XPP
X18 0 0 18 5017 905 3 MP
XPP
X0.333333 sg
X0 18 18 0 5017 923 3 MP
XPP
X18 0 0 18 5017 923 3 MP
XPP
X0 18 18 0 5017 941 3 MP
XPP
X18 0 0 18 5017 941 3 MP
XPP
X0 17 18 0 5017 959 3 MP
XPP
X18 0 0 17 5017 959 3 MP
XPP
X0 18 18 0 5017 976 3 MP
XPP
X18 0 0 18 5017 976 3 MP
XPP
X0 18 18 0 5017 994 3 MP
XPP
X18 0 0 18 5017 994 3 MP
XPP
X0 18 18 0 5017 1012 3 MP
XPP
X18 0 0 18 5017 1012 3 MP
XPP
X0 18 18 0 5017 1030 3 MP
XPP
X18 0 0 18 5017 1030 3 MP
XPP
X0 18 18 0 5017 1048 3 MP
XPP
X18 0 0 18 5017 1048 3 MP
XPP
X0.365079 sg
X0 17 18 0 5017 1066 3 MP
XPP
X18 0 0 17 5017 1066 3 MP
XPP
X0.428571 sg
X0 18 18 0 5017 1083 3 MP
XPP
X18 0 0 18 5017 1083 3 MP
XPP
X0.587302 sg
X0 18 18 0 5017 1101 3 MP
XPP
X18 0 0 18 5017 1101 3 MP
XPP
X0.777778 sg
X0 18 18 0 5017 1119 3 MP
XPP
X18 0 0 18 5017 1119 3 MP
XPP
X0.920635 sg
X0 18 18 0 5017 1137 3 MP
XPP
X18 0 0 18 5017 1137 3 MP
XPP
X1 sg
X0 18 18 0 5017 1155 3 MP
XPP
X18 0 0 18 5017 1155 3 MP
XPP
X0 17 18 0 5017 1173 3 MP
XPP
X18 0 0 17 5017 1173 3 MP
XPP
X0 18 18 0 5017 1190 3 MP
XPP
X18 0 0 18 5017 1190 3 MP
XPP
X0 18 18 0 5017 1208 3 MP
XPP
X18 0 0 18 5017 1208 3 MP
XPP
X0 18 18 0 5017 1226 3 MP
XPP
X18 0 0 18 5017 1226 3 MP
XPP
X0 18 18 0 5017 1244 3 MP
XPP
X18 0 0 18 5017 1244 3 MP
XPP
X0 17 18 0 5017 1262 3 MP
XPP
X18 0 0 17 5017 1262 3 MP
XPP
X0 18 18 0 5017 1279 3 MP
XPP
X18 0 0 18 5017 1279 3 MP
XPP
X0 18 18 0 5017 1297 3 MP
XPP
X18 0 0 18 5017 1297 3 MP
XPP
X0 18 18 0 5017 1315 3 MP
XPP
X18 0 0 18 5017 1315 3 MP
XPP
X0 18 18 0 5017 1333 3 MP
XPP
X18 0 0 18 5017 1333 3 MP
XPP
X0 18 18 0 5017 1351 3 MP
XPP
X18 0 0 18 5017 1351 3 MP
XPP
X0 17 18 0 5017 1369 3 MP
XPP
X18 0 0 17 5017 1369 3 MP
XPP
X0 18 18 0 5017 1386 3 MP
XPP
X18 0 0 18 5017 1386 3 MP
XPP
X0 18 18 0 5017 1404 3 MP
XPP
X18 0 0 18 5017 1404 3 MP
XPP
X0 18 18 0 5017 1422 3 MP
XPP
X18 0 0 18 5017 1422 3 MP
XPP
X0 18 18 0 5017 1440 3 MP
XPP
X18 0 0 18 5017 1440 3 MP
XPP
X0 18 18 0 5017 1458 3 MP
XPP
X18 0 0 18 5017 1458 3 MP
XPP
X0 17 18 0 5017 1476 3 MP
XPP
X18 0 0 17 5017 1476 3 MP
XPP
X0 18 18 0 5017 1493 3 MP
XPP
X18 0 0 18 5017 1493 3 MP
XPP
X0 18 18 0 5017 1511 3 MP
XPP
X18 0 0 18 5017 1511 3 MP
XPP
X0 18 18 0 5017 1529 3 MP
XPP
X18 0 0 18 5017 1529 3 MP
XPP
X0 18 18 0 5017 1547 3 MP
XPP
X18 0 0 18 5017 1547 3 MP
XPP
X0 18 18 0 5017 1565 3 MP
XPP
X18 0 0 18 5017 1565 3 MP
XPP
X0 17 18 0 5017 1583 3 MP
XPP
X18 0 0 17 5017 1583 3 MP
XPP
X0 18 18 0 5017 1600 3 MP
XPP
X18 0 0 18 5017 1600 3 MP
XPP
X0 18 18 0 5017 1618 3 MP
XPP
X18 0 0 18 5017 1618 3 MP
XPP
X0 18 18 0 5017 1636 3 MP
XPP
X18 0 0 18 5017 1636 3 MP
XPP
X0 18 18 0 5017 1654 3 MP
XPP
X18 0 0 18 5017 1654 3 MP
XPP
X0 18 18 0 5017 1672 3 MP
XPP
X18 0 0 18 5017 1672 3 MP
XPP
X0 17 18 0 5017 1690 3 MP
XPP
X18 0 0 17 5017 1690 3 MP
XPP
X0 18 18 0 5017 1707 3 MP
XPP
X18 0 0 18 5017 1707 3 MP
XPP
X0 18 18 0 5017 1725 3 MP
XPP
X18 0 0 18 5017 1725 3 MP
XPP
X0 18 18 0 5017 1743 3 MP
XPP
X18 0 0 18 5017 1743 3 MP
XPP
X0 18 18 0 5017 1761 3 MP
XPP
X18 0 0 18 5017 1761 3 MP
XPP
X0 18 18 0 5017 1779 3 MP
XPP
X18 0 0 18 5017 1779 3 MP
XPP
X0 17 18 0 5017 1797 3 MP
XPP
X18 0 0 17 5017 1797 3 MP
XPP
X0 18 18 0 5017 1814 3 MP
XPP
X18 0 0 18 5017 1814 3 MP
XPP
X0 18 18 0 5017 1832 3 MP
XPP
X18 0 0 18 5017 1832 3 MP
XPP
X0 18 18 0 5017 1850 3 MP
XPP
X18 0 0 18 5017 1850 3 MP
XPP
X0 18 18 0 5017 1868 3 MP
XPP
X18 0 0 18 5017 1868 3 MP
XPP
X0 18 18 0 5017 1886 3 MP
XPP
X18 0 0 18 5017 1886 3 MP
XPP
X0 17 18 0 5017 1904 3 MP
XPP
X18 0 0 17 5017 1904 3 MP
XPP
X0 18 18 0 5017 1921 3 MP
XPP
X18 0 0 18 5017 1921 3 MP
XPP
X0 18 18 0 5017 1939 3 MP
XPP
X18 0 0 18 5017 1939 3 MP
XPP
X0 18 18 0 5017 1957 3 MP
XPP
X18 0 0 18 5017 1957 3 MP
XPP
X0 18 18 0 5017 1975 3 MP
XPP
X18 0 0 18 5017 1975 3 MP
XPP
X0 18 18 0 5017 1993 3 MP
XPP
X18 0 0 18 5017 1993 3 MP
XPP
X0 17 18 0 5017 2011 3 MP
XPP
X18 0 0 17 5017 2011 3 MP
XPP
X0 18 18 0 5017 2028 3 MP
XPP
X18 0 0 18 5017 2028 3 MP
XPP
X0 18 18 0 5017 2046 3 MP
XPP
X18 0 0 18 5017 2046 3 MP
XPP
X0 18 18 0 5017 2064 3 MP
XPP
X18 0 0 18 5017 2064 3 MP
XPP
X0 18 18 0 5017 2082 3 MP
XPP
X18 0 0 18 5017 2082 3 MP
XPP
X0 18 18 0 5017 2100 3 MP
XPP
X18 0 0 18 5017 2100 3 MP
XPP
X0 17 18 0 5017 2118 3 MP
XPP
X18 0 0 17 5017 2118 3 MP
XPP
X0 18 18 0 5017 2135 3 MP
XPP
X18 0 0 18 5017 2135 3 MP
XPP
X0 18 18 0 5017 2153 3 MP
XPP
X18 0 0 18 5017 2153 3 MP
XPP
X0 18 18 0 5035 388 3 MP
XPP
X18 0 0 18 5035 388 3 MP
XPP
X0 18 18 0 5035 406 3 MP
XPP
X18 0 0 18 5035 406 3 MP
XPP
X0 17 18 0 5035 424 3 MP
XPP
X18 0 0 17 5035 424 3 MP
XPP
X0 18 18 0 5035 441 3 MP
XPP
X18 0 0 18 5035 441 3 MP
XPP
X0.984127 sg
X0 18 18 0 5035 459 3 MP
XPP
X18 0 0 18 5035 459 3 MP
XPP
X0.904762 sg
X0 18 18 0 5035 477 3 MP
XPP
X18 0 0 18 5035 477 3 MP
XPP
X0.777778 sg
X0 18 18 0 5035 495 3 MP
XPP
X18 0 0 18 5035 495 3 MP
XPP
X0.698413 sg
X0 18 18 0 5035 513 3 MP
XPP
X18 0 0 18 5035 513 3 MP
XPP
X0.666667 sg
X0 17 18 0 5035 531 3 MP
XPP
X18 0 0 17 5035 531 3 MP
XPP
X0 18 18 0 5035 548 3 MP
XPP
X18 0 0 18 5035 548 3 MP
XPP
X0 18 18 0 5035 566 3 MP
XPP
X18 0 0 18 5035 566 3 MP
XPP
X0 18 18 0 5035 584 3 MP
XPP
X18 0 0 18 5035 584 3 MP
XPP
X0 18 18 0 5035 602 3 MP
XPP
X18 0 0 18 5035 602 3 MP
XPP
X0 18 18 0 5035 620 3 MP
XPP
X18 0 0 18 5035 620 3 MP
XPP
X0 17 18 0 5035 638 3 MP
XPP
X18 0 0 17 5035 638 3 MP
XPP
X0 18 18 0 5035 655 3 MP
XPP
X18 0 0 18 5035 655 3 MP
XPP
X0 18 18 0 5035 673 3 MP
XPP
X18 0 0 18 5035 673 3 MP
XPP
X0 18 18 0 5035 691 3 MP
XPP
X18 0 0 18 5035 691 3 MP
XPP
X0 18 18 0 5035 709 3 MP
XPP
X18 0 0 18 5035 709 3 MP
XPP
X0 18 18 0 5035 727 3 MP
XPP
X18 0 0 18 5035 727 3 MP
XPP
X0 17 18 0 5035 745 3 MP
XPP
X18 0 0 17 5035 745 3 MP
XPP
X0 18 18 0 5035 762 3 MP
XPP
X18 0 0 18 5035 762 3 MP
XPP
X0 18 18 0 5035 780 3 MP
XPP
X18 0 0 18 5035 780 3 MP
XPP
X0 18 18 0 5035 798 3 MP
XPP
X18 0 0 18 5035 798 3 MP
XPP
X0.650794 sg
X0 18 18 0 5035 816 3 MP
XPP
X18 0 0 18 5035 816 3 MP
XPP
X0.587302 sg
X0 18 18 0 5035 834 3 MP
XPP
X18 0 0 18 5035 834 3 MP
XPP
X0.47619 sg
X0 17 18 0 5035 852 3 MP
XPP
X18 0 0 17 5035 852 3 MP
XPP
X0.396825 sg
X0 18 18 0 5035 869 3 MP
XPP
X18 0 0 18 5035 869 3 MP
XPP
X0.349206 sg
X0 18 18 0 5035 887 3 MP
XPP
X18 0 0 18 5035 887 3 MP
XPP
X0.333333 sg
X0 18 18 0 5035 905 3 MP
XPP
X18 0 0 18 5035 905 3 MP
XPP
X0 18 18 0 5035 923 3 MP
XPP
X18 0 0 18 5035 923 3 MP
XPP
X0 18 18 0 5035 941 3 MP
XPP
X18 0 0 18 5035 941 3 MP
XPP
X0 17 18 0 5035 959 3 MP
XPP
X18 0 0 17 5035 959 3 MP
XPP
X0 18 18 0 5035 976 3 MP
XPP
X18 0 0 18 5035 976 3 MP
XPP
X0 18 18 0 5035 994 3 MP
XPP
X18 0 0 18 5035 994 3 MP
XPP
X0 18 18 0 5035 1012 3 MP
XPP
X18 0 0 18 5035 1012 3 MP
XPP
X0 18 18 0 5035 1030 3 MP
XPP
X18 0 0 18 5035 1030 3 MP
XPP
X0 18 18 0 5035 1048 3 MP
XPP
X18 0 0 18 5035 1048 3 MP
XPP
X0 17 18 0 5035 1066 3 MP
XPP
X18 0 0 17 5035 1066 3 MP
XPP
X0.365079 sg
X0 18 18 0 5035 1083 3 MP
XPP
X18 0 0 18 5035 1083 3 MP
XPP
X0.444444 sg
X0 18 18 0 5035 1101 3 MP
XPP
X18 0 0 18 5035 1101 3 MP
XPP
X0.619048 sg
X0 18 18 0 5035 1119 3 MP
XPP
X18 0 0 18 5035 1119 3 MP
XPP
X0.825397 sg
X0 18 18 0 5035 1137 3 MP
XPP
X18 0 0 18 5035 1137 3 MP
XPP
X0.968254 sg
X0 18 18 0 5035 1155 3 MP
XPP
X18 0 0 18 5035 1155 3 MP
XPP
X1 sg
X0 17 18 0 5035 1173 3 MP
XPP
X18 0 0 17 5035 1173 3 MP
XPP
X0 18 18 0 5035 1190 3 MP
XPP
X18 0 0 18 5035 1190 3 MP
XPP
X0 18 18 0 5035 1208 3 MP
XPP
X18 0 0 18 5035 1208 3 MP
XPP
X0 18 18 0 5035 1226 3 MP
XPP
X18 0 0 18 5035 1226 3 MP
XPP
X0 18 18 0 5035 1244 3 MP
XPP
X18 0 0 18 5035 1244 3 MP
XPP
X0 17 18 0 5035 1262 3 MP
XPP
X18 0 0 17 5035 1262 3 MP
XPP
X0 18 18 0 5035 1279 3 MP
XPP
X18 0 0 18 5035 1279 3 MP
XPP
X0 18 18 0 5035 1297 3 MP
XPP
X18 0 0 18 5035 1297 3 MP
XPP
X0 18 18 0 5035 1315 3 MP
XPP
X18 0 0 18 5035 1315 3 MP
XPP
X0 18 18 0 5035 1333 3 MP
XPP
X18 0 0 18 5035 1333 3 MP
XPP
X0 18 18 0 5035 1351 3 MP
XPP
X18 0 0 18 5035 1351 3 MP
XPP
X0 17 18 0 5035 1369 3 MP
XPP
X18 0 0 17 5035 1369 3 MP
XPP
X0 18 18 0 5035 1386 3 MP
XPP
X18 0 0 18 5035 1386 3 MP
XPP
X0 18 18 0 5035 1404 3 MP
XPP
X18 0 0 18 5035 1404 3 MP
XPP
X0 18 18 0 5035 1422 3 MP
XPP
X18 0 0 18 5035 1422 3 MP
XPP
X0 18 18 0 5035 1440 3 MP
XPP
X18 0 0 18 5035 1440 3 MP
XPP
X0 18 18 0 5035 1458 3 MP
XPP
X18 0 0 18 5035 1458 3 MP
XPP
X0 17 18 0 5035 1476 3 MP
XPP
X18 0 0 17 5035 1476 3 MP
XPP
X0 18 18 0 5035 1493 3 MP
XPP
X18 0 0 18 5035 1493 3 MP
XPP
X0 18 18 0 5035 1511 3 MP
XPP
X18 0 0 18 5035 1511 3 MP
XPP
X0 18 18 0 5035 1529 3 MP
XPP
X18 0 0 18 5035 1529 3 MP
XPP
X0 18 18 0 5035 1547 3 MP
XPP
X18 0 0 18 5035 1547 3 MP
XPP
X0 18 18 0 5035 1565 3 MP
XPP
X18 0 0 18 5035 1565 3 MP
XPP
X0 17 18 0 5035 1583 3 MP
XPP
X18 0 0 17 5035 1583 3 MP
XPP
X0 18 18 0 5035 1600 3 MP
XPP
X18 0 0 18 5035 1600 3 MP
XPP
X0 18 18 0 5035 1618 3 MP
XPP
X18 0 0 18 5035 1618 3 MP
XPP
X0 18 18 0 5035 1636 3 MP
XPP
X18 0 0 18 5035 1636 3 MP
XPP
X0 18 18 0 5035 1654 3 MP
XPP
X18 0 0 18 5035 1654 3 MP
XPP
X0 18 18 0 5035 1672 3 MP
XPP
X18 0 0 18 5035 1672 3 MP
XPP
X0 17 18 0 5035 1690 3 MP
XPP
X18 0 0 17 5035 1690 3 MP
XPP
X0 18 18 0 5035 1707 3 MP
XPP
X18 0 0 18 5035 1707 3 MP
XPP
X0 18 18 0 5035 1725 3 MP
XPP
X18 0 0 18 5035 1725 3 MP
XPP
X0 18 18 0 5035 1743 3 MP
XPP
X18 0 0 18 5035 1743 3 MP
XPP
X0 18 18 0 5035 1761 3 MP
XPP
X18 0 0 18 5035 1761 3 MP
XPP
X0 18 18 0 5035 1779 3 MP
XPP
X18 0 0 18 5035 1779 3 MP
XPP
X0 17 18 0 5035 1797 3 MP
XPP
X18 0 0 17 5035 1797 3 MP
XPP
X0 18 18 0 5035 1814 3 MP
XPP
X18 0 0 18 5035 1814 3 MP
XPP
X0 18 18 0 5035 1832 3 MP
XPP
X18 0 0 18 5035 1832 3 MP
XPP
X0 18 18 0 5035 1850 3 MP
XPP
X18 0 0 18 5035 1850 3 MP
XPP
X0 18 18 0 5035 1868 3 MP
XPP
X18 0 0 18 5035 1868 3 MP
XPP
X0 18 18 0 5035 1886 3 MP
XPP
X18 0 0 18 5035 1886 3 MP
XPP
X0 17 18 0 5035 1904 3 MP
XPP
X18 0 0 17 5035 1904 3 MP
XPP
X0 18 18 0 5035 1921 3 MP
XPP
X18 0 0 18 5035 1921 3 MP
XPP
X0 18 18 0 5035 1939 3 MP
XPP
X18 0 0 18 5035 1939 3 MP
XPP
X0 18 18 0 5035 1957 3 MP
XPP
X18 0 0 18 5035 1957 3 MP
XPP
X0 18 18 0 5035 1975 3 MP
XPP
X18 0 0 18 5035 1975 3 MP
XPP
X0 18 18 0 5035 1993 3 MP
XPP
X18 0 0 18 5035 1993 3 MP
XPP
X0 17 18 0 5035 2011 3 MP
XPP
X18 0 0 17 5035 2011 3 MP
XPP
X0 18 18 0 5035 2028 3 MP
XPP
X18 0 0 18 5035 2028 3 MP
XPP
X0 18 18 0 5035 2046 3 MP
XPP
X18 0 0 18 5035 2046 3 MP
XPP
X0 18 18 0 5035 2064 3 MP
XPP
X18 0 0 18 5035 2064 3 MP
XPP
X0 18 18 0 5035 2082 3 MP
XPP
X18 0 0 18 5035 2082 3 MP
XPP
X0 18 18 0 5035 2100 3 MP
XPP
X18 0 0 18 5035 2100 3 MP
XPP
X0 17 18 0 5035 2118 3 MP
XPP
X18 0 0 17 5035 2118 3 MP
XPP
X0 18 18 0 5035 2135 3 MP
XPP
X18 0 0 18 5035 2135 3 MP
XPP
X0 18 18 0 5035 2153 3 MP
XPP
X18 0 0 18 5035 2153 3 MP
XPP
X0 18 18 0 5053 388 3 MP
XPP
X18 0 0 18 5053 388 3 MP
XPP
X0 18 18 0 5053 406 3 MP
XPP
X18 0 0 18 5053 406 3 MP
XPP
X0 17 18 0 5053 424 3 MP
XPP
X18 0 0 17 5053 424 3 MP
XPP
X0 18 18 0 5053 441 3 MP
XPP
X18 0 0 18 5053 441 3 MP
XPP
X0.952381 sg
X0 18 18 0 5053 459 3 MP
XPP
X18 0 0 18 5053 459 3 MP
XPP
X0.857143 sg
X0 18 18 0 5053 477 3 MP
XPP
X18 0 0 18 5053 477 3 MP
XPP
X0.746032 sg
X0 18 18 0 5053 495 3 MP
XPP
X18 0 0 18 5053 495 3 MP
XPP
X0.68254 sg
X0 18 18 0 5053 513 3 MP
XPP
X18 0 0 18 5053 513 3 MP
XPP
X0.666667 sg
X0 17 18 0 5053 531 3 MP
XPP
X18 0 0 17 5053 531 3 MP
XPP
X0 18 18 0 5053 548 3 MP
XPP
X18 0 0 18 5053 548 3 MP
XPP
X0 18 18 0 5053 566 3 MP
XPP
X18 0 0 18 5053 566 3 MP
XPP
X0 18 18 0 5053 584 3 MP
XPP
X18 0 0 18 5053 584 3 MP
XPP
X0 18 18 0 5053 602 3 MP
XPP
X18 0 0 18 5053 602 3 MP
XPP
X0 18 18 0 5053 620 3 MP
XPP
X18 0 0 18 5053 620 3 MP
XPP
X0 17 18 0 5053 638 3 MP
XPP
X18 0 0 17 5053 638 3 MP
XPP
X0 18 18 0 5053 655 3 MP
XPP
X18 0 0 18 5053 655 3 MP
XPP
X0 18 18 0 5053 673 3 MP
XPP
X18 0 0 18 5053 673 3 MP
XPP
X0 18 18 0 5053 691 3 MP
XPP
X18 0 0 18 5053 691 3 MP
XPP
X0 18 18 0 5053 709 3 MP
XPP
X18 0 0 18 5053 709 3 MP
XPP
X0 18 18 0 5053 727 3 MP
XPP
X18 0 0 18 5053 727 3 MP
XPP
X0 17 18 0 5053 745 3 MP
XPP
X18 0 0 17 5053 745 3 MP
XPP
X0 18 18 0 5053 762 3 MP
XPP
X18 0 0 18 5053 762 3 MP
XPP
X0 18 18 0 5053 780 3 MP
XPP
X18 0 0 18 5053 780 3 MP
XPP
X0 18 18 0 5053 798 3 MP
XPP
X18 0 0 18 5053 798 3 MP
XPP
X0.619048 sg
X0 18 18 0 5053 816 3 MP
XPP
X18 0 0 18 5053 816 3 MP
XPP
X0.52381 sg
X0 18 18 0 5053 834 3 MP
XPP
X18 0 0 18 5053 834 3 MP
XPP
X0.428571 sg
X0 17 18 0 5053 852 3 MP
XPP
X18 0 0 17 5053 852 3 MP
XPP
X0.349206 sg
X0 18 18 0 5053 869 3 MP
XPP
X18 0 0 18 5053 869 3 MP
XPP
X0.333333 sg
X0 18 18 0 5053 887 3 MP
XPP
X18 0 0 18 5053 887 3 MP
XPP
X0 18 18 0 5053 905 3 MP
XPP
X18 0 0 18 5053 905 3 MP
XPP
X0 18 18 0 5053 923 3 MP
XPP
X18 0 0 18 5053 923 3 MP
XPP
X0 18 18 0 5053 941 3 MP
XPP
X18 0 0 18 5053 941 3 MP
XPP
X0 17 18 0 5053 959 3 MP
XPP
X18 0 0 17 5053 959 3 MP
XPP
X0 18 18 0 5053 976 3 MP
XPP
X18 0 0 18 5053 976 3 MP
XPP
X0 18 18 0 5053 994 3 MP
XPP
X18 0 0 18 5053 994 3 MP
XPP
X0 18 18 0 5053 1012 3 MP
XPP
X18 0 0 18 5053 1012 3 MP
XPP
X0 18 18 0 5053 1030 3 MP
XPP
X18 0 0 18 5053 1030 3 MP
XPP
X0 18 18 0 5053 1048 3 MP
XPP
X18 0 0 18 5053 1048 3 MP
XPP
X0 17 18 0 5053 1066 3 MP
XPP
X18 0 0 17 5053 1066 3 MP
XPP
X0 18 18 0 5053 1083 3 MP
XPP
X18 0 0 18 5053 1083 3 MP
XPP
X0.380952 sg
X0 18 18 0 5053 1101 3 MP
XPP
X18 0 0 18 5053 1101 3 MP
XPP
X0.507937 sg
X0 18 18 0 5053 1119 3 MP
XPP
X18 0 0 18 5053 1119 3 MP
XPP
X0.730159 sg
X0 18 18 0 5053 1137 3 MP
XPP
X18 0 0 18 5053 1137 3 MP
XPP
X0.904762 sg
X0 18 18 0 5053 1155 3 MP
XPP
X18 0 0 18 5053 1155 3 MP
XPP
X1 sg
X0 17 18 0 5053 1173 3 MP
XPP
X18 0 0 17 5053 1173 3 MP
XPP
X0 18 18 0 5053 1190 3 MP
XPP
X18 0 0 18 5053 1190 3 MP
XPP
X0 18 18 0 5053 1208 3 MP
XPP
X18 0 0 18 5053 1208 3 MP
XPP
X0 18 18 0 5053 1226 3 MP
XPP
X18 0 0 18 5053 1226 3 MP
XPP
X0 18 18 0 5053 1244 3 MP
XPP
X18 0 0 18 5053 1244 3 MP
XPP
X0 17 18 0 5053 1262 3 MP
XPP
X18 0 0 17 5053 1262 3 MP
XPP
X0 18 18 0 5053 1279 3 MP
XPP
X18 0 0 18 5053 1279 3 MP
XPP
X0 18 18 0 5053 1297 3 MP
XPP
X18 0 0 18 5053 1297 3 MP
XPP
X0 18 18 0 5053 1315 3 MP
XPP
X18 0 0 18 5053 1315 3 MP
XPP
X0 18 18 0 5053 1333 3 MP
XPP
X18 0 0 18 5053 1333 3 MP
XPP
X0 18 18 0 5053 1351 3 MP
XPP
X18 0 0 18 5053 1351 3 MP
XPP
X0 17 18 0 5053 1369 3 MP
XPP
X18 0 0 17 5053 1369 3 MP
XPP
X0 18 18 0 5053 1386 3 MP
XPP
X18 0 0 18 5053 1386 3 MP
XPP
X0 18 18 0 5053 1404 3 MP
XPP
X18 0 0 18 5053 1404 3 MP
XPP
X0 18 18 0 5053 1422 3 MP
XPP
X18 0 0 18 5053 1422 3 MP
XPP
X0 18 18 0 5053 1440 3 MP
XPP
X18 0 0 18 5053 1440 3 MP
XPP
X0 18 18 0 5053 1458 3 MP
XPP
X18 0 0 18 5053 1458 3 MP
XPP
X0 17 18 0 5053 1476 3 MP
XPP
X18 0 0 17 5053 1476 3 MP
XPP
X0 18 18 0 5053 1493 3 MP
XPP
X18 0 0 18 5053 1493 3 MP
XPP
X0 18 18 0 5053 1511 3 MP
XPP
X18 0 0 18 5053 1511 3 MP
XPP
X0 18 18 0 5053 1529 3 MP
XPP
X18 0 0 18 5053 1529 3 MP
XPP
X0 18 18 0 5053 1547 3 MP
XPP
X18 0 0 18 5053 1547 3 MP
XPP
X0 18 18 0 5053 1565 3 MP
XPP
X18 0 0 18 5053 1565 3 MP
XPP
X0 17 18 0 5053 1583 3 MP
XPP
X18 0 0 17 5053 1583 3 MP
XPP
X0 18 18 0 5053 1600 3 MP
XPP
X18 0 0 18 5053 1600 3 MP
XPP
X0 18 18 0 5053 1618 3 MP
XPP
X18 0 0 18 5053 1618 3 MP
XPP
X0 18 18 0 5053 1636 3 MP
XPP
X18 0 0 18 5053 1636 3 MP
XPP
X0 18 18 0 5053 1654 3 MP
XPP
X18 0 0 18 5053 1654 3 MP
XPP
X0 18 18 0 5053 1672 3 MP
XPP
X18 0 0 18 5053 1672 3 MP
XPP
X0 17 18 0 5053 1690 3 MP
XPP
X18 0 0 17 5053 1690 3 MP
XPP
X0 18 18 0 5053 1707 3 MP
XPP
X18 0 0 18 5053 1707 3 MP
XPP
X0 18 18 0 5053 1725 3 MP
XPP
X18 0 0 18 5053 1725 3 MP
XPP
X0 18 18 0 5053 1743 3 MP
XPP
X18 0 0 18 5053 1743 3 MP
XPP
X0 18 18 0 5053 1761 3 MP
XPP
X18 0 0 18 5053 1761 3 MP
XPP
X0 18 18 0 5053 1779 3 MP
XPP
X18 0 0 18 5053 1779 3 MP
XPP
X0 17 18 0 5053 1797 3 MP
XPP
X18 0 0 17 5053 1797 3 MP
XPP
X0 18 18 0 5053 1814 3 MP
XPP
X18 0 0 18 5053 1814 3 MP
XPP
X0 18 18 0 5053 1832 3 MP
XPP
X18 0 0 18 5053 1832 3 MP
XPP
X0 18 18 0 5053 1850 3 MP
XPP
X18 0 0 18 5053 1850 3 MP
XPP
X0 18 18 0 5053 1868 3 MP
XPP
X18 0 0 18 5053 1868 3 MP
XPP
X0 18 18 0 5053 1886 3 MP
XPP
X18 0 0 18 5053 1886 3 MP
XPP
X0 17 18 0 5053 1904 3 MP
XPP
X18 0 0 17 5053 1904 3 MP
XPP
X0 18 18 0 5053 1921 3 MP
XPP
X18 0 0 18 5053 1921 3 MP
XPP
X0 18 18 0 5053 1939 3 MP
XPP
X18 0 0 18 5053 1939 3 MP
XPP
X0 18 18 0 5053 1957 3 MP
XPP
X18 0 0 18 5053 1957 3 MP
XPP
X0 18 18 0 5053 1975 3 MP
XPP
X18 0 0 18 5053 1975 3 MP
XPP
X0 18 18 0 5053 1993 3 MP
XPP
X18 0 0 18 5053 1993 3 MP
XPP
X0 17 18 0 5053 2011 3 MP
XPP
X18 0 0 17 5053 2011 3 MP
XPP
X0 18 18 0 5053 2028 3 MP
XPP
X18 0 0 18 5053 2028 3 MP
XPP
X0 18 18 0 5053 2046 3 MP
XPP
X18 0 0 18 5053 2046 3 MP
XPP
X0 18 18 0 5053 2064 3 MP
XPP
X18 0 0 18 5053 2064 3 MP
XPP
X0 18 18 0 5053 2082 3 MP
XPP
X18 0 0 18 5053 2082 3 MP
XPP
X0 18 18 0 5053 2100 3 MP
XPP
X18 0 0 18 5053 2100 3 MP
XPP
X0 17 18 0 5053 2118 3 MP
XPP
X18 0 0 17 5053 2118 3 MP
XPP
X0 18 18 0 5053 2135 3 MP
XPP
X18 0 0 18 5053 2135 3 MP
XPP
X0 18 18 0 5053 2153 3 MP
XPP
X18 0 0 18 5053 2153 3 MP
XPP
X0 18 17 0 5071 388 3 MP
XPP
X17 0 0 18 5071 388 3 MP
XPP
X0 18 17 0 5071 406 3 MP
XPP
X17 0 0 18 5071 406 3 MP
XPP
X0 17 17 0 5071 424 3 MP
XPP
X17 0 0 17 5071 424 3 MP
XPP
X0.984127 sg
X0 18 17 0 5071 441 3 MP
XPP
X17 0 0 18 5071 441 3 MP
XPP
X0.920635 sg
X0 18 17 0 5071 459 3 MP
XPP
X17 0 0 18 5071 459 3 MP
XPP
X0.809524 sg
X0 18 17 0 5071 477 3 MP
XPP
X17 0 0 18 5071 477 3 MP
XPP
X0.714286 sg
X0 18 17 0 5071 495 3 MP
XPP
X17 0 0 18 5071 495 3 MP
XPP
X0.68254 sg
X0 18 17 0 5071 513 3 MP
XPP
X17 0 0 18 5071 513 3 MP
XPP
X0.666667 sg
X0 17 17 0 5071 531 3 MP
XPP
X17 0 0 17 5071 531 3 MP
XPP
X0 18 17 0 5071 548 3 MP
XPP
X17 0 0 18 5071 548 3 MP
XPP
X0 18 17 0 5071 566 3 MP
XPP
X17 0 0 18 5071 566 3 MP
XPP
X0 18 17 0 5071 584 3 MP
XPP
X17 0 0 18 5071 584 3 MP
XPP
X0 18 17 0 5071 602 3 MP
XPP
X17 0 0 18 5071 602 3 MP
XPP
X0 18 17 0 5071 620 3 MP
XPP
X17 0 0 18 5071 620 3 MP
XPP
X0 17 17 0 5071 638 3 MP
XPP
X17 0 0 17 5071 638 3 MP
XPP
X0 18 17 0 5071 655 3 MP
XPP
X17 0 0 18 5071 655 3 MP
XPP
X0 18 17 0 5071 673 3 MP
XPP
X17 0 0 18 5071 673 3 MP
XPP
X0 18 17 0 5071 691 3 MP
XPP
X17 0 0 18 5071 691 3 MP
XPP
X0 18 17 0 5071 709 3 MP
XPP
X17 0 0 18 5071 709 3 MP
XPP
X0 18 17 0 5071 727 3 MP
XPP
X17 0 0 18 5071 727 3 MP
XPP
X0 17 17 0 5071 745 3 MP
XPP
X17 0 0 17 5071 745 3 MP
XPP
X0 18 17 0 5071 762 3 MP
XPP
X17 0 0 18 5071 762 3 MP
XPP
X0 18 17 0 5071 780 3 MP
XPP
X17 0 0 18 5071 780 3 MP
XPP
X0.650794 sg
X0 18 17 0 5071 798 3 MP
XPP
X17 0 0 18 5071 798 3 MP
XPP
X0.571429 sg
X0 18 17 0 5071 816 3 MP
XPP
X17 0 0 18 5071 816 3 MP
XPP
X0.47619 sg
X0 18 17 0 5071 834 3 MP
XPP
X17 0 0 18 5071 834 3 MP
XPP
X0.380952 sg
X0 17 17 0 5071 852 3 MP
XPP
X17 0 0 17 5071 852 3 MP
XPP
X0.333333 sg
X0 18 17 0 5071 869 3 MP
XPP
X17 0 0 18 5071 869 3 MP
XPP
X0 18 17 0 5071 887 3 MP
XPP
X17 0 0 18 5071 887 3 MP
XPP
X0 18 17 0 5071 905 3 MP
XPP
X17 0 0 18 5071 905 3 MP
XPP
X0 18 17 0 5071 923 3 MP
XPP
X17 0 0 18 5071 923 3 MP
XPP
X0 18 17 0 5071 941 3 MP
XPP
X17 0 0 18 5071 941 3 MP
XPP
X0 17 17 0 5071 959 3 MP
XPP
X17 0 0 17 5071 959 3 MP
XPP
X0 18 17 0 5071 976 3 MP
XPP
X17 0 0 18 5071 976 3 MP
XPP
X0 18 17 0 5071 994 3 MP
XPP
X17 0 0 18 5071 994 3 MP
XPP
X0 18 17 0 5071 1012 3 MP
XPP
X17 0 0 18 5071 1012 3 MP
XPP
X0 18 17 0 5071 1030 3 MP
XPP
X17 0 0 18 5071 1030 3 MP
XPP
X0 18 17 0 5071 1048 3 MP
XPP
X17 0 0 18 5071 1048 3 MP
XPP
X0 17 17 0 5071 1066 3 MP
XPP
X17 0 0 17 5071 1066 3 MP
XPP
X0 18 17 0 5071 1083 3 MP
XPP
X17 0 0 18 5071 1083 3 MP
XPP
X0.349206 sg
X0 18 17 0 5071 1101 3 MP
XPP
X17 0 0 18 5071 1101 3 MP
XPP
X0.428571 sg
X0 18 17 0 5071 1119 3 MP
XPP
X17 0 0 18 5071 1119 3 MP
XPP
X0.619048 sg
X0 18 17 0 5071 1137 3 MP
XPP
X17 0 0 18 5071 1137 3 MP
XPP
X0.825397 sg
X0 18 17 0 5071 1155 3 MP
XPP
X17 0 0 18 5071 1155 3 MP
XPP
X0.968254 sg
X0 17 17 0 5071 1173 3 MP
XPP
X17 0 0 17 5071 1173 3 MP
XPP
X1 sg
X0 18 17 0 5071 1190 3 MP
XPP
X17 0 0 18 5071 1190 3 MP
XPP
X0 18 17 0 5071 1208 3 MP
XPP
X17 0 0 18 5071 1208 3 MP
XPP
X0 18 17 0 5071 1226 3 MP
XPP
X17 0 0 18 5071 1226 3 MP
XPP
X0 18 17 0 5071 1244 3 MP
XPP
X17 0 0 18 5071 1244 3 MP
XPP
X0 17 17 0 5071 1262 3 MP
XPP
X17 0 0 17 5071 1262 3 MP
XPP
X0 18 17 0 5071 1279 3 MP
XPP
X17 0 0 18 5071 1279 3 MP
XPP
X0 18 17 0 5071 1297 3 MP
XPP
X17 0 0 18 5071 1297 3 MP
XPP
X0 18 17 0 5071 1315 3 MP
XPP
X17 0 0 18 5071 1315 3 MP
XPP
X0 18 17 0 5071 1333 3 MP
XPP
X17 0 0 18 5071 1333 3 MP
XPP
X0 18 17 0 5071 1351 3 MP
XPP
X17 0 0 18 5071 1351 3 MP
XPP
X0 17 17 0 5071 1369 3 MP
XPP
X17 0 0 17 5071 1369 3 MP
XPP
X0 18 17 0 5071 1386 3 MP
XPP
X17 0 0 18 5071 1386 3 MP
XPP
X0 18 17 0 5071 1404 3 MP
XPP
X17 0 0 18 5071 1404 3 MP
XPP
X0 18 17 0 5071 1422 3 MP
XPP
X17 0 0 18 5071 1422 3 MP
XPP
X0 18 17 0 5071 1440 3 MP
XPP
X17 0 0 18 5071 1440 3 MP
XPP
X0 18 17 0 5071 1458 3 MP
XPP
X17 0 0 18 5071 1458 3 MP
XPP
X0 17 17 0 5071 1476 3 MP
XPP
X17 0 0 17 5071 1476 3 MP
XPP
X0 18 17 0 5071 1493 3 MP
XPP
X17 0 0 18 5071 1493 3 MP
XPP
X0 18 17 0 5071 1511 3 MP
XPP
X17 0 0 18 5071 1511 3 MP
XPP
X0 18 17 0 5071 1529 3 MP
XPP
X17 0 0 18 5071 1529 3 MP
XPP
X0 18 17 0 5071 1547 3 MP
XPP
X17 0 0 18 5071 1547 3 MP
XPP
X0 18 17 0 5071 1565 3 MP
XPP
X17 0 0 18 5071 1565 3 MP
XPP
X0 17 17 0 5071 1583 3 MP
XPP
X17 0 0 17 5071 1583 3 MP
XPP
X0 18 17 0 5071 1600 3 MP
XPP
X17 0 0 18 5071 1600 3 MP
XPP
X0 18 17 0 5071 1618 3 MP
XPP
X17 0 0 18 5071 1618 3 MP
XPP
X0 18 17 0 5071 1636 3 MP
XPP
X17 0 0 18 5071 1636 3 MP
XPP
X0 18 17 0 5071 1654 3 MP
XPP
X17 0 0 18 5071 1654 3 MP
XPP
X0 18 17 0 5071 1672 3 MP
XPP
X17 0 0 18 5071 1672 3 MP
XPP
X0 17 17 0 5071 1690 3 MP
XPP
X17 0 0 17 5071 1690 3 MP
XPP
X0 18 17 0 5071 1707 3 MP
XPP
X17 0 0 18 5071 1707 3 MP
XPP
X0 18 17 0 5071 1725 3 MP
XPP
X17 0 0 18 5071 1725 3 MP
XPP
X0 18 17 0 5071 1743 3 MP
XPP
X17 0 0 18 5071 1743 3 MP
XPP
X0 18 17 0 5071 1761 3 MP
XPP
X17 0 0 18 5071 1761 3 MP
XPP
X0 18 17 0 5071 1779 3 MP
XPP
X17 0 0 18 5071 1779 3 MP
XPP
X0 17 17 0 5071 1797 3 MP
XPP
X17 0 0 17 5071 1797 3 MP
XPP
X0 18 17 0 5071 1814 3 MP
XPP
X17 0 0 18 5071 1814 3 MP
XPP
X0 18 17 0 5071 1832 3 MP
XPP
X17 0 0 18 5071 1832 3 MP
XPP
X0 18 17 0 5071 1850 3 MP
XPP
X17 0 0 18 5071 1850 3 MP
XPP
X0 18 17 0 5071 1868 3 MP
XPP
X17 0 0 18 5071 1868 3 MP
XPP
X0 18 17 0 5071 1886 3 MP
XPP
X17 0 0 18 5071 1886 3 MP
XPP
X0 17 17 0 5071 1904 3 MP
XPP
X17 0 0 17 5071 1904 3 MP
XPP
X0 18 17 0 5071 1921 3 MP
XPP
X17 0 0 18 5071 1921 3 MP
XPP
X0 18 17 0 5071 1939 3 MP
XPP
X17 0 0 18 5071 1939 3 MP
XPP
X0 18 17 0 5071 1957 3 MP
XPP
X17 0 0 18 5071 1957 3 MP
XPP
X0 18 17 0 5071 1975 3 MP
XPP
X17 0 0 18 5071 1975 3 MP
XPP
X0 18 17 0 5071 1993 3 MP
XPP
X17 0 0 18 5071 1993 3 MP
XPP
X0 17 17 0 5071 2011 3 MP
XPP
X17 0 0 17 5071 2011 3 MP
XPP
X0 18 17 0 5071 2028 3 MP
XPP
X17 0 0 18 5071 2028 3 MP
XPP
X0 18 17 0 5071 2046 3 MP
XPP
X17 0 0 18 5071 2046 3 MP
XPP
X0 18 17 0 5071 2064 3 MP
XPP
X17 0 0 18 5071 2064 3 MP
XPP
X0 18 17 0 5071 2082 3 MP
XPP
X17 0 0 18 5071 2082 3 MP
XPP
X0 18 17 0 5071 2100 3 MP
XPP
X17 0 0 18 5071 2100 3 MP
XPP
X0 17 17 0 5071 2118 3 MP
XPP
X17 0 0 17 5071 2118 3 MP
XPP
X0 18 17 0 5071 2135 3 MP
XPP
X17 0 0 18 5071 2135 3 MP
XPP
X0 18 17 0 5071 2153 3 MP
XPP
X17 0 0 18 5071 2153 3 MP
XPP
X0 18 18 0 5088 388 3 MP
XPP
X18 0 0 18 5088 388 3 MP
XPP
X0 18 18 0 5088 406 3 MP
XPP
X18 0 0 18 5088 406 3 MP
XPP
X0 17 18 0 5088 424 3 MP
XPP
X18 0 0 17 5088 424 3 MP
XPP
X0.984127 sg
X0 18 18 0 5088 441 3 MP
XPP
X18 0 0 18 5088 441 3 MP
XPP
X0.904762 sg
X0 18 18 0 5088 459 3 MP
XPP
X18 0 0 18 5088 459 3 MP
XPP
X0.777778 sg
X0 18 18 0 5088 477 3 MP
XPP
X18 0 0 18 5088 477 3 MP
XPP
X0.698413 sg
X0 18 18 0 5088 495 3 MP
XPP
X18 0 0 18 5088 495 3 MP
XPP
X0.666667 sg
X0 18 18 0 5088 513 3 MP
XPP
X18 0 0 18 5088 513 3 MP
XPP
X0 17 18 0 5088 531 3 MP
XPP
X18 0 0 17 5088 531 3 MP
XPP
X0 18 18 0 5088 548 3 MP
XPP
X18 0 0 18 5088 548 3 MP
XPP
X0 18 18 0 5088 566 3 MP
XPP
X18 0 0 18 5088 566 3 MP
XPP
X0 18 18 0 5088 584 3 MP
XPP
X18 0 0 18 5088 584 3 MP
XPP
X0 18 18 0 5088 602 3 MP
XPP
X18 0 0 18 5088 602 3 MP
XPP
X0 18 18 0 5088 620 3 MP
XPP
X18 0 0 18 5088 620 3 MP
XPP
X0 17 18 0 5088 638 3 MP
XPP
X18 0 0 17 5088 638 3 MP
XPP
X0 18 18 0 5088 655 3 MP
XPP
X18 0 0 18 5088 655 3 MP
XPP
X0 18 18 0 5088 673 3 MP
XPP
X18 0 0 18 5088 673 3 MP
XPP
X0 18 18 0 5088 691 3 MP
XPP
X18 0 0 18 5088 691 3 MP
XPP
X0 18 18 0 5088 709 3 MP
XPP
X18 0 0 18 5088 709 3 MP
XPP
X0 18 18 0 5088 727 3 MP
XPP
X18 0 0 18 5088 727 3 MP
XPP
X0 17 18 0 5088 745 3 MP
XPP
X18 0 0 17 5088 745 3 MP
XPP
X0 18 18 0 5088 762 3 MP
XPP
X18 0 0 18 5088 762 3 MP
XPP
X0 18 18 0 5088 780 3 MP
XPP
X18 0 0 18 5088 780 3 MP
XPP
X0.619048 sg
X0 18 18 0 5088 798 3 MP
XPP
X18 0 0 18 5088 798 3 MP
XPP
X0.52381 sg
X0 18 18 0 5088 816 3 MP
XPP
X18 0 0 18 5088 816 3 MP
XPP
X0.428571 sg
X0 18 18 0 5088 834 3 MP
XPP
X18 0 0 18 5088 834 3 MP
XPP
X0.349206 sg
X0 17 18 0 5088 852 3 MP
XPP
X18 0 0 17 5088 852 3 MP
XPP
X0.333333 sg
X0 18 18 0 5088 869 3 MP
XPP
X18 0 0 18 5088 869 3 MP
XPP
X0 18 18 0 5088 887 3 MP
XPP
X18 0 0 18 5088 887 3 MP
XPP
X0 18 18 0 5088 905 3 MP
XPP
X18 0 0 18 5088 905 3 MP
XPP
X0 18 18 0 5088 923 3 MP
XPP
X18 0 0 18 5088 923 3 MP
XPP
X0 18 18 0 5088 941 3 MP
XPP
X18 0 0 18 5088 941 3 MP
XPP
X0 17 18 0 5088 959 3 MP
XPP
X18 0 0 17 5088 959 3 MP
XPP
X0 18 18 0 5088 976 3 MP
XPP
X18 0 0 18 5088 976 3 MP
XPP
X0 18 18 0 5088 994 3 MP
XPP
X18 0 0 18 5088 994 3 MP
XPP
X0 18 18 0 5088 1012 3 MP
XPP
X18 0 0 18 5088 1012 3 MP
XPP
X0 18 18 0 5088 1030 3 MP
XPP
X18 0 0 18 5088 1030 3 MP
XPP
X0 18 18 0 5088 1048 3 MP
XPP
X18 0 0 18 5088 1048 3 MP
XPP
X0 17 18 0 5088 1066 3 MP
XPP
X18 0 0 17 5088 1066 3 MP
XPP
X0 18 18 0 5088 1083 3 MP
XPP
X18 0 0 18 5088 1083 3 MP
XPP
X0 18 18 0 5088 1101 3 MP
XPP
X18 0 0 18 5088 1101 3 MP
XPP
X0.380952 sg
X0 18 18 0 5088 1119 3 MP
XPP
X18 0 0 18 5088 1119 3 MP
XPP
X0.507937 sg
X0 18 18 0 5088 1137 3 MP
XPP
X18 0 0 18 5088 1137 3 MP
XPP
X0.730159 sg
X0 18 18 0 5088 1155 3 MP
XPP
X18 0 0 18 5088 1155 3 MP
XPP
X0.904762 sg
X0 17 18 0 5088 1173 3 MP
XPP
X18 0 0 17 5088 1173 3 MP
XPP
X1 sg
X0 18 18 0 5088 1190 3 MP
XPP
X18 0 0 18 5088 1190 3 MP
XPP
X0 18 18 0 5088 1208 3 MP
XPP
X18 0 0 18 5088 1208 3 MP
XPP
X0 18 18 0 5088 1226 3 MP
XPP
X18 0 0 18 5088 1226 3 MP
XPP
X0 18 18 0 5088 1244 3 MP
XPP
X18 0 0 18 5088 1244 3 MP
XPP
X0 17 18 0 5088 1262 3 MP
XPP
X18 0 0 17 5088 1262 3 MP
XPP
X0 18 18 0 5088 1279 3 MP
XPP
X18 0 0 18 5088 1279 3 MP
XPP
X0 18 18 0 5088 1297 3 MP
XPP
X18 0 0 18 5088 1297 3 MP
XPP
X0 18 18 0 5088 1315 3 MP
XPP
X18 0 0 18 5088 1315 3 MP
XPP
X0 18 18 0 5088 1333 3 MP
XPP
X18 0 0 18 5088 1333 3 MP
XPP
X0 18 18 0 5088 1351 3 MP
XPP
X18 0 0 18 5088 1351 3 MP
XPP
X0 17 18 0 5088 1369 3 MP
XPP
X18 0 0 17 5088 1369 3 MP
XPP
X0 18 18 0 5088 1386 3 MP
XPP
X18 0 0 18 5088 1386 3 MP
XPP
X0 18 18 0 5088 1404 3 MP
XPP
X18 0 0 18 5088 1404 3 MP
XPP
X0 18 18 0 5088 1422 3 MP
XPP
X18 0 0 18 5088 1422 3 MP
XPP
X0 18 18 0 5088 1440 3 MP
XPP
X18 0 0 18 5088 1440 3 MP
XPP
X0 18 18 0 5088 1458 3 MP
XPP
X18 0 0 18 5088 1458 3 MP
XPP
X0 17 18 0 5088 1476 3 MP
XPP
X18 0 0 17 5088 1476 3 MP
XPP
X0 18 18 0 5088 1493 3 MP
XPP
X18 0 0 18 5088 1493 3 MP
XPP
X0 18 18 0 5088 1511 3 MP
XPP
X18 0 0 18 5088 1511 3 MP
XPP
X0 18 18 0 5088 1529 3 MP
XPP
X18 0 0 18 5088 1529 3 MP
XPP
X0 18 18 0 5088 1547 3 MP
XPP
X18 0 0 18 5088 1547 3 MP
XPP
X0 18 18 0 5088 1565 3 MP
XPP
X18 0 0 18 5088 1565 3 MP
XPP
X0 17 18 0 5088 1583 3 MP
XPP
X18 0 0 17 5088 1583 3 MP
XPP
X0 18 18 0 5088 1600 3 MP
XPP
X18 0 0 18 5088 1600 3 MP
XPP
X0 18 18 0 5088 1618 3 MP
XPP
X18 0 0 18 5088 1618 3 MP
XPP
X0 18 18 0 5088 1636 3 MP
XPP
X18 0 0 18 5088 1636 3 MP
XPP
X0 18 18 0 5088 1654 3 MP
XPP
X18 0 0 18 5088 1654 3 MP
XPP
X0 18 18 0 5088 1672 3 MP
XPP
X18 0 0 18 5088 1672 3 MP
XPP
X0 17 18 0 5088 1690 3 MP
XPP
X18 0 0 17 5088 1690 3 MP
XPP
X0.984127 sg
X0 18 18 0 5088 1707 3 MP
XPP
X18 0 0 18 5088 1707 3 MP
XPP
X0.968254 sg
X0 18 18 0 5088 1725 3 MP
XPP
X18 0 0 18 5088 1725 3 MP
XPP
X0.984127 sg
X0 18 18 0 5088 1743 3 MP
XPP
X18 0 0 18 5088 1743 3 MP
XPP
X1 sg
X0 18 18 0 5088 1761 3 MP
XPP
X18 0 0 18 5088 1761 3 MP
XPP
X0 18 18 0 5088 1779 3 MP
XPP
X18 0 0 18 5088 1779 3 MP
XPP
X0 17 18 0 5088 1797 3 MP
XPP
X18 0 0 17 5088 1797 3 MP
XPP
X0 18 18 0 5088 1814 3 MP
XPP
X18 0 0 18 5088 1814 3 MP
XPP
X0 18 18 0 5088 1832 3 MP
XPP
X18 0 0 18 5088 1832 3 MP
XPP
X0 18 18 0 5088 1850 3 MP
XPP
X18 0 0 18 5088 1850 3 MP
XPP
X0 18 18 0 5088 1868 3 MP
XPP
X18 0 0 18 5088 1868 3 MP
XPP
X0 18 18 0 5088 1886 3 MP
XPP
X18 0 0 18 5088 1886 3 MP
XPP
X0 17 18 0 5088 1904 3 MP
XPP
X18 0 0 17 5088 1904 3 MP
XPP
X0 18 18 0 5088 1921 3 MP
XPP
X18 0 0 18 5088 1921 3 MP
XPP
X0 18 18 0 5088 1939 3 MP
XPP
X18 0 0 18 5088 1939 3 MP
XPP
X0 18 18 0 5088 1957 3 MP
XPP
X18 0 0 18 5088 1957 3 MP
XPP
X0 18 18 0 5088 1975 3 MP
XPP
X18 0 0 18 5088 1975 3 MP
XPP
X0 18 18 0 5088 1993 3 MP
XPP
X18 0 0 18 5088 1993 3 MP
XPP
X0 17 18 0 5088 2011 3 MP
XPP
X18 0 0 17 5088 2011 3 MP
XPP
X0 18 18 0 5088 2028 3 MP
XPP
X18 0 0 18 5088 2028 3 MP
XPP
X0 18 18 0 5088 2046 3 MP
XPP
X18 0 0 18 5088 2046 3 MP
XPP
X0 18 18 0 5088 2064 3 MP
XPP
X18 0 0 18 5088 2064 3 MP
XPP
X0 18 18 0 5088 2082 3 MP
XPP
X18 0 0 18 5088 2082 3 MP
XPP
X0 18 18 0 5088 2100 3 MP
XPP
X18 0 0 18 5088 2100 3 MP
XPP
X0 17 18 0 5088 2118 3 MP
XPP
X18 0 0 17 5088 2118 3 MP
XPP
X0 18 18 0 5088 2135 3 MP
XPP
X18 0 0 18 5088 2135 3 MP
XPP
X0 18 18 0 5088 2153 3 MP
XPP
X18 0 0 18 5088 2153 3 MP
XPP
X0 18 18 0 5106 388 3 MP
XPP
X18 0 0 18 5106 388 3 MP
XPP
X0 18 18 0 5106 406 3 MP
XPP
X18 0 0 18 5106 406 3 MP
XPP
X0 17 18 0 5106 424 3 MP
XPP
X18 0 0 17 5106 424 3 MP
XPP
X0.952381 sg
X0 18 18 0 5106 441 3 MP
XPP
X18 0 0 18 5106 441 3 MP
XPP
X0.857143 sg
X0 18 18 0 5106 459 3 MP
XPP
X18 0 0 18 5106 459 3 MP
XPP
X0.746032 sg
X0 18 18 0 5106 477 3 MP
XPP
X18 0 0 18 5106 477 3 MP
XPP
X0.68254 sg
X0 18 18 0 5106 495 3 MP
XPP
X18 0 0 18 5106 495 3 MP
XPP
X0.666667 sg
X0 18 18 0 5106 513 3 MP
XPP
X18 0 0 18 5106 513 3 MP
XPP
X0 17 18 0 5106 531 3 MP
XPP
X18 0 0 17 5106 531 3 MP
XPP
X0 18 18 0 5106 548 3 MP
XPP
X18 0 0 18 5106 548 3 MP
XPP
X0 18 18 0 5106 566 3 MP
XPP
X18 0 0 18 5106 566 3 MP
XPP
X0 18 18 0 5106 584 3 MP
XPP
X18 0 0 18 5106 584 3 MP
XPP
X0 18 18 0 5106 602 3 MP
XPP
X18 0 0 18 5106 602 3 MP
XPP
X0 18 18 0 5106 620 3 MP
XPP
X18 0 0 18 5106 620 3 MP
XPP
X0 17 18 0 5106 638 3 MP
XPP
X18 0 0 17 5106 638 3 MP
XPP
X0 18 18 0 5106 655 3 MP
XPP
X18 0 0 18 5106 655 3 MP
XPP
X0 18 18 0 5106 673 3 MP
XPP
X18 0 0 18 5106 673 3 MP
XPP
X0 18 18 0 5106 691 3 MP
XPP
X18 0 0 18 5106 691 3 MP
XPP
X0 18 18 0 5106 709 3 MP
XPP
X18 0 0 18 5106 709 3 MP
XPP
X0 18 18 0 5106 727 3 MP
XPP
X18 0 0 18 5106 727 3 MP
XPP
X0 17 18 0 5106 745 3 MP
XPP
X18 0 0 17 5106 745 3 MP
XPP
X0 18 18 0 5106 762 3 MP
XPP
X18 0 0 18 5106 762 3 MP
XPP
X0.650794 sg
X0 18 18 0 5106 780 3 MP
XPP
X18 0 0 18 5106 780 3 MP
XPP
X0.571429 sg
X0 18 18 0 5106 798 3 MP
XPP
X18 0 0 18 5106 798 3 MP
XPP
X0.47619 sg
X0 18 18 0 5106 816 3 MP
XPP
X18 0 0 18 5106 816 3 MP
XPP
X0.380952 sg
X0 18 18 0 5106 834 3 MP
XPP
X18 0 0 18 5106 834 3 MP
XPP
X0.333333 sg
X0 17 18 0 5106 852 3 MP
XPP
X18 0 0 17 5106 852 3 MP
XPP
X0 18 18 0 5106 869 3 MP
XPP
X18 0 0 18 5106 869 3 MP
XPP
X0 18 18 0 5106 887 3 MP
XPP
X18 0 0 18 5106 887 3 MP
XPP
X0 18 18 0 5106 905 3 MP
XPP
X18 0 0 18 5106 905 3 MP
XPP
X0 18 18 0 5106 923 3 MP
XPP
X18 0 0 18 5106 923 3 MP
XPP
X0 18 18 0 5106 941 3 MP
XPP
X18 0 0 18 5106 941 3 MP
XPP
X0 17 18 0 5106 959 3 MP
XPP
X18 0 0 17 5106 959 3 MP
XPP
X0 18 18 0 5106 976 3 MP
XPP
X18 0 0 18 5106 976 3 MP
XPP
X0 18 18 0 5106 994 3 MP
XPP
X18 0 0 18 5106 994 3 MP
XPP
X0 18 18 0 5106 1012 3 MP
XPP
X18 0 0 18 5106 1012 3 MP
XPP
X0 18 18 0 5106 1030 3 MP
XPP
X18 0 0 18 5106 1030 3 MP
XPP
X0 18 18 0 5106 1048 3 MP
XPP
X18 0 0 18 5106 1048 3 MP
XPP
X0 17 18 0 5106 1066 3 MP
XPP
X18 0 0 17 5106 1066 3 MP
XPP
X0 18 18 0 5106 1083 3 MP
XPP
X18 0 0 18 5106 1083 3 MP
XPP
X0 18 18 0 5106 1101 3 MP
XPP
X18 0 0 18 5106 1101 3 MP
XPP
X0.349206 sg
X0 18 18 0 5106 1119 3 MP
XPP
X18 0 0 18 5106 1119 3 MP
XPP
X0.428571 sg
X0 18 18 0 5106 1137 3 MP
XPP
X18 0 0 18 5106 1137 3 MP
XPP
X0.619048 sg
X0 18 18 0 5106 1155 3 MP
XPP
X18 0 0 18 5106 1155 3 MP
XPP
X0.825397 sg
X0 17 18 0 5106 1173 3 MP
XPP
X18 0 0 17 5106 1173 3 MP
XPP
X0.968254 sg
X0 18 18 0 5106 1190 3 MP
XPP
X18 0 0 18 5106 1190 3 MP
XPP
X1 sg
X0 18 18 0 5106 1208 3 MP
XPP
X18 0 0 18 5106 1208 3 MP
XPP
X0 18 18 0 5106 1226 3 MP
XPP
X18 0 0 18 5106 1226 3 MP
XPP
X0 18 18 0 5106 1244 3 MP
XPP
X18 0 0 18 5106 1244 3 MP
XPP
X0 17 18 0 5106 1262 3 MP
XPP
X18 0 0 17 5106 1262 3 MP
XPP
X0 18 18 0 5106 1279 3 MP
XPP
X18 0 0 18 5106 1279 3 MP
XPP
X0 18 18 0 5106 1297 3 MP
XPP
X18 0 0 18 5106 1297 3 MP
XPP
X0 18 18 0 5106 1315 3 MP
XPP
X18 0 0 18 5106 1315 3 MP
XPP
X0 18 18 0 5106 1333 3 MP
XPP
X18 0 0 18 5106 1333 3 MP
XPP
X0 18 18 0 5106 1351 3 MP
XPP
X18 0 0 18 5106 1351 3 MP
XPP
X0 17 18 0 5106 1369 3 MP
XPP
X18 0 0 17 5106 1369 3 MP
XPP
X0 18 18 0 5106 1386 3 MP
XPP
X18 0 0 18 5106 1386 3 MP
XPP
X0 18 18 0 5106 1404 3 MP
XPP
X18 0 0 18 5106 1404 3 MP
XPP
X0 18 18 0 5106 1422 3 MP
XPP
X18 0 0 18 5106 1422 3 MP
XPP
X0 18 18 0 5106 1440 3 MP
XPP
X18 0 0 18 5106 1440 3 MP
XPP
X0 18 18 0 5106 1458 3 MP
XPP
X18 0 0 18 5106 1458 3 MP
XPP
X0 17 18 0 5106 1476 3 MP
XPP
X18 0 0 17 5106 1476 3 MP
XPP
X0 18 18 0 5106 1493 3 MP
XPP
X18 0 0 18 5106 1493 3 MP
XPP
X0 18 18 0 5106 1511 3 MP
XPP
X18 0 0 18 5106 1511 3 MP
XPP
X0 18 18 0 5106 1529 3 MP
XPP
X18 0 0 18 5106 1529 3 MP
XPP
X0 18 18 0 5106 1547 3 MP
XPP
X18 0 0 18 5106 1547 3 MP
XPP
X0 18 18 0 5106 1565 3 MP
XPP
X18 0 0 18 5106 1565 3 MP
XPP
X0 17 18 0 5106 1583 3 MP
XPP
X18 0 0 17 5106 1583 3 MP
XPP
X0 18 18 0 5106 1600 3 MP
XPP
X18 0 0 18 5106 1600 3 MP
XPP
X0 18 18 0 5106 1618 3 MP
XPP
X18 0 0 18 5106 1618 3 MP
XPP
X0 18 18 0 5106 1636 3 MP
XPP
X18 0 0 18 5106 1636 3 MP
XPP
X0 18 18 0 5106 1654 3 MP
XPP
X18 0 0 18 5106 1654 3 MP
XPP
X0 18 18 0 5106 1672 3 MP
XPP
X18 0 0 18 5106 1672 3 MP
XPP
X0.984127 sg
X0 17 18 0 5106 1690 3 MP
XPP
X18 0 0 17 5106 1690 3 MP
XPP
X0.904762 sg
X0 18 18 0 5106 1707 3 MP
XPP
X18 0 0 18 5106 1707 3 MP
XPP
X0.857143 sg
X0 18 18 0 5106 1725 3 MP
XPP
X18 0 0 18 5106 1725 3 MP
XPP
X0.904762 sg
X0 18 18 0 5106 1743 3 MP
XPP
X18 0 0 18 5106 1743 3 MP
XPP
X0.984127 sg
X0 18 18 0 5106 1761 3 MP
XPP
X18 0 0 18 5106 1761 3 MP
XPP
X1 sg
X0 18 18 0 5106 1779 3 MP
XPP
X18 0 0 18 5106 1779 3 MP
XPP
X0 17 18 0 5106 1797 3 MP
XPP
X18 0 0 17 5106 1797 3 MP
XPP
X0 18 18 0 5106 1814 3 MP
XPP
X18 0 0 18 5106 1814 3 MP
XPP
X0 18 18 0 5106 1832 3 MP
XPP
X18 0 0 18 5106 1832 3 MP
XPP
X0 18 18 0 5106 1850 3 MP
XPP
X18 0 0 18 5106 1850 3 MP
XPP
X0 18 18 0 5106 1868 3 MP
XPP
X18 0 0 18 5106 1868 3 MP
XPP
X0 18 18 0 5106 1886 3 MP
XPP
X18 0 0 18 5106 1886 3 MP
XPP
X0 17 18 0 5106 1904 3 MP
XPP
X18 0 0 17 5106 1904 3 MP
XPP
X0 18 18 0 5106 1921 3 MP
XPP
X18 0 0 18 5106 1921 3 MP
XPP
X0 18 18 0 5106 1939 3 MP
XPP
X18 0 0 18 5106 1939 3 MP
XPP
X0 18 18 0 5106 1957 3 MP
XPP
X18 0 0 18 5106 1957 3 MP
XPP
X0 18 18 0 5106 1975 3 MP
XPP
X18 0 0 18 5106 1975 3 MP
XPP
X0 18 18 0 5106 1993 3 MP
XPP
X18 0 0 18 5106 1993 3 MP
XPP
X0 17 18 0 5106 2011 3 MP
XPP
X18 0 0 17 5106 2011 3 MP
XPP
X0 18 18 0 5106 2028 3 MP
XPP
X18 0 0 18 5106 2028 3 MP
XPP
X0 18 18 0 5106 2046 3 MP
XPP
X18 0 0 18 5106 2046 3 MP
XPP
X0 18 18 0 5106 2064 3 MP
XPP
X18 0 0 18 5106 2064 3 MP
XPP
X0 18 18 0 5106 2082 3 MP
XPP
X18 0 0 18 5106 2082 3 MP
XPP
X0 18 18 0 5106 2100 3 MP
XPP
X18 0 0 18 5106 2100 3 MP
XPP
X0 17 18 0 5106 2118 3 MP
XPP
X18 0 0 17 5106 2118 3 MP
XPP
X0 18 18 0 5106 2135 3 MP
XPP
X18 0 0 18 5106 2135 3 MP
XPP
X0 18 18 0 5106 2153 3 MP
XPP
X18 0 0 18 5106 2153 3 MP
XPP
X0 18 18 0 5124 388 3 MP
XPP
X18 0 0 18 5124 388 3 MP
XPP
X0 18 18 0 5124 406 3 MP
XPP
X18 0 0 18 5124 406 3 MP
XPP
X0.984127 sg
X0 17 18 0 5124 424 3 MP
XPP
X18 0 0 17 5124 424 3 MP
XPP
X0.920635 sg
X0 18 18 0 5124 441 3 MP
XPP
X18 0 0 18 5124 441 3 MP
XPP
X0.809524 sg
X0 18 18 0 5124 459 3 MP
XPP
X18 0 0 18 5124 459 3 MP
XPP
X0.714286 sg
X0 18 18 0 5124 477 3 MP
XPP
X18 0 0 18 5124 477 3 MP
XPP
X0.68254 sg
X0 18 18 0 5124 495 3 MP
XPP
X18 0 0 18 5124 495 3 MP
XPP
X0.666667 sg
X0 18 18 0 5124 513 3 MP
XPP
X18 0 0 18 5124 513 3 MP
XPP
X0 17 18 0 5124 531 3 MP
XPP
X18 0 0 17 5124 531 3 MP
XPP
X0 18 18 0 5124 548 3 MP
XPP
X18 0 0 18 5124 548 3 MP
XPP
X0 18 18 0 5124 566 3 MP
XPP
X18 0 0 18 5124 566 3 MP
XPP
X0 18 18 0 5124 584 3 MP
XPP
X18 0 0 18 5124 584 3 MP
XPP
X0 18 18 0 5124 602 3 MP
XPP
X18 0 0 18 5124 602 3 MP
XPP
X0 18 18 0 5124 620 3 MP
XPP
X18 0 0 18 5124 620 3 MP
XPP
X0 17 18 0 5124 638 3 MP
XPP
X18 0 0 17 5124 638 3 MP
XPP
X0 18 18 0 5124 655 3 MP
XPP
X18 0 0 18 5124 655 3 MP
XPP
X0 18 18 0 5124 673 3 MP
XPP
X18 0 0 18 5124 673 3 MP
XPP
X0 18 18 0 5124 691 3 MP
XPP
X18 0 0 18 5124 691 3 MP
XPP
X0 18 18 0 5124 709 3 MP
XPP
X18 0 0 18 5124 709 3 MP
XPP
X0 18 18 0 5124 727 3 MP
XPP
X18 0 0 18 5124 727 3 MP
XPP
X0 17 18 0 5124 745 3 MP
XPP
X18 0 0 17 5124 745 3 MP
XPP
X0 18 18 0 5124 762 3 MP
XPP
X18 0 0 18 5124 762 3 MP
XPP
X0.619048 sg
X0 18 18 0 5124 780 3 MP
XPP
X18 0 0 18 5124 780 3 MP
XPP
X0.52381 sg
X0 18 18 0 5124 798 3 MP
XPP
X18 0 0 18 5124 798 3 MP
XPP
X0.428571 sg
X0 18 18 0 5124 816 3 MP
XPP
X18 0 0 18 5124 816 3 MP
XPP
X0.349206 sg
X0 18 18 0 5124 834 3 MP
XPP
X18 0 0 18 5124 834 3 MP
XPP
X0.333333 sg
X0 17 18 0 5124 852 3 MP
XPP
X18 0 0 17 5124 852 3 MP
XPP
X0 18 18 0 5124 869 3 MP
XPP
X18 0 0 18 5124 869 3 MP
XPP
X0 18 18 0 5124 887 3 MP
XPP
X18 0 0 18 5124 887 3 MP
XPP
X0 18 18 0 5124 905 3 MP
XPP
X18 0 0 18 5124 905 3 MP
XPP
X0 18 18 0 5124 923 3 MP
XPP
X18 0 0 18 5124 923 3 MP
XPP
X0 18 18 0 5124 941 3 MP
XPP
X18 0 0 18 5124 941 3 MP
XPP
X0 17 18 0 5124 959 3 MP
XPP
X18 0 0 17 5124 959 3 MP
XPP
X0 18 18 0 5124 976 3 MP
XPP
X18 0 0 18 5124 976 3 MP
XPP
X0 18 18 0 5124 994 3 MP
XPP
X18 0 0 18 5124 994 3 MP
XPP
X0 18 18 0 5124 1012 3 MP
XPP
X18 0 0 18 5124 1012 3 MP
XPP
X0 18 18 0 5124 1030 3 MP
XPP
X18 0 0 18 5124 1030 3 MP
XPP
X0 18 18 0 5124 1048 3 MP
XPP
X18 0 0 18 5124 1048 3 MP
XPP
X0 17 18 0 5124 1066 3 MP
XPP
X18 0 0 17 5124 1066 3 MP
XPP
X0 18 18 0 5124 1083 3 MP
XPP
X18 0 0 18 5124 1083 3 MP
XPP
X0 18 18 0 5124 1101 3 MP
XPP
X18 0 0 18 5124 1101 3 MP
XPP
X0 18 18 0 5124 1119 3 MP
XPP
X18 0 0 18 5124 1119 3 MP
XPP
X0.380952 sg
X0 18 18 0 5124 1137 3 MP
XPP
X18 0 0 18 5124 1137 3 MP
XPP
X0.507937 sg
X0 18 18 0 5124 1155 3 MP
XPP
X18 0 0 18 5124 1155 3 MP
XPP
X0.730159 sg
X0 17 18 0 5124 1173 3 MP
XPP
X18 0 0 17 5124 1173 3 MP
XPP
X0.904762 sg
X0 18 18 0 5124 1190 3 MP
XPP
X18 0 0 18 5124 1190 3 MP
XPP
X1 sg
X0 18 18 0 5124 1208 3 MP
XPP
X18 0 0 18 5124 1208 3 MP
XPP
X0 18 18 0 5124 1226 3 MP
XPP
X18 0 0 18 5124 1226 3 MP
XPP
X0 18 18 0 5124 1244 3 MP
XPP
X18 0 0 18 5124 1244 3 MP
XPP
X0 17 18 0 5124 1262 3 MP
XPP
X18 0 0 17 5124 1262 3 MP
XPP
X0 18 18 0 5124 1279 3 MP
XPP
X18 0 0 18 5124 1279 3 MP
XPP
X0 18 18 0 5124 1297 3 MP
XPP
X18 0 0 18 5124 1297 3 MP
XPP
X0 18 18 0 5124 1315 3 MP
XPP
X18 0 0 18 5124 1315 3 MP
XPP
X0 18 18 0 5124 1333 3 MP
XPP
X18 0 0 18 5124 1333 3 MP
XPP
X0 18 18 0 5124 1351 3 MP
XPP
X18 0 0 18 5124 1351 3 MP
XPP
X0 17 18 0 5124 1369 3 MP
XPP
X18 0 0 17 5124 1369 3 MP
XPP
X0 18 18 0 5124 1386 3 MP
XPP
X18 0 0 18 5124 1386 3 MP
XPP
X0 18 18 0 5124 1404 3 MP
XPP
X18 0 0 18 5124 1404 3 MP
XPP
X0 18 18 0 5124 1422 3 MP
XPP
X18 0 0 18 5124 1422 3 MP
XPP
X0 18 18 0 5124 1440 3 MP
XPP
X18 0 0 18 5124 1440 3 MP
XPP
X0 18 18 0 5124 1458 3 MP
XPP
X18 0 0 18 5124 1458 3 MP
XPP
X0 17 18 0 5124 1476 3 MP
XPP
X18 0 0 17 5124 1476 3 MP
XPP
X0 18 18 0 5124 1493 3 MP
XPP
X18 0 0 18 5124 1493 3 MP
XPP
X0 18 18 0 5124 1511 3 MP
XPP
X18 0 0 18 5124 1511 3 MP
XPP
X0 18 18 0 5124 1529 3 MP
XPP
X18 0 0 18 5124 1529 3 MP
XPP
X0 18 18 0 5124 1547 3 MP
XPP
X18 0 0 18 5124 1547 3 MP
XPP
X0 18 18 0 5124 1565 3 MP
XPP
X18 0 0 18 5124 1565 3 MP
XPP
X0 17 18 0 5124 1583 3 MP
XPP
X18 0 0 17 5124 1583 3 MP
XPP
X0 18 18 0 5124 1600 3 MP
XPP
X18 0 0 18 5124 1600 3 MP
XPP
X0 18 18 0 5124 1618 3 MP
XPP
X18 0 0 18 5124 1618 3 MP
XPP
X0 18 18 0 5124 1636 3 MP
XPP
X18 0 0 18 5124 1636 3 MP
XPP
X0 18 18 0 5124 1654 3 MP
XPP
X18 0 0 18 5124 1654 3 MP
XPP
X0 18 18 0 5124 1672 3 MP
XPP
X18 0 0 18 5124 1672 3 MP
XPP
X0.936508 sg
X0 17 18 0 5124 1690 3 MP
XPP
X18 0 0 17 5124 1690 3 MP
XPP
X0.777778 sg
X0 18 18 0 5124 1707 3 MP
XPP
X18 0 0 18 5124 1707 3 MP
XPP
X0.666667 sg
X0 18 18 0 5124 1725 3 MP
XPP
X18 0 0 18 5124 1725 3 MP
XPP
X0.777778 sg
X0 18 18 0 5124 1743 3 MP
XPP
X18 0 0 18 5124 1743 3 MP
XPP
X0.936508 sg
X0 18 18 0 5124 1761 3 MP
XPP
X18 0 0 18 5124 1761 3 MP
XPP
X1 sg
X0 18 18 0 5124 1779 3 MP
XPP
X18 0 0 18 5124 1779 3 MP
XPP
X0 17 18 0 5124 1797 3 MP
XPP
X18 0 0 17 5124 1797 3 MP
XPP
X0 18 18 0 5124 1814 3 MP
XPP
X18 0 0 18 5124 1814 3 MP
XPP
X0 18 18 0 5124 1832 3 MP
XPP
X18 0 0 18 5124 1832 3 MP
XPP
X0 18 18 0 5124 1850 3 MP
XPP
X18 0 0 18 5124 1850 3 MP
XPP
X0 18 18 0 5124 1868 3 MP
XPP
X18 0 0 18 5124 1868 3 MP
XPP
X0 18 18 0 5124 1886 3 MP
XPP
X18 0 0 18 5124 1886 3 MP
XPP
X0 17 18 0 5124 1904 3 MP
XPP
X18 0 0 17 5124 1904 3 MP
XPP
X0 18 18 0 5124 1921 3 MP
XPP
X18 0 0 18 5124 1921 3 MP
XPP
X0 18 18 0 5124 1939 3 MP
XPP
X18 0 0 18 5124 1939 3 MP
XPP
X0 18 18 0 5124 1957 3 MP
XPP
X18 0 0 18 5124 1957 3 MP
XPP
X0 18 18 0 5124 1975 3 MP
XPP
X18 0 0 18 5124 1975 3 MP
XPP
X0 18 18 0 5124 1993 3 MP
XPP
X18 0 0 18 5124 1993 3 MP
XPP
X0 17 18 0 5124 2011 3 MP
XPP
X18 0 0 17 5124 2011 3 MP
XPP
X0 18 18 0 5124 2028 3 MP
XPP
X18 0 0 18 5124 2028 3 MP
XPP
X0 18 18 0 5124 2046 3 MP
XPP
X18 0 0 18 5124 2046 3 MP
XPP
X0 18 18 0 5124 2064 3 MP
XPP
X18 0 0 18 5124 2064 3 MP
XPP
X0 18 18 0 5124 2082 3 MP
XPP
X18 0 0 18 5124 2082 3 MP
XPP
X0 18 18 0 5124 2100 3 MP
XPP
X18 0 0 18 5124 2100 3 MP
XPP
X0 17 18 0 5124 2118 3 MP
XPP
X18 0 0 17 5124 2118 3 MP
XPP
X0 18 18 0 5124 2135 3 MP
XPP
X18 0 0 18 5124 2135 3 MP
XPP
X0 18 18 0 5124 2153 3 MP
XPP
X18 0 0 18 5124 2153 3 MP
XPP
X0 18 18 0 5142 388 3 MP
XPP
X18 0 0 18 5142 388 3 MP
XPP
X0 18 18 0 5142 406 3 MP
XPP
X18 0 0 18 5142 406 3 MP
XPP
X0.984127 sg
X0 17 18 0 5142 424 3 MP
XPP
X18 0 0 17 5142 424 3 MP
XPP
X0.904762 sg
X0 18 18 0 5142 441 3 MP
XPP
X18 0 0 18 5142 441 3 MP
XPP
X0.793651 sg
X0 18 18 0 5142 459 3 MP
XPP
X18 0 0 18 5142 459 3 MP
XPP
X0.698413 sg
X0 18 18 0 5142 477 3 MP
XPP
X18 0 0 18 5142 477 3 MP
XPP
X0.666667 sg
X0 18 18 0 5142 495 3 MP
XPP
X18 0 0 18 5142 495 3 MP
XPP
X0 18 18 0 5142 513 3 MP
XPP
X18 0 0 18 5142 513 3 MP
XPP
X0 17 18 0 5142 531 3 MP
XPP
X18 0 0 17 5142 531 3 MP
XPP
X0 18 18 0 5142 548 3 MP
XPP
X18 0 0 18 5142 548 3 MP
XPP
X0 18 18 0 5142 566 3 MP
XPP
X18 0 0 18 5142 566 3 MP
XPP
X0 18 18 0 5142 584 3 MP
XPP
X18 0 0 18 5142 584 3 MP
XPP
X0 18 18 0 5142 602 3 MP
XPP
X18 0 0 18 5142 602 3 MP
XPP
X0 18 18 0 5142 620 3 MP
XPP
X18 0 0 18 5142 620 3 MP
XPP
X0 17 18 0 5142 638 3 MP
XPP
X18 0 0 17 5142 638 3 MP
XPP
X0 18 18 0 5142 655 3 MP
XPP
X18 0 0 18 5142 655 3 MP
XPP
X0 18 18 0 5142 673 3 MP
XPP
X18 0 0 18 5142 673 3 MP
XPP
X0 18 18 0 5142 691 3 MP
XPP
X18 0 0 18 5142 691 3 MP
XPP
X0 18 18 0 5142 709 3 MP
XPP
X18 0 0 18 5142 709 3 MP
XPP
X0 18 18 0 5142 727 3 MP
XPP
X18 0 0 18 5142 727 3 MP
XPP
X0 17 18 0 5142 745 3 MP
XPP
X18 0 0 17 5142 745 3 MP
XPP
X0.650794 sg
X0 18 18 0 5142 762 3 MP
XPP
X18 0 0 18 5142 762 3 MP
XPP
X0.587302 sg
X0 18 18 0 5142 780 3 MP
XPP
X18 0 0 18 5142 780 3 MP
XPP
X0.47619 sg
X0 18 18 0 5142 798 3 MP
XPP
X18 0 0 18 5142 798 3 MP
XPP
X0.380952 sg
X0 18 18 0 5142 816 3 MP
XPP
X18 0 0 18 5142 816 3 MP
XPP
X0.333333 sg
X0 18 18 0 5142 834 3 MP
XPP
X18 0 0 18 5142 834 3 MP
XPP
X0 17 18 0 5142 852 3 MP
XPP
X18 0 0 17 5142 852 3 MP
XPP
X0 18 18 0 5142 869 3 MP
XPP
X18 0 0 18 5142 869 3 MP
XPP
X0 18 18 0 5142 887 3 MP
XPP
X18 0 0 18 5142 887 3 MP
XPP
X0 18 18 0 5142 905 3 MP
XPP
X18 0 0 18 5142 905 3 MP
XPP
X0 18 18 0 5142 923 3 MP
XPP
X18 0 0 18 5142 923 3 MP
XPP
X0 18 18 0 5142 941 3 MP
XPP
X18 0 0 18 5142 941 3 MP
XPP
X0 17 18 0 5142 959 3 MP
XPP
X18 0 0 17 5142 959 3 MP
XPP
X0 18 18 0 5142 976 3 MP
XPP
X18 0 0 18 5142 976 3 MP
XPP
X0 18 18 0 5142 994 3 MP
XPP
X18 0 0 18 5142 994 3 MP
XPP
X0 18 18 0 5142 1012 3 MP
XPP
X18 0 0 18 5142 1012 3 MP
XPP
X0 18 18 0 5142 1030 3 MP
XPP
X18 0 0 18 5142 1030 3 MP
XPP
X0 18 18 0 5142 1048 3 MP
XPP
X18 0 0 18 5142 1048 3 MP
XPP
X0 17 18 0 5142 1066 3 MP
XPP
X18 0 0 17 5142 1066 3 MP
XPP
X0 18 18 0 5142 1083 3 MP
XPP
X18 0 0 18 5142 1083 3 MP
XPP
X0 18 18 0 5142 1101 3 MP
XPP
X18 0 0 18 5142 1101 3 MP
XPP
X0 18 18 0 5142 1119 3 MP
XPP
X18 0 0 18 5142 1119 3 MP
XPP
X0.349206 sg
X0 18 18 0 5142 1137 3 MP
XPP
X18 0 0 18 5142 1137 3 MP
XPP
X0.428571 sg
X0 18 18 0 5142 1155 3 MP
XPP
X18 0 0 18 5142 1155 3 MP
XPP
X0.619048 sg
X0 17 18 0 5142 1173 3 MP
XPP
X18 0 0 17 5142 1173 3 MP
XPP
X0.84127 sg
X0 18 18 0 5142 1190 3 MP
XPP
X18 0 0 18 5142 1190 3 MP
XPP
X0.968254 sg
X0 18 18 0 5142 1208 3 MP
XPP
X18 0 0 18 5142 1208 3 MP
XPP
X1 sg
X0 18 18 0 5142 1226 3 MP
XPP
X18 0 0 18 5142 1226 3 MP
XPP
X0 18 18 0 5142 1244 3 MP
XPP
X18 0 0 18 5142 1244 3 MP
XPP
X0 17 18 0 5142 1262 3 MP
XPP
X18 0 0 17 5142 1262 3 MP
XPP
X0 18 18 0 5142 1279 3 MP
XPP
X18 0 0 18 5142 1279 3 MP
XPP
X0 18 18 0 5142 1297 3 MP
XPP
X18 0 0 18 5142 1297 3 MP
XPP
X0 18 18 0 5142 1315 3 MP
XPP
X18 0 0 18 5142 1315 3 MP
XPP
X0 18 18 0 5142 1333 3 MP
XPP
X18 0 0 18 5142 1333 3 MP
XPP
X0 18 18 0 5142 1351 3 MP
XPP
X18 0 0 18 5142 1351 3 MP
XPP
X0 17 18 0 5142 1369 3 MP
XPP
X18 0 0 17 5142 1369 3 MP
XPP
X0 18 18 0 5142 1386 3 MP
XPP
X18 0 0 18 5142 1386 3 MP
XPP
X0 18 18 0 5142 1404 3 MP
XPP
X18 0 0 18 5142 1404 3 MP
XPP
X0 18 18 0 5142 1422 3 MP
XPP
X18 0 0 18 5142 1422 3 MP
XPP
X0 18 18 0 5142 1440 3 MP
XPP
X18 0 0 18 5142 1440 3 MP
XPP
X0 18 18 0 5142 1458 3 MP
XPP
X18 0 0 18 5142 1458 3 MP
XPP
X0 17 18 0 5142 1476 3 MP
XPP
X18 0 0 17 5142 1476 3 MP
XPP
X0 18 18 0 5142 1493 3 MP
XPP
X18 0 0 18 5142 1493 3 MP
XPP
X0 18 18 0 5142 1511 3 MP
XPP
X18 0 0 18 5142 1511 3 MP
XPP
X0 18 18 0 5142 1529 3 MP
XPP
X18 0 0 18 5142 1529 3 MP
XPP
X0 18 18 0 5142 1547 3 MP
XPP
X18 0 0 18 5142 1547 3 MP
XPP
X0 18 18 0 5142 1565 3 MP
XPP
X18 0 0 18 5142 1565 3 MP
XPP
X0 17 18 0 5142 1583 3 MP
XPP
X18 0 0 17 5142 1583 3 MP
XPP
X0 18 18 0 5142 1600 3 MP
XPP
X18 0 0 18 5142 1600 3 MP
XPP
X0 18 18 0 5142 1618 3 MP
XPP
X18 0 0 18 5142 1618 3 MP
XPP
X0 18 18 0 5142 1636 3 MP
XPP
X18 0 0 18 5142 1636 3 MP
XPP
X0 18 18 0 5142 1654 3 MP
XPP
X18 0 0 18 5142 1654 3 MP
XPP
X0 18 18 0 5142 1672 3 MP
XPP
X18 0 0 18 5142 1672 3 MP
XPP
X0.920635 sg
X0 17 18 0 5142 1690 3 MP
XPP
X18 0 0 17 5142 1690 3 MP
XPP
X0.698413 sg
X0 18 18 0 5142 1707 3 MP
XPP
X18 0 0 18 5142 1707 3 MP
XPP
X0.555556 sg
X0 18 18 0 5142 1725 3 MP
XPP
X18 0 0 18 5142 1725 3 MP
XPP
X0.698413 sg
X0 18 18 0 5142 1743 3 MP
XPP
X18 0 0 18 5142 1743 3 MP
XPP
X0.920635 sg
X0 18 18 0 5142 1761 3 MP
XPP
X18 0 0 18 5142 1761 3 MP
XPP
X1 sg
X0 18 18 0 5142 1779 3 MP
XPP
X18 0 0 18 5142 1779 3 MP
XPP
X0 17 18 0 5142 1797 3 MP
XPP
X18 0 0 17 5142 1797 3 MP
XPP
X0 18 18 0 5142 1814 3 MP
XPP
X18 0 0 18 5142 1814 3 MP
XPP
X0 18 18 0 5142 1832 3 MP
XPP
X18 0 0 18 5142 1832 3 MP
XPP
X0 18 18 0 5142 1850 3 MP
XPP
X18 0 0 18 5142 1850 3 MP
XPP
X0 18 18 0 5142 1868 3 MP
XPP
X18 0 0 18 5142 1868 3 MP
XPP
X0 18 18 0 5142 1886 3 MP
XPP
X18 0 0 18 5142 1886 3 MP
XPP
X0 17 18 0 5142 1904 3 MP
XPP
X18 0 0 17 5142 1904 3 MP
XPP
X0 18 18 0 5142 1921 3 MP
XPP
X18 0 0 18 5142 1921 3 MP
XPP
X0 18 18 0 5142 1939 3 MP
XPP
X18 0 0 18 5142 1939 3 MP
XPP
X0 18 18 0 5142 1957 3 MP
XPP
X18 0 0 18 5142 1957 3 MP
XPP
X0 18 18 0 5142 1975 3 MP
XPP
X18 0 0 18 5142 1975 3 MP
XPP
X0 18 18 0 5142 1993 3 MP
XPP
X18 0 0 18 5142 1993 3 MP
XPP
X0 17 18 0 5142 2011 3 MP
XPP
X18 0 0 17 5142 2011 3 MP
XPP
X0 18 18 0 5142 2028 3 MP
XPP
X18 0 0 18 5142 2028 3 MP
XPP
X0 18 18 0 5142 2046 3 MP
XPP
X18 0 0 18 5142 2046 3 MP
XPP
X0 18 18 0 5142 2064 3 MP
XPP
X18 0 0 18 5142 2064 3 MP
XPP
X0 18 18 0 5142 2082 3 MP
XPP
X18 0 0 18 5142 2082 3 MP
XPP
X0 18 18 0 5142 2100 3 MP
XPP
X18 0 0 18 5142 2100 3 MP
XPP
X0 17 18 0 5142 2118 3 MP
XPP
X18 0 0 17 5142 2118 3 MP
XPP
X0 18 18 0 5142 2135 3 MP
XPP
X18 0 0 18 5142 2135 3 MP
XPP
X0 18 18 0 5142 2153 3 MP
XPP
X18 0 0 18 5142 2153 3 MP
XPP
X0 18 17 0 5160 388 3 MP
XPP
X17 0 0 18 5160 388 3 MP
XPP
X0 18 17 0 5160 406 3 MP
XPP
X17 0 0 18 5160 406 3 MP
XPP
X0.984127 sg
X0 17 17 0 5160 424 3 MP
XPP
X17 0 0 17 5160 424 3 MP
XPP
X0.888889 sg
X0 18 17 0 5160 441 3 MP
XPP
X17 0 0 18 5160 441 3 MP
XPP
X0.777778 sg
X0 18 17 0 5160 459 3 MP
XPP
X17 0 0 18 5160 459 3 MP
XPP
X0.698413 sg
X0 18 17 0 5160 477 3 MP
XPP
X17 0 0 18 5160 477 3 MP
XPP
X0.666667 sg
X0 18 17 0 5160 495 3 MP
XPP
X17 0 0 18 5160 495 3 MP
XPP
X0 18 17 0 5160 513 3 MP
XPP
X17 0 0 18 5160 513 3 MP
XPP
X0 17 17 0 5160 531 3 MP
XPP
X17 0 0 17 5160 531 3 MP
XPP
X0 18 17 0 5160 548 3 MP
XPP
X17 0 0 18 5160 548 3 MP
XPP
X0 18 17 0 5160 566 3 MP
XPP
X17 0 0 18 5160 566 3 MP
XPP
X0 18 17 0 5160 584 3 MP
XPP
X17 0 0 18 5160 584 3 MP
XPP
X0 18 17 0 5160 602 3 MP
XPP
X17 0 0 18 5160 602 3 MP
XPP
X0 18 17 0 5160 620 3 MP
XPP
X17 0 0 18 5160 620 3 MP
XPP
X0 17 17 0 5160 638 3 MP
XPP
X17 0 0 17 5160 638 3 MP
XPP
X0 18 17 0 5160 655 3 MP
XPP
X17 0 0 18 5160 655 3 MP
XPP
X0 18 17 0 5160 673 3 MP
XPP
X17 0 0 18 5160 673 3 MP
XPP
X0 18 17 0 5160 691 3 MP
XPP
X17 0 0 18 5160 691 3 MP
XPP
X0 18 17 0 5160 709 3 MP
XPP
X17 0 0 18 5160 709 3 MP
XPP
X0 18 17 0 5160 727 3 MP
XPP
X17 0 0 18 5160 727 3 MP
XPP
X0 17 17 0 5160 745 3 MP
XPP
X17 0 0 17 5160 745 3 MP
XPP
X0.650794 sg
X0 18 17 0 5160 762 3 MP
XPP
X17 0 0 18 5160 762 3 MP
XPP
X0.571429 sg
X0 18 17 0 5160 780 3 MP
XPP
X17 0 0 18 5160 780 3 MP
XPP
X0.444444 sg
X0 18 17 0 5160 798 3 MP
XPP
X17 0 0 18 5160 798 3 MP
XPP
X0.365079 sg
X0 18 17 0 5160 816 3 MP
XPP
X17 0 0 18 5160 816 3 MP
XPP
X0.333333 sg
X0 18 17 0 5160 834 3 MP
XPP
X17 0 0 18 5160 834 3 MP
XPP
X0 17 17 0 5160 852 3 MP
XPP
X17 0 0 17 5160 852 3 MP
XPP
X0 18 17 0 5160 869 3 MP
XPP
X17 0 0 18 5160 869 3 MP
XPP
X0 18 17 0 5160 887 3 MP
XPP
X17 0 0 18 5160 887 3 MP
XPP
X0 18 17 0 5160 905 3 MP
XPP
X17 0 0 18 5160 905 3 MP
XPP
X0 18 17 0 5160 923 3 MP
XPP
X17 0 0 18 5160 923 3 MP
XPP
X0 18 17 0 5160 941 3 MP
XPP
X17 0 0 18 5160 941 3 MP
XPP
X0 17 17 0 5160 959 3 MP
XPP
X17 0 0 17 5160 959 3 MP
XPP
X0 18 17 0 5160 976 3 MP
XPP
X17 0 0 18 5160 976 3 MP
XPP
X0 18 17 0 5160 994 3 MP
XPP
X17 0 0 18 5160 994 3 MP
XPP
X0 18 17 0 5160 1012 3 MP
XPP
X17 0 0 18 5160 1012 3 MP
XPP
X0 18 17 0 5160 1030 3 MP
XPP
X17 0 0 18 5160 1030 3 MP
XPP
X0 18 17 0 5160 1048 3 MP
XPP
X17 0 0 18 5160 1048 3 MP
XPP
X0 17 17 0 5160 1066 3 MP
XPP
X17 0 0 17 5160 1066 3 MP
XPP
X0 18 17 0 5160 1083 3 MP
XPP
X17 0 0 18 5160 1083 3 MP
XPP
X0 18 17 0 5160 1101 3 MP
XPP
X17 0 0 18 5160 1101 3 MP
XPP
X0 18 17 0 5160 1119 3 MP
XPP
X17 0 0 18 5160 1119 3 MP
XPP
X0 18 17 0 5160 1137 3 MP
XPP
X17 0 0 18 5160 1137 3 MP
XPP
X0.396825 sg
X0 18 17 0 5160 1155 3 MP
XPP
X17 0 0 18 5160 1155 3 MP
XPP
X0.571429 sg
X0 17 17 0 5160 1173 3 MP
XPP
X17 0 0 17 5160 1173 3 MP
XPP
X0.809524 sg
X0 18 17 0 5160 1190 3 MP
XPP
X17 0 0 18 5160 1190 3 MP
XPP
X0.968254 sg
X0 18 17 0 5160 1208 3 MP
XPP
X17 0 0 18 5160 1208 3 MP
XPP
X1 sg
X0 18 17 0 5160 1226 3 MP
XPP
X17 0 0 18 5160 1226 3 MP
XPP
X0 18 17 0 5160 1244 3 MP
XPP
X17 0 0 18 5160 1244 3 MP
XPP
X0 17 17 0 5160 1262 3 MP
XPP
X17 0 0 17 5160 1262 3 MP
XPP
X0 18 17 0 5160 1279 3 MP
XPP
X17 0 0 18 5160 1279 3 MP
XPP
X0 18 17 0 5160 1297 3 MP
XPP
X17 0 0 18 5160 1297 3 MP
XPP
X0 18 17 0 5160 1315 3 MP
XPP
X17 0 0 18 5160 1315 3 MP
XPP
X0 18 17 0 5160 1333 3 MP
XPP
X17 0 0 18 5160 1333 3 MP
XPP
X0 18 17 0 5160 1351 3 MP
XPP
X17 0 0 18 5160 1351 3 MP
XPP
X0 17 17 0 5160 1369 3 MP
XPP
X17 0 0 17 5160 1369 3 MP
XPP
X0 18 17 0 5160 1386 3 MP
XPP
X17 0 0 18 5160 1386 3 MP
XPP
X0 18 17 0 5160 1404 3 MP
XPP
X17 0 0 18 5160 1404 3 MP
XPP
X0 18 17 0 5160 1422 3 MP
XPP
X17 0 0 18 5160 1422 3 MP
XPP
X0 18 17 0 5160 1440 3 MP
XPP
X17 0 0 18 5160 1440 3 MP
XPP
X0 18 17 0 5160 1458 3 MP
XPP
X17 0 0 18 5160 1458 3 MP
XPP
X0 17 17 0 5160 1476 3 MP
XPP
X17 0 0 17 5160 1476 3 MP
XPP
X0 18 17 0 5160 1493 3 MP
XPP
X17 0 0 18 5160 1493 3 MP
XPP
X0 18 17 0 5160 1511 3 MP
XPP
X17 0 0 18 5160 1511 3 MP
XPP
X0 18 17 0 5160 1529 3 MP
XPP
X17 0 0 18 5160 1529 3 MP
XPP
X0 18 17 0 5160 1547 3 MP
XPP
X17 0 0 18 5160 1547 3 MP
XPP
X0 18 17 0 5160 1565 3 MP
XPP
X17 0 0 18 5160 1565 3 MP
XPP
X0 17 17 0 5160 1583 3 MP
XPP
X17 0 0 17 5160 1583 3 MP
XPP
X0 18 17 0 5160 1600 3 MP
XPP
X17 0 0 18 5160 1600 3 MP
XPP
X0 18 17 0 5160 1618 3 MP
XPP
X17 0 0 18 5160 1618 3 MP
XPP
X0 18 17 0 5160 1636 3 MP
XPP
X17 0 0 18 5160 1636 3 MP
XPP
X0 18 17 0 5160 1654 3 MP
XPP
X17 0 0 18 5160 1654 3 MP
XPP
X0 18 17 0 5160 1672 3 MP
XPP
X17 0 0 18 5160 1672 3 MP
XPP
X0.904762 sg
X0 17 17 0 5160 1690 3 MP
XPP
X17 0 0 17 5160 1690 3 MP
XPP
X0.68254 sg
X0 18 17 0 5160 1707 3 MP
XPP
X17 0 0 18 5160 1707 3 MP
XPP
X0.507937 sg
X0 18 17 0 5160 1725 3 MP
XPP
X17 0 0 18 5160 1725 3 MP
XPP
X0.68254 sg
X0 18 17 0 5160 1743 3 MP
XPP
X17 0 0 18 5160 1743 3 MP
XPP
X0.904762 sg
X0 18 17 0 5160 1761 3 MP
XPP
X17 0 0 18 5160 1761 3 MP
XPP
X1 sg
X0 18 17 0 5160 1779 3 MP
XPP
X17 0 0 18 5160 1779 3 MP
XPP
X0 17 17 0 5160 1797 3 MP
XPP
X17 0 0 17 5160 1797 3 MP
XPP
X0 18 17 0 5160 1814 3 MP
XPP
X17 0 0 18 5160 1814 3 MP
XPP
X0 18 17 0 5160 1832 3 MP
XPP
X17 0 0 18 5160 1832 3 MP
XPP
X0 18 17 0 5160 1850 3 MP
XPP
X17 0 0 18 5160 1850 3 MP
XPP
X0 18 17 0 5160 1868 3 MP
XPP
X17 0 0 18 5160 1868 3 MP
XPP
X0 18 17 0 5160 1886 3 MP
XPP
X17 0 0 18 5160 1886 3 MP
XPP
X0 17 17 0 5160 1904 3 MP
XPP
X17 0 0 17 5160 1904 3 MP
XPP
X0 18 17 0 5160 1921 3 MP
XPP
X17 0 0 18 5160 1921 3 MP
XPP
X0 18 17 0 5160 1939 3 MP
XPP
X17 0 0 18 5160 1939 3 MP
XPP
X0 18 17 0 5160 1957 3 MP
XPP
X17 0 0 18 5160 1957 3 MP
XPP
X0 18 17 0 5160 1975 3 MP
XPP
X17 0 0 18 5160 1975 3 MP
XPP
X0 18 17 0 5160 1993 3 MP
XPP
X17 0 0 18 5160 1993 3 MP
XPP
X0 17 17 0 5160 2011 3 MP
XPP
X17 0 0 17 5160 2011 3 MP
XPP
X0 18 17 0 5160 2028 3 MP
XPP
X17 0 0 18 5160 2028 3 MP
XPP
X0 18 17 0 5160 2046 3 MP
XPP
X17 0 0 18 5160 2046 3 MP
XPP
X0 18 17 0 5160 2064 3 MP
XPP
X17 0 0 18 5160 2064 3 MP
XPP
X0 18 17 0 5160 2082 3 MP
XPP
X17 0 0 18 5160 2082 3 MP
XPP
X0 18 17 0 5160 2100 3 MP
XPP
X17 0 0 18 5160 2100 3 MP
XPP
X0 17 17 0 5160 2118 3 MP
XPP
X17 0 0 17 5160 2118 3 MP
XPP
X0 18 17 0 5160 2135 3 MP
XPP
X17 0 0 18 5160 2135 3 MP
XPP
X0 18 17 0 5160 2153 3 MP
XPP
X17 0 0 18 5160 2153 3 MP
XPP
X0 18 18 0 5177 388 3 MP
XPP
X18 0 0 18 5177 388 3 MP
XPP
X0 18 18 0 5177 406 3 MP
XPP
X18 0 0 18 5177 406 3 MP
XPP
X0.952381 sg
X0 17 18 0 5177 424 3 MP
XPP
X18 0 0 17 5177 424 3 MP
XPP
X0.857143 sg
X0 18 18 0 5177 441 3 MP
XPP
X18 0 0 18 5177 441 3 MP
XPP
X0.746032 sg
X0 18 18 0 5177 459 3 MP
XPP
X18 0 0 18 5177 459 3 MP
XPP
X0.68254 sg
X0 18 18 0 5177 477 3 MP
XPP
X18 0 0 18 5177 477 3 MP
XPP
X0.666667 sg
X0 18 18 0 5177 495 3 MP
XPP
X18 0 0 18 5177 495 3 MP
XPP
X0 18 18 0 5177 513 3 MP
XPP
X18 0 0 18 5177 513 3 MP
XPP
X0 17 18 0 5177 531 3 MP
XPP
X18 0 0 17 5177 531 3 MP
XPP
X0 18 18 0 5177 548 3 MP
XPP
X18 0 0 18 5177 548 3 MP
XPP
X0 18 18 0 5177 566 3 MP
XPP
X18 0 0 18 5177 566 3 MP
XPP
X0 18 18 0 5177 584 3 MP
XPP
X18 0 0 18 5177 584 3 MP
XPP
X0 18 18 0 5177 602 3 MP
XPP
X18 0 0 18 5177 602 3 MP
XPP
X0 18 18 0 5177 620 3 MP
XPP
X18 0 0 18 5177 620 3 MP
XPP
X0 17 18 0 5177 638 3 MP
XPP
X18 0 0 17 5177 638 3 MP
XPP
X0 18 18 0 5177 655 3 MP
XPP
X18 0 0 18 5177 655 3 MP
XPP
X0 18 18 0 5177 673 3 MP
XPP
X18 0 0 18 5177 673 3 MP
XPP
X0 18 18 0 5177 691 3 MP
XPP
X18 0 0 18 5177 691 3 MP
XPP
X0 18 18 0 5177 709 3 MP
XPP
X18 0 0 18 5177 709 3 MP
XPP
X0 18 18 0 5177 727 3 MP
XPP
X18 0 0 18 5177 727 3 MP
XPP
X0 17 18 0 5177 745 3 MP
XPP
X18 0 0 17 5177 745 3 MP
XPP
X0.634921 sg
X0 18 18 0 5177 762 3 MP
XPP
X18 0 0 18 5177 762 3 MP
XPP
X0.555556 sg
X0 18 18 0 5177 780 3 MP
XPP
X18 0 0 18 5177 780 3 MP
XPP
X0.428571 sg
X0 18 18 0 5177 798 3 MP
XPP
X18 0 0 18 5177 798 3 MP
XPP
X0.349206 sg
X0 18 18 0 5177 816 3 MP
XPP
X18 0 0 18 5177 816 3 MP
XPP
X0.333333 sg
X0 18 18 0 5177 834 3 MP
XPP
X18 0 0 18 5177 834 3 MP
XPP
X0 17 18 0 5177 852 3 MP
XPP
X18 0 0 17 5177 852 3 MP
XPP
X0 18 18 0 5177 869 3 MP
XPP
X18 0 0 18 5177 869 3 MP
XPP
X0 18 18 0 5177 887 3 MP
XPP
X18 0 0 18 5177 887 3 MP
XPP
X0 18 18 0 5177 905 3 MP
XPP
X18 0 0 18 5177 905 3 MP
XPP
X0 18 18 0 5177 923 3 MP
XPP
X18 0 0 18 5177 923 3 MP
XPP
X0 18 18 0 5177 941 3 MP
XPP
X18 0 0 18 5177 941 3 MP
XPP
X0 17 18 0 5177 959 3 MP
XPP
X18 0 0 17 5177 959 3 MP
XPP
X0 18 18 0 5177 976 3 MP
XPP
X18 0 0 18 5177 976 3 MP
XPP
X0 18 18 0 5177 994 3 MP
XPP
X18 0 0 18 5177 994 3 MP
XPP
X0 18 18 0 5177 1012 3 MP
XPP
X18 0 0 18 5177 1012 3 MP
XPP
X0 18 18 0 5177 1030 3 MP
XPP
X18 0 0 18 5177 1030 3 MP
XPP
X0 18 18 0 5177 1048 3 MP
XPP
X18 0 0 18 5177 1048 3 MP
XPP
X0 17 18 0 5177 1066 3 MP
XPP
X18 0 0 17 5177 1066 3 MP
XPP
X0 18 18 0 5177 1083 3 MP
XPP
X18 0 0 18 5177 1083 3 MP
XPP
X0 18 18 0 5177 1101 3 MP
XPP
X18 0 0 18 5177 1101 3 MP
XPP
X0 18 18 0 5177 1119 3 MP
XPP
X18 0 0 18 5177 1119 3 MP
XPP
X0 18 18 0 5177 1137 3 MP
XPP
X18 0 0 18 5177 1137 3 MP
XPP
X0.380952 sg
X0 18 18 0 5177 1155 3 MP
XPP
X18 0 0 18 5177 1155 3 MP
XPP
X0.539683 sg
X0 17 18 0 5177 1173 3 MP
XPP
X18 0 0 17 5177 1173 3 MP
XPP
X0.777778 sg
X0 18 18 0 5177 1190 3 MP
XPP
X18 0 0 18 5177 1190 3 MP
XPP
X0.952381 sg
X0 18 18 0 5177 1208 3 MP
XPP
X18 0 0 18 5177 1208 3 MP
XPP
X1 sg
X0 18 18 0 5177 1226 3 MP
XPP
X18 0 0 18 5177 1226 3 MP
XPP
X0 18 18 0 5177 1244 3 MP
XPP
X18 0 0 18 5177 1244 3 MP
XPP
X0 17 18 0 5177 1262 3 MP
XPP
X18 0 0 17 5177 1262 3 MP
XPP
X0 18 18 0 5177 1279 3 MP
XPP
X18 0 0 18 5177 1279 3 MP
XPP
X0 18 18 0 5177 1297 3 MP
XPP
X18 0 0 18 5177 1297 3 MP
XPP
X0 18 18 0 5177 1315 3 MP
XPP
X18 0 0 18 5177 1315 3 MP
XPP
X0 18 18 0 5177 1333 3 MP
XPP
X18 0 0 18 5177 1333 3 MP
XPP
X0 18 18 0 5177 1351 3 MP
XPP
X18 0 0 18 5177 1351 3 MP
XPP
X0 17 18 0 5177 1369 3 MP
XPP
X18 0 0 17 5177 1369 3 MP
XPP
X0 18 18 0 5177 1386 3 MP
XPP
X18 0 0 18 5177 1386 3 MP
XPP
X0 18 18 0 5177 1404 3 MP
XPP
X18 0 0 18 5177 1404 3 MP
XPP
X0 18 18 0 5177 1422 3 MP
XPP
X18 0 0 18 5177 1422 3 MP
XPP
X0 18 18 0 5177 1440 3 MP
XPP
X18 0 0 18 5177 1440 3 MP
XPP
X0 18 18 0 5177 1458 3 MP
XPP
X18 0 0 18 5177 1458 3 MP
XPP
X0 17 18 0 5177 1476 3 MP
XPP
X18 0 0 17 5177 1476 3 MP
XPP
X0 18 18 0 5177 1493 3 MP
XPP
X18 0 0 18 5177 1493 3 MP
XPP
X0 18 18 0 5177 1511 3 MP
XPP
X18 0 0 18 5177 1511 3 MP
XPP
X0 18 18 0 5177 1529 3 MP
XPP
X18 0 0 18 5177 1529 3 MP
XPP
X0 18 18 0 5177 1547 3 MP
XPP
X18 0 0 18 5177 1547 3 MP
XPP
X0 18 18 0 5177 1565 3 MP
XPP
X18 0 0 18 5177 1565 3 MP
XPP
X0 17 18 0 5177 1583 3 MP
XPP
X18 0 0 17 5177 1583 3 MP
XPP
X0 18 18 0 5177 1600 3 MP
XPP
X18 0 0 18 5177 1600 3 MP
XPP
X0 18 18 0 5177 1618 3 MP
XPP
X18 0 0 18 5177 1618 3 MP
XPP
X0 18 18 0 5177 1636 3 MP
XPP
X18 0 0 18 5177 1636 3 MP
XPP
X0 18 18 0 5177 1654 3 MP
XPP
X18 0 0 18 5177 1654 3 MP
XPP
X0 18 18 0 5177 1672 3 MP
XPP
X18 0 0 18 5177 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5177 1690 3 MP
XPP
X18 0 0 17 5177 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5177 1707 3 MP
XPP
X18 0 0 18 5177 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5177 1725 3 MP
XPP
X18 0 0 18 5177 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5177 1743 3 MP
XPP
X18 0 0 18 5177 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5177 1761 3 MP
XPP
X18 0 0 18 5177 1761 3 MP
XPP
X1 sg
X0 18 18 0 5177 1779 3 MP
XPP
X18 0 0 18 5177 1779 3 MP
XPP
X0 17 18 0 5177 1797 3 MP
XPP
X18 0 0 17 5177 1797 3 MP
XPP
X0 18 18 0 5177 1814 3 MP
XPP
X18 0 0 18 5177 1814 3 MP
XPP
X0 18 18 0 5177 1832 3 MP
XPP
X18 0 0 18 5177 1832 3 MP
XPP
X0 18 18 0 5177 1850 3 MP
XPP
X18 0 0 18 5177 1850 3 MP
XPP
X0 18 18 0 5177 1868 3 MP
XPP
X18 0 0 18 5177 1868 3 MP
XPP
X0 18 18 0 5177 1886 3 MP
XPP
X18 0 0 18 5177 1886 3 MP
XPP
X0 17 18 0 5177 1904 3 MP
XPP
X18 0 0 17 5177 1904 3 MP
XPP
X0 18 18 0 5177 1921 3 MP
XPP
X18 0 0 18 5177 1921 3 MP
XPP
X0 18 18 0 5177 1939 3 MP
XPP
X18 0 0 18 5177 1939 3 MP
XPP
X0 18 18 0 5177 1957 3 MP
XPP
X18 0 0 18 5177 1957 3 MP
XPP
X0 18 18 0 5177 1975 3 MP
XPP
X18 0 0 18 5177 1975 3 MP
XPP
X0 18 18 0 5177 1993 3 MP
XPP
X18 0 0 18 5177 1993 3 MP
XPP
X0 17 18 0 5177 2011 3 MP
XPP
X18 0 0 17 5177 2011 3 MP
XPP
X0 18 18 0 5177 2028 3 MP
XPP
X18 0 0 18 5177 2028 3 MP
XPP
X0 18 18 0 5177 2046 3 MP
XPP
X18 0 0 18 5177 2046 3 MP
XPP
X0 18 18 0 5177 2064 3 MP
XPP
X18 0 0 18 5177 2064 3 MP
XPP
X0 18 18 0 5177 2082 3 MP
XPP
X18 0 0 18 5177 2082 3 MP
XPP
X0 18 18 0 5177 2100 3 MP
XPP
X18 0 0 18 5177 2100 3 MP
XPP
X0 17 18 0 5177 2118 3 MP
XPP
X18 0 0 17 5177 2118 3 MP
XPP
X0 18 18 0 5177 2135 3 MP
XPP
X18 0 0 18 5177 2135 3 MP
XPP
X0 18 18 0 5177 2153 3 MP
XPP
X18 0 0 18 5177 2153 3 MP
XPP
X0 18 18 0 5195 388 3 MP
XPP
X18 0 0 18 5195 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5195 406 3 MP
XPP
X18 0 0 18 5195 406 3 MP
XPP
X0.920635 sg
X0 17 18 0 5195 424 3 MP
XPP
X18 0 0 17 5195 424 3 MP
XPP
X0.809524 sg
X0 18 18 0 5195 441 3 MP
XPP
X18 0 0 18 5195 441 3 MP
XPP
X0.714286 sg
X0 18 18 0 5195 459 3 MP
XPP
X18 0 0 18 5195 459 3 MP
XPP
X0.68254 sg
X0 18 18 0 5195 477 3 MP
XPP
X18 0 0 18 5195 477 3 MP
XPP
X0.666667 sg
X0 18 18 0 5195 495 3 MP
XPP
X18 0 0 18 5195 495 3 MP
XPP
X0 18 18 0 5195 513 3 MP
XPP
X18 0 0 18 5195 513 3 MP
XPP
X0 17 18 0 5195 531 3 MP
XPP
X18 0 0 17 5195 531 3 MP
XPP
X0 18 18 0 5195 548 3 MP
XPP
X18 0 0 18 5195 548 3 MP
XPP
X0 18 18 0 5195 566 3 MP
XPP
X18 0 0 18 5195 566 3 MP
XPP
X0 18 18 0 5195 584 3 MP
XPP
X18 0 0 18 5195 584 3 MP
XPP
X0 18 18 0 5195 602 3 MP
XPP
X18 0 0 18 5195 602 3 MP
XPP
X0 18 18 0 5195 620 3 MP
XPP
X18 0 0 18 5195 620 3 MP
XPP
X0 17 18 0 5195 638 3 MP
XPP
X18 0 0 17 5195 638 3 MP
XPP
X0 18 18 0 5195 655 3 MP
XPP
X18 0 0 18 5195 655 3 MP
XPP
X0 18 18 0 5195 673 3 MP
XPP
X18 0 0 18 5195 673 3 MP
XPP
X0 18 18 0 5195 691 3 MP
XPP
X18 0 0 18 5195 691 3 MP
XPP
X0 18 18 0 5195 709 3 MP
XPP
X18 0 0 18 5195 709 3 MP
XPP
X0 18 18 0 5195 727 3 MP
XPP
X18 0 0 18 5195 727 3 MP
XPP
X0 17 18 0 5195 745 3 MP
XPP
X18 0 0 17 5195 745 3 MP
XPP
X0.619048 sg
X0 18 18 0 5195 762 3 MP
XPP
X18 0 0 18 5195 762 3 MP
XPP
X0.52381 sg
X0 18 18 0 5195 780 3 MP
XPP
X18 0 0 18 5195 780 3 MP
XPP
X0.412698 sg
X0 18 18 0 5195 798 3 MP
XPP
X18 0 0 18 5195 798 3 MP
XPP
X0.349206 sg
X0 18 18 0 5195 816 3 MP
XPP
X18 0 0 18 5195 816 3 MP
XPP
X0.333333 sg
X0 18 18 0 5195 834 3 MP
XPP
X18 0 0 18 5195 834 3 MP
XPP
X0 17 18 0 5195 852 3 MP
XPP
X18 0 0 17 5195 852 3 MP
XPP
X0 18 18 0 5195 869 3 MP
XPP
X18 0 0 18 5195 869 3 MP
XPP
X0 18 18 0 5195 887 3 MP
XPP
X18 0 0 18 5195 887 3 MP
XPP
X0 18 18 0 5195 905 3 MP
XPP
X18 0 0 18 5195 905 3 MP
XPP
X0 18 18 0 5195 923 3 MP
XPP
X18 0 0 18 5195 923 3 MP
XPP
X0 18 18 0 5195 941 3 MP
XPP
X18 0 0 18 5195 941 3 MP
XPP
X0 17 18 0 5195 959 3 MP
XPP
X18 0 0 17 5195 959 3 MP
XPP
X0 18 18 0 5195 976 3 MP
XPP
X18 0 0 18 5195 976 3 MP
XPP
X0 18 18 0 5195 994 3 MP
XPP
X18 0 0 18 5195 994 3 MP
XPP
X0 18 18 0 5195 1012 3 MP
XPP
X18 0 0 18 5195 1012 3 MP
XPP
X0 18 18 0 5195 1030 3 MP
XPP
X18 0 0 18 5195 1030 3 MP
XPP
X0 18 18 0 5195 1048 3 MP
XPP
X18 0 0 18 5195 1048 3 MP
XPP
X0 17 18 0 5195 1066 3 MP
XPP
X18 0 0 17 5195 1066 3 MP
XPP
X0 18 18 0 5195 1083 3 MP
XPP
X18 0 0 18 5195 1083 3 MP
XPP
X0 18 18 0 5195 1101 3 MP
XPP
X18 0 0 18 5195 1101 3 MP
XPP
X0 18 18 0 5195 1119 3 MP
XPP
X18 0 0 18 5195 1119 3 MP
XPP
X0 18 18 0 5195 1137 3 MP
XPP
X18 0 0 18 5195 1137 3 MP
XPP
X0.365079 sg
X0 18 18 0 5195 1155 3 MP
XPP
X18 0 0 18 5195 1155 3 MP
XPP
X0.492063 sg
X0 17 18 0 5195 1173 3 MP
XPP
X18 0 0 17 5195 1173 3 MP
XPP
X0.714286 sg
X0 18 18 0 5195 1190 3 MP
XPP
X18 0 0 18 5195 1190 3 MP
XPP
X0.904762 sg
X0 18 18 0 5195 1208 3 MP
XPP
X18 0 0 18 5195 1208 3 MP
XPP
X1 sg
X0 18 18 0 5195 1226 3 MP
XPP
X18 0 0 18 5195 1226 3 MP
XPP
X0 18 18 0 5195 1244 3 MP
XPP
X18 0 0 18 5195 1244 3 MP
XPP
X0 17 18 0 5195 1262 3 MP
XPP
X18 0 0 17 5195 1262 3 MP
XPP
X0 18 18 0 5195 1279 3 MP
XPP
X18 0 0 18 5195 1279 3 MP
XPP
X0 18 18 0 5195 1297 3 MP
XPP
X18 0 0 18 5195 1297 3 MP
XPP
X0 18 18 0 5195 1315 3 MP
XPP
X18 0 0 18 5195 1315 3 MP
XPP
X0 18 18 0 5195 1333 3 MP
XPP
X18 0 0 18 5195 1333 3 MP
XPP
X0 18 18 0 5195 1351 3 MP
XPP
X18 0 0 18 5195 1351 3 MP
XPP
X0 17 18 0 5195 1369 3 MP
XPP
X18 0 0 17 5195 1369 3 MP
XPP
X0 18 18 0 5195 1386 3 MP
XPP
X18 0 0 18 5195 1386 3 MP
XPP
X0 18 18 0 5195 1404 3 MP
XPP
X18 0 0 18 5195 1404 3 MP
XPP
X0 18 18 0 5195 1422 3 MP
XPP
X18 0 0 18 5195 1422 3 MP
XPP
X0 18 18 0 5195 1440 3 MP
XPP
X18 0 0 18 5195 1440 3 MP
XPP
X0 18 18 0 5195 1458 3 MP
XPP
X18 0 0 18 5195 1458 3 MP
XPP
X0 17 18 0 5195 1476 3 MP
XPP
X18 0 0 17 5195 1476 3 MP
XPP
X0 18 18 0 5195 1493 3 MP
XPP
X18 0 0 18 5195 1493 3 MP
XPP
X0 18 18 0 5195 1511 3 MP
XPP
X18 0 0 18 5195 1511 3 MP
XPP
X0 18 18 0 5195 1529 3 MP
XPP
X18 0 0 18 5195 1529 3 MP
XPP
X0 18 18 0 5195 1547 3 MP
XPP
X18 0 0 18 5195 1547 3 MP
XPP
X0 18 18 0 5195 1565 3 MP
XPP
X18 0 0 18 5195 1565 3 MP
XPP
X0 17 18 0 5195 1583 3 MP
XPP
X18 0 0 17 5195 1583 3 MP
XPP
X0 18 18 0 5195 1600 3 MP
XPP
X18 0 0 18 5195 1600 3 MP
XPP
X0 18 18 0 5195 1618 3 MP
XPP
X18 0 0 18 5195 1618 3 MP
XPP
X0 18 18 0 5195 1636 3 MP
XPP
X18 0 0 18 5195 1636 3 MP
XPP
X0 18 18 0 5195 1654 3 MP
XPP
X18 0 0 18 5195 1654 3 MP
XPP
X0 18 18 0 5195 1672 3 MP
XPP
X18 0 0 18 5195 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5195 1690 3 MP
XPP
X18 0 0 17 5195 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5195 1707 3 MP
XPP
X18 0 0 18 5195 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5195 1725 3 MP
XPP
X18 0 0 18 5195 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5195 1743 3 MP
XPP
X18 0 0 18 5195 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5195 1761 3 MP
XPP
X18 0 0 18 5195 1761 3 MP
XPP
X1 sg
X0 18 18 0 5195 1779 3 MP
XPP
X18 0 0 18 5195 1779 3 MP
XPP
X0 17 18 0 5195 1797 3 MP
XPP
X18 0 0 17 5195 1797 3 MP
XPP
X0 18 18 0 5195 1814 3 MP
XPP
X18 0 0 18 5195 1814 3 MP
XPP
X0 18 18 0 5195 1832 3 MP
XPP
X18 0 0 18 5195 1832 3 MP
XPP
X0 18 18 0 5195 1850 3 MP
XPP
X18 0 0 18 5195 1850 3 MP
XPP
X0 18 18 0 5195 1868 3 MP
XPP
X18 0 0 18 5195 1868 3 MP
XPP
X0 18 18 0 5195 1886 3 MP
XPP
X18 0 0 18 5195 1886 3 MP
XPP
X0 17 18 0 5195 1904 3 MP
XPP
X18 0 0 17 5195 1904 3 MP
XPP
X0 18 18 0 5195 1921 3 MP
XPP
X18 0 0 18 5195 1921 3 MP
XPP
X0 18 18 0 5195 1939 3 MP
XPP
X18 0 0 18 5195 1939 3 MP
XPP
X0 18 18 0 5195 1957 3 MP
XPP
X18 0 0 18 5195 1957 3 MP
XPP
X0 18 18 0 5195 1975 3 MP
XPP
X18 0 0 18 5195 1975 3 MP
XPP
X0 18 18 0 5195 1993 3 MP
XPP
X18 0 0 18 5195 1993 3 MP
XPP
X0 17 18 0 5195 2011 3 MP
XPP
X18 0 0 17 5195 2011 3 MP
XPP
X0 18 18 0 5195 2028 3 MP
XPP
X18 0 0 18 5195 2028 3 MP
XPP
X0 18 18 0 5195 2046 3 MP
XPP
X18 0 0 18 5195 2046 3 MP
XPP
X0 18 18 0 5195 2064 3 MP
XPP
X18 0 0 18 5195 2064 3 MP
XPP
X0 18 18 0 5195 2082 3 MP
XPP
X18 0 0 18 5195 2082 3 MP
XPP
X0 18 18 0 5195 2100 3 MP
XPP
X18 0 0 18 5195 2100 3 MP
XPP
X0 17 18 0 5195 2118 3 MP
XPP
X18 0 0 17 5195 2118 3 MP
XPP
X0 18 18 0 5195 2135 3 MP
XPP
X18 0 0 18 5195 2135 3 MP
XPP
X0 18 18 0 5195 2153 3 MP
XPP
X18 0 0 18 5195 2153 3 MP
XPP
X0 18 18 0 5213 388 3 MP
XPP
X18 0 0 18 5213 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5213 406 3 MP
XPP
X18 0 0 18 5213 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5213 424 3 MP
XPP
X18 0 0 17 5213 424 3 MP
XPP
X0.793651 sg
X0 18 18 0 5213 441 3 MP
XPP
X18 0 0 18 5213 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5213 459 3 MP
XPP
X18 0 0 18 5213 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5213 477 3 MP
XPP
X18 0 0 18 5213 477 3 MP
XPP
X0 18 18 0 5213 495 3 MP
XPP
X18 0 0 18 5213 495 3 MP
XPP
X0 18 18 0 5213 513 3 MP
XPP
X18 0 0 18 5213 513 3 MP
XPP
X0 17 18 0 5213 531 3 MP
XPP
X18 0 0 17 5213 531 3 MP
XPP
X0 18 18 0 5213 548 3 MP
XPP
X18 0 0 18 5213 548 3 MP
XPP
X0 18 18 0 5213 566 3 MP
XPP
X18 0 0 18 5213 566 3 MP
XPP
X0 18 18 0 5213 584 3 MP
XPP
X18 0 0 18 5213 584 3 MP
XPP
X0 18 18 0 5213 602 3 MP
XPP
X18 0 0 18 5213 602 3 MP
XPP
X0 18 18 0 5213 620 3 MP
XPP
X18 0 0 18 5213 620 3 MP
XPP
X0 17 18 0 5213 638 3 MP
XPP
X18 0 0 17 5213 638 3 MP
XPP
X0 18 18 0 5213 655 3 MP
XPP
X18 0 0 18 5213 655 3 MP
XPP
X0 18 18 0 5213 673 3 MP
XPP
X18 0 0 18 5213 673 3 MP
XPP
X0 18 18 0 5213 691 3 MP
XPP
X18 0 0 18 5213 691 3 MP
XPP
X0 18 18 0 5213 709 3 MP
XPP
X18 0 0 18 5213 709 3 MP
XPP
X0 18 18 0 5213 727 3 MP
XPP
X18 0 0 18 5213 727 3 MP
XPP
X0.650794 sg
X0 17 18 0 5213 745 3 MP
XPP
X18 0 0 17 5213 745 3 MP
XPP
X0.587302 sg
X0 18 18 0 5213 762 3 MP
XPP
X18 0 0 18 5213 762 3 MP
XPP
X0.47619 sg
X0 18 18 0 5213 780 3 MP
XPP
X18 0 0 18 5213 780 3 MP
XPP
X0.380952 sg
X0 18 18 0 5213 798 3 MP
XPP
X18 0 0 18 5213 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5213 816 3 MP
XPP
X18 0 0 18 5213 816 3 MP
XPP
X0 18 18 0 5213 834 3 MP
XPP
X18 0 0 18 5213 834 3 MP
XPP
X0 17 18 0 5213 852 3 MP
XPP
X18 0 0 17 5213 852 3 MP
XPP
X0 18 18 0 5213 869 3 MP
XPP
X18 0 0 18 5213 869 3 MP
XPP
X0 18 18 0 5213 887 3 MP
XPP
X18 0 0 18 5213 887 3 MP
XPP
X0 18 18 0 5213 905 3 MP
XPP
X18 0 0 18 5213 905 3 MP
XPP
X0 18 18 0 5213 923 3 MP
XPP
X18 0 0 18 5213 923 3 MP
XPP
X0 18 18 0 5213 941 3 MP
XPP
X18 0 0 18 5213 941 3 MP
XPP
X0 17 18 0 5213 959 3 MP
XPP
X18 0 0 17 5213 959 3 MP
XPP
X0 18 18 0 5213 976 3 MP
XPP
X18 0 0 18 5213 976 3 MP
XPP
X0 18 18 0 5213 994 3 MP
XPP
X18 0 0 18 5213 994 3 MP
XPP
X0 18 18 0 5213 1012 3 MP
XPP
X18 0 0 18 5213 1012 3 MP
XPP
X0 18 18 0 5213 1030 3 MP
XPP
X18 0 0 18 5213 1030 3 MP
XPP
X0 18 18 0 5213 1048 3 MP
XPP
X18 0 0 18 5213 1048 3 MP
XPP
X0 17 18 0 5213 1066 3 MP
XPP
X18 0 0 17 5213 1066 3 MP
XPP
X0 18 18 0 5213 1083 3 MP
XPP
X18 0 0 18 5213 1083 3 MP
XPP
X0 18 18 0 5213 1101 3 MP
XPP
X18 0 0 18 5213 1101 3 MP
XPP
X0 18 18 0 5213 1119 3 MP
XPP
X18 0 0 18 5213 1119 3 MP
XPP
X0 18 18 0 5213 1137 3 MP
XPP
X18 0 0 18 5213 1137 3 MP
XPP
X0.349206 sg
X0 18 18 0 5213 1155 3 MP
XPP
X18 0 0 18 5213 1155 3 MP
XPP
X0.428571 sg
X0 17 18 0 5213 1173 3 MP
XPP
X18 0 0 17 5213 1173 3 MP
XPP
X0.619048 sg
X0 18 18 0 5213 1190 3 MP
XPP
X18 0 0 18 5213 1190 3 MP
XPP
X0.84127 sg
X0 18 18 0 5213 1208 3 MP
XPP
X18 0 0 18 5213 1208 3 MP
XPP
X0.968254 sg
X0 18 18 0 5213 1226 3 MP
XPP
X18 0 0 18 5213 1226 3 MP
XPP
X1 sg
X0 18 18 0 5213 1244 3 MP
XPP
X18 0 0 18 5213 1244 3 MP
XPP
X0 17 18 0 5213 1262 3 MP
XPP
X18 0 0 17 5213 1262 3 MP
XPP
X0 18 18 0 5213 1279 3 MP
XPP
X18 0 0 18 5213 1279 3 MP
XPP
X0 18 18 0 5213 1297 3 MP
XPP
X18 0 0 18 5213 1297 3 MP
XPP
X0 18 18 0 5213 1315 3 MP
XPP
X18 0 0 18 5213 1315 3 MP
XPP
X0 18 18 0 5213 1333 3 MP
XPP
X18 0 0 18 5213 1333 3 MP
XPP
X0 18 18 0 5213 1351 3 MP
XPP
X18 0 0 18 5213 1351 3 MP
XPP
X0 17 18 0 5213 1369 3 MP
XPP
X18 0 0 17 5213 1369 3 MP
XPP
X0 18 18 0 5213 1386 3 MP
XPP
X18 0 0 18 5213 1386 3 MP
XPP
X0 18 18 0 5213 1404 3 MP
XPP
X18 0 0 18 5213 1404 3 MP
XPP
X0 18 18 0 5213 1422 3 MP
XPP
X18 0 0 18 5213 1422 3 MP
XPP
X0 18 18 0 5213 1440 3 MP
XPP
X18 0 0 18 5213 1440 3 MP
XPP
X0 18 18 0 5213 1458 3 MP
XPP
X18 0 0 18 5213 1458 3 MP
XPP
X0 17 18 0 5213 1476 3 MP
XPP
X18 0 0 17 5213 1476 3 MP
XPP
X0 18 18 0 5213 1493 3 MP
XPP
X18 0 0 18 5213 1493 3 MP
XPP
X0 18 18 0 5213 1511 3 MP
XPP
X18 0 0 18 5213 1511 3 MP
XPP
X0 18 18 0 5213 1529 3 MP
XPP
X18 0 0 18 5213 1529 3 MP
XPP
X0 18 18 0 5213 1547 3 MP
XPP
X18 0 0 18 5213 1547 3 MP
XPP
X0 18 18 0 5213 1565 3 MP
XPP
X18 0 0 18 5213 1565 3 MP
XPP
X0 17 18 0 5213 1583 3 MP
XPP
X18 0 0 17 5213 1583 3 MP
XPP
X0 18 18 0 5213 1600 3 MP
XPP
X18 0 0 18 5213 1600 3 MP
XPP
X0 18 18 0 5213 1618 3 MP
XPP
X18 0 0 18 5213 1618 3 MP
XPP
X0 18 18 0 5213 1636 3 MP
XPP
X18 0 0 18 5213 1636 3 MP
XPP
X0 18 18 0 5213 1654 3 MP
XPP
X18 0 0 18 5213 1654 3 MP
XPP
X0 18 18 0 5213 1672 3 MP
XPP
X18 0 0 18 5213 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5213 1690 3 MP
XPP
X18 0 0 17 5213 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5213 1707 3 MP
XPP
X18 0 0 18 5213 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5213 1725 3 MP
XPP
X18 0 0 18 5213 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5213 1743 3 MP
XPP
X18 0 0 18 5213 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5213 1761 3 MP
XPP
X18 0 0 18 5213 1761 3 MP
XPP
X1 sg
X0 18 18 0 5213 1779 3 MP
XPP
X18 0 0 18 5213 1779 3 MP
XPP
X0 17 18 0 5213 1797 3 MP
XPP
X18 0 0 17 5213 1797 3 MP
XPP
X0 18 18 0 5213 1814 3 MP
XPP
X18 0 0 18 5213 1814 3 MP
XPP
X0 18 18 0 5213 1832 3 MP
XPP
X18 0 0 18 5213 1832 3 MP
XPP
X0 18 18 0 5213 1850 3 MP
XPP
X18 0 0 18 5213 1850 3 MP
XPP
X0 18 18 0 5213 1868 3 MP
XPP
X18 0 0 18 5213 1868 3 MP
XPP
X0 18 18 0 5213 1886 3 MP
XPP
X18 0 0 18 5213 1886 3 MP
XPP
X0 17 18 0 5213 1904 3 MP
XPP
X18 0 0 17 5213 1904 3 MP
XPP
X0 18 18 0 5213 1921 3 MP
XPP
X18 0 0 18 5213 1921 3 MP
XPP
X0 18 18 0 5213 1939 3 MP
XPP
X18 0 0 18 5213 1939 3 MP
XPP
X0 18 18 0 5213 1957 3 MP
XPP
X18 0 0 18 5213 1957 3 MP
XPP
X0 18 18 0 5213 1975 3 MP
XPP
X18 0 0 18 5213 1975 3 MP
XPP
X0 18 18 0 5213 1993 3 MP
XPP
X18 0 0 18 5213 1993 3 MP
XPP
X0 17 18 0 5213 2011 3 MP
XPP
X18 0 0 17 5213 2011 3 MP
XPP
X0 18 18 0 5213 2028 3 MP
XPP
X18 0 0 18 5213 2028 3 MP
XPP
X0 18 18 0 5213 2046 3 MP
XPP
X18 0 0 18 5213 2046 3 MP
XPP
X0 18 18 0 5213 2064 3 MP
XPP
X18 0 0 18 5213 2064 3 MP
XPP
X0 18 18 0 5213 2082 3 MP
XPP
X18 0 0 18 5213 2082 3 MP
XPP
X0 18 18 0 5213 2100 3 MP
XPP
X18 0 0 18 5213 2100 3 MP
XPP
X0 17 18 0 5213 2118 3 MP
XPP
X18 0 0 17 5213 2118 3 MP
XPP
X0 18 18 0 5213 2135 3 MP
XPP
X18 0 0 18 5213 2135 3 MP
XPP
X0 18 18 0 5213 2153 3 MP
XPP
X18 0 0 18 5213 2153 3 MP
XPP
X0 18 18 0 5231 388 3 MP
XPP
X18 0 0 18 5231 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5231 406 3 MP
XPP
X18 0 0 18 5231 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5231 424 3 MP
XPP
X18 0 0 17 5231 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5231 441 3 MP
XPP
X18 0 0 18 5231 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5231 459 3 MP
XPP
X18 0 0 18 5231 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5231 477 3 MP
XPP
X18 0 0 18 5231 477 3 MP
XPP
X0 18 18 0 5231 495 3 MP
XPP
X18 0 0 18 5231 495 3 MP
XPP
X0 18 18 0 5231 513 3 MP
XPP
X18 0 0 18 5231 513 3 MP
XPP
X0 17 18 0 5231 531 3 MP
XPP
X18 0 0 17 5231 531 3 MP
XPP
X0 18 18 0 5231 548 3 MP
XPP
X18 0 0 18 5231 548 3 MP
XPP
X0 18 18 0 5231 566 3 MP
XPP
X18 0 0 18 5231 566 3 MP
XPP
X0 18 18 0 5231 584 3 MP
XPP
X18 0 0 18 5231 584 3 MP
XPP
X0 18 18 0 5231 602 3 MP
XPP
X18 0 0 18 5231 602 3 MP
XPP
X0 18 18 0 5231 620 3 MP
XPP
X18 0 0 18 5231 620 3 MP
XPP
X0 17 18 0 5231 638 3 MP
XPP
X18 0 0 17 5231 638 3 MP
XPP
X0 18 18 0 5231 655 3 MP
XPP
X18 0 0 18 5231 655 3 MP
XPP
X0 18 18 0 5231 673 3 MP
XPP
X18 0 0 18 5231 673 3 MP
XPP
X0 18 18 0 5231 691 3 MP
XPP
X18 0 0 18 5231 691 3 MP
XPP
X0 18 18 0 5231 709 3 MP
XPP
X18 0 0 18 5231 709 3 MP
XPP
X0 18 18 0 5231 727 3 MP
XPP
X18 0 0 18 5231 727 3 MP
XPP
X0.650794 sg
X0 17 18 0 5231 745 3 MP
XPP
X18 0 0 17 5231 745 3 MP
XPP
X0.571429 sg
X0 18 18 0 5231 762 3 MP
XPP
X18 0 0 18 5231 762 3 MP
XPP
X0.444444 sg
X0 18 18 0 5231 780 3 MP
XPP
X18 0 0 18 5231 780 3 MP
XPP
X0.365079 sg
X0 18 18 0 5231 798 3 MP
XPP
X18 0 0 18 5231 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5231 816 3 MP
XPP
X18 0 0 18 5231 816 3 MP
XPP
X0 18 18 0 5231 834 3 MP
XPP
X18 0 0 18 5231 834 3 MP
XPP
X0 17 18 0 5231 852 3 MP
XPP
X18 0 0 17 5231 852 3 MP
XPP
X0 18 18 0 5231 869 3 MP
XPP
X18 0 0 18 5231 869 3 MP
XPP
X0 18 18 0 5231 887 3 MP
XPP
X18 0 0 18 5231 887 3 MP
XPP
X0 18 18 0 5231 905 3 MP
XPP
X18 0 0 18 5231 905 3 MP
XPP
X0 18 18 0 5231 923 3 MP
XPP
X18 0 0 18 5231 923 3 MP
XPP
X0 18 18 0 5231 941 3 MP
XPP
X18 0 0 18 5231 941 3 MP
XPP
X0 17 18 0 5231 959 3 MP
XPP
X18 0 0 17 5231 959 3 MP
XPP
X0 18 18 0 5231 976 3 MP
XPP
X18 0 0 18 5231 976 3 MP
XPP
X0 18 18 0 5231 994 3 MP
XPP
X18 0 0 18 5231 994 3 MP
XPP
X0 18 18 0 5231 1012 3 MP
XPP
X18 0 0 18 5231 1012 3 MP
XPP
X0 18 18 0 5231 1030 3 MP
XPP
X18 0 0 18 5231 1030 3 MP
XPP
X0 18 18 0 5231 1048 3 MP
XPP
X18 0 0 18 5231 1048 3 MP
XPP
X0 17 18 0 5231 1066 3 MP
XPP
X18 0 0 17 5231 1066 3 MP
XPP
X0 18 18 0 5231 1083 3 MP
XPP
X18 0 0 18 5231 1083 3 MP
XPP
X0 18 18 0 5231 1101 3 MP
XPP
X18 0 0 18 5231 1101 3 MP
XPP
X0 18 18 0 5231 1119 3 MP
XPP
X18 0 0 18 5231 1119 3 MP
XPP
X0 18 18 0 5231 1137 3 MP
XPP
X18 0 0 18 5231 1137 3 MP
XPP
X0 18 18 0 5231 1155 3 MP
XPP
X18 0 0 18 5231 1155 3 MP
XPP
X0.396825 sg
X0 17 18 0 5231 1173 3 MP
XPP
X18 0 0 17 5231 1173 3 MP
XPP
X0.571429 sg
X0 18 18 0 5231 1190 3 MP
XPP
X18 0 0 18 5231 1190 3 MP
XPP
X0.809524 sg
X0 18 18 0 5231 1208 3 MP
XPP
X18 0 0 18 5231 1208 3 MP
XPP
X0.968254 sg
X0 18 18 0 5231 1226 3 MP
XPP
X18 0 0 18 5231 1226 3 MP
XPP
X1 sg
X0 18 18 0 5231 1244 3 MP
XPP
X18 0 0 18 5231 1244 3 MP
XPP
X0 17 18 0 5231 1262 3 MP
XPP
X18 0 0 17 5231 1262 3 MP
XPP
X0 18 18 0 5231 1279 3 MP
XPP
X18 0 0 18 5231 1279 3 MP
XPP
X0 18 18 0 5231 1297 3 MP
XPP
X18 0 0 18 5231 1297 3 MP
XPP
X0 18 18 0 5231 1315 3 MP
XPP
X18 0 0 18 5231 1315 3 MP
XPP
X0 18 18 0 5231 1333 3 MP
XPP
X18 0 0 18 5231 1333 3 MP
XPP
X0 18 18 0 5231 1351 3 MP
XPP
X18 0 0 18 5231 1351 3 MP
XPP
X0 17 18 0 5231 1369 3 MP
XPP
X18 0 0 17 5231 1369 3 MP
XPP
X0 18 18 0 5231 1386 3 MP
XPP
X18 0 0 18 5231 1386 3 MP
XPP
X0 18 18 0 5231 1404 3 MP
XPP
X18 0 0 18 5231 1404 3 MP
XPP
X0 18 18 0 5231 1422 3 MP
XPP
X18 0 0 18 5231 1422 3 MP
XPP
X0 18 18 0 5231 1440 3 MP
XPP
X18 0 0 18 5231 1440 3 MP
XPP
X0 18 18 0 5231 1458 3 MP
XPP
X18 0 0 18 5231 1458 3 MP
XPP
X0 17 18 0 5231 1476 3 MP
XPP
X18 0 0 17 5231 1476 3 MP
XPP
X0 18 18 0 5231 1493 3 MP
XPP
X18 0 0 18 5231 1493 3 MP
XPP
X0 18 18 0 5231 1511 3 MP
XPP
X18 0 0 18 5231 1511 3 MP
XPP
X0 18 18 0 5231 1529 3 MP
XPP
X18 0 0 18 5231 1529 3 MP
XPP
X0 18 18 0 5231 1547 3 MP
XPP
X18 0 0 18 5231 1547 3 MP
XPP
X0 18 18 0 5231 1565 3 MP
XPP
X18 0 0 18 5231 1565 3 MP
XPP
X0 17 18 0 5231 1583 3 MP
XPP
X18 0 0 17 5231 1583 3 MP
XPP
X0 18 18 0 5231 1600 3 MP
XPP
X18 0 0 18 5231 1600 3 MP
XPP
X0 18 18 0 5231 1618 3 MP
XPP
X18 0 0 18 5231 1618 3 MP
XPP
X0 18 18 0 5231 1636 3 MP
XPP
X18 0 0 18 5231 1636 3 MP
XPP
X0 18 18 0 5231 1654 3 MP
XPP
X18 0 0 18 5231 1654 3 MP
XPP
X0 18 18 0 5231 1672 3 MP
XPP
X18 0 0 18 5231 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5231 1690 3 MP
XPP
X18 0 0 17 5231 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5231 1707 3 MP
XPP
X18 0 0 18 5231 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5231 1725 3 MP
XPP
X18 0 0 18 5231 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5231 1743 3 MP
XPP
X18 0 0 18 5231 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5231 1761 3 MP
XPP
X18 0 0 18 5231 1761 3 MP
XPP
X1 sg
X0 18 18 0 5231 1779 3 MP
XPP
X18 0 0 18 5231 1779 3 MP
XPP
X0 17 18 0 5231 1797 3 MP
XPP
X18 0 0 17 5231 1797 3 MP
XPP
X0 18 18 0 5231 1814 3 MP
XPP
X18 0 0 18 5231 1814 3 MP
XPP
X0 18 18 0 5231 1832 3 MP
XPP
X18 0 0 18 5231 1832 3 MP
XPP
X0 18 18 0 5231 1850 3 MP
XPP
X18 0 0 18 5231 1850 3 MP
XPP
X0 18 18 0 5231 1868 3 MP
XPP
X18 0 0 18 5231 1868 3 MP
XPP
X0 18 18 0 5231 1886 3 MP
XPP
X18 0 0 18 5231 1886 3 MP
XPP
X0 17 18 0 5231 1904 3 MP
XPP
X18 0 0 17 5231 1904 3 MP
XPP
X0 18 18 0 5231 1921 3 MP
XPP
X18 0 0 18 5231 1921 3 MP
XPP
X0 18 18 0 5231 1939 3 MP
XPP
X18 0 0 18 5231 1939 3 MP
XPP
X0 18 18 0 5231 1957 3 MP
XPP
X18 0 0 18 5231 1957 3 MP
XPP
X0 18 18 0 5231 1975 3 MP
XPP
X18 0 0 18 5231 1975 3 MP
XPP
X0 18 18 0 5231 1993 3 MP
XPP
X18 0 0 18 5231 1993 3 MP
XPP
X0 17 18 0 5231 2011 3 MP
XPP
X18 0 0 17 5231 2011 3 MP
XPP
X0 18 18 0 5231 2028 3 MP
XPP
X18 0 0 18 5231 2028 3 MP
XPP
X0 18 18 0 5231 2046 3 MP
XPP
X18 0 0 18 5231 2046 3 MP
XPP
X0 18 18 0 5231 2064 3 MP
XPP
X18 0 0 18 5231 2064 3 MP
XPP
X0 18 18 0 5231 2082 3 MP
XPP
X18 0 0 18 5231 2082 3 MP
XPP
X0 18 18 0 5231 2100 3 MP
XPP
X18 0 0 18 5231 2100 3 MP
XPP
X0 17 18 0 5231 2118 3 MP
XPP
X18 0 0 17 5231 2118 3 MP
XPP
X0 18 18 0 5231 2135 3 MP
XPP
X18 0 0 18 5231 2135 3 MP
XPP
X0 18 18 0 5231 2153 3 MP
XPP
X18 0 0 18 5231 2153 3 MP
XPP
X0 18 18 0 5249 388 3 MP
XPP
X18 0 0 18 5249 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5249 406 3 MP
XPP
X18 0 0 18 5249 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5249 424 3 MP
XPP
X18 0 0 17 5249 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5249 441 3 MP
XPP
X18 0 0 18 5249 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5249 459 3 MP
XPP
X18 0 0 18 5249 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5249 477 3 MP
XPP
X18 0 0 18 5249 477 3 MP
XPP
X0 18 18 0 5249 495 3 MP
XPP
X18 0 0 18 5249 495 3 MP
XPP
X0 18 18 0 5249 513 3 MP
XPP
X18 0 0 18 5249 513 3 MP
XPP
X0 17 18 0 5249 531 3 MP
XPP
X18 0 0 17 5249 531 3 MP
XPP
X0 18 18 0 5249 548 3 MP
XPP
X18 0 0 18 5249 548 3 MP
XPP
X0 18 18 0 5249 566 3 MP
XPP
X18 0 0 18 5249 566 3 MP
XPP
X0 18 18 0 5249 584 3 MP
XPP
X18 0 0 18 5249 584 3 MP
XPP
X0 18 18 0 5249 602 3 MP
XPP
X18 0 0 18 5249 602 3 MP
XPP
X0 18 18 0 5249 620 3 MP
XPP
X18 0 0 18 5249 620 3 MP
XPP
X0 17 18 0 5249 638 3 MP
XPP
X18 0 0 17 5249 638 3 MP
XPP
X0 18 18 0 5249 655 3 MP
XPP
X18 0 0 18 5249 655 3 MP
XPP
X0 18 18 0 5249 673 3 MP
XPP
X18 0 0 18 5249 673 3 MP
XPP
X0 18 18 0 5249 691 3 MP
XPP
X18 0 0 18 5249 691 3 MP
XPP
X0 18 18 0 5249 709 3 MP
XPP
X18 0 0 18 5249 709 3 MP
XPP
X0 18 18 0 5249 727 3 MP
XPP
X18 0 0 18 5249 727 3 MP
XPP
X0.650794 sg
X0 17 18 0 5249 745 3 MP
XPP
X18 0 0 17 5249 745 3 MP
XPP
X0.555556 sg
X0 18 18 0 5249 762 3 MP
XPP
X18 0 0 18 5249 762 3 MP
XPP
X0.444444 sg
X0 18 18 0 5249 780 3 MP
XPP
X18 0 0 18 5249 780 3 MP
XPP
X0.349206 sg
X0 18 18 0 5249 798 3 MP
XPP
X18 0 0 18 5249 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5249 816 3 MP
XPP
X18 0 0 18 5249 816 3 MP
XPP
X0 18 18 0 5249 834 3 MP
XPP
X18 0 0 18 5249 834 3 MP
XPP
X0 17 18 0 5249 852 3 MP
XPP
X18 0 0 17 5249 852 3 MP
XPP
X0 18 18 0 5249 869 3 MP
XPP
X18 0 0 18 5249 869 3 MP
XPP
X0 18 18 0 5249 887 3 MP
XPP
X18 0 0 18 5249 887 3 MP
XPP
X0 18 18 0 5249 905 3 MP
XPP
X18 0 0 18 5249 905 3 MP
XPP
X0 18 18 0 5249 923 3 MP
XPP
X18 0 0 18 5249 923 3 MP
XPP
X0 18 18 0 5249 941 3 MP
XPP
X18 0 0 18 5249 941 3 MP
XPP
X0 17 18 0 5249 959 3 MP
XPP
X18 0 0 17 5249 959 3 MP
XPP
X0 18 18 0 5249 976 3 MP
XPP
X18 0 0 18 5249 976 3 MP
XPP
X0 18 18 0 5249 994 3 MP
XPP
X18 0 0 18 5249 994 3 MP
XPP
X0 18 18 0 5249 1012 3 MP
XPP
X18 0 0 18 5249 1012 3 MP
XPP
X0 18 18 0 5249 1030 3 MP
XPP
X18 0 0 18 5249 1030 3 MP
XPP
X0 18 18 0 5249 1048 3 MP
XPP
X18 0 0 18 5249 1048 3 MP
XPP
X0 17 18 0 5249 1066 3 MP
XPP
X18 0 0 17 5249 1066 3 MP
XPP
X0 18 18 0 5249 1083 3 MP
XPP
X18 0 0 18 5249 1083 3 MP
XPP
X0 18 18 0 5249 1101 3 MP
XPP
X18 0 0 18 5249 1101 3 MP
XPP
X0 18 18 0 5249 1119 3 MP
XPP
X18 0 0 18 5249 1119 3 MP
XPP
X0 18 18 0 5249 1137 3 MP
XPP
X18 0 0 18 5249 1137 3 MP
XPP
X0 18 18 0 5249 1155 3 MP
XPP
X18 0 0 18 5249 1155 3 MP
XPP
X0.380952 sg
X0 17 18 0 5249 1173 3 MP
XPP
X18 0 0 17 5249 1173 3 MP
XPP
X0.539683 sg
X0 18 18 0 5249 1190 3 MP
XPP
X18 0 0 18 5249 1190 3 MP
XPP
X0.793651 sg
X0 18 18 0 5249 1208 3 MP
XPP
X18 0 0 18 5249 1208 3 MP
XPP
X0.952381 sg
X0 18 18 0 5249 1226 3 MP
XPP
X18 0 0 18 5249 1226 3 MP
XPP
X1 sg
X0 18 18 0 5249 1244 3 MP
XPP
X18 0 0 18 5249 1244 3 MP
XPP
X0 17 18 0 5249 1262 3 MP
XPP
X18 0 0 17 5249 1262 3 MP
XPP
X0 18 18 0 5249 1279 3 MP
XPP
X18 0 0 18 5249 1279 3 MP
XPP
X0 18 18 0 5249 1297 3 MP
XPP
X18 0 0 18 5249 1297 3 MP
XPP
X0 18 18 0 5249 1315 3 MP
XPP
X18 0 0 18 5249 1315 3 MP
XPP
X0 18 18 0 5249 1333 3 MP
XPP
X18 0 0 18 5249 1333 3 MP
XPP
X0 18 18 0 5249 1351 3 MP
XPP
X18 0 0 18 5249 1351 3 MP
XPP
X0 17 18 0 5249 1369 3 MP
XPP
X18 0 0 17 5249 1369 3 MP
XPP
X0 18 18 0 5249 1386 3 MP
XPP
X18 0 0 18 5249 1386 3 MP
XPP
X0 18 18 0 5249 1404 3 MP
XPP
X18 0 0 18 5249 1404 3 MP
XPP
X0 18 18 0 5249 1422 3 MP
XPP
X18 0 0 18 5249 1422 3 MP
XPP
X0 18 18 0 5249 1440 3 MP
XPP
X18 0 0 18 5249 1440 3 MP
XPP
X0 18 18 0 5249 1458 3 MP
XPP
X18 0 0 18 5249 1458 3 MP
XPP
X0 17 18 0 5249 1476 3 MP
XPP
X18 0 0 17 5249 1476 3 MP
XPP
X0 18 18 0 5249 1493 3 MP
XPP
X18 0 0 18 5249 1493 3 MP
XPP
X0 18 18 0 5249 1511 3 MP
XPP
X18 0 0 18 5249 1511 3 MP
XPP
X0 18 18 0 5249 1529 3 MP
XPP
X18 0 0 18 5249 1529 3 MP
XPP
X0 18 18 0 5249 1547 3 MP
XPP
X18 0 0 18 5249 1547 3 MP
XPP
X0 18 18 0 5249 1565 3 MP
XPP
X18 0 0 18 5249 1565 3 MP
XPP
X0 17 18 0 5249 1583 3 MP
XPP
X18 0 0 17 5249 1583 3 MP
XPP
X0 18 18 0 5249 1600 3 MP
XPP
X18 0 0 18 5249 1600 3 MP
XPP
X0 18 18 0 5249 1618 3 MP
XPP
X18 0 0 18 5249 1618 3 MP
XPP
X0 18 18 0 5249 1636 3 MP
XPP
X18 0 0 18 5249 1636 3 MP
XPP
X0 18 18 0 5249 1654 3 MP
XPP
X18 0 0 18 5249 1654 3 MP
XPP
X0 18 18 0 5249 1672 3 MP
XPP
X18 0 0 18 5249 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5249 1690 3 MP
XPP
X18 0 0 17 5249 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5249 1707 3 MP
XPP
X18 0 0 18 5249 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5249 1725 3 MP
XPP
X18 0 0 18 5249 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5249 1743 3 MP
XPP
X18 0 0 18 5249 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5249 1761 3 MP
XPP
X18 0 0 18 5249 1761 3 MP
XPP
X1 sg
X0 18 18 0 5249 1779 3 MP
XPP
X18 0 0 18 5249 1779 3 MP
XPP
X0 17 18 0 5249 1797 3 MP
XPP
X18 0 0 17 5249 1797 3 MP
XPP
X0 18 18 0 5249 1814 3 MP
XPP
X18 0 0 18 5249 1814 3 MP
XPP
X0 18 18 0 5249 1832 3 MP
XPP
X18 0 0 18 5249 1832 3 MP
XPP
X0 18 18 0 5249 1850 3 MP
XPP
X18 0 0 18 5249 1850 3 MP
XPP
X0 18 18 0 5249 1868 3 MP
XPP
X18 0 0 18 5249 1868 3 MP
XPP
X0 18 18 0 5249 1886 3 MP
XPP
X18 0 0 18 5249 1886 3 MP
XPP
X0 17 18 0 5249 1904 3 MP
XPP
X18 0 0 17 5249 1904 3 MP
XPP
X0 18 18 0 5249 1921 3 MP
XPP
X18 0 0 18 5249 1921 3 MP
XPP
X0 18 18 0 5249 1939 3 MP
XPP
X18 0 0 18 5249 1939 3 MP
XPP
X0 18 18 0 5249 1957 3 MP
XPP
X18 0 0 18 5249 1957 3 MP
XPP
X0 18 18 0 5249 1975 3 MP
XPP
X18 0 0 18 5249 1975 3 MP
XPP
X0 18 18 0 5249 1993 3 MP
XPP
X18 0 0 18 5249 1993 3 MP
XPP
X0 17 18 0 5249 2011 3 MP
XPP
X18 0 0 17 5249 2011 3 MP
XPP
X0 18 18 0 5249 2028 3 MP
XPP
X18 0 0 18 5249 2028 3 MP
XPP
X0 18 18 0 5249 2046 3 MP
XPP
X18 0 0 18 5249 2046 3 MP
XPP
X0 18 18 0 5249 2064 3 MP
XPP
X18 0 0 18 5249 2064 3 MP
XPP
X0 18 18 0 5249 2082 3 MP
XPP
X18 0 0 18 5249 2082 3 MP
XPP
X0 18 18 0 5249 2100 3 MP
XPP
X18 0 0 18 5249 2100 3 MP
XPP
X0 17 18 0 5249 2118 3 MP
XPP
X18 0 0 17 5249 2118 3 MP
XPP
X0 18 18 0 5249 2135 3 MP
XPP
X18 0 0 18 5249 2135 3 MP
XPP
X0 18 18 0 5249 2153 3 MP
XPP
X18 0 0 18 5249 2153 3 MP
XPP
X0 18 17 0 5267 388 3 MP
XPP
X17 0 0 18 5267 388 3 MP
XPP
X0.984127 sg
X0 18 17 0 5267 406 3 MP
XPP
X17 0 0 18 5267 406 3 MP
XPP
X0.904762 sg
X0 17 17 0 5267 424 3 MP
XPP
X17 0 0 17 5267 424 3 MP
XPP
X0.777778 sg
X0 18 17 0 5267 441 3 MP
XPP
X17 0 0 18 5267 441 3 MP
XPP
X0.698413 sg
X0 18 17 0 5267 459 3 MP
XPP
X17 0 0 18 5267 459 3 MP
XPP
X0.666667 sg
X0 18 17 0 5267 477 3 MP
XPP
X17 0 0 18 5267 477 3 MP
XPP
X0 18 17 0 5267 495 3 MP
XPP
X17 0 0 18 5267 495 3 MP
XPP
X0 18 17 0 5267 513 3 MP
XPP
X17 0 0 18 5267 513 3 MP
XPP
X0 17 17 0 5267 531 3 MP
XPP
X17 0 0 17 5267 531 3 MP
XPP
X0 18 17 0 5267 548 3 MP
XPP
X17 0 0 18 5267 548 3 MP
XPP
X0 18 17 0 5267 566 3 MP
XPP
X17 0 0 18 5267 566 3 MP
XPP
X0 18 17 0 5267 584 3 MP
XPP
X17 0 0 18 5267 584 3 MP
XPP
X0 18 17 0 5267 602 3 MP
XPP
X17 0 0 18 5267 602 3 MP
XPP
X0 18 17 0 5267 620 3 MP
XPP
X17 0 0 18 5267 620 3 MP
XPP
X0 17 17 0 5267 638 3 MP
XPP
X17 0 0 17 5267 638 3 MP
XPP
X0 18 17 0 5267 655 3 MP
XPP
X17 0 0 18 5267 655 3 MP
XPP
X0 18 17 0 5267 673 3 MP
XPP
X17 0 0 18 5267 673 3 MP
XPP
X0 18 17 0 5267 691 3 MP
XPP
X17 0 0 18 5267 691 3 MP
XPP
X0 18 17 0 5267 709 3 MP
XPP
X17 0 0 18 5267 709 3 MP
XPP
X0 18 17 0 5267 727 3 MP
XPP
X17 0 0 18 5267 727 3 MP
XPP
X0.650794 sg
X0 17 17 0 5267 745 3 MP
XPP
X17 0 0 17 5267 745 3 MP
XPP
X0.555556 sg
X0 18 17 0 5267 762 3 MP
XPP
X17 0 0 18 5267 762 3 MP
XPP
X0.444444 sg
X0 18 17 0 5267 780 3 MP
XPP
X17 0 0 18 5267 780 3 MP
XPP
X0.349206 sg
X0 18 17 0 5267 798 3 MP
XPP
X17 0 0 18 5267 798 3 MP
XPP
X0.333333 sg
X0 18 17 0 5267 816 3 MP
XPP
X17 0 0 18 5267 816 3 MP
XPP
X0 18 17 0 5267 834 3 MP
XPP
X17 0 0 18 5267 834 3 MP
XPP
X0 17 17 0 5267 852 3 MP
XPP
X17 0 0 17 5267 852 3 MP
XPP
X0 18 17 0 5267 869 3 MP
XPP
X17 0 0 18 5267 869 3 MP
XPP
X0 18 17 0 5267 887 3 MP
XPP
X17 0 0 18 5267 887 3 MP
XPP
X0 18 17 0 5267 905 3 MP
XPP
X17 0 0 18 5267 905 3 MP
XPP
X0 18 17 0 5267 923 3 MP
XPP
X17 0 0 18 5267 923 3 MP
XPP
X0 18 17 0 5267 941 3 MP
XPP
X17 0 0 18 5267 941 3 MP
XPP
X0 17 17 0 5267 959 3 MP
XPP
X17 0 0 17 5267 959 3 MP
XPP
X0 18 17 0 5267 976 3 MP
XPP
X17 0 0 18 5267 976 3 MP
XPP
X0 18 17 0 5267 994 3 MP
XPP
X17 0 0 18 5267 994 3 MP
XPP
X0 18 17 0 5267 1012 3 MP
XPP
X17 0 0 18 5267 1012 3 MP
XPP
X0 18 17 0 5267 1030 3 MP
XPP
X17 0 0 18 5267 1030 3 MP
XPP
X0 18 17 0 5267 1048 3 MP
XPP
X17 0 0 18 5267 1048 3 MP
XPP
X0 17 17 0 5267 1066 3 MP
XPP
X17 0 0 17 5267 1066 3 MP
XPP
X0 18 17 0 5267 1083 3 MP
XPP
X17 0 0 18 5267 1083 3 MP
XPP
X0 18 17 0 5267 1101 3 MP
XPP
X17 0 0 18 5267 1101 3 MP
XPP
X0 18 17 0 5267 1119 3 MP
XPP
X17 0 0 18 5267 1119 3 MP
XPP
X0 18 17 0 5267 1137 3 MP
XPP
X17 0 0 18 5267 1137 3 MP
XPP
X0 18 17 0 5267 1155 3 MP
XPP
X17 0 0 18 5267 1155 3 MP
XPP
X0.380952 sg
X0 17 17 0 5267 1173 3 MP
XPP
X17 0 0 17 5267 1173 3 MP
XPP
X0.539683 sg
X0 18 17 0 5267 1190 3 MP
XPP
X17 0 0 18 5267 1190 3 MP
XPP
X0.793651 sg
X0 18 17 0 5267 1208 3 MP
XPP
X17 0 0 18 5267 1208 3 MP
XPP
X0.952381 sg
X0 18 17 0 5267 1226 3 MP
XPP
X17 0 0 18 5267 1226 3 MP
XPP
X1 sg
X0 18 17 0 5267 1244 3 MP
XPP
X17 0 0 18 5267 1244 3 MP
XPP
X0 17 17 0 5267 1262 3 MP
XPP
X17 0 0 17 5267 1262 3 MP
XPP
X0 18 17 0 5267 1279 3 MP
XPP
X17 0 0 18 5267 1279 3 MP
XPP
X0 18 17 0 5267 1297 3 MP
XPP
X17 0 0 18 5267 1297 3 MP
XPP
X0 18 17 0 5267 1315 3 MP
XPP
X17 0 0 18 5267 1315 3 MP
XPP
X0 18 17 0 5267 1333 3 MP
XPP
X17 0 0 18 5267 1333 3 MP
XPP
X0 18 17 0 5267 1351 3 MP
XPP
X17 0 0 18 5267 1351 3 MP
XPP
X0 17 17 0 5267 1369 3 MP
XPP
X17 0 0 17 5267 1369 3 MP
XPP
X0 18 17 0 5267 1386 3 MP
XPP
X17 0 0 18 5267 1386 3 MP
XPP
X0 18 17 0 5267 1404 3 MP
XPP
X17 0 0 18 5267 1404 3 MP
XPP
X0 18 17 0 5267 1422 3 MP
XPP
X17 0 0 18 5267 1422 3 MP
XPP
X0 18 17 0 5267 1440 3 MP
XPP
X17 0 0 18 5267 1440 3 MP
XPP
X0 18 17 0 5267 1458 3 MP
XPP
X17 0 0 18 5267 1458 3 MP
XPP
X0 17 17 0 5267 1476 3 MP
XPP
X17 0 0 17 5267 1476 3 MP
XPP
X0 18 17 0 5267 1493 3 MP
XPP
X17 0 0 18 5267 1493 3 MP
XPP
X0 18 17 0 5267 1511 3 MP
XPP
X17 0 0 18 5267 1511 3 MP
XPP
X0 18 17 0 5267 1529 3 MP
XPP
X17 0 0 18 5267 1529 3 MP
XPP
X0 18 17 0 5267 1547 3 MP
XPP
X17 0 0 18 5267 1547 3 MP
XPP
X0 18 17 0 5267 1565 3 MP
XPP
X17 0 0 18 5267 1565 3 MP
XPP
X0 17 17 0 5267 1583 3 MP
XPP
X17 0 0 17 5267 1583 3 MP
XPP
X0 18 17 0 5267 1600 3 MP
XPP
X17 0 0 18 5267 1600 3 MP
XPP
X0 18 17 0 5267 1618 3 MP
XPP
X17 0 0 18 5267 1618 3 MP
XPP
X0 18 17 0 5267 1636 3 MP
XPP
X17 0 0 18 5267 1636 3 MP
XPP
X0 18 17 0 5267 1654 3 MP
XPP
X17 0 0 18 5267 1654 3 MP
XPP
X0 18 17 0 5267 1672 3 MP
XPP
X17 0 0 18 5267 1672 3 MP
XPP
X0.904762 sg
X0 17 17 0 5267 1690 3 MP
XPP
X17 0 0 17 5267 1690 3 MP
XPP
X0.68254 sg
X0 18 17 0 5267 1707 3 MP
XPP
X17 0 0 18 5267 1707 3 MP
XPP
X0.507937 sg
X0 18 17 0 5267 1725 3 MP
XPP
X17 0 0 18 5267 1725 3 MP
XPP
X0.68254 sg
X0 18 17 0 5267 1743 3 MP
XPP
X17 0 0 18 5267 1743 3 MP
XPP
X0.904762 sg
X0 18 17 0 5267 1761 3 MP
XPP
X17 0 0 18 5267 1761 3 MP
XPP
X1 sg
X0 18 17 0 5267 1779 3 MP
XPP
X17 0 0 18 5267 1779 3 MP
XPP
X0 17 17 0 5267 1797 3 MP
XPP
X17 0 0 17 5267 1797 3 MP
XPP
X0 18 17 0 5267 1814 3 MP
XPP
X17 0 0 18 5267 1814 3 MP
XPP
X0 18 17 0 5267 1832 3 MP
XPP
X17 0 0 18 5267 1832 3 MP
XPP
X0 18 17 0 5267 1850 3 MP
XPP
X17 0 0 18 5267 1850 3 MP
XPP
X0 18 17 0 5267 1868 3 MP
XPP
X17 0 0 18 5267 1868 3 MP
XPP
X0 18 17 0 5267 1886 3 MP
XPP
X17 0 0 18 5267 1886 3 MP
XPP
X0 17 17 0 5267 1904 3 MP
XPP
X17 0 0 17 5267 1904 3 MP
XPP
X0 18 17 0 5267 1921 3 MP
XPP
X17 0 0 18 5267 1921 3 MP
XPP
X0 18 17 0 5267 1939 3 MP
XPP
X17 0 0 18 5267 1939 3 MP
XPP
X0 18 17 0 5267 1957 3 MP
XPP
X17 0 0 18 5267 1957 3 MP
XPP
X0 18 17 0 5267 1975 3 MP
XPP
X17 0 0 18 5267 1975 3 MP
XPP
X0 18 17 0 5267 1993 3 MP
XPP
X17 0 0 18 5267 1993 3 MP
XPP
X0 17 17 0 5267 2011 3 MP
XPP
X17 0 0 17 5267 2011 3 MP
XPP
X0 18 17 0 5267 2028 3 MP
XPP
X17 0 0 18 5267 2028 3 MP
XPP
X0 18 17 0 5267 2046 3 MP
XPP
X17 0 0 18 5267 2046 3 MP
XPP
X0 18 17 0 5267 2064 3 MP
XPP
X17 0 0 18 5267 2064 3 MP
XPP
X0 18 17 0 5267 2082 3 MP
XPP
X17 0 0 18 5267 2082 3 MP
XPP
X0 18 17 0 5267 2100 3 MP
XPP
X17 0 0 18 5267 2100 3 MP
XPP
X0 17 17 0 5267 2118 3 MP
XPP
X17 0 0 17 5267 2118 3 MP
XPP
X0 18 17 0 5267 2135 3 MP
XPP
X17 0 0 18 5267 2135 3 MP
XPP
X0 18 17 0 5267 2153 3 MP
XPP
X17 0 0 18 5267 2153 3 MP
XPP
X0 18 18 0 5284 388 3 MP
XPP
X18 0 0 18 5284 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5284 406 3 MP
XPP
X18 0 0 18 5284 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5284 424 3 MP
XPP
X18 0 0 17 5284 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5284 441 3 MP
XPP
X18 0 0 18 5284 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5284 459 3 MP
XPP
X18 0 0 18 5284 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5284 477 3 MP
XPP
X18 0 0 18 5284 477 3 MP
XPP
X0 18 18 0 5284 495 3 MP
XPP
X18 0 0 18 5284 495 3 MP
XPP
X0 18 18 0 5284 513 3 MP
XPP
X18 0 0 18 5284 513 3 MP
XPP
X0 17 18 0 5284 531 3 MP
XPP
X18 0 0 17 5284 531 3 MP
XPP
X0 18 18 0 5284 548 3 MP
XPP
X18 0 0 18 5284 548 3 MP
XPP
X0 18 18 0 5284 566 3 MP
XPP
X18 0 0 18 5284 566 3 MP
XPP
X0 18 18 0 5284 584 3 MP
XPP
X18 0 0 18 5284 584 3 MP
XPP
X0 18 18 0 5284 602 3 MP
XPP
X18 0 0 18 5284 602 3 MP
XPP
X0 18 18 0 5284 620 3 MP
XPP
X18 0 0 18 5284 620 3 MP
XPP
X0 17 18 0 5284 638 3 MP
XPP
X18 0 0 17 5284 638 3 MP
XPP
X0 18 18 0 5284 655 3 MP
XPP
X18 0 0 18 5284 655 3 MP
XPP
X0 18 18 0 5284 673 3 MP
XPP
X18 0 0 18 5284 673 3 MP
XPP
X0 18 18 0 5284 691 3 MP
XPP
X18 0 0 18 5284 691 3 MP
XPP
X0 18 18 0 5284 709 3 MP
XPP
X18 0 0 18 5284 709 3 MP
XPP
X0 18 18 0 5284 727 3 MP
XPP
X18 0 0 18 5284 727 3 MP
XPP
X0.634921 sg
X0 17 18 0 5284 745 3 MP
XPP
X18 0 0 17 5284 745 3 MP
XPP
X0.555556 sg
X0 18 18 0 5284 762 3 MP
XPP
X18 0 0 18 5284 762 3 MP
XPP
X0.428571 sg
X0 18 18 0 5284 780 3 MP
XPP
X18 0 0 18 5284 780 3 MP
XPP
X0.349206 sg
X0 18 18 0 5284 798 3 MP
XPP
X18 0 0 18 5284 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5284 816 3 MP
XPP
X18 0 0 18 5284 816 3 MP
XPP
X0 18 18 0 5284 834 3 MP
XPP
X18 0 0 18 5284 834 3 MP
XPP
X0 17 18 0 5284 852 3 MP
XPP
X18 0 0 17 5284 852 3 MP
XPP
X0 18 18 0 5284 869 3 MP
XPP
X18 0 0 18 5284 869 3 MP
XPP
X0 18 18 0 5284 887 3 MP
XPP
X18 0 0 18 5284 887 3 MP
XPP
X0 18 18 0 5284 905 3 MP
XPP
X18 0 0 18 5284 905 3 MP
XPP
X0 18 18 0 5284 923 3 MP
XPP
X18 0 0 18 5284 923 3 MP
XPP
X0 18 18 0 5284 941 3 MP
XPP
X18 0 0 18 5284 941 3 MP
XPP
X0 17 18 0 5284 959 3 MP
XPP
X18 0 0 17 5284 959 3 MP
XPP
X0 18 18 0 5284 976 3 MP
XPP
X18 0 0 18 5284 976 3 MP
XPP
X0 18 18 0 5284 994 3 MP
XPP
X18 0 0 18 5284 994 3 MP
XPP
X0 18 18 0 5284 1012 3 MP
XPP
X18 0 0 18 5284 1012 3 MP
XPP
X0 18 18 0 5284 1030 3 MP
XPP
X18 0 0 18 5284 1030 3 MP
XPP
X0 18 18 0 5284 1048 3 MP
XPP
X18 0 0 18 5284 1048 3 MP
XPP
X0 17 18 0 5284 1066 3 MP
XPP
X18 0 0 17 5284 1066 3 MP
XPP
X0 18 18 0 5284 1083 3 MP
XPP
X18 0 0 18 5284 1083 3 MP
XPP
X0 18 18 0 5284 1101 3 MP
XPP
X18 0 0 18 5284 1101 3 MP
XPP
X0 18 18 0 5284 1119 3 MP
XPP
X18 0 0 18 5284 1119 3 MP
XPP
X0 18 18 0 5284 1137 3 MP
XPP
X18 0 0 18 5284 1137 3 MP
XPP
X0 18 18 0 5284 1155 3 MP
XPP
X18 0 0 18 5284 1155 3 MP
XPP
X0.380952 sg
X0 17 18 0 5284 1173 3 MP
XPP
X18 0 0 17 5284 1173 3 MP
XPP
X0.539683 sg
X0 18 18 0 5284 1190 3 MP
XPP
X18 0 0 18 5284 1190 3 MP
XPP
X0.777778 sg
X0 18 18 0 5284 1208 3 MP
XPP
X18 0 0 18 5284 1208 3 MP
XPP
X0.952381 sg
X0 18 18 0 5284 1226 3 MP
XPP
X18 0 0 18 5284 1226 3 MP
XPP
X1 sg
X0 18 18 0 5284 1244 3 MP
XPP
X18 0 0 18 5284 1244 3 MP
XPP
X0 17 18 0 5284 1262 3 MP
XPP
X18 0 0 17 5284 1262 3 MP
XPP
X0 18 18 0 5284 1279 3 MP
XPP
X18 0 0 18 5284 1279 3 MP
XPP
X0 18 18 0 5284 1297 3 MP
XPP
X18 0 0 18 5284 1297 3 MP
XPP
X0 18 18 0 5284 1315 3 MP
XPP
X18 0 0 18 5284 1315 3 MP
XPP
X0 18 18 0 5284 1333 3 MP
XPP
X18 0 0 18 5284 1333 3 MP
XPP
X0 18 18 0 5284 1351 3 MP
XPP
X18 0 0 18 5284 1351 3 MP
XPP
X0 17 18 0 5284 1369 3 MP
XPP
X18 0 0 17 5284 1369 3 MP
XPP
X0 18 18 0 5284 1386 3 MP
XPP
X18 0 0 18 5284 1386 3 MP
XPP
X0 18 18 0 5284 1404 3 MP
XPP
X18 0 0 18 5284 1404 3 MP
XPP
X0 18 18 0 5284 1422 3 MP
XPP
X18 0 0 18 5284 1422 3 MP
XPP
X0 18 18 0 5284 1440 3 MP
XPP
X18 0 0 18 5284 1440 3 MP
XPP
X0 18 18 0 5284 1458 3 MP
XPP
X18 0 0 18 5284 1458 3 MP
XPP
X0 17 18 0 5284 1476 3 MP
XPP
X18 0 0 17 5284 1476 3 MP
XPP
X0 18 18 0 5284 1493 3 MP
XPP
X18 0 0 18 5284 1493 3 MP
XPP
X0 18 18 0 5284 1511 3 MP
XPP
X18 0 0 18 5284 1511 3 MP
XPP
X0 18 18 0 5284 1529 3 MP
XPP
X18 0 0 18 5284 1529 3 MP
XPP
X0 18 18 0 5284 1547 3 MP
XPP
X18 0 0 18 5284 1547 3 MP
XPP
X0 18 18 0 5284 1565 3 MP
XPP
X18 0 0 18 5284 1565 3 MP
XPP
X0 17 18 0 5284 1583 3 MP
XPP
X18 0 0 17 5284 1583 3 MP
XPP
X0 18 18 0 5284 1600 3 MP
XPP
X18 0 0 18 5284 1600 3 MP
XPP
X0 18 18 0 5284 1618 3 MP
XPP
X18 0 0 18 5284 1618 3 MP
XPP
X0 18 18 0 5284 1636 3 MP
XPP
X18 0 0 18 5284 1636 3 MP
XPP
X0 18 18 0 5284 1654 3 MP
XPP
X18 0 0 18 5284 1654 3 MP
XPP
X0 18 18 0 5284 1672 3 MP
XPP
X18 0 0 18 5284 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5284 1690 3 MP
XPP
X18 0 0 17 5284 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5284 1707 3 MP
XPP
X18 0 0 18 5284 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5284 1725 3 MP
XPP
X18 0 0 18 5284 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5284 1743 3 MP
XPP
X18 0 0 18 5284 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5284 1761 3 MP
XPP
X18 0 0 18 5284 1761 3 MP
XPP
X1 sg
X0 18 18 0 5284 1779 3 MP
XPP
X18 0 0 18 5284 1779 3 MP
XPP
X0 17 18 0 5284 1797 3 MP
XPP
X18 0 0 17 5284 1797 3 MP
XPP
X0 18 18 0 5284 1814 3 MP
XPP
X18 0 0 18 5284 1814 3 MP
XPP
X0 18 18 0 5284 1832 3 MP
XPP
X18 0 0 18 5284 1832 3 MP
XPP
X0 18 18 0 5284 1850 3 MP
XPP
X18 0 0 18 5284 1850 3 MP
XPP
X0 18 18 0 5284 1868 3 MP
XPP
X18 0 0 18 5284 1868 3 MP
XPP
X0 18 18 0 5284 1886 3 MP
XPP
X18 0 0 18 5284 1886 3 MP
XPP
X0 17 18 0 5284 1904 3 MP
XPP
X18 0 0 17 5284 1904 3 MP
XPP
X0 18 18 0 5284 1921 3 MP
XPP
X18 0 0 18 5284 1921 3 MP
XPP
X0 18 18 0 5284 1939 3 MP
XPP
X18 0 0 18 5284 1939 3 MP
XPP
X0 18 18 0 5284 1957 3 MP
XPP
X18 0 0 18 5284 1957 3 MP
XPP
X0 18 18 0 5284 1975 3 MP
XPP
X18 0 0 18 5284 1975 3 MP
XPP
X0 18 18 0 5284 1993 3 MP
XPP
X18 0 0 18 5284 1993 3 MP
XPP
X0 17 18 0 5284 2011 3 MP
XPP
X18 0 0 17 5284 2011 3 MP
XPP
X0 18 18 0 5284 2028 3 MP
XPP
X18 0 0 18 5284 2028 3 MP
XPP
X0 18 18 0 5284 2046 3 MP
XPP
X18 0 0 18 5284 2046 3 MP
XPP
X0 18 18 0 5284 2064 3 MP
XPP
X18 0 0 18 5284 2064 3 MP
XPP
X0 18 18 0 5284 2082 3 MP
XPP
X18 0 0 18 5284 2082 3 MP
XPP
X0 18 18 0 5284 2100 3 MP
XPP
X18 0 0 18 5284 2100 3 MP
XPP
X0 17 18 0 5284 2118 3 MP
XPP
X18 0 0 17 5284 2118 3 MP
XPP
X0 18 18 0 5284 2135 3 MP
XPP
X18 0 0 18 5284 2135 3 MP
XPP
X0 18 18 0 5284 2153 3 MP
XPP
X18 0 0 18 5284 2153 3 MP
XPP
X0 18 18 0 5302 388 3 MP
XPP
X18 0 0 18 5302 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5302 406 3 MP
XPP
X18 0 0 18 5302 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5302 424 3 MP
XPP
X18 0 0 17 5302 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5302 441 3 MP
XPP
X18 0 0 18 5302 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5302 459 3 MP
XPP
X18 0 0 18 5302 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5302 477 3 MP
XPP
X18 0 0 18 5302 477 3 MP
XPP
X0 18 18 0 5302 495 3 MP
XPP
X18 0 0 18 5302 495 3 MP
XPP
X0 18 18 0 5302 513 3 MP
XPP
X18 0 0 18 5302 513 3 MP
XPP
X0 17 18 0 5302 531 3 MP
XPP
X18 0 0 17 5302 531 3 MP
XPP
X0 18 18 0 5302 548 3 MP
XPP
X18 0 0 18 5302 548 3 MP
XPP
X0 18 18 0 5302 566 3 MP
XPP
X18 0 0 18 5302 566 3 MP
XPP
X0 18 18 0 5302 584 3 MP
XPP
X18 0 0 18 5302 584 3 MP
XPP
X0 18 18 0 5302 602 3 MP
XPP
X18 0 0 18 5302 602 3 MP
XPP
X0 18 18 0 5302 620 3 MP
XPP
X18 0 0 18 5302 620 3 MP
XPP
X0 17 18 0 5302 638 3 MP
XPP
X18 0 0 17 5302 638 3 MP
XPP
X0 18 18 0 5302 655 3 MP
XPP
X18 0 0 18 5302 655 3 MP
XPP
X0 18 18 0 5302 673 3 MP
XPP
X18 0 0 18 5302 673 3 MP
XPP
X0 18 18 0 5302 691 3 MP
XPP
X18 0 0 18 5302 691 3 MP
XPP
X0 18 18 0 5302 709 3 MP
XPP
X18 0 0 18 5302 709 3 MP
XPP
X0 18 18 0 5302 727 3 MP
XPP
X18 0 0 18 5302 727 3 MP
XPP
X0.619048 sg
X0 17 18 0 5302 745 3 MP
XPP
X18 0 0 17 5302 745 3 MP
XPP
X0.52381 sg
X0 18 18 0 5302 762 3 MP
XPP
X18 0 0 18 5302 762 3 MP
XPP
X0.412698 sg
X0 18 18 0 5302 780 3 MP
XPP
X18 0 0 18 5302 780 3 MP
XPP
X0.349206 sg
X0 18 18 0 5302 798 3 MP
XPP
X18 0 0 18 5302 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5302 816 3 MP
XPP
X18 0 0 18 5302 816 3 MP
XPP
X0 18 18 0 5302 834 3 MP
XPP
X18 0 0 18 5302 834 3 MP
XPP
X0 17 18 0 5302 852 3 MP
XPP
X18 0 0 17 5302 852 3 MP
XPP
X0 18 18 0 5302 869 3 MP
XPP
X18 0 0 18 5302 869 3 MP
XPP
X0 18 18 0 5302 887 3 MP
XPP
X18 0 0 18 5302 887 3 MP
XPP
X0 18 18 0 5302 905 3 MP
XPP
X18 0 0 18 5302 905 3 MP
XPP
X0 18 18 0 5302 923 3 MP
XPP
X18 0 0 18 5302 923 3 MP
XPP
X0 18 18 0 5302 941 3 MP
XPP
X18 0 0 18 5302 941 3 MP
XPP
X0 17 18 0 5302 959 3 MP
XPP
X18 0 0 17 5302 959 3 MP
XPP
X0 18 18 0 5302 976 3 MP
XPP
X18 0 0 18 5302 976 3 MP
XPP
X0 18 18 0 5302 994 3 MP
XPP
X18 0 0 18 5302 994 3 MP
XPP
X0 18 18 0 5302 1012 3 MP
XPP
X18 0 0 18 5302 1012 3 MP
XPP
X0 18 18 0 5302 1030 3 MP
XPP
X18 0 0 18 5302 1030 3 MP
XPP
X0 18 18 0 5302 1048 3 MP
XPP
X18 0 0 18 5302 1048 3 MP
XPP
X0 17 18 0 5302 1066 3 MP
XPP
X18 0 0 17 5302 1066 3 MP
XPP
X0 18 18 0 5302 1083 3 MP
XPP
X18 0 0 18 5302 1083 3 MP
XPP
X0 18 18 0 5302 1101 3 MP
XPP
X18 0 0 18 5302 1101 3 MP
XPP
X0 18 18 0 5302 1119 3 MP
XPP
X18 0 0 18 5302 1119 3 MP
XPP
X0 18 18 0 5302 1137 3 MP
XPP
X18 0 0 18 5302 1137 3 MP
XPP
X0 18 18 0 5302 1155 3 MP
XPP
X18 0 0 18 5302 1155 3 MP
XPP
X0.365079 sg
X0 17 18 0 5302 1173 3 MP
XPP
X18 0 0 17 5302 1173 3 MP
XPP
X0.492063 sg
X0 18 18 0 5302 1190 3 MP
XPP
X18 0 0 18 5302 1190 3 MP
XPP
X0.714286 sg
X0 18 18 0 5302 1208 3 MP
XPP
X18 0 0 18 5302 1208 3 MP
XPP
X0.904762 sg
X0 18 18 0 5302 1226 3 MP
XPP
X18 0 0 18 5302 1226 3 MP
XPP
X1 sg
X0 18 18 0 5302 1244 3 MP
XPP
X18 0 0 18 5302 1244 3 MP
XPP
X0 17 18 0 5302 1262 3 MP
XPP
X18 0 0 17 5302 1262 3 MP
XPP
X0 18 18 0 5302 1279 3 MP
XPP
X18 0 0 18 5302 1279 3 MP
XPP
X0 18 18 0 5302 1297 3 MP
XPP
X18 0 0 18 5302 1297 3 MP
XPP
X0 18 18 0 5302 1315 3 MP
XPP
X18 0 0 18 5302 1315 3 MP
XPP
X0 18 18 0 5302 1333 3 MP
XPP
X18 0 0 18 5302 1333 3 MP
XPP
X0 18 18 0 5302 1351 3 MP
XPP
X18 0 0 18 5302 1351 3 MP
XPP
X0 17 18 0 5302 1369 3 MP
XPP
X18 0 0 17 5302 1369 3 MP
XPP
X0 18 18 0 5302 1386 3 MP
XPP
X18 0 0 18 5302 1386 3 MP
XPP
X0 18 18 0 5302 1404 3 MP
XPP
X18 0 0 18 5302 1404 3 MP
XPP
X0 18 18 0 5302 1422 3 MP
XPP
X18 0 0 18 5302 1422 3 MP
XPP
X0 18 18 0 5302 1440 3 MP
XPP
X18 0 0 18 5302 1440 3 MP
XPP
X0 18 18 0 5302 1458 3 MP
XPP
X18 0 0 18 5302 1458 3 MP
XPP
X0 17 18 0 5302 1476 3 MP
XPP
X18 0 0 17 5302 1476 3 MP
XPP
X0 18 18 0 5302 1493 3 MP
XPP
X18 0 0 18 5302 1493 3 MP
XPP
X0 18 18 0 5302 1511 3 MP
XPP
X18 0 0 18 5302 1511 3 MP
XPP
X0 18 18 0 5302 1529 3 MP
XPP
X18 0 0 18 5302 1529 3 MP
XPP
X0 18 18 0 5302 1547 3 MP
XPP
X18 0 0 18 5302 1547 3 MP
XPP
X0 18 18 0 5302 1565 3 MP
XPP
X18 0 0 18 5302 1565 3 MP
XPP
X0 17 18 0 5302 1583 3 MP
XPP
X18 0 0 17 5302 1583 3 MP
XPP
X0 18 18 0 5302 1600 3 MP
XPP
X18 0 0 18 5302 1600 3 MP
XPP
X0 18 18 0 5302 1618 3 MP
XPP
X18 0 0 18 5302 1618 3 MP
XPP
X0 18 18 0 5302 1636 3 MP
XPP
X18 0 0 18 5302 1636 3 MP
XPP
X0 18 18 0 5302 1654 3 MP
XPP
X18 0 0 18 5302 1654 3 MP
XPP
X0 18 18 0 5302 1672 3 MP
XPP
X18 0 0 18 5302 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5302 1690 3 MP
XPP
X18 0 0 17 5302 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5302 1707 3 MP
XPP
X18 0 0 18 5302 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5302 1725 3 MP
XPP
X18 0 0 18 5302 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5302 1743 3 MP
XPP
X18 0 0 18 5302 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5302 1761 3 MP
XPP
X18 0 0 18 5302 1761 3 MP
XPP
X1 sg
X0 18 18 0 5302 1779 3 MP
XPP
X18 0 0 18 5302 1779 3 MP
XPP
X0 17 18 0 5302 1797 3 MP
XPP
X18 0 0 17 5302 1797 3 MP
XPP
X0 18 18 0 5302 1814 3 MP
XPP
X18 0 0 18 5302 1814 3 MP
XPP
X0 18 18 0 5302 1832 3 MP
XPP
X18 0 0 18 5302 1832 3 MP
XPP
X0 18 18 0 5302 1850 3 MP
XPP
X18 0 0 18 5302 1850 3 MP
XPP
X0 18 18 0 5302 1868 3 MP
XPP
X18 0 0 18 5302 1868 3 MP
XPP
X0 18 18 0 5302 1886 3 MP
XPP
X18 0 0 18 5302 1886 3 MP
XPP
X0 17 18 0 5302 1904 3 MP
XPP
X18 0 0 17 5302 1904 3 MP
XPP
X0 18 18 0 5302 1921 3 MP
XPP
X18 0 0 18 5302 1921 3 MP
XPP
X0 18 18 0 5302 1939 3 MP
XPP
X18 0 0 18 5302 1939 3 MP
XPP
X0 18 18 0 5302 1957 3 MP
XPP
X18 0 0 18 5302 1957 3 MP
XPP
X0 18 18 0 5302 1975 3 MP
XPP
X18 0 0 18 5302 1975 3 MP
XPP
X0 18 18 0 5302 1993 3 MP
XPP
X18 0 0 18 5302 1993 3 MP
XPP
X0 17 18 0 5302 2011 3 MP
XPP
X18 0 0 17 5302 2011 3 MP
XPP
X0 18 18 0 5302 2028 3 MP
XPP
X18 0 0 18 5302 2028 3 MP
XPP
X0 18 18 0 5302 2046 3 MP
XPP
X18 0 0 18 5302 2046 3 MP
XPP
X0 18 18 0 5302 2064 3 MP
XPP
X18 0 0 18 5302 2064 3 MP
XPP
X0 18 18 0 5302 2082 3 MP
XPP
X18 0 0 18 5302 2082 3 MP
XPP
X0 18 18 0 5302 2100 3 MP
XPP
X18 0 0 18 5302 2100 3 MP
XPP
X0 17 18 0 5302 2118 3 MP
XPP
X18 0 0 17 5302 2118 3 MP
XPP
X0 18 18 0 5302 2135 3 MP
XPP
X18 0 0 18 5302 2135 3 MP
XPP
X0 18 18 0 5302 2153 3 MP
XPP
X18 0 0 18 5302 2153 3 MP
XPP
X0 18 18 0 5320 388 3 MP
XPP
X18 0 0 18 5320 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5320 406 3 MP
XPP
X18 0 0 18 5320 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5320 424 3 MP
XPP
X18 0 0 17 5320 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5320 441 3 MP
XPP
X18 0 0 18 5320 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5320 459 3 MP
XPP
X18 0 0 18 5320 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5320 477 3 MP
XPP
X18 0 0 18 5320 477 3 MP
XPP
X0 18 18 0 5320 495 3 MP
XPP
X18 0 0 18 5320 495 3 MP
XPP
X0 18 18 0 5320 513 3 MP
XPP
X18 0 0 18 5320 513 3 MP
XPP
X0 17 18 0 5320 531 3 MP
XPP
X18 0 0 17 5320 531 3 MP
XPP
X0 18 18 0 5320 548 3 MP
XPP
X18 0 0 18 5320 548 3 MP
XPP
X0 18 18 0 5320 566 3 MP
XPP
X18 0 0 18 5320 566 3 MP
XPP
X0 18 18 0 5320 584 3 MP
XPP
X18 0 0 18 5320 584 3 MP
XPP
X0 18 18 0 5320 602 3 MP
XPP
X18 0 0 18 5320 602 3 MP
XPP
X0 18 18 0 5320 620 3 MP
XPP
X18 0 0 18 5320 620 3 MP
XPP
X0 17 18 0 5320 638 3 MP
XPP
X18 0 0 17 5320 638 3 MP
XPP
X0 18 18 0 5320 655 3 MP
XPP
X18 0 0 18 5320 655 3 MP
XPP
X0 18 18 0 5320 673 3 MP
XPP
X18 0 0 18 5320 673 3 MP
XPP
X0 18 18 0 5320 691 3 MP
XPP
X18 0 0 18 5320 691 3 MP
XPP
X0 18 18 0 5320 709 3 MP
XPP
X18 0 0 18 5320 709 3 MP
XPP
X0.650794 sg
X0 18 18 0 5320 727 3 MP
XPP
X18 0 0 18 5320 727 3 MP
XPP
X0.587302 sg
X0 17 18 0 5320 745 3 MP
XPP
X18 0 0 17 5320 745 3 MP
XPP
X0.47619 sg
X0 18 18 0 5320 762 3 MP
XPP
X18 0 0 18 5320 762 3 MP
XPP
X0.380952 sg
X0 18 18 0 5320 780 3 MP
XPP
X18 0 0 18 5320 780 3 MP
XPP
X0.333333 sg
X0 18 18 0 5320 798 3 MP
XPP
X18 0 0 18 5320 798 3 MP
XPP
X0 18 18 0 5320 816 3 MP
XPP
X18 0 0 18 5320 816 3 MP
XPP
X0 18 18 0 5320 834 3 MP
XPP
X18 0 0 18 5320 834 3 MP
XPP
X0 17 18 0 5320 852 3 MP
XPP
X18 0 0 17 5320 852 3 MP
XPP
X0 18 18 0 5320 869 3 MP
XPP
X18 0 0 18 5320 869 3 MP
XPP
X0 18 18 0 5320 887 3 MP
XPP
X18 0 0 18 5320 887 3 MP
XPP
X0 18 18 0 5320 905 3 MP
XPP
X18 0 0 18 5320 905 3 MP
XPP
X0 18 18 0 5320 923 3 MP
XPP
X18 0 0 18 5320 923 3 MP
XPP
X0 18 18 0 5320 941 3 MP
XPP
X18 0 0 18 5320 941 3 MP
XPP
X0 17 18 0 5320 959 3 MP
XPP
X18 0 0 17 5320 959 3 MP
XPP
X0 18 18 0 5320 976 3 MP
XPP
X18 0 0 18 5320 976 3 MP
XPP
X0 18 18 0 5320 994 3 MP
XPP
X18 0 0 18 5320 994 3 MP
XPP
X0 18 18 0 5320 1012 3 MP
XPP
X18 0 0 18 5320 1012 3 MP
XPP
X0 18 18 0 5320 1030 3 MP
XPP
X18 0 0 18 5320 1030 3 MP
XPP
X0 18 18 0 5320 1048 3 MP
XPP
X18 0 0 18 5320 1048 3 MP
XPP
X0 17 18 0 5320 1066 3 MP
XPP
X18 0 0 17 5320 1066 3 MP
XPP
X0 18 18 0 5320 1083 3 MP
XPP
X18 0 0 18 5320 1083 3 MP
XPP
X0 18 18 0 5320 1101 3 MP
XPP
X18 0 0 18 5320 1101 3 MP
XPP
X0 18 18 0 5320 1119 3 MP
XPP
X18 0 0 18 5320 1119 3 MP
XPP
X0 18 18 0 5320 1137 3 MP
XPP
X18 0 0 18 5320 1137 3 MP
XPP
X0 18 18 0 5320 1155 3 MP
XPP
X18 0 0 18 5320 1155 3 MP
XPP
X0.349206 sg
X0 17 18 0 5320 1173 3 MP
XPP
X18 0 0 17 5320 1173 3 MP
XPP
X0.428571 sg
X0 18 18 0 5320 1190 3 MP
XPP
X18 0 0 18 5320 1190 3 MP
XPP
X0.619048 sg
X0 18 18 0 5320 1208 3 MP
XPP
X18 0 0 18 5320 1208 3 MP
XPP
X0.84127 sg
X0 18 18 0 5320 1226 3 MP
XPP
X18 0 0 18 5320 1226 3 MP
XPP
X0.968254 sg
X0 18 18 0 5320 1244 3 MP
XPP
X18 0 0 18 5320 1244 3 MP
XPP
X1 sg
X0 17 18 0 5320 1262 3 MP
XPP
X18 0 0 17 5320 1262 3 MP
XPP
X0 18 18 0 5320 1279 3 MP
XPP
X18 0 0 18 5320 1279 3 MP
XPP
X0 18 18 0 5320 1297 3 MP
XPP
X18 0 0 18 5320 1297 3 MP
XPP
X0 18 18 0 5320 1315 3 MP
XPP
X18 0 0 18 5320 1315 3 MP
XPP
X0 18 18 0 5320 1333 3 MP
XPP
X18 0 0 18 5320 1333 3 MP
XPP
X0 18 18 0 5320 1351 3 MP
XPP
X18 0 0 18 5320 1351 3 MP
XPP
X0 17 18 0 5320 1369 3 MP
XPP
X18 0 0 17 5320 1369 3 MP
XPP
X0 18 18 0 5320 1386 3 MP
XPP
X18 0 0 18 5320 1386 3 MP
XPP
X0 18 18 0 5320 1404 3 MP
XPP
X18 0 0 18 5320 1404 3 MP
XPP
X0 18 18 0 5320 1422 3 MP
XPP
X18 0 0 18 5320 1422 3 MP
XPP
X0 18 18 0 5320 1440 3 MP
XPP
X18 0 0 18 5320 1440 3 MP
XPP
X0 18 18 0 5320 1458 3 MP
XPP
X18 0 0 18 5320 1458 3 MP
XPP
X0 17 18 0 5320 1476 3 MP
XPP
X18 0 0 17 5320 1476 3 MP
XPP
X0 18 18 0 5320 1493 3 MP
XPP
X18 0 0 18 5320 1493 3 MP
XPP
X0 18 18 0 5320 1511 3 MP
XPP
X18 0 0 18 5320 1511 3 MP
XPP
X0 18 18 0 5320 1529 3 MP
XPP
X18 0 0 18 5320 1529 3 MP
XPP
X0 18 18 0 5320 1547 3 MP
XPP
X18 0 0 18 5320 1547 3 MP
XPP
X0 18 18 0 5320 1565 3 MP
XPP
X18 0 0 18 5320 1565 3 MP
XPP
X0 17 18 0 5320 1583 3 MP
XPP
X18 0 0 17 5320 1583 3 MP
XPP
X0 18 18 0 5320 1600 3 MP
XPP
X18 0 0 18 5320 1600 3 MP
XPP
X0 18 18 0 5320 1618 3 MP
XPP
X18 0 0 18 5320 1618 3 MP
XPP
X0 18 18 0 5320 1636 3 MP
XPP
X18 0 0 18 5320 1636 3 MP
XPP
X0 18 18 0 5320 1654 3 MP
XPP
X18 0 0 18 5320 1654 3 MP
XPP
X0 18 18 0 5320 1672 3 MP
XPP
X18 0 0 18 5320 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5320 1690 3 MP
XPP
X18 0 0 17 5320 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5320 1707 3 MP
XPP
X18 0 0 18 5320 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5320 1725 3 MP
XPP
X18 0 0 18 5320 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5320 1743 3 MP
XPP
X18 0 0 18 5320 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5320 1761 3 MP
XPP
X18 0 0 18 5320 1761 3 MP
XPP
X1 sg
X0 18 18 0 5320 1779 3 MP
XPP
X18 0 0 18 5320 1779 3 MP
XPP
X0 17 18 0 5320 1797 3 MP
XPP
X18 0 0 17 5320 1797 3 MP
XPP
X0 18 18 0 5320 1814 3 MP
XPP
X18 0 0 18 5320 1814 3 MP
XPP
X0 18 18 0 5320 1832 3 MP
XPP
X18 0 0 18 5320 1832 3 MP
XPP
X0 18 18 0 5320 1850 3 MP
XPP
X18 0 0 18 5320 1850 3 MP
XPP
X0 18 18 0 5320 1868 3 MP
XPP
X18 0 0 18 5320 1868 3 MP
XPP
X0 18 18 0 5320 1886 3 MP
XPP
X18 0 0 18 5320 1886 3 MP
XPP
X0 17 18 0 5320 1904 3 MP
XPP
X18 0 0 17 5320 1904 3 MP
XPP
X0 18 18 0 5320 1921 3 MP
XPP
X18 0 0 18 5320 1921 3 MP
XPP
X0 18 18 0 5320 1939 3 MP
XPP
X18 0 0 18 5320 1939 3 MP
XPP
X0 18 18 0 5320 1957 3 MP
XPP
X18 0 0 18 5320 1957 3 MP
XPP
X0 18 18 0 5320 1975 3 MP
XPP
X18 0 0 18 5320 1975 3 MP
XPP
X0 18 18 0 5320 1993 3 MP
XPP
X18 0 0 18 5320 1993 3 MP
XPP
X0 17 18 0 5320 2011 3 MP
XPP
X18 0 0 17 5320 2011 3 MP
XPP
X0 18 18 0 5320 2028 3 MP
XPP
X18 0 0 18 5320 2028 3 MP
XPP
X0 18 18 0 5320 2046 3 MP
XPP
X18 0 0 18 5320 2046 3 MP
XPP
X0 18 18 0 5320 2064 3 MP
XPP
X18 0 0 18 5320 2064 3 MP
XPP
X0 18 18 0 5320 2082 3 MP
XPP
X18 0 0 18 5320 2082 3 MP
XPP
X0 18 18 0 5320 2100 3 MP
XPP
X18 0 0 18 5320 2100 3 MP
XPP
X0 17 18 0 5320 2118 3 MP
XPP
X18 0 0 17 5320 2118 3 MP
XPP
X0 18 18 0 5320 2135 3 MP
XPP
X18 0 0 18 5320 2135 3 MP
XPP
X0 18 18 0 5320 2153 3 MP
XPP
X18 0 0 18 5320 2153 3 MP
XPP
X0 18 18 0 5338 388 3 MP
XPP
X18 0 0 18 5338 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5338 406 3 MP
XPP
X18 0 0 18 5338 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5338 424 3 MP
XPP
X18 0 0 17 5338 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5338 441 3 MP
XPP
X18 0 0 18 5338 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5338 459 3 MP
XPP
X18 0 0 18 5338 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5338 477 3 MP
XPP
X18 0 0 18 5338 477 3 MP
XPP
X0 18 18 0 5338 495 3 MP
XPP
X18 0 0 18 5338 495 3 MP
XPP
X0 18 18 0 5338 513 3 MP
XPP
X18 0 0 18 5338 513 3 MP
XPP
X0 17 18 0 5338 531 3 MP
XPP
X18 0 0 17 5338 531 3 MP
XPP
X0 18 18 0 5338 548 3 MP
XPP
X18 0 0 18 5338 548 3 MP
XPP
X0 18 18 0 5338 566 3 MP
XPP
X18 0 0 18 5338 566 3 MP
XPP
X0 18 18 0 5338 584 3 MP
XPP
X18 0 0 18 5338 584 3 MP
XPP
X0 18 18 0 5338 602 3 MP
XPP
X18 0 0 18 5338 602 3 MP
XPP
X0 18 18 0 5338 620 3 MP
XPP
X18 0 0 18 5338 620 3 MP
XPP
X0 17 18 0 5338 638 3 MP
XPP
X18 0 0 17 5338 638 3 MP
XPP
X0 18 18 0 5338 655 3 MP
XPP
X18 0 0 18 5338 655 3 MP
XPP
X0 18 18 0 5338 673 3 MP
XPP
X18 0 0 18 5338 673 3 MP
XPP
X0 18 18 0 5338 691 3 MP
XPP
X18 0 0 18 5338 691 3 MP
XPP
X0 18 18 0 5338 709 3 MP
XPP
X18 0 0 18 5338 709 3 MP
XPP
X0.650794 sg
X0 18 18 0 5338 727 3 MP
XPP
X18 0 0 18 5338 727 3 MP
XPP
X0.571429 sg
X0 17 18 0 5338 745 3 MP
XPP
X18 0 0 17 5338 745 3 MP
XPP
X0.444444 sg
X0 18 18 0 5338 762 3 MP
XPP
X18 0 0 18 5338 762 3 MP
XPP
X0.365079 sg
X0 18 18 0 5338 780 3 MP
XPP
X18 0 0 18 5338 780 3 MP
XPP
X0.333333 sg
X0 18 18 0 5338 798 3 MP
XPP
X18 0 0 18 5338 798 3 MP
XPP
X0 18 18 0 5338 816 3 MP
XPP
X18 0 0 18 5338 816 3 MP
XPP
X0 18 18 0 5338 834 3 MP
XPP
X18 0 0 18 5338 834 3 MP
XPP
X0 17 18 0 5338 852 3 MP
XPP
X18 0 0 17 5338 852 3 MP
XPP
X0 18 18 0 5338 869 3 MP
XPP
X18 0 0 18 5338 869 3 MP
XPP
X0 18 18 0 5338 887 3 MP
XPP
X18 0 0 18 5338 887 3 MP
XPP
X0 18 18 0 5338 905 3 MP
XPP
X18 0 0 18 5338 905 3 MP
XPP
X0 18 18 0 5338 923 3 MP
XPP
X18 0 0 18 5338 923 3 MP
XPP
X0 18 18 0 5338 941 3 MP
XPP
X18 0 0 18 5338 941 3 MP
XPP
X0 17 18 0 5338 959 3 MP
XPP
X18 0 0 17 5338 959 3 MP
XPP
X0 18 18 0 5338 976 3 MP
XPP
X18 0 0 18 5338 976 3 MP
XPP
X0 18 18 0 5338 994 3 MP
XPP
X18 0 0 18 5338 994 3 MP
XPP
X0 18 18 0 5338 1012 3 MP
XPP
X18 0 0 18 5338 1012 3 MP
XPP
X0 18 18 0 5338 1030 3 MP
XPP
X18 0 0 18 5338 1030 3 MP
XPP
X0 18 18 0 5338 1048 3 MP
XPP
X18 0 0 18 5338 1048 3 MP
XPP
X0 17 18 0 5338 1066 3 MP
XPP
X18 0 0 17 5338 1066 3 MP
XPP
X0 18 18 0 5338 1083 3 MP
XPP
X18 0 0 18 5338 1083 3 MP
XPP
X0 18 18 0 5338 1101 3 MP
XPP
X18 0 0 18 5338 1101 3 MP
XPP
X0 18 18 0 5338 1119 3 MP
XPP
X18 0 0 18 5338 1119 3 MP
XPP
X0 18 18 0 5338 1137 3 MP
XPP
X18 0 0 18 5338 1137 3 MP
XPP
X0 18 18 0 5338 1155 3 MP
XPP
X18 0 0 18 5338 1155 3 MP
XPP
X0 17 18 0 5338 1173 3 MP
XPP
X18 0 0 17 5338 1173 3 MP
XPP
X0.396825 sg
X0 18 18 0 5338 1190 3 MP
XPP
X18 0 0 18 5338 1190 3 MP
XPP
X0.571429 sg
X0 18 18 0 5338 1208 3 MP
XPP
X18 0 0 18 5338 1208 3 MP
XPP
X0.809524 sg
X0 18 18 0 5338 1226 3 MP
XPP
X18 0 0 18 5338 1226 3 MP
XPP
X0.968254 sg
X0 18 18 0 5338 1244 3 MP
XPP
X18 0 0 18 5338 1244 3 MP
XPP
X1 sg
X0 17 18 0 5338 1262 3 MP
XPP
X18 0 0 17 5338 1262 3 MP
XPP
X0 18 18 0 5338 1279 3 MP
XPP
X18 0 0 18 5338 1279 3 MP
XPP
X0 18 18 0 5338 1297 3 MP
XPP
X18 0 0 18 5338 1297 3 MP
XPP
X0 18 18 0 5338 1315 3 MP
XPP
X18 0 0 18 5338 1315 3 MP
XPP
X0 18 18 0 5338 1333 3 MP
XPP
X18 0 0 18 5338 1333 3 MP
XPP
X0 18 18 0 5338 1351 3 MP
XPP
X18 0 0 18 5338 1351 3 MP
XPP
X0 17 18 0 5338 1369 3 MP
XPP
X18 0 0 17 5338 1369 3 MP
XPP
X0 18 18 0 5338 1386 3 MP
XPP
X18 0 0 18 5338 1386 3 MP
XPP
X0 18 18 0 5338 1404 3 MP
XPP
X18 0 0 18 5338 1404 3 MP
XPP
X0 18 18 0 5338 1422 3 MP
XPP
X18 0 0 18 5338 1422 3 MP
XPP
X0 18 18 0 5338 1440 3 MP
XPP
X18 0 0 18 5338 1440 3 MP
XPP
X0 18 18 0 5338 1458 3 MP
XPP
X18 0 0 18 5338 1458 3 MP
XPP
X0 17 18 0 5338 1476 3 MP
XPP
X18 0 0 17 5338 1476 3 MP
XPP
X0 18 18 0 5338 1493 3 MP
XPP
X18 0 0 18 5338 1493 3 MP
XPP
X0 18 18 0 5338 1511 3 MP
XPP
X18 0 0 18 5338 1511 3 MP
XPP
X0 18 18 0 5338 1529 3 MP
XPP
X18 0 0 18 5338 1529 3 MP
XPP
X0 18 18 0 5338 1547 3 MP
XPP
X18 0 0 18 5338 1547 3 MP
XPP
X0 18 18 0 5338 1565 3 MP
XPP
X18 0 0 18 5338 1565 3 MP
XPP
X0 17 18 0 5338 1583 3 MP
XPP
X18 0 0 17 5338 1583 3 MP
XPP
X0 18 18 0 5338 1600 3 MP
XPP
X18 0 0 18 5338 1600 3 MP
XPP
X0 18 18 0 5338 1618 3 MP
XPP
X18 0 0 18 5338 1618 3 MP
XPP
X0 18 18 0 5338 1636 3 MP
XPP
X18 0 0 18 5338 1636 3 MP
XPP
X0 18 18 0 5338 1654 3 MP
XPP
X18 0 0 18 5338 1654 3 MP
XPP
X0 18 18 0 5338 1672 3 MP
XPP
X18 0 0 18 5338 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5338 1690 3 MP
XPP
X18 0 0 17 5338 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5338 1707 3 MP
XPP
X18 0 0 18 5338 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5338 1725 3 MP
XPP
X18 0 0 18 5338 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5338 1743 3 MP
XPP
X18 0 0 18 5338 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5338 1761 3 MP
XPP
X18 0 0 18 5338 1761 3 MP
XPP
X1 sg
X0 18 18 0 5338 1779 3 MP
XPP
X18 0 0 18 5338 1779 3 MP
XPP
X0 17 18 0 5338 1797 3 MP
XPP
X18 0 0 17 5338 1797 3 MP
XPP
X0 18 18 0 5338 1814 3 MP
XPP
X18 0 0 18 5338 1814 3 MP
XPP
X0 18 18 0 5338 1832 3 MP
XPP
X18 0 0 18 5338 1832 3 MP
XPP
X0 18 18 0 5338 1850 3 MP
XPP
X18 0 0 18 5338 1850 3 MP
XPP
X0 18 18 0 5338 1868 3 MP
XPP
X18 0 0 18 5338 1868 3 MP
XPP
X0 18 18 0 5338 1886 3 MP
XPP
X18 0 0 18 5338 1886 3 MP
XPP
X0 17 18 0 5338 1904 3 MP
XPP
X18 0 0 17 5338 1904 3 MP
XPP
X0 18 18 0 5338 1921 3 MP
XPP
X18 0 0 18 5338 1921 3 MP
XPP
X0 18 18 0 5338 1939 3 MP
XPP
X18 0 0 18 5338 1939 3 MP
XPP
X0 18 18 0 5338 1957 3 MP
XPP
X18 0 0 18 5338 1957 3 MP
XPP
X0 18 18 0 5338 1975 3 MP
XPP
X18 0 0 18 5338 1975 3 MP
XPP
X0 18 18 0 5338 1993 3 MP
XPP
X18 0 0 18 5338 1993 3 MP
XPP
X0 17 18 0 5338 2011 3 MP
XPP
X18 0 0 17 5338 2011 3 MP
XPP
X0 18 18 0 5338 2028 3 MP
XPP
X18 0 0 18 5338 2028 3 MP
XPP
X0 18 18 0 5338 2046 3 MP
XPP
X18 0 0 18 5338 2046 3 MP
XPP
X0 18 18 0 5338 2064 3 MP
XPP
X18 0 0 18 5338 2064 3 MP
XPP
X0 18 18 0 5338 2082 3 MP
XPP
X18 0 0 18 5338 2082 3 MP
XPP
X0 18 18 0 5338 2100 3 MP
XPP
X18 0 0 18 5338 2100 3 MP
XPP
X0 17 18 0 5338 2118 3 MP
XPP
X18 0 0 17 5338 2118 3 MP
XPP
X0 18 18 0 5338 2135 3 MP
XPP
X18 0 0 18 5338 2135 3 MP
XPP
X0 18 18 0 5338 2153 3 MP
XPP
X18 0 0 18 5338 2153 3 MP
XPP
X0 18 18 0 5356 388 3 MP
XPP
X18 0 0 18 5356 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5356 406 3 MP
XPP
X18 0 0 18 5356 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5356 424 3 MP
XPP
X18 0 0 17 5356 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5356 441 3 MP
XPP
X18 0 0 18 5356 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5356 459 3 MP
XPP
X18 0 0 18 5356 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5356 477 3 MP
XPP
X18 0 0 18 5356 477 3 MP
XPP
X0 18 18 0 5356 495 3 MP
XPP
X18 0 0 18 5356 495 3 MP
XPP
X0 18 18 0 5356 513 3 MP
XPP
X18 0 0 18 5356 513 3 MP
XPP
X0 17 18 0 5356 531 3 MP
XPP
X18 0 0 17 5356 531 3 MP
XPP
X0 18 18 0 5356 548 3 MP
XPP
X18 0 0 18 5356 548 3 MP
XPP
X0 18 18 0 5356 566 3 MP
XPP
X18 0 0 18 5356 566 3 MP
XPP
X0 18 18 0 5356 584 3 MP
XPP
X18 0 0 18 5356 584 3 MP
XPP
X0 18 18 0 5356 602 3 MP
XPP
X18 0 0 18 5356 602 3 MP
XPP
X0 18 18 0 5356 620 3 MP
XPP
X18 0 0 18 5356 620 3 MP
XPP
X0 17 18 0 5356 638 3 MP
XPP
X18 0 0 17 5356 638 3 MP
XPP
X0 18 18 0 5356 655 3 MP
XPP
X18 0 0 18 5356 655 3 MP
XPP
X0 18 18 0 5356 673 3 MP
XPP
X18 0 0 18 5356 673 3 MP
XPP
X0 18 18 0 5356 691 3 MP
XPP
X18 0 0 18 5356 691 3 MP
XPP
X0 18 18 0 5356 709 3 MP
XPP
X18 0 0 18 5356 709 3 MP
XPP
X0.650794 sg
X0 18 18 0 5356 727 3 MP
XPP
X18 0 0 18 5356 727 3 MP
XPP
X0.555556 sg
X0 17 18 0 5356 745 3 MP
XPP
X18 0 0 17 5356 745 3 MP
XPP
X0.444444 sg
X0 18 18 0 5356 762 3 MP
XPP
X18 0 0 18 5356 762 3 MP
XPP
X0.349206 sg
X0 18 18 0 5356 780 3 MP
XPP
X18 0 0 18 5356 780 3 MP
XPP
X0.333333 sg
X0 18 18 0 5356 798 3 MP
XPP
X18 0 0 18 5356 798 3 MP
XPP
X0 18 18 0 5356 816 3 MP
XPP
X18 0 0 18 5356 816 3 MP
XPP
X0 18 18 0 5356 834 3 MP
XPP
X18 0 0 18 5356 834 3 MP
XPP
X0 17 18 0 5356 852 3 MP
XPP
X18 0 0 17 5356 852 3 MP
XPP
X0 18 18 0 5356 869 3 MP
XPP
X18 0 0 18 5356 869 3 MP
XPP
X0 18 18 0 5356 887 3 MP
XPP
X18 0 0 18 5356 887 3 MP
XPP
X0 18 18 0 5356 905 3 MP
XPP
X18 0 0 18 5356 905 3 MP
XPP
X0 18 18 0 5356 923 3 MP
XPP
X18 0 0 18 5356 923 3 MP
XPP
X0 18 18 0 5356 941 3 MP
XPP
X18 0 0 18 5356 941 3 MP
XPP
X0 17 18 0 5356 959 3 MP
XPP
X18 0 0 17 5356 959 3 MP
XPP
X0 18 18 0 5356 976 3 MP
XPP
X18 0 0 18 5356 976 3 MP
XPP
X0 18 18 0 5356 994 3 MP
XPP
X18 0 0 18 5356 994 3 MP
XPP
X0 18 18 0 5356 1012 3 MP
XPP
X18 0 0 18 5356 1012 3 MP
XPP
X0 18 18 0 5356 1030 3 MP
XPP
X18 0 0 18 5356 1030 3 MP
XPP
X0 18 18 0 5356 1048 3 MP
XPP
X18 0 0 18 5356 1048 3 MP
XPP
X0 17 18 0 5356 1066 3 MP
XPP
X18 0 0 17 5356 1066 3 MP
XPP
X0 18 18 0 5356 1083 3 MP
XPP
X18 0 0 18 5356 1083 3 MP
XPP
X0 18 18 0 5356 1101 3 MP
XPP
X18 0 0 18 5356 1101 3 MP
XPP
X0 18 18 0 5356 1119 3 MP
XPP
X18 0 0 18 5356 1119 3 MP
XPP
X0 18 18 0 5356 1137 3 MP
XPP
X18 0 0 18 5356 1137 3 MP
XPP
X0 18 18 0 5356 1155 3 MP
XPP
X18 0 0 18 5356 1155 3 MP
XPP
X0 17 18 0 5356 1173 3 MP
XPP
X18 0 0 17 5356 1173 3 MP
XPP
X0.380952 sg
X0 18 18 0 5356 1190 3 MP
XPP
X18 0 0 18 5356 1190 3 MP
XPP
X0.539683 sg
X0 18 18 0 5356 1208 3 MP
XPP
X18 0 0 18 5356 1208 3 MP
XPP
X0.793651 sg
X0 18 18 0 5356 1226 3 MP
XPP
X18 0 0 18 5356 1226 3 MP
XPP
X0.952381 sg
X0 18 18 0 5356 1244 3 MP
XPP
X18 0 0 18 5356 1244 3 MP
XPP
X1 sg
X0 17 18 0 5356 1262 3 MP
XPP
X18 0 0 17 5356 1262 3 MP
XPP
X0 18 18 0 5356 1279 3 MP
XPP
X18 0 0 18 5356 1279 3 MP
XPP
X0 18 18 0 5356 1297 3 MP
XPP
X18 0 0 18 5356 1297 3 MP
XPP
X0 18 18 0 5356 1315 3 MP
XPP
X18 0 0 18 5356 1315 3 MP
XPP
X0 18 18 0 5356 1333 3 MP
XPP
X18 0 0 18 5356 1333 3 MP
XPP
X0 18 18 0 5356 1351 3 MP
XPP
X18 0 0 18 5356 1351 3 MP
XPP
X0 17 18 0 5356 1369 3 MP
XPP
X18 0 0 17 5356 1369 3 MP
XPP
X0 18 18 0 5356 1386 3 MP
XPP
X18 0 0 18 5356 1386 3 MP
XPP
X0 18 18 0 5356 1404 3 MP
XPP
X18 0 0 18 5356 1404 3 MP
XPP
X0 18 18 0 5356 1422 3 MP
XPP
X18 0 0 18 5356 1422 3 MP
XPP
X0 18 18 0 5356 1440 3 MP
XPP
X18 0 0 18 5356 1440 3 MP
XPP
X0 18 18 0 5356 1458 3 MP
XPP
X18 0 0 18 5356 1458 3 MP
XPP
X0 17 18 0 5356 1476 3 MP
XPP
X18 0 0 17 5356 1476 3 MP
XPP
X0 18 18 0 5356 1493 3 MP
XPP
X18 0 0 18 5356 1493 3 MP
XPP
X0 18 18 0 5356 1511 3 MP
XPP
X18 0 0 18 5356 1511 3 MP
XPP
X0 18 18 0 5356 1529 3 MP
XPP
X18 0 0 18 5356 1529 3 MP
XPP
X0 18 18 0 5356 1547 3 MP
XPP
X18 0 0 18 5356 1547 3 MP
XPP
X0 18 18 0 5356 1565 3 MP
XPP
X18 0 0 18 5356 1565 3 MP
XPP
X0 17 18 0 5356 1583 3 MP
XPP
X18 0 0 17 5356 1583 3 MP
XPP
X0 18 18 0 5356 1600 3 MP
XPP
X18 0 0 18 5356 1600 3 MP
XPP
X0 18 18 0 5356 1618 3 MP
XPP
X18 0 0 18 5356 1618 3 MP
XPP
X0 18 18 0 5356 1636 3 MP
XPP
X18 0 0 18 5356 1636 3 MP
XPP
X0 18 18 0 5356 1654 3 MP
XPP
X18 0 0 18 5356 1654 3 MP
XPP
X0 18 18 0 5356 1672 3 MP
XPP
X18 0 0 18 5356 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5356 1690 3 MP
XPP
X18 0 0 17 5356 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5356 1707 3 MP
XPP
X18 0 0 18 5356 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5356 1725 3 MP
XPP
X18 0 0 18 5356 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5356 1743 3 MP
XPP
X18 0 0 18 5356 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5356 1761 3 MP
XPP
X18 0 0 18 5356 1761 3 MP
XPP
X1 sg
X0 18 18 0 5356 1779 3 MP
XPP
X18 0 0 18 5356 1779 3 MP
XPP
X0 17 18 0 5356 1797 3 MP
XPP
X18 0 0 17 5356 1797 3 MP
XPP
X0 18 18 0 5356 1814 3 MP
XPP
X18 0 0 18 5356 1814 3 MP
XPP
X0 18 18 0 5356 1832 3 MP
XPP
X18 0 0 18 5356 1832 3 MP
XPP
X0 18 18 0 5356 1850 3 MP
XPP
X18 0 0 18 5356 1850 3 MP
XPP
X0 18 18 0 5356 1868 3 MP
XPP
X18 0 0 18 5356 1868 3 MP
XPP
X0 18 18 0 5356 1886 3 MP
XPP
X18 0 0 18 5356 1886 3 MP
XPP
X0 17 18 0 5356 1904 3 MP
XPP
X18 0 0 17 5356 1904 3 MP
XPP
X0 18 18 0 5356 1921 3 MP
XPP
X18 0 0 18 5356 1921 3 MP
XPP
X0 18 18 0 5356 1939 3 MP
XPP
X18 0 0 18 5356 1939 3 MP
XPP
X0 18 18 0 5356 1957 3 MP
XPP
X18 0 0 18 5356 1957 3 MP
XPP
X0 18 18 0 5356 1975 3 MP
XPP
X18 0 0 18 5356 1975 3 MP
XPP
X0 18 18 0 5356 1993 3 MP
XPP
X18 0 0 18 5356 1993 3 MP
XPP
X0 17 18 0 5356 2011 3 MP
XPP
X18 0 0 17 5356 2011 3 MP
XPP
X0 18 18 0 5356 2028 3 MP
XPP
X18 0 0 18 5356 2028 3 MP
XPP
X0 18 18 0 5356 2046 3 MP
XPP
X18 0 0 18 5356 2046 3 MP
XPP
X0 18 18 0 5356 2064 3 MP
XPP
X18 0 0 18 5356 2064 3 MP
XPP
X0 18 18 0 5356 2082 3 MP
XPP
X18 0 0 18 5356 2082 3 MP
XPP
X0 18 18 0 5356 2100 3 MP
XPP
X18 0 0 18 5356 2100 3 MP
XPP
X0 17 18 0 5356 2118 3 MP
XPP
X18 0 0 17 5356 2118 3 MP
XPP
X0 18 18 0 5356 2135 3 MP
XPP
X18 0 0 18 5356 2135 3 MP
XPP
X0 18 18 0 5356 2153 3 MP
XPP
X18 0 0 18 5356 2153 3 MP
XPP
X0 18 17 0 5374 388 3 MP
XPP
X17 0 0 18 5374 388 3 MP
XPP
X0.984127 sg
X0 18 17 0 5374 406 3 MP
XPP
X17 0 0 18 5374 406 3 MP
XPP
X0.904762 sg
X0 17 17 0 5374 424 3 MP
XPP
X17 0 0 17 5374 424 3 MP
XPP
X0.777778 sg
X0 18 17 0 5374 441 3 MP
XPP
X17 0 0 18 5374 441 3 MP
XPP
X0.698413 sg
X0 18 17 0 5374 459 3 MP
XPP
X17 0 0 18 5374 459 3 MP
XPP
X0.666667 sg
X0 18 17 0 5374 477 3 MP
XPP
X17 0 0 18 5374 477 3 MP
XPP
X0 18 17 0 5374 495 3 MP
XPP
X17 0 0 18 5374 495 3 MP
XPP
X0 18 17 0 5374 513 3 MP
XPP
X17 0 0 18 5374 513 3 MP
XPP
X0 17 17 0 5374 531 3 MP
XPP
X17 0 0 17 5374 531 3 MP
XPP
X0 18 17 0 5374 548 3 MP
XPP
X17 0 0 18 5374 548 3 MP
XPP
X0 18 17 0 5374 566 3 MP
XPP
X17 0 0 18 5374 566 3 MP
XPP
X0 18 17 0 5374 584 3 MP
XPP
X17 0 0 18 5374 584 3 MP
XPP
X0 18 17 0 5374 602 3 MP
XPP
X17 0 0 18 5374 602 3 MP
XPP
X0 18 17 0 5374 620 3 MP
XPP
X17 0 0 18 5374 620 3 MP
XPP
X0 17 17 0 5374 638 3 MP
XPP
X17 0 0 17 5374 638 3 MP
XPP
X0 18 17 0 5374 655 3 MP
XPP
X17 0 0 18 5374 655 3 MP
XPP
X0 18 17 0 5374 673 3 MP
XPP
X17 0 0 18 5374 673 3 MP
XPP
X0 18 17 0 5374 691 3 MP
XPP
X17 0 0 18 5374 691 3 MP
XPP
X0 18 17 0 5374 709 3 MP
XPP
X17 0 0 18 5374 709 3 MP
XPP
X0.650794 sg
X0 18 17 0 5374 727 3 MP
XPP
X17 0 0 18 5374 727 3 MP
XPP
X0.555556 sg
X0 17 17 0 5374 745 3 MP
XPP
X17 0 0 17 5374 745 3 MP
XPP
X0.444444 sg
X0 18 17 0 5374 762 3 MP
XPP
X17 0 0 18 5374 762 3 MP
XPP
X0.349206 sg
X0 18 17 0 5374 780 3 MP
XPP
X17 0 0 18 5374 780 3 MP
XPP
X0.333333 sg
X0 18 17 0 5374 798 3 MP
XPP
X17 0 0 18 5374 798 3 MP
XPP
X0 18 17 0 5374 816 3 MP
XPP
X17 0 0 18 5374 816 3 MP
XPP
X0 18 17 0 5374 834 3 MP
XPP
X17 0 0 18 5374 834 3 MP
XPP
X0 17 17 0 5374 852 3 MP
XPP
X17 0 0 17 5374 852 3 MP
XPP
X0 18 17 0 5374 869 3 MP
XPP
X17 0 0 18 5374 869 3 MP
XPP
X0 18 17 0 5374 887 3 MP
XPP
X17 0 0 18 5374 887 3 MP
XPP
X0 18 17 0 5374 905 3 MP
XPP
X17 0 0 18 5374 905 3 MP
XPP
X0 18 17 0 5374 923 3 MP
XPP
X17 0 0 18 5374 923 3 MP
XPP
X0 18 17 0 5374 941 3 MP
XPP
X17 0 0 18 5374 941 3 MP
XPP
X0 17 17 0 5374 959 3 MP
XPP
X17 0 0 17 5374 959 3 MP
XPP
X0 18 17 0 5374 976 3 MP
XPP
X17 0 0 18 5374 976 3 MP
XPP
X0 18 17 0 5374 994 3 MP
XPP
X17 0 0 18 5374 994 3 MP
XPP
X0 18 17 0 5374 1012 3 MP
XPP
X17 0 0 18 5374 1012 3 MP
XPP
X0 18 17 0 5374 1030 3 MP
XPP
X17 0 0 18 5374 1030 3 MP
XPP
X0 18 17 0 5374 1048 3 MP
XPP
X17 0 0 18 5374 1048 3 MP
XPP
X0 17 17 0 5374 1066 3 MP
XPP
X17 0 0 17 5374 1066 3 MP
XPP
X0 18 17 0 5374 1083 3 MP
XPP
X17 0 0 18 5374 1083 3 MP
XPP
X0 18 17 0 5374 1101 3 MP
XPP
X17 0 0 18 5374 1101 3 MP
XPP
X0 18 17 0 5374 1119 3 MP
XPP
X17 0 0 18 5374 1119 3 MP
XPP
X0 18 17 0 5374 1137 3 MP
XPP
X17 0 0 18 5374 1137 3 MP
XPP
X0 18 17 0 5374 1155 3 MP
XPP
X17 0 0 18 5374 1155 3 MP
XPP
X0 17 17 0 5374 1173 3 MP
XPP
X17 0 0 17 5374 1173 3 MP
XPP
X0.380952 sg
X0 18 17 0 5374 1190 3 MP
XPP
X17 0 0 18 5374 1190 3 MP
XPP
X0.539683 sg
X0 18 17 0 5374 1208 3 MP
XPP
X17 0 0 18 5374 1208 3 MP
XPP
X0.793651 sg
X0 18 17 0 5374 1226 3 MP
XPP
X17 0 0 18 5374 1226 3 MP
XPP
X0.952381 sg
X0 18 17 0 5374 1244 3 MP
XPP
X17 0 0 18 5374 1244 3 MP
XPP
X1 sg
X0 17 17 0 5374 1262 3 MP
XPP
X17 0 0 17 5374 1262 3 MP
XPP
X0 18 17 0 5374 1279 3 MP
XPP
X17 0 0 18 5374 1279 3 MP
XPP
X0 18 17 0 5374 1297 3 MP
XPP
X17 0 0 18 5374 1297 3 MP
XPP
X0 18 17 0 5374 1315 3 MP
XPP
X17 0 0 18 5374 1315 3 MP
XPP
X0 18 17 0 5374 1333 3 MP
XPP
X17 0 0 18 5374 1333 3 MP
XPP
X0 18 17 0 5374 1351 3 MP
XPP
X17 0 0 18 5374 1351 3 MP
XPP
X0 17 17 0 5374 1369 3 MP
XPP
X17 0 0 17 5374 1369 3 MP
XPP
X0 18 17 0 5374 1386 3 MP
XPP
X17 0 0 18 5374 1386 3 MP
XPP
X0 18 17 0 5374 1404 3 MP
XPP
X17 0 0 18 5374 1404 3 MP
XPP
X0 18 17 0 5374 1422 3 MP
XPP
X17 0 0 18 5374 1422 3 MP
XPP
X0 18 17 0 5374 1440 3 MP
XPP
X17 0 0 18 5374 1440 3 MP
XPP
X0 18 17 0 5374 1458 3 MP
XPP
X17 0 0 18 5374 1458 3 MP
XPP
X0 17 17 0 5374 1476 3 MP
XPP
X17 0 0 17 5374 1476 3 MP
XPP
X0 18 17 0 5374 1493 3 MP
XPP
X17 0 0 18 5374 1493 3 MP
XPP
X0 18 17 0 5374 1511 3 MP
XPP
X17 0 0 18 5374 1511 3 MP
XPP
X0 18 17 0 5374 1529 3 MP
XPP
X17 0 0 18 5374 1529 3 MP
XPP
X0 18 17 0 5374 1547 3 MP
XPP
X17 0 0 18 5374 1547 3 MP
XPP
X0 18 17 0 5374 1565 3 MP
XPP
X17 0 0 18 5374 1565 3 MP
XPP
X0 17 17 0 5374 1583 3 MP
XPP
X17 0 0 17 5374 1583 3 MP
XPP
X0 18 17 0 5374 1600 3 MP
XPP
X17 0 0 18 5374 1600 3 MP
XPP
X0 18 17 0 5374 1618 3 MP
XPP
X17 0 0 18 5374 1618 3 MP
XPP
X0 18 17 0 5374 1636 3 MP
XPP
X17 0 0 18 5374 1636 3 MP
XPP
X0 18 17 0 5374 1654 3 MP
XPP
X17 0 0 18 5374 1654 3 MP
XPP
X0 18 17 0 5374 1672 3 MP
XPP
X17 0 0 18 5374 1672 3 MP
XPP
X0.904762 sg
X0 17 17 0 5374 1690 3 MP
XPP
X17 0 0 17 5374 1690 3 MP
XPP
X0.68254 sg
X0 18 17 0 5374 1707 3 MP
XPP
X17 0 0 18 5374 1707 3 MP
XPP
X0.507937 sg
X0 18 17 0 5374 1725 3 MP
XPP
X17 0 0 18 5374 1725 3 MP
XPP
X0.68254 sg
X0 18 17 0 5374 1743 3 MP
XPP
X17 0 0 18 5374 1743 3 MP
XPP
X0.904762 sg
X0 18 17 0 5374 1761 3 MP
XPP
X17 0 0 18 5374 1761 3 MP
XPP
X1 sg
X0 18 17 0 5374 1779 3 MP
XPP
X17 0 0 18 5374 1779 3 MP
XPP
X0 17 17 0 5374 1797 3 MP
XPP
X17 0 0 17 5374 1797 3 MP
XPP
X0 18 17 0 5374 1814 3 MP
XPP
X17 0 0 18 5374 1814 3 MP
XPP
X0 18 17 0 5374 1832 3 MP
XPP
X17 0 0 18 5374 1832 3 MP
XPP
X0 18 17 0 5374 1850 3 MP
XPP
X17 0 0 18 5374 1850 3 MP
XPP
X0 18 17 0 5374 1868 3 MP
XPP
X17 0 0 18 5374 1868 3 MP
XPP
X0 18 17 0 5374 1886 3 MP
XPP
X17 0 0 18 5374 1886 3 MP
XPP
X0 17 17 0 5374 1904 3 MP
XPP
X17 0 0 17 5374 1904 3 MP
XPP
X0 18 17 0 5374 1921 3 MP
XPP
X17 0 0 18 5374 1921 3 MP
XPP
X0 18 17 0 5374 1939 3 MP
XPP
X17 0 0 18 5374 1939 3 MP
XPP
X0 18 17 0 5374 1957 3 MP
XPP
X17 0 0 18 5374 1957 3 MP
XPP
X0 18 17 0 5374 1975 3 MP
XPP
X17 0 0 18 5374 1975 3 MP
XPP
X0 18 17 0 5374 1993 3 MP
XPP
X17 0 0 18 5374 1993 3 MP
XPP
X0 17 17 0 5374 2011 3 MP
XPP
X17 0 0 17 5374 2011 3 MP
XPP
X0 18 17 0 5374 2028 3 MP
XPP
X17 0 0 18 5374 2028 3 MP
XPP
X0 18 17 0 5374 2046 3 MP
XPP
X17 0 0 18 5374 2046 3 MP
XPP
X0 18 17 0 5374 2064 3 MP
XPP
X17 0 0 18 5374 2064 3 MP
XPP
X0 18 17 0 5374 2082 3 MP
XPP
X17 0 0 18 5374 2082 3 MP
XPP
X0 18 17 0 5374 2100 3 MP
XPP
X17 0 0 18 5374 2100 3 MP
XPP
X0 17 17 0 5374 2118 3 MP
XPP
X17 0 0 17 5374 2118 3 MP
XPP
X0 18 17 0 5374 2135 3 MP
XPP
X17 0 0 18 5374 2135 3 MP
XPP
X0 18 17 0 5374 2153 3 MP
XPP
X17 0 0 18 5374 2153 3 MP
XPP
X0 18 18 0 5391 388 3 MP
XPP
X18 0 0 18 5391 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5391 406 3 MP
XPP
X18 0 0 18 5391 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5391 424 3 MP
XPP
X18 0 0 17 5391 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5391 441 3 MP
XPP
X18 0 0 18 5391 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5391 459 3 MP
XPP
X18 0 0 18 5391 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5391 477 3 MP
XPP
X18 0 0 18 5391 477 3 MP
XPP
X0 18 18 0 5391 495 3 MP
XPP
X18 0 0 18 5391 495 3 MP
XPP
X0 18 18 0 5391 513 3 MP
XPP
X18 0 0 18 5391 513 3 MP
XPP
X0 17 18 0 5391 531 3 MP
XPP
X18 0 0 17 5391 531 3 MP
XPP
X0 18 18 0 5391 548 3 MP
XPP
X18 0 0 18 5391 548 3 MP
XPP
X0 18 18 0 5391 566 3 MP
XPP
X18 0 0 18 5391 566 3 MP
XPP
X0 18 18 0 5391 584 3 MP
XPP
X18 0 0 18 5391 584 3 MP
XPP
X0 18 18 0 5391 602 3 MP
XPP
X18 0 0 18 5391 602 3 MP
XPP
X0 18 18 0 5391 620 3 MP
XPP
X18 0 0 18 5391 620 3 MP
XPP
X0 17 18 0 5391 638 3 MP
XPP
X18 0 0 17 5391 638 3 MP
XPP
X0 18 18 0 5391 655 3 MP
XPP
X18 0 0 18 5391 655 3 MP
XPP
X0 18 18 0 5391 673 3 MP
XPP
X18 0 0 18 5391 673 3 MP
XPP
X0 18 18 0 5391 691 3 MP
XPP
X18 0 0 18 5391 691 3 MP
XPP
X0 18 18 0 5391 709 3 MP
XPP
X18 0 0 18 5391 709 3 MP
XPP
X0.650794 sg
X0 18 18 0 5391 727 3 MP
XPP
X18 0 0 18 5391 727 3 MP
XPP
X0.555556 sg
X0 17 18 0 5391 745 3 MP
XPP
X18 0 0 17 5391 745 3 MP
XPP
X0.444444 sg
X0 18 18 0 5391 762 3 MP
XPP
X18 0 0 18 5391 762 3 MP
XPP
X0.349206 sg
X0 18 18 0 5391 780 3 MP
XPP
X18 0 0 18 5391 780 3 MP
XPP
X0.333333 sg
X0 18 18 0 5391 798 3 MP
XPP
X18 0 0 18 5391 798 3 MP
XPP
X0 18 18 0 5391 816 3 MP
XPP
X18 0 0 18 5391 816 3 MP
XPP
X0 18 18 0 5391 834 3 MP
XPP
X18 0 0 18 5391 834 3 MP
XPP
X0 17 18 0 5391 852 3 MP
XPP
X18 0 0 17 5391 852 3 MP
XPP
X0 18 18 0 5391 869 3 MP
XPP
X18 0 0 18 5391 869 3 MP
XPP
X0 18 18 0 5391 887 3 MP
XPP
X18 0 0 18 5391 887 3 MP
XPP
X0 18 18 0 5391 905 3 MP
XPP
X18 0 0 18 5391 905 3 MP
XPP
X0 18 18 0 5391 923 3 MP
XPP
X18 0 0 18 5391 923 3 MP
XPP
X0 18 18 0 5391 941 3 MP
XPP
X18 0 0 18 5391 941 3 MP
XPP
X0 17 18 0 5391 959 3 MP
XPP
X18 0 0 17 5391 959 3 MP
XPP
X0 18 18 0 5391 976 3 MP
XPP
X18 0 0 18 5391 976 3 MP
XPP
X0 18 18 0 5391 994 3 MP
XPP
X18 0 0 18 5391 994 3 MP
XPP
X0 18 18 0 5391 1012 3 MP
XPP
X18 0 0 18 5391 1012 3 MP
XPP
X0 18 18 0 5391 1030 3 MP
XPP
X18 0 0 18 5391 1030 3 MP
XPP
X0 18 18 0 5391 1048 3 MP
XPP
X18 0 0 18 5391 1048 3 MP
XPP
X0 17 18 0 5391 1066 3 MP
XPP
X18 0 0 17 5391 1066 3 MP
XPP
X0 18 18 0 5391 1083 3 MP
XPP
X18 0 0 18 5391 1083 3 MP
XPP
X0 18 18 0 5391 1101 3 MP
XPP
X18 0 0 18 5391 1101 3 MP
XPP
X0 18 18 0 5391 1119 3 MP
XPP
X18 0 0 18 5391 1119 3 MP
XPP
X0 18 18 0 5391 1137 3 MP
XPP
X18 0 0 18 5391 1137 3 MP
XPP
X0 18 18 0 5391 1155 3 MP
XPP
X18 0 0 18 5391 1155 3 MP
XPP
X0 17 18 0 5391 1173 3 MP
XPP
X18 0 0 17 5391 1173 3 MP
XPP
X0.380952 sg
X0 18 18 0 5391 1190 3 MP
XPP
X18 0 0 18 5391 1190 3 MP
XPP
X0.539683 sg
X0 18 18 0 5391 1208 3 MP
XPP
X18 0 0 18 5391 1208 3 MP
XPP
X0.793651 sg
X0 18 18 0 5391 1226 3 MP
XPP
X18 0 0 18 5391 1226 3 MP
XPP
X0.952381 sg
X0 18 18 0 5391 1244 3 MP
XPP
X18 0 0 18 5391 1244 3 MP
XPP
X1 sg
X0 17 18 0 5391 1262 3 MP
XPP
X18 0 0 17 5391 1262 3 MP
XPP
X0 18 18 0 5391 1279 3 MP
XPP
X18 0 0 18 5391 1279 3 MP
XPP
X0 18 18 0 5391 1297 3 MP
XPP
X18 0 0 18 5391 1297 3 MP
XPP
X0 18 18 0 5391 1315 3 MP
XPP
X18 0 0 18 5391 1315 3 MP
XPP
X0 18 18 0 5391 1333 3 MP
XPP
X18 0 0 18 5391 1333 3 MP
XPP
X0 18 18 0 5391 1351 3 MP
XPP
X18 0 0 18 5391 1351 3 MP
XPP
X0 17 18 0 5391 1369 3 MP
XPP
X18 0 0 17 5391 1369 3 MP
XPP
X0 18 18 0 5391 1386 3 MP
XPP
X18 0 0 18 5391 1386 3 MP
XPP
X0.984127 sg
X0 18 18 0 5391 1404 3 MP
XPP
X18 0 0 18 5391 1404 3 MP
XPP
X0.936508 sg
X0 18 18 0 5391 1422 3 MP
XPP
X18 0 0 18 5391 1422 3 MP
XPP
X0.920635 sg
X0 18 18 0 5391 1440 3 MP
XPP
X18 0 0 18 5391 1440 3 MP
XPP
X0.904762 sg
X0 18 18 0 5391 1458 3 MP
XPP
X18 0 0 18 5391 1458 3 MP
XPP
X0 17 18 0 5391 1476 3 MP
XPP
X18 0 0 17 5391 1476 3 MP
XPP
X0 18 18 0 5391 1493 3 MP
XPP
X18 0 0 18 5391 1493 3 MP
XPP
X0 18 18 0 5391 1511 3 MP
XPP
X18 0 0 18 5391 1511 3 MP
XPP
X0 18 18 0 5391 1529 3 MP
XPP
X18 0 0 18 5391 1529 3 MP
XPP
X0 18 18 0 5391 1547 3 MP
XPP
X18 0 0 18 5391 1547 3 MP
XPP
X0 18 18 0 5391 1565 3 MP
XPP
X18 0 0 18 5391 1565 3 MP
XPP
X0 17 18 0 5391 1583 3 MP
XPP
X18 0 0 17 5391 1583 3 MP
XPP
X0 18 18 0 5391 1600 3 MP
XPP
X18 0 0 18 5391 1600 3 MP
XPP
X0 18 18 0 5391 1618 3 MP
XPP
X18 0 0 18 5391 1618 3 MP
XPP
X0 18 18 0 5391 1636 3 MP
XPP
X18 0 0 18 5391 1636 3 MP
XPP
X0 18 18 0 5391 1654 3 MP
XPP
X18 0 0 18 5391 1654 3 MP
XPP
X0 18 18 0 5391 1672 3 MP
XPP
X18 0 0 18 5391 1672 3 MP
XPP
X0.809524 sg
X0 17 18 0 5391 1690 3 MP
XPP
X18 0 0 17 5391 1690 3 MP
XPP
X0.603175 sg
X0 18 18 0 5391 1707 3 MP
XPP
X18 0 0 18 5391 1707 3 MP
XPP
X0.444444 sg
X0 18 18 0 5391 1725 3 MP
XPP
X18 0 0 18 5391 1725 3 MP
XPP
X0.603175 sg
X0 18 18 0 5391 1743 3 MP
XPP
X18 0 0 18 5391 1743 3 MP
XPP
X0.809524 sg
X0 18 18 0 5391 1761 3 MP
XPP
X18 0 0 18 5391 1761 3 MP
XPP
X0.904762 sg
X0 18 18 0 5391 1779 3 MP
XPP
X18 0 0 18 5391 1779 3 MP
XPP
X0 17 18 0 5391 1797 3 MP
XPP
X18 0 0 17 5391 1797 3 MP
XPP
X0 18 18 0 5391 1814 3 MP
XPP
X18 0 0 18 5391 1814 3 MP
XPP
X0 18 18 0 5391 1832 3 MP
XPP
X18 0 0 18 5391 1832 3 MP
XPP
X0 18 18 0 5391 1850 3 MP
XPP
X18 0 0 18 5391 1850 3 MP
XPP
X0 18 18 0 5391 1868 3 MP
XPP
X18 0 0 18 5391 1868 3 MP
XPP
X0 18 18 0 5391 1886 3 MP
XPP
X18 0 0 18 5391 1886 3 MP
XPP
X0 17 18 0 5391 1904 3 MP
XPP
X18 0 0 17 5391 1904 3 MP
XPP
X0 18 18 0 5391 1921 3 MP
XPP
X18 0 0 18 5391 1921 3 MP
XPP
X0 18 18 0 5391 1939 3 MP
XPP
X18 0 0 18 5391 1939 3 MP
XPP
X0 18 18 0 5391 1957 3 MP
XPP
X18 0 0 18 5391 1957 3 MP
XPP
X0 18 18 0 5391 1975 3 MP
XPP
X18 0 0 18 5391 1975 3 MP
XPP
X0 18 18 0 5391 1993 3 MP
XPP
X18 0 0 18 5391 1993 3 MP
XPP
X0.920635 sg
X0 17 18 0 5391 2011 3 MP
XPP
X18 0 0 17 5391 2011 3 MP
XPP
X0.936508 sg
X0 18 18 0 5391 2028 3 MP
XPP
X18 0 0 18 5391 2028 3 MP
XPP
X0.984127 sg
X0 18 18 0 5391 2046 3 MP
XPP
X18 0 0 18 5391 2046 3 MP
XPP
X1 sg
X0 18 18 0 5391 2064 3 MP
XPP
X18 0 0 18 5391 2064 3 MP
XPP
X0 18 18 0 5391 2082 3 MP
XPP
X18 0 0 18 5391 2082 3 MP
XPP
X0 18 18 0 5391 2100 3 MP
XPP
X18 0 0 18 5391 2100 3 MP
XPP
X0 17 18 0 5391 2118 3 MP
XPP
X18 0 0 17 5391 2118 3 MP
XPP
X0 18 18 0 5391 2135 3 MP
XPP
X18 0 0 18 5391 2135 3 MP
XPP
X0 18 18 0 5391 2153 3 MP
XPP
X18 0 0 18 5391 2153 3 MP
XPP
X0 18 18 0 5409 388 3 MP
XPP
X18 0 0 18 5409 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5409 406 3 MP
XPP
X18 0 0 18 5409 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5409 424 3 MP
XPP
X18 0 0 17 5409 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5409 441 3 MP
XPP
X18 0 0 18 5409 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5409 459 3 MP
XPP
X18 0 0 18 5409 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5409 477 3 MP
XPP
X18 0 0 18 5409 477 3 MP
XPP
X0 18 18 0 5409 495 3 MP
XPP
X18 0 0 18 5409 495 3 MP
XPP
X0 18 18 0 5409 513 3 MP
XPP
X18 0 0 18 5409 513 3 MP
XPP
X0 17 18 0 5409 531 3 MP
XPP
X18 0 0 17 5409 531 3 MP
XPP
X0 18 18 0 5409 548 3 MP
XPP
X18 0 0 18 5409 548 3 MP
XPP
X0 18 18 0 5409 566 3 MP
XPP
X18 0 0 18 5409 566 3 MP
XPP
X0 18 18 0 5409 584 3 MP
XPP
X18 0 0 18 5409 584 3 MP
XPP
X0 18 18 0 5409 602 3 MP
XPP
X18 0 0 18 5409 602 3 MP
XPP
X0 18 18 0 5409 620 3 MP
XPP
X18 0 0 18 5409 620 3 MP
XPP
X0 17 18 0 5409 638 3 MP
XPP
X18 0 0 17 5409 638 3 MP
XPP
X0 18 18 0 5409 655 3 MP
XPP
X18 0 0 18 5409 655 3 MP
XPP
X0 18 18 0 5409 673 3 MP
XPP
X18 0 0 18 5409 673 3 MP
XPP
X0 18 18 0 5409 691 3 MP
XPP
X18 0 0 18 5409 691 3 MP
XPP
X0 18 18 0 5409 709 3 MP
XPP
X18 0 0 18 5409 709 3 MP
XPP
X0.650794 sg
X0 18 18 0 5409 727 3 MP
XPP
X18 0 0 18 5409 727 3 MP
XPP
X0.555556 sg
X0 17 18 0 5409 745 3 MP
XPP
X18 0 0 17 5409 745 3 MP
XPP
X0.444444 sg
X0 18 18 0 5409 762 3 MP
XPP
X18 0 0 18 5409 762 3 MP
XPP
X0.349206 sg
X0 18 18 0 5409 780 3 MP
XPP
X18 0 0 18 5409 780 3 MP
XPP
X0.333333 sg
X0 18 18 0 5409 798 3 MP
XPP
X18 0 0 18 5409 798 3 MP
XPP
X0 18 18 0 5409 816 3 MP
XPP
X18 0 0 18 5409 816 3 MP
XPP
X0 18 18 0 5409 834 3 MP
XPP
X18 0 0 18 5409 834 3 MP
XPP
X0 17 18 0 5409 852 3 MP
XPP
X18 0 0 17 5409 852 3 MP
XPP
X0 18 18 0 5409 869 3 MP
XPP
X18 0 0 18 5409 869 3 MP
XPP
X0 18 18 0 5409 887 3 MP
XPP
X18 0 0 18 5409 887 3 MP
XPP
X0 18 18 0 5409 905 3 MP
XPP
X18 0 0 18 5409 905 3 MP
XPP
X0 18 18 0 5409 923 3 MP
XPP
X18 0 0 18 5409 923 3 MP
XPP
X0 18 18 0 5409 941 3 MP
XPP
X18 0 0 18 5409 941 3 MP
XPP
X0 17 18 0 5409 959 3 MP
XPP
X18 0 0 17 5409 959 3 MP
XPP
X0 18 18 0 5409 976 3 MP
XPP
X18 0 0 18 5409 976 3 MP
XPP
X0 18 18 0 5409 994 3 MP
XPP
X18 0 0 18 5409 994 3 MP
XPP
X0 18 18 0 5409 1012 3 MP
XPP
X18 0 0 18 5409 1012 3 MP
XPP
X0 18 18 0 5409 1030 3 MP
XPP
X18 0 0 18 5409 1030 3 MP
XPP
X0 18 18 0 5409 1048 3 MP
XPP
X18 0 0 18 5409 1048 3 MP
XPP
X0 17 18 0 5409 1066 3 MP
XPP
X18 0 0 17 5409 1066 3 MP
XPP
X0 18 18 0 5409 1083 3 MP
XPP
X18 0 0 18 5409 1083 3 MP
XPP
X0 18 18 0 5409 1101 3 MP
XPP
X18 0 0 18 5409 1101 3 MP
XPP
X0 18 18 0 5409 1119 3 MP
XPP
X18 0 0 18 5409 1119 3 MP
XPP
X0 18 18 0 5409 1137 3 MP
XPP
X18 0 0 18 5409 1137 3 MP
XPP
X0 18 18 0 5409 1155 3 MP
XPP
X18 0 0 18 5409 1155 3 MP
XPP
X0 17 18 0 5409 1173 3 MP
XPP
X18 0 0 17 5409 1173 3 MP
XPP
X0.380952 sg
X0 18 18 0 5409 1190 3 MP
XPP
X18 0 0 18 5409 1190 3 MP
XPP
X0.539683 sg
X0 18 18 0 5409 1208 3 MP
XPP
X18 0 0 18 5409 1208 3 MP
XPP
X0.793651 sg
X0 18 18 0 5409 1226 3 MP
XPP
X18 0 0 18 5409 1226 3 MP
XPP
X0.952381 sg
X0 18 18 0 5409 1244 3 MP
XPP
X18 0 0 18 5409 1244 3 MP
XPP
X1 sg
X0 17 18 0 5409 1262 3 MP
XPP
X18 0 0 17 5409 1262 3 MP
XPP
X0 18 18 0 5409 1279 3 MP
XPP
X18 0 0 18 5409 1279 3 MP
XPP
X0 18 18 0 5409 1297 3 MP
XPP
X18 0 0 18 5409 1297 3 MP
XPP
X0 18 18 0 5409 1315 3 MP
XPP
X18 0 0 18 5409 1315 3 MP
XPP
X0 18 18 0 5409 1333 3 MP
XPP
X18 0 0 18 5409 1333 3 MP
XPP
X0 18 18 0 5409 1351 3 MP
XPP
X18 0 0 18 5409 1351 3 MP
XPP
X0 17 18 0 5409 1369 3 MP
XPP
X18 0 0 17 5409 1369 3 MP
XPP
X0.984127 sg
X0 18 18 0 5409 1386 3 MP
XPP
X18 0 0 18 5409 1386 3 MP
XPP
X0.904762 sg
X0 18 18 0 5409 1404 3 MP
XPP
X18 0 0 18 5409 1404 3 MP
XPP
X0.777778 sg
X0 18 18 0 5409 1422 3 MP
XPP
X18 0 0 18 5409 1422 3 MP
XPP
X0.698413 sg
X0 18 18 0 5409 1440 3 MP
XPP
X18 0 0 18 5409 1440 3 MP
XPP
X0.68254 sg
X0 18 18 0 5409 1458 3 MP
XPP
X18 0 0 18 5409 1458 3 MP
XPP
X0 17 18 0 5409 1476 3 MP
XPP
X18 0 0 17 5409 1476 3 MP
XPP
X0 18 18 0 5409 1493 3 MP
XPP
X18 0 0 18 5409 1493 3 MP
XPP
X0 18 18 0 5409 1511 3 MP
XPP
X18 0 0 18 5409 1511 3 MP
XPP
X0 18 18 0 5409 1529 3 MP
XPP
X18 0 0 18 5409 1529 3 MP
XPP
X0 18 18 0 5409 1547 3 MP
XPP
X18 0 0 18 5409 1547 3 MP
XPP
X0 18 18 0 5409 1565 3 MP
XPP
X18 0 0 18 5409 1565 3 MP
XPP
X0 17 18 0 5409 1583 3 MP
XPP
X18 0 0 17 5409 1583 3 MP
XPP
X0 18 18 0 5409 1600 3 MP
XPP
X18 0 0 18 5409 1600 3 MP
XPP
X0 18 18 0 5409 1618 3 MP
XPP
X18 0 0 18 5409 1618 3 MP
XPP
X0 18 18 0 5409 1636 3 MP
XPP
X18 0 0 18 5409 1636 3 MP
XPP
X0 18 18 0 5409 1654 3 MP
XPP
X18 0 0 18 5409 1654 3 MP
XPP
X0 18 18 0 5409 1672 3 MP
XPP
X18 0 0 18 5409 1672 3 MP
XPP
X0.603175 sg
X0 17 18 0 5409 1690 3 MP
XPP
X18 0 0 17 5409 1690 3 MP
XPP
X0.428571 sg
X0 18 18 0 5409 1707 3 MP
XPP
X18 0 0 18 5409 1707 3 MP
XPP
X0.301587 sg
X0 18 18 0 5409 1725 3 MP
XPP
X18 0 0 18 5409 1725 3 MP
XPP
X0.428571 sg
X0 18 18 0 5409 1743 3 MP
XPP
X18 0 0 18 5409 1743 3 MP
XPP
X0.603175 sg
X0 18 18 0 5409 1761 3 MP
XPP
X18 0 0 18 5409 1761 3 MP
XPP
X0.68254 sg
X0 18 18 0 5409 1779 3 MP
XPP
X18 0 0 18 5409 1779 3 MP
XPP
X0 17 18 0 5409 1797 3 MP
XPP
X18 0 0 17 5409 1797 3 MP
XPP
X0 18 18 0 5409 1814 3 MP
XPP
X18 0 0 18 5409 1814 3 MP
XPP
X0 18 18 0 5409 1832 3 MP
XPP
X18 0 0 18 5409 1832 3 MP
XPP
X0 18 18 0 5409 1850 3 MP
XPP
X18 0 0 18 5409 1850 3 MP
XPP
X0 18 18 0 5409 1868 3 MP
XPP
X18 0 0 18 5409 1868 3 MP
XPP
X0 18 18 0 5409 1886 3 MP
XPP
X18 0 0 18 5409 1886 3 MP
XPP
X0 17 18 0 5409 1904 3 MP
XPP
X18 0 0 17 5409 1904 3 MP
XPP
X0 18 18 0 5409 1921 3 MP
XPP
X18 0 0 18 5409 1921 3 MP
XPP
X0 18 18 0 5409 1939 3 MP
XPP
X18 0 0 18 5409 1939 3 MP
XPP
X0 18 18 0 5409 1957 3 MP
XPP
X18 0 0 18 5409 1957 3 MP
XPP
X0 18 18 0 5409 1975 3 MP
XPP
X18 0 0 18 5409 1975 3 MP
XPP
X0 18 18 0 5409 1993 3 MP
XPP
X18 0 0 18 5409 1993 3 MP
XPP
X0.698413 sg
X0 17 18 0 5409 2011 3 MP
XPP
X18 0 0 17 5409 2011 3 MP
XPP
X0.777778 sg
X0 18 18 0 5409 2028 3 MP
XPP
X18 0 0 18 5409 2028 3 MP
XPP
X0.904762 sg
X0 18 18 0 5409 2046 3 MP
XPP
X18 0 0 18 5409 2046 3 MP
XPP
X0.984127 sg
X0 18 18 0 5409 2064 3 MP
XPP
X18 0 0 18 5409 2064 3 MP
XPP
X1 sg
X0 18 18 0 5409 2082 3 MP
XPP
X18 0 0 18 5409 2082 3 MP
XPP
X0 18 18 0 5409 2100 3 MP
XPP
X18 0 0 18 5409 2100 3 MP
XPP
X0 17 18 0 5409 2118 3 MP
XPP
X18 0 0 17 5409 2118 3 MP
XPP
X0 18 18 0 5409 2135 3 MP
XPP
X18 0 0 18 5409 2135 3 MP
XPP
X0 18 18 0 5409 2153 3 MP
XPP
X18 0 0 18 5409 2153 3 MP
XPP
X0 18 18 0 5427 388 3 MP
XPP
X18 0 0 18 5427 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5427 406 3 MP
XPP
X18 0 0 18 5427 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5427 424 3 MP
XPP
X18 0 0 17 5427 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5427 441 3 MP
XPP
X18 0 0 18 5427 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5427 459 3 MP
XPP
X18 0 0 18 5427 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5427 477 3 MP
XPP
X18 0 0 18 5427 477 3 MP
XPP
X0 18 18 0 5427 495 3 MP
XPP
X18 0 0 18 5427 495 3 MP
XPP
X0 18 18 0 5427 513 3 MP
XPP
X18 0 0 18 5427 513 3 MP
XPP
X0 17 18 0 5427 531 3 MP
XPP
X18 0 0 17 5427 531 3 MP
XPP
X0 18 18 0 5427 548 3 MP
XPP
X18 0 0 18 5427 548 3 MP
XPP
X0 18 18 0 5427 566 3 MP
XPP
X18 0 0 18 5427 566 3 MP
XPP
X0 18 18 0 5427 584 3 MP
XPP
X18 0 0 18 5427 584 3 MP
XPP
X0 18 18 0 5427 602 3 MP
XPP
X18 0 0 18 5427 602 3 MP
XPP
X0 18 18 0 5427 620 3 MP
XPP
X18 0 0 18 5427 620 3 MP
XPP
X0 17 18 0 5427 638 3 MP
XPP
X18 0 0 17 5427 638 3 MP
XPP
X0 18 18 0 5427 655 3 MP
XPP
X18 0 0 18 5427 655 3 MP
XPP
X0 18 18 0 5427 673 3 MP
XPP
X18 0 0 18 5427 673 3 MP
XPP
X0 18 18 0 5427 691 3 MP
XPP
X18 0 0 18 5427 691 3 MP
XPP
X0 18 18 0 5427 709 3 MP
XPP
X18 0 0 18 5427 709 3 MP
XPP
X0.650794 sg
X0 18 18 0 5427 727 3 MP
XPP
X18 0 0 18 5427 727 3 MP
XPP
X0.571429 sg
X0 17 18 0 5427 745 3 MP
XPP
X18 0 0 17 5427 745 3 MP
XPP
X0.444444 sg
X0 18 18 0 5427 762 3 MP
XPP
X18 0 0 18 5427 762 3 MP
XPP
X0.365079 sg
X0 18 18 0 5427 780 3 MP
XPP
X18 0 0 18 5427 780 3 MP
XPP
X0.333333 sg
X0 18 18 0 5427 798 3 MP
XPP
X18 0 0 18 5427 798 3 MP
XPP
X0 18 18 0 5427 816 3 MP
XPP
X18 0 0 18 5427 816 3 MP
XPP
X0 18 18 0 5427 834 3 MP
XPP
X18 0 0 18 5427 834 3 MP
XPP
X0 17 18 0 5427 852 3 MP
XPP
X18 0 0 17 5427 852 3 MP
XPP
X0 18 18 0 5427 869 3 MP
XPP
X18 0 0 18 5427 869 3 MP
XPP
X0 18 18 0 5427 887 3 MP
XPP
X18 0 0 18 5427 887 3 MP
XPP
X0 18 18 0 5427 905 3 MP
XPP
X18 0 0 18 5427 905 3 MP
XPP
X0 18 18 0 5427 923 3 MP
XPP
X18 0 0 18 5427 923 3 MP
XPP
X0 18 18 0 5427 941 3 MP
XPP
X18 0 0 18 5427 941 3 MP
XPP
X0 17 18 0 5427 959 3 MP
XPP
X18 0 0 17 5427 959 3 MP
XPP
X0 18 18 0 5427 976 3 MP
XPP
X18 0 0 18 5427 976 3 MP
XPP
X0 18 18 0 5427 994 3 MP
XPP
X18 0 0 18 5427 994 3 MP
XPP
X0 18 18 0 5427 1012 3 MP
XPP
X18 0 0 18 5427 1012 3 MP
XPP
X0 18 18 0 5427 1030 3 MP
XPP
X18 0 0 18 5427 1030 3 MP
XPP
X0 18 18 0 5427 1048 3 MP
XPP
X18 0 0 18 5427 1048 3 MP
XPP
X0 17 18 0 5427 1066 3 MP
XPP
X18 0 0 17 5427 1066 3 MP
XPP
X0 18 18 0 5427 1083 3 MP
XPP
X18 0 0 18 5427 1083 3 MP
XPP
X0 18 18 0 5427 1101 3 MP
XPP
X18 0 0 18 5427 1101 3 MP
XPP
X0 18 18 0 5427 1119 3 MP
XPP
X18 0 0 18 5427 1119 3 MP
XPP
X0 18 18 0 5427 1137 3 MP
XPP
X18 0 0 18 5427 1137 3 MP
XPP
X0 18 18 0 5427 1155 3 MP
XPP
X18 0 0 18 5427 1155 3 MP
XPP
X0 17 18 0 5427 1173 3 MP
XPP
X18 0 0 17 5427 1173 3 MP
XPP
X0.396825 sg
X0 18 18 0 5427 1190 3 MP
XPP
X18 0 0 18 5427 1190 3 MP
XPP
X0.571429 sg
X0 18 18 0 5427 1208 3 MP
XPP
X18 0 0 18 5427 1208 3 MP
XPP
X0.809524 sg
X0 18 18 0 5427 1226 3 MP
XPP
X18 0 0 18 5427 1226 3 MP
XPP
X0.968254 sg
X0 18 18 0 5427 1244 3 MP
XPP
X18 0 0 18 5427 1244 3 MP
XPP
X1 sg
X0 17 18 0 5427 1262 3 MP
XPP
X18 0 0 17 5427 1262 3 MP
XPP
X0 18 18 0 5427 1279 3 MP
XPP
X18 0 0 18 5427 1279 3 MP
XPP
X0 18 18 0 5427 1297 3 MP
XPP
X18 0 0 18 5427 1297 3 MP
XPP
X0 18 18 0 5427 1315 3 MP
XPP
X18 0 0 18 5427 1315 3 MP
XPP
X0 18 18 0 5427 1333 3 MP
XPP
X18 0 0 18 5427 1333 3 MP
XPP
X0 18 18 0 5427 1351 3 MP
XPP
X18 0 0 18 5427 1351 3 MP
XPP
X0 17 18 0 5427 1369 3 MP
XPP
X18 0 0 17 5427 1369 3 MP
XPP
X0.968254 sg
X0 18 18 0 5427 1386 3 MP
XPP
X18 0 0 18 5427 1386 3 MP
XPP
X0.857143 sg
X0 18 18 0 5427 1404 3 MP
XPP
X18 0 0 18 5427 1404 3 MP
XPP
X0.666667 sg
X0 18 18 0 5427 1422 3 MP
XPP
X18 0 0 18 5427 1422 3 MP
XPP
X0.555556 sg
X0 18 18 0 5427 1440 3 MP
XPP
X18 0 0 18 5427 1440 3 MP
XPP
X0.507937 sg
X0 18 18 0 5427 1458 3 MP
XPP
X18 0 0 18 5427 1458 3 MP
XPP
X0 17 18 0 5427 1476 3 MP
XPP
X18 0 0 17 5427 1476 3 MP
XPP
X0 18 18 0 5427 1493 3 MP
XPP
X18 0 0 18 5427 1493 3 MP
XPP
X0 18 18 0 5427 1511 3 MP
XPP
X18 0 0 18 5427 1511 3 MP
XPP
X0 18 18 0 5427 1529 3 MP
XPP
X18 0 0 18 5427 1529 3 MP
XPP
X0 18 18 0 5427 1547 3 MP
XPP
X18 0 0 18 5427 1547 3 MP
XPP
X0 18 18 0 5427 1565 3 MP
XPP
X18 0 0 18 5427 1565 3 MP
XPP
X0 17 18 0 5427 1583 3 MP
XPP
X18 0 0 17 5427 1583 3 MP
XPP
X0 18 18 0 5427 1600 3 MP
XPP
X18 0 0 18 5427 1600 3 MP
XPP
X0 18 18 0 5427 1618 3 MP
XPP
X18 0 0 18 5427 1618 3 MP
XPP
X0 18 18 0 5427 1636 3 MP
XPP
X18 0 0 18 5427 1636 3 MP
XPP
X0 18 18 0 5427 1654 3 MP
XPP
X18 0 0 18 5427 1654 3 MP
XPP
X0 18 18 0 5427 1672 3 MP
XPP
X18 0 0 18 5427 1672 3 MP
XPP
X0.444444 sg
X0 17 18 0 5427 1690 3 MP
XPP
X18 0 0 17 5427 1690 3 MP
XPP
X0.301587 sg
X0 18 18 0 5427 1707 3 MP
XPP
X18 0 0 18 5427 1707 3 MP
XPP
X0.206349 sg
X0 18 18 0 5427 1725 3 MP
XPP
X18 0 0 18 5427 1725 3 MP
XPP
X0.301587 sg
X0 18 18 0 5427 1743 3 MP
XPP
X18 0 0 18 5427 1743 3 MP
XPP
X0.444444 sg
X0 18 18 0 5427 1761 3 MP
XPP
X18 0 0 18 5427 1761 3 MP
XPP
X0.507937 sg
X0 18 18 0 5427 1779 3 MP
XPP
X18 0 0 18 5427 1779 3 MP
XPP
X0 17 18 0 5427 1797 3 MP
XPP
X18 0 0 17 5427 1797 3 MP
XPP
X0 18 18 0 5427 1814 3 MP
XPP
X18 0 0 18 5427 1814 3 MP
XPP
X0 18 18 0 5427 1832 3 MP
XPP
X18 0 0 18 5427 1832 3 MP
XPP
X0 18 18 0 5427 1850 3 MP
XPP
X18 0 0 18 5427 1850 3 MP
XPP
X0 18 18 0 5427 1868 3 MP
XPP
X18 0 0 18 5427 1868 3 MP
XPP
X0 18 18 0 5427 1886 3 MP
XPP
X18 0 0 18 5427 1886 3 MP
XPP
X0 17 18 0 5427 1904 3 MP
XPP
X18 0 0 17 5427 1904 3 MP
XPP
X0 18 18 0 5427 1921 3 MP
XPP
X18 0 0 18 5427 1921 3 MP
XPP
X0 18 18 0 5427 1939 3 MP
XPP
X18 0 0 18 5427 1939 3 MP
XPP
X0 18 18 0 5427 1957 3 MP
XPP
X18 0 0 18 5427 1957 3 MP
XPP
X0 18 18 0 5427 1975 3 MP
XPP
X18 0 0 18 5427 1975 3 MP
XPP
X0 18 18 0 5427 1993 3 MP
XPP
X18 0 0 18 5427 1993 3 MP
XPP
X0.555556 sg
X0 17 18 0 5427 2011 3 MP
XPP
X18 0 0 17 5427 2011 3 MP
XPP
X0.666667 sg
X0 18 18 0 5427 2028 3 MP
XPP
X18 0 0 18 5427 2028 3 MP
XPP
X0.857143 sg
X0 18 18 0 5427 2046 3 MP
XPP
X18 0 0 18 5427 2046 3 MP
XPP
X0.968254 sg
X0 18 18 0 5427 2064 3 MP
XPP
X18 0 0 18 5427 2064 3 MP
XPP
X1 sg
X0 18 18 0 5427 2082 3 MP
XPP
X18 0 0 18 5427 2082 3 MP
XPP
X0 18 18 0 5427 2100 3 MP
XPP
X18 0 0 18 5427 2100 3 MP
XPP
X0 17 18 0 5427 2118 3 MP
XPP
X18 0 0 17 5427 2118 3 MP
XPP
X0 18 18 0 5427 2135 3 MP
XPP
X18 0 0 18 5427 2135 3 MP
XPP
X0 18 18 0 5427 2153 3 MP
XPP
X18 0 0 18 5427 2153 3 MP
XPP
X0 18 18 0 5445 388 3 MP
XPP
X18 0 0 18 5445 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5445 406 3 MP
XPP
X18 0 0 18 5445 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5445 424 3 MP
XPP
X18 0 0 17 5445 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5445 441 3 MP
XPP
X18 0 0 18 5445 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5445 459 3 MP
XPP
X18 0 0 18 5445 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5445 477 3 MP
XPP
X18 0 0 18 5445 477 3 MP
XPP
X0 18 18 0 5445 495 3 MP
XPP
X18 0 0 18 5445 495 3 MP
XPP
X0 18 18 0 5445 513 3 MP
XPP
X18 0 0 18 5445 513 3 MP
XPP
X0 17 18 0 5445 531 3 MP
XPP
X18 0 0 17 5445 531 3 MP
XPP
X0 18 18 0 5445 548 3 MP
XPP
X18 0 0 18 5445 548 3 MP
XPP
X0 18 18 0 5445 566 3 MP
XPP
X18 0 0 18 5445 566 3 MP
XPP
X0 18 18 0 5445 584 3 MP
XPP
X18 0 0 18 5445 584 3 MP
XPP
X0 18 18 0 5445 602 3 MP
XPP
X18 0 0 18 5445 602 3 MP
XPP
X0 18 18 0 5445 620 3 MP
XPP
X18 0 0 18 5445 620 3 MP
XPP
X0 17 18 0 5445 638 3 MP
XPP
X18 0 0 17 5445 638 3 MP
XPP
X0 18 18 0 5445 655 3 MP
XPP
X18 0 0 18 5445 655 3 MP
XPP
X0 18 18 0 5445 673 3 MP
XPP
X18 0 0 18 5445 673 3 MP
XPP
X0 18 18 0 5445 691 3 MP
XPP
X18 0 0 18 5445 691 3 MP
XPP
X0 18 18 0 5445 709 3 MP
XPP
X18 0 0 18 5445 709 3 MP
XPP
X0.650794 sg
X0 18 18 0 5445 727 3 MP
XPP
X18 0 0 18 5445 727 3 MP
XPP
X0.587302 sg
X0 17 18 0 5445 745 3 MP
XPP
X18 0 0 17 5445 745 3 MP
XPP
X0.47619 sg
X0 18 18 0 5445 762 3 MP
XPP
X18 0 0 18 5445 762 3 MP
XPP
X0.380952 sg
X0 18 18 0 5445 780 3 MP
XPP
X18 0 0 18 5445 780 3 MP
XPP
X0.333333 sg
X0 18 18 0 5445 798 3 MP
XPP
X18 0 0 18 5445 798 3 MP
XPP
X0 18 18 0 5445 816 3 MP
XPP
X18 0 0 18 5445 816 3 MP
XPP
X0 18 18 0 5445 834 3 MP
XPP
X18 0 0 18 5445 834 3 MP
XPP
X0 17 18 0 5445 852 3 MP
XPP
X18 0 0 17 5445 852 3 MP
XPP
X0 18 18 0 5445 869 3 MP
XPP
X18 0 0 18 5445 869 3 MP
XPP
X0 18 18 0 5445 887 3 MP
XPP
X18 0 0 18 5445 887 3 MP
XPP
X0 18 18 0 5445 905 3 MP
XPP
X18 0 0 18 5445 905 3 MP
XPP
X0 18 18 0 5445 923 3 MP
XPP
X18 0 0 18 5445 923 3 MP
XPP
X0 18 18 0 5445 941 3 MP
XPP
X18 0 0 18 5445 941 3 MP
XPP
X0 17 18 0 5445 959 3 MP
XPP
X18 0 0 17 5445 959 3 MP
XPP
X0 18 18 0 5445 976 3 MP
XPP
X18 0 0 18 5445 976 3 MP
XPP
X0 18 18 0 5445 994 3 MP
XPP
X18 0 0 18 5445 994 3 MP
XPP
X0 18 18 0 5445 1012 3 MP
XPP
X18 0 0 18 5445 1012 3 MP
XPP
X0 18 18 0 5445 1030 3 MP
XPP
X18 0 0 18 5445 1030 3 MP
XPP
X0 18 18 0 5445 1048 3 MP
XPP
X18 0 0 18 5445 1048 3 MP
XPP
X0 17 18 0 5445 1066 3 MP
XPP
X18 0 0 17 5445 1066 3 MP
XPP
X0 18 18 0 5445 1083 3 MP
XPP
X18 0 0 18 5445 1083 3 MP
XPP
X0 18 18 0 5445 1101 3 MP
XPP
X18 0 0 18 5445 1101 3 MP
XPP
X0 18 18 0 5445 1119 3 MP
XPP
X18 0 0 18 5445 1119 3 MP
XPP
X0 18 18 0 5445 1137 3 MP
XPP
X18 0 0 18 5445 1137 3 MP
XPP
X0 18 18 0 5445 1155 3 MP
XPP
X18 0 0 18 5445 1155 3 MP
XPP
X0.349206 sg
X0 17 18 0 5445 1173 3 MP
XPP
X18 0 0 17 5445 1173 3 MP
XPP
X0.428571 sg
X0 18 18 0 5445 1190 3 MP
XPP
X18 0 0 18 5445 1190 3 MP
XPP
X0.619048 sg
X0 18 18 0 5445 1208 3 MP
XPP
X18 0 0 18 5445 1208 3 MP
XPP
X0.84127 sg
X0 18 18 0 5445 1226 3 MP
XPP
X18 0 0 18 5445 1226 3 MP
XPP
X0.968254 sg
X0 18 18 0 5445 1244 3 MP
XPP
X18 0 0 18 5445 1244 3 MP
XPP
X1 sg
X0 17 18 0 5445 1262 3 MP
XPP
X18 0 0 17 5445 1262 3 MP
XPP
X0 18 18 0 5445 1279 3 MP
XPP
X18 0 0 18 5445 1279 3 MP
XPP
X0 18 18 0 5445 1297 3 MP
XPP
X18 0 0 18 5445 1297 3 MP
XPP
X0 18 18 0 5445 1315 3 MP
XPP
X18 0 0 18 5445 1315 3 MP
XPP
X0 18 18 0 5445 1333 3 MP
XPP
X18 0 0 18 5445 1333 3 MP
XPP
X0 18 18 0 5445 1351 3 MP
XPP
X18 0 0 18 5445 1351 3 MP
XPP
X0 17 18 0 5445 1369 3 MP
XPP
X18 0 0 17 5445 1369 3 MP
XPP
X0.984127 sg
X0 18 18 0 5445 1386 3 MP
XPP
X18 0 0 18 5445 1386 3 MP
XPP
X0.904762 sg
X0 18 18 0 5445 1404 3 MP
XPP
X18 0 0 18 5445 1404 3 MP
XPP
X0.777778 sg
X0 18 18 0 5445 1422 3 MP
XPP
X18 0 0 18 5445 1422 3 MP
XPP
X0.698413 sg
X0 18 18 0 5445 1440 3 MP
XPP
X18 0 0 18 5445 1440 3 MP
XPP
X0.68254 sg
X0 18 18 0 5445 1458 3 MP
XPP
X18 0 0 18 5445 1458 3 MP
XPP
X0 17 18 0 5445 1476 3 MP
XPP
X18 0 0 17 5445 1476 3 MP
XPP
X0 18 18 0 5445 1493 3 MP
XPP
X18 0 0 18 5445 1493 3 MP
XPP
X0 18 18 0 5445 1511 3 MP
XPP
X18 0 0 18 5445 1511 3 MP
XPP
X0 18 18 0 5445 1529 3 MP
XPP
X18 0 0 18 5445 1529 3 MP
XPP
X0 18 18 0 5445 1547 3 MP
XPP
X18 0 0 18 5445 1547 3 MP
XPP
X0 18 18 0 5445 1565 3 MP
XPP
X18 0 0 18 5445 1565 3 MP
XPP
X0 17 18 0 5445 1583 3 MP
XPP
X18 0 0 17 5445 1583 3 MP
XPP
X0 18 18 0 5445 1600 3 MP
XPP
X18 0 0 18 5445 1600 3 MP
XPP
X0 18 18 0 5445 1618 3 MP
XPP
X18 0 0 18 5445 1618 3 MP
XPP
X0 18 18 0 5445 1636 3 MP
XPP
X18 0 0 18 5445 1636 3 MP
XPP
X0 18 18 0 5445 1654 3 MP
XPP
X18 0 0 18 5445 1654 3 MP
XPP
X0 18 18 0 5445 1672 3 MP
XPP
X18 0 0 18 5445 1672 3 MP
XPP
X0.603175 sg
X0 17 18 0 5445 1690 3 MP
XPP
X18 0 0 17 5445 1690 3 MP
XPP
X0.428571 sg
X0 18 18 0 5445 1707 3 MP
XPP
X18 0 0 18 5445 1707 3 MP
XPP
X0.301587 sg
X0 18 18 0 5445 1725 3 MP
XPP
X18 0 0 18 5445 1725 3 MP
XPP
X0.428571 sg
X0 18 18 0 5445 1743 3 MP
XPP
X18 0 0 18 5445 1743 3 MP
XPP
X0.603175 sg
X0 18 18 0 5445 1761 3 MP
XPP
X18 0 0 18 5445 1761 3 MP
XPP
X0.68254 sg
X0 18 18 0 5445 1779 3 MP
XPP
X18 0 0 18 5445 1779 3 MP
XPP
X0 17 18 0 5445 1797 3 MP
XPP
X18 0 0 17 5445 1797 3 MP
XPP
X0 18 18 0 5445 1814 3 MP
XPP
X18 0 0 18 5445 1814 3 MP
XPP
X0 18 18 0 5445 1832 3 MP
XPP
X18 0 0 18 5445 1832 3 MP
XPP
X0 18 18 0 5445 1850 3 MP
XPP
X18 0 0 18 5445 1850 3 MP
XPP
X0 18 18 0 5445 1868 3 MP
XPP
X18 0 0 18 5445 1868 3 MP
XPP
X0 18 18 0 5445 1886 3 MP
XPP
X18 0 0 18 5445 1886 3 MP
XPP
X0 17 18 0 5445 1904 3 MP
XPP
X18 0 0 17 5445 1904 3 MP
XPP
X0 18 18 0 5445 1921 3 MP
XPP
X18 0 0 18 5445 1921 3 MP
XPP
X0 18 18 0 5445 1939 3 MP
XPP
X18 0 0 18 5445 1939 3 MP
XPP
X0 18 18 0 5445 1957 3 MP
XPP
X18 0 0 18 5445 1957 3 MP
XPP
X0 18 18 0 5445 1975 3 MP
XPP
X18 0 0 18 5445 1975 3 MP
XPP
X0 18 18 0 5445 1993 3 MP
XPP
X18 0 0 18 5445 1993 3 MP
XPP
X0.698413 sg
X0 17 18 0 5445 2011 3 MP
XPP
X18 0 0 17 5445 2011 3 MP
XPP
X0.777778 sg
X0 18 18 0 5445 2028 3 MP
XPP
X18 0 0 18 5445 2028 3 MP
XPP
X0.904762 sg
X0 18 18 0 5445 2046 3 MP
XPP
X18 0 0 18 5445 2046 3 MP
XPP
X0.984127 sg
X0 18 18 0 5445 2064 3 MP
XPP
X18 0 0 18 5445 2064 3 MP
XPP
X1 sg
X0 18 18 0 5445 2082 3 MP
XPP
X18 0 0 18 5445 2082 3 MP
XPP
X0 18 18 0 5445 2100 3 MP
XPP
X18 0 0 18 5445 2100 3 MP
XPP
X0 17 18 0 5445 2118 3 MP
XPP
X18 0 0 17 5445 2118 3 MP
XPP
X0 18 18 0 5445 2135 3 MP
XPP
X18 0 0 18 5445 2135 3 MP
XPP
X0 18 18 0 5445 2153 3 MP
XPP
X18 0 0 18 5445 2153 3 MP
XPP
X0 18 18 0 5463 388 3 MP
XPP
X18 0 0 18 5463 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5463 406 3 MP
XPP
X18 0 0 18 5463 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5463 424 3 MP
XPP
X18 0 0 17 5463 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5463 441 3 MP
XPP
X18 0 0 18 5463 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5463 459 3 MP
XPP
X18 0 0 18 5463 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5463 477 3 MP
XPP
X18 0 0 18 5463 477 3 MP
XPP
X0 18 18 0 5463 495 3 MP
XPP
X18 0 0 18 5463 495 3 MP
XPP
X0 18 18 0 5463 513 3 MP
XPP
X18 0 0 18 5463 513 3 MP
XPP
X0 17 18 0 5463 531 3 MP
XPP
X18 0 0 17 5463 531 3 MP
XPP
X0 18 18 0 5463 548 3 MP
XPP
X18 0 0 18 5463 548 3 MP
XPP
X0 18 18 0 5463 566 3 MP
XPP
X18 0 0 18 5463 566 3 MP
XPP
X0 18 18 0 5463 584 3 MP
XPP
X18 0 0 18 5463 584 3 MP
XPP
X0 18 18 0 5463 602 3 MP
XPP
X18 0 0 18 5463 602 3 MP
XPP
X0 18 18 0 5463 620 3 MP
XPP
X18 0 0 18 5463 620 3 MP
XPP
X0 17 18 0 5463 638 3 MP
XPP
X18 0 0 17 5463 638 3 MP
XPP
X0 18 18 0 5463 655 3 MP
XPP
X18 0 0 18 5463 655 3 MP
XPP
X0 18 18 0 5463 673 3 MP
XPP
X18 0 0 18 5463 673 3 MP
XPP
X0 18 18 0 5463 691 3 MP
XPP
X18 0 0 18 5463 691 3 MP
XPP
X0 18 18 0 5463 709 3 MP
XPP
X18 0 0 18 5463 709 3 MP
XPP
X0 18 18 0 5463 727 3 MP
XPP
X18 0 0 18 5463 727 3 MP
XPP
X0.619048 sg
X0 17 18 0 5463 745 3 MP
XPP
X18 0 0 17 5463 745 3 MP
XPP
X0.52381 sg
X0 18 18 0 5463 762 3 MP
XPP
X18 0 0 18 5463 762 3 MP
XPP
X0.412698 sg
X0 18 18 0 5463 780 3 MP
XPP
X18 0 0 18 5463 780 3 MP
XPP
X0.349206 sg
X0 18 18 0 5463 798 3 MP
XPP
X18 0 0 18 5463 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5463 816 3 MP
XPP
X18 0 0 18 5463 816 3 MP
XPP
X0 18 18 0 5463 834 3 MP
XPP
X18 0 0 18 5463 834 3 MP
XPP
X0 17 18 0 5463 852 3 MP
XPP
X18 0 0 17 5463 852 3 MP
XPP
X0 18 18 0 5463 869 3 MP
XPP
X18 0 0 18 5463 869 3 MP
XPP
X0 18 18 0 5463 887 3 MP
XPP
X18 0 0 18 5463 887 3 MP
XPP
X0 18 18 0 5463 905 3 MP
XPP
X18 0 0 18 5463 905 3 MP
XPP
X0 18 18 0 5463 923 3 MP
XPP
X18 0 0 18 5463 923 3 MP
XPP
X0 18 18 0 5463 941 3 MP
XPP
X18 0 0 18 5463 941 3 MP
XPP
X0 17 18 0 5463 959 3 MP
XPP
X18 0 0 17 5463 959 3 MP
XPP
X0 18 18 0 5463 976 3 MP
XPP
X18 0 0 18 5463 976 3 MP
XPP
X0 18 18 0 5463 994 3 MP
XPP
X18 0 0 18 5463 994 3 MP
XPP
X0 18 18 0 5463 1012 3 MP
XPP
X18 0 0 18 5463 1012 3 MP
XPP
X0 18 18 0 5463 1030 3 MP
XPP
X18 0 0 18 5463 1030 3 MP
XPP
X0 18 18 0 5463 1048 3 MP
XPP
X18 0 0 18 5463 1048 3 MP
XPP
X0 17 18 0 5463 1066 3 MP
XPP
X18 0 0 17 5463 1066 3 MP
XPP
X0 18 18 0 5463 1083 3 MP
XPP
X18 0 0 18 5463 1083 3 MP
XPP
X0 18 18 0 5463 1101 3 MP
XPP
X18 0 0 18 5463 1101 3 MP
XPP
X0 18 18 0 5463 1119 3 MP
XPP
X18 0 0 18 5463 1119 3 MP
XPP
X0 18 18 0 5463 1137 3 MP
XPP
X18 0 0 18 5463 1137 3 MP
XPP
X0 18 18 0 5463 1155 3 MP
XPP
X18 0 0 18 5463 1155 3 MP
XPP
X0.365079 sg
X0 17 18 0 5463 1173 3 MP
XPP
X18 0 0 17 5463 1173 3 MP
XPP
X0.492063 sg
X0 18 18 0 5463 1190 3 MP
XPP
X18 0 0 18 5463 1190 3 MP
XPP
X0.714286 sg
X0 18 18 0 5463 1208 3 MP
XPP
X18 0 0 18 5463 1208 3 MP
XPP
X0.904762 sg
X0 18 18 0 5463 1226 3 MP
XPP
X18 0 0 18 5463 1226 3 MP
XPP
X1 sg
X0 18 18 0 5463 1244 3 MP
XPP
X18 0 0 18 5463 1244 3 MP
XPP
X0 17 18 0 5463 1262 3 MP
XPP
X18 0 0 17 5463 1262 3 MP
XPP
X0 18 18 0 5463 1279 3 MP
XPP
X18 0 0 18 5463 1279 3 MP
XPP
X0 18 18 0 5463 1297 3 MP
XPP
X18 0 0 18 5463 1297 3 MP
XPP
X0 18 18 0 5463 1315 3 MP
XPP
X18 0 0 18 5463 1315 3 MP
XPP
X0 18 18 0 5463 1333 3 MP
XPP
X18 0 0 18 5463 1333 3 MP
XPP
X0 18 18 0 5463 1351 3 MP
XPP
X18 0 0 18 5463 1351 3 MP
XPP
X0 17 18 0 5463 1369 3 MP
XPP
X18 0 0 17 5463 1369 3 MP
XPP
X0 18 18 0 5463 1386 3 MP
XPP
X18 0 0 18 5463 1386 3 MP
XPP
X0.984127 sg
X0 18 18 0 5463 1404 3 MP
XPP
X18 0 0 18 5463 1404 3 MP
XPP
X0.936508 sg
X0 18 18 0 5463 1422 3 MP
XPP
X18 0 0 18 5463 1422 3 MP
XPP
X0.920635 sg
X0 18 18 0 5463 1440 3 MP
XPP
X18 0 0 18 5463 1440 3 MP
XPP
X0.904762 sg
X0 18 18 0 5463 1458 3 MP
XPP
X18 0 0 18 5463 1458 3 MP
XPP
X0 17 18 0 5463 1476 3 MP
XPP
X18 0 0 17 5463 1476 3 MP
XPP
X0 18 18 0 5463 1493 3 MP
XPP
X18 0 0 18 5463 1493 3 MP
XPP
X0 18 18 0 5463 1511 3 MP
XPP
X18 0 0 18 5463 1511 3 MP
XPP
X0 18 18 0 5463 1529 3 MP
XPP
X18 0 0 18 5463 1529 3 MP
XPP
X0 18 18 0 5463 1547 3 MP
XPP
X18 0 0 18 5463 1547 3 MP
XPP
X0 18 18 0 5463 1565 3 MP
XPP
X18 0 0 18 5463 1565 3 MP
XPP
X0 17 18 0 5463 1583 3 MP
XPP
X18 0 0 17 5463 1583 3 MP
XPP
X0 18 18 0 5463 1600 3 MP
XPP
X18 0 0 18 5463 1600 3 MP
XPP
X0 18 18 0 5463 1618 3 MP
XPP
X18 0 0 18 5463 1618 3 MP
XPP
X0 18 18 0 5463 1636 3 MP
XPP
X18 0 0 18 5463 1636 3 MP
XPP
X0 18 18 0 5463 1654 3 MP
XPP
X18 0 0 18 5463 1654 3 MP
XPP
X0 18 18 0 5463 1672 3 MP
XPP
X18 0 0 18 5463 1672 3 MP
XPP
X0.809524 sg
X0 17 18 0 5463 1690 3 MP
XPP
X18 0 0 17 5463 1690 3 MP
XPP
X0.603175 sg
X0 18 18 0 5463 1707 3 MP
XPP
X18 0 0 18 5463 1707 3 MP
XPP
X0.444444 sg
X0 18 18 0 5463 1725 3 MP
XPP
X18 0 0 18 5463 1725 3 MP
XPP
X0.603175 sg
X0 18 18 0 5463 1743 3 MP
XPP
X18 0 0 18 5463 1743 3 MP
XPP
X0.809524 sg
X0 18 18 0 5463 1761 3 MP
XPP
X18 0 0 18 5463 1761 3 MP
XPP
X0.904762 sg
X0 18 18 0 5463 1779 3 MP
XPP
X18 0 0 18 5463 1779 3 MP
XPP
X0 17 18 0 5463 1797 3 MP
XPP
X18 0 0 17 5463 1797 3 MP
XPP
X0 18 18 0 5463 1814 3 MP
XPP
X18 0 0 18 5463 1814 3 MP
XPP
X0 18 18 0 5463 1832 3 MP
XPP
X18 0 0 18 5463 1832 3 MP
XPP
X0 18 18 0 5463 1850 3 MP
XPP
X18 0 0 18 5463 1850 3 MP
XPP
X0 18 18 0 5463 1868 3 MP
XPP
X18 0 0 18 5463 1868 3 MP
XPP
X0 18 18 0 5463 1886 3 MP
XPP
X18 0 0 18 5463 1886 3 MP
XPP
X0 17 18 0 5463 1904 3 MP
XPP
X18 0 0 17 5463 1904 3 MP
XPP
X0 18 18 0 5463 1921 3 MP
XPP
X18 0 0 18 5463 1921 3 MP
XPP
X0 18 18 0 5463 1939 3 MP
XPP
X18 0 0 18 5463 1939 3 MP
XPP
X0 18 18 0 5463 1957 3 MP
XPP
X18 0 0 18 5463 1957 3 MP
XPP
X0 18 18 0 5463 1975 3 MP
XPP
X18 0 0 18 5463 1975 3 MP
XPP
X0 18 18 0 5463 1993 3 MP
XPP
X18 0 0 18 5463 1993 3 MP
XPP
X0.920635 sg
X0 17 18 0 5463 2011 3 MP
XPP
X18 0 0 17 5463 2011 3 MP
XPP
X0.936508 sg
X0 18 18 0 5463 2028 3 MP
XPP
X18 0 0 18 5463 2028 3 MP
XPP
X0.984127 sg
X0 18 18 0 5463 2046 3 MP
XPP
X18 0 0 18 5463 2046 3 MP
XPP
X1 sg
X0 18 18 0 5463 2064 3 MP
XPP
X18 0 0 18 5463 2064 3 MP
XPP
X0 18 18 0 5463 2082 3 MP
XPP
X18 0 0 18 5463 2082 3 MP
XPP
X0 18 18 0 5463 2100 3 MP
XPP
X18 0 0 18 5463 2100 3 MP
XPP
X0 17 18 0 5463 2118 3 MP
XPP
X18 0 0 17 5463 2118 3 MP
XPP
X0 18 18 0 5463 2135 3 MP
XPP
X18 0 0 18 5463 2135 3 MP
XPP
X0 18 18 0 5463 2153 3 MP
XPP
X18 0 0 18 5463 2153 3 MP
XPP
X0 18 17 0 5481 388 3 MP
XPP
X17 0 0 18 5481 388 3 MP
XPP
X0.984127 sg
X0 18 17 0 5481 406 3 MP
XPP
X17 0 0 18 5481 406 3 MP
XPP
X0.904762 sg
X0 17 17 0 5481 424 3 MP
XPP
X17 0 0 17 5481 424 3 MP
XPP
X0.777778 sg
X0 18 17 0 5481 441 3 MP
XPP
X17 0 0 18 5481 441 3 MP
XPP
X0.698413 sg
X0 18 17 0 5481 459 3 MP
XPP
X17 0 0 18 5481 459 3 MP
XPP
X0.666667 sg
X0 18 17 0 5481 477 3 MP
XPP
X17 0 0 18 5481 477 3 MP
XPP
X0 18 17 0 5481 495 3 MP
XPP
X17 0 0 18 5481 495 3 MP
XPP
X0 18 17 0 5481 513 3 MP
XPP
X17 0 0 18 5481 513 3 MP
XPP
X0 17 17 0 5481 531 3 MP
XPP
X17 0 0 17 5481 531 3 MP
XPP
X0 18 17 0 5481 548 3 MP
XPP
X17 0 0 18 5481 548 3 MP
XPP
X0 18 17 0 5481 566 3 MP
XPP
X17 0 0 18 5481 566 3 MP
XPP
X0 18 17 0 5481 584 3 MP
XPP
X17 0 0 18 5481 584 3 MP
XPP
X0 18 17 0 5481 602 3 MP
XPP
X17 0 0 18 5481 602 3 MP
XPP
X0 18 17 0 5481 620 3 MP
XPP
X17 0 0 18 5481 620 3 MP
XPP
X0 17 17 0 5481 638 3 MP
XPP
X17 0 0 17 5481 638 3 MP
XPP
X0 18 17 0 5481 655 3 MP
XPP
X17 0 0 18 5481 655 3 MP
XPP
X0 18 17 0 5481 673 3 MP
XPP
X17 0 0 18 5481 673 3 MP
XPP
X0 18 17 0 5481 691 3 MP
XPP
X17 0 0 18 5481 691 3 MP
XPP
X0 18 17 0 5481 709 3 MP
XPP
X17 0 0 18 5481 709 3 MP
XPP
X0 18 17 0 5481 727 3 MP
XPP
X17 0 0 18 5481 727 3 MP
XPP
X0.634921 sg
X0 17 17 0 5481 745 3 MP
XPP
X17 0 0 17 5481 745 3 MP
XPP
X0.555556 sg
X0 18 17 0 5481 762 3 MP
XPP
X17 0 0 18 5481 762 3 MP
XPP
X0.428571 sg
X0 18 17 0 5481 780 3 MP
XPP
X17 0 0 18 5481 780 3 MP
XPP
X0.349206 sg
X0 18 17 0 5481 798 3 MP
XPP
X17 0 0 18 5481 798 3 MP
XPP
X0.333333 sg
X0 18 17 0 5481 816 3 MP
XPP
X17 0 0 18 5481 816 3 MP
XPP
X0 18 17 0 5481 834 3 MP
XPP
X17 0 0 18 5481 834 3 MP
XPP
X0 17 17 0 5481 852 3 MP
XPP
X17 0 0 17 5481 852 3 MP
XPP
X0 18 17 0 5481 869 3 MP
XPP
X17 0 0 18 5481 869 3 MP
XPP
X0 18 17 0 5481 887 3 MP
XPP
X17 0 0 18 5481 887 3 MP
XPP
X0 18 17 0 5481 905 3 MP
XPP
X17 0 0 18 5481 905 3 MP
XPP
X0 18 17 0 5481 923 3 MP
XPP
X17 0 0 18 5481 923 3 MP
XPP
X0 18 17 0 5481 941 3 MP
XPP
X17 0 0 18 5481 941 3 MP
XPP
X0 17 17 0 5481 959 3 MP
XPP
X17 0 0 17 5481 959 3 MP
XPP
X0 18 17 0 5481 976 3 MP
XPP
X17 0 0 18 5481 976 3 MP
XPP
X0 18 17 0 5481 994 3 MP
XPP
X17 0 0 18 5481 994 3 MP
XPP
X0 18 17 0 5481 1012 3 MP
XPP
X17 0 0 18 5481 1012 3 MP
XPP
X0 18 17 0 5481 1030 3 MP
XPP
X17 0 0 18 5481 1030 3 MP
XPP
X0 18 17 0 5481 1048 3 MP
XPP
X17 0 0 18 5481 1048 3 MP
XPP
X0 17 17 0 5481 1066 3 MP
XPP
X17 0 0 17 5481 1066 3 MP
XPP
X0 18 17 0 5481 1083 3 MP
XPP
X17 0 0 18 5481 1083 3 MP
XPP
X0 18 17 0 5481 1101 3 MP
XPP
X17 0 0 18 5481 1101 3 MP
XPP
X0 18 17 0 5481 1119 3 MP
XPP
X17 0 0 18 5481 1119 3 MP
XPP
X0 18 17 0 5481 1137 3 MP
XPP
X17 0 0 18 5481 1137 3 MP
XPP
X0 18 17 0 5481 1155 3 MP
XPP
X17 0 0 18 5481 1155 3 MP
XPP
X0.380952 sg
X0 17 17 0 5481 1173 3 MP
XPP
X17 0 0 17 5481 1173 3 MP
XPP
X0.539683 sg
X0 18 17 0 5481 1190 3 MP
XPP
X17 0 0 18 5481 1190 3 MP
XPP
X0.777778 sg
X0 18 17 0 5481 1208 3 MP
XPP
X17 0 0 18 5481 1208 3 MP
XPP
X0.952381 sg
X0 18 17 0 5481 1226 3 MP
XPP
X17 0 0 18 5481 1226 3 MP
XPP
X1 sg
X0 18 17 0 5481 1244 3 MP
XPP
X17 0 0 18 5481 1244 3 MP
XPP
X0 17 17 0 5481 1262 3 MP
XPP
X17 0 0 17 5481 1262 3 MP
XPP
X0 18 17 0 5481 1279 3 MP
XPP
X17 0 0 18 5481 1279 3 MP
XPP
X0 18 17 0 5481 1297 3 MP
XPP
X17 0 0 18 5481 1297 3 MP
XPP
X0 18 17 0 5481 1315 3 MP
XPP
X17 0 0 18 5481 1315 3 MP
XPP
X0 18 17 0 5481 1333 3 MP
XPP
X17 0 0 18 5481 1333 3 MP
XPP
X0 18 17 0 5481 1351 3 MP
XPP
X17 0 0 18 5481 1351 3 MP
XPP
X0 17 17 0 5481 1369 3 MP
XPP
X17 0 0 17 5481 1369 3 MP
XPP
X0 18 17 0 5481 1386 3 MP
XPP
X17 0 0 18 5481 1386 3 MP
XPP
X0 18 17 0 5481 1404 3 MP
XPP
X17 0 0 18 5481 1404 3 MP
XPP
X0 18 17 0 5481 1422 3 MP
XPP
X17 0 0 18 5481 1422 3 MP
XPP
X0 18 17 0 5481 1440 3 MP
XPP
X17 0 0 18 5481 1440 3 MP
XPP
X0 18 17 0 5481 1458 3 MP
XPP
X17 0 0 18 5481 1458 3 MP
XPP
X0 17 17 0 5481 1476 3 MP
XPP
X17 0 0 17 5481 1476 3 MP
XPP
X0 18 17 0 5481 1493 3 MP
XPP
X17 0 0 18 5481 1493 3 MP
XPP
X0 18 17 0 5481 1511 3 MP
XPP
X17 0 0 18 5481 1511 3 MP
XPP
X0 18 17 0 5481 1529 3 MP
XPP
X17 0 0 18 5481 1529 3 MP
XPP
X0 18 17 0 5481 1547 3 MP
XPP
X17 0 0 18 5481 1547 3 MP
XPP
X0 18 17 0 5481 1565 3 MP
XPP
X17 0 0 18 5481 1565 3 MP
XPP
X0 17 17 0 5481 1583 3 MP
XPP
X17 0 0 17 5481 1583 3 MP
XPP
X0 18 17 0 5481 1600 3 MP
XPP
X17 0 0 18 5481 1600 3 MP
XPP
X0 18 17 0 5481 1618 3 MP
XPP
X17 0 0 18 5481 1618 3 MP
XPP
X0 18 17 0 5481 1636 3 MP
XPP
X17 0 0 18 5481 1636 3 MP
XPP
X0 18 17 0 5481 1654 3 MP
XPP
X17 0 0 18 5481 1654 3 MP
XPP
X0 18 17 0 5481 1672 3 MP
XPP
X17 0 0 18 5481 1672 3 MP
XPP
X0.904762 sg
X0 17 17 0 5481 1690 3 MP
XPP
X17 0 0 17 5481 1690 3 MP
XPP
X0.68254 sg
X0 18 17 0 5481 1707 3 MP
XPP
X17 0 0 18 5481 1707 3 MP
XPP
X0.507937 sg
X0 18 17 0 5481 1725 3 MP
XPP
X17 0 0 18 5481 1725 3 MP
XPP
X0.68254 sg
X0 18 17 0 5481 1743 3 MP
XPP
X17 0 0 18 5481 1743 3 MP
XPP
X0.904762 sg
X0 18 17 0 5481 1761 3 MP
XPP
X17 0 0 18 5481 1761 3 MP
XPP
X1 sg
X0 18 17 0 5481 1779 3 MP
XPP
X17 0 0 18 5481 1779 3 MP
XPP
X0 17 17 0 5481 1797 3 MP
XPP
X17 0 0 17 5481 1797 3 MP
XPP
X0 18 17 0 5481 1814 3 MP
XPP
X17 0 0 18 5481 1814 3 MP
XPP
X0 18 17 0 5481 1832 3 MP
XPP
X17 0 0 18 5481 1832 3 MP
XPP
X0 18 17 0 5481 1850 3 MP
XPP
X17 0 0 18 5481 1850 3 MP
XPP
X0 18 17 0 5481 1868 3 MP
XPP
X17 0 0 18 5481 1868 3 MP
XPP
X0 18 17 0 5481 1886 3 MP
XPP
X17 0 0 18 5481 1886 3 MP
XPP
X0 17 17 0 5481 1904 3 MP
XPP
X17 0 0 17 5481 1904 3 MP
XPP
X0 18 17 0 5481 1921 3 MP
XPP
X17 0 0 18 5481 1921 3 MP
XPP
X0 18 17 0 5481 1939 3 MP
XPP
X17 0 0 18 5481 1939 3 MP
XPP
X0 18 17 0 5481 1957 3 MP
XPP
X17 0 0 18 5481 1957 3 MP
XPP
X0 18 17 0 5481 1975 3 MP
XPP
X17 0 0 18 5481 1975 3 MP
XPP
X0 18 17 0 5481 1993 3 MP
XPP
X17 0 0 18 5481 1993 3 MP
XPP
X0 17 17 0 5481 2011 3 MP
XPP
X17 0 0 17 5481 2011 3 MP
XPP
X0 18 17 0 5481 2028 3 MP
XPP
X17 0 0 18 5481 2028 3 MP
XPP
X0 18 17 0 5481 2046 3 MP
XPP
X17 0 0 18 5481 2046 3 MP
XPP
X0 18 17 0 5481 2064 3 MP
XPP
X17 0 0 18 5481 2064 3 MP
XPP
X0 18 17 0 5481 2082 3 MP
XPP
X17 0 0 18 5481 2082 3 MP
XPP
X0 18 17 0 5481 2100 3 MP
XPP
X17 0 0 18 5481 2100 3 MP
XPP
X0 17 17 0 5481 2118 3 MP
XPP
X17 0 0 17 5481 2118 3 MP
XPP
X0 18 17 0 5481 2135 3 MP
XPP
X17 0 0 18 5481 2135 3 MP
XPP
X0 18 17 0 5481 2153 3 MP
XPP
X17 0 0 18 5481 2153 3 MP
XPP
X0 18 18 0 5498 388 3 MP
XPP
X18 0 0 18 5498 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5498 406 3 MP
XPP
X18 0 0 18 5498 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5498 424 3 MP
XPP
X18 0 0 17 5498 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5498 441 3 MP
XPP
X18 0 0 18 5498 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5498 459 3 MP
XPP
X18 0 0 18 5498 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5498 477 3 MP
XPP
X18 0 0 18 5498 477 3 MP
XPP
X0 18 18 0 5498 495 3 MP
XPP
X18 0 0 18 5498 495 3 MP
XPP
X0 18 18 0 5498 513 3 MP
XPP
X18 0 0 18 5498 513 3 MP
XPP
X0 17 18 0 5498 531 3 MP
XPP
X18 0 0 17 5498 531 3 MP
XPP
X0 18 18 0 5498 548 3 MP
XPP
X18 0 0 18 5498 548 3 MP
XPP
X0 18 18 0 5498 566 3 MP
XPP
X18 0 0 18 5498 566 3 MP
XPP
X0 18 18 0 5498 584 3 MP
XPP
X18 0 0 18 5498 584 3 MP
XPP
X0 18 18 0 5498 602 3 MP
XPP
X18 0 0 18 5498 602 3 MP
XPP
X0 18 18 0 5498 620 3 MP
XPP
X18 0 0 18 5498 620 3 MP
XPP
X0 17 18 0 5498 638 3 MP
XPP
X18 0 0 17 5498 638 3 MP
XPP
X0 18 18 0 5498 655 3 MP
XPP
X18 0 0 18 5498 655 3 MP
XPP
X0 18 18 0 5498 673 3 MP
XPP
X18 0 0 18 5498 673 3 MP
XPP
X0 18 18 0 5498 691 3 MP
XPP
X18 0 0 18 5498 691 3 MP
XPP
X0 18 18 0 5498 709 3 MP
XPP
X18 0 0 18 5498 709 3 MP
XPP
X0 18 18 0 5498 727 3 MP
XPP
X18 0 0 18 5498 727 3 MP
XPP
X0.650794 sg
X0 17 18 0 5498 745 3 MP
XPP
X18 0 0 17 5498 745 3 MP
XPP
X0.555556 sg
X0 18 18 0 5498 762 3 MP
XPP
X18 0 0 18 5498 762 3 MP
XPP
X0.444444 sg
X0 18 18 0 5498 780 3 MP
XPP
X18 0 0 18 5498 780 3 MP
XPP
X0.349206 sg
X0 18 18 0 5498 798 3 MP
XPP
X18 0 0 18 5498 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5498 816 3 MP
XPP
X18 0 0 18 5498 816 3 MP
XPP
X0 18 18 0 5498 834 3 MP
XPP
X18 0 0 18 5498 834 3 MP
XPP
X0 17 18 0 5498 852 3 MP
XPP
X18 0 0 17 5498 852 3 MP
XPP
X0 18 18 0 5498 869 3 MP
XPP
X18 0 0 18 5498 869 3 MP
XPP
X0 18 18 0 5498 887 3 MP
XPP
X18 0 0 18 5498 887 3 MP
XPP
X0 18 18 0 5498 905 3 MP
XPP
X18 0 0 18 5498 905 3 MP
XPP
X0 18 18 0 5498 923 3 MP
XPP
X18 0 0 18 5498 923 3 MP
XPP
X0 18 18 0 5498 941 3 MP
XPP
X18 0 0 18 5498 941 3 MP
XPP
X0 17 18 0 5498 959 3 MP
XPP
X18 0 0 17 5498 959 3 MP
XPP
X0 18 18 0 5498 976 3 MP
XPP
X18 0 0 18 5498 976 3 MP
XPP
X0 18 18 0 5498 994 3 MP
XPP
X18 0 0 18 5498 994 3 MP
XPP
X0 18 18 0 5498 1012 3 MP
XPP
X18 0 0 18 5498 1012 3 MP
XPP
X0 18 18 0 5498 1030 3 MP
XPP
X18 0 0 18 5498 1030 3 MP
XPP
X0 18 18 0 5498 1048 3 MP
XPP
X18 0 0 18 5498 1048 3 MP
XPP
X0 17 18 0 5498 1066 3 MP
XPP
X18 0 0 17 5498 1066 3 MP
XPP
X0 18 18 0 5498 1083 3 MP
XPP
X18 0 0 18 5498 1083 3 MP
XPP
X0 18 18 0 5498 1101 3 MP
XPP
X18 0 0 18 5498 1101 3 MP
XPP
X0 18 18 0 5498 1119 3 MP
XPP
X18 0 0 18 5498 1119 3 MP
XPP
X0 18 18 0 5498 1137 3 MP
XPP
X18 0 0 18 5498 1137 3 MP
XPP
X0 18 18 0 5498 1155 3 MP
XPP
X18 0 0 18 5498 1155 3 MP
XPP
X0.380952 sg
X0 17 18 0 5498 1173 3 MP
XPP
X18 0 0 17 5498 1173 3 MP
XPP
X0.539683 sg
X0 18 18 0 5498 1190 3 MP
XPP
X18 0 0 18 5498 1190 3 MP
XPP
X0.793651 sg
X0 18 18 0 5498 1208 3 MP
XPP
X18 0 0 18 5498 1208 3 MP
XPP
X0.952381 sg
X0 18 18 0 5498 1226 3 MP
XPP
X18 0 0 18 5498 1226 3 MP
XPP
X1 sg
X0 18 18 0 5498 1244 3 MP
XPP
X18 0 0 18 5498 1244 3 MP
XPP
X0 17 18 0 5498 1262 3 MP
XPP
X18 0 0 17 5498 1262 3 MP
XPP
X0 18 18 0 5498 1279 3 MP
XPP
X18 0 0 18 5498 1279 3 MP
XPP
X0 18 18 0 5498 1297 3 MP
XPP
X18 0 0 18 5498 1297 3 MP
XPP
X0 18 18 0 5498 1315 3 MP
XPP
X18 0 0 18 5498 1315 3 MP
XPP
X0 18 18 0 5498 1333 3 MP
XPP
X18 0 0 18 5498 1333 3 MP
XPP
X0 18 18 0 5498 1351 3 MP
XPP
X18 0 0 18 5498 1351 3 MP
XPP
X0 17 18 0 5498 1369 3 MP
XPP
X18 0 0 17 5498 1369 3 MP
XPP
X0 18 18 0 5498 1386 3 MP
XPP
X18 0 0 18 5498 1386 3 MP
XPP
X0 18 18 0 5498 1404 3 MP
XPP
X18 0 0 18 5498 1404 3 MP
XPP
X0 18 18 0 5498 1422 3 MP
XPP
X18 0 0 18 5498 1422 3 MP
XPP
X0 18 18 0 5498 1440 3 MP
XPP
X18 0 0 18 5498 1440 3 MP
XPP
X0 18 18 0 5498 1458 3 MP
XPP
X18 0 0 18 5498 1458 3 MP
XPP
X0 17 18 0 5498 1476 3 MP
XPP
X18 0 0 17 5498 1476 3 MP
XPP
X0 18 18 0 5498 1493 3 MP
XPP
X18 0 0 18 5498 1493 3 MP
XPP
X0 18 18 0 5498 1511 3 MP
XPP
X18 0 0 18 5498 1511 3 MP
XPP
X0 18 18 0 5498 1529 3 MP
XPP
X18 0 0 18 5498 1529 3 MP
XPP
X0 18 18 0 5498 1547 3 MP
XPP
X18 0 0 18 5498 1547 3 MP
XPP
X0 18 18 0 5498 1565 3 MP
XPP
X18 0 0 18 5498 1565 3 MP
XPP
X0 17 18 0 5498 1583 3 MP
XPP
X18 0 0 17 5498 1583 3 MP
XPP
X0 18 18 0 5498 1600 3 MP
XPP
X18 0 0 18 5498 1600 3 MP
XPP
X0 18 18 0 5498 1618 3 MP
XPP
X18 0 0 18 5498 1618 3 MP
XPP
X0 18 18 0 5498 1636 3 MP
XPP
X18 0 0 18 5498 1636 3 MP
XPP
X0 18 18 0 5498 1654 3 MP
XPP
X18 0 0 18 5498 1654 3 MP
XPP
X0 18 18 0 5498 1672 3 MP
XPP
X18 0 0 18 5498 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5498 1690 3 MP
XPP
X18 0 0 17 5498 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5498 1707 3 MP
XPP
X18 0 0 18 5498 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5498 1725 3 MP
XPP
X18 0 0 18 5498 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5498 1743 3 MP
XPP
X18 0 0 18 5498 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5498 1761 3 MP
XPP
X18 0 0 18 5498 1761 3 MP
XPP
X1 sg
X0 18 18 0 5498 1779 3 MP
XPP
X18 0 0 18 5498 1779 3 MP
XPP
X0 17 18 0 5498 1797 3 MP
XPP
X18 0 0 17 5498 1797 3 MP
XPP
X0 18 18 0 5498 1814 3 MP
XPP
X18 0 0 18 5498 1814 3 MP
XPP
X0 18 18 0 5498 1832 3 MP
XPP
X18 0 0 18 5498 1832 3 MP
XPP
X0 18 18 0 5498 1850 3 MP
XPP
X18 0 0 18 5498 1850 3 MP
XPP
X0 18 18 0 5498 1868 3 MP
XPP
X18 0 0 18 5498 1868 3 MP
XPP
X0 18 18 0 5498 1886 3 MP
XPP
X18 0 0 18 5498 1886 3 MP
XPP
X0 17 18 0 5498 1904 3 MP
XPP
X18 0 0 17 5498 1904 3 MP
XPP
X0 18 18 0 5498 1921 3 MP
XPP
X18 0 0 18 5498 1921 3 MP
XPP
X0 18 18 0 5498 1939 3 MP
XPP
X18 0 0 18 5498 1939 3 MP
XPP
X0 18 18 0 5498 1957 3 MP
XPP
X18 0 0 18 5498 1957 3 MP
XPP
X0 18 18 0 5498 1975 3 MP
XPP
X18 0 0 18 5498 1975 3 MP
XPP
X0 18 18 0 5498 1993 3 MP
XPP
X18 0 0 18 5498 1993 3 MP
XPP
X0 17 18 0 5498 2011 3 MP
XPP
X18 0 0 17 5498 2011 3 MP
XPP
X0 18 18 0 5498 2028 3 MP
XPP
X18 0 0 18 5498 2028 3 MP
XPP
X0 18 18 0 5498 2046 3 MP
XPP
X18 0 0 18 5498 2046 3 MP
XPP
X0 18 18 0 5498 2064 3 MP
XPP
X18 0 0 18 5498 2064 3 MP
XPP
X0 18 18 0 5498 2082 3 MP
XPP
X18 0 0 18 5498 2082 3 MP
XPP
X0 18 18 0 5498 2100 3 MP
XPP
X18 0 0 18 5498 2100 3 MP
XPP
X0 17 18 0 5498 2118 3 MP
XPP
X18 0 0 17 5498 2118 3 MP
XPP
X0 18 18 0 5498 2135 3 MP
XPP
X18 0 0 18 5498 2135 3 MP
XPP
X0 18 18 0 5498 2153 3 MP
XPP
X18 0 0 18 5498 2153 3 MP
XPP
X0 18 18 0 5516 388 3 MP
XPP
X18 0 0 18 5516 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5516 406 3 MP
XPP
X18 0 0 18 5516 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5516 424 3 MP
XPP
X18 0 0 17 5516 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5516 441 3 MP
XPP
X18 0 0 18 5516 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5516 459 3 MP
XPP
X18 0 0 18 5516 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5516 477 3 MP
XPP
X18 0 0 18 5516 477 3 MP
XPP
X0 18 18 0 5516 495 3 MP
XPP
X18 0 0 18 5516 495 3 MP
XPP
X0 18 18 0 5516 513 3 MP
XPP
X18 0 0 18 5516 513 3 MP
XPP
X0 17 18 0 5516 531 3 MP
XPP
X18 0 0 17 5516 531 3 MP
XPP
X0 18 18 0 5516 548 3 MP
XPP
X18 0 0 18 5516 548 3 MP
XPP
X0 18 18 0 5516 566 3 MP
XPP
X18 0 0 18 5516 566 3 MP
XPP
X0 18 18 0 5516 584 3 MP
XPP
X18 0 0 18 5516 584 3 MP
XPP
X0 18 18 0 5516 602 3 MP
XPP
X18 0 0 18 5516 602 3 MP
XPP
X0 18 18 0 5516 620 3 MP
XPP
X18 0 0 18 5516 620 3 MP
XPP
X0 17 18 0 5516 638 3 MP
XPP
X18 0 0 17 5516 638 3 MP
XPP
X0 18 18 0 5516 655 3 MP
XPP
X18 0 0 18 5516 655 3 MP
XPP
X0 18 18 0 5516 673 3 MP
XPP
X18 0 0 18 5516 673 3 MP
XPP
X0 18 18 0 5516 691 3 MP
XPP
X18 0 0 18 5516 691 3 MP
XPP
X0 18 18 0 5516 709 3 MP
XPP
X18 0 0 18 5516 709 3 MP
XPP
X0 18 18 0 5516 727 3 MP
XPP
X18 0 0 18 5516 727 3 MP
XPP
X0.650794 sg
X0 17 18 0 5516 745 3 MP
XPP
X18 0 0 17 5516 745 3 MP
XPP
X0.555556 sg
X0 18 18 0 5516 762 3 MP
XPP
X18 0 0 18 5516 762 3 MP
XPP
X0.444444 sg
X0 18 18 0 5516 780 3 MP
XPP
X18 0 0 18 5516 780 3 MP
XPP
X0.349206 sg
X0 18 18 0 5516 798 3 MP
XPP
X18 0 0 18 5516 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5516 816 3 MP
XPP
X18 0 0 18 5516 816 3 MP
XPP
X0 18 18 0 5516 834 3 MP
XPP
X18 0 0 18 5516 834 3 MP
XPP
X0 17 18 0 5516 852 3 MP
XPP
X18 0 0 17 5516 852 3 MP
XPP
X0 18 18 0 5516 869 3 MP
XPP
X18 0 0 18 5516 869 3 MP
XPP
X0 18 18 0 5516 887 3 MP
XPP
X18 0 0 18 5516 887 3 MP
XPP
X0 18 18 0 5516 905 3 MP
XPP
X18 0 0 18 5516 905 3 MP
XPP
X0 18 18 0 5516 923 3 MP
XPP
X18 0 0 18 5516 923 3 MP
XPP
X0 18 18 0 5516 941 3 MP
XPP
X18 0 0 18 5516 941 3 MP
XPP
X0 17 18 0 5516 959 3 MP
XPP
X18 0 0 17 5516 959 3 MP
XPP
X0 18 18 0 5516 976 3 MP
XPP
X18 0 0 18 5516 976 3 MP
XPP
X0 18 18 0 5516 994 3 MP
XPP
X18 0 0 18 5516 994 3 MP
XPP
X0 18 18 0 5516 1012 3 MP
XPP
X18 0 0 18 5516 1012 3 MP
XPP
X0 18 18 0 5516 1030 3 MP
XPP
X18 0 0 18 5516 1030 3 MP
XPP
X0 18 18 0 5516 1048 3 MP
XPP
X18 0 0 18 5516 1048 3 MP
XPP
X0 17 18 0 5516 1066 3 MP
XPP
X18 0 0 17 5516 1066 3 MP
XPP
X0 18 18 0 5516 1083 3 MP
XPP
X18 0 0 18 5516 1083 3 MP
XPP
X0 18 18 0 5516 1101 3 MP
XPP
X18 0 0 18 5516 1101 3 MP
XPP
X0 18 18 0 5516 1119 3 MP
XPP
X18 0 0 18 5516 1119 3 MP
XPP
X0 18 18 0 5516 1137 3 MP
XPP
X18 0 0 18 5516 1137 3 MP
XPP
X0 18 18 0 5516 1155 3 MP
XPP
X18 0 0 18 5516 1155 3 MP
XPP
X0.380952 sg
X0 17 18 0 5516 1173 3 MP
XPP
X18 0 0 17 5516 1173 3 MP
XPP
X0.539683 sg
X0 18 18 0 5516 1190 3 MP
XPP
X18 0 0 18 5516 1190 3 MP
XPP
X0.793651 sg
X0 18 18 0 5516 1208 3 MP
XPP
X18 0 0 18 5516 1208 3 MP
XPP
X0.952381 sg
X0 18 18 0 5516 1226 3 MP
XPP
X18 0 0 18 5516 1226 3 MP
XPP
X1 sg
X0 18 18 0 5516 1244 3 MP
XPP
X18 0 0 18 5516 1244 3 MP
XPP
X0 17 18 0 5516 1262 3 MP
XPP
X18 0 0 17 5516 1262 3 MP
XPP
X0 18 18 0 5516 1279 3 MP
XPP
X18 0 0 18 5516 1279 3 MP
XPP
X0 18 18 0 5516 1297 3 MP
XPP
X18 0 0 18 5516 1297 3 MP
XPP
X0 18 18 0 5516 1315 3 MP
XPP
X18 0 0 18 5516 1315 3 MP
XPP
X0 18 18 0 5516 1333 3 MP
XPP
X18 0 0 18 5516 1333 3 MP
XPP
X0 18 18 0 5516 1351 3 MP
XPP
X18 0 0 18 5516 1351 3 MP
XPP
X0 17 18 0 5516 1369 3 MP
XPP
X18 0 0 17 5516 1369 3 MP
XPP
X0 18 18 0 5516 1386 3 MP
XPP
X18 0 0 18 5516 1386 3 MP
XPP
X0 18 18 0 5516 1404 3 MP
XPP
X18 0 0 18 5516 1404 3 MP
XPP
X0 18 18 0 5516 1422 3 MP
XPP
X18 0 0 18 5516 1422 3 MP
XPP
X0 18 18 0 5516 1440 3 MP
XPP
X18 0 0 18 5516 1440 3 MP
XPP
X0 18 18 0 5516 1458 3 MP
XPP
X18 0 0 18 5516 1458 3 MP
XPP
X0 17 18 0 5516 1476 3 MP
XPP
X18 0 0 17 5516 1476 3 MP
XPP
X0 18 18 0 5516 1493 3 MP
XPP
X18 0 0 18 5516 1493 3 MP
XPP
X0 18 18 0 5516 1511 3 MP
XPP
X18 0 0 18 5516 1511 3 MP
XPP
X0 18 18 0 5516 1529 3 MP
XPP
X18 0 0 18 5516 1529 3 MP
XPP
X0 18 18 0 5516 1547 3 MP
XPP
X18 0 0 18 5516 1547 3 MP
XPP
X0 18 18 0 5516 1565 3 MP
XPP
X18 0 0 18 5516 1565 3 MP
XPP
X0 17 18 0 5516 1583 3 MP
XPP
X18 0 0 17 5516 1583 3 MP
XPP
X0 18 18 0 5516 1600 3 MP
XPP
X18 0 0 18 5516 1600 3 MP
XPP
X0 18 18 0 5516 1618 3 MP
XPP
X18 0 0 18 5516 1618 3 MP
XPP
X0 18 18 0 5516 1636 3 MP
XPP
X18 0 0 18 5516 1636 3 MP
XPP
X0 18 18 0 5516 1654 3 MP
XPP
X18 0 0 18 5516 1654 3 MP
XPP
X0 18 18 0 5516 1672 3 MP
XPP
X18 0 0 18 5516 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5516 1690 3 MP
XPP
X18 0 0 17 5516 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5516 1707 3 MP
XPP
X18 0 0 18 5516 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5516 1725 3 MP
XPP
X18 0 0 18 5516 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5516 1743 3 MP
XPP
X18 0 0 18 5516 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5516 1761 3 MP
XPP
X18 0 0 18 5516 1761 3 MP
XPP
X1 sg
X0 18 18 0 5516 1779 3 MP
XPP
X18 0 0 18 5516 1779 3 MP
XPP
X0 17 18 0 5516 1797 3 MP
XPP
X18 0 0 17 5516 1797 3 MP
XPP
X0 18 18 0 5516 1814 3 MP
XPP
X18 0 0 18 5516 1814 3 MP
XPP
X0 18 18 0 5516 1832 3 MP
XPP
X18 0 0 18 5516 1832 3 MP
XPP
X0 18 18 0 5516 1850 3 MP
XPP
X18 0 0 18 5516 1850 3 MP
XPP
X0 18 18 0 5516 1868 3 MP
XPP
X18 0 0 18 5516 1868 3 MP
XPP
X0 18 18 0 5516 1886 3 MP
XPP
X18 0 0 18 5516 1886 3 MP
XPP
X0 17 18 0 5516 1904 3 MP
XPP
X18 0 0 17 5516 1904 3 MP
XPP
X0 18 18 0 5516 1921 3 MP
XPP
X18 0 0 18 5516 1921 3 MP
XPP
X0 18 18 0 5516 1939 3 MP
XPP
X18 0 0 18 5516 1939 3 MP
XPP
X0 18 18 0 5516 1957 3 MP
XPP
X18 0 0 18 5516 1957 3 MP
XPP
X0 18 18 0 5516 1975 3 MP
XPP
X18 0 0 18 5516 1975 3 MP
XPP
X0 18 18 0 5516 1993 3 MP
XPP
X18 0 0 18 5516 1993 3 MP
XPP
X0 17 18 0 5516 2011 3 MP
XPP
X18 0 0 17 5516 2011 3 MP
XPP
X0 18 18 0 5516 2028 3 MP
XPP
X18 0 0 18 5516 2028 3 MP
XPP
X0 18 18 0 5516 2046 3 MP
XPP
X18 0 0 18 5516 2046 3 MP
XPP
X0 18 18 0 5516 2064 3 MP
XPP
X18 0 0 18 5516 2064 3 MP
XPP
X0 18 18 0 5516 2082 3 MP
XPP
X18 0 0 18 5516 2082 3 MP
XPP
X0 18 18 0 5516 2100 3 MP
XPP
X18 0 0 18 5516 2100 3 MP
XPP
X0 17 18 0 5516 2118 3 MP
XPP
X18 0 0 17 5516 2118 3 MP
XPP
X0 18 18 0 5516 2135 3 MP
XPP
X18 0 0 18 5516 2135 3 MP
XPP
X0 18 18 0 5516 2153 3 MP
XPP
X18 0 0 18 5516 2153 3 MP
XPP
X0 18 18 0 5534 388 3 MP
XPP
X18 0 0 18 5534 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5534 406 3 MP
XPP
X18 0 0 18 5534 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5534 424 3 MP
XPP
X18 0 0 17 5534 424 3 MP
XPP
X0.777778 sg
X0 18 18 0 5534 441 3 MP
XPP
X18 0 0 18 5534 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5534 459 3 MP
XPP
X18 0 0 18 5534 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5534 477 3 MP
XPP
X18 0 0 18 5534 477 3 MP
XPP
X0 18 18 0 5534 495 3 MP
XPP
X18 0 0 18 5534 495 3 MP
XPP
X0 18 18 0 5534 513 3 MP
XPP
X18 0 0 18 5534 513 3 MP
XPP
X0 17 18 0 5534 531 3 MP
XPP
X18 0 0 17 5534 531 3 MP
XPP
X0 18 18 0 5534 548 3 MP
XPP
X18 0 0 18 5534 548 3 MP
XPP
X0 18 18 0 5534 566 3 MP
XPP
X18 0 0 18 5534 566 3 MP
XPP
X0 18 18 0 5534 584 3 MP
XPP
X18 0 0 18 5534 584 3 MP
XPP
X0 18 18 0 5534 602 3 MP
XPP
X18 0 0 18 5534 602 3 MP
XPP
X0 18 18 0 5534 620 3 MP
XPP
X18 0 0 18 5534 620 3 MP
XPP
X0 17 18 0 5534 638 3 MP
XPP
X18 0 0 17 5534 638 3 MP
XPP
X0 18 18 0 5534 655 3 MP
XPP
X18 0 0 18 5534 655 3 MP
XPP
X0 18 18 0 5534 673 3 MP
XPP
X18 0 0 18 5534 673 3 MP
XPP
X0 18 18 0 5534 691 3 MP
XPP
X18 0 0 18 5534 691 3 MP
XPP
X0 18 18 0 5534 709 3 MP
XPP
X18 0 0 18 5534 709 3 MP
XPP
X0 18 18 0 5534 727 3 MP
XPP
X18 0 0 18 5534 727 3 MP
XPP
X0.650794 sg
X0 17 18 0 5534 745 3 MP
XPP
X18 0 0 17 5534 745 3 MP
XPP
X0.571429 sg
X0 18 18 0 5534 762 3 MP
XPP
X18 0 0 18 5534 762 3 MP
XPP
X0.444444 sg
X0 18 18 0 5534 780 3 MP
XPP
X18 0 0 18 5534 780 3 MP
XPP
X0.365079 sg
X0 18 18 0 5534 798 3 MP
XPP
X18 0 0 18 5534 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5534 816 3 MP
XPP
X18 0 0 18 5534 816 3 MP
XPP
X0 18 18 0 5534 834 3 MP
XPP
X18 0 0 18 5534 834 3 MP
XPP
X0 17 18 0 5534 852 3 MP
XPP
X18 0 0 17 5534 852 3 MP
XPP
X0 18 18 0 5534 869 3 MP
XPP
X18 0 0 18 5534 869 3 MP
XPP
X0 18 18 0 5534 887 3 MP
XPP
X18 0 0 18 5534 887 3 MP
XPP
X0 18 18 0 5534 905 3 MP
XPP
X18 0 0 18 5534 905 3 MP
XPP
X0 18 18 0 5534 923 3 MP
XPP
X18 0 0 18 5534 923 3 MP
XPP
X0 18 18 0 5534 941 3 MP
XPP
X18 0 0 18 5534 941 3 MP
XPP
X0 17 18 0 5534 959 3 MP
XPP
X18 0 0 17 5534 959 3 MP
XPP
X0 18 18 0 5534 976 3 MP
XPP
X18 0 0 18 5534 976 3 MP
XPP
X0 18 18 0 5534 994 3 MP
XPP
X18 0 0 18 5534 994 3 MP
XPP
X0 18 18 0 5534 1012 3 MP
XPP
X18 0 0 18 5534 1012 3 MP
XPP
X0 18 18 0 5534 1030 3 MP
XPP
X18 0 0 18 5534 1030 3 MP
XPP
X0 18 18 0 5534 1048 3 MP
XPP
X18 0 0 18 5534 1048 3 MP
XPP
X0 17 18 0 5534 1066 3 MP
XPP
X18 0 0 17 5534 1066 3 MP
XPP
X0 18 18 0 5534 1083 3 MP
XPP
X18 0 0 18 5534 1083 3 MP
XPP
X0 18 18 0 5534 1101 3 MP
XPP
X18 0 0 18 5534 1101 3 MP
XPP
X0 18 18 0 5534 1119 3 MP
XPP
X18 0 0 18 5534 1119 3 MP
XPP
X0 18 18 0 5534 1137 3 MP
XPP
X18 0 0 18 5534 1137 3 MP
XPP
X0 18 18 0 5534 1155 3 MP
XPP
X18 0 0 18 5534 1155 3 MP
XPP
X0.396825 sg
X0 17 18 0 5534 1173 3 MP
XPP
X18 0 0 17 5534 1173 3 MP
XPP
X0.571429 sg
X0 18 18 0 5534 1190 3 MP
XPP
X18 0 0 18 5534 1190 3 MP
XPP
X0.809524 sg
X0 18 18 0 5534 1208 3 MP
XPP
X18 0 0 18 5534 1208 3 MP
XPP
X0.968254 sg
X0 18 18 0 5534 1226 3 MP
XPP
X18 0 0 18 5534 1226 3 MP
XPP
X1 sg
X0 18 18 0 5534 1244 3 MP
XPP
X18 0 0 18 5534 1244 3 MP
XPP
X0 17 18 0 5534 1262 3 MP
XPP
X18 0 0 17 5534 1262 3 MP
XPP
X0 18 18 0 5534 1279 3 MP
XPP
X18 0 0 18 5534 1279 3 MP
XPP
X0 18 18 0 5534 1297 3 MP
XPP
X18 0 0 18 5534 1297 3 MP
XPP
X0 18 18 0 5534 1315 3 MP
XPP
X18 0 0 18 5534 1315 3 MP
XPP
X0 18 18 0 5534 1333 3 MP
XPP
X18 0 0 18 5534 1333 3 MP
XPP
X0 18 18 0 5534 1351 3 MP
XPP
X18 0 0 18 5534 1351 3 MP
XPP
X0 17 18 0 5534 1369 3 MP
XPP
X18 0 0 17 5534 1369 3 MP
XPP
X0 18 18 0 5534 1386 3 MP
XPP
X18 0 0 18 5534 1386 3 MP
XPP
X0 18 18 0 5534 1404 3 MP
XPP
X18 0 0 18 5534 1404 3 MP
XPP
X0 18 18 0 5534 1422 3 MP
XPP
X18 0 0 18 5534 1422 3 MP
XPP
X0 18 18 0 5534 1440 3 MP
XPP
X18 0 0 18 5534 1440 3 MP
XPP
X0 18 18 0 5534 1458 3 MP
XPP
X18 0 0 18 5534 1458 3 MP
XPP
X0 17 18 0 5534 1476 3 MP
XPP
X18 0 0 17 5534 1476 3 MP
XPP
X0 18 18 0 5534 1493 3 MP
XPP
X18 0 0 18 5534 1493 3 MP
XPP
X0 18 18 0 5534 1511 3 MP
XPP
X18 0 0 18 5534 1511 3 MP
XPP
X0 18 18 0 5534 1529 3 MP
XPP
X18 0 0 18 5534 1529 3 MP
XPP
X0 18 18 0 5534 1547 3 MP
XPP
X18 0 0 18 5534 1547 3 MP
XPP
X0 18 18 0 5534 1565 3 MP
XPP
X18 0 0 18 5534 1565 3 MP
XPP
X0 17 18 0 5534 1583 3 MP
XPP
X18 0 0 17 5534 1583 3 MP
XPP
X0 18 18 0 5534 1600 3 MP
XPP
X18 0 0 18 5534 1600 3 MP
XPP
X0 18 18 0 5534 1618 3 MP
XPP
X18 0 0 18 5534 1618 3 MP
XPP
X0 18 18 0 5534 1636 3 MP
XPP
X18 0 0 18 5534 1636 3 MP
XPP
X0 18 18 0 5534 1654 3 MP
XPP
X18 0 0 18 5534 1654 3 MP
XPP
X0 18 18 0 5534 1672 3 MP
XPP
X18 0 0 18 5534 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5534 1690 3 MP
XPP
X18 0 0 17 5534 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5534 1707 3 MP
XPP
X18 0 0 18 5534 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5534 1725 3 MP
XPP
X18 0 0 18 5534 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5534 1743 3 MP
XPP
X18 0 0 18 5534 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5534 1761 3 MP
XPP
X18 0 0 18 5534 1761 3 MP
XPP
X1 sg
X0 18 18 0 5534 1779 3 MP
XPP
X18 0 0 18 5534 1779 3 MP
XPP
X0 17 18 0 5534 1797 3 MP
XPP
X18 0 0 17 5534 1797 3 MP
XPP
X0 18 18 0 5534 1814 3 MP
XPP
X18 0 0 18 5534 1814 3 MP
XPP
X0 18 18 0 5534 1832 3 MP
XPP
X18 0 0 18 5534 1832 3 MP
XPP
X0 18 18 0 5534 1850 3 MP
XPP
X18 0 0 18 5534 1850 3 MP
XPP
X0 18 18 0 5534 1868 3 MP
XPP
X18 0 0 18 5534 1868 3 MP
XPP
X0 18 18 0 5534 1886 3 MP
XPP
X18 0 0 18 5534 1886 3 MP
XPP
X0 17 18 0 5534 1904 3 MP
XPP
X18 0 0 17 5534 1904 3 MP
XPP
X0 18 18 0 5534 1921 3 MP
XPP
X18 0 0 18 5534 1921 3 MP
XPP
X0 18 18 0 5534 1939 3 MP
XPP
X18 0 0 18 5534 1939 3 MP
XPP
X0 18 18 0 5534 1957 3 MP
XPP
X18 0 0 18 5534 1957 3 MP
XPP
X0 18 18 0 5534 1975 3 MP
XPP
X18 0 0 18 5534 1975 3 MP
XPP
X0 18 18 0 5534 1993 3 MP
XPP
X18 0 0 18 5534 1993 3 MP
XPP
X0 17 18 0 5534 2011 3 MP
XPP
X18 0 0 17 5534 2011 3 MP
XPP
X0 18 18 0 5534 2028 3 MP
XPP
X18 0 0 18 5534 2028 3 MP
XPP
X0 18 18 0 5534 2046 3 MP
XPP
X18 0 0 18 5534 2046 3 MP
XPP
X0 18 18 0 5534 2064 3 MP
XPP
X18 0 0 18 5534 2064 3 MP
XPP
X0 18 18 0 5534 2082 3 MP
XPP
X18 0 0 18 5534 2082 3 MP
XPP
X0 18 18 0 5534 2100 3 MP
XPP
X18 0 0 18 5534 2100 3 MP
XPP
X0 17 18 0 5534 2118 3 MP
XPP
X18 0 0 17 5534 2118 3 MP
XPP
X0 18 18 0 5534 2135 3 MP
XPP
X18 0 0 18 5534 2135 3 MP
XPP
X0 18 18 0 5534 2153 3 MP
XPP
X18 0 0 18 5534 2153 3 MP
XPP
X0 18 18 0 5552 388 3 MP
XPP
X18 0 0 18 5552 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5552 406 3 MP
XPP
X18 0 0 18 5552 406 3 MP
XPP
X0.904762 sg
X0 17 18 0 5552 424 3 MP
XPP
X18 0 0 17 5552 424 3 MP
XPP
X0.793651 sg
X0 18 18 0 5552 441 3 MP
XPP
X18 0 0 18 5552 441 3 MP
XPP
X0.698413 sg
X0 18 18 0 5552 459 3 MP
XPP
X18 0 0 18 5552 459 3 MP
XPP
X0.666667 sg
X0 18 18 0 5552 477 3 MP
XPP
X18 0 0 18 5552 477 3 MP
XPP
X0 18 18 0 5552 495 3 MP
XPP
X18 0 0 18 5552 495 3 MP
XPP
X0 18 18 0 5552 513 3 MP
XPP
X18 0 0 18 5552 513 3 MP
XPP
X0 17 18 0 5552 531 3 MP
XPP
X18 0 0 17 5552 531 3 MP
XPP
X0 18 18 0 5552 548 3 MP
XPP
X18 0 0 18 5552 548 3 MP
XPP
X0 18 18 0 5552 566 3 MP
XPP
X18 0 0 18 5552 566 3 MP
XPP
X0 18 18 0 5552 584 3 MP
XPP
X18 0 0 18 5552 584 3 MP
XPP
X0 18 18 0 5552 602 3 MP
XPP
X18 0 0 18 5552 602 3 MP
XPP
X0 18 18 0 5552 620 3 MP
XPP
X18 0 0 18 5552 620 3 MP
XPP
X0 17 18 0 5552 638 3 MP
XPP
X18 0 0 17 5552 638 3 MP
XPP
X0 18 18 0 5552 655 3 MP
XPP
X18 0 0 18 5552 655 3 MP
XPP
X0 18 18 0 5552 673 3 MP
XPP
X18 0 0 18 5552 673 3 MP
XPP
X0 18 18 0 5552 691 3 MP
XPP
X18 0 0 18 5552 691 3 MP
XPP
X0 18 18 0 5552 709 3 MP
XPP
X18 0 0 18 5552 709 3 MP
XPP
X0 18 18 0 5552 727 3 MP
XPP
X18 0 0 18 5552 727 3 MP
XPP
X0.650794 sg
X0 17 18 0 5552 745 3 MP
XPP
X18 0 0 17 5552 745 3 MP
XPP
X0.587302 sg
X0 18 18 0 5552 762 3 MP
XPP
X18 0 0 18 5552 762 3 MP
XPP
X0.47619 sg
X0 18 18 0 5552 780 3 MP
XPP
X18 0 0 18 5552 780 3 MP
XPP
X0.380952 sg
X0 18 18 0 5552 798 3 MP
XPP
X18 0 0 18 5552 798 3 MP
XPP
X0.333333 sg
X0 18 18 0 5552 816 3 MP
XPP
X18 0 0 18 5552 816 3 MP
XPP
X0 18 18 0 5552 834 3 MP
XPP
X18 0 0 18 5552 834 3 MP
XPP
X0 17 18 0 5552 852 3 MP
XPP
X18 0 0 17 5552 852 3 MP
XPP
X0 18 18 0 5552 869 3 MP
XPP
X18 0 0 18 5552 869 3 MP
XPP
X0 18 18 0 5552 887 3 MP
XPP
X18 0 0 18 5552 887 3 MP
XPP
X0 18 18 0 5552 905 3 MP
XPP
X18 0 0 18 5552 905 3 MP
XPP
X0 18 18 0 5552 923 3 MP
XPP
X18 0 0 18 5552 923 3 MP
XPP
X0 18 18 0 5552 941 3 MP
XPP
X18 0 0 18 5552 941 3 MP
XPP
X0 17 18 0 5552 959 3 MP
XPP
X18 0 0 17 5552 959 3 MP
XPP
X0 18 18 0 5552 976 3 MP
XPP
X18 0 0 18 5552 976 3 MP
XPP
X0 18 18 0 5552 994 3 MP
XPP
X18 0 0 18 5552 994 3 MP
XPP
X0 18 18 0 5552 1012 3 MP
XPP
X18 0 0 18 5552 1012 3 MP
XPP
X0 18 18 0 5552 1030 3 MP
XPP
X18 0 0 18 5552 1030 3 MP
XPP
X0 18 18 0 5552 1048 3 MP
XPP
X18 0 0 18 5552 1048 3 MP
XPP
X0 17 18 0 5552 1066 3 MP
XPP
X18 0 0 17 5552 1066 3 MP
XPP
X0 18 18 0 5552 1083 3 MP
XPP
X18 0 0 18 5552 1083 3 MP
XPP
X0 18 18 0 5552 1101 3 MP
XPP
X18 0 0 18 5552 1101 3 MP
XPP
X0 18 18 0 5552 1119 3 MP
XPP
X18 0 0 18 5552 1119 3 MP
XPP
X0 18 18 0 5552 1137 3 MP
XPP
X18 0 0 18 5552 1137 3 MP
XPP
X0.349206 sg
X0 18 18 0 5552 1155 3 MP
XPP
X18 0 0 18 5552 1155 3 MP
XPP
X0.428571 sg
X0 17 18 0 5552 1173 3 MP
XPP
X18 0 0 17 5552 1173 3 MP
XPP
X0.619048 sg
X0 18 18 0 5552 1190 3 MP
XPP
X18 0 0 18 5552 1190 3 MP
XPP
X0.84127 sg
X0 18 18 0 5552 1208 3 MP
XPP
X18 0 0 18 5552 1208 3 MP
XPP
X0.968254 sg
X0 18 18 0 5552 1226 3 MP
XPP
X18 0 0 18 5552 1226 3 MP
XPP
X1 sg
X0 18 18 0 5552 1244 3 MP
XPP
X18 0 0 18 5552 1244 3 MP
XPP
X0 17 18 0 5552 1262 3 MP
XPP
X18 0 0 17 5552 1262 3 MP
XPP
X0 18 18 0 5552 1279 3 MP
XPP
X18 0 0 18 5552 1279 3 MP
XPP
X0 18 18 0 5552 1297 3 MP
XPP
X18 0 0 18 5552 1297 3 MP
XPP
X0 18 18 0 5552 1315 3 MP
XPP
X18 0 0 18 5552 1315 3 MP
XPP
X0 18 18 0 5552 1333 3 MP
XPP
X18 0 0 18 5552 1333 3 MP
XPP
X0 18 18 0 5552 1351 3 MP
XPP
X18 0 0 18 5552 1351 3 MP
XPP
X0 17 18 0 5552 1369 3 MP
XPP
X18 0 0 17 5552 1369 3 MP
XPP
X0 18 18 0 5552 1386 3 MP
XPP
X18 0 0 18 5552 1386 3 MP
XPP
X0 18 18 0 5552 1404 3 MP
XPP
X18 0 0 18 5552 1404 3 MP
XPP
X0 18 18 0 5552 1422 3 MP
XPP
X18 0 0 18 5552 1422 3 MP
XPP
X0 18 18 0 5552 1440 3 MP
XPP
X18 0 0 18 5552 1440 3 MP
XPP
X0 18 18 0 5552 1458 3 MP
XPP
X18 0 0 18 5552 1458 3 MP
XPP
X0 17 18 0 5552 1476 3 MP
XPP
X18 0 0 17 5552 1476 3 MP
XPP
X0 18 18 0 5552 1493 3 MP
XPP
X18 0 0 18 5552 1493 3 MP
XPP
X0 18 18 0 5552 1511 3 MP
XPP
X18 0 0 18 5552 1511 3 MP
XPP
X0 18 18 0 5552 1529 3 MP
XPP
X18 0 0 18 5552 1529 3 MP
XPP
X0 18 18 0 5552 1547 3 MP
XPP
X18 0 0 18 5552 1547 3 MP
XPP
X0 18 18 0 5552 1565 3 MP
XPP
X18 0 0 18 5552 1565 3 MP
XPP
X0 17 18 0 5552 1583 3 MP
XPP
X18 0 0 17 5552 1583 3 MP
XPP
X0 18 18 0 5552 1600 3 MP
XPP
X18 0 0 18 5552 1600 3 MP
XPP
X0 18 18 0 5552 1618 3 MP
XPP
X18 0 0 18 5552 1618 3 MP
XPP
X0 18 18 0 5552 1636 3 MP
XPP
X18 0 0 18 5552 1636 3 MP
XPP
X0 18 18 0 5552 1654 3 MP
XPP
X18 0 0 18 5552 1654 3 MP
XPP
X0 18 18 0 5552 1672 3 MP
XPP
X18 0 0 18 5552 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5552 1690 3 MP
XPP
X18 0 0 17 5552 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5552 1707 3 MP
XPP
X18 0 0 18 5552 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5552 1725 3 MP
XPP
X18 0 0 18 5552 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5552 1743 3 MP
XPP
X18 0 0 18 5552 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5552 1761 3 MP
XPP
X18 0 0 18 5552 1761 3 MP
XPP
X1 sg
X0 18 18 0 5552 1779 3 MP
XPP
X18 0 0 18 5552 1779 3 MP
XPP
X0 17 18 0 5552 1797 3 MP
XPP
X18 0 0 17 5552 1797 3 MP
XPP
X0 18 18 0 5552 1814 3 MP
XPP
X18 0 0 18 5552 1814 3 MP
XPP
X0 18 18 0 5552 1832 3 MP
XPP
X18 0 0 18 5552 1832 3 MP
XPP
X0 18 18 0 5552 1850 3 MP
XPP
X18 0 0 18 5552 1850 3 MP
XPP
X0 18 18 0 5552 1868 3 MP
XPP
X18 0 0 18 5552 1868 3 MP
XPP
X0 18 18 0 5552 1886 3 MP
XPP
X18 0 0 18 5552 1886 3 MP
XPP
X0 17 18 0 5552 1904 3 MP
XPP
X18 0 0 17 5552 1904 3 MP
XPP
X0 18 18 0 5552 1921 3 MP
XPP
X18 0 0 18 5552 1921 3 MP
XPP
X0 18 18 0 5552 1939 3 MP
XPP
X18 0 0 18 5552 1939 3 MP
XPP
X0 18 18 0 5552 1957 3 MP
XPP
X18 0 0 18 5552 1957 3 MP
XPP
X0 18 18 0 5552 1975 3 MP
XPP
X18 0 0 18 5552 1975 3 MP
XPP
X0 18 18 0 5552 1993 3 MP
XPP
X18 0 0 18 5552 1993 3 MP
XPP
X0 17 18 0 5552 2011 3 MP
XPP
X18 0 0 17 5552 2011 3 MP
XPP
X0 18 18 0 5552 2028 3 MP
XPP
X18 0 0 18 5552 2028 3 MP
XPP
X0 18 18 0 5552 2046 3 MP
XPP
X18 0 0 18 5552 2046 3 MP
XPP
X0 18 18 0 5552 2064 3 MP
XPP
X18 0 0 18 5552 2064 3 MP
XPP
X0 18 18 0 5552 2082 3 MP
XPP
X18 0 0 18 5552 2082 3 MP
XPP
X0 18 18 0 5552 2100 3 MP
XPP
X18 0 0 18 5552 2100 3 MP
XPP
X0 17 18 0 5552 2118 3 MP
XPP
X18 0 0 17 5552 2118 3 MP
XPP
X0 18 18 0 5552 2135 3 MP
XPP
X18 0 0 18 5552 2135 3 MP
XPP
X0 18 18 0 5552 2153 3 MP
XPP
X18 0 0 18 5552 2153 3 MP
XPP
X0 18 18 0 5570 388 3 MP
XPP
X18 0 0 18 5570 388 3 MP
XPP
X0.984127 sg
X0 18 18 0 5570 406 3 MP
XPP
X18 0 0 18 5570 406 3 MP
XPP
X0.920635 sg
X0 17 18 0 5570 424 3 MP
XPP
X18 0 0 17 5570 424 3 MP
XPP
X0.809524 sg
X0 18 18 0 5570 441 3 MP
XPP
X18 0 0 18 5570 441 3 MP
XPP
X0.714286 sg
X0 18 18 0 5570 459 3 MP
XPP
X18 0 0 18 5570 459 3 MP
XPP
X0.68254 sg
X0 18 18 0 5570 477 3 MP
XPP
X18 0 0 18 5570 477 3 MP
XPP
X0.666667 sg
X0 18 18 0 5570 495 3 MP
XPP
X18 0 0 18 5570 495 3 MP
XPP
X0 18 18 0 5570 513 3 MP
XPP
X18 0 0 18 5570 513 3 MP
XPP
X0 17 18 0 5570 531 3 MP
XPP
X18 0 0 17 5570 531 3 MP
XPP
X0 18 18 0 5570 548 3 MP
XPP
X18 0 0 18 5570 548 3 MP
XPP
X0 18 18 0 5570 566 3 MP
XPP
X18 0 0 18 5570 566 3 MP
XPP
X0 18 18 0 5570 584 3 MP
XPP
X18 0 0 18 5570 584 3 MP
XPP
X0 18 18 0 5570 602 3 MP
XPP
X18 0 0 18 5570 602 3 MP
XPP
X0 18 18 0 5570 620 3 MP
XPP
X18 0 0 18 5570 620 3 MP
XPP
X0 17 18 0 5570 638 3 MP
XPP
X18 0 0 17 5570 638 3 MP
XPP
X0 18 18 0 5570 655 3 MP
XPP
X18 0 0 18 5570 655 3 MP
XPP
X0 18 18 0 5570 673 3 MP
XPP
X18 0 0 18 5570 673 3 MP
XPP
X0 18 18 0 5570 691 3 MP
XPP
X18 0 0 18 5570 691 3 MP
XPP
X0 18 18 0 5570 709 3 MP
XPP
X18 0 0 18 5570 709 3 MP
XPP
X0 18 18 0 5570 727 3 MP
XPP
X18 0 0 18 5570 727 3 MP
XPP
X0 17 18 0 5570 745 3 MP
XPP
X18 0 0 17 5570 745 3 MP
XPP
X0.619048 sg
X0 18 18 0 5570 762 3 MP
XPP
X18 0 0 18 5570 762 3 MP
XPP
X0.52381 sg
X0 18 18 0 5570 780 3 MP
XPP
X18 0 0 18 5570 780 3 MP
XPP
X0.412698 sg
X0 18 18 0 5570 798 3 MP
XPP
X18 0 0 18 5570 798 3 MP
XPP
X0.349206 sg
X0 18 18 0 5570 816 3 MP
XPP
X18 0 0 18 5570 816 3 MP
XPP
X0.333333 sg
X0 18 18 0 5570 834 3 MP
XPP
X18 0 0 18 5570 834 3 MP
XPP
X0 17 18 0 5570 852 3 MP
XPP
X18 0 0 17 5570 852 3 MP
XPP
X0 18 18 0 5570 869 3 MP
XPP
X18 0 0 18 5570 869 3 MP
XPP
X0 18 18 0 5570 887 3 MP
XPP
X18 0 0 18 5570 887 3 MP
XPP
X0 18 18 0 5570 905 3 MP
XPP
X18 0 0 18 5570 905 3 MP
XPP
X0 18 18 0 5570 923 3 MP
XPP
X18 0 0 18 5570 923 3 MP
XPP
X0 18 18 0 5570 941 3 MP
XPP
X18 0 0 18 5570 941 3 MP
XPP
X0 17 18 0 5570 959 3 MP
XPP
X18 0 0 17 5570 959 3 MP
XPP
X0 18 18 0 5570 976 3 MP
XPP
X18 0 0 18 5570 976 3 MP
XPP
X0 18 18 0 5570 994 3 MP
XPP
X18 0 0 18 5570 994 3 MP
XPP
X0 18 18 0 5570 1012 3 MP
XPP
X18 0 0 18 5570 1012 3 MP
XPP
X0 18 18 0 5570 1030 3 MP
XPP
X18 0 0 18 5570 1030 3 MP
XPP
X0 18 18 0 5570 1048 3 MP
XPP
X18 0 0 18 5570 1048 3 MP
XPP
X0 17 18 0 5570 1066 3 MP
XPP
X18 0 0 17 5570 1066 3 MP
XPP
X0 18 18 0 5570 1083 3 MP
XPP
X18 0 0 18 5570 1083 3 MP
XPP
X0 18 18 0 5570 1101 3 MP
XPP
X18 0 0 18 5570 1101 3 MP
XPP
X0 18 18 0 5570 1119 3 MP
XPP
X18 0 0 18 5570 1119 3 MP
XPP
X0 18 18 0 5570 1137 3 MP
XPP
X18 0 0 18 5570 1137 3 MP
XPP
X0.365079 sg
X0 18 18 0 5570 1155 3 MP
XPP
X18 0 0 18 5570 1155 3 MP
XPP
X0.492063 sg
X0 17 18 0 5570 1173 3 MP
XPP
X18 0 0 17 5570 1173 3 MP
XPP
X0.714286 sg
X0 18 18 0 5570 1190 3 MP
XPP
X18 0 0 18 5570 1190 3 MP
XPP
X0.904762 sg
X0 18 18 0 5570 1208 3 MP
XPP
X18 0 0 18 5570 1208 3 MP
XPP
X1 sg
X0 18 18 0 5570 1226 3 MP
XPP
X18 0 0 18 5570 1226 3 MP
XPP
X0 18 18 0 5570 1244 3 MP
XPP
X18 0 0 18 5570 1244 3 MP
XPP
X0 17 18 0 5570 1262 3 MP
XPP
X18 0 0 17 5570 1262 3 MP
XPP
X0 18 18 0 5570 1279 3 MP
XPP
X18 0 0 18 5570 1279 3 MP
XPP
X0 18 18 0 5570 1297 3 MP
XPP
X18 0 0 18 5570 1297 3 MP
XPP
X0 18 18 0 5570 1315 3 MP
XPP
X18 0 0 18 5570 1315 3 MP
XPP
X0 18 18 0 5570 1333 3 MP
XPP
X18 0 0 18 5570 1333 3 MP
XPP
X0 18 18 0 5570 1351 3 MP
XPP
X18 0 0 18 5570 1351 3 MP
XPP
X0 17 18 0 5570 1369 3 MP
XPP
X18 0 0 17 5570 1369 3 MP
XPP
X0 18 18 0 5570 1386 3 MP
XPP
X18 0 0 18 5570 1386 3 MP
XPP
X0 18 18 0 5570 1404 3 MP
XPP
X18 0 0 18 5570 1404 3 MP
XPP
X0 18 18 0 5570 1422 3 MP
XPP
X18 0 0 18 5570 1422 3 MP
XPP
X0 18 18 0 5570 1440 3 MP
XPP
X18 0 0 18 5570 1440 3 MP
XPP
X0 18 18 0 5570 1458 3 MP
XPP
X18 0 0 18 5570 1458 3 MP
XPP
X0 17 18 0 5570 1476 3 MP
XPP
X18 0 0 17 5570 1476 3 MP
XPP
X0 18 18 0 5570 1493 3 MP
XPP
X18 0 0 18 5570 1493 3 MP
XPP
X0 18 18 0 5570 1511 3 MP
XPP
X18 0 0 18 5570 1511 3 MP
XPP
X0 18 18 0 5570 1529 3 MP
XPP
X18 0 0 18 5570 1529 3 MP
XPP
X0 18 18 0 5570 1547 3 MP
XPP
X18 0 0 18 5570 1547 3 MP
XPP
X0 18 18 0 5570 1565 3 MP
XPP
X18 0 0 18 5570 1565 3 MP
XPP
X0 17 18 0 5570 1583 3 MP
XPP
X18 0 0 17 5570 1583 3 MP
XPP
X0 18 18 0 5570 1600 3 MP
XPP
X18 0 0 18 5570 1600 3 MP
XPP
X0 18 18 0 5570 1618 3 MP
XPP
X18 0 0 18 5570 1618 3 MP
XPP
X0 18 18 0 5570 1636 3 MP
XPP
X18 0 0 18 5570 1636 3 MP
XPP
X0 18 18 0 5570 1654 3 MP
XPP
X18 0 0 18 5570 1654 3 MP
XPP
X0 18 18 0 5570 1672 3 MP
XPP
X18 0 0 18 5570 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5570 1690 3 MP
XPP
X18 0 0 17 5570 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5570 1707 3 MP
XPP
X18 0 0 18 5570 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5570 1725 3 MP
XPP
X18 0 0 18 5570 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5570 1743 3 MP
XPP
X18 0 0 18 5570 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5570 1761 3 MP
XPP
X18 0 0 18 5570 1761 3 MP
XPP
X1 sg
X0 18 18 0 5570 1779 3 MP
XPP
X18 0 0 18 5570 1779 3 MP
XPP
X0 17 18 0 5570 1797 3 MP
XPP
X18 0 0 17 5570 1797 3 MP
XPP
X0 18 18 0 5570 1814 3 MP
XPP
X18 0 0 18 5570 1814 3 MP
XPP
X0 18 18 0 5570 1832 3 MP
XPP
X18 0 0 18 5570 1832 3 MP
XPP
X0 18 18 0 5570 1850 3 MP
XPP
X18 0 0 18 5570 1850 3 MP
XPP
X0 18 18 0 5570 1868 3 MP
XPP
X18 0 0 18 5570 1868 3 MP
XPP
X0 18 18 0 5570 1886 3 MP
XPP
X18 0 0 18 5570 1886 3 MP
XPP
X0 17 18 0 5570 1904 3 MP
XPP
X18 0 0 17 5570 1904 3 MP
XPP
X0 18 18 0 5570 1921 3 MP
XPP
X18 0 0 18 5570 1921 3 MP
XPP
X0 18 18 0 5570 1939 3 MP
XPP
X18 0 0 18 5570 1939 3 MP
XPP
X0 18 18 0 5570 1957 3 MP
XPP
X18 0 0 18 5570 1957 3 MP
XPP
X0 18 18 0 5570 1975 3 MP
XPP
X18 0 0 18 5570 1975 3 MP
XPP
X0 18 18 0 5570 1993 3 MP
XPP
X18 0 0 18 5570 1993 3 MP
XPP
X0 17 18 0 5570 2011 3 MP
XPP
X18 0 0 17 5570 2011 3 MP
XPP
X0 18 18 0 5570 2028 3 MP
XPP
X18 0 0 18 5570 2028 3 MP
XPP
X0 18 18 0 5570 2046 3 MP
XPP
X18 0 0 18 5570 2046 3 MP
XPP
X0 18 18 0 5570 2064 3 MP
XPP
X18 0 0 18 5570 2064 3 MP
XPP
X0 18 18 0 5570 2082 3 MP
XPP
X18 0 0 18 5570 2082 3 MP
XPP
X0 18 18 0 5570 2100 3 MP
XPP
X18 0 0 18 5570 2100 3 MP
XPP
X0 17 18 0 5570 2118 3 MP
XPP
X18 0 0 17 5570 2118 3 MP
XPP
X0 18 18 0 5570 2135 3 MP
XPP
X18 0 0 18 5570 2135 3 MP
XPP
X0 18 18 0 5570 2153 3 MP
XPP
X18 0 0 18 5570 2153 3 MP
XPP
X0 18 17 0 5588 388 3 MP
XPP
X17 0 0 18 5588 388 3 MP
XPP
X0 18 17 0 5588 406 3 MP
XPP
X17 0 0 18 5588 406 3 MP
XPP
X0.952381 sg
X0 17 17 0 5588 424 3 MP
XPP
X17 0 0 17 5588 424 3 MP
XPP
X0.857143 sg
X0 18 17 0 5588 441 3 MP
XPP
X17 0 0 18 5588 441 3 MP
XPP
X0.746032 sg
X0 18 17 0 5588 459 3 MP
XPP
X17 0 0 18 5588 459 3 MP
XPP
X0.68254 sg
X0 18 17 0 5588 477 3 MP
XPP
X17 0 0 18 5588 477 3 MP
XPP
X0.666667 sg
X0 18 17 0 5588 495 3 MP
XPP
X17 0 0 18 5588 495 3 MP
XPP
X0 18 17 0 5588 513 3 MP
XPP
X17 0 0 18 5588 513 3 MP
XPP
X0 17 17 0 5588 531 3 MP
XPP
X17 0 0 17 5588 531 3 MP
XPP
X0 18 17 0 5588 548 3 MP
XPP
X17 0 0 18 5588 548 3 MP
XPP
X0 18 17 0 5588 566 3 MP
XPP
X17 0 0 18 5588 566 3 MP
XPP
X0 18 17 0 5588 584 3 MP
XPP
X17 0 0 18 5588 584 3 MP
XPP
X0 18 17 0 5588 602 3 MP
XPP
X17 0 0 18 5588 602 3 MP
XPP
X0 18 17 0 5588 620 3 MP
XPP
X17 0 0 18 5588 620 3 MP
XPP
X0 17 17 0 5588 638 3 MP
XPP
X17 0 0 17 5588 638 3 MP
XPP
X0 18 17 0 5588 655 3 MP
XPP
X17 0 0 18 5588 655 3 MP
XPP
X0 18 17 0 5588 673 3 MP
XPP
X17 0 0 18 5588 673 3 MP
XPP
X0 18 17 0 5588 691 3 MP
XPP
X17 0 0 18 5588 691 3 MP
XPP
X0 18 17 0 5588 709 3 MP
XPP
X17 0 0 18 5588 709 3 MP
XPP
X0 18 17 0 5588 727 3 MP
XPP
X17 0 0 18 5588 727 3 MP
XPP
X0 17 17 0 5588 745 3 MP
XPP
X17 0 0 17 5588 745 3 MP
XPP
X0.634921 sg
X0 18 17 0 5588 762 3 MP
XPP
X17 0 0 18 5588 762 3 MP
XPP
X0.555556 sg
X0 18 17 0 5588 780 3 MP
XPP
X17 0 0 18 5588 780 3 MP
XPP
X0.428571 sg
X0 18 17 0 5588 798 3 MP
XPP
X17 0 0 18 5588 798 3 MP
XPP
X0.349206 sg
X0 18 17 0 5588 816 3 MP
XPP
X17 0 0 18 5588 816 3 MP
XPP
X0.333333 sg
X0 18 17 0 5588 834 3 MP
XPP
X17 0 0 18 5588 834 3 MP
XPP
X0 17 17 0 5588 852 3 MP
XPP
X17 0 0 17 5588 852 3 MP
XPP
X0 18 17 0 5588 869 3 MP
XPP
X17 0 0 18 5588 869 3 MP
XPP
X0 18 17 0 5588 887 3 MP
XPP
X17 0 0 18 5588 887 3 MP
XPP
X0 18 17 0 5588 905 3 MP
XPP
X17 0 0 18 5588 905 3 MP
XPP
X0 18 17 0 5588 923 3 MP
XPP
X17 0 0 18 5588 923 3 MP
XPP
X0 18 17 0 5588 941 3 MP
XPP
X17 0 0 18 5588 941 3 MP
XPP
X0 17 17 0 5588 959 3 MP
XPP
X17 0 0 17 5588 959 3 MP
XPP
X0 18 17 0 5588 976 3 MP
XPP
X17 0 0 18 5588 976 3 MP
XPP
X0 18 17 0 5588 994 3 MP
XPP
X17 0 0 18 5588 994 3 MP
XPP
X0 18 17 0 5588 1012 3 MP
XPP
X17 0 0 18 5588 1012 3 MP
XPP
X0 18 17 0 5588 1030 3 MP
XPP
X17 0 0 18 5588 1030 3 MP
XPP
X0 18 17 0 5588 1048 3 MP
XPP
X17 0 0 18 5588 1048 3 MP
XPP
X0 17 17 0 5588 1066 3 MP
XPP
X17 0 0 17 5588 1066 3 MP
XPP
X0 18 17 0 5588 1083 3 MP
XPP
X17 0 0 18 5588 1083 3 MP
XPP
X0 18 17 0 5588 1101 3 MP
XPP
X17 0 0 18 5588 1101 3 MP
XPP
X0 18 17 0 5588 1119 3 MP
XPP
X17 0 0 18 5588 1119 3 MP
XPP
X0 18 17 0 5588 1137 3 MP
XPP
X17 0 0 18 5588 1137 3 MP
XPP
X0.380952 sg
X0 18 17 0 5588 1155 3 MP
XPP
X17 0 0 18 5588 1155 3 MP
XPP
X0.539683 sg
X0 17 17 0 5588 1173 3 MP
XPP
X17 0 0 17 5588 1173 3 MP
XPP
X0.777778 sg
X0 18 17 0 5588 1190 3 MP
XPP
X17 0 0 18 5588 1190 3 MP
XPP
X0.952381 sg
X0 18 17 0 5588 1208 3 MP
XPP
X17 0 0 18 5588 1208 3 MP
XPP
X1 sg
X0 18 17 0 5588 1226 3 MP
XPP
X17 0 0 18 5588 1226 3 MP
XPP
X0 18 17 0 5588 1244 3 MP
XPP
X17 0 0 18 5588 1244 3 MP
XPP
X0 17 17 0 5588 1262 3 MP
XPP
X17 0 0 17 5588 1262 3 MP
XPP
X0 18 17 0 5588 1279 3 MP
XPP
X17 0 0 18 5588 1279 3 MP
XPP
X0 18 17 0 5588 1297 3 MP
XPP
X17 0 0 18 5588 1297 3 MP
XPP
X0 18 17 0 5588 1315 3 MP
XPP
X17 0 0 18 5588 1315 3 MP
XPP
X0 18 17 0 5588 1333 3 MP
XPP
X17 0 0 18 5588 1333 3 MP
XPP
X0 18 17 0 5588 1351 3 MP
XPP
X17 0 0 18 5588 1351 3 MP
XPP
X0 17 17 0 5588 1369 3 MP
XPP
X17 0 0 17 5588 1369 3 MP
XPP
X0 18 17 0 5588 1386 3 MP
XPP
X17 0 0 18 5588 1386 3 MP
XPP
X0 18 17 0 5588 1404 3 MP
XPP
X17 0 0 18 5588 1404 3 MP
XPP
X0 18 17 0 5588 1422 3 MP
XPP
X17 0 0 18 5588 1422 3 MP
XPP
X0 18 17 0 5588 1440 3 MP
XPP
X17 0 0 18 5588 1440 3 MP
XPP
X0 18 17 0 5588 1458 3 MP
XPP
X17 0 0 18 5588 1458 3 MP
XPP
X0 17 17 0 5588 1476 3 MP
XPP
X17 0 0 17 5588 1476 3 MP
XPP
X0 18 17 0 5588 1493 3 MP
XPP
X17 0 0 18 5588 1493 3 MP
XPP
X0 18 17 0 5588 1511 3 MP
XPP
X17 0 0 18 5588 1511 3 MP
XPP
X0 18 17 0 5588 1529 3 MP
XPP
X17 0 0 18 5588 1529 3 MP
XPP
X0 18 17 0 5588 1547 3 MP
XPP
X17 0 0 18 5588 1547 3 MP
XPP
X0 18 17 0 5588 1565 3 MP
XPP
X17 0 0 18 5588 1565 3 MP
XPP
X0 17 17 0 5588 1583 3 MP
XPP
X17 0 0 17 5588 1583 3 MP
XPP
X0 18 17 0 5588 1600 3 MP
XPP
X17 0 0 18 5588 1600 3 MP
XPP
X0 18 17 0 5588 1618 3 MP
XPP
X17 0 0 18 5588 1618 3 MP
XPP
X0 18 17 0 5588 1636 3 MP
XPP
X17 0 0 18 5588 1636 3 MP
XPP
X0 18 17 0 5588 1654 3 MP
XPP
X17 0 0 18 5588 1654 3 MP
XPP
X0 18 17 0 5588 1672 3 MP
XPP
X17 0 0 18 5588 1672 3 MP
XPP
X0.904762 sg
X0 17 17 0 5588 1690 3 MP
XPP
X17 0 0 17 5588 1690 3 MP
XPP
X0.68254 sg
X0 18 17 0 5588 1707 3 MP
XPP
X17 0 0 18 5588 1707 3 MP
XPP
X0.507937 sg
X0 18 17 0 5588 1725 3 MP
XPP
X17 0 0 18 5588 1725 3 MP
XPP
X0.68254 sg
X0 18 17 0 5588 1743 3 MP
XPP
X17 0 0 18 5588 1743 3 MP
XPP
X0.904762 sg
X0 18 17 0 5588 1761 3 MP
XPP
X17 0 0 18 5588 1761 3 MP
XPP
X1 sg
X0 18 17 0 5588 1779 3 MP
XPP
X17 0 0 18 5588 1779 3 MP
XPP
X0 17 17 0 5588 1797 3 MP
XPP
X17 0 0 17 5588 1797 3 MP
XPP
X0 18 17 0 5588 1814 3 MP
XPP
X17 0 0 18 5588 1814 3 MP
XPP
X0 18 17 0 5588 1832 3 MP
XPP
X17 0 0 18 5588 1832 3 MP
XPP
X0 18 17 0 5588 1850 3 MP
XPP
X17 0 0 18 5588 1850 3 MP
XPP
X0 18 17 0 5588 1868 3 MP
XPP
X17 0 0 18 5588 1868 3 MP
XPP
X0 18 17 0 5588 1886 3 MP
XPP
X17 0 0 18 5588 1886 3 MP
XPP
X0 17 17 0 5588 1904 3 MP
XPP
X17 0 0 17 5588 1904 3 MP
XPP
X0 18 17 0 5588 1921 3 MP
XPP
X17 0 0 18 5588 1921 3 MP
XPP
X0 18 17 0 5588 1939 3 MP
XPP
X17 0 0 18 5588 1939 3 MP
XPP
X0 18 17 0 5588 1957 3 MP
XPP
X17 0 0 18 5588 1957 3 MP
XPP
X0 18 17 0 5588 1975 3 MP
XPP
X17 0 0 18 5588 1975 3 MP
XPP
X0 18 17 0 5588 1993 3 MP
XPP
X17 0 0 18 5588 1993 3 MP
XPP
X0 17 17 0 5588 2011 3 MP
XPP
X17 0 0 17 5588 2011 3 MP
XPP
X0 18 17 0 5588 2028 3 MP
XPP
X17 0 0 18 5588 2028 3 MP
XPP
X0 18 17 0 5588 2046 3 MP
XPP
X17 0 0 18 5588 2046 3 MP
XPP
X0 18 17 0 5588 2064 3 MP
XPP
X17 0 0 18 5588 2064 3 MP
XPP
X0 18 17 0 5588 2082 3 MP
XPP
X17 0 0 18 5588 2082 3 MP
XPP
X0 18 17 0 5588 2100 3 MP
XPP
X17 0 0 18 5588 2100 3 MP
XPP
X0 17 17 0 5588 2118 3 MP
XPP
X17 0 0 17 5588 2118 3 MP
XPP
X0 18 17 0 5588 2135 3 MP
XPP
X17 0 0 18 5588 2135 3 MP
XPP
X0 18 17 0 5588 2153 3 MP
XPP
X17 0 0 18 5588 2153 3 MP
XPP
X0 18 18 0 5605 388 3 MP
XPP
X18 0 0 18 5605 388 3 MP
XPP
X0 18 18 0 5605 406 3 MP
XPP
X18 0 0 18 5605 406 3 MP
XPP
X0.984127 sg
X0 17 18 0 5605 424 3 MP
XPP
X18 0 0 17 5605 424 3 MP
XPP
X0.888889 sg
X0 18 18 0 5605 441 3 MP
XPP
X18 0 0 18 5605 441 3 MP
XPP
X0.777778 sg
X0 18 18 0 5605 459 3 MP
XPP
X18 0 0 18 5605 459 3 MP
XPP
X0.698413 sg
X0 18 18 0 5605 477 3 MP
XPP
X18 0 0 18 5605 477 3 MP
XPP
X0.666667 sg
X0 18 18 0 5605 495 3 MP
XPP
X18 0 0 18 5605 495 3 MP
XPP
X0 18 18 0 5605 513 3 MP
XPP
X18 0 0 18 5605 513 3 MP
XPP
X0 17 18 0 5605 531 3 MP
XPP
X18 0 0 17 5605 531 3 MP
XPP
X0 18 18 0 5605 548 3 MP
XPP
X18 0 0 18 5605 548 3 MP
XPP
X0 18 18 0 5605 566 3 MP
XPP
X18 0 0 18 5605 566 3 MP
XPP
X0 18 18 0 5605 584 3 MP
XPP
X18 0 0 18 5605 584 3 MP
XPP
X0 18 18 0 5605 602 3 MP
XPP
X18 0 0 18 5605 602 3 MP
XPP
X0 18 18 0 5605 620 3 MP
XPP
X18 0 0 18 5605 620 3 MP
XPP
X0 17 18 0 5605 638 3 MP
XPP
X18 0 0 17 5605 638 3 MP
XPP
X0 18 18 0 5605 655 3 MP
XPP
X18 0 0 18 5605 655 3 MP
XPP
X0 18 18 0 5605 673 3 MP
XPP
X18 0 0 18 5605 673 3 MP
XPP
X0 18 18 0 5605 691 3 MP
XPP
X18 0 0 18 5605 691 3 MP
XPP
X0 18 18 0 5605 709 3 MP
XPP
X18 0 0 18 5605 709 3 MP
XPP
X0 18 18 0 5605 727 3 MP
XPP
X18 0 0 18 5605 727 3 MP
XPP
X0 17 18 0 5605 745 3 MP
XPP
X18 0 0 17 5605 745 3 MP
XPP
X0.650794 sg
X0 18 18 0 5605 762 3 MP
XPP
X18 0 0 18 5605 762 3 MP
XPP
X0.571429 sg
X0 18 18 0 5605 780 3 MP
XPP
X18 0 0 18 5605 780 3 MP
XPP
X0.444444 sg
X0 18 18 0 5605 798 3 MP
XPP
X18 0 0 18 5605 798 3 MP
XPP
X0.365079 sg
X0 18 18 0 5605 816 3 MP
XPP
X18 0 0 18 5605 816 3 MP
XPP
X0.333333 sg
X0 18 18 0 5605 834 3 MP
XPP
X18 0 0 18 5605 834 3 MP
XPP
X0 17 18 0 5605 852 3 MP
XPP
X18 0 0 17 5605 852 3 MP
XPP
X0 18 18 0 5605 869 3 MP
XPP
X18 0 0 18 5605 869 3 MP
XPP
X0 18 18 0 5605 887 3 MP
XPP
X18 0 0 18 5605 887 3 MP
XPP
X0 18 18 0 5605 905 3 MP
XPP
X18 0 0 18 5605 905 3 MP
XPP
X0 18 18 0 5605 923 3 MP
XPP
X18 0 0 18 5605 923 3 MP
XPP
X0 18 18 0 5605 941 3 MP
XPP
X18 0 0 18 5605 941 3 MP
XPP
X0 17 18 0 5605 959 3 MP
XPP
X18 0 0 17 5605 959 3 MP
XPP
X0 18 18 0 5605 976 3 MP
XPP
X18 0 0 18 5605 976 3 MP
XPP
X0 18 18 0 5605 994 3 MP
XPP
X18 0 0 18 5605 994 3 MP
XPP
X0 18 18 0 5605 1012 3 MP
XPP
X18 0 0 18 5605 1012 3 MP
XPP
X0 18 18 0 5605 1030 3 MP
XPP
X18 0 0 18 5605 1030 3 MP
XPP
X0 18 18 0 5605 1048 3 MP
XPP
X18 0 0 18 5605 1048 3 MP
XPP
X0 17 18 0 5605 1066 3 MP
XPP
X18 0 0 17 5605 1066 3 MP
XPP
X0 18 18 0 5605 1083 3 MP
XPP
X18 0 0 18 5605 1083 3 MP
XPP
X0 18 18 0 5605 1101 3 MP
XPP
X18 0 0 18 5605 1101 3 MP
XPP
X0 18 18 0 5605 1119 3 MP
XPP
X18 0 0 18 5605 1119 3 MP
XPP
X0 18 18 0 5605 1137 3 MP
XPP
X18 0 0 18 5605 1137 3 MP
XPP
X0.396825 sg
X0 18 18 0 5605 1155 3 MP
XPP
X18 0 0 18 5605 1155 3 MP
XPP
X0.571429 sg
X0 17 18 0 5605 1173 3 MP
XPP
X18 0 0 17 5605 1173 3 MP
XPP
X0.809524 sg
X0 18 18 0 5605 1190 3 MP
XPP
X18 0 0 18 5605 1190 3 MP
XPP
X0.968254 sg
X0 18 18 0 5605 1208 3 MP
XPP
X18 0 0 18 5605 1208 3 MP
XPP
X1 sg
X0 18 18 0 5605 1226 3 MP
XPP
X18 0 0 18 5605 1226 3 MP
XPP
X0 18 18 0 5605 1244 3 MP
XPP
X18 0 0 18 5605 1244 3 MP
XPP
X0 17 18 0 5605 1262 3 MP
XPP
X18 0 0 17 5605 1262 3 MP
XPP
X0 18 18 0 5605 1279 3 MP
XPP
X18 0 0 18 5605 1279 3 MP
XPP
X0 18 18 0 5605 1297 3 MP
XPP
X18 0 0 18 5605 1297 3 MP
XPP
X0 18 18 0 5605 1315 3 MP
XPP
X18 0 0 18 5605 1315 3 MP
XPP
X0 18 18 0 5605 1333 3 MP
XPP
X18 0 0 18 5605 1333 3 MP
XPP
X0 18 18 0 5605 1351 3 MP
XPP
X18 0 0 18 5605 1351 3 MP
XPP
X0 17 18 0 5605 1369 3 MP
XPP
X18 0 0 17 5605 1369 3 MP
XPP
X0 18 18 0 5605 1386 3 MP
XPP
X18 0 0 18 5605 1386 3 MP
XPP
X0 18 18 0 5605 1404 3 MP
XPP
X18 0 0 18 5605 1404 3 MP
XPP
X0 18 18 0 5605 1422 3 MP
XPP
X18 0 0 18 5605 1422 3 MP
XPP
X0 18 18 0 5605 1440 3 MP
XPP
X18 0 0 18 5605 1440 3 MP
XPP
X0 18 18 0 5605 1458 3 MP
XPP
X18 0 0 18 5605 1458 3 MP
XPP
X0 17 18 0 5605 1476 3 MP
XPP
X18 0 0 17 5605 1476 3 MP
XPP
X0 18 18 0 5605 1493 3 MP
XPP
X18 0 0 18 5605 1493 3 MP
XPP
X0 18 18 0 5605 1511 3 MP
XPP
X18 0 0 18 5605 1511 3 MP
XPP
X0 18 18 0 5605 1529 3 MP
XPP
X18 0 0 18 5605 1529 3 MP
XPP
X0 18 18 0 5605 1547 3 MP
XPP
X18 0 0 18 5605 1547 3 MP
XPP
X0 18 18 0 5605 1565 3 MP
XPP
X18 0 0 18 5605 1565 3 MP
XPP
X0 17 18 0 5605 1583 3 MP
XPP
X18 0 0 17 5605 1583 3 MP
XPP
X0 18 18 0 5605 1600 3 MP
XPP
X18 0 0 18 5605 1600 3 MP
XPP
X0 18 18 0 5605 1618 3 MP
XPP
X18 0 0 18 5605 1618 3 MP
XPP
X0 18 18 0 5605 1636 3 MP
XPP
X18 0 0 18 5605 1636 3 MP
XPP
X0 18 18 0 5605 1654 3 MP
XPP
X18 0 0 18 5605 1654 3 MP
XPP
X0 18 18 0 5605 1672 3 MP
XPP
X18 0 0 18 5605 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5605 1690 3 MP
XPP
X18 0 0 17 5605 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5605 1707 3 MP
XPP
X18 0 0 18 5605 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5605 1725 3 MP
XPP
X18 0 0 18 5605 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5605 1743 3 MP
XPP
X18 0 0 18 5605 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5605 1761 3 MP
XPP
X18 0 0 18 5605 1761 3 MP
XPP
X1 sg
X0 18 18 0 5605 1779 3 MP
XPP
X18 0 0 18 5605 1779 3 MP
XPP
X0 17 18 0 5605 1797 3 MP
XPP
X18 0 0 17 5605 1797 3 MP
XPP
X0 18 18 0 5605 1814 3 MP
XPP
X18 0 0 18 5605 1814 3 MP
XPP
X0 18 18 0 5605 1832 3 MP
XPP
X18 0 0 18 5605 1832 3 MP
XPP
X0 18 18 0 5605 1850 3 MP
XPP
X18 0 0 18 5605 1850 3 MP
XPP
X0 18 18 0 5605 1868 3 MP
XPP
X18 0 0 18 5605 1868 3 MP
XPP
X0 18 18 0 5605 1886 3 MP
XPP
X18 0 0 18 5605 1886 3 MP
XPP
X0 17 18 0 5605 1904 3 MP
XPP
X18 0 0 17 5605 1904 3 MP
XPP
X0 18 18 0 5605 1921 3 MP
XPP
X18 0 0 18 5605 1921 3 MP
XPP
X0 18 18 0 5605 1939 3 MP
XPP
X18 0 0 18 5605 1939 3 MP
XPP
X0 18 18 0 5605 1957 3 MP
XPP
X18 0 0 18 5605 1957 3 MP
XPP
X0 18 18 0 5605 1975 3 MP
XPP
X18 0 0 18 5605 1975 3 MP
XPP
X0 18 18 0 5605 1993 3 MP
XPP
X18 0 0 18 5605 1993 3 MP
XPP
X0 17 18 0 5605 2011 3 MP
XPP
X18 0 0 17 5605 2011 3 MP
XPP
X0 18 18 0 5605 2028 3 MP
XPP
X18 0 0 18 5605 2028 3 MP
XPP
X0 18 18 0 5605 2046 3 MP
XPP
X18 0 0 18 5605 2046 3 MP
XPP
X0 18 18 0 5605 2064 3 MP
XPP
X18 0 0 18 5605 2064 3 MP
XPP
X0 18 18 0 5605 2082 3 MP
XPP
X18 0 0 18 5605 2082 3 MP
XPP
X0 18 18 0 5605 2100 3 MP
XPP
X18 0 0 18 5605 2100 3 MP
XPP
X0 17 18 0 5605 2118 3 MP
XPP
X18 0 0 17 5605 2118 3 MP
XPP
X0 18 18 0 5605 2135 3 MP
XPP
X18 0 0 18 5605 2135 3 MP
XPP
X0 18 18 0 5605 2153 3 MP
XPP
X18 0 0 18 5605 2153 3 MP
XPP
X0 18 18 0 5623 388 3 MP
XPP
X18 0 0 18 5623 388 3 MP
XPP
X0 18 18 0 5623 406 3 MP
XPP
X18 0 0 18 5623 406 3 MP
XPP
X0.984127 sg
X0 17 18 0 5623 424 3 MP
XPP
X18 0 0 17 5623 424 3 MP
XPP
X0.904762 sg
X0 18 18 0 5623 441 3 MP
XPP
X18 0 0 18 5623 441 3 MP
XPP
X0.793651 sg
X0 18 18 0 5623 459 3 MP
XPP
X18 0 0 18 5623 459 3 MP
XPP
X0.698413 sg
X0 18 18 0 5623 477 3 MP
XPP
X18 0 0 18 5623 477 3 MP
XPP
X0.666667 sg
X0 18 18 0 5623 495 3 MP
XPP
X18 0 0 18 5623 495 3 MP
XPP
X0 18 18 0 5623 513 3 MP
XPP
X18 0 0 18 5623 513 3 MP
XPP
X0 17 18 0 5623 531 3 MP
XPP
X18 0 0 17 5623 531 3 MP
XPP
X0 18 18 0 5623 548 3 MP
XPP
X18 0 0 18 5623 548 3 MP
XPP
X0 18 18 0 5623 566 3 MP
XPP
X18 0 0 18 5623 566 3 MP
XPP
X0 18 18 0 5623 584 3 MP
XPP
X18 0 0 18 5623 584 3 MP
XPP
X0 18 18 0 5623 602 3 MP
XPP
X18 0 0 18 5623 602 3 MP
XPP
X0 18 18 0 5623 620 3 MP
XPP
X18 0 0 18 5623 620 3 MP
XPP
X0 17 18 0 5623 638 3 MP
XPP
X18 0 0 17 5623 638 3 MP
XPP
X0 18 18 0 5623 655 3 MP
XPP
X18 0 0 18 5623 655 3 MP
XPP
X0 18 18 0 5623 673 3 MP
XPP
X18 0 0 18 5623 673 3 MP
XPP
X0 18 18 0 5623 691 3 MP
XPP
X18 0 0 18 5623 691 3 MP
XPP
X0 18 18 0 5623 709 3 MP
XPP
X18 0 0 18 5623 709 3 MP
XPP
X0 18 18 0 5623 727 3 MP
XPP
X18 0 0 18 5623 727 3 MP
XPP
X0 17 18 0 5623 745 3 MP
XPP
X18 0 0 17 5623 745 3 MP
XPP
X0.650794 sg
X0 18 18 0 5623 762 3 MP
XPP
X18 0 0 18 5623 762 3 MP
XPP
X0.587302 sg
X0 18 18 0 5623 780 3 MP
XPP
X18 0 0 18 5623 780 3 MP
XPP
X0.47619 sg
X0 18 18 0 5623 798 3 MP
XPP
X18 0 0 18 5623 798 3 MP
XPP
X0.380952 sg
X0 18 18 0 5623 816 3 MP
XPP
X18 0 0 18 5623 816 3 MP
XPP
X0.333333 sg
X0 18 18 0 5623 834 3 MP
XPP
X18 0 0 18 5623 834 3 MP
XPP
X0 17 18 0 5623 852 3 MP
XPP
X18 0 0 17 5623 852 3 MP
XPP
X0 18 18 0 5623 869 3 MP
XPP
X18 0 0 18 5623 869 3 MP
XPP
X0 18 18 0 5623 887 3 MP
XPP
X18 0 0 18 5623 887 3 MP
XPP
X0 18 18 0 5623 905 3 MP
XPP
X18 0 0 18 5623 905 3 MP
XPP
X0 18 18 0 5623 923 3 MP
XPP
X18 0 0 18 5623 923 3 MP
XPP
X0 18 18 0 5623 941 3 MP
XPP
X18 0 0 18 5623 941 3 MP
XPP
X0 17 18 0 5623 959 3 MP
XPP
X18 0 0 17 5623 959 3 MP
XPP
X0 18 18 0 5623 976 3 MP
XPP
X18 0 0 18 5623 976 3 MP
XPP
X0 18 18 0 5623 994 3 MP
XPP
X18 0 0 18 5623 994 3 MP
XPP
X0 18 18 0 5623 1012 3 MP
XPP
X18 0 0 18 5623 1012 3 MP
XPP
X0 18 18 0 5623 1030 3 MP
XPP
X18 0 0 18 5623 1030 3 MP
XPP
X0 18 18 0 5623 1048 3 MP
XPP
X18 0 0 18 5623 1048 3 MP
XPP
X0 17 18 0 5623 1066 3 MP
XPP
X18 0 0 17 5623 1066 3 MP
XPP
X0 18 18 0 5623 1083 3 MP
XPP
X18 0 0 18 5623 1083 3 MP
XPP
X0 18 18 0 5623 1101 3 MP
XPP
X18 0 0 18 5623 1101 3 MP
XPP
X0 18 18 0 5623 1119 3 MP
XPP
X18 0 0 18 5623 1119 3 MP
XPP
X0.349206 sg
X0 18 18 0 5623 1137 3 MP
XPP
X18 0 0 18 5623 1137 3 MP
XPP
X0.428571 sg
X0 18 18 0 5623 1155 3 MP
XPP
X18 0 0 18 5623 1155 3 MP
XPP
X0.619048 sg
X0 17 18 0 5623 1173 3 MP
XPP
X18 0 0 17 5623 1173 3 MP
XPP
X0.84127 sg
X0 18 18 0 5623 1190 3 MP
XPP
X18 0 0 18 5623 1190 3 MP
XPP
X0.968254 sg
X0 18 18 0 5623 1208 3 MP
XPP
X18 0 0 18 5623 1208 3 MP
XPP
X1 sg
X0 18 18 0 5623 1226 3 MP
XPP
X18 0 0 18 5623 1226 3 MP
XPP
X0 18 18 0 5623 1244 3 MP
XPP
X18 0 0 18 5623 1244 3 MP
XPP
X0 17 18 0 5623 1262 3 MP
XPP
X18 0 0 17 5623 1262 3 MP
XPP
X0 18 18 0 5623 1279 3 MP
XPP
X18 0 0 18 5623 1279 3 MP
XPP
X0 18 18 0 5623 1297 3 MP
XPP
X18 0 0 18 5623 1297 3 MP
XPP
X0 18 18 0 5623 1315 3 MP
XPP
X18 0 0 18 5623 1315 3 MP
XPP
X0 18 18 0 5623 1333 3 MP
XPP
X18 0 0 18 5623 1333 3 MP
XPP
X0 18 18 0 5623 1351 3 MP
XPP
X18 0 0 18 5623 1351 3 MP
XPP
X0 17 18 0 5623 1369 3 MP
XPP
X18 0 0 17 5623 1369 3 MP
XPP
X0 18 18 0 5623 1386 3 MP
XPP
X18 0 0 18 5623 1386 3 MP
XPP
X0 18 18 0 5623 1404 3 MP
XPP
X18 0 0 18 5623 1404 3 MP
XPP
X0 18 18 0 5623 1422 3 MP
XPP
X18 0 0 18 5623 1422 3 MP
XPP
X0 18 18 0 5623 1440 3 MP
XPP
X18 0 0 18 5623 1440 3 MP
XPP
X0 18 18 0 5623 1458 3 MP
XPP
X18 0 0 18 5623 1458 3 MP
XPP
X0 17 18 0 5623 1476 3 MP
XPP
X18 0 0 17 5623 1476 3 MP
XPP
X0 18 18 0 5623 1493 3 MP
XPP
X18 0 0 18 5623 1493 3 MP
XPP
X0 18 18 0 5623 1511 3 MP
XPP
X18 0 0 18 5623 1511 3 MP
XPP
X0 18 18 0 5623 1529 3 MP
XPP
X18 0 0 18 5623 1529 3 MP
XPP
X0 18 18 0 5623 1547 3 MP
XPP
X18 0 0 18 5623 1547 3 MP
XPP
X0 18 18 0 5623 1565 3 MP
XPP
X18 0 0 18 5623 1565 3 MP
XPP
X0 17 18 0 5623 1583 3 MP
XPP
X18 0 0 17 5623 1583 3 MP
XPP
X0 18 18 0 5623 1600 3 MP
XPP
X18 0 0 18 5623 1600 3 MP
XPP
X0 18 18 0 5623 1618 3 MP
XPP
X18 0 0 18 5623 1618 3 MP
XPP
X0 18 18 0 5623 1636 3 MP
XPP
X18 0 0 18 5623 1636 3 MP
XPP
X0 18 18 0 5623 1654 3 MP
XPP
X18 0 0 18 5623 1654 3 MP
XPP
X0 18 18 0 5623 1672 3 MP
XPP
X18 0 0 18 5623 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5623 1690 3 MP
XPP
X18 0 0 17 5623 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5623 1707 3 MP
XPP
X18 0 0 18 5623 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5623 1725 3 MP
XPP
X18 0 0 18 5623 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5623 1743 3 MP
XPP
X18 0 0 18 5623 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5623 1761 3 MP
XPP
X18 0 0 18 5623 1761 3 MP
XPP
X1 sg
X0 18 18 0 5623 1779 3 MP
XPP
X18 0 0 18 5623 1779 3 MP
XPP
X0 17 18 0 5623 1797 3 MP
XPP
X18 0 0 17 5623 1797 3 MP
XPP
X0 18 18 0 5623 1814 3 MP
XPP
X18 0 0 18 5623 1814 3 MP
XPP
X0 18 18 0 5623 1832 3 MP
XPP
X18 0 0 18 5623 1832 3 MP
XPP
X0 18 18 0 5623 1850 3 MP
XPP
X18 0 0 18 5623 1850 3 MP
XPP
X0 18 18 0 5623 1868 3 MP
XPP
X18 0 0 18 5623 1868 3 MP
XPP
X0 18 18 0 5623 1886 3 MP
XPP
X18 0 0 18 5623 1886 3 MP
XPP
X0 17 18 0 5623 1904 3 MP
XPP
X18 0 0 17 5623 1904 3 MP
XPP
X0 18 18 0 5623 1921 3 MP
XPP
X18 0 0 18 5623 1921 3 MP
XPP
X0 18 18 0 5623 1939 3 MP
XPP
X18 0 0 18 5623 1939 3 MP
XPP
X0 18 18 0 5623 1957 3 MP
XPP
X18 0 0 18 5623 1957 3 MP
XPP
X0 18 18 0 5623 1975 3 MP
XPP
X18 0 0 18 5623 1975 3 MP
XPP
X0 18 18 0 5623 1993 3 MP
XPP
X18 0 0 18 5623 1993 3 MP
XPP
X0 17 18 0 5623 2011 3 MP
XPP
X18 0 0 17 5623 2011 3 MP
XPP
X0 18 18 0 5623 2028 3 MP
XPP
X18 0 0 18 5623 2028 3 MP
XPP
X0 18 18 0 5623 2046 3 MP
XPP
X18 0 0 18 5623 2046 3 MP
XPP
X0 18 18 0 5623 2064 3 MP
XPP
X18 0 0 18 5623 2064 3 MP
XPP
X0 18 18 0 5623 2082 3 MP
XPP
X18 0 0 18 5623 2082 3 MP
XPP
X0 18 18 0 5623 2100 3 MP
XPP
X18 0 0 18 5623 2100 3 MP
XPP
X0 17 18 0 5623 2118 3 MP
XPP
X18 0 0 17 5623 2118 3 MP
XPP
X0 18 18 0 5623 2135 3 MP
XPP
X18 0 0 18 5623 2135 3 MP
XPP
X0 18 18 0 5623 2153 3 MP
XPP
X18 0 0 18 5623 2153 3 MP
XPP
X0 18 18 0 5641 388 3 MP
XPP
X18 0 0 18 5641 388 3 MP
XPP
X0 18 18 0 5641 406 3 MP
XPP
X18 0 0 18 5641 406 3 MP
XPP
X0.984127 sg
X0 17 18 0 5641 424 3 MP
XPP
X18 0 0 17 5641 424 3 MP
XPP
X0.920635 sg
X0 18 18 0 5641 441 3 MP
XPP
X18 0 0 18 5641 441 3 MP
XPP
X0.809524 sg
X0 18 18 0 5641 459 3 MP
XPP
X18 0 0 18 5641 459 3 MP
XPP
X0.714286 sg
X0 18 18 0 5641 477 3 MP
XPP
X18 0 0 18 5641 477 3 MP
XPP
X0.68254 sg
X0 18 18 0 5641 495 3 MP
XPP
X18 0 0 18 5641 495 3 MP
XPP
X0.666667 sg
X0 18 18 0 5641 513 3 MP
XPP
X18 0 0 18 5641 513 3 MP
XPP
X0 17 18 0 5641 531 3 MP
XPP
X18 0 0 17 5641 531 3 MP
XPP
X0 18 18 0 5641 548 3 MP
XPP
X18 0 0 18 5641 548 3 MP
XPP
X0 18 18 0 5641 566 3 MP
XPP
X18 0 0 18 5641 566 3 MP
XPP
X0 18 18 0 5641 584 3 MP
XPP
X18 0 0 18 5641 584 3 MP
XPP
X0 18 18 0 5641 602 3 MP
XPP
X18 0 0 18 5641 602 3 MP
XPP
X0 18 18 0 5641 620 3 MP
XPP
X18 0 0 18 5641 620 3 MP
XPP
X0 17 18 0 5641 638 3 MP
XPP
X18 0 0 17 5641 638 3 MP
XPP
X0 18 18 0 5641 655 3 MP
XPP
X18 0 0 18 5641 655 3 MP
XPP
X0 18 18 0 5641 673 3 MP
XPP
X18 0 0 18 5641 673 3 MP
XPP
X0 18 18 0 5641 691 3 MP
XPP
X18 0 0 18 5641 691 3 MP
XPP
X0 18 18 0 5641 709 3 MP
XPP
X18 0 0 18 5641 709 3 MP
XPP
X0 18 18 0 5641 727 3 MP
XPP
X18 0 0 18 5641 727 3 MP
XPP
X0 17 18 0 5641 745 3 MP
XPP
X18 0 0 17 5641 745 3 MP
XPP
X0 18 18 0 5641 762 3 MP
XPP
X18 0 0 18 5641 762 3 MP
XPP
X0.619048 sg
X0 18 18 0 5641 780 3 MP
XPP
X18 0 0 18 5641 780 3 MP
XPP
X0.52381 sg
X0 18 18 0 5641 798 3 MP
XPP
X18 0 0 18 5641 798 3 MP
XPP
X0.428571 sg
X0 18 18 0 5641 816 3 MP
XPP
X18 0 0 18 5641 816 3 MP
XPP
X0.349206 sg
X0 18 18 0 5641 834 3 MP
XPP
X18 0 0 18 5641 834 3 MP
XPP
X0.333333 sg
X0 17 18 0 5641 852 3 MP
XPP
X18 0 0 17 5641 852 3 MP
XPP
X0 18 18 0 5641 869 3 MP
XPP
X18 0 0 18 5641 869 3 MP
XPP
X0 18 18 0 5641 887 3 MP
XPP
X18 0 0 18 5641 887 3 MP
XPP
X0 18 18 0 5641 905 3 MP
XPP
X18 0 0 18 5641 905 3 MP
XPP
X0 18 18 0 5641 923 3 MP
XPP
X18 0 0 18 5641 923 3 MP
XPP
X0 18 18 0 5641 941 3 MP
XPP
X18 0 0 18 5641 941 3 MP
XPP
X0 17 18 0 5641 959 3 MP
XPP
X18 0 0 17 5641 959 3 MP
XPP
X0 18 18 0 5641 976 3 MP
XPP
X18 0 0 18 5641 976 3 MP
XPP
X0 18 18 0 5641 994 3 MP
XPP
X18 0 0 18 5641 994 3 MP
XPP
X0 18 18 0 5641 1012 3 MP
XPP
X18 0 0 18 5641 1012 3 MP
XPP
X0 18 18 0 5641 1030 3 MP
XPP
X18 0 0 18 5641 1030 3 MP
XPP
X0 18 18 0 5641 1048 3 MP
XPP
X18 0 0 18 5641 1048 3 MP
XPP
X0 17 18 0 5641 1066 3 MP
XPP
X18 0 0 17 5641 1066 3 MP
XPP
X0 18 18 0 5641 1083 3 MP
XPP
X18 0 0 18 5641 1083 3 MP
XPP
X0 18 18 0 5641 1101 3 MP
XPP
X18 0 0 18 5641 1101 3 MP
XPP
X0 18 18 0 5641 1119 3 MP
XPP
X18 0 0 18 5641 1119 3 MP
XPP
X0.380952 sg
X0 18 18 0 5641 1137 3 MP
XPP
X18 0 0 18 5641 1137 3 MP
XPP
X0.507937 sg
X0 18 18 0 5641 1155 3 MP
XPP
X18 0 0 18 5641 1155 3 MP
XPP
X0.730159 sg
X0 17 18 0 5641 1173 3 MP
XPP
X18 0 0 17 5641 1173 3 MP
XPP
X0.904762 sg
X0 18 18 0 5641 1190 3 MP
XPP
X18 0 0 18 5641 1190 3 MP
XPP
X1 sg
X0 18 18 0 5641 1208 3 MP
XPP
X18 0 0 18 5641 1208 3 MP
XPP
X0 18 18 0 5641 1226 3 MP
XPP
X18 0 0 18 5641 1226 3 MP
XPP
X0 18 18 0 5641 1244 3 MP
XPP
X18 0 0 18 5641 1244 3 MP
XPP
X0 17 18 0 5641 1262 3 MP
XPP
X18 0 0 17 5641 1262 3 MP
XPP
X0 18 18 0 5641 1279 3 MP
XPP
X18 0 0 18 5641 1279 3 MP
XPP
X0 18 18 0 5641 1297 3 MP
XPP
X18 0 0 18 5641 1297 3 MP
XPP
X0 18 18 0 5641 1315 3 MP
XPP
X18 0 0 18 5641 1315 3 MP
XPP
X0 18 18 0 5641 1333 3 MP
XPP
X18 0 0 18 5641 1333 3 MP
XPP
X0 18 18 0 5641 1351 3 MP
XPP
X18 0 0 18 5641 1351 3 MP
XPP
X0 17 18 0 5641 1369 3 MP
XPP
X18 0 0 17 5641 1369 3 MP
XPP
X0 18 18 0 5641 1386 3 MP
XPP
X18 0 0 18 5641 1386 3 MP
XPP
X0 18 18 0 5641 1404 3 MP
XPP
X18 0 0 18 5641 1404 3 MP
XPP
X0 18 18 0 5641 1422 3 MP
XPP
X18 0 0 18 5641 1422 3 MP
XPP
X0 18 18 0 5641 1440 3 MP
XPP
X18 0 0 18 5641 1440 3 MP
XPP
X0 18 18 0 5641 1458 3 MP
XPP
X18 0 0 18 5641 1458 3 MP
XPP
X0 17 18 0 5641 1476 3 MP
XPP
X18 0 0 17 5641 1476 3 MP
XPP
X0 18 18 0 5641 1493 3 MP
XPP
X18 0 0 18 5641 1493 3 MP
XPP
X0 18 18 0 5641 1511 3 MP
XPP
X18 0 0 18 5641 1511 3 MP
XPP
X0 18 18 0 5641 1529 3 MP
XPP
X18 0 0 18 5641 1529 3 MP
XPP
X0 18 18 0 5641 1547 3 MP
XPP
X18 0 0 18 5641 1547 3 MP
XPP
X0 18 18 0 5641 1565 3 MP
XPP
X18 0 0 18 5641 1565 3 MP
XPP
X0 17 18 0 5641 1583 3 MP
XPP
X18 0 0 17 5641 1583 3 MP
XPP
X0 18 18 0 5641 1600 3 MP
XPP
X18 0 0 18 5641 1600 3 MP
XPP
X0 18 18 0 5641 1618 3 MP
XPP
X18 0 0 18 5641 1618 3 MP
XPP
X0 18 18 0 5641 1636 3 MP
XPP
X18 0 0 18 5641 1636 3 MP
XPP
X0 18 18 0 5641 1654 3 MP
XPP
X18 0 0 18 5641 1654 3 MP
XPP
X0 18 18 0 5641 1672 3 MP
XPP
X18 0 0 18 5641 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5641 1690 3 MP
XPP
X18 0 0 17 5641 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5641 1707 3 MP
XPP
X18 0 0 18 5641 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5641 1725 3 MP
XPP
X18 0 0 18 5641 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5641 1743 3 MP
XPP
X18 0 0 18 5641 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5641 1761 3 MP
XPP
X18 0 0 18 5641 1761 3 MP
XPP
X1 sg
X0 18 18 0 5641 1779 3 MP
XPP
X18 0 0 18 5641 1779 3 MP
XPP
X0 17 18 0 5641 1797 3 MP
XPP
X18 0 0 17 5641 1797 3 MP
XPP
X0 18 18 0 5641 1814 3 MP
XPP
X18 0 0 18 5641 1814 3 MP
XPP
X0 18 18 0 5641 1832 3 MP
XPP
X18 0 0 18 5641 1832 3 MP
XPP
X0 18 18 0 5641 1850 3 MP
XPP
X18 0 0 18 5641 1850 3 MP
XPP
X0 18 18 0 5641 1868 3 MP
XPP
X18 0 0 18 5641 1868 3 MP
XPP
X0 18 18 0 5641 1886 3 MP
XPP
X18 0 0 18 5641 1886 3 MP
XPP
X0 17 18 0 5641 1904 3 MP
XPP
X18 0 0 17 5641 1904 3 MP
XPP
X0 18 18 0 5641 1921 3 MP
XPP
X18 0 0 18 5641 1921 3 MP
XPP
X0 18 18 0 5641 1939 3 MP
XPP
X18 0 0 18 5641 1939 3 MP
XPP
X0 18 18 0 5641 1957 3 MP
XPP
X18 0 0 18 5641 1957 3 MP
XPP
X0 18 18 0 5641 1975 3 MP
XPP
X18 0 0 18 5641 1975 3 MP
XPP
X0 18 18 0 5641 1993 3 MP
XPP
X18 0 0 18 5641 1993 3 MP
XPP
X0 17 18 0 5641 2011 3 MP
XPP
X18 0 0 17 5641 2011 3 MP
XPP
X0 18 18 0 5641 2028 3 MP
XPP
X18 0 0 18 5641 2028 3 MP
XPP
X0 18 18 0 5641 2046 3 MP
XPP
X18 0 0 18 5641 2046 3 MP
XPP
X0 18 18 0 5641 2064 3 MP
XPP
X18 0 0 18 5641 2064 3 MP
XPP
X0 18 18 0 5641 2082 3 MP
XPP
X18 0 0 18 5641 2082 3 MP
XPP
X0 18 18 0 5641 2100 3 MP
XPP
X18 0 0 18 5641 2100 3 MP
XPP
X0 17 18 0 5641 2118 3 MP
XPP
X18 0 0 17 5641 2118 3 MP
XPP
X0 18 18 0 5641 2135 3 MP
XPP
X18 0 0 18 5641 2135 3 MP
XPP
X0 18 18 0 5641 2153 3 MP
XPP
X18 0 0 18 5641 2153 3 MP
XPP
X0 18 18 0 5659 388 3 MP
XPP
X18 0 0 18 5659 388 3 MP
XPP
X0 18 18 0 5659 406 3 MP
XPP
X18 0 0 18 5659 406 3 MP
XPP
X0 17 18 0 5659 424 3 MP
XPP
X18 0 0 17 5659 424 3 MP
XPP
X0.952381 sg
X0 18 18 0 5659 441 3 MP
XPP
X18 0 0 18 5659 441 3 MP
XPP
X0.857143 sg
X0 18 18 0 5659 459 3 MP
XPP
X18 0 0 18 5659 459 3 MP
XPP
X0.746032 sg
X0 18 18 0 5659 477 3 MP
XPP
X18 0 0 18 5659 477 3 MP
XPP
X0.68254 sg
X0 18 18 0 5659 495 3 MP
XPP
X18 0 0 18 5659 495 3 MP
XPP
X0.666667 sg
X0 18 18 0 5659 513 3 MP
XPP
X18 0 0 18 5659 513 3 MP
XPP
X0 17 18 0 5659 531 3 MP
XPP
X18 0 0 17 5659 531 3 MP
XPP
X0 18 18 0 5659 548 3 MP
XPP
X18 0 0 18 5659 548 3 MP
XPP
X0 18 18 0 5659 566 3 MP
XPP
X18 0 0 18 5659 566 3 MP
XPP
X0 18 18 0 5659 584 3 MP
XPP
X18 0 0 18 5659 584 3 MP
XPP
X0 18 18 0 5659 602 3 MP
XPP
X18 0 0 18 5659 602 3 MP
XPP
X0 18 18 0 5659 620 3 MP
XPP
X18 0 0 18 5659 620 3 MP
XPP
X0 17 18 0 5659 638 3 MP
XPP
X18 0 0 17 5659 638 3 MP
XPP
X0 18 18 0 5659 655 3 MP
XPP
X18 0 0 18 5659 655 3 MP
XPP
X0 18 18 0 5659 673 3 MP
XPP
X18 0 0 18 5659 673 3 MP
XPP
X0 18 18 0 5659 691 3 MP
XPP
X18 0 0 18 5659 691 3 MP
XPP
X0 18 18 0 5659 709 3 MP
XPP
X18 0 0 18 5659 709 3 MP
XPP
X0 18 18 0 5659 727 3 MP
XPP
X18 0 0 18 5659 727 3 MP
XPP
X0 17 18 0 5659 745 3 MP
XPP
X18 0 0 17 5659 745 3 MP
XPP
X0 18 18 0 5659 762 3 MP
XPP
X18 0 0 18 5659 762 3 MP
XPP
X0.650794 sg
X0 18 18 0 5659 780 3 MP
XPP
X18 0 0 18 5659 780 3 MP
XPP
X0.571429 sg
X0 18 18 0 5659 798 3 MP
XPP
X18 0 0 18 5659 798 3 MP
XPP
X0.47619 sg
X0 18 18 0 5659 816 3 MP
XPP
X18 0 0 18 5659 816 3 MP
XPP
X0.380952 sg
X0 18 18 0 5659 834 3 MP
XPP
X18 0 0 18 5659 834 3 MP
XPP
X0.333333 sg
X0 17 18 0 5659 852 3 MP
XPP
X18 0 0 17 5659 852 3 MP
XPP
X0 18 18 0 5659 869 3 MP
XPP
X18 0 0 18 5659 869 3 MP
XPP
X0 18 18 0 5659 887 3 MP
XPP
X18 0 0 18 5659 887 3 MP
XPP
X0 18 18 0 5659 905 3 MP
XPP
X18 0 0 18 5659 905 3 MP
XPP
X0 18 18 0 5659 923 3 MP
XPP
X18 0 0 18 5659 923 3 MP
XPP
X0 18 18 0 5659 941 3 MP
XPP
X18 0 0 18 5659 941 3 MP
XPP
X0 17 18 0 5659 959 3 MP
XPP
X18 0 0 17 5659 959 3 MP
XPP
X0 18 18 0 5659 976 3 MP
XPP
X18 0 0 18 5659 976 3 MP
XPP
X0 18 18 0 5659 994 3 MP
XPP
X18 0 0 18 5659 994 3 MP
XPP
X0 18 18 0 5659 1012 3 MP
XPP
X18 0 0 18 5659 1012 3 MP
XPP
X0 18 18 0 5659 1030 3 MP
XPP
X18 0 0 18 5659 1030 3 MP
XPP
X0 18 18 0 5659 1048 3 MP
XPP
X18 0 0 18 5659 1048 3 MP
XPP
X0 17 18 0 5659 1066 3 MP
XPP
X18 0 0 17 5659 1066 3 MP
XPP
X0 18 18 0 5659 1083 3 MP
XPP
X18 0 0 18 5659 1083 3 MP
XPP
X0 18 18 0 5659 1101 3 MP
XPP
X18 0 0 18 5659 1101 3 MP
XPP
X0.349206 sg
X0 18 18 0 5659 1119 3 MP
XPP
X18 0 0 18 5659 1119 3 MP
XPP
X0.428571 sg
X0 18 18 0 5659 1137 3 MP
XPP
X18 0 0 18 5659 1137 3 MP
XPP
X0.619048 sg
X0 18 18 0 5659 1155 3 MP
XPP
X18 0 0 18 5659 1155 3 MP
XPP
X0.825397 sg
X0 17 18 0 5659 1173 3 MP
XPP
X18 0 0 17 5659 1173 3 MP
XPP
X0.968254 sg
X0 18 18 0 5659 1190 3 MP
XPP
X18 0 0 18 5659 1190 3 MP
XPP
X1 sg
X0 18 18 0 5659 1208 3 MP
XPP
X18 0 0 18 5659 1208 3 MP
XPP
X0 18 18 0 5659 1226 3 MP
XPP
X18 0 0 18 5659 1226 3 MP
XPP
X0 18 18 0 5659 1244 3 MP
XPP
X18 0 0 18 5659 1244 3 MP
XPP
X0 17 18 0 5659 1262 3 MP
XPP
X18 0 0 17 5659 1262 3 MP
XPP
X0 18 18 0 5659 1279 3 MP
XPP
X18 0 0 18 5659 1279 3 MP
XPP
X0 18 18 0 5659 1297 3 MP
XPP
X18 0 0 18 5659 1297 3 MP
XPP
X0 18 18 0 5659 1315 3 MP
XPP
X18 0 0 18 5659 1315 3 MP
XPP
X0 18 18 0 5659 1333 3 MP
XPP
X18 0 0 18 5659 1333 3 MP
XPP
X0 18 18 0 5659 1351 3 MP
XPP
X18 0 0 18 5659 1351 3 MP
XPP
X0 17 18 0 5659 1369 3 MP
XPP
X18 0 0 17 5659 1369 3 MP
XPP
X0 18 18 0 5659 1386 3 MP
XPP
X18 0 0 18 5659 1386 3 MP
XPP
X0 18 18 0 5659 1404 3 MP
XPP
X18 0 0 18 5659 1404 3 MP
XPP
X0 18 18 0 5659 1422 3 MP
XPP
X18 0 0 18 5659 1422 3 MP
XPP
X0 18 18 0 5659 1440 3 MP
XPP
X18 0 0 18 5659 1440 3 MP
XPP
X0 18 18 0 5659 1458 3 MP
XPP
X18 0 0 18 5659 1458 3 MP
XPP
X0 17 18 0 5659 1476 3 MP
XPP
X18 0 0 17 5659 1476 3 MP
XPP
X0 18 18 0 5659 1493 3 MP
XPP
X18 0 0 18 5659 1493 3 MP
XPP
X0 18 18 0 5659 1511 3 MP
XPP
X18 0 0 18 5659 1511 3 MP
XPP
X0 18 18 0 5659 1529 3 MP
XPP
X18 0 0 18 5659 1529 3 MP
XPP
X0 18 18 0 5659 1547 3 MP
XPP
X18 0 0 18 5659 1547 3 MP
XPP
X0 18 18 0 5659 1565 3 MP
XPP
X18 0 0 18 5659 1565 3 MP
XPP
X0 17 18 0 5659 1583 3 MP
XPP
X18 0 0 17 5659 1583 3 MP
XPP
X0 18 18 0 5659 1600 3 MP
XPP
X18 0 0 18 5659 1600 3 MP
XPP
X0 18 18 0 5659 1618 3 MP
XPP
X18 0 0 18 5659 1618 3 MP
XPP
X0 18 18 0 5659 1636 3 MP
XPP
X18 0 0 18 5659 1636 3 MP
XPP
X0 18 18 0 5659 1654 3 MP
XPP
X18 0 0 18 5659 1654 3 MP
XPP
X0 18 18 0 5659 1672 3 MP
XPP
X18 0 0 18 5659 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5659 1690 3 MP
XPP
X18 0 0 17 5659 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5659 1707 3 MP
XPP
X18 0 0 18 5659 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5659 1725 3 MP
XPP
X18 0 0 18 5659 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5659 1743 3 MP
XPP
X18 0 0 18 5659 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5659 1761 3 MP
XPP
X18 0 0 18 5659 1761 3 MP
XPP
X1 sg
X0 18 18 0 5659 1779 3 MP
XPP
X18 0 0 18 5659 1779 3 MP
XPP
X0 17 18 0 5659 1797 3 MP
XPP
X18 0 0 17 5659 1797 3 MP
XPP
X0 18 18 0 5659 1814 3 MP
XPP
X18 0 0 18 5659 1814 3 MP
XPP
X0 18 18 0 5659 1832 3 MP
XPP
X18 0 0 18 5659 1832 3 MP
XPP
X0 18 18 0 5659 1850 3 MP
XPP
X18 0 0 18 5659 1850 3 MP
XPP
X0 18 18 0 5659 1868 3 MP
XPP
X18 0 0 18 5659 1868 3 MP
XPP
X0 18 18 0 5659 1886 3 MP
XPP
X18 0 0 18 5659 1886 3 MP
XPP
X0 17 18 0 5659 1904 3 MP
XPP
X18 0 0 17 5659 1904 3 MP
XPP
X0 18 18 0 5659 1921 3 MP
XPP
X18 0 0 18 5659 1921 3 MP
XPP
X0 18 18 0 5659 1939 3 MP
XPP
X18 0 0 18 5659 1939 3 MP
XPP
X0 18 18 0 5659 1957 3 MP
XPP
X18 0 0 18 5659 1957 3 MP
XPP
X0 18 18 0 5659 1975 3 MP
XPP
X18 0 0 18 5659 1975 3 MP
XPP
X0 18 18 0 5659 1993 3 MP
XPP
X18 0 0 18 5659 1993 3 MP
XPP
X0 17 18 0 5659 2011 3 MP
XPP
X18 0 0 17 5659 2011 3 MP
XPP
X0 18 18 0 5659 2028 3 MP
XPP
X18 0 0 18 5659 2028 3 MP
XPP
X0 18 18 0 5659 2046 3 MP
XPP
X18 0 0 18 5659 2046 3 MP
XPP
X0 18 18 0 5659 2064 3 MP
XPP
X18 0 0 18 5659 2064 3 MP
XPP
X0 18 18 0 5659 2082 3 MP
XPP
X18 0 0 18 5659 2082 3 MP
XPP
X0 18 18 0 5659 2100 3 MP
XPP
X18 0 0 18 5659 2100 3 MP
XPP
X0 17 18 0 5659 2118 3 MP
XPP
X18 0 0 17 5659 2118 3 MP
XPP
X0 18 18 0 5659 2135 3 MP
XPP
X18 0 0 18 5659 2135 3 MP
XPP
X0 18 18 0 5659 2153 3 MP
XPP
X18 0 0 18 5659 2153 3 MP
XPP
X0 18 18 0 5677 388 3 MP
XPP
X18 0 0 18 5677 388 3 MP
XPP
X0 18 18 0 5677 406 3 MP
XPP
X18 0 0 18 5677 406 3 MP
XPP
X0 17 18 0 5677 424 3 MP
XPP
X18 0 0 17 5677 424 3 MP
XPP
X0.984127 sg
X0 18 18 0 5677 441 3 MP
XPP
X18 0 0 18 5677 441 3 MP
XPP
X0.904762 sg
X0 18 18 0 5677 459 3 MP
XPP
X18 0 0 18 5677 459 3 MP
XPP
X0.777778 sg
X0 18 18 0 5677 477 3 MP
XPP
X18 0 0 18 5677 477 3 MP
XPP
X0.698413 sg
X0 18 18 0 5677 495 3 MP
XPP
X18 0 0 18 5677 495 3 MP
XPP
X0.666667 sg
X0 18 18 0 5677 513 3 MP
XPP
X18 0 0 18 5677 513 3 MP
XPP
X0 17 18 0 5677 531 3 MP
XPP
X18 0 0 17 5677 531 3 MP
XPP
X0 18 18 0 5677 548 3 MP
XPP
X18 0 0 18 5677 548 3 MP
XPP
X0 18 18 0 5677 566 3 MP
XPP
X18 0 0 18 5677 566 3 MP
XPP
X0 18 18 0 5677 584 3 MP
XPP
X18 0 0 18 5677 584 3 MP
XPP
X0 18 18 0 5677 602 3 MP
XPP
X18 0 0 18 5677 602 3 MP
XPP
X0 18 18 0 5677 620 3 MP
XPP
X18 0 0 18 5677 620 3 MP
XPP
X0 17 18 0 5677 638 3 MP
XPP
X18 0 0 17 5677 638 3 MP
XPP
X0 18 18 0 5677 655 3 MP
XPP
X18 0 0 18 5677 655 3 MP
XPP
X0 18 18 0 5677 673 3 MP
XPP
X18 0 0 18 5677 673 3 MP
XPP
X0 18 18 0 5677 691 3 MP
XPP
X18 0 0 18 5677 691 3 MP
XPP
X0 18 18 0 5677 709 3 MP
XPP
X18 0 0 18 5677 709 3 MP
XPP
X0 18 18 0 5677 727 3 MP
XPP
X18 0 0 18 5677 727 3 MP
XPP
X0 17 18 0 5677 745 3 MP
XPP
X18 0 0 17 5677 745 3 MP
XPP
X0 18 18 0 5677 762 3 MP
XPP
X18 0 0 18 5677 762 3 MP
XPP
X0 18 18 0 5677 780 3 MP
XPP
X18 0 0 18 5677 780 3 MP
XPP
X0.619048 sg
X0 18 18 0 5677 798 3 MP
XPP
X18 0 0 18 5677 798 3 MP
XPP
X0.52381 sg
X0 18 18 0 5677 816 3 MP
XPP
X18 0 0 18 5677 816 3 MP
XPP
X0.428571 sg
X0 18 18 0 5677 834 3 MP
XPP
X18 0 0 18 5677 834 3 MP
XPP
X0.349206 sg
X0 17 18 0 5677 852 3 MP
XPP
X18 0 0 17 5677 852 3 MP
XPP
X0.333333 sg
X0 18 18 0 5677 869 3 MP
XPP
X18 0 0 18 5677 869 3 MP
XPP
X0 18 18 0 5677 887 3 MP
XPP
X18 0 0 18 5677 887 3 MP
XPP
X0 18 18 0 5677 905 3 MP
XPP
X18 0 0 18 5677 905 3 MP
XPP
X0 18 18 0 5677 923 3 MP
XPP
X18 0 0 18 5677 923 3 MP
XPP
X0 18 18 0 5677 941 3 MP
XPP
X18 0 0 18 5677 941 3 MP
XPP
X0 17 18 0 5677 959 3 MP
XPP
X18 0 0 17 5677 959 3 MP
XPP
X0 18 18 0 5677 976 3 MP
XPP
X18 0 0 18 5677 976 3 MP
XPP
X0 18 18 0 5677 994 3 MP
XPP
X18 0 0 18 5677 994 3 MP
XPP
X0 18 18 0 5677 1012 3 MP
XPP
X18 0 0 18 5677 1012 3 MP
XPP
X0 18 18 0 5677 1030 3 MP
XPP
X18 0 0 18 5677 1030 3 MP
XPP
X0 18 18 0 5677 1048 3 MP
XPP
X18 0 0 18 5677 1048 3 MP
XPP
X0 17 18 0 5677 1066 3 MP
XPP
X18 0 0 17 5677 1066 3 MP
XPP
X0 18 18 0 5677 1083 3 MP
XPP
X18 0 0 18 5677 1083 3 MP
XPP
X0 18 18 0 5677 1101 3 MP
XPP
X18 0 0 18 5677 1101 3 MP
XPP
X0.380952 sg
X0 18 18 0 5677 1119 3 MP
XPP
X18 0 0 18 5677 1119 3 MP
XPP
X0.507937 sg
X0 18 18 0 5677 1137 3 MP
XPP
X18 0 0 18 5677 1137 3 MP
XPP
X0.730159 sg
X0 18 18 0 5677 1155 3 MP
XPP
X18 0 0 18 5677 1155 3 MP
XPP
X0.904762 sg
X0 17 18 0 5677 1173 3 MP
XPP
X18 0 0 17 5677 1173 3 MP
XPP
X1 sg
X0 18 18 0 5677 1190 3 MP
XPP
X18 0 0 18 5677 1190 3 MP
XPP
X0 18 18 0 5677 1208 3 MP
XPP
X18 0 0 18 5677 1208 3 MP
XPP
X0 18 18 0 5677 1226 3 MP
XPP
X18 0 0 18 5677 1226 3 MP
XPP
X0 18 18 0 5677 1244 3 MP
XPP
X18 0 0 18 5677 1244 3 MP
XPP
X0 17 18 0 5677 1262 3 MP
XPP
X18 0 0 17 5677 1262 3 MP
XPP
X0 18 18 0 5677 1279 3 MP
XPP
X18 0 0 18 5677 1279 3 MP
XPP
X0 18 18 0 5677 1297 3 MP
XPP
X18 0 0 18 5677 1297 3 MP
XPP
X0 18 18 0 5677 1315 3 MP
XPP
X18 0 0 18 5677 1315 3 MP
XPP
X0 18 18 0 5677 1333 3 MP
XPP
X18 0 0 18 5677 1333 3 MP
XPP
X0 18 18 0 5677 1351 3 MP
XPP
X18 0 0 18 5677 1351 3 MP
XPP
X0 17 18 0 5677 1369 3 MP
XPP
X18 0 0 17 5677 1369 3 MP
XPP
X0 18 18 0 5677 1386 3 MP
XPP
X18 0 0 18 5677 1386 3 MP
XPP
X0 18 18 0 5677 1404 3 MP
XPP
X18 0 0 18 5677 1404 3 MP
XPP
X0 18 18 0 5677 1422 3 MP
XPP
X18 0 0 18 5677 1422 3 MP
XPP
X0 18 18 0 5677 1440 3 MP
XPP
X18 0 0 18 5677 1440 3 MP
XPP
X0 18 18 0 5677 1458 3 MP
XPP
X18 0 0 18 5677 1458 3 MP
XPP
X0 17 18 0 5677 1476 3 MP
XPP
X18 0 0 17 5677 1476 3 MP
XPP
X0 18 18 0 5677 1493 3 MP
XPP
X18 0 0 18 5677 1493 3 MP
XPP
X0 18 18 0 5677 1511 3 MP
XPP
X18 0 0 18 5677 1511 3 MP
XPP
X0 18 18 0 5677 1529 3 MP
XPP
X18 0 0 18 5677 1529 3 MP
XPP
X0 18 18 0 5677 1547 3 MP
XPP
X18 0 0 18 5677 1547 3 MP
XPP
X0 18 18 0 5677 1565 3 MP
XPP
X18 0 0 18 5677 1565 3 MP
XPP
X0 17 18 0 5677 1583 3 MP
XPP
X18 0 0 17 5677 1583 3 MP
XPP
X0 18 18 0 5677 1600 3 MP
XPP
X18 0 0 18 5677 1600 3 MP
XPP
X0 18 18 0 5677 1618 3 MP
XPP
X18 0 0 18 5677 1618 3 MP
XPP
X0 18 18 0 5677 1636 3 MP
XPP
X18 0 0 18 5677 1636 3 MP
XPP
X0 18 18 0 5677 1654 3 MP
XPP
X18 0 0 18 5677 1654 3 MP
XPP
X0 18 18 0 5677 1672 3 MP
XPP
X18 0 0 18 5677 1672 3 MP
XPP
X0.904762 sg
X0 17 18 0 5677 1690 3 MP
XPP
X18 0 0 17 5677 1690 3 MP
XPP
X0.68254 sg
X0 18 18 0 5677 1707 3 MP
XPP
X18 0 0 18 5677 1707 3 MP
XPP
X0.507937 sg
X0 18 18 0 5677 1725 3 MP
XPP
X18 0 0 18 5677 1725 3 MP
XPP
X0.68254 sg
X0 18 18 0 5677 1743 3 MP
XPP
X18 0 0 18 5677 1743 3 MP
XPP
X0.904762 sg
X0 18 18 0 5677 1761 3 MP
XPP
X18 0 0 18 5677 1761 3 MP
XPP
X1 sg
X0 18 18 0 5677 1779 3 MP
XPP
X18 0 0 18 5677 1779 3 MP
XPP
X0 17 18 0 5677 1797 3 MP
XPP
X18 0 0 17 5677 1797 3 MP
XPP
X0 18 18 0 5677 1814 3 MP
XPP
X18 0 0 18 5677 1814 3 MP
XPP
X0 18 18 0 5677 1832 3 MP
XPP
X18 0 0 18 5677 1832 3 MP
XPP
X0 18 18 0 5677 1850 3 MP
XPP
X18 0 0 18 5677 1850 3 MP
XPP
X0 18 18 0 5677 1868 3 MP
XPP
X18 0 0 18 5677 1868 3 MP
XPP
X0 18 18 0 5677 1886 3 MP
XPP
X18 0 0 18 5677 1886 3 MP
XPP
X0 17 18 0 5677 1904 3 MP
XPP
X18 0 0 17 5677 1904 3 MP
XPP
X0 18 18 0 5677 1921 3 MP
XPP
X18 0 0 18 5677 1921 3 MP
XPP
X0 18 18 0 5677 1939 3 MP
XPP
X18 0 0 18 5677 1939 3 MP
XPP
X0 18 18 0 5677 1957 3 MP
XPP
X18 0 0 18 5677 1957 3 MP
XPP
X0 18 18 0 5677 1975 3 MP
XPP
X18 0 0 18 5677 1975 3 MP
XPP
X0 18 18 0 5677 1993 3 MP
XPP
X18 0 0 18 5677 1993 3 MP
XPP
X0 17 18 0 5677 2011 3 MP
XPP
X18 0 0 17 5677 2011 3 MP
XPP
X0 18 18 0 5677 2028 3 MP
XPP
X18 0 0 18 5677 2028 3 MP
XPP
X0 18 18 0 5677 2046 3 MP
XPP
X18 0 0 18 5677 2046 3 MP
XPP
X0 18 18 0 5677 2064 3 MP
XPP
X18 0 0 18 5677 2064 3 MP
XPP
X0 18 18 0 5677 2082 3 MP
XPP
X18 0 0 18 5677 2082 3 MP
XPP
X0 18 18 0 5677 2100 3 MP
XPP
X18 0 0 18 5677 2100 3 MP
XPP
X0 17 18 0 5677 2118 3 MP
XPP
X18 0 0 17 5677 2118 3 MP
XPP
X0 18 18 0 5677 2135 3 MP
XPP
X18 0 0 18 5677 2135 3 MP
XPP
X0 18 18 0 5677 2153 3 MP
XPP
X18 0 0 18 5677 2153 3 MP
XPP
X0 18 17 0 5695 388 3 MP
XPP
X17 0 0 18 5695 388 3 MP
XPP
X0 18 17 0 5695 406 3 MP
XPP
X17 0 0 18 5695 406 3 MP
XPP
X0 17 17 0 5695 424 3 MP
XPP
X17 0 0 17 5695 424 3 MP
XPP
X0.984127 sg
X0 18 17 0 5695 441 3 MP
XPP
X17 0 0 18 5695 441 3 MP
XPP
X0.920635 sg
X0 18 17 0 5695 459 3 MP
XPP
X17 0 0 18 5695 459 3 MP
XPP
X0.809524 sg
X0 18 17 0 5695 477 3 MP
XPP
X17 0 0 18 5695 477 3 MP
XPP
X0.714286 sg
X0 18 17 0 5695 495 3 MP
XPP
X17 0 0 18 5695 495 3 MP
XPP
X0.68254 sg
X0 18 17 0 5695 513 3 MP
XPP
X17 0 0 18 5695 513 3 MP
XPP
X0.666667 sg
X0 17 17 0 5695 531 3 MP
XPP
X17 0 0 17 5695 531 3 MP
XPP
X0 18 17 0 5695 548 3 MP
XPP
X17 0 0 18 5695 548 3 MP
XPP
X0 18 17 0 5695 566 3 MP
XPP
X17 0 0 18 5695 566 3 MP
XPP
X0 18 17 0 5695 584 3 MP
XPP
X17 0 0 18 5695 584 3 MP
XPP
X0 18 17 0 5695 602 3 MP
XPP
X17 0 0 18 5695 602 3 MP
XPP
X0 18 17 0 5695 620 3 MP
XPP
X17 0 0 18 5695 620 3 MP
XPP
X0 17 17 0 5695 638 3 MP
XPP
X17 0 0 17 5695 638 3 MP
XPP
X0 18 17 0 5695 655 3 MP
XPP
X17 0 0 18 5695 655 3 MP
XPP
X0 18 17 0 5695 673 3 MP
XPP
X17 0 0 18 5695 673 3 MP
XPP
X0 18 17 0 5695 691 3 MP
XPP
X17 0 0 18 5695 691 3 MP
XPP
X0 18 17 0 5695 709 3 MP
XPP
X17 0 0 18 5695 709 3 MP
XPP
X0 18 17 0 5695 727 3 MP
XPP
X17 0 0 18 5695 727 3 MP
XPP
X0 17 17 0 5695 745 3 MP
XPP
X17 0 0 17 5695 745 3 MP
XPP
X0 18 17 0 5695 762 3 MP
XPP
X17 0 0 18 5695 762 3 MP
XPP
X0 18 17 0 5695 780 3 MP
XPP
X17 0 0 18 5695 780 3 MP
XPP
X0.650794 sg
X0 18 17 0 5695 798 3 MP
XPP
X17 0 0 18 5695 798 3 MP
XPP
X0.571429 sg
X0 18 17 0 5695 816 3 MP
XPP
X17 0 0 18 5695 816 3 MP
XPP
X0.47619 sg
X0 18 17 0 5695 834 3 MP
XPP
X17 0 0 18 5695 834 3 MP
XPP
X0.380952 sg
X0 17 17 0 5695 852 3 MP
XPP
X17 0 0 17 5695 852 3 MP
XPP
X0.333333 sg
X0 18 17 0 5695 869 3 MP
XPP
X17 0 0 18 5695 869 3 MP
XPP
X0 18 17 0 5695 887 3 MP
XPP
X17 0 0 18 5695 887 3 MP
XPP
X0 18 17 0 5695 905 3 MP
XPP
X17 0 0 18 5695 905 3 MP
XPP
X0 18 17 0 5695 923 3 MP
XPP
X17 0 0 18 5695 923 3 MP
XPP
X0 18 17 0 5695 941 3 MP
XPP
X17 0 0 18 5695 941 3 MP
XPP
X0 17 17 0 5695 959 3 MP
XPP
X17 0 0 17 5695 959 3 MP
XPP
X0 18 17 0 5695 976 3 MP
XPP
X17 0 0 18 5695 976 3 MP
XPP
X0 18 17 0 5695 994 3 MP
XPP
X17 0 0 18 5695 994 3 MP
XPP
X0 18 17 0 5695 1012 3 MP
XPP
X17 0 0 18 5695 1012 3 MP
XPP
X0 18 17 0 5695 1030 3 MP
XPP
X17 0 0 18 5695 1030 3 MP
XPP
X0 18 17 0 5695 1048 3 MP
XPP
X17 0 0 18 5695 1048 3 MP
XPP
X0 17 17 0 5695 1066 3 MP
XPP
X17 0 0 17 5695 1066 3 MP
XPP
X0 18 17 0 5695 1083 3 MP
XPP
X17 0 0 18 5695 1083 3 MP
XPP
X0.349206 sg
X0 18 17 0 5695 1101 3 MP
XPP
X17 0 0 18 5695 1101 3 MP
XPP
X0.428571 sg
X0 18 17 0 5695 1119 3 MP
XPP
X17 0 0 18 5695 1119 3 MP
XPP
X0.619048 sg
X0 18 17 0 5695 1137 3 MP
XPP
X17 0 0 18 5695 1137 3 MP
XPP
X0.825397 sg
X0 18 17 0 5695 1155 3 MP
XPP
X17 0 0 18 5695 1155 3 MP
XPP
X0.968254 sg
X0 17 17 0 5695 1173 3 MP
XPP
X17 0 0 17 5695 1173 3 MP
XPP
X1 sg
X0 18 17 0 5695 1190 3 MP
XPP
X17 0 0 18 5695 1190 3 MP
XPP
X0 18 17 0 5695 1208 3 MP
XPP
X17 0 0 18 5695 1208 3 MP
XPP
X0 18 17 0 5695 1226 3 MP
XPP
X17 0 0 18 5695 1226 3 MP
XPP
X0 18 17 0 5695 1244 3 MP
XPP
X17 0 0 18 5695 1244 3 MP
XPP
X0 17 17 0 5695 1262 3 MP
XPP
X17 0 0 17 5695 1262 3 MP
XPP
X0 18 17 0 5695 1279 3 MP
XPP
X17 0 0 18 5695 1279 3 MP
XPP
X0 18 17 0 5695 1297 3 MP
XPP
X17 0 0 18 5695 1297 3 MP
XPP
X0 18 17 0 5695 1315 3 MP
XPP
X17 0 0 18 5695 1315 3 MP
XPP
X0 18 17 0 5695 1333 3 MP
XPP
X17 0 0 18 5695 1333 3 MP
XPP
X0 18 17 0 5695 1351 3 MP
XPP
X17 0 0 18 5695 1351 3 MP
XPP
X0 17 17 0 5695 1369 3 MP
XPP
X17 0 0 17 5695 1369 3 MP
XPP
X0 18 17 0 5695 1386 3 MP
XPP
X17 0 0 18 5695 1386 3 MP
XPP
X0 18 17 0 5695 1404 3 MP
XPP
X17 0 0 18 5695 1404 3 MP
XPP
X0 18 17 0 5695 1422 3 MP
XPP
X17 0 0 18 5695 1422 3 MP
XPP
X0 18 17 0 5695 1440 3 MP
XPP
X17 0 0 18 5695 1440 3 MP
XPP
X0 18 17 0 5695 1458 3 MP
XPP
X17 0 0 18 5695 1458 3 MP
XPP
X0 17 17 0 5695 1476 3 MP
XPP
X17 0 0 17 5695 1476 3 MP
XPP
X0 18 17 0 5695 1493 3 MP
XPP
X17 0 0 18 5695 1493 3 MP
XPP
X0 18 17 0 5695 1511 3 MP
XPP
X17 0 0 18 5695 1511 3 MP
XPP
X0 18 17 0 5695 1529 3 MP
XPP
X17 0 0 18 5695 1529 3 MP
XPP
X0 18 17 0 5695 1547 3 MP
XPP
X17 0 0 18 5695 1547 3 MP
XPP
X0 18 17 0 5695 1565 3 MP
XPP
X17 0 0 18 5695 1565 3 MP
XPP
X0 17 17 0 5695 1583 3 MP
XPP
X17 0 0 17 5695 1583 3 MP
XPP
X0 18 17 0 5695 1600 3 MP
XPP
X17 0 0 18 5695 1600 3 MP
XPP
X0 18 17 0 5695 1618 3 MP
XPP
X17 0 0 18 5695 1618 3 MP
XPP
X0 18 17 0 5695 1636 3 MP
XPP
X17 0 0 18 5695 1636 3 MP
XPP
X0 18 17 0 5695 1654 3 MP
XPP
X17 0 0 18 5695 1654 3 MP
XPP
X0 18 17 0 5695 1672 3 MP
XPP
X17 0 0 18 5695 1672 3 MP
XPP
X0.904762 sg
X0 17 17 0 5695 1690 3 MP
XPP
X17 0 0 17 5695 1690 3 MP
XPP
X0.68254 sg
X0 18 17 0 5695 1707 3 MP
XPP
X17 0 0 18 5695 1707 3 MP
XPP
X0.507937 sg
X0 18 17 0 5695 1725 3 MP
XPP
X17 0 0 18 5695 1725 3 MP
XPP
X0.68254 sg
X0 18 17 0 5695 1743 3 MP
XPP
X17 0 0 18 5695 1743 3 MP
XPP
X0.904762 sg
X0 18 17 0 5695 1761 3 MP
XPP
X17 0 0 18 5695 1761 3 MP
XPP
X1 sg
X0 18 17 0 5695 1779 3 MP
XPP
X17 0 0 18 5695 1779 3 MP
XPP
X0 17 17 0 5695 1797 3 MP
XPP
X17 0 0 17 5695 1797 3 MP
XPP
X0 18 17 0 5695 1814 3 MP
XPP
X17 0 0 18 5695 1814 3 MP
XPP
X0 18 17 0 5695 1832 3 MP
XPP
X17 0 0 18 5695 1832 3 MP
XPP
X0 18 17 0 5695 1850 3 MP
XPP
X17 0 0 18 5695 1850 3 MP
XPP
X0 18 17 0 5695 1868 3 MP
XPP
X17 0 0 18 5695 1868 3 MP
XPP
X0 18 17 0 5695 1886 3 MP
XPP
X17 0 0 18 5695 1886 3 MP
XPP
X0 17 17 0 5695 1904 3 MP
XPP
X17 0 0 17 5695 1904 3 MP
XPP
X0 18 17 0 5695 1921 3 MP
XPP
X17 0 0 18 5695 1921 3 MP
XPP
X0 18 17 0 5695 1939 3 MP
XPP
X17 0 0 18 5695 1939 3 MP
XPP
X0 18 17 0 5695 1957 3 MP
XPP
X17 0 0 18 5695 1957 3 MP
XPP
X0 18 17 0 5695 1975 3 MP
XPP
X17 0 0 18 5695 1975 3 MP
XPP
X0 18 17 0 5695 1993 3 MP
XPP
X17 0 0 18 5695 1993 3 MP
XPP
X0 17 17 0 5695 2011 3 MP
XPP
X17 0 0 17 5695 2011 3 MP
XPP
X0 18 17 0 5695 2028 3 MP
XPP
X17 0 0 18 5695 2028 3 MP
XPP
X0 18 17 0 5695 2046 3 MP
XPP
X17 0 0 18 5695 2046 3 MP
XPP
X0 18 17 0 5695 2064 3 MP
XPP
X17 0 0 18 5695 2064 3 MP
XPP
X0 18 17 0 5695 2082 3 MP
XPP
X17 0 0 18 5695 2082 3 MP
XPP
X0 18 17 0 5695 2100 3 MP
XPP
X17 0 0 18 5695 2100 3 MP
XPP
X0 17 17 0 5695 2118 3 MP
XPP
X17 0 0 17 5695 2118 3 MP
XPP
X0 18 17 0 5695 2135 3 MP
XPP
X17 0 0 18 5695 2135 3 MP
XPP
X0 18 17 0 5695 2153 3 MP
XPP
X17 0 0 18 5695 2153 3 MP
XPP
X0 18 18 0 5712 388 3 MP
XPP
X18 0 0 18 5712 388 3 MP
XPP
X0 18 18 0 5712 406 3 MP
XPP
X18 0 0 18 5712 406 3 MP
XPP
X0 17 18 0 5712 424 3 MP
XPP
X18 0 0 17 5712 424 3 MP
XPP
X0 18 18 0 5712 441 3 MP
XPP
X18 0 0 18 5712 441 3 MP
XPP
X0.952381 sg
X0 18 18 0 5712 459 3 MP
XPP
X18 0 0 18 5712 459 3 MP
XPP
X0.857143 sg
X0 18 18 0 5712 477 3 MP
XPP
X18 0 0 18 5712 477 3 MP
XPP
X0.746032 sg
X0 18 18 0 5712 495 3 MP
XPP
X18 0 0 18 5712 495 3 MP
XPP
X0.68254 sg
X0 18 18 0 5712 513 3 MP
XPP
X18 0 0 18 5712 513 3 MP
XPP
X0.666667 sg
X0 17 18 0 5712 531 3 MP
XPP
X18 0 0 17 5712 531 3 MP
XPP
X0 18 18 0 5712 548 3 MP
XPP
X18 0 0 18 5712 548 3 MP
XPP
X0 18 18 0 5712 566 3 MP
XPP
X18 0 0 18 5712 566 3 MP
XPP
X0 18 18 0 5712 584 3 MP
XPP
X18 0 0 18 5712 584 3 MP
XPP
X0 18 18 0 5712 602 3 MP
XPP
X18 0 0 18 5712 602 3 MP
XPP
X0 18 18 0 5712 620 3 MP
XPP
X18 0 0 18 5712 620 3 MP
XPP
X0 17 18 0 5712 638 3 MP
XPP
X18 0 0 17 5712 638 3 MP
XPP
X0 18 18 0 5712 655 3 MP
XPP
X18 0 0 18 5712 655 3 MP
XPP
X0 18 18 0 5712 673 3 MP
XPP
X18 0 0 18 5712 673 3 MP
XPP
X0 18 18 0 5712 691 3 MP
XPP
X18 0 0 18 5712 691 3 MP
XPP
X0 18 18 0 5712 709 3 MP
XPP
X18 0 0 18 5712 709 3 MP
XPP
X0 18 18 0 5712 727 3 MP
XPP
X18 0 0 18 5712 727 3 MP
XPP
X0 17 18 0 5712 745 3 MP
XPP
X18 0 0 17 5712 745 3 MP
XPP
X0 18 18 0 5712 762 3 MP
XPP
X18 0 0 18 5712 762 3 MP
XPP
X0 18 18 0 5712 780 3 MP
XPP
X18 0 0 18 5712 780 3 MP
XPP
X0 18 18 0 5712 798 3 MP
XPP
X18 0 0 18 5712 798 3 MP
XPP
X0.619048 sg
X0 18 18 0 5712 816 3 MP
XPP
X18 0 0 18 5712 816 3 MP
XPP
X0.52381 sg
X0 18 18 0 5712 834 3 MP
XPP
X18 0 0 18 5712 834 3 MP
XPP
X0.428571 sg
X0 17 18 0 5712 852 3 MP
XPP
X18 0 0 17 5712 852 3 MP
XPP
X0.349206 sg
X0 18 18 0 5712 869 3 MP
XPP
X18 0 0 18 5712 869 3 MP
XPP
X0.333333 sg
X0 18 18 0 5712 887 3 MP
XPP
X18 0 0 18 5712 887 3 MP
XPP
X0 18 18 0 5712 905 3 MP
XPP
X18 0 0 18 5712 905 3 MP
XPP
X0 18 18 0 5712 923 3 MP
XPP
X18 0 0 18 5712 923 3 MP
XPP
X0 18 18 0 5712 941 3 MP
XPP
X18 0 0 18 5712 941 3 MP
XPP
X0 17 18 0 5712 959 3 MP
XPP
X18 0 0 17 5712 959 3 MP
XPP
X0 18 18 0 5712 976 3 MP
XPP
X18 0 0 18 5712 976 3 MP
XPP
X0 18 18 0 5712 994 3 MP
XPP
X18 0 0 18 5712 994 3 MP
XPP
X0 18 18 0 5712 1012 3 MP
XPP
X18 0 0 18 5712 1012 3 MP
XPP
X0 18 18 0 5712 1030 3 MP
XPP
X18 0 0 18 5712 1030 3 MP
XPP
X0 18 18 0 5712 1048 3 MP
XPP
X18 0 0 18 5712 1048 3 MP
XPP
X0 17 18 0 5712 1066 3 MP
XPP
X18 0 0 17 5712 1066 3 MP
XPP
X0 18 18 0 5712 1083 3 MP
XPP
X18 0 0 18 5712 1083 3 MP
XPP
X0.380952 sg
X0 18 18 0 5712 1101 3 MP
XPP
X18 0 0 18 5712 1101 3 MP
XPP
X0.507937 sg
X0 18 18 0 5712 1119 3 MP
XPP
X18 0 0 18 5712 1119 3 MP
XPP
X0.730159 sg
X0 18 18 0 5712 1137 3 MP
XPP
X18 0 0 18 5712 1137 3 MP
XPP
X0.904762 sg
X0 18 18 0 5712 1155 3 MP
XPP
X18 0 0 18 5712 1155 3 MP
XPP
X1 sg
X0 17 18 0 5712 1173 3 MP
XPP
X18 0 0 17 5712 1173 3 MP
XPP
X0 18 18 0 5712 1190 3 MP
XPP
X18 0 0 18 5712 1190 3 MP
XPP
X0 18 18 0 5712 1208 3 MP
XPP
X18 0 0 18 5712 1208 3 MP
XPP
X0 18 18 0 5712 1226 3 MP
XPP
X18 0 0 18 5712 1226 3 MP
XPP
X0 18 18 0 5712 1244 3 MP
XPP
X18 0 0 18 5712 1244 3 MP
XPP
X0 17 18 0 5712 1262 3 MP
XPP
X18 0 0 17 5712 1262 3 MP
XPP
X0 18 18 0 5712 1279 3 MP
XPP
X18 0 0 18 5712 1279 3 MP
XPP
X0 18 18 0 5712 1297 3 MP
XPP
X18 0 0 18 5712 1297 3 MP
XPP
X0 18 18 0 5712 1315 3 MP
XPP
X18 0 0 18 5712 1315 3 MP
XPP
X0 18 18 0 5712 1333 3 MP
XPP
X18 0 0 18 5712 1333 3 MP
XPP
X0 18 18 0 5712 1351 3 MP
XPP
X18 0 0 18 5712 1351 3 MP
XPP
X0 17 18 0 5712 1369 3 MP
XPP
X18 0 0 17 5712 1369 3 MP
XPP
X0 18 18 0 5712 1386 3 MP
XPP
X18 0 0 18 5712 1386 3 MP
XPP
X0 18 18 0 5712 1404 3 MP
XPP
X18 0 0 18 5712 1404 3 MP
XPP
X0 18 18 0 5712 1422 3 MP
XPP
X18 0 0 18 5712 1422 3 MP
XPP
X0 18 18 0 5712 1440 3 MP
XPP
X18 0 0 18 5712 1440 3 MP
XPP
X0 18 18 0 5712 1458 3 MP
XPP
X18 0 0 18 5712 1458 3 MP
XPP
X0 17 18 0 5712 1476 3 MP
XPP
X18 0 0 17 5712 1476 3 MP
XPP
X0 18 18 0 5712 1493 3 MP
XPP
X18 0 0 18 5712 1493 3 MP
XPP
X0 18 18 0 5712 1511 3 MP
XPP
X18 0 0 18 5712 1511 3 MP
XPP
X0 18 18 0 5712 1529 3 MP
XPP
X18 0 0 18 5712 1529 3 MP
XPP
X0 18 18 0 5712 1547 3 MP
XPP
X18 0 0 18 5712 1547 3 MP
XPP
X0 18 18 0 5712 1565 3 MP
XPP
X18 0 0 18 5712 1565 3 MP
XPP
X0 17 18 0 5712 1583 3 MP
XPP
X18 0 0 17 5712 1583 3 MP
XPP
X0 18 18 0 5712 1600 3 MP
XPP
X18 0 0 18 5712 1600 3 MP
XPP
X0 18 18 0 5712 1618 3 MP
XPP
X18 0 0 18 5712 1618 3 MP
XPP
X0 18 18 0 5712 1636 3 MP
XPP
X18 0 0 18 5712 1636 3 MP
XPP
X0 18 18 0 5712 1654 3 MP
XPP
X18 0 0 18 5712 1654 3 MP
XPP
X0 18 18 0 5712 1672 3 MP
XPP
X18 0 0 18 5712 1672 3 MP
XPP
X0.920635 sg
X0 17 18 0 5712 1690 3 MP
XPP
X18 0 0 17 5712 1690 3 MP
XPP
X0.698413 sg
X0 18 18 0 5712 1707 3 MP
XPP
X18 0 0 18 5712 1707 3 MP
XPP
X0.555556 sg
X0 18 18 0 5712 1725 3 MP
XPP
X18 0 0 18 5712 1725 3 MP
XPP
X0.698413 sg
X0 18 18 0 5712 1743 3 MP
XPP
X18 0 0 18 5712 1743 3 MP
XPP
X0.920635 sg
X0 18 18 0 5712 1761 3 MP
XPP
X18 0 0 18 5712 1761 3 MP
XPP
X1 sg
X0 18 18 0 5712 1779 3 MP
XPP
X18 0 0 18 5712 1779 3 MP
XPP
X0 17 18 0 5712 1797 3 MP
XPP
X18 0 0 17 5712 1797 3 MP
XPP
X0 18 18 0 5712 1814 3 MP
XPP
X18 0 0 18 5712 1814 3 MP
XPP
X0 18 18 0 5712 1832 3 MP
XPP
X18 0 0 18 5712 1832 3 MP
XPP
X0 18 18 0 5712 1850 3 MP
XPP
X18 0 0 18 5712 1850 3 MP
XPP
X0 18 18 0 5712 1868 3 MP
XPP
X18 0 0 18 5712 1868 3 MP
XPP
X0 18 18 0 5712 1886 3 MP
XPP
X18 0 0 18 5712 1886 3 MP
XPP
X0 17 18 0 5712 1904 3 MP
XPP
X18 0 0 17 5712 1904 3 MP
XPP
X0 18 18 0 5712 1921 3 MP
XPP
X18 0 0 18 5712 1921 3 MP
XPP
X0 18 18 0 5712 1939 3 MP
XPP
X18 0 0 18 5712 1939 3 MP
XPP
X0 18 18 0 5712 1957 3 MP
XPP
X18 0 0 18 5712 1957 3 MP
XPP
X0 18 18 0 5712 1975 3 MP
XPP
X18 0 0 18 5712 1975 3 MP
XPP
X0 18 18 0 5712 1993 3 MP
XPP
X18 0 0 18 5712 1993 3 MP
XPP
X0 17 18 0 5712 2011 3 MP
XPP
X18 0 0 17 5712 2011 3 MP
XPP
X0 18 18 0 5712 2028 3 MP
XPP
X18 0 0 18 5712 2028 3 MP
XPP
X0 18 18 0 5712 2046 3 MP
XPP
X18 0 0 18 5712 2046 3 MP
XPP
X0 18 18 0 5712 2064 3 MP
XPP
X18 0 0 18 5712 2064 3 MP
XPP
X0 18 18 0 5712 2082 3 MP
XPP
X18 0 0 18 5712 2082 3 MP
XPP
X0 18 18 0 5712 2100 3 MP
XPP
X18 0 0 18 5712 2100 3 MP
XPP
X0 17 18 0 5712 2118 3 MP
XPP
X18 0 0 17 5712 2118 3 MP
XPP
X0 18 18 0 5712 2135 3 MP
XPP
X18 0 0 18 5712 2135 3 MP
XPP
X0 18 18 0 5712 2153 3 MP
XPP
X18 0 0 18 5712 2153 3 MP
XPP
X0 18 18 0 5730 388 3 MP
XPP
X18 0 0 18 5730 388 3 MP
XPP
X0 18 18 0 5730 406 3 MP
XPP
X18 0 0 18 5730 406 3 MP
XPP
X0 17 18 0 5730 424 3 MP
XPP
X18 0 0 17 5730 424 3 MP
XPP
X0 18 18 0 5730 441 3 MP
XPP
X18 0 0 18 5730 441 3 MP
XPP
X0.984127 sg
X0 18 18 0 5730 459 3 MP
XPP
X18 0 0 18 5730 459 3 MP
XPP
X0.904762 sg
X0 18 18 0 5730 477 3 MP
XPP
X18 0 0 18 5730 477 3 MP
XPP
X0.777778 sg
X0 18 18 0 5730 495 3 MP
XPP
X18 0 0 18 5730 495 3 MP
XPP
X0.698413 sg
X0 18 18 0 5730 513 3 MP
XPP
X18 0 0 18 5730 513 3 MP
XPP
X0.666667 sg
X0 17 18 0 5730 531 3 MP
XPP
X18 0 0 17 5730 531 3 MP
XPP
X0 18 18 0 5730 548 3 MP
XPP
X18 0 0 18 5730 548 3 MP
XPP
X0 18 18 0 5730 566 3 MP
XPP
X18 0 0 18 5730 566 3 MP
XPP
X0 18 18 0 5730 584 3 MP
XPP
X18 0 0 18 5730 584 3 MP
XPP
X0 18 18 0 5730 602 3 MP
XPP
X18 0 0 18 5730 602 3 MP
XPP
X0 18 18 0 5730 620 3 MP
XPP
X18 0 0 18 5730 620 3 MP
XPP
X0 17 18 0 5730 638 3 MP
XPP
X18 0 0 17 5730 638 3 MP
XPP
X0 18 18 0 5730 655 3 MP
XPP
X18 0 0 18 5730 655 3 MP
XPP
X0 18 18 0 5730 673 3 MP
XPP
X18 0 0 18 5730 673 3 MP
XPP
X0 18 18 0 5730 691 3 MP
XPP
X18 0 0 18 5730 691 3 MP
XPP
X0 18 18 0 5730 709 3 MP
XPP
X18 0 0 18 5730 709 3 MP
XPP
X0 18 18 0 5730 727 3 MP
XPP
X18 0 0 18 5730 727 3 MP
XPP
X0 17 18 0 5730 745 3 MP
XPP
X18 0 0 17 5730 745 3 MP
XPP
X0 18 18 0 5730 762 3 MP
XPP
X18 0 0 18 5730 762 3 MP
XPP
X0 18 18 0 5730 780 3 MP
XPP
X18 0 0 18 5730 780 3 MP
XPP
X0 18 18 0 5730 798 3 MP
XPP
X18 0 0 18 5730 798 3 MP
XPP
X0.650794 sg
X0 18 18 0 5730 816 3 MP
XPP
X18 0 0 18 5730 816 3 MP
XPP
X0.587302 sg
X0 18 18 0 5730 834 3 MP
XPP
X18 0 0 18 5730 834 3 MP
XPP
X0.47619 sg
X0 17 18 0 5730 852 3 MP
XPP
X18 0 0 17 5730 852 3 MP
XPP
X0.396825 sg
X0 18 18 0 5730 869 3 MP
XPP
X18 0 0 18 5730 869 3 MP
XPP
X0.349206 sg
X0 18 18 0 5730 887 3 MP
XPP
X18 0 0 18 5730 887 3 MP
XPP
X0.333333 sg
X0 18 18 0 5730 905 3 MP
XPP
X18 0 0 18 5730 905 3 MP
XPP
X0 18 18 0 5730 923 3 MP
XPP
X18 0 0 18 5730 923 3 MP
XPP
X0 18 18 0 5730 941 3 MP
XPP
X18 0 0 18 5730 941 3 MP
XPP
X0 17 18 0 5730 959 3 MP
XPP
X18 0 0 17 5730 959 3 MP
XPP
X0 18 18 0 5730 976 3 MP
XPP
X18 0 0 18 5730 976 3 MP
XPP
X0 18 18 0 5730 994 3 MP
XPP
X18 0 0 18 5730 994 3 MP
XPP
X0 18 18 0 5730 1012 3 MP
XPP
X18 0 0 18 5730 1012 3 MP
XPP
X0 18 18 0 5730 1030 3 MP
XPP
X18 0 0 18 5730 1030 3 MP
XPP
X0 18 18 0 5730 1048 3 MP
XPP
X18 0 0 18 5730 1048 3 MP
XPP
X0 17 18 0 5730 1066 3 MP
XPP
X18 0 0 17 5730 1066 3 MP
XPP
X0.365079 sg
X0 18 18 0 5730 1083 3 MP
XPP
X18 0 0 18 5730 1083 3 MP
XPP
X0.444444 sg
X0 18 18 0 5730 1101 3 MP
XPP
X18 0 0 18 5730 1101 3 MP
XPP
X0.619048 sg
X0 18 18 0 5730 1119 3 MP
XPP
X18 0 0 18 5730 1119 3 MP
XPP
X0.825397 sg
X0 18 18 0 5730 1137 3 MP
XPP
X18 0 0 18 5730 1137 3 MP
XPP
X0.968254 sg
X0 18 18 0 5730 1155 3 MP
XPP
X18 0 0 18 5730 1155 3 MP
XPP
X1 sg
X0 17 18 0 5730 1173 3 MP
XPP
X18 0 0 17 5730 1173 3 MP
XPP
X0 18 18 0 5730 1190 3 MP
XPP
X18 0 0 18 5730 1190 3 MP
XPP
X0 18 18 0 5730 1208 3 MP
XPP
X18 0 0 18 5730 1208 3 MP
XPP
X0 18 18 0 5730 1226 3 MP
XPP
X18 0 0 18 5730 1226 3 MP
XPP
X0 18 18 0 5730 1244 3 MP
XPP
X18 0 0 18 5730 1244 3 MP
XPP
X0 17 18 0 5730 1262 3 MP
XPP
X18 0 0 17 5730 1262 3 MP
XPP
X0 18 18 0 5730 1279 3 MP
XPP
X18 0 0 18 5730 1279 3 MP
XPP
X0 18 18 0 5730 1297 3 MP
XPP
X18 0 0 18 5730 1297 3 MP
XPP
X0 18 18 0 5730 1315 3 MP
XPP
X18 0 0 18 5730 1315 3 MP
XPP
X0 18 18 0 5730 1333 3 MP
XPP
X18 0 0 18 5730 1333 3 MP
XPP
X0 18 18 0 5730 1351 3 MP
XPP
X18 0 0 18 5730 1351 3 MP
XPP
X0 17 18 0 5730 1369 3 MP
XPP
X18 0 0 17 5730 1369 3 MP
XPP
X0 18 18 0 5730 1386 3 MP
XPP
X18 0 0 18 5730 1386 3 MP
XPP
X0 18 18 0 5730 1404 3 MP
XPP
X18 0 0 18 5730 1404 3 MP
XPP
X0 18 18 0 5730 1422 3 MP
XPP
X18 0 0 18 5730 1422 3 MP
XPP
X0 18 18 0 5730 1440 3 MP
XPP
X18 0 0 18 5730 1440 3 MP
XPP
X0 18 18 0 5730 1458 3 MP
XPP
X18 0 0 18 5730 1458 3 MP
XPP
X0 17 18 0 5730 1476 3 MP
XPP
X18 0 0 17 5730 1476 3 MP
XPP
X0 18 18 0 5730 1493 3 MP
XPP
X18 0 0 18 5730 1493 3 MP
XPP
X0 18 18 0 5730 1511 3 MP
XPP
X18 0 0 18 5730 1511 3 MP
XPP
X0 18 18 0 5730 1529 3 MP
XPP
X18 0 0 18 5730 1529 3 MP
XPP
X0 18 18 0 5730 1547 3 MP
XPP
X18 0 0 18 5730 1547 3 MP
XPP
X0 18 18 0 5730 1565 3 MP
XPP
X18 0 0 18 5730 1565 3 MP
XPP
X0 17 18 0 5730 1583 3 MP
XPP
X18 0 0 17 5730 1583 3 MP
XPP
X0 18 18 0 5730 1600 3 MP
XPP
X18 0 0 18 5730 1600 3 MP
XPP
X0 18 18 0 5730 1618 3 MP
XPP
X18 0 0 18 5730 1618 3 MP
XPP
X0 18 18 0 5730 1636 3 MP
XPP
X18 0 0 18 5730 1636 3 MP
XPP
X0 18 18 0 5730 1654 3 MP
XPP
X18 0 0 18 5730 1654 3 MP
XPP
X0 18 18 0 5730 1672 3 MP
XPP
X18 0 0 18 5730 1672 3 MP
XPP
X0.936508 sg
X0 17 18 0 5730 1690 3 MP
XPP
X18 0 0 17 5730 1690 3 MP
XPP
X0.777778 sg
X0 18 18 0 5730 1707 3 MP
XPP
X18 0 0 18 5730 1707 3 MP
XPP
X0.666667 sg
X0 18 18 0 5730 1725 3 MP
XPP
X18 0 0 18 5730 1725 3 MP
XPP
X0.777778 sg
X0 18 18 0 5730 1743 3 MP
XPP
X18 0 0 18 5730 1743 3 MP
XPP
X0.936508 sg
X0 18 18 0 5730 1761 3 MP
XPP
X18 0 0 18 5730 1761 3 MP
XPP
X1 sg
X0 18 18 0 5730 1779 3 MP
XPP
X18 0 0 18 5730 1779 3 MP
XPP
X0 17 18 0 5730 1797 3 MP
XPP
X18 0 0 17 5730 1797 3 MP
XPP
X0 18 18 0 5730 1814 3 MP
XPP
X18 0 0 18 5730 1814 3 MP
XPP
X0 18 18 0 5730 1832 3 MP
XPP
X18 0 0 18 5730 1832 3 MP
XPP
X0 18 18 0 5730 1850 3 MP
XPP
X18 0 0 18 5730 1850 3 MP
XPP
X0 18 18 0 5730 1868 3 MP
XPP
X18 0 0 18 5730 1868 3 MP
XPP
X0 18 18 0 5730 1886 3 MP
XPP
X18 0 0 18 5730 1886 3 MP
XPP
X0 17 18 0 5730 1904 3 MP
XPP
X18 0 0 17 5730 1904 3 MP
XPP
X0 18 18 0 5730 1921 3 MP
XPP
X18 0 0 18 5730 1921 3 MP
XPP
X0 18 18 0 5730 1939 3 MP
XPP
X18 0 0 18 5730 1939 3 MP
XPP
X0 18 18 0 5730 1957 3 MP
XPP
X18 0 0 18 5730 1957 3 MP
XPP
X0 18 18 0 5730 1975 3 MP
XPP
X18 0 0 18 5730 1975 3 MP
XPP
X0 18 18 0 5730 1993 3 MP
XPP
X18 0 0 18 5730 1993 3 MP
XPP
X0 17 18 0 5730 2011 3 MP
XPP
X18 0 0 17 5730 2011 3 MP
XPP
X0 18 18 0 5730 2028 3 MP
XPP
X18 0 0 18 5730 2028 3 MP
XPP
X0 18 18 0 5730 2046 3 MP
XPP
X18 0 0 18 5730 2046 3 MP
XPP
X0 18 18 0 5730 2064 3 MP
XPP
X18 0 0 18 5730 2064 3 MP
XPP
X0 18 18 0 5730 2082 3 MP
XPP
X18 0 0 18 5730 2082 3 MP
XPP
X0 18 18 0 5730 2100 3 MP
XPP
X18 0 0 18 5730 2100 3 MP
XPP
X0 17 18 0 5730 2118 3 MP
XPP
X18 0 0 17 5730 2118 3 MP
XPP
X0 18 18 0 5730 2135 3 MP
XPP
X18 0 0 18 5730 2135 3 MP
XPP
X0 18 18 0 5730 2153 3 MP
XPP
X18 0 0 18 5730 2153 3 MP
XPP
X0 18 18 0 5748 388 3 MP
XPP
X18 0 0 18 5748 388 3 MP
XPP
X0 18 18 0 5748 406 3 MP
XPP
X18 0 0 18 5748 406 3 MP
XPP
X0 17 18 0 5748 424 3 MP
XPP
X18 0 0 17 5748 424 3 MP
XPP
X0 18 18 0 5748 441 3 MP
XPP
X18 0 0 18 5748 441 3 MP
XPP
X0.984127 sg
X0 18 18 0 5748 459 3 MP
XPP
X18 0 0 18 5748 459 3 MP
XPP
X0.920635 sg
X0 18 18 0 5748 477 3 MP
XPP
X18 0 0 18 5748 477 3 MP
XPP
X0.809524 sg
X0 18 18 0 5748 495 3 MP
XPP
X18 0 0 18 5748 495 3 MP
XPP
X0.714286 sg
X0 18 18 0 5748 513 3 MP
XPP
X18 0 0 18 5748 513 3 MP
XPP
X0.68254 sg
X0 17 18 0 5748 531 3 MP
XPP
X18 0 0 17 5748 531 3 MP
XPP
X0.666667 sg
X0 18 18 0 5748 548 3 MP
XPP
X18 0 0 18 5748 548 3 MP
XPP
X0 18 18 0 5748 566 3 MP
XPP
X18 0 0 18 5748 566 3 MP
XPP
X0 18 18 0 5748 584 3 MP
XPP
X18 0 0 18 5748 584 3 MP
XPP
X0 18 18 0 5748 602 3 MP
XPP
X18 0 0 18 5748 602 3 MP
XPP
X0 18 18 0 5748 620 3 MP
XPP
X18 0 0 18 5748 620 3 MP
XPP
X0 17 18 0 5748 638 3 MP
XPP
X18 0 0 17 5748 638 3 MP
XPP
X0 18 18 0 5748 655 3 MP
XPP
X18 0 0 18 5748 655 3 MP
XPP
X0 18 18 0 5748 673 3 MP
XPP
X18 0 0 18 5748 673 3 MP
XPP
X0 18 18 0 5748 691 3 MP
XPP
X18 0 0 18 5748 691 3 MP
XPP
X0 18 18 0 5748 709 3 MP
XPP
X18 0 0 18 5748 709 3 MP
XPP
X0 18 18 0 5748 727 3 MP
XPP
X18 0 0 18 5748 727 3 MP
XPP
X0 17 18 0 5748 745 3 MP
XPP
X18 0 0 17 5748 745 3 MP
XPP
X0 18 18 0 5748 762 3 MP
XPP
X18 0 0 18 5748 762 3 MP
XPP
X0 18 18 0 5748 780 3 MP
XPP
X18 0 0 18 5748 780 3 MP
XPP
X0 18 18 0 5748 798 3 MP
XPP
X18 0 0 18 5748 798 3 MP
XPP
X0 18 18 0 5748 816 3 MP
XPP
X18 0 0 18 5748 816 3 MP
XPP
X0.619048 sg
X0 18 18 0 5748 834 3 MP
XPP
X18 0 0 18 5748 834 3 MP
XPP
X0.555556 sg
X0 17 18 0 5748 852 3 MP
XPP
X18 0 0 17 5748 852 3 MP
XPP
X0.460317 sg
X0 18 18 0 5748 869 3 MP
XPP
X18 0 0 18 5748 869 3 MP
XPP
X0.380952 sg
X0 18 18 0 5748 887 3 MP
XPP
X18 0 0 18 5748 887 3 MP
XPP
X0.349206 sg
X0 18 18 0 5748 905 3 MP
XPP
X18 0 0 18 5748 905 3 MP
XPP
X0.333333 sg
X0 18 18 0 5748 923 3 MP
XPP
X18 0 0 18 5748 923 3 MP
XPP
X0 18 18 0 5748 941 3 MP
XPP
X18 0 0 18 5748 941 3 MP
XPP
X0 17 18 0 5748 959 3 MP
XPP
X18 0 0 17 5748 959 3 MP
XPP
X0 18 18 0 5748 976 3 MP
XPP
X18 0 0 18 5748 976 3 MP
XPP
X0 18 18 0 5748 994 3 MP
XPP
X18 0 0 18 5748 994 3 MP
XPP
X0 18 18 0 5748 1012 3 MP
XPP
X18 0 0 18 5748 1012 3 MP
XPP
X0 18 18 0 5748 1030 3 MP
XPP
X18 0 0 18 5748 1030 3 MP
XPP
X0 18 18 0 5748 1048 3 MP
XPP
X18 0 0 18 5748 1048 3 MP
XPP
X0.365079 sg
X0 17 18 0 5748 1066 3 MP
XPP
X18 0 0 17 5748 1066 3 MP
XPP
X0.428571 sg
X0 18 18 0 5748 1083 3 MP
XPP
X18 0 0 18 5748 1083 3 MP
XPP
X0.587302 sg
X0 18 18 0 5748 1101 3 MP
XPP
X18 0 0 18 5748 1101 3 MP
XPP
X0.777778 sg
X0 18 18 0 5748 1119 3 MP
XPP
X18 0 0 18 5748 1119 3 MP
XPP
X0.920635 sg
X0 18 18 0 5748 1137 3 MP
XPP
X18 0 0 18 5748 1137 3 MP
XPP
X1 sg
X0 18 18 0 5748 1155 3 MP
XPP
X18 0 0 18 5748 1155 3 MP
XPP
X0 17 18 0 5748 1173 3 MP
XPP
X18 0 0 17 5748 1173 3 MP
XPP
X0 18 18 0 5748 1190 3 MP
XPP
X18 0 0 18 5748 1190 3 MP
XPP
X0 18 18 0 5748 1208 3 MP
XPP
X18 0 0 18 5748 1208 3 MP
XPP
X0 18 18 0 5748 1226 3 MP
XPP
X18 0 0 18 5748 1226 3 MP
XPP
X0 18 18 0 5748 1244 3 MP
XPP
X18 0 0 18 5748 1244 3 MP
XPP
X0 17 18 0 5748 1262 3 MP
XPP
X18 0 0 17 5748 1262 3 MP
XPP
X0 18 18 0 5748 1279 3 MP
XPP
X18 0 0 18 5748 1279 3 MP
XPP
X0 18 18 0 5748 1297 3 MP
XPP
X18 0 0 18 5748 1297 3 MP
XPP
X0 18 18 0 5748 1315 3 MP
XPP
X18 0 0 18 5748 1315 3 MP
XPP
X0 18 18 0 5748 1333 3 MP
XPP
X18 0 0 18 5748 1333 3 MP
XPP
X0 18 18 0 5748 1351 3 MP
XPP
X18 0 0 18 5748 1351 3 MP
XPP
X0 17 18 0 5748 1369 3 MP
XPP
X18 0 0 17 5748 1369 3 MP
XPP
X0 18 18 0 5748 1386 3 MP
XPP
X18 0 0 18 5748 1386 3 MP
XPP
X0 18 18 0 5748 1404 3 MP
XPP
X18 0 0 18 5748 1404 3 MP
XPP
X0 18 18 0 5748 1422 3 MP
XPP
X18 0 0 18 5748 1422 3 MP
XPP
X0 18 18 0 5748 1440 3 MP
XPP
X18 0 0 18 5748 1440 3 MP
XPP
X0 18 18 0 5748 1458 3 MP
XPP
X18 0 0 18 5748 1458 3 MP
XPP
X0 17 18 0 5748 1476 3 MP
XPP
X18 0 0 17 5748 1476 3 MP
XPP
X0 18 18 0 5748 1493 3 MP
XPP
X18 0 0 18 5748 1493 3 MP
XPP
X0 18 18 0 5748 1511 3 MP
XPP
X18 0 0 18 5748 1511 3 MP
XPP
X0 18 18 0 5748 1529 3 MP
XPP
X18 0 0 18 5748 1529 3 MP
XPP
X0 18 18 0 5748 1547 3 MP
XPP
X18 0 0 18 5748 1547 3 MP
XPP
X0 18 18 0 5748 1565 3 MP
XPP
X18 0 0 18 5748 1565 3 MP
XPP
X0 17 18 0 5748 1583 3 MP
XPP
X18 0 0 17 5748 1583 3 MP
XPP
X0 18 18 0 5748 1600 3 MP
XPP
X18 0 0 18 5748 1600 3 MP
XPP
X0 18 18 0 5748 1618 3 MP
XPP
X18 0 0 18 5748 1618 3 MP
XPP
X0 18 18 0 5748 1636 3 MP
XPP
X18 0 0 18 5748 1636 3 MP
XPP
X0 18 18 0 5748 1654 3 MP
XPP
X18 0 0 18 5748 1654 3 MP
XPP
X0 18 18 0 5748 1672 3 MP
XPP
X18 0 0 18 5748 1672 3 MP
XPP
X0.984127 sg
X0 17 18 0 5748 1690 3 MP
XPP
X18 0 0 17 5748 1690 3 MP
XPP
X0.904762 sg
X0 18 18 0 5748 1707 3 MP
XPP
X18 0 0 18 5748 1707 3 MP
XPP
X0.857143 sg
X0 18 18 0 5748 1725 3 MP
XPP
X18 0 0 18 5748 1725 3 MP
XPP
X0.904762 sg
X0 18 18 0 5748 1743 3 MP
XPP
X18 0 0 18 5748 1743 3 MP
XPP
X0.984127 sg
X0 18 18 0 5748 1761 3 MP
XPP
X18 0 0 18 5748 1761 3 MP
XPP
X1 sg
X0 18 18 0 5748 1779 3 MP
XPP
X18 0 0 18 5748 1779 3 MP
XPP
X0 17 18 0 5748 1797 3 MP
XPP
X18 0 0 17 5748 1797 3 MP
XPP
X0 18 18 0 5748 1814 3 MP
XPP
X18 0 0 18 5748 1814 3 MP
XPP
X0 18 18 0 5748 1832 3 MP
XPP
X18 0 0 18 5748 1832 3 MP
XPP
X0 18 18 0 5748 1850 3 MP
XPP
X18 0 0 18 5748 1850 3 MP
XPP
X0 18 18 0 5748 1868 3 MP
XPP
X18 0 0 18 5748 1868 3 MP
XPP
X0 18 18 0 5748 1886 3 MP
XPP
X18 0 0 18 5748 1886 3 MP
XPP
X0 17 18 0 5748 1904 3 MP
XPP
X18 0 0 17 5748 1904 3 MP
XPP
X0 18 18 0 5748 1921 3 MP
XPP
X18 0 0 18 5748 1921 3 MP
XPP
X0 18 18 0 5748 1939 3 MP
XPP
X18 0 0 18 5748 1939 3 MP
XPP
X0 18 18 0 5748 1957 3 MP
XPP
X18 0 0 18 5748 1957 3 MP
XPP
X0 18 18 0 5748 1975 3 MP
XPP
X18 0 0 18 5748 1975 3 MP
XPP
X0 18 18 0 5748 1993 3 MP
XPP
X18 0 0 18 5748 1993 3 MP
XPP
X0 17 18 0 5748 2011 3 MP
XPP
X18 0 0 17 5748 2011 3 MP
XPP
X0 18 18 0 5748 2028 3 MP
XPP
X18 0 0 18 5748 2028 3 MP
XPP
X0 18 18 0 5748 2046 3 MP
XPP
X18 0 0 18 5748 2046 3 MP
XPP
X0 18 18 0 5748 2064 3 MP
XPP
X18 0 0 18 5748 2064 3 MP
XPP
X0 18 18 0 5748 2082 3 MP
XPP
X18 0 0 18 5748 2082 3 MP
XPP
X0 18 18 0 5748 2100 3 MP
XPP
X18 0 0 18 5748 2100 3 MP
XPP
X0 17 18 0 5748 2118 3 MP
XPP
X18 0 0 17 5748 2118 3 MP
XPP
X0 18 18 0 5748 2135 3 MP
XPP
X18 0 0 18 5748 2135 3 MP
XPP
X0 18 18 0 5748 2153 3 MP
XPP
X18 0 0 18 5748 2153 3 MP
XPP
X0 18 18 0 5766 388 3 MP
XPP
X18 0 0 18 5766 388 3 MP
XPP
X0 18 18 0 5766 406 3 MP
XPP
X18 0 0 18 5766 406 3 MP
XPP
X0 17 18 0 5766 424 3 MP
XPP
X18 0 0 17 5766 424 3 MP
XPP
X0 18 18 0 5766 441 3 MP
XPP
X18 0 0 18 5766 441 3 MP
XPP
X0 18 18 0 5766 459 3 MP
XPP
X18 0 0 18 5766 459 3 MP
XPP
X0.952381 sg
X0 18 18 0 5766 477 3 MP
XPP
X18 0 0 18 5766 477 3 MP
XPP
X0.873016 sg
X0 18 18 0 5766 495 3 MP
XPP
X18 0 0 18 5766 495 3 MP
XPP
X0.761905 sg
X0 18 18 0 5766 513 3 MP
XPP
X18 0 0 18 5766 513 3 MP
XPP
X0.698413 sg
X0 17 18 0 5766 531 3 MP
XPP
X18 0 0 17 5766 531 3 MP
XPP
X0.666667 sg
X0 18 18 0 5766 548 3 MP
XPP
X18 0 0 18 5766 548 3 MP
XPP
X0 18 18 0 5766 566 3 MP
XPP
X18 0 0 18 5766 566 3 MP
XPP
X0 18 18 0 5766 584 3 MP
XPP
X18 0 0 18 5766 584 3 MP
XPP
X0 18 18 0 5766 602 3 MP
XPP
X18 0 0 18 5766 602 3 MP
XPP
X0 18 18 0 5766 620 3 MP
XPP
X18 0 0 18 5766 620 3 MP
XPP
X0 17 18 0 5766 638 3 MP
XPP
X18 0 0 17 5766 638 3 MP
XPP
X0 18 18 0 5766 655 3 MP
XPP
X18 0 0 18 5766 655 3 MP
XPP
X0 18 18 0 5766 673 3 MP
XPP
X18 0 0 18 5766 673 3 MP
XPP
X0 18 18 0 5766 691 3 MP
XPP
X18 0 0 18 5766 691 3 MP
XPP
X0 18 18 0 5766 709 3 MP
XPP
X18 0 0 18 5766 709 3 MP
XPP
X0 18 18 0 5766 727 3 MP
XPP
X18 0 0 18 5766 727 3 MP
XPP
X0 17 18 0 5766 745 3 MP
XPP
X18 0 0 17 5766 745 3 MP
XPP
X0 18 18 0 5766 762 3 MP
XPP
X18 0 0 18 5766 762 3 MP
XPP
X0 18 18 0 5766 780 3 MP
XPP
X18 0 0 18 5766 780 3 MP
XPP
X0 18 18 0 5766 798 3 MP
XPP
X18 0 0 18 5766 798 3 MP
XPP
X0 18 18 0 5766 816 3 MP
XPP
X18 0 0 18 5766 816 3 MP
XPP
X0.650794 sg
X0 18 18 0 5766 834 3 MP
XPP
X18 0 0 18 5766 834 3 MP
XPP
X0.619048 sg
X0 17 18 0 5766 852 3 MP
XPP
X18 0 0 17 5766 852 3 MP
XPP
X0.539683 sg
X0 18 18 0 5766 869 3 MP
XPP
X18 0 0 18 5766 869 3 MP
XPP
X0.460317 sg
X0 18 18 0 5766 887 3 MP
XPP
X18 0 0 18 5766 887 3 MP
XPP
X0.380952 sg
X0 18 18 0 5766 905 3 MP
XPP
X18 0 0 18 5766 905 3 MP
XPP
X0.349206 sg
X0 18 18 0 5766 923 3 MP
XPP
X18 0 0 18 5766 923 3 MP
XPP
X0.333333 sg
X0 18 18 0 5766 941 3 MP
XPP
X18 0 0 18 5766 941 3 MP
XPP
X0 17 18 0 5766 959 3 MP
XPP
X18 0 0 17 5766 959 3 MP
XPP
X0 18 18 0 5766 976 3 MP
XPP
X18 0 0 18 5766 976 3 MP
XPP
X0 18 18 0 5766 994 3 MP
XPP
X18 0 0 18 5766 994 3 MP
XPP
X0 18 18 0 5766 1012 3 MP
XPP
X18 0 0 18 5766 1012 3 MP
XPP
X0 18 18 0 5766 1030 3 MP
XPP
X18 0 0 18 5766 1030 3 MP
XPP
X0.365079 sg
X0 18 18 0 5766 1048 3 MP
XPP
X18 0 0 18 5766 1048 3 MP
XPP
X0.428571 sg
X0 17 18 0 5766 1066 3 MP
XPP
X18 0 0 17 5766 1066 3 MP
XPP
X0.587302 sg
X0 18 18 0 5766 1083 3 MP
XPP
X18 0 0 18 5766 1083 3 MP
XPP
X0.761905 sg
X0 18 18 0 5766 1101 3 MP
XPP
X18 0 0 18 5766 1101 3 MP
XPP
X0.904762 sg
X0 18 18 0 5766 1119 3 MP
XPP
X18 0 0 18 5766 1119 3 MP
XPP
X0.984127 sg
X0 18 18 0 5766 1137 3 MP
XPP
X18 0 0 18 5766 1137 3 MP
XPP
X1 sg
X0 18 18 0 5766 1155 3 MP
XPP
X18 0 0 18 5766 1155 3 MP
XPP
X0 17 18 0 5766 1173 3 MP
XPP
X18 0 0 17 5766 1173 3 MP
XPP
X0 18 18 0 5766 1190 3 MP
XPP
X18 0 0 18 5766 1190 3 MP
XPP
X0 18 18 0 5766 1208 3 MP
XPP
X18 0 0 18 5766 1208 3 MP
XPP
X0 18 18 0 5766 1226 3 MP
XPP
X18 0 0 18 5766 1226 3 MP
XPP
X0 18 18 0 5766 1244 3 MP
XPP
X18 0 0 18 5766 1244 3 MP
XPP
X0 17 18 0 5766 1262 3 MP
XPP
X18 0 0 17 5766 1262 3 MP
XPP
X0 18 18 0 5766 1279 3 MP
XPP
X18 0 0 18 5766 1279 3 MP
XPP
X0 18 18 0 5766 1297 3 MP
XPP
X18 0 0 18 5766 1297 3 MP
XPP
X0 18 18 0 5766 1315 3 MP
XPP
X18 0 0 18 5766 1315 3 MP
XPP
X0 18 18 0 5766 1333 3 MP
XPP
X18 0 0 18 5766 1333 3 MP
XPP
X0 18 18 0 5766 1351 3 MP
XPP
X18 0 0 18 5766 1351 3 MP
XPP
X0 17 18 0 5766 1369 3 MP
XPP
X18 0 0 17 5766 1369 3 MP
XPP
X0 18 18 0 5766 1386 3 MP
XPP
X18 0 0 18 5766 1386 3 MP
XPP
X0 18 18 0 5766 1404 3 MP
XPP
X18 0 0 18 5766 1404 3 MP
XPP
X0 18 18 0 5766 1422 3 MP
XPP
X18 0 0 18 5766 1422 3 MP
XPP
X0 18 18 0 5766 1440 3 MP
XPP
X18 0 0 18 5766 1440 3 MP
XPP
X0 18 18 0 5766 1458 3 MP
XPP
X18 0 0 18 5766 1458 3 MP
XPP
X0 17 18 0 5766 1476 3 MP
XPP
X18 0 0 17 5766 1476 3 MP
XPP
X0 18 18 0 5766 1493 3 MP
XPP
X18 0 0 18 5766 1493 3 MP
XPP
X0 18 18 0 5766 1511 3 MP
XPP
X18 0 0 18 5766 1511 3 MP
XPP
X0 18 18 0 5766 1529 3 MP
XPP
X18 0 0 18 5766 1529 3 MP
XPP
X0 18 18 0 5766 1547 3 MP
XPP
X18 0 0 18 5766 1547 3 MP
XPP
X0 18 18 0 5766 1565 3 MP
XPP
X18 0 0 18 5766 1565 3 MP
XPP
X0 17 18 0 5766 1583 3 MP
XPP
X18 0 0 17 5766 1583 3 MP
XPP
X0 18 18 0 5766 1600 3 MP
XPP
X18 0 0 18 5766 1600 3 MP
XPP
X0 18 18 0 5766 1618 3 MP
XPP
X18 0 0 18 5766 1618 3 MP
XPP
X0 18 18 0 5766 1636 3 MP
XPP
X18 0 0 18 5766 1636 3 MP
XPP
X0 18 18 0 5766 1654 3 MP
XPP
X18 0 0 18 5766 1654 3 MP
XPP
X0 18 18 0 5766 1672 3 MP
XPP
X18 0 0 18 5766 1672 3 MP
XPP
X0 17 18 0 5766 1690 3 MP
XPP
X18 0 0 17 5766 1690 3 MP
XPP
X0.984127 sg
X0 18 18 0 5766 1707 3 MP
XPP
X18 0 0 18 5766 1707 3 MP
XPP
X0.968254 sg
X0 18 18 0 5766 1725 3 MP
XPP
X18 0 0 18 5766 1725 3 MP
XPP
X0.984127 sg
X0 18 18 0 5766 1743 3 MP
XPP
X18 0 0 18 5766 1743 3 MP
XPP
X1 sg
X0 18 18 0 5766 1761 3 MP
XPP
X18 0 0 18 5766 1761 3 MP
XPP
X0 18 18 0 5766 1779 3 MP
XPP
X18 0 0 18 5766 1779 3 MP
XPP
X0 17 18 0 5766 1797 3 MP
XPP
X18 0 0 17 5766 1797 3 MP
XPP
X0 18 18 0 5766 1814 3 MP
XPP
X18 0 0 18 5766 1814 3 MP
XPP
X0 18 18 0 5766 1832 3 MP
XPP
X18 0 0 18 5766 1832 3 MP
XPP
X0 18 18 0 5766 1850 3 MP
XPP
X18 0 0 18 5766 1850 3 MP
XPP
X0 18 18 0 5766 1868 3 MP
XPP
X18 0 0 18 5766 1868 3 MP
XPP
X0 18 18 0 5766 1886 3 MP
XPP
X18 0 0 18 5766 1886 3 MP
XPP
X0 17 18 0 5766 1904 3 MP
XPP
X18 0 0 17 5766 1904 3 MP
XPP
X0 18 18 0 5766 1921 3 MP
XPP
X18 0 0 18 5766 1921 3 MP
XPP
X0 18 18 0 5766 1939 3 MP
XPP
X18 0 0 18 5766 1939 3 MP
XPP
X0 18 18 0 5766 1957 3 MP
XPP
X18 0 0 18 5766 1957 3 MP
XPP
X0 18 18 0 5766 1975 3 MP
XPP
X18 0 0 18 5766 1975 3 MP
XPP
X0 18 18 0 5766 1993 3 MP
XPP
X18 0 0 18 5766 1993 3 MP
XPP
X0 17 18 0 5766 2011 3 MP
XPP
X18 0 0 17 5766 2011 3 MP
XPP
X0 18 18 0 5766 2028 3 MP
XPP
X18 0 0 18 5766 2028 3 MP
XPP
X0 18 18 0 5766 2046 3 MP
XPP
X18 0 0 18 5766 2046 3 MP
XPP
X0 18 18 0 5766 2064 3 MP
XPP
X18 0 0 18 5766 2064 3 MP
XPP
X0 18 18 0 5766 2082 3 MP
XPP
X18 0 0 18 5766 2082 3 MP
XPP
X0 18 18 0 5766 2100 3 MP
XPP
X18 0 0 18 5766 2100 3 MP
XPP
X0 17 18 0 5766 2118 3 MP
XPP
X18 0 0 17 5766 2118 3 MP
XPP
X0 18 18 0 5766 2135 3 MP
XPP
X18 0 0 18 5766 2135 3 MP
XPP
X0 18 18 0 5766 2153 3 MP
XPP
X18 0 0 18 5766 2153 3 MP
XPP
X0 18 18 0 5784 388 3 MP
XPP
X18 0 0 18 5784 388 3 MP
XPP
X0 18 18 0 5784 406 3 MP
XPP
X18 0 0 18 5784 406 3 MP
XPP
X0 17 18 0 5784 424 3 MP
XPP
X18 0 0 17 5784 424 3 MP
XPP
X0 18 18 0 5784 441 3 MP
XPP
X18 0 0 18 5784 441 3 MP
XPP
X0 18 18 0 5784 459 3 MP
XPP
X18 0 0 18 5784 459 3 MP
XPP
X0.984127 sg
X0 18 18 0 5784 477 3 MP
XPP
X18 0 0 18 5784 477 3 MP
XPP
X0.920635 sg
X0 18 18 0 5784 495 3 MP
XPP
X18 0 0 18 5784 495 3 MP
XPP
X0.809524 sg
X0 18 18 0 5784 513 3 MP
XPP
X18 0 0 18 5784 513 3 MP
XPP
X0.714286 sg
X0 17 18 0 5784 531 3 MP
XPP
X18 0 0 17 5784 531 3 MP
XPP
X0.68254 sg
X0 18 18 0 5784 548 3 MP
XPP
X18 0 0 18 5784 548 3 MP
XPP
X0.666667 sg
X0 18 18 0 5784 566 3 MP
XPP
X18 0 0 18 5784 566 3 MP
XPP
X0 18 18 0 5784 584 3 MP
XPP
X18 0 0 18 5784 584 3 MP
XPP
X0 18 18 0 5784 602 3 MP
XPP
X18 0 0 18 5784 602 3 MP
XPP
X0 18 18 0 5784 620 3 MP
XPP
X18 0 0 18 5784 620 3 MP
XPP
X0 17 18 0 5784 638 3 MP
XPP
X18 0 0 17 5784 638 3 MP
XPP
X0 18 18 0 5784 655 3 MP
XPP
X18 0 0 18 5784 655 3 MP
XPP
X0 18 18 0 5784 673 3 MP
XPP
X18 0 0 18 5784 673 3 MP
XPP
X0 18 18 0 5784 691 3 MP
XPP
X18 0 0 18 5784 691 3 MP
XPP
X0 18 18 0 5784 709 3 MP
XPP
X18 0 0 18 5784 709 3 MP
XPP
X0 18 18 0 5784 727 3 MP
XPP
X18 0 0 18 5784 727 3 MP
XPP
X0 17 18 0 5784 745 3 MP
XPP
X18 0 0 17 5784 745 3 MP
XPP
X0 18 18 0 5784 762 3 MP
XPP
X18 0 0 18 5784 762 3 MP
XPP
X0 18 18 0 5784 780 3 MP
XPP
X18 0 0 18 5784 780 3 MP
XPP
X0 18 18 0 5784 798 3 MP
XPP
X18 0 0 18 5784 798 3 MP
XPP
X0 18 18 0 5784 816 3 MP
XPP
X18 0 0 18 5784 816 3 MP
XPP
X0 18 18 0 5784 834 3 MP
XPP
X18 0 0 18 5784 834 3 MP
XPP
X0.650794 sg
X0 17 18 0 5784 852 3 MP
XPP
X18 0 0 17 5784 852 3 MP
XPP
X0.619048 sg
X0 18 18 0 5784 869 3 MP
XPP
X18 0 0 18 5784 869 3 MP
XPP
X0.539683 sg
X0 18 18 0 5784 887 3 MP
XPP
X18 0 0 18 5784 887 3 MP
XPP
X0.460317 sg
X0 18 18 0 5784 905 3 MP
XPP
X18 0 0 18 5784 905 3 MP
XPP
X0.396825 sg
X0 18 18 0 5784 923 3 MP
XPP
X18 0 0 18 5784 923 3 MP
XPP
X0.365079 sg
X0 18 18 0 5784 941 3 MP
XPP
X18 0 0 18 5784 941 3 MP
XPP
X0.349206 sg
X0 17 18 0 5784 959 3 MP
XPP
X18 0 0 17 5784 959 3 MP
XPP
X0.333333 sg
X0 18 18 0 5784 976 3 MP
XPP
X18 0 0 18 5784 976 3 MP
XPP
X0 18 18 0 5784 994 3 MP
XPP
X18 0 0 18 5784 994 3 MP
XPP
X0.349206 sg
X0 18 18 0 5784 1012 3 MP
XPP
X18 0 0 18 5784 1012 3 MP
XPP
X0.380952 sg
X0 18 18 0 5784 1030 3 MP
XPP
X18 0 0 18 5784 1030 3 MP
XPP
X0.444444 sg
X0 18 18 0 5784 1048 3 MP
XPP
X18 0 0 18 5784 1048 3 MP
XPP
X0.587302 sg
X0 17 18 0 5784 1066 3 MP
XPP
X18 0 0 17 5784 1066 3 MP
XPP
X0.761905 sg
X0 18 18 0 5784 1083 3 MP
XPP
X18 0 0 18 5784 1083 3 MP
XPP
X0.904762 sg
X0 18 18 0 5784 1101 3 MP
XPP
X18 0 0 18 5784 1101 3 MP
XPP
X0.984127 sg
X0 18 18 0 5784 1119 3 MP
XPP
X18 0 0 18 5784 1119 3 MP
XPP
X1 sg
X0 18 18 0 5784 1137 3 MP
XPP
X18 0 0 18 5784 1137 3 MP
XPP
X0 18 18 0 5784 1155 3 MP
XPP
X18 0 0 18 5784 1155 3 MP
XPP
X0 17 18 0 5784 1173 3 MP
XPP
X18 0 0 17 5784 1173 3 MP
XPP
X0 18 18 0 5784 1190 3 MP
XPP
X18 0 0 18 5784 1190 3 MP
XPP
X0 18 18 0 5784 1208 3 MP
XPP
X18 0 0 18 5784 1208 3 MP
XPP
X0 18 18 0 5784 1226 3 MP
XPP
X18 0 0 18 5784 1226 3 MP
XPP
X0 18 18 0 5784 1244 3 MP
XPP
X18 0 0 18 5784 1244 3 MP
XPP
X0 17 18 0 5784 1262 3 MP
XPP
X18 0 0 17 5784 1262 3 MP
XPP
X0 18 18 0 5784 1279 3 MP
XPP
X18 0 0 18 5784 1279 3 MP
XPP
X0 18 18 0 5784 1297 3 MP
XPP
X18 0 0 18 5784 1297 3 MP
XPP
X0 18 18 0 5784 1315 3 MP
XPP
X18 0 0 18 5784 1315 3 MP
XPP
X0 18 18 0 5784 1333 3 MP
XPP
X18 0 0 18 5784 1333 3 MP
XPP
X0 18 18 0 5784 1351 3 MP
XPP
X18 0 0 18 5784 1351 3 MP
XPP
X0 17 18 0 5784 1369 3 MP
XPP
X18 0 0 17 5784 1369 3 MP
XPP
X0 18 18 0 5784 1386 3 MP
XPP
X18 0 0 18 5784 1386 3 MP
XPP
X0 18 18 0 5784 1404 3 MP
XPP
X18 0 0 18 5784 1404 3 MP
XPP
X0 18 18 0 5784 1422 3 MP
XPP
X18 0 0 18 5784 1422 3 MP
XPP
X0 18 18 0 5784 1440 3 MP
XPP
X18 0 0 18 5784 1440 3 MP
XPP
X0 18 18 0 5784 1458 3 MP
XPP
X18 0 0 18 5784 1458 3 MP
XPP
X0 17 18 0 5784 1476 3 MP
XPP
X18 0 0 17 5784 1476 3 MP
XPP
X0 18 18 0 5784 1493 3 MP
XPP
X18 0 0 18 5784 1493 3 MP
XPP
X0 18 18 0 5784 1511 3 MP
XPP
X18 0 0 18 5784 1511 3 MP
XPP
X0 18 18 0 5784 1529 3 MP
XPP
X18 0 0 18 5784 1529 3 MP
XPP
X0 18 18 0 5784 1547 3 MP
XPP
X18 0 0 18 5784 1547 3 MP
XPP
X0 18 18 0 5784 1565 3 MP
XPP
X18 0 0 18 5784 1565 3 MP
XPP
X0 17 18 0 5784 1583 3 MP
XPP
X18 0 0 17 5784 1583 3 MP
XPP
X0 18 18 0 5784 1600 3 MP
XPP
X18 0 0 18 5784 1600 3 MP
XPP
X0 18 18 0 5784 1618 3 MP
XPP
X18 0 0 18 5784 1618 3 MP
XPP
X0 18 18 0 5784 1636 3 MP
XPP
X18 0 0 18 5784 1636 3 MP
XPP
X0 18 18 0 5784 1654 3 MP
XPP
X18 0 0 18 5784 1654 3 MP
XPP
X0 18 18 0 5784 1672 3 MP
XPP
X18 0 0 18 5784 1672 3 MP
XPP
X0 17 18 0 5784 1690 3 MP
XPP
X18 0 0 17 5784 1690 3 MP
XPP
X0 18 18 0 5784 1707 3 MP
XPP
X18 0 0 18 5784 1707 3 MP
XPP
X0 18 18 0 5784 1725 3 MP
XPP
X18 0 0 18 5784 1725 3 MP
XPP
X0 18 18 0 5784 1743 3 MP
XPP
X18 0 0 18 5784 1743 3 MP
XPP
X0 18 18 0 5784 1761 3 MP
XPP
X18 0 0 18 5784 1761 3 MP
XPP
X0 18 18 0 5784 1779 3 MP
XPP
X18 0 0 18 5784 1779 3 MP
XPP
X0 17 18 0 5784 1797 3 MP
XPP
X18 0 0 17 5784 1797 3 MP
XPP
X0 18 18 0 5784 1814 3 MP
XPP
X18 0 0 18 5784 1814 3 MP
XPP
X0 18 18 0 5784 1832 3 MP
XPP
X18 0 0 18 5784 1832 3 MP
XPP
X0 18 18 0 5784 1850 3 MP
XPP
X18 0 0 18 5784 1850 3 MP
XPP
X0 18 18 0 5784 1868 3 MP
XPP
X18 0 0 18 5784 1868 3 MP
XPP
X0 18 18 0 5784 1886 3 MP
XPP
X18 0 0 18 5784 1886 3 MP
XPP
X0 17 18 0 5784 1904 3 MP
XPP
X18 0 0 17 5784 1904 3 MP
XPP
X0 18 18 0 5784 1921 3 MP
XPP
X18 0 0 18 5784 1921 3 MP
XPP
X0 18 18 0 5784 1939 3 MP
XPP
X18 0 0 18 5784 1939 3 MP
XPP
X0 18 18 0 5784 1957 3 MP
XPP
X18 0 0 18 5784 1957 3 MP
XPP
X0 18 18 0 5784 1975 3 MP
XPP
X18 0 0 18 5784 1975 3 MP
XPP
X0 18 18 0 5784 1993 3 MP
XPP
X18 0 0 18 5784 1993 3 MP
XPP
X0 17 18 0 5784 2011 3 MP
XPP
X18 0 0 17 5784 2011 3 MP
XPP
X0 18 18 0 5784 2028 3 MP
XPP
X18 0 0 18 5784 2028 3 MP
XPP
X0 18 18 0 5784 2046 3 MP
XPP
X18 0 0 18 5784 2046 3 MP
XPP
X0 18 18 0 5784 2064 3 MP
XPP
X18 0 0 18 5784 2064 3 MP
XPP
X0 18 18 0 5784 2082 3 MP
XPP
X18 0 0 18 5784 2082 3 MP
XPP
X0 18 18 0 5784 2100 3 MP
XPP
X18 0 0 18 5784 2100 3 MP
XPP
X0 17 18 0 5784 2118 3 MP
XPP
X18 0 0 17 5784 2118 3 MP
XPP
X0 18 18 0 5784 2135 3 MP
XPP
X18 0 0 18 5784 2135 3 MP
XPP
X0 18 18 0 5784 2153 3 MP
XPP
X18 0 0 18 5784 2153 3 MP
XPP
X0 18 17 0 5802 388 3 MP
XPP
X17 0 0 18 5802 388 3 MP
XPP
X0 18 17 0 5802 406 3 MP
XPP
X17 0 0 18 5802 406 3 MP
XPP
X0 17 17 0 5802 424 3 MP
XPP
X17 0 0 17 5802 424 3 MP
XPP
X0 18 17 0 5802 441 3 MP
XPP
X17 0 0 18 5802 441 3 MP
XPP
X0 18 17 0 5802 459 3 MP
XPP
X17 0 0 18 5802 459 3 MP
XPP
X0 18 17 0 5802 477 3 MP
XPP
X17 0 0 18 5802 477 3 MP
XPP
X0.952381 sg
X0 18 17 0 5802 495 3 MP
XPP
X17 0 0 18 5802 495 3 MP
XPP
X0.873016 sg
X0 18 17 0 5802 513 3 MP
XPP
X17 0 0 18 5802 513 3 MP
XPP
X0.761905 sg
X0 17 17 0 5802 531 3 MP
XPP
X17 0 0 17 5802 531 3 MP
XPP
X0.698413 sg
X0 18 17 0 5802 548 3 MP
XPP
X17 0 0 18 5802 548 3 MP
XPP
X0.666667 sg
X0 18 17 0 5802 566 3 MP
XPP
X17 0 0 18 5802 566 3 MP
XPP
X0 18 17 0 5802 584 3 MP
XPP
X17 0 0 18 5802 584 3 MP
XPP
X0 18 17 0 5802 602 3 MP
XPP
X17 0 0 18 5802 602 3 MP
XPP
X0 18 17 0 5802 620 3 MP
XPP
X17 0 0 18 5802 620 3 MP
XPP
X0 17 17 0 5802 638 3 MP
XPP
X17 0 0 17 5802 638 3 MP
XPP
X0 18 17 0 5802 655 3 MP
XPP
X17 0 0 18 5802 655 3 MP
XPP
X0 18 17 0 5802 673 3 MP
XPP
X17 0 0 18 5802 673 3 MP
XPP
X0 18 17 0 5802 691 3 MP
XPP
X17 0 0 18 5802 691 3 MP
XPP
X0 18 17 0 5802 709 3 MP
XPP
X17 0 0 18 5802 709 3 MP
XPP
X0 18 17 0 5802 727 3 MP
XPP
X17 0 0 18 5802 727 3 MP
XPP
X0 17 17 0 5802 745 3 MP
XPP
X17 0 0 17 5802 745 3 MP
XPP
X0 18 17 0 5802 762 3 MP
XPP
X17 0 0 18 5802 762 3 MP
XPP
X0 18 17 0 5802 780 3 MP
XPP
X17 0 0 18 5802 780 3 MP
XPP
X0 18 17 0 5802 798 3 MP
XPP
X17 0 0 18 5802 798 3 MP
XPP
X0 18 17 0 5802 816 3 MP
XPP
X17 0 0 18 5802 816 3 MP
XPP
X0 18 17 0 5802 834 3 MP
XPP
X17 0 0 18 5802 834 3 MP
XPP
X0 17 17 0 5802 852 3 MP
XPP
X17 0 0 17 5802 852 3 MP
XPP
X0.650794 sg
X0 18 17 0 5802 869 3 MP
XPP
X17 0 0 18 5802 869 3 MP
XPP
X0.634921 sg
X0 18 17 0 5802 887 3 MP
XPP
X17 0 0 18 5802 887 3 MP
XPP
X0.587302 sg
X0 18 17 0 5802 905 3 MP
XPP
X17 0 0 18 5802 905 3 MP
XPP
X0.555556 sg
X0 18 17 0 5802 923 3 MP
XPP
X17 0 0 18 5802 923 3 MP
XPP
X0.492063 sg
X0 18 17 0 5802 941 3 MP
XPP
X17 0 0 18 5802 941 3 MP
XPP
X0.428571 sg
X0 17 17 0 5802 959 3 MP
XPP
X17 0 0 17 5802 959 3 MP
XPP
X0.396825 sg
X0 18 17 0 5802 976 3 MP
XPP
X17 0 0 18 5802 976 3 MP
XPP
X0 18 17 0 5802 994 3 MP
XPP
X17 0 0 18 5802 994 3 MP
XPP
X0.428571 sg
X0 18 17 0 5802 1012 3 MP
XPP
X17 0 0 18 5802 1012 3 MP
XPP
X0.507937 sg
X0 18 17 0 5802 1030 3 MP
XPP
X17 0 0 18 5802 1030 3 MP
XPP
X0.619048 sg
X0 18 17 0 5802 1048 3 MP
XPP
X17 0 0 18 5802 1048 3 MP
XPP
X0.777778 sg
X0 17 17 0 5802 1066 3 MP
XPP
X17 0 0 17 5802 1066 3 MP
XPP
X0.904762 sg
X0 18 17 0 5802 1083 3 MP
XPP
X17 0 0 18 5802 1083 3 MP
XPP
X0.984127 sg
X0 18 17 0 5802 1101 3 MP
XPP
X17 0 0 18 5802 1101 3 MP
XPP
X1 sg
X0 18 17 0 5802 1119 3 MP
XPP
X17 0 0 18 5802 1119 3 MP
XPP
X0 18 17 0 5802 1137 3 MP
XPP
X17 0 0 18 5802 1137 3 MP
XPP
X0 18 17 0 5802 1155 3 MP
XPP
X17 0 0 18 5802 1155 3 MP
XPP
X0 17 17 0 5802 1173 3 MP
XPP
X17 0 0 17 5802 1173 3 MP
XPP
X0 18 17 0 5802 1190 3 MP
XPP
X17 0 0 18 5802 1190 3 MP
XPP
X0 18 17 0 5802 1208 3 MP
XPP
X17 0 0 18 5802 1208 3 MP
XPP
X0 18 17 0 5802 1226 3 MP
XPP
X17 0 0 18 5802 1226 3 MP
XPP
X0 18 17 0 5802 1244 3 MP
XPP
X17 0 0 18 5802 1244 3 MP
XPP
X0 17 17 0 5802 1262 3 MP
XPP
X17 0 0 17 5802 1262 3 MP
XPP
X0 18 17 0 5802 1279 3 MP
XPP
X17 0 0 18 5802 1279 3 MP
XPP
X0 18 17 0 5802 1297 3 MP
XPP
X17 0 0 18 5802 1297 3 MP
XPP
X0 18 17 0 5802 1315 3 MP
XPP
X17 0 0 18 5802 1315 3 MP
XPP
X0 18 17 0 5802 1333 3 MP
XPP
X17 0 0 18 5802 1333 3 MP
XPP
X0 18 17 0 5802 1351 3 MP
XPP
X17 0 0 18 5802 1351 3 MP
XPP
X0 17 17 0 5802 1369 3 MP
XPP
X17 0 0 17 5802 1369 3 MP
XPP
X0 18 17 0 5802 1386 3 MP
XPP
X17 0 0 18 5802 1386 3 MP
XPP
X0 18 17 0 5802 1404 3 MP
XPP
X17 0 0 18 5802 1404 3 MP
XPP
X0 18 17 0 5802 1422 3 MP
XPP
X17 0 0 18 5802 1422 3 MP
XPP
X0 18 17 0 5802 1440 3 MP
XPP
X17 0 0 18 5802 1440 3 MP
XPP
X0 18 17 0 5802 1458 3 MP
XPP
X17 0 0 18 5802 1458 3 MP
XPP
X0 17 17 0 5802 1476 3 MP
XPP
X17 0 0 17 5802 1476 3 MP
XPP
X0 18 17 0 5802 1493 3 MP
XPP
X17 0 0 18 5802 1493 3 MP
XPP
X0 18 17 0 5802 1511 3 MP
XPP
X17 0 0 18 5802 1511 3 MP
XPP
X0 18 17 0 5802 1529 3 MP
XPP
X17 0 0 18 5802 1529 3 MP
XPP
X0 18 17 0 5802 1547 3 MP
XPP
X17 0 0 18 5802 1547 3 MP
XPP
X0 18 17 0 5802 1565 3 MP
XPP
X17 0 0 18 5802 1565 3 MP
XPP
X0 17 17 0 5802 1583 3 MP
XPP
X17 0 0 17 5802 1583 3 MP
XPP
X0 18 17 0 5802 1600 3 MP
XPP
X17 0 0 18 5802 1600 3 MP
XPP
X0 18 17 0 5802 1618 3 MP
XPP
X17 0 0 18 5802 1618 3 MP
XPP
X0 18 17 0 5802 1636 3 MP
XPP
X17 0 0 18 5802 1636 3 MP
XPP
X0 18 17 0 5802 1654 3 MP
XPP
X17 0 0 18 5802 1654 3 MP
XPP
X0 18 17 0 5802 1672 3 MP
XPP
X17 0 0 18 5802 1672 3 MP
XPP
X0 17 17 0 5802 1690 3 MP
XPP
X17 0 0 17 5802 1690 3 MP
XPP
X0 18 17 0 5802 1707 3 MP
XPP
X17 0 0 18 5802 1707 3 MP
XPP
X0 18 17 0 5802 1725 3 MP
XPP
X17 0 0 18 5802 1725 3 MP
XPP
X0 18 17 0 5802 1743 3 MP
XPP
X17 0 0 18 5802 1743 3 MP
XPP
X0 18 17 0 5802 1761 3 MP
XPP
X17 0 0 18 5802 1761 3 MP
XPP
X0 18 17 0 5802 1779 3 MP
XPP
X17 0 0 18 5802 1779 3 MP
XPP
X0 17 17 0 5802 1797 3 MP
XPP
X17 0 0 17 5802 1797 3 MP
XPP
X0 18 17 0 5802 1814 3 MP
XPP
X17 0 0 18 5802 1814 3 MP
XPP
X0 18 17 0 5802 1832 3 MP
XPP
X17 0 0 18 5802 1832 3 MP
XPP
X0 18 17 0 5802 1850 3 MP
XPP
X17 0 0 18 5802 1850 3 MP
XPP
X0 18 17 0 5802 1868 3 MP
XPP
X17 0 0 18 5802 1868 3 MP
XPP
X0 18 17 0 5802 1886 3 MP
XPP
X17 0 0 18 5802 1886 3 MP
XPP
X0 17 17 0 5802 1904 3 MP
XPP
X17 0 0 17 5802 1904 3 MP
XPP
X0 18 17 0 5802 1921 3 MP
XPP
X17 0 0 18 5802 1921 3 MP
XPP
X0 18 17 0 5802 1939 3 MP
XPP
X17 0 0 18 5802 1939 3 MP
XPP
X0 18 17 0 5802 1957 3 MP
XPP
X17 0 0 18 5802 1957 3 MP
XPP
X0 18 17 0 5802 1975 3 MP
XPP
X17 0 0 18 5802 1975 3 MP
XPP
X0 18 17 0 5802 1993 3 MP
XPP
X17 0 0 18 5802 1993 3 MP
XPP
X0 17 17 0 5802 2011 3 MP
XPP
X17 0 0 17 5802 2011 3 MP
XPP
X0 18 17 0 5802 2028 3 MP
XPP
X17 0 0 18 5802 2028 3 MP
XPP
X0 18 17 0 5802 2046 3 MP
XPP
X17 0 0 18 5802 2046 3 MP
XPP
X0 18 17 0 5802 2064 3 MP
XPP
X17 0 0 18 5802 2064 3 MP
XPP
X0 18 17 0 5802 2082 3 MP
XPP
X17 0 0 18 5802 2082 3 MP
XPP
X0 18 17 0 5802 2100 3 MP
XPP
X17 0 0 18 5802 2100 3 MP
XPP
X0 17 17 0 5802 2118 3 MP
XPP
X17 0 0 17 5802 2118 3 MP
XPP
X0 18 17 0 5802 2135 3 MP
XPP
X17 0 0 18 5802 2135 3 MP
XPP
X0 18 17 0 5802 2153 3 MP
XPP
X17 0 0 18 5802 2153 3 MP
XPP
X0 18 18 0 5819 388 3 MP
XPP
X18 0 0 18 5819 388 3 MP
XPP
X0 18 18 0 5819 406 3 MP
XPP
X18 0 0 18 5819 406 3 MP
XPP
X0 17 18 0 5819 424 3 MP
XPP
X18 0 0 17 5819 424 3 MP
XPP
X0 18 18 0 5819 441 3 MP
XPP
X18 0 0 18 5819 441 3 MP
XPP
X0 18 18 0 5819 459 3 MP
XPP
X18 0 0 18 5819 459 3 MP
XPP
X0 18 18 0 5819 477 3 MP
XPP
X18 0 0 18 5819 477 3 MP
XPP
X0.984127 sg
X0 18 18 0 5819 495 3 MP
XPP
X18 0 0 18 5819 495 3 MP
XPP
X0.920635 sg
X0 18 18 0 5819 513 3 MP
XPP
X18 0 0 18 5819 513 3 MP
XPP
X0.809524 sg
X0 17 18 0 5819 531 3 MP
XPP
X18 0 0 17 5819 531 3 MP
XPP
X0.730159 sg
X0 18 18 0 5819 548 3 MP
XPP
X18 0 0 18 5819 548 3 MP
XPP
X0.68254 sg
X0 18 18 0 5819 566 3 MP
XPP
X18 0 0 18 5819 566 3 MP
XPP
X0.666667 sg
X0 18 18 0 5819 584 3 MP
XPP
X18 0 0 18 5819 584 3 MP
XPP
X0 18 18 0 5819 602 3 MP
XPP
X18 0 0 18 5819 602 3 MP
XPP
X0 18 18 0 5819 620 3 MP
XPP
X18 0 0 18 5819 620 3 MP
XPP
X0 17 18 0 5819 638 3 MP
XPP
X18 0 0 17 5819 638 3 MP
XPP
X0 18 18 0 5819 655 3 MP
XPP
X18 0 0 18 5819 655 3 MP
XPP
X0 18 18 0 5819 673 3 MP
XPP
X18 0 0 18 5819 673 3 MP
XPP
X0 18 18 0 5819 691 3 MP
XPP
X18 0 0 18 5819 691 3 MP
XPP
X0 18 18 0 5819 709 3 MP
XPP
X18 0 0 18 5819 709 3 MP
XPP
X0 18 18 0 5819 727 3 MP
XPP
X18 0 0 18 5819 727 3 MP
XPP
X0 17 18 0 5819 745 3 MP
XPP
X18 0 0 17 5819 745 3 MP
XPP
X0 18 18 0 5819 762 3 MP
XPP
X18 0 0 18 5819 762 3 MP
XPP
X0 18 18 0 5819 780 3 MP
XPP
X18 0 0 18 5819 780 3 MP
XPP
X0 18 18 0 5819 798 3 MP
XPP
X18 0 0 18 5819 798 3 MP
XPP
X0 18 18 0 5819 816 3 MP
XPP
X18 0 0 18 5819 816 3 MP
XPP
X0 18 18 0 5819 834 3 MP
XPP
X18 0 0 18 5819 834 3 MP
XPP
X0 17 18 0 5819 852 3 MP
XPP
X18 0 0 17 5819 852 3 MP
XPP
X0.68254 sg
X0 18 18 0 5819 869 3 MP
XPP
X18 0 0 18 5819 869 3 MP
XPP
X0.714286 sg
X0 18 18 0 5819 887 3 MP
XPP
X18 0 0 18 5819 887 3 MP
XPP
X0.746032 sg
X0 18 18 0 5819 905 3 MP
XPP
X18 0 0 18 5819 905 3 MP
XPP
X0.761905 sg
X0 18 18 0 5819 923 3 MP
XPP
X18 0 0 18 5819 923 3 MP
XPP
X0.714286 sg
X0 18 18 0 5819 941 3 MP
XPP
X18 0 0 18 5819 941 3 MP
XPP
X0.619048 sg
X0 17 18 0 5819 959 3 MP
XPP
X18 0 0 17 5819 959 3 MP
XPP
X0.571429 sg
X0 18 18 0 5819 976 3 MP
XPP
X18 0 0 18 5819 976 3 MP
XPP
X0 18 18 0 5819 994 3 MP
XPP
X18 0 0 18 5819 994 3 MP
XPP
X0.619048 sg
X0 18 18 0 5819 1012 3 MP
XPP
X18 0 0 18 5819 1012 3 MP
XPP
X0.730159 sg
X0 18 18 0 5819 1030 3 MP
XPP
X18 0 0 18 5819 1030 3 MP
XPP
X0.825397 sg
X0 18 18 0 5819 1048 3 MP
XPP
X18 0 0 18 5819 1048 3 MP
XPP
X0.920635 sg
X0 17 18 0 5819 1066 3 MP
XPP
X18 0 0 17 5819 1066 3 MP
XPP
X0.984127 sg
X0 18 18 0 5819 1083 3 MP
XPP
X18 0 0 18 5819 1083 3 MP
XPP
X1 sg
X0 18 18 0 5819 1101 3 MP
XPP
X18 0 0 18 5819 1101 3 MP
XPP
X0 18 18 0 5819 1119 3 MP
XPP
X18 0 0 18 5819 1119 3 MP
XPP
X0 18 18 0 5819 1137 3 MP
XPP
X18 0 0 18 5819 1137 3 MP
XPP
X0 18 18 0 5819 1155 3 MP
XPP
X18 0 0 18 5819 1155 3 MP
XPP
X0 17 18 0 5819 1173 3 MP
XPP
X18 0 0 17 5819 1173 3 MP
XPP
X0 18 18 0 5819 1190 3 MP
XPP
X18 0 0 18 5819 1190 3 MP
XPP
X0 18 18 0 5819 1208 3 MP
XPP
X18 0 0 18 5819 1208 3 MP
XPP
X0 18 18 0 5819 1226 3 MP
XPP
X18 0 0 18 5819 1226 3 MP
XPP
X0 18 18 0 5819 1244 3 MP
XPP
X18 0 0 18 5819 1244 3 MP
XPP
X0 17 18 0 5819 1262 3 MP
XPP
X18 0 0 17 5819 1262 3 MP
XPP
X0 18 18 0 5819 1279 3 MP
XPP
X18 0 0 18 5819 1279 3 MP
XPP
X0 18 18 0 5819 1297 3 MP
XPP
X18 0 0 18 5819 1297 3 MP
XPP
X0 18 18 0 5819 1315 3 MP
XPP
X18 0 0 18 5819 1315 3 MP
XPP
X0 18 18 0 5819 1333 3 MP
XPP
X18 0 0 18 5819 1333 3 MP
XPP
X0 18 18 0 5819 1351 3 MP
XPP
X18 0 0 18 5819 1351 3 MP
XPP
X0 17 18 0 5819 1369 3 MP
XPP
X18 0 0 17 5819 1369 3 MP
XPP
X0 18 18 0 5819 1386 3 MP
XPP
X18 0 0 18 5819 1386 3 MP
XPP
X0 18 18 0 5819 1404 3 MP
XPP
X18 0 0 18 5819 1404 3 MP
XPP
X0 18 18 0 5819 1422 3 MP
XPP
X18 0 0 18 5819 1422 3 MP
XPP
X0 18 18 0 5819 1440 3 MP
XPP
X18 0 0 18 5819 1440 3 MP
XPP
X0 18 18 0 5819 1458 3 MP
XPP
X18 0 0 18 5819 1458 3 MP
XPP
X0 17 18 0 5819 1476 3 MP
XPP
X18 0 0 17 5819 1476 3 MP
XPP
X0 18 18 0 5819 1493 3 MP
XPP
X18 0 0 18 5819 1493 3 MP
XPP
X0 18 18 0 5819 1511 3 MP
XPP
X18 0 0 18 5819 1511 3 MP
XPP
X0 18 18 0 5819 1529 3 MP
XPP
X18 0 0 18 5819 1529 3 MP
XPP
X0 18 18 0 5819 1547 3 MP
XPP
X18 0 0 18 5819 1547 3 MP
XPP
X0 18 18 0 5819 1565 3 MP
XPP
X18 0 0 18 5819 1565 3 MP
XPP
X0 17 18 0 5819 1583 3 MP
XPP
X18 0 0 17 5819 1583 3 MP
XPP
X0 18 18 0 5819 1600 3 MP
XPP
X18 0 0 18 5819 1600 3 MP
XPP
X0 18 18 0 5819 1618 3 MP
XPP
X18 0 0 18 5819 1618 3 MP
XPP
X0 18 18 0 5819 1636 3 MP
XPP
X18 0 0 18 5819 1636 3 MP
XPP
X0 18 18 0 5819 1654 3 MP
XPP
X18 0 0 18 5819 1654 3 MP
XPP
X0 18 18 0 5819 1672 3 MP
XPP
X18 0 0 18 5819 1672 3 MP
XPP
X0 17 18 0 5819 1690 3 MP
XPP
X18 0 0 17 5819 1690 3 MP
XPP
X0 18 18 0 5819 1707 3 MP
XPP
X18 0 0 18 5819 1707 3 MP
XPP
X0 18 18 0 5819 1725 3 MP
XPP
X18 0 0 18 5819 1725 3 MP
XPP
X0 18 18 0 5819 1743 3 MP
XPP
X18 0 0 18 5819 1743 3 MP
XPP
X0 18 18 0 5819 1761 3 MP
XPP
X18 0 0 18 5819 1761 3 MP
XPP
X0 18 18 0 5819 1779 3 MP
XPP
X18 0 0 18 5819 1779 3 MP
XPP
X0 17 18 0 5819 1797 3 MP
XPP
X18 0 0 17 5819 1797 3 MP
XPP
X0 18 18 0 5819 1814 3 MP
XPP
X18 0 0 18 5819 1814 3 MP
XPP
X0 18 18 0 5819 1832 3 MP
XPP
X18 0 0 18 5819 1832 3 MP
XPP
X0 18 18 0 5819 1850 3 MP
XPP
X18 0 0 18 5819 1850 3 MP
XPP
X0 18 18 0 5819 1868 3 MP
XPP
X18 0 0 18 5819 1868 3 MP
XPP
X0 18 18 0 5819 1886 3 MP
XPP
X18 0 0 18 5819 1886 3 MP
XPP
X0 17 18 0 5819 1904 3 MP
XPP
X18 0 0 17 5819 1904 3 MP
XPP
X0 18 18 0 5819 1921 3 MP
XPP
X18 0 0 18 5819 1921 3 MP
XPP
X0 18 18 0 5819 1939 3 MP
XPP
X18 0 0 18 5819 1939 3 MP
XPP
X0 18 18 0 5819 1957 3 MP
XPP
X18 0 0 18 5819 1957 3 MP
XPP
X0 18 18 0 5819 1975 3 MP
XPP
X18 0 0 18 5819 1975 3 MP
XPP
X0 18 18 0 5819 1993 3 MP
XPP
X18 0 0 18 5819 1993 3 MP
XPP
X0 17 18 0 5819 2011 3 MP
XPP
X18 0 0 17 5819 2011 3 MP
XPP
X0 18 18 0 5819 2028 3 MP
XPP
X18 0 0 18 5819 2028 3 MP
XPP
X0 18 18 0 5819 2046 3 MP
XPP
X18 0 0 18 5819 2046 3 MP
XPP
X0 18 18 0 5819 2064 3 MP
XPP
X18 0 0 18 5819 2064 3 MP
XPP
X0 18 18 0 5819 2082 3 MP
XPP
X18 0 0 18 5819 2082 3 MP
XPP
X0 18 18 0 5819 2100 3 MP
XPP
X18 0 0 18 5819 2100 3 MP
XPP
X0 17 18 0 5819 2118 3 MP
XPP
X18 0 0 17 5819 2118 3 MP
XPP
X0 18 18 0 5819 2135 3 MP
XPP
X18 0 0 18 5819 2135 3 MP
XPP
X0 18 18 0 5819 2153 3 MP
XPP
X18 0 0 18 5819 2153 3 MP
XPP
X0 18 18 0 5837 388 3 MP
XPP
X18 0 0 18 5837 388 3 MP
XPP
X0 18 18 0 5837 406 3 MP
XPP
X18 0 0 18 5837 406 3 MP
XPP
X0 17 18 0 5837 424 3 MP
XPP
X18 0 0 17 5837 424 3 MP
XPP
X0 18 18 0 5837 441 3 MP
XPP
X18 0 0 18 5837 441 3 MP
XPP
X0 18 18 0 5837 459 3 MP
XPP
X18 0 0 18 5837 459 3 MP
XPP
X0 18 18 0 5837 477 3 MP
XPP
X18 0 0 18 5837 477 3 MP
XPP
X0 18 18 0 5837 495 3 MP
XPP
X18 0 0 18 5837 495 3 MP
XPP
X0.968254 sg
X0 18 18 0 5837 513 3 MP
XPP
X18 0 0 18 5837 513 3 MP
XPP
X0.888889 sg
X0 17 18 0 5837 531 3 MP
XPP
X18 0 0 17 5837 531 3 MP
XPP
X0.793651 sg
X0 18 18 0 5837 548 3 MP
XPP
X18 0 0 18 5837 548 3 MP
XPP
X0.714286 sg
X0 18 18 0 5837 566 3 MP
XPP
X18 0 0 18 5837 566 3 MP
XPP
X0.68254 sg
X0 18 18 0 5837 584 3 MP
XPP
X18 0 0 18 5837 584 3 MP
XPP
X0.666667 sg
X0 18 18 0 5837 602 3 MP
XPP
X18 0 0 18 5837 602 3 MP
XPP
X0 18 18 0 5837 620 3 MP
XPP
X18 0 0 18 5837 620 3 MP
XPP
X0 17 18 0 5837 638 3 MP
XPP
X18 0 0 17 5837 638 3 MP
XPP
X0 18 18 0 5837 655 3 MP
XPP
X18 0 0 18 5837 655 3 MP
XPP
X0 18 18 0 5837 673 3 MP
XPP
X18 0 0 18 5837 673 3 MP
XPP
X0 18 18 0 5837 691 3 MP
XPP
X18 0 0 18 5837 691 3 MP
XPP
X0 18 18 0 5837 709 3 MP
XPP
X18 0 0 18 5837 709 3 MP
XPP
X0 18 18 0 5837 727 3 MP
XPP
X18 0 0 18 5837 727 3 MP
XPP
X0 17 18 0 5837 745 3 MP
XPP
X18 0 0 17 5837 745 3 MP
XPP
X0 18 18 0 5837 762 3 MP
XPP
X18 0 0 18 5837 762 3 MP
XPP
X0 18 18 0 5837 780 3 MP
XPP
X18 0 0 18 5837 780 3 MP
XPP
X0 18 18 0 5837 798 3 MP
XPP
X18 0 0 18 5837 798 3 MP
XPP
X0 18 18 0 5837 816 3 MP
XPP
X18 0 0 18 5837 816 3 MP
XPP
X0 18 18 0 5837 834 3 MP
XPP
X18 0 0 18 5837 834 3 MP
XPP
X0.68254 sg
X0 17 18 0 5837 852 3 MP
XPP
X18 0 0 17 5837 852 3 MP
XPP
X0.714286 sg
X0 18 18 0 5837 869 3 MP
XPP
X18 0 0 18 5837 869 3 MP
XPP
X0.793651 sg
X0 18 18 0 5837 887 3 MP
XPP
X18 0 0 18 5837 887 3 MP
XPP
X0.873016 sg
X0 18 18 0 5837 905 3 MP
XPP
X18 0 0 18 5837 905 3 MP
XPP
X0.920635 sg
X0 18 18 0 5837 923 3 MP
XPP
X18 0 0 18 5837 923 3 MP
XPP
X0.904762 sg
X0 18 18 0 5837 941 3 MP
XPP
X18 0 0 18 5837 941 3 MP
XPP
X0.84127 sg
X0 17 18 0 5837 959 3 MP
XPP
X18 0 0 17 5837 959 3 MP
XPP
X0.809524 sg
X0 18 18 0 5837 976 3 MP
XPP
X18 0 0 18 5837 976 3 MP
XPP
X0 18 18 0 5837 994 3 MP
XPP
X18 0 0 18 5837 994 3 MP
XPP
X0.84127 sg
X0 18 18 0 5837 1012 3 MP
XPP
X18 0 0 18 5837 1012 3 MP
XPP
X0.904762 sg
X0 18 18 0 5837 1030 3 MP
XPP
X18 0 0 18 5837 1030 3 MP
XPP
X0.968254 sg
X0 18 18 0 5837 1048 3 MP
XPP
X18 0 0 18 5837 1048 3 MP
XPP
X1 sg
X0 17 18 0 5837 1066 3 MP
XPP
X18 0 0 17 5837 1066 3 MP
XPP
X0 18 18 0 5837 1083 3 MP
XPP
X18 0 0 18 5837 1083 3 MP
XPP
X0 18 18 0 5837 1101 3 MP
XPP
X18 0 0 18 5837 1101 3 MP
XPP
X0 18 18 0 5837 1119 3 MP
XPP
X18 0 0 18 5837 1119 3 MP
XPP
X0 18 18 0 5837 1137 3 MP
XPP
X18 0 0 18 5837 1137 3 MP
XPP
X0 18 18 0 5837 1155 3 MP
XPP
X18 0 0 18 5837 1155 3 MP
XPP
X0 17 18 0 5837 1173 3 MP
XPP
X18 0 0 17 5837 1173 3 MP
XPP
X0 18 18 0 5837 1190 3 MP
XPP
X18 0 0 18 5837 1190 3 MP
XPP
X0 18 18 0 5837 1208 3 MP
XPP
X18 0 0 18 5837 1208 3 MP
XPP
X0 18 18 0 5837 1226 3 MP
XPP
X18 0 0 18 5837 1226 3 MP
XPP
X0 18 18 0 5837 1244 3 MP
XPP
X18 0 0 18 5837 1244 3 MP
XPP
X0 17 18 0 5837 1262 3 MP
XPP
X18 0 0 17 5837 1262 3 MP
XPP
X0 18 18 0 5837 1279 3 MP
XPP
X18 0 0 18 5837 1279 3 MP
XPP
X0 18 18 0 5837 1297 3 MP
XPP
X18 0 0 18 5837 1297 3 MP
XPP
X0 18 18 0 5837 1315 3 MP
XPP
X18 0 0 18 5837 1315 3 MP
XPP
X0 18 18 0 5837 1333 3 MP
XPP
X18 0 0 18 5837 1333 3 MP
XPP
X0 18 18 0 5837 1351 3 MP
XPP
X18 0 0 18 5837 1351 3 MP
XPP
X0 17 18 0 5837 1369 3 MP
XPP
X18 0 0 17 5837 1369 3 MP
XPP
X0 18 18 0 5837 1386 3 MP
XPP
X18 0 0 18 5837 1386 3 MP
XPP
X0 18 18 0 5837 1404 3 MP
XPP
X18 0 0 18 5837 1404 3 MP
XPP
X0 18 18 0 5837 1422 3 MP
XPP
X18 0 0 18 5837 1422 3 MP
XPP
X0 18 18 0 5837 1440 3 MP
XPP
X18 0 0 18 5837 1440 3 MP
XPP
X0 18 18 0 5837 1458 3 MP
XPP
X18 0 0 18 5837 1458 3 MP
XPP
X0 17 18 0 5837 1476 3 MP
XPP
X18 0 0 17 5837 1476 3 MP
XPP
X0 18 18 0 5837 1493 3 MP
XPP
X18 0 0 18 5837 1493 3 MP
XPP
X0 18 18 0 5837 1511 3 MP
XPP
X18 0 0 18 5837 1511 3 MP
XPP
X0 18 18 0 5837 1529 3 MP
XPP
X18 0 0 18 5837 1529 3 MP
XPP
X0 18 18 0 5837 1547 3 MP
XPP
X18 0 0 18 5837 1547 3 MP
XPP
X0 18 18 0 5837 1565 3 MP
XPP
X18 0 0 18 5837 1565 3 MP
XPP
X0 17 18 0 5837 1583 3 MP
XPP
X18 0 0 17 5837 1583 3 MP
XPP
X0 18 18 0 5837 1600 3 MP
XPP
X18 0 0 18 5837 1600 3 MP
XPP
X0 18 18 0 5837 1618 3 MP
XPP
X18 0 0 18 5837 1618 3 MP
XPP
X0 18 18 0 5837 1636 3 MP
XPP
X18 0 0 18 5837 1636 3 MP
XPP
X0 18 18 0 5837 1654 3 MP
XPP
X18 0 0 18 5837 1654 3 MP
XPP
X0 18 18 0 5837 1672 3 MP
XPP
X18 0 0 18 5837 1672 3 MP
XPP
X0 17 18 0 5837 1690 3 MP
XPP
X18 0 0 17 5837 1690 3 MP
XPP
X0 18 18 0 5837 1707 3 MP
XPP
X18 0 0 18 5837 1707 3 MP
XPP
X0 18 18 0 5837 1725 3 MP
XPP
X18 0 0 18 5837 1725 3 MP
XPP
X0 18 18 0 5837 1743 3 MP
XPP
X18 0 0 18 5837 1743 3 MP
XPP
X0 18 18 0 5837 1761 3 MP
XPP
X18 0 0 18 5837 1761 3 MP
XPP
X0 18 18 0 5837 1779 3 MP
XPP
X18 0 0 18 5837 1779 3 MP
XPP
X0 17 18 0 5837 1797 3 MP
XPP
X18 0 0 17 5837 1797 3 MP
XPP
X0 18 18 0 5837 1814 3 MP
XPP
X18 0 0 18 5837 1814 3 MP
XPP
X0 18 18 0 5837 1832 3 MP
XPP
X18 0 0 18 5837 1832 3 MP
XPP
X0 18 18 0 5837 1850 3 MP
XPP
X18 0 0 18 5837 1850 3 MP
XPP
X0 18 18 0 5837 1868 3 MP
XPP
X18 0 0 18 5837 1868 3 MP
XPP
X0 18 18 0 5837 1886 3 MP
XPP
X18 0 0 18 5837 1886 3 MP
XPP
X0 17 18 0 5837 1904 3 MP
XPP
X18 0 0 17 5837 1904 3 MP
XPP
X0 18 18 0 5837 1921 3 MP
XPP
X18 0 0 18 5837 1921 3 MP
XPP
X0 18 18 0 5837 1939 3 MP
XPP
X18 0 0 18 5837 1939 3 MP
XPP
X0 18 18 0 5837 1957 3 MP
XPP
X18 0 0 18 5837 1957 3 MP
XPP
X0 18 18 0 5837 1975 3 MP
XPP
X18 0 0 18 5837 1975 3 MP
XPP
X0 18 18 0 5837 1993 3 MP
XPP
X18 0 0 18 5837 1993 3 MP
XPP
X0 17 18 0 5837 2011 3 MP
XPP
X18 0 0 17 5837 2011 3 MP
XPP
X0 18 18 0 5837 2028 3 MP
XPP
X18 0 0 18 5837 2028 3 MP
XPP
X0 18 18 0 5837 2046 3 MP
XPP
X18 0 0 18 5837 2046 3 MP
XPP
X0 18 18 0 5837 2064 3 MP
XPP
X18 0 0 18 5837 2064 3 MP
XPP
X0 18 18 0 5837 2082 3 MP
XPP
X18 0 0 18 5837 2082 3 MP
XPP
X0 18 18 0 5837 2100 3 MP
XPP
X18 0 0 18 5837 2100 3 MP
XPP
X0 17 18 0 5837 2118 3 MP
XPP
X18 0 0 17 5837 2118 3 MP
XPP
X0 18 18 0 5837 2135 3 MP
XPP
X18 0 0 18 5837 2135 3 MP
XPP
X0 18 18 0 5837 2153 3 MP
XPP
X18 0 0 18 5837 2153 3 MP
XPP
X0 18 18 0 5855 388 3 MP
XPP
X18 0 0 18 5855 388 3 MP
XPP
X0 18 18 0 5855 406 3 MP
XPP
X18 0 0 18 5855 406 3 MP
XPP
X0 17 18 0 5855 424 3 MP
XPP
X18 0 0 17 5855 424 3 MP
XPP
X0 18 18 0 5855 441 3 MP
XPP
X18 0 0 18 5855 441 3 MP
XPP
X0 18 18 0 5855 459 3 MP
XPP
X18 0 0 18 5855 459 3 MP
XPP
X0 18 18 0 5855 477 3 MP
XPP
X18 0 0 18 5855 477 3 MP
XPP
X0 18 18 0 5855 495 3 MP
XPP
X18 0 0 18 5855 495 3 MP
XPP
X0 18 18 0 5855 513 3 MP
XPP
X18 0 0 18 5855 513 3 MP
XPP
X0.952381 sg
X0 17 18 0 5855 531 3 MP
XPP
X18 0 0 17 5855 531 3 MP
XPP
X0.888889 sg
X0 18 18 0 5855 548 3 MP
XPP
X18 0 0 18 5855 548 3 MP
XPP
X0.793651 sg
X0 18 18 0 5855 566 3 MP
XPP
X18 0 0 18 5855 566 3 MP
XPP
X0.714286 sg
X0 18 18 0 5855 584 3 MP
XPP
X18 0 0 18 5855 584 3 MP
XPP
X0.68254 sg
X0 18 18 0 5855 602 3 MP
XPP
X18 0 0 18 5855 602 3 MP
XPP
X0.666667 sg
X0 18 18 0 5855 620 3 MP
XPP
X18 0 0 18 5855 620 3 MP
XPP
X0 17 18 0 5855 638 3 MP
XPP
X18 0 0 17 5855 638 3 MP
XPP
X0 18 18 0 5855 655 3 MP
XPP
X18 0 0 18 5855 655 3 MP
XPP
X0 18 18 0 5855 673 3 MP
XPP
X18 0 0 18 5855 673 3 MP
XPP
X0 18 18 0 5855 691 3 MP
XPP
X18 0 0 18 5855 691 3 MP
XPP
X0 18 18 0 5855 709 3 MP
XPP
X18 0 0 18 5855 709 3 MP
XPP
X0 18 18 0 5855 727 3 MP
XPP
X18 0 0 18 5855 727 3 MP
XPP
X0 17 18 0 5855 745 3 MP
XPP
X18 0 0 17 5855 745 3 MP
XPP
X0 18 18 0 5855 762 3 MP
XPP
X18 0 0 18 5855 762 3 MP
XPP
X0 18 18 0 5855 780 3 MP
XPP
X18 0 0 18 5855 780 3 MP
XPP
X0 18 18 0 5855 798 3 MP
XPP
X18 0 0 18 5855 798 3 MP
XPP
X0 18 18 0 5855 816 3 MP
XPP
X18 0 0 18 5855 816 3 MP
XPP
X0.68254 sg
X0 18 18 0 5855 834 3 MP
XPP
X18 0 0 18 5855 834 3 MP
XPP
X0.714286 sg
X0 17 18 0 5855 852 3 MP
XPP
X18 0 0 17 5855 852 3 MP
XPP
X0.793651 sg
X0 18 18 0 5855 869 3 MP
XPP
X18 0 0 18 5855 869 3 MP
XPP
X0.888889 sg
X0 18 18 0 5855 887 3 MP
XPP
X18 0 0 18 5855 887 3 MP
XPP
X0.952381 sg
X0 18 18 0 5855 905 3 MP
XPP
X18 0 0 18 5855 905 3 MP
XPP
X0.984127 sg
X0 18 18 0 5855 923 3 MP
XPP
X18 0 0 18 5855 923 3 MP
XPP
X0 18 18 0 5855 941 3 MP
XPP
X18 0 0 18 5855 941 3 MP
XPP
X0.968254 sg
X0 17 18 0 5855 959 3 MP
XPP
X18 0 0 17 5855 959 3 MP
XPP
X0 18 18 0 5855 976 3 MP
XPP
X18 0 0 18 5855 976 3 MP
XPP
X0 18 18 0 5855 994 3 MP
XPP
X18 0 0 18 5855 994 3 MP
XPP
X0 18 18 0 5855 1012 3 MP
XPP
X18 0 0 18 5855 1012 3 MP
XPP
X1 sg
X0 18 18 0 5855 1030 3 MP
XPP
X18 0 0 18 5855 1030 3 MP
XPP
X0 18 18 0 5855 1048 3 MP
XPP
X18 0 0 18 5855 1048 3 MP
XPP
X0 17 18 0 5855 1066 3 MP
XPP
X18 0 0 17 5855 1066 3 MP
XPP
X0 18 18 0 5855 1083 3 MP
XPP
X18 0 0 18 5855 1083 3 MP
XPP
X0 18 18 0 5855 1101 3 MP
XPP
X18 0 0 18 5855 1101 3 MP
XPP
X0 18 18 0 5855 1119 3 MP
XPP
X18 0 0 18 5855 1119 3 MP
XPP
X0 18 18 0 5855 1137 3 MP
XPP
X18 0 0 18 5855 1137 3 MP
XPP
X0 18 18 0 5855 1155 3 MP
XPP
X18 0 0 18 5855 1155 3 MP
XPP
X0 17 18 0 5855 1173 3 MP
XPP
X18 0 0 17 5855 1173 3 MP
XPP
X0 18 18 0 5855 1190 3 MP
XPP
X18 0 0 18 5855 1190 3 MP
XPP
X0 18 18 0 5855 1208 3 MP
XPP
X18 0 0 18 5855 1208 3 MP
XPP
X0 18 18 0 5855 1226 3 MP
XPP
X18 0 0 18 5855 1226 3 MP
XPP
X0 18 18 0 5855 1244 3 MP
XPP
X18 0 0 18 5855 1244 3 MP
XPP
X0 17 18 0 5855 1262 3 MP
XPP
X18 0 0 17 5855 1262 3 MP
XPP
X0 18 18 0 5855 1279 3 MP
XPP
X18 0 0 18 5855 1279 3 MP
XPP
X0 18 18 0 5855 1297 3 MP
XPP
X18 0 0 18 5855 1297 3 MP
XPP
X0 18 18 0 5855 1315 3 MP
XPP
X18 0 0 18 5855 1315 3 MP
XPP
X0 18 18 0 5855 1333 3 MP
XPP
X18 0 0 18 5855 1333 3 MP
XPP
X0 18 18 0 5855 1351 3 MP
XPP
X18 0 0 18 5855 1351 3 MP
XPP
X0 17 18 0 5855 1369 3 MP
XPP
X18 0 0 17 5855 1369 3 MP
XPP
X0 18 18 0 5855 1386 3 MP
XPP
X18 0 0 18 5855 1386 3 MP
XPP
X0 18 18 0 5855 1404 3 MP
XPP
X18 0 0 18 5855 1404 3 MP
XPP
X0 18 18 0 5855 1422 3 MP
XPP
X18 0 0 18 5855 1422 3 MP
XPP
X0 18 18 0 5855 1440 3 MP
XPP
X18 0 0 18 5855 1440 3 MP
XPP
X0 18 18 0 5855 1458 3 MP
XPP
X18 0 0 18 5855 1458 3 MP
XPP
X0 17 18 0 5855 1476 3 MP
XPP
X18 0 0 17 5855 1476 3 MP
XPP
X0 18 18 0 5855 1493 3 MP
XPP
X18 0 0 18 5855 1493 3 MP
XPP
X0 18 18 0 5855 1511 3 MP
XPP
X18 0 0 18 5855 1511 3 MP
XPP
X0 18 18 0 5855 1529 3 MP
XPP
X18 0 0 18 5855 1529 3 MP
XPP
X0 18 18 0 5855 1547 3 MP
XPP
X18 0 0 18 5855 1547 3 MP
XPP
X0 18 18 0 5855 1565 3 MP
XPP
X18 0 0 18 5855 1565 3 MP
XPP
X0 17 18 0 5855 1583 3 MP
XPP
X18 0 0 17 5855 1583 3 MP
XPP
X0 18 18 0 5855 1600 3 MP
XPP
X18 0 0 18 5855 1600 3 MP
XPP
X0 18 18 0 5855 1618 3 MP
XPP
X18 0 0 18 5855 1618 3 MP
XPP
X0 18 18 0 5855 1636 3 MP
XPP
X18 0 0 18 5855 1636 3 MP
XPP
X0 18 18 0 5855 1654 3 MP
XPP
X18 0 0 18 5855 1654 3 MP
XPP
X0 18 18 0 5855 1672 3 MP
XPP
X18 0 0 18 5855 1672 3 MP
XPP
X0 17 18 0 5855 1690 3 MP
XPP
X18 0 0 17 5855 1690 3 MP
XPP
X0 18 18 0 5855 1707 3 MP
XPP
X18 0 0 18 5855 1707 3 MP
XPP
X0 18 18 0 5855 1725 3 MP
XPP
X18 0 0 18 5855 1725 3 MP
XPP
X0 18 18 0 5855 1743 3 MP
XPP
X18 0 0 18 5855 1743 3 MP
XPP
X0 18 18 0 5855 1761 3 MP
XPP
X18 0 0 18 5855 1761 3 MP
XPP
X0 18 18 0 5855 1779 3 MP
XPP
X18 0 0 18 5855 1779 3 MP
XPP
X0 17 18 0 5855 1797 3 MP
XPP
X18 0 0 17 5855 1797 3 MP
XPP
X0 18 18 0 5855 1814 3 MP
XPP
X18 0 0 18 5855 1814 3 MP
XPP
X0 18 18 0 5855 1832 3 MP
XPP
X18 0 0 18 5855 1832 3 MP
XPP
X0 18 18 0 5855 1850 3 MP
XPP
X18 0 0 18 5855 1850 3 MP
XPP
X0 18 18 0 5855 1868 3 MP
XPP
X18 0 0 18 5855 1868 3 MP
XPP
X0 18 18 0 5855 1886 3 MP
XPP
X18 0 0 18 5855 1886 3 MP
XPP
X0 17 18 0 5855 1904 3 MP
XPP
X18 0 0 17 5855 1904 3 MP
XPP
X0 18 18 0 5855 1921 3 MP
XPP
X18 0 0 18 5855 1921 3 MP
XPP
X0 18 18 0 5855 1939 3 MP
XPP
X18 0 0 18 5855 1939 3 MP
XPP
X0 18 18 0 5855 1957 3 MP
XPP
X18 0 0 18 5855 1957 3 MP
XPP
X0 18 18 0 5855 1975 3 MP
XPP
X18 0 0 18 5855 1975 3 MP
XPP
X0 18 18 0 5855 1993 3 MP
XPP
X18 0 0 18 5855 1993 3 MP
XPP
X0 17 18 0 5855 2011 3 MP
XPP
X18 0 0 17 5855 2011 3 MP
XPP
X0 18 18 0 5855 2028 3 MP
XPP
X18 0 0 18 5855 2028 3 MP
XPP
X0 18 18 0 5855 2046 3 MP
XPP
X18 0 0 18 5855 2046 3 MP
XPP
X0 18 18 0 5855 2064 3 MP
XPP
X18 0 0 18 5855 2064 3 MP
XPP
X0 18 18 0 5855 2082 3 MP
XPP
X18 0 0 18 5855 2082 3 MP
XPP
X0 18 18 0 5855 2100 3 MP
XPP
X18 0 0 18 5855 2100 3 MP
XPP
X0 17 18 0 5855 2118 3 MP
XPP
X18 0 0 17 5855 2118 3 MP
XPP
X0 18 18 0 5855 2135 3 MP
XPP
X18 0 0 18 5855 2135 3 MP
XPP
X0 18 18 0 5855 2153 3 MP
XPP
X18 0 0 18 5855 2153 3 MP
XPP
X0 18 18 0 5873 388 3 MP
XPP
X18 0 0 18 5873 388 3 MP
XPP
X0 18 18 0 5873 406 3 MP
XPP
X18 0 0 18 5873 406 3 MP
XPP
X0 17 18 0 5873 424 3 MP
XPP
X18 0 0 17 5873 424 3 MP
XPP
X0 18 18 0 5873 441 3 MP
XPP
X18 0 0 18 5873 441 3 MP
XPP
X0 18 18 0 5873 459 3 MP
XPP
X18 0 0 18 5873 459 3 MP
XPP
X0 18 18 0 5873 477 3 MP
XPP
X18 0 0 18 5873 477 3 MP
XPP
X0 18 18 0 5873 495 3 MP
XPP
X18 0 0 18 5873 495 3 MP
XPP
X0 18 18 0 5873 513 3 MP
XPP
X18 0 0 18 5873 513 3 MP
XPP
X0 17 18 0 5873 531 3 MP
XPP
X18 0 0 17 5873 531 3 MP
XPP
X0.952381 sg
X0 18 18 0 5873 548 3 MP
XPP
X18 0 0 18 5873 548 3 MP
XPP
X0.857143 sg
X0 18 18 0 5873 566 3 MP
XPP
X18 0 0 18 5873 566 3 MP
XPP
X0.761905 sg
X0 18 18 0 5873 584 3 MP
XPP
X18 0 0 18 5873 584 3 MP
XPP
X0.698413 sg
X0 18 18 0 5873 602 3 MP
XPP
X18 0 0 18 5873 602 3 MP
XPP
X0.666667 sg
X0 18 18 0 5873 620 3 MP
XPP
X18 0 0 18 5873 620 3 MP
XPP
X0 17 18 0 5873 638 3 MP
XPP
X18 0 0 17 5873 638 3 MP
XPP
X0 18 18 0 5873 655 3 MP
XPP
X18 0 0 18 5873 655 3 MP
XPP
X0 18 18 0 5873 673 3 MP
XPP
X18 0 0 18 5873 673 3 MP
XPP
X0 18 18 0 5873 691 3 MP
XPP
X18 0 0 18 5873 691 3 MP
XPP
X0 18 18 0 5873 709 3 MP
XPP
X18 0 0 18 5873 709 3 MP
XPP
X0 18 18 0 5873 727 3 MP
XPP
X18 0 0 18 5873 727 3 MP
XPP
X0 17 18 0 5873 745 3 MP
XPP
X18 0 0 17 5873 745 3 MP
XPP
X0 18 18 0 5873 762 3 MP
XPP
X18 0 0 18 5873 762 3 MP
XPP
X0 18 18 0 5873 780 3 MP
XPP
X18 0 0 18 5873 780 3 MP
XPP
X0 18 18 0 5873 798 3 MP
XPP
X18 0 0 18 5873 798 3 MP
XPP
X0 18 18 0 5873 816 3 MP
XPP
X18 0 0 18 5873 816 3 MP
XPP
X0.698413 sg
X0 18 18 0 5873 834 3 MP
XPP
X18 0 0 18 5873 834 3 MP
XPP
X0.761905 sg
X0 17 18 0 5873 852 3 MP
XPP
X18 0 0 17 5873 852 3 MP
XPP
X0.857143 sg
X0 18 18 0 5873 869 3 MP
XPP
X18 0 0 18 5873 869 3 MP
XPP
X0.952381 sg
X0 18 18 0 5873 887 3 MP
XPP
X18 0 0 18 5873 887 3 MP
XPP
X1 sg
X0 18 18 0 5873 905 3 MP
XPP
X18 0 0 18 5873 905 3 MP
XPP
X0 18 18 0 5873 923 3 MP
XPP
X18 0 0 18 5873 923 3 MP
XPP
X0 18 18 0 5873 941 3 MP
XPP
X18 0 0 18 5873 941 3 MP
XPP
X0 17 18 0 5873 959 3 MP
XPP
X18 0 0 17 5873 959 3 MP
XPP
X0 18 18 0 5873 976 3 MP
XPP
X18 0 0 18 5873 976 3 MP
XPP
X0 18 18 0 5873 994 3 MP
XPP
X18 0 0 18 5873 994 3 MP
XPP
X0 18 18 0 5873 1012 3 MP
XPP
X18 0 0 18 5873 1012 3 MP
XPP
X0 18 18 0 5873 1030 3 MP
XPP
X18 0 0 18 5873 1030 3 MP
XPP
X0 18 18 0 5873 1048 3 MP
XPP
X18 0 0 18 5873 1048 3 MP
XPP
X0 17 18 0 5873 1066 3 MP
XPP
X18 0 0 17 5873 1066 3 MP
XPP
X0 18 18 0 5873 1083 3 MP
XPP
X18 0 0 18 5873 1083 3 MP
XPP
X0 18 18 0 5873 1101 3 MP
XPP
X18 0 0 18 5873 1101 3 MP
XPP
X0 18 18 0 5873 1119 3 MP
XPP
X18 0 0 18 5873 1119 3 MP
XPP
X0 18 18 0 5873 1137 3 MP
XPP
X18 0 0 18 5873 1137 3 MP
XPP
X0 18 18 0 5873 1155 3 MP
XPP
X18 0 0 18 5873 1155 3 MP
XPP
X0 17 18 0 5873 1173 3 MP
XPP
X18 0 0 17 5873 1173 3 MP
XPP
X0 18 18 0 5873 1190 3 MP
XPP
X18 0 0 18 5873 1190 3 MP
XPP
X0 18 18 0 5873 1208 3 MP
XPP
X18 0 0 18 5873 1208 3 MP
XPP
X0 18 18 0 5873 1226 3 MP
XPP
X18 0 0 18 5873 1226 3 MP
XPP
X0 18 18 0 5873 1244 3 MP
XPP
X18 0 0 18 5873 1244 3 MP
XPP
X0 17 18 0 5873 1262 3 MP
XPP
X18 0 0 17 5873 1262 3 MP
XPP
X0 18 18 0 5873 1279 3 MP
XPP
X18 0 0 18 5873 1279 3 MP
XPP
X0 18 18 0 5873 1297 3 MP
XPP
X18 0 0 18 5873 1297 3 MP
XPP
X0 18 18 0 5873 1315 3 MP
XPP
X18 0 0 18 5873 1315 3 MP
XPP
X0 18 18 0 5873 1333 3 MP
XPP
X18 0 0 18 5873 1333 3 MP
XPP
X0 18 18 0 5873 1351 3 MP
XPP
X18 0 0 18 5873 1351 3 MP
XPP
X0 17 18 0 5873 1369 3 MP
XPP
X18 0 0 17 5873 1369 3 MP
XPP
X0 18 18 0 5873 1386 3 MP
XPP
X18 0 0 18 5873 1386 3 MP
XPP
X0 18 18 0 5873 1404 3 MP
XPP
X18 0 0 18 5873 1404 3 MP
XPP
X0 18 18 0 5873 1422 3 MP
XPP
X18 0 0 18 5873 1422 3 MP
XPP
X0 18 18 0 5873 1440 3 MP
XPP
X18 0 0 18 5873 1440 3 MP
XPP
X0 18 18 0 5873 1458 3 MP
XPP
X18 0 0 18 5873 1458 3 MP
XPP
X0 17 18 0 5873 1476 3 MP
XPP
X18 0 0 17 5873 1476 3 MP
XPP
X0 18 18 0 5873 1493 3 MP
XPP
X18 0 0 18 5873 1493 3 MP
XPP
X0 18 18 0 5873 1511 3 MP
XPP
X18 0 0 18 5873 1511 3 MP
XPP
X0 18 18 0 5873 1529 3 MP
XPP
X18 0 0 18 5873 1529 3 MP
XPP
X0 18 18 0 5873 1547 3 MP
XPP
X18 0 0 18 5873 1547 3 MP
XPP
X0 18 18 0 5873 1565 3 MP
XPP
X18 0 0 18 5873 1565 3 MP
XPP
X0 17 18 0 5873 1583 3 MP
XPP
X18 0 0 17 5873 1583 3 MP
XPP
X0 18 18 0 5873 1600 3 MP
XPP
X18 0 0 18 5873 1600 3 MP
XPP
X0 18 18 0 5873 1618 3 MP
XPP
X18 0 0 18 5873 1618 3 MP
XPP
X0 18 18 0 5873 1636 3 MP
XPP
X18 0 0 18 5873 1636 3 MP
XPP
X0 18 18 0 5873 1654 3 MP
XPP
X18 0 0 18 5873 1654 3 MP
XPP
X0 18 18 0 5873 1672 3 MP
XPP
X18 0 0 18 5873 1672 3 MP
XPP
X0 17 18 0 5873 1690 3 MP
XPP
X18 0 0 17 5873 1690 3 MP
XPP
X0 18 18 0 5873 1707 3 MP
XPP
X18 0 0 18 5873 1707 3 MP
XPP
X0 18 18 0 5873 1725 3 MP
XPP
X18 0 0 18 5873 1725 3 MP
XPP
X0 18 18 0 5873 1743 3 MP
XPP
X18 0 0 18 5873 1743 3 MP
XPP
X0 18 18 0 5873 1761 3 MP
XPP
X18 0 0 18 5873 1761 3 MP
XPP
X0 18 18 0 5873 1779 3 MP
XPP
X18 0 0 18 5873 1779 3 MP
XPP
X0 17 18 0 5873 1797 3 MP
XPP
X18 0 0 17 5873 1797 3 MP
XPP
X0 18 18 0 5873 1814 3 MP
XPP
X18 0 0 18 5873 1814 3 MP
XPP
X0 18 18 0 5873 1832 3 MP
XPP
X18 0 0 18 5873 1832 3 MP
XPP
X0 18 18 0 5873 1850 3 MP
XPP
X18 0 0 18 5873 1850 3 MP
XPP
X0 18 18 0 5873 1868 3 MP
XPP
X18 0 0 18 5873 1868 3 MP
XPP
X0 18 18 0 5873 1886 3 MP
XPP
X18 0 0 18 5873 1886 3 MP
XPP
X0 17 18 0 5873 1904 3 MP
XPP
X18 0 0 17 5873 1904 3 MP
XPP
X0 18 18 0 5873 1921 3 MP
XPP
X18 0 0 18 5873 1921 3 MP
XPP
X0 18 18 0 5873 1939 3 MP
XPP
X18 0 0 18 5873 1939 3 MP
XPP
X0 18 18 0 5873 1957 3 MP
XPP
X18 0 0 18 5873 1957 3 MP
XPP
X0 18 18 0 5873 1975 3 MP
XPP
X18 0 0 18 5873 1975 3 MP
XPP
X0 18 18 0 5873 1993 3 MP
XPP
X18 0 0 18 5873 1993 3 MP
XPP
X0 17 18 0 5873 2011 3 MP
XPP
X18 0 0 17 5873 2011 3 MP
XPP
X0 18 18 0 5873 2028 3 MP
XPP
X18 0 0 18 5873 2028 3 MP
XPP
X0 18 18 0 5873 2046 3 MP
XPP
X18 0 0 18 5873 2046 3 MP
XPP
X0 18 18 0 5873 2064 3 MP
XPP
X18 0 0 18 5873 2064 3 MP
XPP
X0 18 18 0 5873 2082 3 MP
XPP
X18 0 0 18 5873 2082 3 MP
XPP
X0 18 18 0 5873 2100 3 MP
XPP
X18 0 0 18 5873 2100 3 MP
XPP
X0 17 18 0 5873 2118 3 MP
XPP
X18 0 0 17 5873 2118 3 MP
XPP
X0 18 18 0 5873 2135 3 MP
XPP
X18 0 0 18 5873 2135 3 MP
XPP
X0 18 18 0 5873 2153 3 MP
XPP
X18 0 0 18 5873 2153 3 MP
XPP
X0 18 18 0 5891 388 3 MP
XPP
X18 0 0 18 5891 388 3 MP
XPP
X0 18 18 0 5891 406 3 MP
XPP
X18 0 0 18 5891 406 3 MP
XPP
X0 17 18 0 5891 424 3 MP
XPP
X18 0 0 17 5891 424 3 MP
XPP
X0 18 18 0 5891 441 3 MP
XPP
X18 0 0 18 5891 441 3 MP
XPP
X0 18 18 0 5891 459 3 MP
XPP
X18 0 0 18 5891 459 3 MP
XPP
X0 18 18 0 5891 477 3 MP
XPP
X18 0 0 18 5891 477 3 MP
XPP
X0 18 18 0 5891 495 3 MP
XPP
X18 0 0 18 5891 495 3 MP
XPP
X0 18 18 0 5891 513 3 MP
XPP
X18 0 0 18 5891 513 3 MP
XPP
X0 17 18 0 5891 531 3 MP
XPP
X18 0 0 17 5891 531 3 MP
XPP
X0.984127 sg
X0 18 18 0 5891 548 3 MP
XPP
X18 0 0 18 5891 548 3 MP
XPP
X0.920635 sg
X0 18 18 0 5891 566 3 MP
XPP
X18 0 0 18 5891 566 3 MP
XPP
X0.825397 sg
X0 18 18 0 5891 584 3 MP
XPP
X18 0 0 18 5891 584 3 MP
XPP
X0.730159 sg
X0 18 18 0 5891 602 3 MP
XPP
X18 0 0 18 5891 602 3 MP
XPP
X0.698413 sg
X0 18 18 0 5891 620 3 MP
XPP
X18 0 0 18 5891 620 3 MP
XPP
X0.68254 sg
X0 17 18 0 5891 638 3 MP
XPP
X18 0 0 17 5891 638 3 MP
XPP
X0.666667 sg
X0 18 18 0 5891 655 3 MP
XPP
X18 0 0 18 5891 655 3 MP
XPP
X0 18 18 0 5891 673 3 MP
XPP
X18 0 0 18 5891 673 3 MP
XPP
X0 18 18 0 5891 691 3 MP
XPP
X18 0 0 18 5891 691 3 MP
XPP
X0 18 18 0 5891 709 3 MP
XPP
X18 0 0 18 5891 709 3 MP
XPP
X0 18 18 0 5891 727 3 MP
XPP
X18 0 0 18 5891 727 3 MP
XPP
X0 17 18 0 5891 745 3 MP
XPP
X18 0 0 17 5891 745 3 MP
XPP
X0 18 18 0 5891 762 3 MP
XPP
X18 0 0 18 5891 762 3 MP
XPP
X0 18 18 0 5891 780 3 MP
XPP
X18 0 0 18 5891 780 3 MP
XPP
X0.68254 sg
X0 18 18 0 5891 798 3 MP
XPP
X18 0 0 18 5891 798 3 MP
XPP
X0.698413 sg
X0 18 18 0 5891 816 3 MP
XPP
X18 0 0 18 5891 816 3 MP
XPP
X0.730159 sg
X0 18 18 0 5891 834 3 MP
XPP
X18 0 0 18 5891 834 3 MP
XPP
X0.825397 sg
X0 17 18 0 5891 852 3 MP
XPP
X18 0 0 17 5891 852 3 MP
XPP
X0.920635 sg
X0 18 18 0 5891 869 3 MP
XPP
X18 0 0 18 5891 869 3 MP
XPP
X0.984127 sg
X0 18 18 0 5891 887 3 MP
XPP
X18 0 0 18 5891 887 3 MP
XPP
X1 sg
X0 18 18 0 5891 905 3 MP
XPP
X18 0 0 18 5891 905 3 MP
XPP
X0 18 18 0 5891 923 3 MP
XPP
X18 0 0 18 5891 923 3 MP
XPP
X0 18 18 0 5891 941 3 MP
XPP
X18 0 0 18 5891 941 3 MP
XPP
X0 17 18 0 5891 959 3 MP
XPP
X18 0 0 17 5891 959 3 MP
XPP
X0 18 18 0 5891 976 3 MP
XPP
X18 0 0 18 5891 976 3 MP
XPP
X0 18 18 0 5891 994 3 MP
XPP
X18 0 0 18 5891 994 3 MP
XPP
X0 18 18 0 5891 1012 3 MP
XPP
X18 0 0 18 5891 1012 3 MP
XPP
X0 18 18 0 5891 1030 3 MP
XPP
X18 0 0 18 5891 1030 3 MP
XPP
X0 18 18 0 5891 1048 3 MP
XPP
X18 0 0 18 5891 1048 3 MP
XPP
X0 17 18 0 5891 1066 3 MP
XPP
X18 0 0 17 5891 1066 3 MP
XPP
X0 18 18 0 5891 1083 3 MP
XPP
X18 0 0 18 5891 1083 3 MP
XPP
X0 18 18 0 5891 1101 3 MP
XPP
X18 0 0 18 5891 1101 3 MP
XPP
X0 18 18 0 5891 1119 3 MP
XPP
X18 0 0 18 5891 1119 3 MP
XPP
X0 18 18 0 5891 1137 3 MP
XPP
X18 0 0 18 5891 1137 3 MP
XPP
X0 18 18 0 5891 1155 3 MP
XPP
X18 0 0 18 5891 1155 3 MP
XPP
X0 17 18 0 5891 1173 3 MP
XPP
X18 0 0 17 5891 1173 3 MP
XPP
X0 18 18 0 5891 1190 3 MP
XPP
X18 0 0 18 5891 1190 3 MP
XPP
X0 18 18 0 5891 1208 3 MP
XPP
X18 0 0 18 5891 1208 3 MP
XPP
X0 18 18 0 5891 1226 3 MP
XPP
X18 0 0 18 5891 1226 3 MP
XPP
X0 18 18 0 5891 1244 3 MP
XPP
X18 0 0 18 5891 1244 3 MP
XPP
X0 17 18 0 5891 1262 3 MP
XPP
X18 0 0 17 5891 1262 3 MP
XPP
X0 18 18 0 5891 1279 3 MP
XPP
X18 0 0 18 5891 1279 3 MP
XPP
X0 18 18 0 5891 1297 3 MP
XPP
X18 0 0 18 5891 1297 3 MP
XPP
X0 18 18 0 5891 1315 3 MP
XPP
X18 0 0 18 5891 1315 3 MP
XPP
X0 18 18 0 5891 1333 3 MP
XPP
X18 0 0 18 5891 1333 3 MP
XPP
X0 18 18 0 5891 1351 3 MP
XPP
X18 0 0 18 5891 1351 3 MP
XPP
X0 17 18 0 5891 1369 3 MP
XPP
X18 0 0 17 5891 1369 3 MP
XPP
X0 18 18 0 5891 1386 3 MP
XPP
X18 0 0 18 5891 1386 3 MP
XPP
X0 18 18 0 5891 1404 3 MP
XPP
X18 0 0 18 5891 1404 3 MP
XPP
X0 18 18 0 5891 1422 3 MP
XPP
X18 0 0 18 5891 1422 3 MP
XPP
X0 18 18 0 5891 1440 3 MP
XPP
X18 0 0 18 5891 1440 3 MP
XPP
X0 18 18 0 5891 1458 3 MP
XPP
X18 0 0 18 5891 1458 3 MP
XPP
X0 17 18 0 5891 1476 3 MP
XPP
X18 0 0 17 5891 1476 3 MP
XPP
X0 18 18 0 5891 1493 3 MP
XPP
X18 0 0 18 5891 1493 3 MP
XPP
X0 18 18 0 5891 1511 3 MP
XPP
X18 0 0 18 5891 1511 3 MP
XPP
X0 18 18 0 5891 1529 3 MP
XPP
X18 0 0 18 5891 1529 3 MP
XPP
X0 18 18 0 5891 1547 3 MP
XPP
X18 0 0 18 5891 1547 3 MP
XPP
X0 18 18 0 5891 1565 3 MP
XPP
X18 0 0 18 5891 1565 3 MP
XPP
X0 17 18 0 5891 1583 3 MP
XPP
X18 0 0 17 5891 1583 3 MP
XPP
X0 18 18 0 5891 1600 3 MP
XPP
X18 0 0 18 5891 1600 3 MP
XPP
X0 18 18 0 5891 1618 3 MP
XPP
X18 0 0 18 5891 1618 3 MP
XPP
X0 18 18 0 5891 1636 3 MP
XPP
X18 0 0 18 5891 1636 3 MP
XPP
X0 18 18 0 5891 1654 3 MP
XPP
X18 0 0 18 5891 1654 3 MP
XPP
X0 18 18 0 5891 1672 3 MP
XPP
X18 0 0 18 5891 1672 3 MP
XPP
X0 17 18 0 5891 1690 3 MP
XPP
X18 0 0 17 5891 1690 3 MP
XPP
X0 18 18 0 5891 1707 3 MP
XPP
X18 0 0 18 5891 1707 3 MP
XPP
X0 18 18 0 5891 1725 3 MP
XPP
X18 0 0 18 5891 1725 3 MP
XPP
X0 18 18 0 5891 1743 3 MP
XPP
X18 0 0 18 5891 1743 3 MP
XPP
X0 18 18 0 5891 1761 3 MP
XPP
X18 0 0 18 5891 1761 3 MP
XPP
X0 18 18 0 5891 1779 3 MP
XPP
X18 0 0 18 5891 1779 3 MP
XPP
X0 17 18 0 5891 1797 3 MP
XPP
X18 0 0 17 5891 1797 3 MP
XPP
X0 18 18 0 5891 1814 3 MP
XPP
X18 0 0 18 5891 1814 3 MP
XPP
X0 18 18 0 5891 1832 3 MP
XPP
X18 0 0 18 5891 1832 3 MP
XPP
X0 18 18 0 5891 1850 3 MP
XPP
X18 0 0 18 5891 1850 3 MP
XPP
X0 18 18 0 5891 1868 3 MP
XPP
X18 0 0 18 5891 1868 3 MP
XPP
X0 18 18 0 5891 1886 3 MP
XPP
X18 0 0 18 5891 1886 3 MP
XPP
X0 17 18 0 5891 1904 3 MP
XPP
X18 0 0 17 5891 1904 3 MP
XPP
X0 18 18 0 5891 1921 3 MP
XPP
X18 0 0 18 5891 1921 3 MP
XPP
X0 18 18 0 5891 1939 3 MP
XPP
X18 0 0 18 5891 1939 3 MP
XPP
X0 18 18 0 5891 1957 3 MP
XPP
X18 0 0 18 5891 1957 3 MP
XPP
X0 18 18 0 5891 1975 3 MP
XPP
X18 0 0 18 5891 1975 3 MP
XPP
X0 18 18 0 5891 1993 3 MP
XPP
X18 0 0 18 5891 1993 3 MP
XPP
X0 17 18 0 5891 2011 3 MP
XPP
X18 0 0 17 5891 2011 3 MP
XPP
X0 18 18 0 5891 2028 3 MP
XPP
X18 0 0 18 5891 2028 3 MP
XPP
X0 18 18 0 5891 2046 3 MP
XPP
X18 0 0 18 5891 2046 3 MP
XPP
X0 18 18 0 5891 2064 3 MP
XPP
X18 0 0 18 5891 2064 3 MP
XPP
X0 18 18 0 5891 2082 3 MP
XPP
X18 0 0 18 5891 2082 3 MP
XPP
X0 18 18 0 5891 2100 3 MP
XPP
X18 0 0 18 5891 2100 3 MP
XPP
X0 17 18 0 5891 2118 3 MP
XPP
X18 0 0 17 5891 2118 3 MP
XPP
X0 18 18 0 5891 2135 3 MP
XPP
X18 0 0 18 5891 2135 3 MP
XPP
X0 18 18 0 5891 2153 3 MP
XPP
X18 0 0 18 5891 2153 3 MP
XPP
X0 18 17 0 5909 388 3 MP
XPP
X17 0 0 18 5909 388 3 MP
XPP
X0 18 17 0 5909 406 3 MP
XPP
X17 0 0 18 5909 406 3 MP
XPP
X0 17 17 0 5909 424 3 MP
XPP
X17 0 0 17 5909 424 3 MP
XPP
X0 18 17 0 5909 441 3 MP
XPP
X17 0 0 18 5909 441 3 MP
XPP
X0 18 17 0 5909 459 3 MP
XPP
X17 0 0 18 5909 459 3 MP
XPP
X0 18 17 0 5909 477 3 MP
XPP
X17 0 0 18 5909 477 3 MP
XPP
X0 18 17 0 5909 495 3 MP
XPP
X17 0 0 18 5909 495 3 MP
XPP
X0 18 17 0 5909 513 3 MP
XPP
X17 0 0 18 5909 513 3 MP
XPP
X0 17 17 0 5909 531 3 MP
XPP
X17 0 0 17 5909 531 3 MP
XPP
X0 18 17 0 5909 548 3 MP
XPP
X17 0 0 18 5909 548 3 MP
XPP
X0.968254 sg
X0 18 17 0 5909 566 3 MP
XPP
X17 0 0 18 5909 566 3 MP
XPP
X0.888889 sg
X0 18 17 0 5909 584 3 MP
XPP
X17 0 0 18 5909 584 3 MP
XPP
X0.825397 sg
X0 18 17 0 5909 602 3 MP
XPP
X17 0 0 18 5909 602 3 MP
XPP
X0.761905 sg
X0 18 17 0 5909 620 3 MP
XPP
X17 0 0 18 5909 620 3 MP
XPP
X0.714286 sg
X0 17 17 0 5909 638 3 MP
XPP
X17 0 0 17 5909 638 3 MP
XPP
X0.68254 sg
X0 18 17 0 5909 655 3 MP
XPP
X17 0 0 18 5909 655 3 MP
XPP
X0.666667 sg
X0 18 17 0 5909 673 3 MP
XPP
X17 0 0 18 5909 673 3 MP
XPP
X0 18 17 0 5909 691 3 MP
XPP
X17 0 0 18 5909 691 3 MP
XPP
X0 18 17 0 5909 709 3 MP
XPP
X17 0 0 18 5909 709 3 MP
XPP
X0 18 17 0 5909 727 3 MP
XPP
X17 0 0 18 5909 727 3 MP
XPP
X0 17 17 0 5909 745 3 MP
XPP
X17 0 0 17 5909 745 3 MP
XPP
X0 18 17 0 5909 762 3 MP
XPP
X17 0 0 18 5909 762 3 MP
XPP
X0.68254 sg
X0 18 17 0 5909 780 3 MP
XPP
X17 0 0 18 5909 780 3 MP
XPP
X0.714286 sg
X0 18 17 0 5909 798 3 MP
XPP
X17 0 0 18 5909 798 3 MP
XPP
X0.761905 sg
X0 18 17 0 5909 816 3 MP
XPP
X17 0 0 18 5909 816 3 MP
XPP
X0.825397 sg
X0 18 17 0 5909 834 3 MP
XPP
X17 0 0 18 5909 834 3 MP
XPP
X0.888889 sg
X0 17 17 0 5909 852 3 MP
XPP
X17 0 0 17 5909 852 3 MP
XPP
X0.968254 sg
X0 18 17 0 5909 869 3 MP
XPP
X17 0 0 18 5909 869 3 MP
XPP
X1 sg
X0 18 17 0 5909 887 3 MP
XPP
X17 0 0 18 5909 887 3 MP
XPP
X0 18 17 0 5909 905 3 MP
XPP
X17 0 0 18 5909 905 3 MP
XPP
X0 18 17 0 5909 923 3 MP
XPP
X17 0 0 18 5909 923 3 MP
XPP
X0 18 17 0 5909 941 3 MP
XPP
X17 0 0 18 5909 941 3 MP
XPP
X0 17 17 0 5909 959 3 MP
XPP
X17 0 0 17 5909 959 3 MP
XPP
X0 18 17 0 5909 976 3 MP
XPP
X17 0 0 18 5909 976 3 MP
XPP
X0 18 17 0 5909 994 3 MP
XPP
X17 0 0 18 5909 994 3 MP
XPP
X0 18 17 0 5909 1012 3 MP
XPP
X17 0 0 18 5909 1012 3 MP
XPP
X0 18 17 0 5909 1030 3 MP
XPP
X17 0 0 18 5909 1030 3 MP
XPP
X0 18 17 0 5909 1048 3 MP
XPP
X17 0 0 18 5909 1048 3 MP
XPP
X0 17 17 0 5909 1066 3 MP
XPP
X17 0 0 17 5909 1066 3 MP
XPP
X0 18 17 0 5909 1083 3 MP
XPP
X17 0 0 18 5909 1083 3 MP
XPP
X0 18 17 0 5909 1101 3 MP
XPP
X17 0 0 18 5909 1101 3 MP
XPP
X0 18 17 0 5909 1119 3 MP
XPP
X17 0 0 18 5909 1119 3 MP
XPP
X0 18 17 0 5909 1137 3 MP
XPP
X17 0 0 18 5909 1137 3 MP
XPP
X0 18 17 0 5909 1155 3 MP
XPP
X17 0 0 18 5909 1155 3 MP
XPP
X0 17 17 0 5909 1173 3 MP
XPP
X17 0 0 17 5909 1173 3 MP
XPP
X0 18 17 0 5909 1190 3 MP
XPP
X17 0 0 18 5909 1190 3 MP
XPP
X0 18 17 0 5909 1208 3 MP
XPP
X17 0 0 18 5909 1208 3 MP
XPP
X0 18 17 0 5909 1226 3 MP
XPP
X17 0 0 18 5909 1226 3 MP
XPP
X0 18 17 0 5909 1244 3 MP
XPP
X17 0 0 18 5909 1244 3 MP
XPP
X0 17 17 0 5909 1262 3 MP
XPP
X17 0 0 17 5909 1262 3 MP
XPP
X0 18 17 0 5909 1279 3 MP
XPP
X17 0 0 18 5909 1279 3 MP
XPP
X0 18 17 0 5909 1297 3 MP
XPP
X17 0 0 18 5909 1297 3 MP
XPP
X0 18 17 0 5909 1315 3 MP
XPP
X17 0 0 18 5909 1315 3 MP
XPP
X0 18 17 0 5909 1333 3 MP
XPP
X17 0 0 18 5909 1333 3 MP
XPP
X0 18 17 0 5909 1351 3 MP
XPP
X17 0 0 18 5909 1351 3 MP
XPP
X0 17 17 0 5909 1369 3 MP
XPP
X17 0 0 17 5909 1369 3 MP
XPP
X0 18 17 0 5909 1386 3 MP
XPP
X17 0 0 18 5909 1386 3 MP
XPP
X0 18 17 0 5909 1404 3 MP
XPP
X17 0 0 18 5909 1404 3 MP
XPP
X0 18 17 0 5909 1422 3 MP
XPP
X17 0 0 18 5909 1422 3 MP
XPP
X0 18 17 0 5909 1440 3 MP
XPP
X17 0 0 18 5909 1440 3 MP
XPP
X0 18 17 0 5909 1458 3 MP
XPP
X17 0 0 18 5909 1458 3 MP
XPP
X0 17 17 0 5909 1476 3 MP
XPP
X17 0 0 17 5909 1476 3 MP
XPP
X0 18 17 0 5909 1493 3 MP
XPP
X17 0 0 18 5909 1493 3 MP
XPP
X0 18 17 0 5909 1511 3 MP
XPP
X17 0 0 18 5909 1511 3 MP
XPP
X0 18 17 0 5909 1529 3 MP
XPP
X17 0 0 18 5909 1529 3 MP
XPP
X0 18 17 0 5909 1547 3 MP
XPP
X17 0 0 18 5909 1547 3 MP
XPP
X0 18 17 0 5909 1565 3 MP
XPP
X17 0 0 18 5909 1565 3 MP
XPP
X0 17 17 0 5909 1583 3 MP
XPP
X17 0 0 17 5909 1583 3 MP
XPP
X0 18 17 0 5909 1600 3 MP
XPP
X17 0 0 18 5909 1600 3 MP
XPP
X0 18 17 0 5909 1618 3 MP
XPP
X17 0 0 18 5909 1618 3 MP
XPP
X0 18 17 0 5909 1636 3 MP
XPP
X17 0 0 18 5909 1636 3 MP
XPP
X0 18 17 0 5909 1654 3 MP
XPP
X17 0 0 18 5909 1654 3 MP
XPP
X0 18 17 0 5909 1672 3 MP
XPP
X17 0 0 18 5909 1672 3 MP
XPP
X0 17 17 0 5909 1690 3 MP
XPP
X17 0 0 17 5909 1690 3 MP
XPP
X0 18 17 0 5909 1707 3 MP
XPP
X17 0 0 18 5909 1707 3 MP
XPP
X0 18 17 0 5909 1725 3 MP
XPP
X17 0 0 18 5909 1725 3 MP
XPP
X0 18 17 0 5909 1743 3 MP
XPP
X17 0 0 18 5909 1743 3 MP
XPP
X0 18 17 0 5909 1761 3 MP
XPP
X17 0 0 18 5909 1761 3 MP
XPP
X0 18 17 0 5909 1779 3 MP
XPP
X17 0 0 18 5909 1779 3 MP
XPP
X0 17 17 0 5909 1797 3 MP
XPP
X17 0 0 17 5909 1797 3 MP
XPP
X0 18 17 0 5909 1814 3 MP
XPP
X17 0 0 18 5909 1814 3 MP
XPP
X0 18 17 0 5909 1832 3 MP
XPP
X17 0 0 18 5909 1832 3 MP
XPP
X0 18 17 0 5909 1850 3 MP
XPP
X17 0 0 18 5909 1850 3 MP
XPP
X0 18 17 0 5909 1868 3 MP
XPP
X17 0 0 18 5909 1868 3 MP
XPP
X0 18 17 0 5909 1886 3 MP
XPP
X17 0 0 18 5909 1886 3 MP
XPP
X0 17 17 0 5909 1904 3 MP
XPP
X17 0 0 17 5909 1904 3 MP
XPP
X0 18 17 0 5909 1921 3 MP
XPP
X17 0 0 18 5909 1921 3 MP
XPP
X0 18 17 0 5909 1939 3 MP
XPP
X17 0 0 18 5909 1939 3 MP
XPP
X0 18 17 0 5909 1957 3 MP
XPP
X17 0 0 18 5909 1957 3 MP
XPP
X0 18 17 0 5909 1975 3 MP
XPP
X17 0 0 18 5909 1975 3 MP
XPP
X0 18 17 0 5909 1993 3 MP
XPP
X17 0 0 18 5909 1993 3 MP
XPP
X0 17 17 0 5909 2011 3 MP
XPP
X17 0 0 17 5909 2011 3 MP
XPP
X0 18 17 0 5909 2028 3 MP
XPP
X17 0 0 18 5909 2028 3 MP
XPP
X0 18 17 0 5909 2046 3 MP
XPP
X17 0 0 18 5909 2046 3 MP
XPP
X0 18 17 0 5909 2064 3 MP
XPP
X17 0 0 18 5909 2064 3 MP
XPP
X0 18 17 0 5909 2082 3 MP
XPP
X17 0 0 18 5909 2082 3 MP
XPP
X0 18 17 0 5909 2100 3 MP
XPP
X17 0 0 18 5909 2100 3 MP
XPP
X0 17 17 0 5909 2118 3 MP
XPP
X17 0 0 17 5909 2118 3 MP
XPP
X0 18 17 0 5909 2135 3 MP
XPP
X17 0 0 18 5909 2135 3 MP
XPP
X0 18 17 0 5909 2153 3 MP
XPP
X17 0 0 18 5909 2153 3 MP
XPP
X0 18 18 0 5926 388 3 MP
XPP
X18 0 0 18 5926 388 3 MP
XPP
X0 18 18 0 5926 406 3 MP
XPP
X18 0 0 18 5926 406 3 MP
XPP
X0 17 18 0 5926 424 3 MP
XPP
X18 0 0 17 5926 424 3 MP
XPP
X0 18 18 0 5926 441 3 MP
XPP
X18 0 0 18 5926 441 3 MP
XPP
X0 18 18 0 5926 459 3 MP
XPP
X18 0 0 18 5926 459 3 MP
XPP
X0 18 18 0 5926 477 3 MP
XPP
X18 0 0 18 5926 477 3 MP
XPP
X0 18 18 0 5926 495 3 MP
XPP
X18 0 0 18 5926 495 3 MP
XPP
X0 18 18 0 5926 513 3 MP
XPP
X18 0 0 18 5926 513 3 MP
XPP
X0 17 18 0 5926 531 3 MP
XPP
X18 0 0 17 5926 531 3 MP
XPP
X0 18 18 0 5926 548 3 MP
XPP
X18 0 0 18 5926 548 3 MP
XPP
X0 18 18 0 5926 566 3 MP
XPP
X18 0 0 18 5926 566 3 MP
XPP
X0.968254 sg
X0 18 18 0 5926 584 3 MP
XPP
X18 0 0 18 5926 584 3 MP
XPP
X0.920635 sg
X0 18 18 0 5926 602 3 MP
XPP
X18 0 0 18 5926 602 3 MP
XPP
X0.857143 sg
X0 18 18 0 5926 620 3 MP
XPP
X18 0 0 18 5926 620 3 MP
XPP
X0.793651 sg
X0 17 18 0 5926 638 3 MP
XPP
X18 0 0 17 5926 638 3 MP
XPP
X0.730159 sg
X0 18 18 0 5926 655 3 MP
XPP
X18 0 0 18 5926 655 3 MP
XPP
X0.698413 sg
X0 18 18 0 5926 673 3 MP
XPP
X18 0 0 18 5926 673 3 MP
XPP
X0 18 18 0 5926 691 3 MP
XPP
X18 0 0 18 5926 691 3 MP
XPP
X0 18 18 0 5926 709 3 MP
XPP
X18 0 0 18 5926 709 3 MP
XPP
X0 18 18 0 5926 727 3 MP
XPP
X18 0 0 18 5926 727 3 MP
XPP
X0 17 18 0 5926 745 3 MP
XPP
X18 0 0 17 5926 745 3 MP
XPP
X0 18 18 0 5926 762 3 MP
XPP
X18 0 0 18 5926 762 3 MP
XPP
X0.730159 sg
X0 18 18 0 5926 780 3 MP
XPP
X18 0 0 18 5926 780 3 MP
XPP
X0.793651 sg
X0 18 18 0 5926 798 3 MP
XPP
X18 0 0 18 5926 798 3 MP
XPP
X0.857143 sg
X0 18 18 0 5926 816 3 MP
XPP
X18 0 0 18 5926 816 3 MP
XPP
X0.920635 sg
X0 18 18 0 5926 834 3 MP
XPP
X18 0 0 18 5926 834 3 MP
XPP
X0.968254 sg
X0 17 18 0 5926 852 3 MP
XPP
X18 0 0 17 5926 852 3 MP
XPP
X1 sg
X0 18 18 0 5926 869 3 MP
XPP
X18 0 0 18 5926 869 3 MP
XPP
X0 18 18 0 5926 887 3 MP
XPP
X18 0 0 18 5926 887 3 MP
XPP
X0 18 18 0 5926 905 3 MP
XPP
X18 0 0 18 5926 905 3 MP
XPP
X0 18 18 0 5926 923 3 MP
XPP
X18 0 0 18 5926 923 3 MP
XPP
X0 18 18 0 5926 941 3 MP
XPP
X18 0 0 18 5926 941 3 MP
XPP
X0 17 18 0 5926 959 3 MP
XPP
X18 0 0 17 5926 959 3 MP
XPP
X0 18 18 0 5926 976 3 MP
XPP
X18 0 0 18 5926 976 3 MP
XPP
X0 18 18 0 5926 994 3 MP
XPP
X18 0 0 18 5926 994 3 MP
XPP
X0 18 18 0 5926 1012 3 MP
XPP
X18 0 0 18 5926 1012 3 MP
XPP
X0 18 18 0 5926 1030 3 MP
XPP
X18 0 0 18 5926 1030 3 MP
XPP
X0 18 18 0 5926 1048 3 MP
XPP
X18 0 0 18 5926 1048 3 MP
XPP
X0 17 18 0 5926 1066 3 MP
XPP
X18 0 0 17 5926 1066 3 MP
XPP
X0 18 18 0 5926 1083 3 MP
XPP
X18 0 0 18 5926 1083 3 MP
XPP
X0 18 18 0 5926 1101 3 MP
XPP
X18 0 0 18 5926 1101 3 MP
XPP
X0 18 18 0 5926 1119 3 MP
XPP
X18 0 0 18 5926 1119 3 MP
XPP
X0 18 18 0 5926 1137 3 MP
XPP
X18 0 0 18 5926 1137 3 MP
XPP
X0 18 18 0 5926 1155 3 MP
XPP
X18 0 0 18 5926 1155 3 MP
XPP
X0 17 18 0 5926 1173 3 MP
XPP
X18 0 0 17 5926 1173 3 MP
XPP
X0 18 18 0 5926 1190 3 MP
XPP
X18 0 0 18 5926 1190 3 MP
XPP
X0 18 18 0 5926 1208 3 MP
XPP
X18 0 0 18 5926 1208 3 MP
XPP
X0 18 18 0 5926 1226 3 MP
XPP
X18 0 0 18 5926 1226 3 MP
XPP
X0 18 18 0 5926 1244 3 MP
XPP
X18 0 0 18 5926 1244 3 MP
XPP
X0 17 18 0 5926 1262 3 MP
XPP
X18 0 0 17 5926 1262 3 MP
XPP
X0 18 18 0 5926 1279 3 MP
XPP
X18 0 0 18 5926 1279 3 MP
XPP
X0 18 18 0 5926 1297 3 MP
XPP
X18 0 0 18 5926 1297 3 MP
XPP
X0 18 18 0 5926 1315 3 MP
XPP
X18 0 0 18 5926 1315 3 MP
XPP
X0 18 18 0 5926 1333 3 MP
XPP
X18 0 0 18 5926 1333 3 MP
XPP
X0 18 18 0 5926 1351 3 MP
XPP
X18 0 0 18 5926 1351 3 MP
XPP
X0 17 18 0 5926 1369 3 MP
XPP
X18 0 0 17 5926 1369 3 MP
XPP
X0 18 18 0 5926 1386 3 MP
XPP
X18 0 0 18 5926 1386 3 MP
XPP
X0 18 18 0 5926 1404 3 MP
XPP
X18 0 0 18 5926 1404 3 MP
XPP
X0 18 18 0 5926 1422 3 MP
XPP
X18 0 0 18 5926 1422 3 MP
XPP
X0 18 18 0 5926 1440 3 MP
XPP
X18 0 0 18 5926 1440 3 MP
XPP
X0 18 18 0 5926 1458 3 MP
XPP
X18 0 0 18 5926 1458 3 MP
XPP
X0 17 18 0 5926 1476 3 MP
XPP
X18 0 0 17 5926 1476 3 MP
XPP
X0 18 18 0 5926 1493 3 MP
XPP
X18 0 0 18 5926 1493 3 MP
XPP
X0 18 18 0 5926 1511 3 MP
XPP
X18 0 0 18 5926 1511 3 MP
XPP
X0 18 18 0 5926 1529 3 MP
XPP
X18 0 0 18 5926 1529 3 MP
XPP
X0 18 18 0 5926 1547 3 MP
XPP
X18 0 0 18 5926 1547 3 MP
XPP
X0 18 18 0 5926 1565 3 MP
XPP
X18 0 0 18 5926 1565 3 MP
XPP
X0 17 18 0 5926 1583 3 MP
XPP
X18 0 0 17 5926 1583 3 MP
XPP
X0 18 18 0 5926 1600 3 MP
XPP
X18 0 0 18 5926 1600 3 MP
XPP
X0 18 18 0 5926 1618 3 MP
XPP
X18 0 0 18 5926 1618 3 MP
XPP
X0 18 18 0 5926 1636 3 MP
XPP
X18 0 0 18 5926 1636 3 MP
XPP
X0 18 18 0 5926 1654 3 MP
XPP
X18 0 0 18 5926 1654 3 MP
XPP
X0 18 18 0 5926 1672 3 MP
XPP
X18 0 0 18 5926 1672 3 MP
XPP
X0 17 18 0 5926 1690 3 MP
XPP
X18 0 0 17 5926 1690 3 MP
XPP
X0 18 18 0 5926 1707 3 MP
XPP
X18 0 0 18 5926 1707 3 MP
XPP
X0 18 18 0 5926 1725 3 MP
XPP
X18 0 0 18 5926 1725 3 MP
XPP
X0 18 18 0 5926 1743 3 MP
XPP
X18 0 0 18 5926 1743 3 MP
XPP
X0 18 18 0 5926 1761 3 MP
XPP
X18 0 0 18 5926 1761 3 MP
XPP
X0 18 18 0 5926 1779 3 MP
XPP
X18 0 0 18 5926 1779 3 MP
XPP
X0 17 18 0 5926 1797 3 MP
XPP
X18 0 0 17 5926 1797 3 MP
XPP
X0 18 18 0 5926 1814 3 MP
XPP
X18 0 0 18 5926 1814 3 MP
XPP
X0 18 18 0 5926 1832 3 MP
XPP
X18 0 0 18 5926 1832 3 MP
XPP
X0 18 18 0 5926 1850 3 MP
XPP
X18 0 0 18 5926 1850 3 MP
XPP
X0 18 18 0 5926 1868 3 MP
XPP
X18 0 0 18 5926 1868 3 MP
XPP
X0 18 18 0 5926 1886 3 MP
XPP
X18 0 0 18 5926 1886 3 MP
XPP
X0 17 18 0 5926 1904 3 MP
XPP
X18 0 0 17 5926 1904 3 MP
XPP
X0 18 18 0 5926 1921 3 MP
XPP
X18 0 0 18 5926 1921 3 MP
XPP
X0 18 18 0 5926 1939 3 MP
XPP
X18 0 0 18 5926 1939 3 MP
XPP
X0 18 18 0 5926 1957 3 MP
XPP
X18 0 0 18 5926 1957 3 MP
XPP
X0 18 18 0 5926 1975 3 MP
XPP
X18 0 0 18 5926 1975 3 MP
XPP
X0 18 18 0 5926 1993 3 MP
XPP
X18 0 0 18 5926 1993 3 MP
XPP
X0 17 18 0 5926 2011 3 MP
XPP
X18 0 0 17 5926 2011 3 MP
XPP
X0 18 18 0 5926 2028 3 MP
XPP
X18 0 0 18 5926 2028 3 MP
XPP
X0 18 18 0 5926 2046 3 MP
XPP
X18 0 0 18 5926 2046 3 MP
XPP
X0 18 18 0 5926 2064 3 MP
XPP
X18 0 0 18 5926 2064 3 MP
XPP
X0 18 18 0 5926 2082 3 MP
XPP
X18 0 0 18 5926 2082 3 MP
XPP
X0 18 18 0 5926 2100 3 MP
XPP
X18 0 0 18 5926 2100 3 MP
XPP
X0 17 18 0 5926 2118 3 MP
XPP
X18 0 0 17 5926 2118 3 MP
XPP
X0 18 18 0 5926 2135 3 MP
XPP
X18 0 0 18 5926 2135 3 MP
XPP
X0 18 18 0 5926 2153 3 MP
XPP
X18 0 0 18 5926 2153 3 MP
XPP
X0 18 18 0 5944 388 3 MP
XPP
X18 0 0 18 5944 388 3 MP
XPP
X0 18 18 0 5944 406 3 MP
XPP
X18 0 0 18 5944 406 3 MP
XPP
X0 17 18 0 5944 424 3 MP
XPP
X18 0 0 17 5944 424 3 MP
XPP
X0 18 18 0 5944 441 3 MP
XPP
X18 0 0 18 5944 441 3 MP
XPP
X0 18 18 0 5944 459 3 MP
XPP
X18 0 0 18 5944 459 3 MP
XPP
X0 18 18 0 5944 477 3 MP
XPP
X18 0 0 18 5944 477 3 MP
XPP
X0 18 18 0 5944 495 3 MP
XPP
X18 0 0 18 5944 495 3 MP
XPP
X0 18 18 0 5944 513 3 MP
XPP
X18 0 0 18 5944 513 3 MP
XPP
X0 17 18 0 5944 531 3 MP
XPP
X18 0 0 17 5944 531 3 MP
XPP
X0 18 18 0 5944 548 3 MP
XPP
X18 0 0 18 5944 548 3 MP
XPP
X0 18 18 0 5944 566 3 MP
XPP
X18 0 0 18 5944 566 3 MP
XPP
X0 18 18 0 5944 584 3 MP
XPP
X18 0 0 18 5944 584 3 MP
XPP
X0.984127 sg
X0 18 18 0 5944 602 3 MP
XPP
X18 0 0 18 5944 602 3 MP
XPP
X0.952381 sg
X0 18 18 0 5944 620 3 MP
XPP
X18 0 0 18 5944 620 3 MP
XPP
X0.888889 sg
X0 17 18 0 5944 638 3 MP
XPP
X18 0 0 17 5944 638 3 MP
XPP
X0.825397 sg
X0 18 18 0 5944 655 3 MP
XPP
X18 0 0 18 5944 655 3 MP
XPP
X0.793651 sg
X0 18 18 0 5944 673 3 MP
XPP
X18 0 0 18 5944 673 3 MP
XPP
X0.777778 sg
X0 18 18 0 5944 691 3 MP
XPP
X18 0 0 18 5944 691 3 MP
XPP
X0 18 18 0 5944 709 3 MP
XPP
X18 0 0 18 5944 709 3 MP
XPP
X0 18 18 0 5944 727 3 MP
XPP
X18 0 0 18 5944 727 3 MP
XPP
X0 17 18 0 5944 745 3 MP
XPP
X18 0 0 17 5944 745 3 MP
XPP
X0.793651 sg
X0 18 18 0 5944 762 3 MP
XPP
X18 0 0 18 5944 762 3 MP
XPP
X0.825397 sg
X0 18 18 0 5944 780 3 MP
XPP
X18 0 0 18 5944 780 3 MP
XPP
X0.888889 sg
X0 18 18 0 5944 798 3 MP
XPP
X18 0 0 18 5944 798 3 MP
XPP
X0.952381 sg
X0 18 18 0 5944 816 3 MP
XPP
X18 0 0 18 5944 816 3 MP
XPP
X0.984127 sg
X0 18 18 0 5944 834 3 MP
XPP
X18 0 0 18 5944 834 3 MP
XPP
X1 sg
X0 17 18 0 5944 852 3 MP
XPP
X18 0 0 17 5944 852 3 MP
XPP
X0 18 18 0 5944 869 3 MP
XPP
X18 0 0 18 5944 869 3 MP
XPP
X0 18 18 0 5944 887 3 MP
XPP
X18 0 0 18 5944 887 3 MP
XPP
X0 18 18 0 5944 905 3 MP
XPP
X18 0 0 18 5944 905 3 MP
XPP
X0 18 18 0 5944 923 3 MP
XPP
X18 0 0 18 5944 923 3 MP
XPP
X0 18 18 0 5944 941 3 MP
XPP
X18 0 0 18 5944 941 3 MP
XPP
X0 17 18 0 5944 959 3 MP
XPP
X18 0 0 17 5944 959 3 MP
XPP
X0 18 18 0 5944 976 3 MP
XPP
X18 0 0 18 5944 976 3 MP
XPP
X0 18 18 0 5944 994 3 MP
XPP
X18 0 0 18 5944 994 3 MP
XPP
X0 18 18 0 5944 1012 3 MP
XPP
X18 0 0 18 5944 1012 3 MP
XPP
X0 18 18 0 5944 1030 3 MP
XPP
X18 0 0 18 5944 1030 3 MP
XPP
X0 18 18 0 5944 1048 3 MP
XPP
X18 0 0 18 5944 1048 3 MP
XPP
X0 17 18 0 5944 1066 3 MP
XPP
X18 0 0 17 5944 1066 3 MP
XPP
X0 18 18 0 5944 1083 3 MP
XPP
X18 0 0 18 5944 1083 3 MP
XPP
X0 18 18 0 5944 1101 3 MP
XPP
X18 0 0 18 5944 1101 3 MP
XPP
X0 18 18 0 5944 1119 3 MP
XPP
X18 0 0 18 5944 1119 3 MP
XPP
X0 18 18 0 5944 1137 3 MP
XPP
X18 0 0 18 5944 1137 3 MP
XPP
X0 18 18 0 5944 1155 3 MP
XPP
X18 0 0 18 5944 1155 3 MP
XPP
X0 17 18 0 5944 1173 3 MP
XPP
X18 0 0 17 5944 1173 3 MP
XPP
X0 18 18 0 5944 1190 3 MP
XPP
X18 0 0 18 5944 1190 3 MP
XPP
X0 18 18 0 5944 1208 3 MP
XPP
X18 0 0 18 5944 1208 3 MP
XPP
X0 18 18 0 5944 1226 3 MP
XPP
X18 0 0 18 5944 1226 3 MP
XPP
X0 18 18 0 5944 1244 3 MP
XPP
X18 0 0 18 5944 1244 3 MP
XPP
X0 17 18 0 5944 1262 3 MP
XPP
X18 0 0 17 5944 1262 3 MP
XPP
X0 18 18 0 5944 1279 3 MP
XPP
X18 0 0 18 5944 1279 3 MP
XPP
X0 18 18 0 5944 1297 3 MP
XPP
X18 0 0 18 5944 1297 3 MP
XPP
X0 18 18 0 5944 1315 3 MP
XPP
X18 0 0 18 5944 1315 3 MP
XPP
X0 18 18 0 5944 1333 3 MP
XPP
X18 0 0 18 5944 1333 3 MP
XPP
X0 18 18 0 5944 1351 3 MP
XPP
X18 0 0 18 5944 1351 3 MP
XPP
X0 17 18 0 5944 1369 3 MP
XPP
X18 0 0 17 5944 1369 3 MP
XPP
X0 18 18 0 5944 1386 3 MP
XPP
X18 0 0 18 5944 1386 3 MP
XPP
X0 18 18 0 5944 1404 3 MP
XPP
X18 0 0 18 5944 1404 3 MP
XPP
X0 18 18 0 5944 1422 3 MP
XPP
X18 0 0 18 5944 1422 3 MP
XPP
X0 18 18 0 5944 1440 3 MP
XPP
X18 0 0 18 5944 1440 3 MP
XPP
X0 18 18 0 5944 1458 3 MP
XPP
X18 0 0 18 5944 1458 3 MP
XPP
X0 17 18 0 5944 1476 3 MP
XPP
X18 0 0 17 5944 1476 3 MP
XPP
X0 18 18 0 5944 1493 3 MP
XPP
X18 0 0 18 5944 1493 3 MP
XPP
X0 18 18 0 5944 1511 3 MP
XPP
X18 0 0 18 5944 1511 3 MP
XPP
X0 18 18 0 5944 1529 3 MP
XPP
X18 0 0 18 5944 1529 3 MP
XPP
X0 18 18 0 5944 1547 3 MP
XPP
X18 0 0 18 5944 1547 3 MP
XPP
X0 18 18 0 5944 1565 3 MP
XPP
X18 0 0 18 5944 1565 3 MP
XPP
X0 17 18 0 5944 1583 3 MP
XPP
X18 0 0 17 5944 1583 3 MP
XPP
X0 18 18 0 5944 1600 3 MP
XPP
X18 0 0 18 5944 1600 3 MP
XPP
X0 18 18 0 5944 1618 3 MP
XPP
X18 0 0 18 5944 1618 3 MP
XPP
X0 18 18 0 5944 1636 3 MP
XPP
X18 0 0 18 5944 1636 3 MP
XPP
X0 18 18 0 5944 1654 3 MP
XPP
X18 0 0 18 5944 1654 3 MP
XPP
X0 18 18 0 5944 1672 3 MP
XPP
X18 0 0 18 5944 1672 3 MP
XPP
X0 17 18 0 5944 1690 3 MP
XPP
X18 0 0 17 5944 1690 3 MP
XPP
X0 18 18 0 5944 1707 3 MP
XPP
X18 0 0 18 5944 1707 3 MP
XPP
X0 18 18 0 5944 1725 3 MP
XPP
X18 0 0 18 5944 1725 3 MP
XPP
X0 18 18 0 5944 1743 3 MP
XPP
X18 0 0 18 5944 1743 3 MP
XPP
X0 18 18 0 5944 1761 3 MP
XPP
X18 0 0 18 5944 1761 3 MP
XPP
X0 18 18 0 5944 1779 3 MP
XPP
X18 0 0 18 5944 1779 3 MP
XPP
X0 17 18 0 5944 1797 3 MP
XPP
X18 0 0 17 5944 1797 3 MP
XPP
X0 18 18 0 5944 1814 3 MP
XPP
X18 0 0 18 5944 1814 3 MP
XPP
X0 18 18 0 5944 1832 3 MP
XPP
X18 0 0 18 5944 1832 3 MP
XPP
X0 18 18 0 5944 1850 3 MP
XPP
X18 0 0 18 5944 1850 3 MP
XPP
X0 18 18 0 5944 1868 3 MP
XPP
X18 0 0 18 5944 1868 3 MP
XPP
X0 18 18 0 5944 1886 3 MP
XPP
X18 0 0 18 5944 1886 3 MP
XPP
X0 17 18 0 5944 1904 3 MP
XPP
X18 0 0 17 5944 1904 3 MP
XPP
X0 18 18 0 5944 1921 3 MP
XPP
X18 0 0 18 5944 1921 3 MP
XPP
X0 18 18 0 5944 1939 3 MP
XPP
X18 0 0 18 5944 1939 3 MP
XPP
X0 18 18 0 5944 1957 3 MP
XPP
X18 0 0 18 5944 1957 3 MP
XPP
X0 18 18 0 5944 1975 3 MP
XPP
X18 0 0 18 5944 1975 3 MP
XPP
X0 18 18 0 5944 1993 3 MP
XPP
X18 0 0 18 5944 1993 3 MP
XPP
X0 17 18 0 5944 2011 3 MP
XPP
X18 0 0 17 5944 2011 3 MP
XPP
X0 18 18 0 5944 2028 3 MP
XPP
X18 0 0 18 5944 2028 3 MP
XPP
X0 18 18 0 5944 2046 3 MP
XPP
X18 0 0 18 5944 2046 3 MP
XPP
X0 18 18 0 5944 2064 3 MP
XPP
X18 0 0 18 5944 2064 3 MP
XPP
X0 18 18 0 5944 2082 3 MP
XPP
X18 0 0 18 5944 2082 3 MP
XPP
X0 18 18 0 5944 2100 3 MP
XPP
X18 0 0 18 5944 2100 3 MP
XPP
X0 17 18 0 5944 2118 3 MP
XPP
X18 0 0 17 5944 2118 3 MP
XPP
X0 18 18 0 5944 2135 3 MP
XPP
X18 0 0 18 5944 2135 3 MP
XPP
X0 18 18 0 5944 2153 3 MP
XPP
X18 0 0 18 5944 2153 3 MP
XPP
X0 18 18 0 5962 388 3 MP
XPP
X18 0 0 18 5962 388 3 MP
XPP
X0 18 18 0 5962 406 3 MP
XPP
X18 0 0 18 5962 406 3 MP
XPP
X0 17 18 0 5962 424 3 MP
XPP
X18 0 0 17 5962 424 3 MP
XPP
X0 18 18 0 5962 441 3 MP
XPP
X18 0 0 18 5962 441 3 MP
XPP
X0 18 18 0 5962 459 3 MP
XPP
X18 0 0 18 5962 459 3 MP
XPP
X0 18 18 0 5962 477 3 MP
XPP
X18 0 0 18 5962 477 3 MP
XPP
X0 18 18 0 5962 495 3 MP
XPP
X18 0 0 18 5962 495 3 MP
XPP
X0 18 18 0 5962 513 3 MP
XPP
X18 0 0 18 5962 513 3 MP
XPP
X0 17 18 0 5962 531 3 MP
XPP
X18 0 0 17 5962 531 3 MP
XPP
X0 18 18 0 5962 548 3 MP
XPP
X18 0 0 18 5962 548 3 MP
XPP
X0 18 18 0 5962 566 3 MP
XPP
X18 0 0 18 5962 566 3 MP
XPP
X0 18 18 0 5962 584 3 MP
XPP
X18 0 0 18 5962 584 3 MP
XPP
X0 18 18 0 5962 602 3 MP
XPP
X18 0 0 18 5962 602 3 MP
XPP
X0 18 18 0 5962 620 3 MP
XPP
X18 0 0 18 5962 620 3 MP
XPP
X0.968254 sg
X0 17 18 0 5962 638 3 MP
XPP
X18 0 0 17 5962 638 3 MP
XPP
X0.920635 sg
X0 18 18 0 5962 655 3 MP
XPP
X18 0 0 18 5962 655 3 MP
XPP
X0.904762 sg
X0 18 18 0 5962 673 3 MP
XPP
X18 0 0 18 5962 673 3 MP
XPP
X0 18 18 0 5962 691 3 MP
XPP
X18 0 0 18 5962 691 3 MP
XPP
X0 18 18 0 5962 709 3 MP
XPP
X18 0 0 18 5962 709 3 MP
XPP
X0 18 18 0 5962 727 3 MP
XPP
X18 0 0 18 5962 727 3 MP
XPP
X0 17 18 0 5962 745 3 MP
XPP
X18 0 0 17 5962 745 3 MP
XPP
X0 18 18 0 5962 762 3 MP
XPP
X18 0 0 18 5962 762 3 MP
XPP
X0.920635 sg
X0 18 18 0 5962 780 3 MP
XPP
X18 0 0 18 5962 780 3 MP
XPP
X0.968254 sg
X0 18 18 0 5962 798 3 MP
XPP
X18 0 0 18 5962 798 3 MP
XPP
X1 sg
X0 18 18 0 5962 816 3 MP
XPP
X18 0 0 18 5962 816 3 MP
XPP
X0 18 18 0 5962 834 3 MP
XPP
X18 0 0 18 5962 834 3 MP
XPP
X0 17 18 0 5962 852 3 MP
XPP
X18 0 0 17 5962 852 3 MP
XPP
X0 18 18 0 5962 869 3 MP
XPP
X18 0 0 18 5962 869 3 MP
XPP
X0 18 18 0 5962 887 3 MP
XPP
X18 0 0 18 5962 887 3 MP
XPP
X0 18 18 0 5962 905 3 MP
XPP
X18 0 0 18 5962 905 3 MP
XPP
X0 18 18 0 5962 923 3 MP
XPP
X18 0 0 18 5962 923 3 MP
XPP
X0 18 18 0 5962 941 3 MP
XPP
X18 0 0 18 5962 941 3 MP
XPP
X0 17 18 0 5962 959 3 MP
XPP
X18 0 0 17 5962 959 3 MP
XPP
X0 18 18 0 5962 976 3 MP
XPP
X18 0 0 18 5962 976 3 MP
XPP
X0 18 18 0 5962 994 3 MP
XPP
X18 0 0 18 5962 994 3 MP
XPP
X0 18 18 0 5962 1012 3 MP
XPP
X18 0 0 18 5962 1012 3 MP
XPP
X0 18 18 0 5962 1030 3 MP
XPP
X18 0 0 18 5962 1030 3 MP
XPP
X0 18 18 0 5962 1048 3 MP
XPP
X18 0 0 18 5962 1048 3 MP
XPP
X0 17 18 0 5962 1066 3 MP
XPP
X18 0 0 17 5962 1066 3 MP
XPP
X0 18 18 0 5962 1083 3 MP
XPP
X18 0 0 18 5962 1083 3 MP
XPP
X0 18 18 0 5962 1101 3 MP
XPP
X18 0 0 18 5962 1101 3 MP
XPP
X0 18 18 0 5962 1119 3 MP
XPP
X18 0 0 18 5962 1119 3 MP
XPP
X0 18 18 0 5962 1137 3 MP
XPP
X18 0 0 18 5962 1137 3 MP
XPP
X0 18 18 0 5962 1155 3 MP
XPP
X18 0 0 18 5962 1155 3 MP
XPP
X0 17 18 0 5962 1173 3 MP
XPP
X18 0 0 17 5962 1173 3 MP
XPP
X0 18 18 0 5962 1190 3 MP
XPP
X18 0 0 18 5962 1190 3 MP
XPP
X0 18 18 0 5962 1208 3 MP
XPP
X18 0 0 18 5962 1208 3 MP
XPP
X0 18 18 0 5962 1226 3 MP
XPP
X18 0 0 18 5962 1226 3 MP
XPP
X0 18 18 0 5962 1244 3 MP
XPP
X18 0 0 18 5962 1244 3 MP
XPP
X0 17 18 0 5962 1262 3 MP
XPP
X18 0 0 17 5962 1262 3 MP
XPP
X0 18 18 0 5962 1279 3 MP
XPP
X18 0 0 18 5962 1279 3 MP
XPP
X0 18 18 0 5962 1297 3 MP
XPP
X18 0 0 18 5962 1297 3 MP
XPP
X0 18 18 0 5962 1315 3 MP
XPP
X18 0 0 18 5962 1315 3 MP
XPP
X0 18 18 0 5962 1333 3 MP
XPP
X18 0 0 18 5962 1333 3 MP
XPP
X0 18 18 0 5962 1351 3 MP
XPP
X18 0 0 18 5962 1351 3 MP
XPP
X0 17 18 0 5962 1369 3 MP
XPP
X18 0 0 17 5962 1369 3 MP
XPP
X0 18 18 0 5962 1386 3 MP
XPP
X18 0 0 18 5962 1386 3 MP
XPP
X0 18 18 0 5962 1404 3 MP
XPP
X18 0 0 18 5962 1404 3 MP
XPP
X0 18 18 0 5962 1422 3 MP
XPP
X18 0 0 18 5962 1422 3 MP
XPP
X0 18 18 0 5962 1440 3 MP
XPP
X18 0 0 18 5962 1440 3 MP
XPP
X0 18 18 0 5962 1458 3 MP
XPP
X18 0 0 18 5962 1458 3 MP
XPP
X0 17 18 0 5962 1476 3 MP
XPP
X18 0 0 17 5962 1476 3 MP
XPP
X0 18 18 0 5962 1493 3 MP
XPP
X18 0 0 18 5962 1493 3 MP
XPP
X0 18 18 0 5962 1511 3 MP
XPP
X18 0 0 18 5962 1511 3 MP
XPP
X0 18 18 0 5962 1529 3 MP
XPP
X18 0 0 18 5962 1529 3 MP
XPP
X0 18 18 0 5962 1547 3 MP
XPP
X18 0 0 18 5962 1547 3 MP
XPP
X0 18 18 0 5962 1565 3 MP
XPP
X18 0 0 18 5962 1565 3 MP
XPP
X0 17 18 0 5962 1583 3 MP
XPP
X18 0 0 17 5962 1583 3 MP
XPP
X0 18 18 0 5962 1600 3 MP
XPP
X18 0 0 18 5962 1600 3 MP
XPP
X0 18 18 0 5962 1618 3 MP
XPP
X18 0 0 18 5962 1618 3 MP
XPP
X0 18 18 0 5962 1636 3 MP
XPP
X18 0 0 18 5962 1636 3 MP
XPP
X0 18 18 0 5962 1654 3 MP
XPP
X18 0 0 18 5962 1654 3 MP
XPP
X0 18 18 0 5962 1672 3 MP
XPP
X18 0 0 18 5962 1672 3 MP
XPP
X0 17 18 0 5962 1690 3 MP
XPP
X18 0 0 17 5962 1690 3 MP
XPP
X0 18 18 0 5962 1707 3 MP
XPP
X18 0 0 18 5962 1707 3 MP
XPP
X0 18 18 0 5962 1725 3 MP
XPP
X18 0 0 18 5962 1725 3 MP
XPP
X0 18 18 0 5962 1743 3 MP
XPP
X18 0 0 18 5962 1743 3 MP
XPP
X0 18 18 0 5962 1761 3 MP
XPP
X18 0 0 18 5962 1761 3 MP
XPP
X0 18 18 0 5962 1779 3 MP
XPP
X18 0 0 18 5962 1779 3 MP
XPP
X0 17 18 0 5962 1797 3 MP
XPP
X18 0 0 17 5962 1797 3 MP
XPP
X0 18 18 0 5962 1814 3 MP
XPP
X18 0 0 18 5962 1814 3 MP
XPP
X0 18 18 0 5962 1832 3 MP
XPP
X18 0 0 18 5962 1832 3 MP
XPP
X0 18 18 0 5962 1850 3 MP
XPP
X18 0 0 18 5962 1850 3 MP
XPP
X0 18 18 0 5962 1868 3 MP
XPP
X18 0 0 18 5962 1868 3 MP
XPP
X0 18 18 0 5962 1886 3 MP
XPP
X18 0 0 18 5962 1886 3 MP
XPP
X0 17 18 0 5962 1904 3 MP
XPP
X18 0 0 17 5962 1904 3 MP
XPP
X0 18 18 0 5962 1921 3 MP
XPP
X18 0 0 18 5962 1921 3 MP
XPP
X0 18 18 0 5962 1939 3 MP
XPP
X18 0 0 18 5962 1939 3 MP
XPP
X0 18 18 0 5962 1957 3 MP
XPP
X18 0 0 18 5962 1957 3 MP
XPP
X0 18 18 0 5962 1975 3 MP
XPP
X18 0 0 18 5962 1975 3 MP
XPP
X0 18 18 0 5962 1993 3 MP
XPP
X18 0 0 18 5962 1993 3 MP
XPP
X0 17 18 0 5962 2011 3 MP
XPP
X18 0 0 17 5962 2011 3 MP
XPP
X0 18 18 0 5962 2028 3 MP
XPP
X18 0 0 18 5962 2028 3 MP
XPP
X0 18 18 0 5962 2046 3 MP
XPP
X18 0 0 18 5962 2046 3 MP
XPP
X0 18 18 0 5962 2064 3 MP
XPP
X18 0 0 18 5962 2064 3 MP
XPP
X0 18 18 0 5962 2082 3 MP
XPP
X18 0 0 18 5962 2082 3 MP
XPP
X0 18 18 0 5962 2100 3 MP
XPP
X18 0 0 18 5962 2100 3 MP
XPP
X0 17 18 0 5962 2118 3 MP
XPP
X18 0 0 17 5962 2118 3 MP
XPP
X0 18 18 0 5962 2135 3 MP
XPP
X18 0 0 18 5962 2135 3 MP
XPP
X0 18 18 0 5962 2153 3 MP
XPP
X18 0 0 18 5962 2153 3 MP
XPP
X0 18 18 0 5980 388 3 MP
XPP
X18 0 0 18 5980 388 3 MP
XPP
X0 18 18 0 5980 406 3 MP
XPP
X18 0 0 18 5980 406 3 MP
XPP
X0 17 18 0 5980 424 3 MP
XPP
X18 0 0 17 5980 424 3 MP
XPP
X0 18 18 0 5980 441 3 MP
XPP
X18 0 0 18 5980 441 3 MP
XPP
X0 18 18 0 5980 459 3 MP
XPP
X18 0 0 18 5980 459 3 MP
XPP
X0 18 18 0 5980 477 3 MP
XPP
X18 0 0 18 5980 477 3 MP
XPP
X0 18 18 0 5980 495 3 MP
XPP
X18 0 0 18 5980 495 3 MP
XPP
X0 18 18 0 5980 513 3 MP
XPP
X18 0 0 18 5980 513 3 MP
XPP
X0 17 18 0 5980 531 3 MP
XPP
X18 0 0 17 5980 531 3 MP
XPP
X0 18 18 0 5980 548 3 MP
XPP
X18 0 0 18 5980 548 3 MP
XPP
X0 18 18 0 5980 566 3 MP
XPP
X18 0 0 18 5980 566 3 MP
XPP
X0 18 18 0 5980 584 3 MP
XPP
X18 0 0 18 5980 584 3 MP
XPP
X0 18 18 0 5980 602 3 MP
XPP
X18 0 0 18 5980 602 3 MP
XPP
X0 18 18 0 5980 620 3 MP
XPP
X18 0 0 18 5980 620 3 MP
XPP
X0 17 18 0 5980 638 3 MP
XPP
X18 0 0 17 5980 638 3 MP
XPP
X0.984127 sg
X0 18 18 0 5980 655 3 MP
XPP
X18 0 0 18 5980 655 3 MP
XPP
X0 18 18 0 5980 673 3 MP
XPP
X18 0 0 18 5980 673 3 MP
XPP
X0 18 18 0 5980 691 3 MP
XPP
X18 0 0 18 5980 691 3 MP
XPP
X0 18 18 0 5980 709 3 MP
XPP
X18 0 0 18 5980 709 3 MP
XPP
X0 18 18 0 5980 727 3 MP
XPP
X18 0 0 18 5980 727 3 MP
XPP
X0 17 18 0 5980 745 3 MP
XPP
X18 0 0 17 5980 745 3 MP
XPP
X0 18 18 0 5980 762 3 MP
XPP
X18 0 0 18 5980 762 3 MP
XPP
X0 18 18 0 5980 780 3 MP
XPP
X18 0 0 18 5980 780 3 MP
XPP
X1 sg
X0 18 18 0 5980 798 3 MP
XPP
X18 0 0 18 5980 798 3 MP
XPP
X0 18 18 0 5980 816 3 MP
XPP
X18 0 0 18 5980 816 3 MP
XPP
X0 18 18 0 5980 834 3 MP
XPP
X18 0 0 18 5980 834 3 MP
XPP
X0 17 18 0 5980 852 3 MP
XPP
X18 0 0 17 5980 852 3 MP
XPP
X0 18 18 0 5980 869 3 MP
XPP
X18 0 0 18 5980 869 3 MP
XPP
X0 18 18 0 5980 887 3 MP
XPP
X18 0 0 18 5980 887 3 MP
XPP
X0 18 18 0 5980 905 3 MP
XPP
X18 0 0 18 5980 905 3 MP
XPP
X0 18 18 0 5980 923 3 MP
XPP
X18 0 0 18 5980 923 3 MP
XPP
X0 18 18 0 5980 941 3 MP
XPP
X18 0 0 18 5980 941 3 MP
XPP
X0 17 18 0 5980 959 3 MP
XPP
X18 0 0 17 5980 959 3 MP
XPP
X0 18 18 0 5980 976 3 MP
XPP
X18 0 0 18 5980 976 3 MP
XPP
X0 18 18 0 5980 994 3 MP
XPP
X18 0 0 18 5980 994 3 MP
XPP
X0 18 18 0 5980 1012 3 MP
XPP
X18 0 0 18 5980 1012 3 MP
XPP
X0 18 18 0 5980 1030 3 MP
XPP
X18 0 0 18 5980 1030 3 MP
XPP
X0 18 18 0 5980 1048 3 MP
XPP
X18 0 0 18 5980 1048 3 MP
XPP
X0 17 18 0 5980 1066 3 MP
XPP
X18 0 0 17 5980 1066 3 MP
XPP
X0 18 18 0 5980 1083 3 MP
XPP
X18 0 0 18 5980 1083 3 MP
XPP
X0 18 18 0 5980 1101 3 MP
XPP
X18 0 0 18 5980 1101 3 MP
XPP
X0 18 18 0 5980 1119 3 MP
XPP
X18 0 0 18 5980 1119 3 MP
XPP
X0 18 18 0 5980 1137 3 MP
XPP
X18 0 0 18 5980 1137 3 MP
XPP
X0 18 18 0 5980 1155 3 MP
XPP
X18 0 0 18 5980 1155 3 MP
XPP
X0 17 18 0 5980 1173 3 MP
XPP
X18 0 0 17 5980 1173 3 MP
XPP
X0 18 18 0 5980 1190 3 MP
XPP
X18 0 0 18 5980 1190 3 MP
XPP
X0 18 18 0 5980 1208 3 MP
XPP
X18 0 0 18 5980 1208 3 MP
XPP
X0 18 18 0 5980 1226 3 MP
XPP
X18 0 0 18 5980 1226 3 MP
XPP
X0 18 18 0 5980 1244 3 MP
XPP
X18 0 0 18 5980 1244 3 MP
XPP
X0 17 18 0 5980 1262 3 MP
XPP
X18 0 0 17 5980 1262 3 MP
XPP
X0 18 18 0 5980 1279 3 MP
XPP
X18 0 0 18 5980 1279 3 MP
XPP
X0 18 18 0 5980 1297 3 MP
XPP
X18 0 0 18 5980 1297 3 MP
XPP
X0 18 18 0 5980 1315 3 MP
XPP
X18 0 0 18 5980 1315 3 MP
XPP
X0 18 18 0 5980 1333 3 MP
XPP
X18 0 0 18 5980 1333 3 MP
XPP
X0 18 18 0 5980 1351 3 MP
XPP
X18 0 0 18 5980 1351 3 MP
XPP
X0 17 18 0 5980 1369 3 MP
XPP
X18 0 0 17 5980 1369 3 MP
XPP
X0 18 18 0 5980 1386 3 MP
XPP
X18 0 0 18 5980 1386 3 MP
XPP
X0 18 18 0 5980 1404 3 MP
XPP
X18 0 0 18 5980 1404 3 MP
XPP
X0 18 18 0 5980 1422 3 MP
XPP
X18 0 0 18 5980 1422 3 MP
XPP
X0 18 18 0 5980 1440 3 MP
XPP
X18 0 0 18 5980 1440 3 MP
XPP
X0 18 18 0 5980 1458 3 MP
XPP
X18 0 0 18 5980 1458 3 MP
XPP
X0 17 18 0 5980 1476 3 MP
XPP
X18 0 0 17 5980 1476 3 MP
XPP
X0 18 18 0 5980 1493 3 MP
XPP
X18 0 0 18 5980 1493 3 MP
XPP
X0 18 18 0 5980 1511 3 MP
XPP
X18 0 0 18 5980 1511 3 MP
XPP
X0 18 18 0 5980 1529 3 MP
XPP
X18 0 0 18 5980 1529 3 MP
XPP
X0 18 18 0 5980 1547 3 MP
XPP
X18 0 0 18 5980 1547 3 MP
XPP
X0 18 18 0 5980 1565 3 MP
XPP
X18 0 0 18 5980 1565 3 MP
XPP
X0 17 18 0 5980 1583 3 MP
XPP
X18 0 0 17 5980 1583 3 MP
XPP
X0 18 18 0 5980 1600 3 MP
XPP
X18 0 0 18 5980 1600 3 MP
XPP
X0 18 18 0 5980 1618 3 MP
XPP
X18 0 0 18 5980 1618 3 MP
XPP
X0 18 18 0 5980 1636 3 MP
XPP
X18 0 0 18 5980 1636 3 MP
XPP
X0 18 18 0 5980 1654 3 MP
XPP
X18 0 0 18 5980 1654 3 MP
XPP
X0 18 18 0 5980 1672 3 MP
XPP
X18 0 0 18 5980 1672 3 MP
XPP
X0 17 18 0 5980 1690 3 MP
XPP
X18 0 0 17 5980 1690 3 MP
XPP
X0 18 18 0 5980 1707 3 MP
XPP
X18 0 0 18 5980 1707 3 MP
XPP
X0 18 18 0 5980 1725 3 MP
XPP
X18 0 0 18 5980 1725 3 MP
XPP
X0 18 18 0 5980 1743 3 MP
XPP
X18 0 0 18 5980 1743 3 MP
XPP
X0 18 18 0 5980 1761 3 MP
XPP
X18 0 0 18 5980 1761 3 MP
XPP
X0 18 18 0 5980 1779 3 MP
XPP
X18 0 0 18 5980 1779 3 MP
XPP
X0 17 18 0 5980 1797 3 MP
XPP
X18 0 0 17 5980 1797 3 MP
XPP
X0 18 18 0 5980 1814 3 MP
XPP
X18 0 0 18 5980 1814 3 MP
XPP
X0 18 18 0 5980 1832 3 MP
XPP
X18 0 0 18 5980 1832 3 MP
XPP
X0 18 18 0 5980 1850 3 MP
XPP
X18 0 0 18 5980 1850 3 MP
XPP
X0 18 18 0 5980 1868 3 MP
XPP
X18 0 0 18 5980 1868 3 MP
XPP
X0 18 18 0 5980 1886 3 MP
XPP
X18 0 0 18 5980 1886 3 MP
XPP
X0 17 18 0 5980 1904 3 MP
XPP
X18 0 0 17 5980 1904 3 MP
XPP
X0 18 18 0 5980 1921 3 MP
XPP
X18 0 0 18 5980 1921 3 MP
XPP
X0 18 18 0 5980 1939 3 MP
XPP
X18 0 0 18 5980 1939 3 MP
XPP
X0 18 18 0 5980 1957 3 MP
XPP
X18 0 0 18 5980 1957 3 MP
XPP
X0 18 18 0 5980 1975 3 MP
XPP
X18 0 0 18 5980 1975 3 MP
XPP
X0 18 18 0 5980 1993 3 MP
XPP
X18 0 0 18 5980 1993 3 MP
XPP
X0 17 18 0 5980 2011 3 MP
XPP
X18 0 0 17 5980 2011 3 MP
XPP
X0 18 18 0 5980 2028 3 MP
XPP
X18 0 0 18 5980 2028 3 MP
XPP
X0 18 18 0 5980 2046 3 MP
XPP
X18 0 0 18 5980 2046 3 MP
XPP
X0 18 18 0 5980 2064 3 MP
XPP
X18 0 0 18 5980 2064 3 MP
XPP
X0 18 18 0 5980 2082 3 MP
XPP
X18 0 0 18 5980 2082 3 MP
XPP
X0 18 18 0 5980 2100 3 MP
XPP
X18 0 0 18 5980 2100 3 MP
XPP
X0 17 18 0 5980 2118 3 MP
XPP
X18 0 0 17 5980 2118 3 MP
XPP
X0 18 18 0 5980 2135 3 MP
XPP
X18 0 0 18 5980 2135 3 MP
XPP
X0 18 18 0 5980 2153 3 MP
XPP
X18 0 0 18 5980 2153 3 MP
XPP
X0 18 18 0 5998 388 3 MP
XPP
X18 0 0 18 5998 388 3 MP
XPP
X0 18 18 0 5998 406 3 MP
XPP
X18 0 0 18 5998 406 3 MP
XPP
X0 17 18 0 5998 424 3 MP
XPP
X18 0 0 17 5998 424 3 MP
XPP
X0 18 18 0 5998 441 3 MP
XPP
X18 0 0 18 5998 441 3 MP
XPP
X0 18 18 0 5998 459 3 MP
XPP
X18 0 0 18 5998 459 3 MP
XPP
X0 18 18 0 5998 477 3 MP
XPP
X18 0 0 18 5998 477 3 MP
XPP
X0 18 18 0 5998 495 3 MP
XPP
X18 0 0 18 5998 495 3 MP
XPP
X0 18 18 0 5998 513 3 MP
XPP
X18 0 0 18 5998 513 3 MP
XPP
X0 17 18 0 5998 531 3 MP
XPP
X18 0 0 17 5998 531 3 MP
XPP
X0 18 18 0 5998 548 3 MP
XPP
X18 0 0 18 5998 548 3 MP
XPP
X0 18 18 0 5998 566 3 MP
XPP
X18 0 0 18 5998 566 3 MP
XPP
X0 18 18 0 5998 584 3 MP
XPP
X18 0 0 18 5998 584 3 MP
XPP
X0 18 18 0 5998 602 3 MP
XPP
X18 0 0 18 5998 602 3 MP
XPP
X0 18 18 0 5998 620 3 MP
XPP
X18 0 0 18 5998 620 3 MP
XPP
X0 17 18 0 5998 638 3 MP
XPP
X18 0 0 17 5998 638 3 MP
XPP
X0 18 18 0 5998 655 3 MP
XPP
X18 0 0 18 5998 655 3 MP
XPP
X0 18 18 0 5998 673 3 MP
XPP
X18 0 0 18 5998 673 3 MP
XPP
X0 18 18 0 5998 691 3 MP
XPP
X18 0 0 18 5998 691 3 MP
XPP
X0 18 18 0 5998 709 3 MP
XPP
X18 0 0 18 5998 709 3 MP
XPP
X0 18 18 0 5998 727 3 MP
XPP
X18 0 0 18 5998 727 3 MP
XPP
X0 17 18 0 5998 745 3 MP
XPP
X18 0 0 17 5998 745 3 MP
XPP
X0 18 18 0 5998 762 3 MP
XPP
X18 0 0 18 5998 762 3 MP
XPP
X0 18 18 0 5998 780 3 MP
XPP
X18 0 0 18 5998 780 3 MP
XPP
X0 18 18 0 5998 798 3 MP
XPP
X18 0 0 18 5998 798 3 MP
XPP
X0 18 18 0 5998 816 3 MP
XPP
X18 0 0 18 5998 816 3 MP
XPP
X0 18 18 0 5998 834 3 MP
XPP
X18 0 0 18 5998 834 3 MP
XPP
X0 17 18 0 5998 852 3 MP
XPP
X18 0 0 17 5998 852 3 MP
XPP
X0 18 18 0 5998 869 3 MP
XPP
X18 0 0 18 5998 869 3 MP
XPP
X0 18 18 0 5998 887 3 MP
XPP
X18 0 0 18 5998 887 3 MP
XPP
X0 18 18 0 5998 905 3 MP
XPP
X18 0 0 18 5998 905 3 MP
XPP
X0 18 18 0 5998 923 3 MP
XPP
X18 0 0 18 5998 923 3 MP
XPP
X0 18 18 0 5998 941 3 MP
XPP
X18 0 0 18 5998 941 3 MP
XPP
X0 17 18 0 5998 959 3 MP
XPP
X18 0 0 17 5998 959 3 MP
XPP
X0 18 18 0 5998 976 3 MP
XPP
X18 0 0 18 5998 976 3 MP
XPP
X0 18 18 0 5998 994 3 MP
XPP
X18 0 0 18 5998 994 3 MP
XPP
X0 18 18 0 5998 1012 3 MP
XPP
X18 0 0 18 5998 1012 3 MP
XPP
X0 18 18 0 5998 1030 3 MP
XPP
X18 0 0 18 5998 1030 3 MP
XPP
X0 18 18 0 5998 1048 3 MP
XPP
X18 0 0 18 5998 1048 3 MP
XPP
X0 17 18 0 5998 1066 3 MP
XPP
X18 0 0 17 5998 1066 3 MP
XPP
X0 18 18 0 5998 1083 3 MP
XPP
X18 0 0 18 5998 1083 3 MP
XPP
X0 18 18 0 5998 1101 3 MP
XPP
X18 0 0 18 5998 1101 3 MP
XPP
X0 18 18 0 5998 1119 3 MP
XPP
X18 0 0 18 5998 1119 3 MP
XPP
X0 18 18 0 5998 1137 3 MP
XPP
X18 0 0 18 5998 1137 3 MP
XPP
X0 18 18 0 5998 1155 3 MP
XPP
X18 0 0 18 5998 1155 3 MP
XPP
X0 17 18 0 5998 1173 3 MP
XPP
X18 0 0 17 5998 1173 3 MP
XPP
X0 18 18 0 5998 1190 3 MP
XPP
X18 0 0 18 5998 1190 3 MP
XPP
X0 18 18 0 5998 1208 3 MP
XPP
X18 0 0 18 5998 1208 3 MP
XPP
X0 18 18 0 5998 1226 3 MP
XPP
X18 0 0 18 5998 1226 3 MP
XPP
X0 18 18 0 5998 1244 3 MP
XPP
X18 0 0 18 5998 1244 3 MP
XPP
X0 17 18 0 5998 1262 3 MP
XPP
X18 0 0 17 5998 1262 3 MP
XPP
X0 18 18 0 5998 1279 3 MP
XPP
X18 0 0 18 5998 1279 3 MP
XPP
X0 18 18 0 5998 1297 3 MP
XPP
X18 0 0 18 5998 1297 3 MP
XPP
X0 18 18 0 5998 1315 3 MP
XPP
X18 0 0 18 5998 1315 3 MP
XPP
X0 18 18 0 5998 1333 3 MP
XPP
X18 0 0 18 5998 1333 3 MP
XPP
X0 18 18 0 5998 1351 3 MP
XPP
X18 0 0 18 5998 1351 3 MP
XPP
X0 17 18 0 5998 1369 3 MP
XPP
X18 0 0 17 5998 1369 3 MP
XPP
X0 18 18 0 5998 1386 3 MP
XPP
X18 0 0 18 5998 1386 3 MP
XPP
X0 18 18 0 5998 1404 3 MP
XPP
X18 0 0 18 5998 1404 3 MP
XPP
X0 18 18 0 5998 1422 3 MP
XPP
X18 0 0 18 5998 1422 3 MP
XPP
X0 18 18 0 5998 1440 3 MP
XPP
X18 0 0 18 5998 1440 3 MP
XPP
X0 18 18 0 5998 1458 3 MP
XPP
X18 0 0 18 5998 1458 3 MP
XPP
X0 17 18 0 5998 1476 3 MP
XPP
X18 0 0 17 5998 1476 3 MP
XPP
X0 18 18 0 5998 1493 3 MP
XPP
X18 0 0 18 5998 1493 3 MP
XPP
X0 18 18 0 5998 1511 3 MP
XPP
X18 0 0 18 5998 1511 3 MP
XPP
X0 18 18 0 5998 1529 3 MP
XPP
X18 0 0 18 5998 1529 3 MP
XPP
X0 18 18 0 5998 1547 3 MP
XPP
X18 0 0 18 5998 1547 3 MP
XPP
X0 18 18 0 5998 1565 3 MP
XPP
X18 0 0 18 5998 1565 3 MP
XPP
X0 17 18 0 5998 1583 3 MP
XPP
X18 0 0 17 5998 1583 3 MP
XPP
X0 18 18 0 5998 1600 3 MP
XPP
X18 0 0 18 5998 1600 3 MP
XPP
X0 18 18 0 5998 1618 3 MP
XPP
X18 0 0 18 5998 1618 3 MP
XPP
X0 18 18 0 5998 1636 3 MP
XPP
X18 0 0 18 5998 1636 3 MP
XPP
X0 18 18 0 5998 1654 3 MP
XPP
X18 0 0 18 5998 1654 3 MP
XPP
X0 18 18 0 5998 1672 3 MP
XPP
X18 0 0 18 5998 1672 3 MP
XPP
X0 17 18 0 5998 1690 3 MP
XPP
X18 0 0 17 5998 1690 3 MP
XPP
X0 18 18 0 5998 1707 3 MP
XPP
X18 0 0 18 5998 1707 3 MP
XPP
X0 18 18 0 5998 1725 3 MP
XPP
X18 0 0 18 5998 1725 3 MP
XPP
X0 18 18 0 5998 1743 3 MP
XPP
X18 0 0 18 5998 1743 3 MP
XPP
X0 18 18 0 5998 1761 3 MP
XPP
X18 0 0 18 5998 1761 3 MP
XPP
X0 18 18 0 5998 1779 3 MP
XPP
X18 0 0 18 5998 1779 3 MP
XPP
X0 17 18 0 5998 1797 3 MP
XPP
X18 0 0 17 5998 1797 3 MP
XPP
X0 18 18 0 5998 1814 3 MP
XPP
X18 0 0 18 5998 1814 3 MP
XPP
X0 18 18 0 5998 1832 3 MP
XPP
X18 0 0 18 5998 1832 3 MP
XPP
X0 18 18 0 5998 1850 3 MP
XPP
X18 0 0 18 5998 1850 3 MP
XPP
X0 18 18 0 5998 1868 3 MP
XPP
X18 0 0 18 5998 1868 3 MP
XPP
X0 18 18 0 5998 1886 3 MP
XPP
X18 0 0 18 5998 1886 3 MP
XPP
X0 17 18 0 5998 1904 3 MP
XPP
X18 0 0 17 5998 1904 3 MP
XPP
X0 18 18 0 5998 1921 3 MP
XPP
X18 0 0 18 5998 1921 3 MP
XPP
X0 18 18 0 5998 1939 3 MP
XPP
X18 0 0 18 5998 1939 3 MP
XPP
X0 18 18 0 5998 1957 3 MP
XPP
X18 0 0 18 5998 1957 3 MP
XPP
X0 18 18 0 5998 1975 3 MP
XPP
X18 0 0 18 5998 1975 3 MP
XPP
X0 18 18 0 5998 1993 3 MP
XPP
X18 0 0 18 5998 1993 3 MP
XPP
X0 17 18 0 5998 2011 3 MP
XPP
X18 0 0 17 5998 2011 3 MP
XPP
X0 18 18 0 5998 2028 3 MP
XPP
X18 0 0 18 5998 2028 3 MP
XPP
X0 18 18 0 5998 2046 3 MP
XPP
X18 0 0 18 5998 2046 3 MP
XPP
X0 18 18 0 5998 2064 3 MP
XPP
X18 0 0 18 5998 2064 3 MP
XPP
X0 18 18 0 5998 2082 3 MP
XPP
X18 0 0 18 5998 2082 3 MP
XPP
X0 18 18 0 5998 2100 3 MP
XPP
X18 0 0 18 5998 2100 3 MP
XPP
X0 17 18 0 5998 2118 3 MP
XPP
X18 0 0 17 5998 2118 3 MP
XPP
X0 18 18 0 5998 2135 3 MP
XPP
X18 0 0 18 5998 2135 3 MP
XPP
X0 18 18 0 5998 2153 3 MP
XPP
X18 0 0 18 5998 2153 3 MP
XPP
X
Xgr 
X1 sg
X
Xend
X
Xeplot
X
Xepage
Xend
X
Xshowpage
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 50 52
X50 51 bop 64 159 a Fo(50)1649 b Fl(cgls)p 64 178 1767
X2 v 59 304 a Fb(cgls)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Conjugate)14 b(gradien)o(t)h(algorithm)g(applied)j(implicitly)g
X(to)c(the)i(normal)f(equations.)59 581 y Fp(Synopsis:)130
X650 y Fl([X,rho,eta,F])f(=)i(cgls)8 b(\(A,b,k,reo)o(rth,s\))59
X756 y Fp(Description:)130 825 y Fo(P)o(erforms)14 b Fl(k)h
XFo(steps)g(of)g(the)g(conjugate)g(gradien)o(t)g(algorithm)g(applied)j
X(implicitly)g(to)c(the)i(normal)59 882 y(equations)g
XFl(A)293 865 y Fg(T)320 882 y Fl(A)8 b Fp(x)13 b Fo(=)f
XFl(A)476 865 y Fg(T)504 882 y Fl(b)p Fo(.)130 938 y(The)20
Xb(routine)g(returns)f(all)i Fl(k)f Fo(solutions,)h(stored)e(as)g
X(columns)i(of)e(the)h(matrix)f Fl(X)p Fo(.)34 b(The)20
Xb(corre-)59 994 y(sp)q(onding)c(solution)g(norms)f(and)h(residual)g
X(norms)f(are)g(returned)g(in)h Fl(eta)g Fo(and)f Fl(rho)p
XFo(,)g(resp)q(ectiv)o(ely)l(.)130 1051 y(If)k(the)f(singular)i(v)m
X(alues)g Fl(s)f Fo(are)f(also)h(pro)o(vided,)g Fl(cgls)g
XFo(computes)g(the)g(\014lter)g(factors)e(asso)q(ciated)59
X1107 y(with)f(eac)o(h)f(step)g(and)g(stores)g(them)g(column)o(wise)h
X(in)g(the)g(matrix)f Fl(F)p Fo(.)130 1164 y(Reorthogonalization)22
Xb(of)f(the)g(normal)g(equation)h(residual)h(v)o(ectors)d
XFl(A)1411 1147 y Fg(T)1439 1164 y Fo(\()p Fl(A)8 b(X)p
XFo(\(:)g Fn(;)g(i)p Fo(\))k Fm(\000)i Fl(b)p Fo(\),)23
Xb Fn(i)f Fo(=)59 1220 y(1)p Fn(;)8 b(:)g(:)g(:)d(;)j
XFl(k)14 b Fo(is)i(con)o(trolled)g(b)o(y)f(means)g(of)g
XFl(reo)o(rth)g Fo(as)f(follo)o(ws:)155 1285 y Fl(reo)o(rth)g(=)i(0)f
XFo(:)49 b(no)15 b(reorthogonalization)155 1342 y Fl(reo)o(rth)f(=)i(1)f
XFo(:)49 b(reorthogonalization)15 b(b)o(y)h(means)f(of)f(MGS.)59
X1407 y(No)h(reorthogonalization)g(is)h(assumed)f(if)h
XFl(reo)o(rth)f Fo(is)g(not)g(sp)q(eci\014ed.)130 1463
Xy(A)f(\\preconditioned")i(v)o(ersion)f(of)f Fl(cgls)g
XFo(for)g(the)h(general-form)f(problem,)h(where)g(one)f(minimizes)59
X1520 y Fm(k)p Fn(L)8 b Fp(x)p Fm(k)172 1527 y Fj(2)205
X1520 y Fo(instead)16 b(of)f Fm(k)p Fp(x)p Fm(k)488 1527
Xy Fj(2)522 1520 y Fo(in)h(eac)o(h)f(step,)g(is)h(implemen)o(ted)h(in)f
X(routine)f Fl(p)q(cgls)p Fo(.)59 1626 y Fp(Examples:)130
X1695 y Fo(P)o(erform)f(25)g(iterations)i(and)f(plot)h(the)f(corresp)q
X(onding)h(L-curv)o(e:)130 1764 y Fl([X,rho,eta])f(=)g(cgls)8
Xb(\(A,b,25\);)14 b(plot)p 740 1764 14 2 v 17 w(lc)8 b(\(rho,eta,'o'\);)
X59 1870 y Fp(Algorithm:)130 1939 y Fo(The)14 b(algorithm,)g(whic)o(h)g
X(a)o(v)o(oids)g(explicit)i(formation)d(of)h(the)g(normal-equation)h
X(matrix)e Fl(A)1715 1922 y Fg(T)1743 1939 y Fl(A)p Fo(,)h(is)59
X1995 y(describ)q(ed)19 b(in)e([1].)23 b(The)17 b(computation)g(of)f
X(the)h(\014lter)g(factors,)e(using)j(the)f(recurrence)g(relations)g
X(for)59 2052 y(the)e(solution)h(and)g(the)f(residual)i(v)o(ector,)d(is)
Xh(describ)q(ed)j(in)e([2].)59 2158 y Fp(See)h(also:)130
X2227 y Fl(lsqr)p Fo(,)e Fl(p)q(cgls)p Fo(,)g Fl(plsqr)59
X2333 y Fp(References:)115 2404 y Fo(1.)173 2396 y(\027)173
X2404 y(A.)20 b(Bj\177)-23 b(orc)o(k,)21 b Fk(Numeric)n(al)g(Metho)n(ds)
Xg(for)g(L)n(e)n(ast)f(Squar)n(es)h(cPr)n(oblems)p Fo(,)f(SIAM,)h
X(Philadelphia,)173 2461 y(1996.)115 2517 y(2.)h(C.)11
Xb(R.)g(V)l(ogel,)i Fk(Solving)f(il)r(l-c)n(onditione)n(d)g(line)n(ar)g
X(systems)g(using)g(the)h(c)n(onjugate)g(gr)n(adient)g(meth-)173
X2574 y(o)n(d)p Fo(,)i(Rep)q(ort,)g(Dept.)f(of)h(Mathematical)g
X(Sciences,)i(Mon)o(tana)d(State)h(Univ)o(ersit)o(y)l(,)g(1987.)p
Xeop
X%%Page: 51 53
X51 52 bop 59 159 a Fl(cgsvd)1617 b Fo(51)p 59 178 1767
X2 v 59 304 a Fb(cgsvd)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Compute)17 b(the)h(compact)f(generalized)j(SVD)e(of)f(a)h(matrix)f
X(pair)h Fl(A)f Fm(2)h Fp(I)-8 b(R)1431 457 y Fg(m)p Fe(\002)p
XFg(n)1531 475 y Fo(and)18 b Fl(L)e Fm(2)i Fp(I)-8 b(R)1762
X457 y Fg(p)p Fe(\002)p Fg(n)59 531 y Fo(with)16 b Fn(m)c
XFm(\025)h Fn(n)g Fm(\025)g Fn(p)p Fo(.)59 637 y Fp(Synopsis:)130
X706 y Fl(sm)h(=)i(cgsvd)8 b(\(A,L\))130 775 y([U,sm,X,V])14
Xb(=)i(cgsvd)8 b(\(A,L\))14 b(,)45 b(sm)15 b(=)h([sigma,mu])59
X882 y Fp(Description:)130 950 y Fo(Computes)f(the)g(generalized)i
X(singular)f(v)m(alue)g(decomp)q(osition)h(of)e(the)g(matrix)g(pair)g
X(\()p Fl(A)p Fn(;)8 b Fl(L)p Fo(\):)311 1074 y Fl(A)13
Xb Fo(=)g Fl(U)441 1014 y Fh(\022)479 1046 y Fo(diag)q(\()p
XFl(sigma)n Fo(\))78 b(0)581 1102 y(0)148 b Fn(I)772 1109
Xy Fg(n)p Fe(\000)p Fg(p)849 1014 y Fh(\023)887 1074 y
XFl(X)917 1055 y Fe(\000)p Fj(1)979 1074 y Fn(;)98 b Fl(L)13
Xb Fo(=)g Fl(V)8 b Fo(\(diag)q(\()p Fl(mu)o Fo(\))15 b(0\))8
Xb Fl(X)1505 1055 y Fe(\000)p Fj(1)1566 1074 y Fn(;)59
X1201 y Fo(where)18 b(the)f(matrices)h Fl(U)e Fm(2)h Fp(I)-8
Xb(R)604 1183 y Fg(m)p Fe(\002)p Fg(n)703 1201 y Fo(and)18
Xb Fl(V)f Fm(2)g Fp(I)-8 b(R)939 1183 y Fg(p)p Fe(\002)p
XFg(p)1022 1201 y Fo(ha)o(v)o(e)17 b(orthonormal)f(columns,)j(and)e(the)
Xh(ma-)59 1258 y(trix)g Fl(X)f Fm(2)h Fp(I)-8 b(R)295
X1240 y Fg(n)p Fe(\002)p Fg(n)386 1258 y Fo(is)18 b(nonsingular.)29
Xb(Moreo)o(v)o(er,)17 b(the)h(v)o(ectors)f Fl(sigma)g
XFo(and)h Fl(mu)f Fo(ha)o(v)o(e)h(length)g Fn(p)p Fo(,)g(and)59
X1314 y Fl(sigma./mu)13 b Fo(are)i(the)g(generalized)i(singular)f(v)m
X(alues)h(of)d(\()p Fl(A)p Fn(;)8 b Fl(L)p Fo(\).)130
X1371 y(Notice)16 b(that)f(the)g Fn(c;)8 b(s)p Fo(-pairs)16
Xb Fl(sigma)e Fo(and)i Fl(mu)f Fo(are)g(returned)h(in)h(a)e
XFn(p)10 b Fm(\002)h Fo(2)k(arra)o(y)g Fl(sm)p Fo(.)20
Xb(The)c(matrix)59 1427 y Fl(V)g Fo(is)f(not)g(required)h(b)o(y)f(an)o
X(y)g(of)g(the)g(routines)h(in)g(this)g(pac)o(k)m(age.)59
X1534 y Fp(Algorithm:)130 1602 y Fo(Calls)c(the)g(Matlab)f(routine)h
XFl(gsvd)h Fo(and)e(stores)g(the)h Fn(c;)c(s)p Fo(-pairs)k(in)g(a)f
XFn(p)s Fm(\002)s Fo(2)h(arra)o(y)l(.)18 b(The)12 b Fl(gsvd)g
XFo(routine)59 1659 y(is)k(included)i(in)e(Matlab)e(V)l(ersion)i(5.2,)e
X(and)i(it)f(is)h(based)f(on)g([1].)59 1765 y Fp(Limitations:)130
X1834 y Fo(The)j(dimensions)i Fk(must)f Fo(satisfy)f Fn(m)g
XFm(\025)h Fn(n)f Fm(\025)g Fn(p)p Fo(,)h(whic)o(h)g(is)g(no)g
X(restriction)g(in)g(connection)g(with)59 1891 y(regularization)d
X(problems.)59 1997 y Fp(See)h(also:)130 2066 y Fl(csvd)59
X2172 y Fp(References:)115 2243 y Fo(1.)22 b(C.)11 b(F.)g(V)l(an)i
X(Loan,)f Fk(Computing)h(the)h(CS)e(and)i(the)f(gener)n(alize)n(d)f
X(singular)g(value)i(de)n(c)n(omp)n(osition)p Fo(,)173
X2299 y(Numer.)h(Math.)f Fp(46)h Fo(\(1985\),)e(479{491.)p
Xeop
X%%Page: 52 54
X52 53 bop 64 159 a Fo(52)1639 b Fl(csvd)p 64 178 1767
X2 v 59 304 a Fb(csvd)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Compute)15 b(the)g(compact)g(singular)h(v)m(alue)g(decomp)q
X(osition.)59 581 y Fp(Synopsis:)130 650 y Fl(s)f(=)h(csvd)8
Xb(\(A\))130 719 y([U,s,V])15 b(=)h(csvd)8 b(\(A\))130
X788 y([U,s,V])15 b(=)h(csvd)8 b(\(A,'full'\))59 894 y
XFp(Description:)130 963 y Fo(Computes)15 b(the)g(compact)g(form)f(of)h
X(the)g(singular)h(v)m(alue)h(decomp)q(osition:)765 1065
Xy Fl(A)c Fo(=)g Fl(U)8 b Fo(diag\()p Fl(s)p Fo(\))g Fl(V)1070
X1046 y Fg(T)1112 1065 y Fn(:)59 1167 y Fo(If)16 b(the)f(matrix)g
XFl(A)g Fo(is)h Fn(m)10 b Fm(\002)g Fn(n)p Fo(,)15 b(then)h(the)f
X(dimensions)i(of)e(the)g(computed)h(quan)o(tities)f(are:)290
X1261 y Fl(s)94 b Fo(min)q(\()p Fn(m;)8 b(n)p Fo(\))h
XFm(\002)h Fo(1)290 1317 y Fl(U)80 b Fn(m)10 b Fm(\002)h
XFo(min\()p Fn(m;)d(n)p Fo(\))290 1374 y Fl(V)81 b Fn(n)11
Xb Fm(\002)f Fo(min)q(\()p Fn(m;)e(n)p Fo(\))59 1468 y(If)16
Xb(a)e(second)i(argumen)o(t)f(is)g(presen)o(t,)g(then)h(the)f(full)h
XFl(U)g Fo(and)f Fl(V)h Fo(are)f(returned.)59 1574 y Fp(Algorithm:)130
X1643 y Fo(Calls)h(the)f(Matlab)g(routine)g Fl(svd)h Fo(and)g(stores)e
X(the)h(singular)i(v)m(alues)f(in)g(a)f(column)h(v)o(ector)e
XFl(s)p Fo(.)59 1749 y Fp(See)j(also:)130 1818 y Fl(cgsvd)p
Xeop
X%%Page: 53 55
X53 54 bop 59 159 a Fl(deriv2)1607 b Fo(53)p 59 178 1767
X2 v 59 304 a Fb(deriv2)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(T)l(est)15 b(problem:)20 b(computation)15 b(of)g(the)g(second)h
X(deriv)m(ativ)o(e.)59 581 y Fp(Synopsis:)130 650 y Fl([A,b,x])f(=)h
X(deriv2)8 b(\(n,case\))59 756 y Fp(Description:)130 825
Xy Fo(This)20 b(is)h(a)e(mildly)j(ill-p)q(osed)h(problem;)g(i.e.,)d(its)
Xh(singular)g(v)m(alues)g(deca)o(y)f(slo)o(wly)g(to)f(zero.)35
Xb(It)59 882 y(is)17 b(a)g(discretization)h(of)f(a)f(\014rst)h(kind)h(F)
Xl(redholm)f(in)o(tegral)h(equation)f(\(2.1\))e(whose)i(k)o(ernel)g
XFn(K)j Fo(is)e(the)59 938 y(Green's)d(function)h(for)e(the)i(second)f
X(deriv)m(ativ)o(e:)624 1061 y Fn(K)s Fo(\()p Fn(s;)8
Xb(t)p Fo(\))k(=)820 989 y Fh(\()874 1033 y Fn(s)p Fo(\()p
XFn(t)f Fm(\000)f Fo(1\))41 b Fn(;)g(s)13 b(<)g(t)874
X1090 y(t)p Fo(\()p Fn(s)e Fm(\000)f Fo(1\))41 b Fn(;)g(s)13
Xb Fm(\025)g Fn(t)1253 1061 y(:)59 1196 y Fo(Both)j(in)o(tegration)h(in)
Xo(terv)m(als)g(are)g([0)p Fn(;)8 b Fo(1],)14 b(and)j(as)f(righ)o
X(t-hand)h(side)g Fn(g)h Fo(and)e(corresp)q(onding)i(solution)59
X1253 y Fn(f)i Fo(one)c(can)f(c)o(ho)q(ose)g(b)q(et)o(w)o(een)h(the)f
X(follo)o(wing:)80 1351 y Fl(case)e Fo(=)g Fl(1)41 b Fn(g)r
XFo(\()p Fn(s)p Fo(\))12 b(=)h(\()p Fn(s)464 1334 y Fj(3)494
X1351 y Fm(\000)d Fn(s)p Fo(\))p Fn(=)p Fo(6)15 b Fn(;)52
Xb(f)5 b Fo(\()p Fn(t)p Fo(\))13 b(=)g Fn(t)80 1464 y
XFl(case)g Fo(=)g Fl(2)41 b Fn(g)r Fo(\()p Fn(s)p Fo(\))12
Xb(=)h(exp\()p Fn(s)p Fo(\))d(+)h(\(1)e Fm(\000)i Fn(e)p
XFo(\))p Fn(s)f Fm(\000)g Fo(1)15 b Fn(;)53 b(f)5 b Fo(\()p
XFn(t)p Fo(\))12 b(=)h(exp)q(\()p Fn(t)p Fo(\))80 1611
Xy Fl(case)g Fo(=)g Fl(3)41 b Fn(g)r Fo(\()p Fn(s)p Fo(\))12
Xb(=)425 1539 y Fh(\()479 1583 y Fo(\(4)p Fn(s)541 1566
Xy Fj(3)571 1583 y Fm(\000)e Fo(3)p Fn(s)p Fo(\))p Fn(=)p
XFo(24)296 b Fn(;)41 b(s)13 b(<)1184 1565 y Fj(1)p 1184
X1572 18 2 v 1184 1598 a(2)479 1639 y Fo(\()p Fm(\000)p
XFo(4)p Fn(s)576 1622 y Fj(3)606 1639 y Fo(+)d(12)p Fn(s)718
X1622 y Fj(2)748 1639 y Fm(\000)g Fo(9)p Fn(s)h Fo(+)f(1\))p
XFn(=)p Fo(24)40 b Fn(;)h(s)13 b Fm(\025)1184 1621 y Fj(1)p
X1184 1628 V 1184 1655 a(2)1240 1611 y Fn(;)53 b(f)5 b
XFo(\()p Fn(t)p Fo(\))12 b(=)1445 1539 y Fh(\()1499 1583
Xy Fn(t)121 b(;)41 b(t)13 b(<)1772 1565 y Fj(1)p 1772
X1572 V 1772 1598 a(2)1499 1639 y Fo(1)d Fm(\000)h Fn(t)42
Xb(;)f(t)13 b Fm(\025)1772 1621 y Fj(1)p 1772 1628 V 1772
X1655 a(2)59 1746 y Fo(The)k(\014rst)e(t)o(w)o(o)g(examples)i(are)f
X(from)g([1,)f(p.)h(315])f(while)j(the)e(third)h(example)g(is)g(from)e
X([2].)22 b(The)17 b(size)59 1802 y(of)e(the)g(matrix)g
XFl(A)g Fo(is)h Fl(n)11 b Fm(\002)f Fl(n)p Fo(.)59 1908
Xy Fp(References:)115 1979 y Fo(1.)22 b(L.)g(M.)f(Delv)o(es)h(&)g(J.)g
X(L.)g(Mohamed,)h Fk(Computational)g(Metho)n(ds)g(for)f(Inte)n(gr)n(al)f
X(Equations)p Fo(,)173 2036 y(Cam)o(bridge)15 b(Univ)o(ersit)o(y)h
X(Press,)e(Cam)o(bridge,)h(1985.)115 2092 y(2.)22 b(A.)13
Xb(K.)h(Louis)g(&)g(P)l(.)g(Maass,)e Fk(A)j(mol)r(li\014er)f(metho)n(d)i
X(for)f(line)n(ar)f(op)n(er)n(ator)i(e)n(quations)e(of)h(the)g(\014rst)
X173 2149 y(kind)p Fo(,)f(In)o(v)o(erse)i(Problems)f Fp(6)g
XFo(\(1990\),)e(427{440.)650 2260 y
X 10824459 8391059 5262540 26773176 34995896 49731010 startTexFig
X 650 2260 a
X%%BeginDocument: testfigs/deriv2.eps
X
X% MathWorks dictionary
X/mathworks 50 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/xdef {exch def} bdef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot {gsave} bdef
X/eplot {grestore} bdef
X
X% bounding box in default coordinates
X/dx 0 def
X/dy 0 def
X/sides {/dx urx llx sub def /dy ury lly sub def} bdef
X/llx 0 def
X/lly 0 def
X/urx 0 def
X/ury 0 def
X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef
X
X% orientation switch
X/por true def
X/portrait {/por true def} bdef
X/landscape {/por false def} bdef
X
X% coordinate system mappings
X/px 8.5 72 mul def
X/py 11.0 72 mul def
X/port {dx py div dy px div scale} bdef
X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef
X/csm {llx lly translate por {port} {land} ifelse} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { []        0 setdash } bdef
X/DO { [0 4]     0 setdash } bdef
X/DA { [4]       0 setdash } bdef
X/DD { [0 4 3 4] 0 setdash } bdef
X
X% macros for moveto and polyline
X/M {moveto}  bdef
X/L {{lineto} repeat stroke} bdef
X
X% font control
X/font_spec () def
X/lfont currentfont def
X/sfont currentfont def
X/selfont {/font_spec xdef} bdef
X/savefont {font_spec findfont exch scalefont def} bdef
X/LF {lfont setfont} bdef
X/SF {sfont setfont} bdef
X
X% text display
X/sh {show} bdef
X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef
X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef
X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef
X
Xcurrentdict end def %dictionary
X
Xmathworks begin
X
X% fonts for text, standard numbers and exponents
X/Times-Roman selfont
X/lfont 30 savefont
X/sfont 21 savefont
X
X%line width, line cap, and joint spec
X.5 setlinewidth 1 setlinecap 1 setlinejoin
X
Xend
X
Xmathworks begin
Xbpage
X
Xbplot
X80 407 532 756 bbox portrait csm
X
XSO
X 78.09  77.33 757.00  77.33 757.00 570.67  78.09 570.67  78.09  77.33 M 4 L
XLF
X 73.09  71.33 M (0) rsh
X 78.09 159.55  84.83 159.55 M 1 L
X750.27 159.55 757.00 159.55 M 1 L
X 73.09 153.55 M (0.05) rsh
X 78.09 241.78  84.83 241.78 M 1 L
X750.27 241.78 757.00 241.78 M 1 L
X 73.09 235.78 M (0.1) rsh
X 78.09 324.00  84.83 324.00 M 1 L
X750.27 324.00 757.00 324.00 M 1 L
X 73.09 318.00 M (0.15) rsh
X 78.09 406.22  84.83 406.22 M 1 L
X750.27 406.22 757.00 406.22 M 1 L
X 73.09 400.22 M (0.2) rsh
X 78.09 488.45  84.83 488.45 M 1 L
X750.27 488.45 757.00 488.45 M 1 L
X 73.09 482.45 M (0.25) rsh
X 73.09 564.67 M (0.3) rsh
X 78.09  55.33 M (0) csh
X145.98  77.33 145.98  82.53 M 1 L
X145.98 565.47 145.98 570.67 M 1 L
X145.98  55.33 M (10) csh
X213.87  77.33 213.87  82.53 M 1 L
X213.87 565.47 213.87 570.67 M 1 L
X213.87  55.33 M (20) csh
X281.77  77.33 281.77  82.53 M 1 L
X281.77 565.47 281.77 570.67 M 1 L
X281.77  55.33 M (30) csh
X349.66  77.33 349.66  82.53 M 1 L
X349.66 565.47 349.66 570.67 M 1 L
X349.66  55.33 M (40) csh
X417.55  77.33 417.55  82.53 M 1 L
X417.55 565.47 417.55 570.67 M 1 L
X417.55  55.33 M (50) csh
X485.44  77.33 485.44  82.53 M 1 L
X485.44 565.47 485.44 570.67 M 1 L
X485.44  55.33 M (60) csh
X553.33  77.33 553.33  82.53 M 1 L
X553.33 565.47 553.33 570.67 M 1 L
X553.33  55.33 M (70) csh
X621.22  77.33 621.22  82.53 M 1 L
X621.22 565.47 621.22 570.67 M 1 L
X621.22  55.33 M (80) csh
X689.11  77.33 689.11  82.53 M 1 L
X689.11 565.47 689.11 570.67 M 1 L
X689.11  55.33 M (90) csh
X757.00  55.33 M (100) csh
X 84.88  78.15  91.67  79.80  98.46  81.44 105.25  83.09 112.04  84.73 
X118.83  86.38 125.62  88.02 132.41  89.66 139.20  91.31 145.98  92.95 
X152.77  94.60 159.56  96.24 166.35  97.89 173.14  99.53 179.93 101.18 
X186.72 102.82 193.51 104.46 200.30 106.11 207.09 107.75 213.87 109.40 
X220.66 111.04 227.45 112.69 234.24 114.33 241.03 115.98 247.82 117.62 
X254.61 119.26 261.40 120.91 268.19 122.55 274.98 124.20 281.77 125.84 
X288.55 127.49 295.34 129.13 302.13 130.78 308.92 132.42 315.71 134.06 
X322.50 135.71 329.29 137.35 336.08 139.00 342.87 140.64 349.66 142.29 
X356.45 143.93 363.23 145.58 370.02 147.22 376.81 148.87 383.60 150.51 
X390.39 152.15 397.18 153.80 403.97 155.44 410.76 157.09 417.55 158.73 
X424.34 160.38 431.12 162.02 437.91 163.67 444.70 165.31 451.49 166.95 
X458.28 168.60 465.07 170.24 471.86 171.89 478.65 173.53 485.44 175.18 
X492.23 176.82 499.02 178.47 505.80 180.11 512.59 181.75 519.38 183.40 
X526.17 185.04 532.96 186.69 539.75 188.33 546.54 189.98 553.33 191.62 
X560.12 193.27 566.91 194.91 573.70 196.55 580.48 198.20 587.27 199.84 
X594.06 201.49 600.85 203.13 607.64 204.78 614.43 206.42 621.22 208.07 
X628.01 209.71 634.80 211.35 641.59 213.00 648.37 214.64 655.16 216.29 
X661.95 217.93 668.74 219.58 675.53 221.22 682.32 222.87 689.11 224.51 
X695.90 226.15 702.69 227.80 709.48 229.44 716.27 231.09 723.05 232.73 
X729.84 234.38 736.63 236.02 743.42 237.67 750.21 239.31 757.00 240.95 
XM 99 L
XDA
X 84.88 242.60  91.67 244.26  98.46 245.94 105.25 247.64 112.04 249.35 
X118.83 251.08 125.62 252.82 132.41 254.59 139.20 256.37 145.98 258.17 
X152.77 259.98 159.56 261.82 166.35 263.67 173.14 265.55 179.93 267.44 
X186.72 269.35 193.51 271.28 200.30 273.23 207.09 275.20 213.87 277.18 
X220.66 279.19 227.45 281.22 234.24 283.27 241.03 285.34 247.82 287.43 
X254.61 289.54 261.40 291.68 268.19 293.83 274.98 296.01 281.77 298.20 
X288.55 300.42 295.34 302.67 302.13 304.93 308.92 307.22 315.71 309.53 
X322.50 311.86 329.29 314.22 336.08 316.60 342.87 319.00 349.66 321.43 
X356.45 323.89 363.23 326.36 370.02 328.87 376.81 331.40 383.60 333.95 
X390.39 336.53 397.18 339.13 403.97 341.76 410.76 344.42 417.55 347.11 
X424.34 349.82 431.12 352.56 437.91 355.32 444.70 358.12 451.49 360.94 
X458.28 363.79 465.07 366.67 471.86 369.57 478.65 372.51 485.44 375.48 
X492.23 378.47 499.02 381.50 505.80 384.56 512.59 387.65 519.38 390.76 
X526.17 393.91 532.96 397.10 539.75 400.31 546.54 403.56 553.33 406.83 
X560.12 410.15 566.91 413.49 573.70 416.87 580.48 420.28 587.27 423.73 
X594.06 427.21 600.85 430.73 607.64 434.28 614.43 437.87 621.22 441.49 
X628.01 445.15 634.80 448.84 641.59 452.58 648.37 456.35 655.16 460.16 
X661.95 464.01 668.74 467.89 675.53 471.82 682.32 475.78 689.11 479.79 
X695.90 483.83 702.69 487.92 709.48 492.04 716.27 496.21 723.05 500.42 
X729.84 504.67 736.63 508.97 743.42 513.31 750.21 517.69 757.00 522.11 
XM 99 L
XDO
X 84.88  78.15  91.67  79.80  98.46  81.44 105.25  83.09 112.04  84.73 
X118.83  86.38 125.62  88.02 132.41  89.66 139.20  91.31 145.98  92.95 
X152.77  94.60 159.56  96.24 166.35  97.89 173.14  99.53 179.93 101.18 
X186.72 102.82 193.51 104.46 200.30 106.11 207.09 107.75 213.87 109.40 
X220.66 111.04 227.45 112.69 234.24 114.33 241.03 115.98 247.82 117.62 
X254.61 119.26 261.40 120.91 268.19 122.55 274.98 124.20 281.77 125.84 
X288.55 127.49 295.34 129.13 302.13 130.78 308.92 132.42 315.71 134.06 
X322.50 135.71 329.29 137.35 336.08 139.00 342.87 140.64 349.66 142.29 
X356.45 143.93 363.23 145.58 370.02 147.22 376.81 148.87 383.60 150.51 
X390.39 152.15 397.18 153.80 403.97 155.44 410.76 157.09 417.55 158.73 
X424.34 158.73 431.12 157.09 437.91 155.44 444.70 153.80 451.49 152.15 
X458.28 150.51 465.07 148.87 471.86 147.22 478.65 145.58 485.44 143.93 
X492.23 142.29 499.02 140.64 505.80 139.00 512.59 137.35 519.38 135.71 
X526.17 134.06 532.96 132.42 539.75 130.78 546.54 129.13 553.33 127.49 
X560.12 125.84 566.91 124.20 573.70 122.55 580.48 120.91 587.27 119.26 
X594.06 117.62 600.85 115.98 607.64 114.33 614.43 112.69 621.22 111.04 
X628.01 109.40 634.80 107.75 641.59 106.11 648.37 104.46 655.16 102.82 
X661.95 101.18 668.74  99.53 675.53  97.89 682.32  96.24 689.11  94.60 
X695.90  92.95 702.69  91.31 709.48  89.66 716.27  88.02 723.05  86.38 
X729.84  84.73 736.63  83.09 743.42  81.44 750.21  79.80 757.00  78.15 
XM 99 L
X554.40 230.44 M (case = 1) sh
X554.40 141.70 M (case = 3) sh
X554.40 371.20 M (case = 2) sh
Xeplot
X
Xepage
Xend
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 54 56
X54 55 bop 64 159 a Fo(54)1590 b Fl(discrep)p 64 178 1767
X2 v 59 304 a Fb(discrep)59 406 y Fp(Purp)q(ose:)130 474
Xy Fo(Disrepancy)15 b(principle)j(criterion)f(for)d(c)o(ho)q(osing)i
X(the)f(regularization)h(parameter.)59 579 y Fp(Synopsis:)130
X647 y Fl([x)p 167 647 14 2 v 16 w(delta,lamb)q(da])g(=)f(discrep)8
Xb(\(U,s,V,b,delta,x)p 941 647 V 17 w(0\))130 715 y([x)p
X167 715 V 16 w(delta,lamb)q(da])16 b(=)f(discrep)8 b
X(\(U,sm,X,b,delta,x)p 978 715 V 16 w(0\))15 b(,)60 b(sm)15
Xb(=)g([sigma,mu])59 820 y Fp(Description:)130 888 y Fo(Least)g(squares)
Xg(minimization)i(with)e(a)g(quadratic)h(inequalit)o(y)h(constrain)o(t:)
X441 987 y(min)8 b Fm(k)p Fp(x)i Fm(\000)g Fl(x)p 654
X987 V 16 w(0)p Fm(k)713 994 y Fj(2)845 987 y Fo(sub)s(ject)15
Xb(to)41 b Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)i Fl(b)p Fm(k)1279
X994 y Fj(2)1311 987 y Fm(\024)i Fl(delta)438 1056 y Fo(min)8
Xb Fm(k)p Fn(L)g Fo(\()p Fp(x)h Fm(\000)h Fl(x)p 707 1056
XV 17 w(0)o Fo(\))p Fm(k)784 1063 y Fj(2)845 1056 y Fo(sub)s(ject)15
Xb(to)41 b Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)i Fl(b)p Fm(k)1279
X1063 y Fj(2)1311 1056 y Fm(\024)i Fl(delta)59 1155 y
XFo(where)j Fl(x)p 215 1155 V 16 w(0)f Fo(is)i(an)e(initial)j(guess)d
X(of)g(the)h(solution,)g(and)g Fl(delta)g Fo(is)g(a)g(p)q(ositiv)o(e)g
X(constan)o(t.)k(The)c(routine)59 1212 y Fl(discrep)g
XFo(requires)g(either)g(the)f(compact)g(SVD)g(of)f Fn(A)i
XFo(stored)e(as)h Fl(U)p Fo(,)g Fl(s)p Fo(,)g(and)g Fl(V)p
XFo(,)g(or)g(part)f(of)h(the)g(GSVD)59 1268 y(of)i(\()p
XFn(A;)8 b(L)p Fo(\))17 b(sa)o(v)o(ed)g(as)g Fl(U)p Fo(,)h
XFl(sm)p Fo(,)f(and)h Fl(X)p Fo(.)g(The)g(regularization)g(parameter)f
XFl(lamb)q(da)h Fo(corresp)q(onding)g(to)59 1325 y(the)d(solution)h
XFl(x)p 333 1325 V 17 w(delta)g Fo(is)f(also)g(returned.)130
X1381 y(If)g Fl(delta)h Fo(is)g(a)f(v)o(ector,)f(then)h
XFl(x)p 643 1381 V 17 w(delta)h Fo(is)f(a)g(matrix)g(suc)o(h)h(that)573
X1480 y Fl(x)p 597 1480 V 16 w(delta)e Fo(=)f([)8 b Fl(x)p
X809 1480 V 15 w(delta)p Fo(\()p Fl(1)p Fo(\))p Fn(;)15
Xb Fl(x)p 1024 1480 V 16 w(delta)p Fo(\()p Fl(2)p Fo(\))p
XFn(;)g(:)8 b(:)g(:)d Fo(])15 b Fn(:)59 1579 y Fo(If)h
XFl(x)p 129 1579 V 16 w(0)f Fo(is)g(not)g(sp)q(eci\014ed,)i
XFl(x)p 526 1579 V 17 w(0)d(=)i(0)f Fo(is)g(used.)130
X1636 y(The)i(\\opp)q(osite")g(problem,)g(namely)h(that)e(of)g
X(minimizing)k(the)d(residual)h(norm)f(sub)s(ject)f(to)h(an)59
X1692 y(upp)q(er)f(b)q(ound)g(on)g(the)f(solution)h(\(semi\)norm,)e(is)i
X(treated)f(b)o(y)g(routine)g Fl(lsqi)p Fo(.)59 1796 y
XFp(Examples:)130 1865 y Fo(Use)g Fl(discrep)h Fo(to)f(solv)o(e)g(the)h
X(test)e(problem)i Fl(sha)o(w)p Fo(:)130 1933 y Fl([A,b,x])f(=)h(sha)o
X(w)8 b(\(n\);)14 b([U,s,V])i(=)f(csvd)8 b(\(A\);)16 b(e)f(=)g(1e-3)p
XFm(\003)p Fl(randn)8 b(\(size\(b\)\);)15 b(b)g(=)h(b)f(+)h(e;)130
X2002 y(x)p 154 2002 V 16 w(lamb)q(da)f(=)g(discrep)8
Xb(\(U,s,V,b,no)o(rm)g(\(e\)\);)13 b(plot)8 b(\([x,x)p
X1056 2002 V 16 w(lamb)q(da]\);)59 2106 y Fp(Algorithm:)130
X2174 y Fo(The)14 b(algorithm,)g(whic)o(h)h(uses)f(a)g(Newton)g(metho)q
X(d)g(for)f(computing)i(the)f(regularization)h(param-)59
X2231 y(eter)j Fl(lamb)q(da)h Fo(\(implemen)o(ted)h(in)f(routine)g
XFl(newton)p Fo(\),)h(is)f(describ)q(ed)h(in)f([1].)29
Xb(The)19 b(starting)e(v)m(alue)j(of)59 2287 y Fl(lamb)q(da)15
Xb Fo(is)g(set)g(equal)g(to)g(that)f(singular)i(v)m(alue)g
XFl(s)908 2294 y Fg(k)944 2287 y Fo(of)f Fn(A)p Fo(,)f(or)h(that)f
X(generalized)j(singular)e(v)m(alue)h Fn(\015)1758 2294
Xy Fg(k)1794 2287 y Fo(of)59 2344 y(\()p Fn(A;)8 b(L)p
XFo(\),)15 b(for)g(whic)o(h)j(the)e(corresp)q(onding)h(TSVD/TGSVD)f
X(residual)h(norm)f Fm(k)p Fn(A)8 b Fp(x)1495 2351 y Fg(k)1526
X2344 y Fm(\000)j Fl(b)p Fm(k)1618 2351 y Fj(2)1655 2344
Xy Fo(is)16 b(closest)59 2400 y(to)f Fl(delta)p Fo(.)59
X2504 y Fp(See)i(also:)130 2573 y Fl(lsqi)p Fo(,)e Fl(l)p
X234 2573 V 16 w(curve)p Fo(,)g Fl(newton)p Fo(,)i Fl(quasiopt)59
X2677 y Fp(References:)115 2745 y Fo(1.)22 b(V.)12 b(A)g(Morozo)o(v,)f
XFk(Metho)n(ds)i(for)h(Solving)e(Inc)n(orr)n(e)n(ctly)g(Pose)n(d)h(Pr)n
X(oblems)p Fo(,)f(Springer,)h(New)f(Y)l(ork,)173 2801
Xy(1984;)h(Chapter)i(26.)p eop
X%%Page: 55 57
X55 56 bop 59 159 a Fl(dsvd)1637 b Fo(55)p 59 178 1767
X2 v 59 304 a Fb(dsvd)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Compute)15 b(the)g(damp)q(ed)h(SVD)f(solution.)59
X581 y Fp(Synopsis:)130 650 y Fl([x)p 167 650 14 2 v 16
Xw(lamb)q(da,rho,eta])g(=)g(dsvd)8 b(\(U,s,V,b,lamb)q(da\))130
X719 y([x)p 167 719 V 16 w(lamb)q(da,rho,eta])15 b(=)g(dsvd)8
Xb(\(U,sm,X,b,lamb)q(da\))15 b(,)60 b(sm)15 b(=)g([sigma,mu])59
X825 y Fp(Description:)130 894 y Fo(Computes)g(the)g(damp)q(ed)h(SVD)f
X(solution,)h(de\014ned)g(as)144 996 y Fl(x)p 168 996
XV 17 w(lamb)q(da)41 b Fo(=)h Fl(V)8 b Fo(\(diag)q(\()p
XFl(s)i Fo(+)h Fl(lamb)q(da)p Fo(\)\))845 977 y Fe(\000)p
XFj(1)891 996 y Fl(U)922 977 y Fg(T)950 996 y Fl(b)455
Xb Fo(\(standard)14 b(form\))144 1095 y Fl(x)p 168 1095
XV 17 w(lamb)q(da)41 b Fo(=)h Fl(X)484 1035 y Fh(\022)523
X1066 y Fo(diag)q(\()p Fl(sigma)8 b Fo(+)j Fl(lamb)q(da)f
XFm(\003)g Fl(mu)o Fo(\))78 b(0)774 1123 y(0)296 b Fn(I)1113
X1130 y Fg(n)p Fe(\000)p Fg(p)1189 1035 y Fh(\023)1220
X1046 y Fe(\000)p Fj(1)1275 1095 y Fl(U)1306 1076 y Fg(T)1334
X1095 y Fl(b)46 b Fo(\(general)15 b(form\))59 1216 y(If)h
XFl(lamb)q(da)f Fo(is)g(a)g(v)o(ector,)f(then)i Fl(x)p
X619 1216 V 16 w(lamb)q(da)f Fo(is)h(a)f(matrix)g(suc)o(h)g(that)508
X1318 y Fl(x)p 532 1318 V 16 w(lamb)q(da)d Fo(=)h([)8
Xb Fl(x)p 789 1318 V 16 w(lamb)q(da)p Fo(\()p Fl(1)p Fo(\))p
XFn(;)14 b Fl(x)p 1051 1318 V 16 w(lamb)q(da)p Fo(\()p
XFl(2)p Fo(\))p Fn(;)8 b(:)g(:)g(:)t Fo(])15 b Fn(:)59
X1420 y Fo(The)g(solution)h(and)g(residual)g(norms)f(are)g(returned)h
X(in)g Fl(eta)f Fo(and)h Fl(rho)p Fo(.)59 1526 y Fp(Algorithm:)130
X1595 y Fo(Straigh)o(tforw)o(ard)d(use)j(of)e(the)i(de\014nitions)h(are)
Xd(used)i(to)f(compute)g Fl(x)p 1329 1595 V 16 w(lamb)q(da)p
XFo(.)59 1701 y Fp(References:)115 1772 y Fo(1.)22 b(M.)e(P)l(.)i
X(Ekstrom)e(&)i(R.)g(L)g(Rho)q(des,)h Fk(On)f(the)g(applic)n(ation)g(of)
Xg(eigenve)n(ctor)g(exp)n(ansions)e(to)173 1829 y(numeric)n(al)c(de)n(c)
Xn(onvolution)p Fo(,)d(J.)j(Comp.)e(Ph)o(ys.)h Fp(14)g
XFo(\(1974\),)e(319{340.)p eop
X%%Page: 56 58
X56 57 bop 64 159 a Fo(56)1613 b Fl(\014l)p 1761 159 14
X2 v 17 w(fac)p 64 178 1767 2 v 59 304 a Fb(\014l)p 108
X304 18 2 v 21 w(fac)59 406 y Fp(Purp)q(ose:)130 475 y
XFo(Compute)15 b(the)g(\014lter)h(factors)e(for)g(some)h(regularization)
Xh(metho)q(ds.)59 581 y Fp(Synopsis:)130 650 y Fl(f)f(=)g(\014l)p
X247 650 14 2 v 17 w(fac)8 b(\(s,reg)p 435 650 V 15 w(pa)o(ram,metho)q
X(d\))130 719 y(f)15 b(=)g(\014l)p 247 719 V 17 w(fac)8
Xb(\(sm,reg)p 472 719 V 14 w(pa)o(ram,metho)q(d\))14 b(,)60
Xb(sm)15 b(=)g([sigma,mu])130 788 y(f)g(=)g(\014l)p 247
X788 V 17 w(fac)8 b(\(s,reg)p 435 788 V 15 w(pa)o(ram,'ttls',s1,V1\))59
X906 y Fp(Description:)130 975 y Fo(Computes)15 b(all)h(the)f(\014lter)h
X(factors)e(corresp)q(onding)i(to)f(the)g(singular)i(v)m(alues)f(in)g
XFl(s)g Fo(and)f(the)h(regu-)59 1032 y(larization)g(parameter)f
XFl(reg)p 541 1032 V 15 w(pa)o(ram)p Fo(,)f(for)g(the)i(follo)o(wing)g
X(metho)q(ds:)155 1097 y Fl(metho)q(d)50 b(=)g('dsvd')j
XFo(:)c(damp)q(ed)16 b(SVD)f(or)g(GSVD)155 1153 y Fl(metho)q(d)50
Xb(=)g('tsvd')60 b Fo(:)49 b(truncated)15 b(SVD)h(or)e(GSVD)155
X1210 y Fl(metho)q(d)50 b(=)g('Tikh')g Fo(:)f(Tikhono)o(v)15
Xb(regularizaton)155 1266 y Fl(metho)q(d)50 b(=)g('ttls')77
Xb Fo(:)49 b(truncated)15 b(TLS)59 1334 y(If)k Fl(sm)f(=)h([sigma,mu])e
XFo(is)i(sp)q(eci\014ed,)i(then)e(the)f(\014lter)h(factors)f(for)g(the)g
X(corresp)q(onding)i(generalized)59 1390 y(metho)q(ds)15
Xb(are)g(computed.)21 b(If)15 b Fl(metho)q(d)h Fo(is)g(not)e(sp)q
X(eci\014ed,)j Fl('Tikh')e Fo(is)h(default.)59 1459 y(If)i
XFl(metho)q(d)g(=)g('ttls')g Fo(then)g(the)g(singular)g(v)m(alues)h
XFl(s1)e Fo(and)h(the)g(righ)o(t)f(singular)i(matrix)e
XFl(V1)h Fo(of)f(\()p Fn(A)g Fp(b)p Fo(\))59 1516 y(m)o(ust)e(also)g(b)q
X(e)h(supplied.)59 1622 y Fp(Examples:)130 1691 y Fo(Compute)h(the)h
X(\014lter)h(factors)e(for)g(Tikhono)o(v)h(regularization)h(corresp)q
X(onding)g(to)e(the)h(regular-)59 1747 y(ization)e(parameter)e
XFl(lamb)q(da)i Fo(=)f(10)676 1731 y Fe(\000)p Fj(3)723
X1747 y Fo(:)130 1816 y Fl(f)g(=)g(\014l)p 247 1816 V
X17 w(fac)8 b(\(s,1e-3\);)59 1922 y Fp(Algorithm:)130
X1991 y Fo(The)15 b(\014lter)h(factors)e(are)g(computed)i(b)o(y)f(means)
Xg(of)g(the)g(de\014nitions)i(from)d(Section)i(2.7.)j(See)d(also)59
X2048 y([1])e(for)h(more)g(details.)59 2154 y Fp(Limitations:)130
X2223 y Fo(The)h(routine)g Fl(\014l)p 419 2223 V 17 w(fac)f
XFo(cannot)h(b)q(e)h(used)f(to)f(compute)h(\014lter)h(factors)e(for)g
X(the)h(iterativ)o(e)g(metho)q(ds;)59 2279 y(these)c(\014lter)g(factors)
Xe(m)o(ust)h(b)q(e)h(computed)g(b)o(y)f(the)h(resp)q(ectiv)o(e)g
X(routines.)19 b(Neither)12 b(can)g Fl(\014l)p 1603 2279
XV 17 w(fac)f Fo(b)q(e)h(used)59 2336 y(to)j(compute)h(\014lter)h
X(factors)e(for)g(MTSVD)g(or)h(maxim)o(um)f(en)o(trop)o(y)h
X(regularization.)22 b(F)l(or)16 b(truncated)59 2392 y(TLS,)f(the)h
X(small)g(\014lter)f(factors)f(are)h(not)g(computed)h(accurately)l(.)59
X2499 y Fp(References:)115 2569 y Fo(1.)22 b(P)l(.)17
Xb(C.)f(Hansen,)i Fk(R)n(ank-De\014cient)g(and)g(Discr)n(ete)f(Il)r
X(l-Pose)n(d)g(Pr)n(oblems.)26 b(Numeric)n(al)18 b(Asp)n(e)n(cts)173
X2626 y(of)e(Line)n(ar)f(Inversion)p Fo(,)f(SIAM,)h(Philadelphia,)j
X(1997.)p eop
X%%Page: 57 59
X57 58 bop 59 159 a Fl(fo)o(xgo)q(o)q(d)1570 b Fo(57)p
X59 178 1767 2 v 59 304 a Fb(fo)n(xgo)r(o)r(d)59 406 y
XFp(Purp)q(ose:)130 475 y Fo(Sev)o(erely)16 b(ill-p)q(osed)i(test)c
X(problem.)59 581 y Fp(Synopsis:)130 650 y Fl([A,b,x])h(=)h(fo)o(xgo)q
X(o)q(d)8 b(\(n\))59 756 y Fp(Description:)130 825 y Fo(Discretization)
X18 b(of)f(a)h(F)l(redholm)g(in)o(tegral)g(equation)g(of)f(the)h
X(\014rst)f(kind)i(\(2.1\))d(with)i(b)q(oth)g(in)o(te-)59
X882 y(gration)d(in)o(terv)m(als)h(equal)g(to)e([0)p Fn(;)8
Xb Fo(1],)13 b(with)j(k)o(ernel)g Fn(K)i Fo(and)d(righ)o(t-hand)h(side)g
XFn(g)g Fo(giv)o(en)g(b)o(y)414 1003 y Fn(K)s Fo(\()p
XFn(s;)8 b(t)p Fo(\))k(=)h(\()p Fn(s)649 984 y Fj(2)679
X1003 y Fo(+)d Fn(t)740 984 y Fj(2)760 1003 y Fo(\))783
X970 y Fd(1)p 783 976 16 2 v 783 997 a(2)820 1003 y Fn(;)98
Xb(g)r Fo(\()p Fn(s)p Fo(\))12 b(=)1077 972 y(1)p 1077
X992 23 2 v 1077 1034 a(3)1112 956 y Fh(\020)1137 1003
Xy Fo(\(1)e(+)g Fn(s)1254 984 y Fj(2)1274 1003 y Fo(\))1297
X970 y Fd(3)p 1297 976 16 2 v 1297 997 a(2)1329 1003 y
XFm(\000)h Fn(s)1396 984 y Fj(3)1416 956 y Fh(\021)1463
X1003 y Fn(;)59 1115 y Fo(and)k(with)h(the)f(solution)h
XFn(f)i Fo(=)13 b Fn(t)p Fo(.)20 b(The)c(problem)g(w)o(as)e(\014rst)h
X(used)h(b)o(y)f(F)l(o)o(x)f(&)i(Go)q(o)q(dwin.)130 1172
Xy(This)g(is)g(an)g(arti\014cial)h(discrete)g(sev)o(erely)g(ill-p)q
X(osed)h(problem)f(whic)o(h)f(do)q(es)h(not)e(satisfy)h(the)g(dis-)59
X1228 y(crete)f(Picard)h(condition)g(for)f(the)g(smaller)h(singular)g(v)
Xm(alues.)21 b(The)16 b(matrix)f Fl(A)g Fo(is)h Fl(n)10
Xb Fm(\002)h Fl(n)p Fo(.)59 1335 y Fp(References:)115
X1405 y Fo(1.)22 b(C.)16 b(T.)h(H.)g(Bak)o(er,)g Fk(The)g(Numeric)n(al)h
X(T)m(r)n(e)n(atment)f(of)h(Inte)n(gr)n(al)e(Equations)p
XFo(,)h(Clarendon)h(Press,)173 1462 y(Oxford,)c(1977;)g(p.)h(665.)531
X1570 y
X 14432612 11188078 5262540 26773176 34995896 49731010 startTexFig
X 531 1570 a
X%%BeginDocument: testfigs/foxgood.eps
X
X% MathWorks dictionary
X/mathworks 50 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/xdef {exch def} bdef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot {gsave} bdef
X/eplot {grestore} bdef
X
X% bounding box in default coordinates
X/dx 0 def
X/dy 0 def
X/sides {/dx urx llx sub def /dy ury lly sub def} bdef
X/llx 0 def
X/lly 0 def
X/urx 0 def
X/ury 0 def
X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef
X
X% orientation switch
X/por true def
X/portrait {/por true def} bdef
X/landscape {/por false def} bdef
X
X% coordinate system mappings
X/px 8.5 72 mul def
X/py 11.0 72 mul def
X/port {dx py div dy px div scale} bdef
X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef
X/csm {llx lly translate por {port} {land} ifelse} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { []        0 setdash } bdef
X/DO { [0 4]     0 setdash } bdef
X/DA { [4]       0 setdash } bdef
X/DD { [0 4 3 4] 0 setdash } bdef
X
X% macros for moveto and polyline
X/M {moveto}  bdef
X/L {{lineto} repeat stroke} bdef
X
X% font control
X/font_spec () def
X/lfont currentfont def
X/sfont currentfont def
X/selfont {/font_spec xdef} bdef
X/savefont {font_spec findfont exch scalefont def} bdef
X/LF {lfont setfont} bdef
X/SF {sfont setfont} bdef
X
X% text display
X/sh {show} bdef
X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef
X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef
X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef
X
Xcurrentdict end def %dictionary
X
Xmathworks begin
X
X% fonts for text, standard numbers and exponents
X/Times-Roman selfont
X/lfont 30 savefont
X/sfont 21 savefont
X
X%line width, line cap, and joint spec
X.5 setlinewidth 1 setlinecap 1 setlinejoin
X
Xend
X
Xmathworks begin
Xbpage
X
Xbplot
X80 407 532 756 bbox portrait csm
X
XSO
X 78.09  77.33 757.00  77.33 757.00 570.67  78.09 570.67  78.09  77.33 M 4 L
XLF
X 73.09  71.33 M (0) rsh
X 78.09 126.66  84.83 126.66 M 1 L
X750.27 126.66 757.00 126.66 M 1 L
X 73.09 120.66 M (0.1) rsh
X 78.09 176.00  84.83 176.00 M 1 L
X750.27 176.00 757.00 176.00 M 1 L
X 73.09 170.00 M (0.2) rsh
X 78.09 225.33  84.83 225.33 M 1 L
X750.27 225.33 757.00 225.33 M 1 L
X 73.09 219.33 M (0.3) rsh
X 78.09 274.67  84.83 274.67 M 1 L
X750.27 274.67 757.00 274.67 M 1 L
X 73.09 268.67 M (0.4) rsh
X 78.09 324.00  84.83 324.00 M 1 L
X750.27 324.00 757.00 324.00 M 1 L
X 73.09 318.00 M (0.5) rsh
X 78.09 373.33  84.83 373.33 M 1 L
X750.27 373.33 757.00 373.33 M 1 L
X 73.09 367.33 M (0.6) rsh
X 78.09 422.67  84.83 422.67 M 1 L
X750.27 422.67 757.00 422.67 M 1 L
X 73.09 416.67 M (0.7) rsh
X 78.09 472.00  84.83 472.00 M 1 L
X750.27 472.00 757.00 472.00 M 1 L
X 73.09 466.00 M (0.8) rsh
X 78.09 521.34  84.83 521.34 M 1 L
X750.27 521.34 757.00 521.34 M 1 L
X 73.09 515.34 M (0.9) rsh
X 73.09 564.67 M (1) rsh
X 78.09  55.33 M (0) csh
X145.98  77.33 145.98  82.53 M 1 L
X145.98 565.47 145.98 570.67 M 1 L
X145.98  55.33 M (10) csh
X213.87  77.33 213.87  82.53 M 1 L
X213.87 565.47 213.87 570.67 M 1 L
X213.87  55.33 M (20) csh
X281.77  77.33 281.77  82.53 M 1 L
X281.77 565.47 281.77 570.67 M 1 L
X281.77  55.33 M (30) csh
X349.66  77.33 349.66  82.53 M 1 L
X349.66 565.47 349.66 570.67 M 1 L
X349.66  55.33 M (40) csh
X417.55  77.33 417.55  82.53 M 1 L
X417.55 565.47 417.55 570.67 M 1 L
X417.55  55.33 M (50) csh
X485.44  77.33 485.44  82.53 M 1 L
X485.44 565.47 485.44 570.67 M 1 L
X485.44  55.33 M (60) csh
X553.33  77.33 553.33  82.53 M 1 L
X553.33 565.47 553.33 570.67 M 1 L
X553.33  55.33 M (70) csh
X621.22  77.33 621.22  82.53 M 1 L
X621.22 565.47 621.22 570.67 M 1 L
X621.22  55.33 M (80) csh
X689.11  77.33 689.11  82.53 M 1 L
X689.11 565.47 689.11 570.67 M 1 L
X689.11  55.33 M (90) csh
X757.00  55.33 M (100) csh
X 84.88  79.80  91.67  84.73  98.46  89.66 105.25  94.60 112.04  99.53 
X118.83 104.46 125.62 109.40 132.41 114.33 139.20 119.26 145.98 124.20 
X152.77 129.13 159.56 134.06 166.35 139.00 173.14 143.93 179.93 148.87 
X186.72 153.80 193.51 158.73 200.30 163.67 207.09 168.60 213.87 173.53 
X220.66 178.47 227.45 183.40 234.24 188.33 241.03 193.27 247.82 198.20 
X254.61 203.13 261.40 208.07 268.19 213.00 274.98 217.93 281.77 222.87 
X288.55 227.80 295.34 232.73 302.13 237.67 308.92 242.60 315.71 247.53 
X322.50 252.47 329.29 257.40 336.08 262.33 342.87 267.27 349.66 272.20 
X356.45 277.13 363.23 282.07 370.02 287.00 376.81 291.93 383.60 296.87 
X390.39 301.80 397.18 306.73 403.97 311.67 410.76 316.60 417.55 321.53 
X424.34 326.47 431.12 331.40 437.91 336.33 444.70 341.27 451.49 346.20 
X458.28 351.13 465.07 356.07 471.86 361.00 478.65 365.93 485.44 370.87 
X492.23 375.80 499.02 380.73 505.80 385.67 512.59 390.60 519.38 395.53 
X526.17 400.47 532.96 405.40 539.75 410.33 546.54 415.27 553.33 420.20 
X560.12 425.13 566.91 430.07 573.70 435.00 580.48 439.93 587.27 444.87 
X594.06 449.80 600.85 454.73 607.64 459.67 614.43 464.60 621.22 469.53 
X628.01 474.47 634.80 479.40 641.59 484.33 648.37 489.27 655.16 494.20 
X661.95 499.13 668.74 504.07 675.53 509.00 682.32 513.94 689.11 518.87 
X695.90 523.80 702.69 528.74 709.48 533.67 716.27 538.60 723.05 543.54 
X729.84 548.47 736.63 553.40 743.42 558.34 750.21 563.27 757.00 568.20 
XM 99 L
Xeplot
X
Xepage
Xend
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 58 60
X58 59 bop 64 159 a Fo(58)1657 b Fl(gcv)p 64 178 1767
X2 v 59 304 a Fb(gcv)59 406 y Fp(Purp)q(ose:)130 475 y
XFo(Plot)15 b(the)g(GCV)g(function)h(and)f(\014nd)h(its)f(minim)o(um.)59
X580 y Fp(Synopsis:)130 648 y Fl([reg)p 205 648 14 2 v
X16 w(min,G,reg)p 407 648 V 14 w(pa)o(ram])f(=)i(gcv)8
Xb(\(U,s,b,metho)q(d\))130 717 y([reg)p 205 717 V 16 w(min,G,reg)p
X407 717 V 14 w(pa)o(ram])14 b(=)i(gcv)8 b(\(U,sm,b,metho)q(d\))14
Xb(,)60 b(sm)14 b(=)i([sigma,mu])59 822 y Fp(Description:)130
X891 y Fo(Plots)f(the)g(generalized)i(cross-v)m(alidation)g(\(GCV\))d
X(function)694 1019 y Fl(G)f Fo(=)881 989 y Fm(k)p Fn(A)8
Xb Fp(x)h Fm(\000)h Fp(b)p Fm(k)1080 972 y Fj(2)1080 1000
Xy(2)p 790 1009 402 2 v 790 1050 a Fo(\(trace)d(\()p Fn(I)952
X1057 y Fg(m)995 1050 y Fm(\000)j Fn(A)e(A)1116 1037 y
XFg(I)1136 1050 y Fo(\)\))1172 1037 y Fj(2)59 1142 y Fo(as)13
Xb(a)g(function)h(of)e(the)i(regularization)g(parameter)e
XFl(reg)p 1014 1142 14 2 v 16 w(pa)o(ram)p Fo(,)g(dep)q(ending)j(on)e
X(the)g(metho)q(d)h(c)o(hosen.)59 1198 y(Here,)h Fn(A)213
X1182 y Fg(I)249 1198 y Fo(is)h(a)f(matrix)g(whic)o(h)h(pro)q(duces)g
X(the)g(regularized)h(solution)f Fp(x)f Fo(when)h(m)o(ultiplied)i(with)e
X(the)59 1255 y(righ)o(t-hand)g(side)g Fp(b)p Fo(,)f(i.e.,)g
XFp(x)d Fo(=)h Fn(A)639 1238 y Fg(I)659 1255 y Fp(b)p
XFo(.)20 b(The)15 b(follo)o(wing)h(metho)q(ds)f(are)g(allo)o(w)o(ed:)155
X1319 y Fl(metho)q(d)50 b(=)g('dsvd')j Fo(:)c(damp)q(ed)16
Xb(SVD)f(or)g(GSVD)155 1376 y Fl(metho)q(d)50 b(=)g('tsvd')60
Xb Fo(:)49 b(truncated)15 b(SVD)h(or)e(GSVD)155 1432 y
XFl(metho)q(d)50 b(=)g('Tikh')g Fo(:)f(Tikhono)o(v)15
Xb(regularizaton)59 1500 y(If)k Fl(sm)f(=)h([sigma,mu])e
XFo(is)i(sp)q(eci\014ed,)i(then)e(the)f(\014lter)h(factors)f(for)g(the)g
X(corresp)q(onding)i(generalized)59 1556 y(metho)q(ds)15
Xb(are)g(computed.)21 b(If)15 b Fl(metho)q(d)h Fo(is)g(not)e(sp)q
X(eci\014ed,)j Fl('Tikh')e Fo(is)h(default.)130 1613 y(If)22
Xb(an)o(y)f(output)g(argumen)o(ts)g(are)h(sp)q(eci\014ed,)j(then)d(the)g
X(minim)o(um)g(of)g(the)f(GCV)h(function)g(is)59 1669
Xy(iden)o(ti\014ed)17 b(and)f(the)f(corresp)q(onding)h(regularization)g
X(parameter)f Fl(reg)p 1284 1669 V 16 w(min)f Fo(is)i(returned.)59
X1774 y Fp(Examples:)130 1843 y Fo(Generate)d(a)g(test)g(problem)i(and)f
X(use)g Fl(gcv)f Fo(to)g(compute)h(the)g(optimal)g(regularization)g
X(parameter)59 1899 y Fl(lamb)q(da)h Fo(for)g(Tikhono)o(v)g
X(regularization)h(in)g(standard)f(form:)130 1968 y Fl([A,b,x])g(=)h
X(phillips)8 b(\(n\);)15 b(b)h(=)f(b)h(+)f(1e-3)p Fm(\003)p
XFl(randn)8 b(\(size\(b\)\);)14 b([U,s,V])i(=)g(csvd)8
Xb(\(A\);)130 2037 y(lamb)q(da)15 b(=)g(gcv)8 b(\(U,s,b\);)14
Xb(x)p 590 2037 V 17 w(lamb)q(da)h(=)g(tikhonov)8 b(\(U,s,V,b,lamb)q
X(da\);)130 2105 y(plot)g(\(1:n,x,1:n,x)p 431 2105 V 14
Xw(lamb)q(da,'o'\))59 2211 y Fp(Algorithm:)130 2279 y
XFo(F)l(or)k(Tikhono)o(v)g(regularization)i(and)f(damp)q(ed)g(SVD/GSVD,)
Xf(200)g(logarithmically)i(distributed)59 2336 y(regularization)23
Xb(parameters)e(are)h(generated,)h(and)f Fl(G)g Fo(is)g(plotted)h(for)e
X(these)h(v)m(alues.)41 b(Then)23 b(the)59 2392 y(minimizer)18
Xb(of)e(the)g(GCV)g(function)g(is)h(computed)f(via)h Fl(fmin)p
XFo(,)e(using)i(the)f(minimizer)i(of)e Fl(G)g Fo(as)g(initial)59
X2449 y(guess.)k(F)l(or)15 b(truncated)g(SVD/GSVD/TLS,)g
XFl(G)h Fo(is)g(computed)f(and)h(plotted)g(for)e(all)j(v)m(alid)g(v)m
X(alues)f(of)59 2505 y(the)f(discrete)h(regularization)h(parameter.)59
X2610 y Fp(Limitations:)130 2679 y Fl(gcv)12 b Fo(cannot)g(b)q(e)h(used)
Xg(to)e(compute)i(the)f(GCV)g(function)h(for)f(the)g(iterativ)o(e)g
X(regularization)i(meth-)59 2735 y(o)q(ds.)20 b(Use)15
Xb(instead)g(the)g(\014lter)g(factors)f(and)h(Eq.)f(\(2.63\).)k(If)d
XFl(lsqr)g Fo(is)h(used)f(with)g(reorthogonalization,)59
X2792 y(then)i Fl(G)g Fo(can)g(b)q(e)h(appro)o(ximated)e(b)o(y)h(\()p
XFl(rho)p Fn(:=)p Fo(\()o Fn(m)11 b Fm(\000)g Fo([)p Fl(1)h
XFo(:)g Fl(k)p Fo(])1052 2775 y Fe(0)1064 2792 y Fo(\)\))p
XFn(:)o Fc(^)p Fl(2)p Fo(,)k(where)h Fl(k)g Fo(is)h(the)f(n)o(um)o(b)q
X(er)g(of)f(LSQR)59 2848 y(steps.)p eop
X%%Page: 59 61
X59 60 bop 59 159 a Fl(gcv)1657 b Fo(59)p 59 178 1767
X2 v 59 304 a Fp(Diagnostics:)130 373 y Fo(The)21 b(n)o(um)o(b)q(er)g
X(of)f(p)q(oin)o(ts)h(on)g(the)f(GCV)h(curv)o(e)f(for)h(Tikhono)o(v)f
X(regularization)i(and)f(damp)q(ed)59 430 y(SVD/GSVD)16
Xb(is)g(determined)i(b)o(y)e(the)g(parameter)f Fl(np)q(oints)j
XFo(whic)o(h)f(can)f(easily)h(b)q(e)g(c)o(hanged)g(b)o(y)f(the)59
X486 y(user)f(to)g(giv)o(e)g(a)g(\014ner)h(resolution.)59
X592 y Fp(See)h(also:)130 661 y Fl(discrep)p Fo(,)f Fl(l)p
X303 661 14 2 v 16 w(curve)p Fo(,)f Fl(quasiopt)59 768
Xy Fp(References:)115 838 y Fo(1.)22 b(G.)14 b(W)l(ah)o(ba,)g
XFk(Spline)h(Mo)n(dels)g(for)i(Observational)e(Data)p
XFo(,)h(CBMS-NSF)f(Regional)h(Conference)173 895 y(Series)g(in)g
X(Applied)h(Mathematics,)e(V)l(ol.)g(59,)f(SIAM,)i(Philadelphia,)h
X(1990.)p eop
X%%Page: 60 62
X60 61 bop 64 159 a Fo(60)1551 b Fl(gen)p 1730 159 14
X2 v 17 w(fo)o(rm)p 64 178 1767 2 v 59 304 a Fb(gen)p
X148 304 18 2 v 21 w(fo)n(rm)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(T)l(ransformation)14 b(of)h(a)f(standard-form)h(solution)h
X(bac)o(k)f(to)f(the)i(general-form)f(setting.)59 581
Xy Fp(Synopsis:)155 646 y Fl(x)g(=)g(gen)p 310 646 14
X2 v 17 w(fo)o(rm)8 b(\(L)p 467 646 V 13 w(p,x)p 537 646
XV 17 w(s,A,b,K,M\))94 b Fo(\(metho)q(d)15 b(1\))155 702
Xy Fl(x)g(=)g(gen)p 310 702 V 17 w(fo)o(rm)8 b(\(L)p 467
X702 V 13 w(p,x)p 537 702 V 17 w(s,x)p 605 702 V 16 w(0\))198
Xb Fo(\(metho)q(d)15 b(2\))59 805 y Fp(Description:)130
X874 y Fo(T)l(ransforms)22 b(the)i(standard-form)f(solution)i
XFl(x)p 974 874 V 16 w(s)f Fo(bac)o(k)g(to)f(the)h(required)h(solution)f
XFl(x)g Fo(in)h(the)59 930 y(general-form)20 b(setting.)34
Xb(Notice)21 b(that)e Fl(x)p 784 930 V 16 w(s)h Fo(ma)o(y)g(ha)o(v)o(e)f
X(more)h(than)f(one)i(column.)35 b(Tw)o(o)19 b(metho)q(ds)59
X987 y(are)j(a)o(v)m(ailable,)j(and)d(the)g(distinction)i(b)q(et)o(w)o
X(een)f(them)f(is)g(con)o(trolled)h(b)o(y)f(the)h(n)o(um)o(b)q(er)f(of)g
X(input)59 1043 y(parameters)14 b(to)h Fl(gen)p 419 1043
XV 17 w(fo)o(rm)p Fo(.)130 1100 y(In)g(metho)q(d)h(1,)e(describ)q(ed)j
X(in)g([1],)c(the)j(transformation)d(tak)o(es)i(the)g(form)616
X1202 y Fl(x)e Fo(=)g Fl(L)p 726 1202 V 16 w(p)8 b(x)p
X794 1202 V 16 w(s)j Fo(+)f Fl(K)e(M)g Fo(\()p Fl(b)h
XFm(\000)h Fl(A)e(L)p 1129 1202 V 16 w(p)g(x)p 1197 1202
XV 17 w(s)p Fo(\))15 b Fn(;)59 1304 y Fo(where)e Fl(L)p
X216 1304 V 16 w(p)g Fo(is)g(the)f(pseudoin)o(v)o(erse)i(of)e(the)g
X(matrix)h Fn(L)p Fo(,)f(the)h(matrix)f Fl(K)g Fo(has)g(columns)i(in)f
X(the)f(n)o(ull)i(space)59 1360 y(of)j Fn(L)p Fo(,)g(and)g
XFl(M)f Fo(=)g Fn(T)404 1344 y Fe(\000)p Fj(1)398 1372
Xy Fg(o)451 1360 y Fn(H)493 1344 y Fg(T)489 1372 y(o)520
X1360 y Fo(,)i(cf.)f(\(2.25\).)23 b(In)18 b(metho)q(d)g(2,)f(describ)q
X(ed)i(in)f([2,3,4],)d(the)i(transformation)59 1417 y(tak)o(es)d(the)i
X(form)752 1473 y Fl(x)p 776 1473 V 16 w(s)d Fo(=)g Fl(L)p
X895 1473 V 16 w(p)8 b(x)p 963 1473 V 17 w(s)i Fo(+)h
XFl(x)p 1074 1473 V 16 w(0)k Fn(;)59 1557 y Fo(where)h(no)o(w)g
XFl(L)p 315 1557 V 16 w(p)h Fo(is)f(the)g Fn(A)p Fo(-w)o(eigh)o(ted)h
X(generalized)h(in)o(v)o(erse)e(of)g Fn(L)p Fo(,)g(and)g
XFl(x)p 1346 1557 V 16 w(0)g Fo(is)h(the)f(comp)q(onen)o(t)g(of)g
XFl(x)59 1613 y Fo(in)g(the)f(n)o(ull)i(space)e(of)g Fn(L)g
XFo(\(notice)h(that)e(this)i(comp)q(onen)o(t)f(is)h(indep)q(enden)o(t)i
X(of)c Fl(x)p 1449 1613 V 17 w(s)p Fo(\);)h(see)g(\(2.32\).)130
X1670 y(Usually)l(,)23 b(the)f(transformation)e(from)g(general)i(form)e
X(in)o(to)h(standard)g(form)g(is)g(p)q(erformed)h(b)o(y)59
X1726 y(means)15 b(of)g(routine)h Fl(std)p 466 1726 V
X17 w(fo)o(rm)p Fo(.)130 1782 y(Notice)i(that)g(b)q(oth)h
XFl(gen)p 557 1782 V 16 w(fo)o(rm)e Fo(and)h Fl(std)p
X826 1782 V 18 w(fo)o(rm)e Fo(are)j(a)o(v)m(ailable)h(for)d(p)q
X(edagogical)j(reasons)e(only|)59 1839 y(usually)f(it)f(is)h(more)e
X(e\016cien)o(t)i(to)e(build)i(the)f(transformations)f(in)o(to)h(the)f
X(solution)i(pro)q(cess,)f(suc)o(h)g(as)59 1895 y(in)g(the)f(iterativ)o
X(e)h(metho)q(ds)f Fl(p)q(cgls)p Fo(,)h Fl(plsqr)p Fo(,)f(and)h
XFl(pnu)p Fo(.)59 2002 y Fp(Examples:)130 2071 y Fo(T)l(ransform)9
Xb(a)h(general-form)g(problem)h(in)o(to)g(standard)e(form,)i(pro)q(duce)
Xg(10)f(TSVD)g(solutions,)h(and)59 2127 y(transform)17
Xb(bac)o(k)g(again,)h(using)h(metho)q(d)f(1;)g(then)h(compare)e(with)h
X(the)g(mathematically)h(iden)o(tical)59 2183 y(TGSVD)c(solutions:)130
X2252 y Fl([A)p 176 2252 V 16 w(s,b)p 245 2252 V 17 w(s,L)p
X317 2252 V 16 w(p,K,M])g(=)g(std)p 588 2252 V 18 w(fo)o(rm)8
Xb(\(A,L,)o(b\);)k([U,s,V])k(=)f(csvd)8 b(\(A)p 1200 2252
XV 17 w(s\);)130 2321 y(X)p 163 2321 V 16 w(s)16 b(=)f(tsvd)8
Xb(\(U,s,V,b)p 505 2321 V 18 w(s,1:10\);)13 b(X)i(=)h(gen)p
X841 2321 V 17 w(fo)o(rm)8 b(\(L)p 997 2321 V 13 w(p,X)p
X1077 2321 V 17 w(s,A,b,K,M\);)130 2390 y([U1,V1,sm,X1])13
Xb(=)j(gsvd)8 b(\(A,L\);)14 b(XX)i(=)f(tgsvd)8 b(\(U1,sm,X1,b,1:10\);)k
X(no)o(rm)c(\(X)p Fm(\000)p Fl(XX\))59 2496 y Fp(Algorithm:)130
X2565 y Fo(The)15 b(algorithms)g(are)g(describ)q(ed)i(in)f(details)g(in)
Xg(refs.)f([1,2,3,4].)59 2672 y Fp(See)i(also:)130 2741
Xy Fl(std)p 189 2741 V 17 w(fo)o(rm)p eop
X%%Page: 61 63
X61 62 bop 59 159 a Fl(gen)p 128 159 14 2 v 17 w(fo)o(rm)1549
Xb Fo(61)p 59 178 1767 2 v 59 304 a Fp(References:)115
X375 y Fo(1.)22 b(L.)12 b(Eld)o(\023)-21 b(en,)13 b Fk(A)o(lgorithms)g
X(for)h(r)n(e)n(gularization)f(of)g(il)r(l-c)n(onditione)n(d)g(le)n
X(ast-squar)n(es)f(pr)n(oblems)p Fo(,)g(BIT)173 432 y
XFp(17)j Fo(\(1977\),)e(134{145.)115 488 y(2.)22 b(L.)f(Eld)o(\023)-21
Xb(en,)23 b Fk(A)f(weighte)n(d)h(pseudoinverse,)g(gener)n(alize)n(d)d
X(singular)i(values,)h(and)f(c)n(onstr)n(aine)n(d)173
X545 y(le)n(ast)15 b(squar)n(es)h(pr)n(oblems)p Fo(,)e(BIT)i
XFp(22)f Fo(\(1982\),)e(487{502.)115 601 y(3.)22 b(M.)15
Xb(Hank)o(e,)h Fk(R)n(e)n(gularization)h(with)h(di\013er)n(ential)e(op)n
X(er)n(ators.)24 b(A)o(n)17 b(iter)n(ative)g(appr)n(o)n(ach)p
XFo(,)g(J.)f(Nu-)173 657 y(mer.)e(F)l(unct.)h(Anal.)h(Optim.)f
XFp(13)h Fo(\(1992\),)d(523{540.)115 714 y(4.)22 b(P)l(.)17
Xb(C.)f(Hansen,)i Fk(R)n(ank-De\014cient)g(and)g(Discr)n(ete)f(Il)r
X(l-Pose)n(d)g(Pr)n(oblems.)26 b(Numeric)n(al)18 b(Asp)n(e)n(cts)173
X770 y(of)e(Line)n(ar)f(Inversion,)f Fo(SIAM,)h(Philadelphia,)j(1997.)p
Xeop
X%%Page: 62 64
X62 63 bop 64 159 a Fo(62)1591 b Fl(gen)p 1770 159 14
X2 v 17 w(hh)p 64 178 1767 2 v 59 304 a Fb(gen)p 148 304
X18 2 v 21 w(hh)59 406 y Fp(Purp)q(ose:)130 475 y Fo(Generate)15
Xb(a)f(Householder)j(transformation.)59 581 y Fp(Synopsis:)130
X650 y Fl([x1,b)q(eta,v])e(=)h(gen)p 464 650 14 2 v 16
Xw(hh)8 b(\(x\))59 756 y Fp(Description:)130 825 y Fo(Giv)o(en)21
Xb(a)f(v)o(ector)g Fl(x)p Fo(,)i Fl(gen)p 577 825 V 17
Xw(hh)f Fo(computes)g(the)g(scalar)g Fl(b)q(eta)g Fo(and)g(the)g(v)o
X(ector)f Fl(v)h Fo(determining)h(a)59 882 y(Householder)16
Xb(transformation)760 938 y Fn(H)g Fo(=)d Fn(I)882 945
Xy Fg(n)915 938 y Fm(\000)e Fl(b)q(eta)e(v)f(v)1103 919
Xy Fg(T)59 1021 y Fo(suc)o(h)16 b(that)f Fn(H)c Fl(x)i
XFo(=)h Fm(\006)8 b(k)p Fl(x)p Fm(k)503 1028 y Fj(2)529
X1021 y Fp(e)553 1028 y Fj(1)573 1021 y Fo(,)15 b(where)h
XFp(e)757 1028 y Fj(1)792 1021 y Fo(is)g(the)g(\014rst)f(unit)h(v)o
X(ector.)21 b(The)15 b(quan)o(tit)o(y)h Fl(x1)f Fo(returned)h(b)o(y)59
X1078 y Fl(gen)p 128 1078 V 17 w(hh)g Fo(is)g(the)f(\014rst)g(elemen)o
X(t)h(of)e Fn(H)e Fl(x)p Fo(.)59 1184 y Fp(Examples:)130
X1253 y Fo(The)j(v)o(ery)g(\014rst)g(step)g(of)g(the)g
X(bidiagonalization)j(of)c(a)h(matrix)g Fn(A)g Fo(lo)q(oks)h(as)f(follo)
Xo(ws:)130 1322 y Fl([A\(1,1\),b)q(eta,v])f(=)i(gen)p
X544 1322 V 16 w(hh)8 b(\(A\(1:m,1\)\);)13 b(A\(2:m,1\))f(=)k(zeros)8
Xb(\(m-1,1\);)130 1391 y(A\(1:m,2:n\))k(=)k(app)p 475
X1391 V 17 w(hh)8 b(\(A\(1:m,2:n\),b)q(eta,v\);)59 1497
Xy Fp(See)17 b(also:)130 1566 y Fl(app)p 201 1566 V 17
Xw(hh)p eop
X%%Page: 63 65
X63 64 bop 59 159 a Fl(get)p 121 159 14 2 v 17 w(l)1634
Xb Fo(63)p 59 178 1767 2 v 59 304 a Fb(get)p 139 304 18
X2 v 22 w(l)59 406 y Fp(Purp)q(ose:)130 475 y Fo(Compute)15
Xb(discrete)h(deriv)m(ativ)o(e)g(op)q(erators.)59 581
Xy Fp(Synopsis:)130 650 y Fl([L,W])e(=)i(get)p 364 650
X14 2 v 16 w(l)8 b(\(n,d\))59 756 y Fp(Description:)130
X825 y Fo(Computes)20 b(the)i(discrete)g(appro)o(ximation)f
XFl(L)f Fo(to)h(the)g(deriv)m(ativ)o(e)i(op)q(erator)d(of)g(order)h
XFl(d)h Fo(on)f(a)59 882 y(regular)d(grid)f(with)h Fl(n)g
XFo(p)q(oin)o(ts,)g(i.e.)g(the)f(matrix)h Fl(L)f Fo(is)h(\()p
XFl(n)11 b Fm(\000)h Fl(d)p Fo(\))g Fm(\002)g Fl(n)p Fo(.)27
Xb(In)18 b(particular,)h(for)e Fl(d)g Fo(=)f(1)h(and)59
X938 y Fl(d)c Fo(=)g(2,)i Fl(L)f Fo(has)h(the)h(form)165
X1123 y Fl(L)c Fo(=)250 1001 y Fh(0)250 1074 y(B)250 1099
Xy(B)250 1124 y(B)250 1150 y(@)294 1031 y Fo(1)45 b Fm(\000)p
XFo(1)380 1087 y(1)62 b Fm(\000)p Fo(1)470 1129 y(.)488
X1141 y(.)506 1154 y(.)571 1129 y(.)589 1141 y(.)607 1154
Xy(.)584 1215 y(1)e Fm(\000)p Fo(1)733 1001 y Fh(1)733
X1074 y(C)733 1099 y(C)733 1124 y(C)733 1150 y(A)868 1123
Xy Fo(and)91 b Fl(L)12 b Fo(=)1117 1001 y Fh(0)1117 1074
Xy(B)1117 1099 y(B)1117 1124 y(B)1117 1150 y(@)1161 1031
Xy Fo(1)45 b Fm(\000)p Fo(2)64 b(1)1247 1087 y(1)f Fm(\000)p
XFo(2)e(1)1338 1129 y(.)1356 1141 y(.)1373 1154 y(.)1439
X1129 y(.)1457 1141 y(.)1474 1154 y(.)1540 1129 y(.)1558
X1141 y(.)1575 1154 y(.)1452 1215 y(1)f Fm(\000)p Fo(2)45
Xb(1)1669 1001 y Fh(1)1669 1074 y(C)1669 1099 y(C)1669
X1124 y(C)1669 1150 y(A)1713 1123 y Fn(;)59 1307 y Fo(resp)q(ectiv)o
X(ely)l(.)22 b(The)15 b(matrix)g Fl(L)g Fo(is)h(stored)e(as)h(a)g
X(sparse)g(matrix.)130 1364 y(If)h(required,)h(an)f(orthonormal)f(basis)
Xh(represen)o(ted)h(b)o(y)f(the)g(columns)h(of)e(the)i(matrix)e
XFl(W)h Fo(is)h(also)59 1420 y(computed.)j(The)c(matrix)f
XFl(W)g Fo(is)g(used)h(in)g(the)g(\\preconditioned")g(iterativ)o(e)g
X(metho)q(ds.)59 1526 y Fp(Algorithm:)130 1595 y Fo(The)g(matrix)g
XFl(W)g Fo(is)h(computed)g(b)o(y)f(\014rst)g(generating)h(the)f
X(\\trivial")h(basis)g(v)o(ectors)f(\(1)f(1)8 b Fn(:)g(:)g(:)d
XFo(1\))1791 1579 y Fg(T)1818 1595 y Fo(,)59 1652 y(\(1)15
Xb(2)8 b Fn(:)g(:)g(:)d Fl(n)p Fo(\))247 1635 y Fg(T)274
X1652 y Fo(,)15 b(etc.,)f(and)i(then)f(orthonormalizing)h(these)g(b)o(y)
Xf(means)g(of)g(MGS.)p eop
X%%Page: 64 66
X64 65 bop 64 159 a Fo(64)1639 b Fl(heat)p 64 178 1767
X2 v 59 304 a Fb(heat)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(T)l(est)15 b(problem:)20 b(in)o(v)o(erse)c(heat)f(equation.)59
X581 y Fp(Synopsis:)130 650 y Fl([A,b,x])g(=)h(heat)8
Xb(\(n,k)o(appa\))59 756 y Fp(Description:)130 825 y Fo(The)18
Xb(in)o(v)o(erse)h(heat)f(equation)h(used)g(here)g(is)g(a)f(V)l(olterra)
Xg(in)o(tegral)h(equation)g(of)f(the)h(\014rst)f(kind)59
X882 y(with)e([0)p Fn(;)8 b Fo(1])13 b(as)h(in)o(tegration)i(in)o(terv)m
X(al.)21 b(The)15 b(k)o(ernel)h(is)g Fn(K)s Fo(\()p Fn(s;)8
Xb(t)p Fo(\))j(=)i Fn(k)q Fo(\()p Fn(s)e Fm(\000)f Fn(t)p
XFo(\))15 b(with)555 1015 y Fn(k)q Fo(\()p Fn(t)p Fo(\))e(=)752
X984 y Fn(t)768 968 y Fe(\000)p Fj(3)p Fg(=)p Fj(2)p 698
X1004 208 2 v 698 1046 a Fo(2)8 b Fl(k)o(appa)840 1013
Xy Fm(p)p 878 1013 28 2 v 33 x Fn(\031)925 1015 y Fo(exp)1002
X955 y Fh(\022)1033 1015 y Fm(\000)1165 984 y Fo(1)p 1073
X1004 206 2 v 1073 1049 a(4)g Fl(k)o(appa)1215 1031 y
XFj(2)1242 1049 y Fn(t)1258 1036 y Fj(2)1284 955 y Fh(\023)1322
X1015 y Fn(:)59 1139 y Fo(Here,)15 b(the)g(parameter)g
XFl(k)o(appa)h Fo(con)o(trols)e(the)i(ill-conditioni)q(ng)i(of)d(the)g
X(matrix)g Fl(A)p Fo(:)155 1204 y Fl(k)o(appa)g(=)h(5)49
Xb Fo(giv)o(es)16 b(a)f(w)o(ell-conditioned)j(matrix,)155
X1261 y Fl(k)o(appa)d(=)h(1)49 b Fo(giv)o(es)16 b(an)f(ill-conditioned)k
X(matrix.)59 1326 y(The)c(default)h(is)g Fl(k)o(appa)g(=)f(1)p
XFo(.)59 1432 y Fp(Algorithm:)130 1501 y Fo(The)h(in)o(tegral)h
X(equation)g(is)g(discretized)h(b)o(y)f(means)f(of)g(simple)i(collo)q
X(cation)g(and)f(the)f(midp)q(oin)o(t)59 1558 y(rule)i(with)f
XFl(n)g Fo(p)q(oin)o(ts,)g(cf.)f([1,2].)23 b(An)17 b(exact)f(solution)i
XFl(x)e Fo(is)i(constructed,)f(and)f(then)h(the)g(righ)o(t-hand)59
X1614 y(side)f Fl(b)g Fo(is)g(pro)q(duced)g(as)f Fl(b)e
XFo(=)g Fl(A)8 b(x)p Fo(.)59 1720 y Fp(References:)115
X1791 y Fo(1.)22 b(A.)16 b(S.)g(Carasso,)f Fk(Determining)i(surfac)n(e)g
X(temp)n(er)n(atur)n(es)h(fr)n(om)f(interior)h(observations)p
XFo(,)d(SIAM)173 1848 y(J.)g(Appl.)h(Math.)e Fp(42)h Fo(\(1982\),)e
X(558{574.)115 1904 y(2.)22 b(L.)h(Eld)o(\023)-21 b(en,)26
Xb Fk(The)e(numeric)n(al)g(solution)f(of)i(a)f(non-char)n(acteristic)g
X(Cauchy)g(pr)n(oblem)g(for)g(a)173 1960 y(p)n(ar)n(ab)n(olic)17
Xb(e)n(quation)p Fo(;)f(in)h(P)l(.)g(Deu\015hart)f(&)h(E.)f(Hairer)g
X(\(Eds.\),)g Fk(Numeric)n(al)h(T)m(r)n(e)n(atment)f(of)h(In-)173
X2017 y(verse)e(Pr)n(oblems)h(in)g(Di\013er)n(ential)f(and)h(Inte)n(gr)n
X(al)f(Equations)p Fo(,)g(Birkh\177)-23 b(auser,)15 b(Boston,)f(1983.)
X531 2125 y
X 13229897 10255738 5262540 26773176 34995896 49731010 startTexFig
X 531 2125 a
X%%BeginDocument: testfigs/heat.eps
X
X% MathWorks dictionary
X/mathworks 50 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/xdef {exch def} bdef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot {gsave} bdef
X/eplot {grestore} bdef
X
X% bounding box in default coordinates
X/dx 0 def
X/dy 0 def
X/sides {/dx urx llx sub def /dy ury lly sub def} bdef
X/llx 0 def
X/lly 0 def
X/urx 0 def
X/ury 0 def
X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef
X
X% orientation switch
X/por true def
X/portrait {/por true def} bdef
X/landscape {/por false def} bdef
X
X% coordinate system mappings
X/px 8.5 72 mul def
X/py 11.0 72 mul def
X/port {dx py div dy px div scale} bdef
X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef
X/csm {llx lly translate por {port} {land} ifelse} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { []        0 setdash } bdef
X/DO { [0 4]     0 setdash } bdef
X/DA { [4]       0 setdash } bdef
X/DD { [0 4 3 4] 0 setdash } bdef
X
X% macros for moveto and polyline
X/M {moveto}  bdef
X/L {{lineto} repeat stroke} bdef
X
X% font control
X/font_spec () def
X/lfont currentfont def
X/sfont currentfont def
X/selfont {/font_spec xdef} bdef
X/savefont {font_spec findfont exch scalefont def} bdef
X/LF {lfont setfont} bdef
X/SF {sfont setfont} bdef
X
X% text display
X/sh {show} bdef
X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef
X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef
X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef
X
Xcurrentdict end def %dictionary
X
Xmathworks begin
X
X% fonts for text, standard numbers and exponents
X/Times-Roman selfont
X/lfont 30 savefont
X/sfont 21 savefont
X
X%line width, line cap, and joint spec
X.5 setlinewidth 1 setlinecap 1 setlinejoin
X
Xend
X
Xmathworks begin
Xbpage
X
Xbplot
X80 407 532 756 bbox portrait csm
X
XSO
X 78.09  77.33 757.00  77.33 757.00 570.67  78.09 570.67  78.09  77.33 M 4 L
XLF
X 73.09  71.33 M (0) rsh
X 78.09 126.66  84.83 126.66 M 1 L
X750.27 126.66 757.00 126.66 M 1 L
X 73.09 120.66 M (0.1) rsh
X 78.09 176.00  84.83 176.00 M 1 L
X750.27 176.00 757.00 176.00 M 1 L
X 73.09 170.00 M (0.2) rsh
X 78.09 225.33  84.83 225.33 M 1 L
X750.27 225.33 757.00 225.33 M 1 L
X 73.09 219.33 M (0.3) rsh
X 78.09 274.67  84.83 274.67 M 1 L
X750.27 274.67 757.00 274.67 M 1 L
X 73.09 268.67 M (0.4) rsh
X 78.09 324.00  84.83 324.00 M 1 L
X750.27 324.00 757.00 324.00 M 1 L
X 73.09 318.00 M (0.5) rsh
X 78.09 373.33  84.83 373.33 M 1 L
X750.27 373.33 757.00 373.33 M 1 L
X 73.09 367.33 M (0.6) rsh
X 78.09 422.67  84.83 422.67 M 1 L
X750.27 422.67 757.00 422.67 M 1 L
X 73.09 416.67 M (0.7) rsh
X 78.09 472.00  84.83 472.00 M 1 L
X750.27 472.00 757.00 472.00 M 1 L
X 73.09 466.00 M (0.8) rsh
X 78.09 521.34  84.83 521.34 M 1 L
X750.27 521.34 757.00 521.34 M 1 L
X 73.09 515.34 M (0.9) rsh
X 73.09 564.67 M (1) rsh
X 78.09  55.33 M (0) csh
X145.98  77.33 145.98  82.53 M 1 L
X145.98 565.47 145.98 570.67 M 1 L
X145.98  55.33 M (10) csh
X213.87  77.33 213.87  82.53 M 1 L
X213.87 565.47 213.87 570.67 M 1 L
X213.87  55.33 M (20) csh
X281.77  77.33 281.77  82.53 M 1 L
X281.77 565.47 281.77 570.67 M 1 L
X281.77  55.33 M (30) csh
X349.66  77.33 349.66  82.53 M 1 L
X349.66 565.47 349.66 570.67 M 1 L
X349.66  55.33 M (40) csh
X417.55  77.33 417.55  82.53 M 1 L
X417.55 565.47 417.55 570.67 M 1 L
X417.55  55.33 M (50) csh
X485.44  77.33 485.44  82.53 M 1 L
X485.44 565.47 485.44 570.67 M 1 L
X485.44  55.33 M (60) csh
X553.33  77.33 553.33  82.53 M 1 L
X553.33 565.47 553.33 570.67 M 1 L
X553.33  55.33 M (70) csh
X621.22  77.33 621.22  82.53 M 1 L
X621.22 565.47 621.22 570.67 M 1 L
X621.22  55.33 M (80) csh
X689.11  77.33 689.11  82.53 M 1 L
X689.11 565.47 689.11 570.67 M 1 L
X689.11  55.33 M (90) csh
X757.00  55.33 M (100) csh
X 84.88  81.03  91.67  92.13  98.46 110.63 105.25 136.53 112.04 169.83 
X118.83 210.53 125.62 258.63 132.41 314.13 139.20 377.03 145.98 447.33 
X152.77 526.27 159.56 565.74 166.35 565.74 173.14 526.27 179.93 447.33 
X186.72 325.35 193.51 243.58 200.30 188.77 207.09 152.03 213.87 127.41 
X220.66 110.90 227.45  99.83 234.24  92.41 241.03  87.44 247.82  84.11 
X254.61  81.87 261.40  80.38 268.19  79.37 274.98  78.70 281.77  78.25 
X288.55  77.95 295.34  77.74 302.13  77.61 308.92  77.52 315.71  77.46 
X322.50  77.41 329.29  77.39 336.08  77.37 342.87  77.36 349.66  77.35 
X356.45  77.34 363.23  77.34 370.02  77.34 376.81  77.33 383.60  77.33 
X390.39  77.33 397.18  77.33 403.97  77.33 410.76  77.33 417.55  77.33 
X424.34  77.33 431.12  77.33 437.91  77.33 444.70  77.33 451.49  77.33 
X458.28  77.33 465.07  77.33 471.86  77.33 478.65  77.33 485.44  77.33 
X492.23  77.33 499.02  77.33 505.80  77.33 512.59  77.33 519.38  77.33 
X526.17  77.33 532.96  77.33 539.75  77.33 546.54  77.33 553.33  77.33 
X560.12  77.33 566.91  77.33 573.70  77.33 580.48  77.33 587.27  77.33 
X594.06  77.33 600.85  77.33 607.64  77.33 614.43  77.33 621.22  77.33 
X628.01  77.33 634.80  77.33 641.59  77.33 648.37  77.33 655.16  77.33 
X661.95  77.33 668.74  77.33 675.53  77.33 682.32  77.33 689.11  77.33 
X695.90  77.33 702.69  77.33 709.48  77.33 716.27  77.33 723.05  77.33 
X729.84  77.33 736.63  77.33 743.42  77.33 750.21  77.33 757.00  77.33 
XM 99 L
Xeplot
X
Xepage
Xend
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 65 67
X65 66 bop 59 159 a Fl(heb)p 128 159 14 2 v 18 w(new)1563
Xb Fo(65)p 59 178 1767 2 v 59 304 a Fb(heb)p 149 304 18
X2 v 21 w(new)59 406 y Fp(Purp)q(ose:)130 475 y Fo(Newton)15
Xb(iteration)g(with)h(Heb)q(den)g(mo)q(del)g(\(utilit)o(y)g(routine)g
X(for)f Fl(lsqi)p Fo(\).)59 581 y Fp(Synopsis:)130 650
Xy Fl(lamb)q(da)g(=)g(heb)p 403 650 14 2 v 18 w(new)8
Xb(\(lamb)q(da)p 660 650 V 16 w(0,alpha,s,b)q(eta,omega\))59
X756 y Fp(Description:)130 825 y Fl(heb)p 199 825 V 17
Xw(new)16 b Fo(uses)f(Newton)f(iteration)h(with)g(a)f(Heb)q(den)j
X(\(rational\))d(mo)q(del)h(to)g(\014nd)g(the)g(solution)g(to)59
X882 y(the)g(secular)h(equation)704 938 y Fm(k)p Fn(L)8
Xb Fo(\()p Fp(x)812 945 y Fg(\025)843 938 y Fm(\000)j
XFp(x)917 945 y Fj(0)936 938 y Fo(\))p Fm(k)977 945 y
XFj(2)1009 938 y Fo(=)i Fl(alpha)i Fn(;)59 1021 y Fo(where)g
XFp(x)218 1028 y Fg(\025)256 1021 y Fo(is)h(the)f(solution)h(de\014ned)g
X(b)o(y)g(Tikhono)o(v)f(regularization.)130 1078 y(The)21
Xb(initial)i(guess)e(of)g Fn(\025)f Fo(is)i Fl(lamb)q(da)p
X790 1078 V 16 w(0)p Fo(.)37 b(The)21 b(norm)g Fm(k)p
XFn(L)8 b Fo(\()p Fp(x)1208 1085 y Fg(\025)1243 1078 y
XFm(\000)14 b Fp(x)1320 1085 y Fj(0)1339 1078 y Fo(\))p
XFm(k)1380 1085 y Fj(2)1420 1078 y Fo(is)22 b(computed)f(via)h(the)59
X1134 y(quan)o(tities)17 b Fl(s)p Fo(,)f Fl(b)q(eta)p
XFo(,)h(and)f Fl(omega)p Fo(.)k(Here,)c Fl(s)g Fo(holds)h(either)g(the)f
X(singular)h(v)m(alues)g(of)e Fn(A)p Fo(,)h(if)g Fn(L)e
XFo(=)g Fn(I)1738 1141 y Fg(n)1762 1134 y Fo(,)h(or)59
X1191 y(the)f Fn(c;)8 b(s)p Fo(-pairs)14 b(of)f(the)h(GSVD)g(of)f(\()p
XFn(A;)8 b(L)p Fo(\))13 b(if)h Fn(L)f Fm(6)p Fo(=)g Fn(I)931
X1198 y Fg(n)954 1191 y Fo(.)19 b(Moreo)o(v)o(er,)13 b
XFl(b)q(eta)h Fo(=)f Fn(U)1378 1174 y Fg(T)1405 1191 y
XFp(b)h Fo(and)g Fl(omega)f Fo(is)h(either)59 1247 y Fn(V)96
X1231 y Fg(T)123 1247 y Fp(x)151 1254 y Fj(0)186 1247
Xy Fo(or)g(the)i(\014rst)e Fn(p)h Fo(elemen)o(ts)h(of)f
XFn(X)731 1231 y Fe(\000)p Fj(1)777 1247 y Fp(x)805 1254
Xy Fj(0)825 1247 y Fo(.)59 1354 y Fp(Algorithm:)130 1422
Xy Fo(The)h(original)h(algorithm)g(is)g(describ)q(ed)h(in)f([1],)e(and)h
X(the)h(extension)g(to)e(the)i(case)f Fp(x)1610 1429 y
XFj(0)1644 1422 y Fm(6)p Fo(=)f Fp(0)h Fo(is)h(b)o(y)59
X1479 y(P)l(.)f(C.)f(Hansen.)23 b(The)16 b(Heb)q(den)h(mo)q(del,)g(to)e
X(whic)o(h)i(Newton's)e(metho)q(d)h(is)h(applied,)h(and)e(whic)o(h)g(w)o
X(as)59 1535 y(found)f(exp)q(erimen)o(tally)h(to)e(b)q(e)h(sup)q(erior)g
X(in)h(connection)f(with)g Fl(lsqi)p Fo(,)g(is)g Fm(k)p
XFn(L)8 b Fo(\()p Fp(x)1409 1542 y Fg(\025)1438 1535 y
XFm(\000)h Fp(x)1510 1542 y Fj(0)1529 1535 y Fo(\))p Fm(k)1570
X1516 y Fe(\000)p Fj(2)1570 1548 y(2)1626 1535 y Fm(\000)f
XFl(alpha)1771 1517 y Fe(\000)p Fj(2)1818 1535 y Fo(.)59
X1642 y Fp(Diagnostics:)130 1711 y Fo(The)22 b(p)q(erformance)h(of)f
XFl(heb)p 626 1711 V 17 w(new)h Fo(relies)h(to)d(some)i(exten)o(t)f(on)g
X(a)g(fairly)h(go)q(o)q(d)f(starting)g(guess)59 1767 y
XFl(lamb)q(da)p 201 1767 V 16 w(0)15 b Fo(of)g Fn(\025)p
XFo(.)k(A)d(maxim)o(um)f(n)o(um)o(b)q(er)g(of)g(50)g(iterations)g(is)h
X(default.)59 1873 y Fp(See)h(also:)130 1942 y Fl(lsqi)59
X2048 y Fp(References:)115 2119 y Fo(1.)22 b(T.)12 b(F.)g(Chan,)h(J.)g
X(Olkin)i(&)e(D.)f(W.)g(Co)q(oley)l(,)i Fk(Solving)f(quadr)n(atic)n(al)r
X(ly)h(c)n(onstr)n(aine)n(d)f(le)n(ast)g(squar)n(es)173
X2176 y(using)i(black)h(b)n(ox)g(unc)n(onstr)n(aine)n(d)f(solvers)p
XFo(,)f(BIT)h Fp(32)h Fo(\(1992\),)d(481{495.)p eop
X%%Page: 66 68
X66 67 bop 64 159 a Fo(66)1581 b Fl(ilaplace)p 64 178
X1767 2 v 59 304 a Fb(ilaplace)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(T)l(est)15 b(problem:)20 b(in)o(v)o(erse)c(Laplace)g
X(transformation.)59 581 y Fp(Synopsis:)130 650 y Fl([A,b,x])f(=)h
X(ilaplace)8 b(\(n,example\))59 756 y Fp(Description:)130
X825 y Fo(Discretization)16 b(of)g(the)g(in)o(v)o(erse)g(Laplace)h
X(transformation)e(\(a)g(F)l(redholm)i(in)o(tegral)f(equation)g(of)59
X882 y(the)f(\014rst)g(kind)h(\(2.1\)\))e(b)o(y)h(means)g(of)g
X(Gauss-Laguerre)g(quadrature.)k(The)d(k)o(ernel)g Fn(K)i
XFo(is)d(giv)o(en)h(b)o(y)744 984 y Fn(K)s Fo(\()p Fn(s;)8
Xb(t)p Fo(\))k(=)h(exp)8 b(\()p Fm(\000)p Fn(s)g(t)p Fo(\))p
XFn(;)59 1086 y Fo(and)13 b(b)q(oth)h(in)o(tegration)f(in)o(terv)m(als)h
X(are)f([0)p Fn(;)8 b Fm(1)p Fo(\).)18 b(The)c(follo)o(wing)g(examples)g
X(are)e(implemen)o(ted,)j(where)59 1142 y Fn(f)20 b Fo(denotes)c(the)f
X(solution)h(and)f Fn(g)i Fo(denotes)e(the)h(corresp)q(onding)g(righ)o
X(t-hand)f(side:)155 1245 y Fl(example)f(=)i(1)p Fo(:)49
Xb Fn(f)5 b Fo(\()p Fn(t)p Fo(\))13 b(=)g(exp)8 b(\()p
XFm(\000)p Fn(t=)p Fo(2\),)127 b Fn(g)r Fo(\()p Fn(s)p
XFo(\))11 b(=)1134 1227 y Fj(1)p 1094 1234 97 2 v 1094
X1261 a Fg(s)p Fj(+1)p Fg(=)p Fj(2)155 1365 y Fl(example)j(=)i(2)p
XFo(:)49 b Fn(f)5 b Fo(\()p Fn(t)p Fo(\))13 b(=)g(1)c
XFm(\000)i Fo(exp)d(\()p Fm(\000)p Fn(t=)p Fo(2\),)49
Xb Fn(g)r Fo(\()p Fn(s)p Fo(\))11 b(=)1094 1347 y Fj(1)p
X1094 1354 18 2 v 1095 1381 a Fg(s)1127 1365 y Fm(\000)1217
X1347 y Fj(1)p 1178 1354 97 2 v 1178 1381 a Fg(s)p Fj(+1)p
XFg(=)p Fj(2)155 1485 y Fl(example)j(=)i(3)p Fo(:)49 b
XFn(f)5 b Fo(\()p Fn(t)p Fo(\))13 b(=)g Fn(t)615 1469
Xy Fj(2)642 1485 y Fo(exp)8 b(\()p Fm(\000)p Fn(t=)p Fo(2\),)84
Xb Fn(g)r Fo(\()p Fn(s)p Fo(\))11 b(=)1156 1467 y Fj(2)p
X1094 1474 142 2 v 1094 1502 a(\()p Fg(s)p Fj(+1)p Fg(=)p
XFj(2\))1219 1492 y Fd(3)155 1640 y Fl(example)j(=)i(4)p
XFo(:)49 b Fn(f)5 b Fo(\()p Fn(t)p Fo(\))13 b(=)599 1568
Xy Fh(\()653 1612 y Fo(0)p Fn(;)41 b(t)13 b Fm(\024)g
XFo(2)653 1668 y(1)p Fn(;)41 b(t)13 b(>)g Fo(2)855 1640
Xy(,)81 b Fn(g)r Fo(\()p Fn(s)p Fo(\))11 b(=)1094 1618
Xy Fj(exp)o(\()p Fe(\000)p Fj(2)p Fg(s)p Fj(\))p 1094
X1630 143 2 v 1158 1656 a Fg(s)59 1779 y Fo(All)17 b(four)d(examples)i
X(are)f(from)g([1].)j(The)e(size)g(of)f(the)g(matrix)g
XFl(A)g Fo(is)h Fl(n)11 b Fm(\002)f Fl(n)p Fo(.)59 1885
Xy Fp(References:)115 1956 y Fo(1.)22 b(J.)14 b(M.)g(V)l(arah,)g
XFk(Pitfal)r(ls)h(in)g(the)h(numeric)n(al)f(solution)g(of)h(line)n(ar)f
X(il)r(l-p)n(ose)n(d)g(pr)n(oblems)p Fo(,)f(SIAM)h(J.)173
X2013 y(Sci.)h(Stat.)e(Comput.)g Fp(4)h Fo(\(1983\),)e(164{176.)531
X2124 y
X 13229897 10255738 5262540 26773176 34995896 49731010 startTexFig
X 531 2124 a
X%%BeginDocument: testfigs/ilaplace.eps
X
X% MathWorks dictionary
X/mathworks 50 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/xdef {exch def} bdef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot {gsave} bdef
X/eplot {grestore} bdef
X
X% bounding box in default coordinates
X/dx 0 def
X/dy 0 def
X/sides {/dx urx llx sub def /dy ury lly sub def} bdef
X/llx 0 def
X/lly 0 def
X/urx 0 def
X/ury 0 def
X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef
X
X% orientation switch
X/por true def
X/portrait {/por true def} bdef
X/landscape {/por false def} bdef
X
X% coordinate system mappings
X/px 8.5 72 mul def
X/py 11.0 72 mul def
X/port {dx py div dy px div scale} bdef
X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef
X/csm {llx lly translate por {port} {land} ifelse} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { []        0 setdash } bdef
X/DO { [0 4]     0 setdash } bdef
X/DA { [4]       0 setdash } bdef
X/DD { [0 4 3 4] 0 setdash } bdef
X
X% macros for moveto and polyline
X/M {moveto}  bdef
X/L {{lineto} repeat stroke} bdef
X
X% font control
X/font_spec () def
X/lfont currentfont def
X/sfont currentfont def
X/selfont {/font_spec xdef} bdef
X/savefont {font_spec findfont exch scalefont def} bdef
X/LF {lfont setfont} bdef
X/SF {sfont setfont} bdef
X
X% text display
X/sh {show} bdef
X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef
X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef
X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef
X
Xcurrentdict end def %dictionary
X
Xmathworks begin
X
X% fonts for text, standard numbers and exponents
X/Times-Roman selfont
X/lfont 30 savefont
X/sfont 21 savefont
X
X%line width, line cap, and joint spec
X.5 setlinewidth 1 setlinecap 1 setlinejoin
X
Xend
X
Xmathworks begin
Xbpage
X
Xbplot
X80 407 532 756 bbox portrait csm
X
XSO
X 78.09  77.33 757.00  77.33 757.00 570.67  78.09 570.67  78.09  77.33 M 4 L
XLF
X 73.09  71.33 M (0) rsh
X 78.09 176.00  84.83 176.00 M 1 L
X750.27 176.00 757.00 176.00 M 1 L
X 73.09 170.00 M (0.5) rsh
X 78.09 274.67  84.83 274.67 M 1 L
X750.27 274.67 757.00 274.67 M 1 L
X 73.09 268.67 M (1) rsh
X 78.09 373.33  84.83 373.33 M 1 L
X750.27 373.33 757.00 373.33 M 1 L
X 73.09 367.33 M (1.5) rsh
X 78.09 472.00  84.83 472.00 M 1 L
X750.27 472.00 757.00 472.00 M 1 L
X 73.09 466.00 M (2) rsh
X 73.09 564.67 M (2.5) rsh
X 78.09  55.33 M (0) csh
X145.98  77.33 145.98  82.53 M 1 L
X145.98 565.47 145.98 570.67 M 1 L
X145.98  55.33 M (10) csh
X213.87  77.33 213.87  82.53 M 1 L
X213.87 565.47 213.87 570.67 M 1 L
X213.87  55.33 M (20) csh
X281.77  77.33 281.77  82.53 M 1 L
X281.77 565.47 281.77 570.67 M 1 L
X281.77  55.33 M (30) csh
X349.66  77.33 349.66  82.53 M 1 L
X349.66 565.47 349.66 570.67 M 1 L
X349.66  55.33 M (40) csh
X417.55  77.33 417.55  82.53 M 1 L
X417.55 565.47 417.55 570.67 M 1 L
X417.55  55.33 M (50) csh
X485.44  77.33 485.44  82.53 M 1 L
X485.44 565.47 485.44 570.67 M 1 L
X485.44  55.33 M (60) csh
X553.33  77.33 553.33  82.53 M 1 L
X553.33 565.47 553.33 570.67 M 1 L
X553.33  55.33 M (70) csh
X621.22  77.33 621.22  82.53 M 1 L
X621.22 565.47 621.22 570.67 M 1 L
X621.22  55.33 M (80) csh
X689.11  77.33 689.11  82.53 M 1 L
X689.11 565.47 689.11 570.67 M 1 L
X689.11  55.33 M (90) csh
X757.00  55.33 M (100) csh
X 84.88 273.25  91.67 267.33  98.46 257.11 105.25 243.32 112.04 226.86 
X118.83 208.76 125.62 190.04 132.41 171.62 139.20 154.29 145.98 138.61 
X152.77 124.92 159.56 113.38 166.35 103.97 173.14  96.53 179.93  90.82 
X186.72  86.57 193.51  83.51 200.30  81.35 207.09  79.88 213.87  78.91 
X220.66  78.28 227.45  77.89 234.24  77.65 241.03  77.51 247.82  77.43 
X254.61  77.38 261.40  77.36 268.19  77.34 274.98  77.34 281.77  77.33 
X288.55  77.33 295.34  77.33 302.13  77.33 308.92  77.33 315.71  77.33 
X322.50  77.33 329.29  77.33 336.08  77.33 342.87  77.33 349.66  77.33 
X356.45  77.33 363.23  77.33 370.02  77.33 376.81  77.33 383.60  77.33 
X390.39  77.33 397.18  77.33 403.97  77.33 410.76  77.33 417.55  77.33 
X424.34  77.33 431.12  77.33 437.91  77.33 444.70  77.33 451.49  77.33 
X458.28  77.33 465.07  77.33 471.86  77.33 478.65  77.33 485.44  77.33 
X492.23  77.33 499.02  77.33 505.80  77.33 512.59  77.33 519.38  77.33 
X526.17  77.33 532.96  77.33 539.75  77.33 546.54  77.33 553.33  77.33 
X560.12  77.33 566.91  77.33 573.70  77.33 580.48  77.33 587.27  77.33 
X594.06  77.33 600.85  77.33 607.64  77.33 614.43  77.33 621.22  77.33 
X628.01  77.33 634.80  77.33 641.59  77.33 648.37  77.33 655.16  77.33 
X661.95  77.33 668.74  77.33 675.53  77.33 682.32  77.33 689.11  77.33 
X695.90  77.33 702.69  77.33 709.48  77.33 716.27  77.33 723.05  77.33 
X729.84  77.33 736.63  77.33 743.42  77.33 750.21  77.33 757.00  77.33 
XM 99 L
XDA
X 84.88  78.75  91.67  84.67  98.46  94.88 105.25 108.68 112.04 125.14 
X118.83 143.24 125.62 161.96 132.41 180.38 139.20 197.71 145.98 213.39 
X152.77 227.08 159.56 238.61 166.35 248.03 173.14 255.47 179.93 261.18 
X186.72 265.42 193.51 268.49 200.30 270.64 207.09 272.11 213.87 273.09 
X220.66 273.71 227.45 274.11 234.24 274.35 241.03 274.49 247.82 274.57 
X254.61 274.61 261.40 274.64 268.19 274.65 274.98 274.66 281.77 274.66 
X288.55 274.66 295.34 274.67 302.13 274.67 308.92 274.67 315.71 274.67 
X322.50 274.67 329.29 274.67 336.08 274.67 342.87 274.67 349.66 274.67 
X356.45 274.67 363.23 274.67 370.02 274.67 376.81 274.67 383.60 274.67 
X390.39 274.67 397.18 274.67 403.97 274.67 410.76 274.67 417.55 274.67 
X424.34 274.67 431.12 274.67 437.91 274.67 444.70 274.67 451.49 274.67 
X458.28 274.67 465.07 274.67 471.86 274.67 478.65 274.67 485.44 274.67 
X492.23 274.67 499.02 274.67 505.80 274.67 512.59 274.67 519.38 274.67 
X526.17 274.67 532.96 274.67 539.75 274.67 546.54 274.67 553.33 274.67 
X560.12 274.67 566.91 274.67 573.70 274.67 580.48 274.67 587.27 274.67 
X594.06 274.67 600.85 274.67 607.64 274.67 614.43 274.67 621.22 274.67 
X628.01 274.67 634.80 274.67 641.59 274.67 648.37 274.67 655.16 274.67 
X661.95 274.67 668.74 274.67 675.53 274.67 682.32 274.67 689.11 274.67 
X695.90 274.67 702.69 274.67 709.48 274.67 716.27 274.67 723.05 274.67 
X729.84 274.67 736.63 274.67 743.42 274.67 750.21 274.67 757.00 274.67 
XM 99 L
XDO
X 84.88  77.37  91.67  78.42  98.46  83.57 105.25  97.20 112.04 123.36 
X118.83 164.18 125.62 218.78 132.41 283.04 139.20 350.28 145.98 412.58 
X152.77 462.40 159.56 494.06 166.35 504.63 173.14 494.26 179.93 465.75 
X186.72 423.76 193.51 373.79 200.30 321.18 207.09 270.39 213.87 224.63 
X220.66 185.76 227.45 154.38 234.24 130.24 241.03 112.45 247.82  99.88 
X254.61  91.33 261.40  85.75 268.19  82.23 274.98  80.09 281.77  78.84 
X288.55  78.13 295.34  77.74 302.13  77.53 308.92  77.43 315.71  77.38 
X322.50  77.35 329.29  77.34 336.08  77.33 342.87  77.33 349.66  77.33 
X356.45  77.33 363.23  77.33 370.02  77.33 376.81  77.33 383.60  77.33 
X390.39  77.33 397.18  77.33 403.97  77.33 410.76  77.33 417.55  77.33 
X424.34  77.33 431.12  77.33 437.91  77.33 444.70  77.33 451.49  77.33 
X458.28  77.33 465.07  77.33 471.86  77.33 478.65  77.33 485.44  77.33 
X492.23  77.33 499.02  77.33 505.80  77.33 512.59  77.33 519.38  77.33 
X526.17  77.33 532.96  77.33 539.75  77.33 546.54  77.33 553.33  77.33 
X560.12  77.33 566.91  77.33 573.70  77.33 580.48  77.33 587.27  77.33 
X594.06  77.33 600.85  77.33 607.64  77.33 614.43  77.33 621.22  77.33 
X628.01  77.33 634.80  77.33 641.59  77.33 648.37  77.33 655.16  77.33 
X661.95  77.33 668.74  77.33 675.53  77.33 682.32  77.33 689.11  77.33 
X695.90  77.33 702.69  77.33 709.48  77.33 716.27  77.33 723.05  77.33 
X729.84  77.33 736.63  77.33 743.42  77.33 750.21  77.33 757.00  77.33 
XM 99 L
XDD
X 84.88  77.33  91.67  77.33  98.46  77.33 105.25  77.33 112.04  77.33 
X118.83  77.33 125.62  77.33 132.41  77.33 139.20  77.33 145.98 274.67 
X152.77 274.67 159.56 274.67 166.35 274.67 173.14 274.67 179.93 274.67 
X186.72 274.67 193.51 274.67 200.30 274.67 207.09 274.67 213.87 274.67 
X220.66 274.67 227.45 274.67 234.24 274.67 241.03 274.67 247.82 274.67 
X254.61 274.67 261.40 274.67 268.19 274.67 274.98 274.67 281.77 274.67 
X288.55 274.67 295.34 274.67 302.13 274.67 308.92 274.67 315.71 274.67 
X322.50 274.67 329.29 274.67 336.08 274.67 342.87 274.67 349.66 274.67 
X356.45 274.67 363.23 274.67 370.02 274.67 376.81 274.67 383.60 274.67 
X390.39 274.67 397.18 274.67 403.97 274.67 410.76 274.67 417.55 274.67 
X424.34 274.67 431.12 274.67 437.91 274.67 444.70 274.67 451.49 274.67 
X458.28 274.67 465.07 274.67 471.86 274.67 478.65 274.67 485.44 274.67 
X492.23 274.67 499.02 274.67 505.80 274.67 512.59 274.67 519.38 274.67 
X526.17 274.67 532.96 274.67 539.75 274.67 546.54 274.67 553.33 274.67 
X560.12 274.67 566.91 274.67 573.70 274.67 580.48 274.67 587.27 274.67 
X594.06 274.67 600.85 274.67 607.64 274.67 614.43 274.67 621.22 274.67 
X628.01 274.67 634.80 274.67 641.59 274.67 648.37 274.67 655.16 274.67 
X661.95 274.67 668.74 274.67 675.53 274.67 682.32 274.67 689.11 274.67 
X695.90 274.67 702.69 274.67 709.48 274.67 716.27 274.67 723.05 274.67 
X729.84 274.67 736.63 274.67 743.42 274.67 750.21 274.67 757.00 274.67 
XM 99 L
XSO
X281.77 531.20 349.66 531.20 M 1 L
X383.60 525.34 M (example = 1) sh
XDA
X281.77 491.73 349.66 491.73 M 1 L
X383.60 485.87 M (example = 2) sh
XDO
X281.77 452.27 349.66 452.27 M 1 L
X383.60 446.40 M (example = 3) sh
XDD
X281.77 412.80 349.66 412.80 M 1 L
X383.60 406.93 M (example = 4) sh
Xeplot
X
Xepage
Xend
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 67 69
X67 68 bop 59 159 a Fl(lagrange)1561 b Fo(67)p 59 178
X1767 2 v 59 304 a Fb(lagrange)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(Plot)15 b(the)g(Lagrange)g(function)h(for)e(Tikhono)o(v)i
X(regularization.)59 581 y Fp(Synopsis:)130 650 y Fl([La,dLa,lamb)q
X(da0])d(=)j(lagrange)8 b(\(U,s,b,mo)o(r)o(e\))130 719
Xy([La,dLa,lamb)q(da0])13 b(=)j(lagrange)8 b(\(U,sm,b,mo)n(re\))k(,)45
Xb(sm)14 b(=)i([sigma,mu])59 825 y Fp(Description:)130
X894 y Fo(Plots)f(the)g(Lagrange)g(function)h(for)e(Tikhono)o(v)i
X(regularization,)628 996 y Fl(La)c Fo(=)h Fm(k)p Fn(A)8
Xb Fp(x)828 1003 y Fg(\025)860 996 y Fm(\000)i Fl(b)p
XFm(k)951 977 y Fj(2)951 1007 y(2)981 996 y Fo(+)g Fn(\025)1053
X977 y Fj(2)1080 996 y Fm(k)p Fn(L)e Fp(x)1170 1003 y
XFg(\025)1192 996 y Fm(k)1215 977 y Fj(2)1215 1007 y(2)1249
X996 y Fn(;)59 1098 y Fo(and)20 b(its)h(\014rst)f(deriv)m(ativ)o(e)h
XFl(dLa)g Fo(=)h Fn(d)p Fl(La)o Fn(=d\025)p Fo(,)e(v)o(ersus)g
XFn(\025)p Fo(.)34 b(Here,)21 b Fp(x)1228 1105 y Fg(\025)1271
X1098 y Fo(is)g(the)f(Tikhono)o(v)g(regularized)59 1155
Xy(solution.)29 b(If)19 b Fl(na)o(rgin)e(=)i(4)p Fo(,)f(then)g(the)h
X(norms)e Fm(k)p Fn(A)8 b Fp(x)968 1162 y Fg(\025)1002
X1155 y Fm(\000)k Fl(b)p Fm(k)1095 1162 y Fj(2)1133 1155
Xy Fo(and)19 b Fm(k)p Fn(L)8 b Fp(x)1315 1162 y Fg(\025)1336
X1155 y Fm(k)1359 1162 y Fj(2)1397 1155 y Fo(are)17 b(also)h(plotted.)29
Xb(The)59 1211 y(routine)20 b(returns)g Fl(La)p Fo(,)g
XFl(dLa)p Fo(,)g(and)g(an)g(appro)o(ximate)f(v)m(alue)i
XFl(lamb)q(da0)e Fo(of)g Fn(\025)h Fo(for)f(whic)o(h)h
XFl(dLa)g Fo(has)f(its)59 1268 y(minim)o(um.)59 1374 y
XFp(See)e(also:)130 1443 y Fl(l)p 144 1443 14 2 v 16 w(curve)p
XFo(,)e Fl(tikhonov)p eop
X%%Page: 68 70
X68 69 bop 64 159 a Fo(68)1604 b Fl(lanc)p 1793 159 14
X2 v 17 w(b)p 64 178 1767 2 v 59 304 a Fb(lanc)p 161 304
X18 2 v 21 w(b)59 406 y Fp(Purp)q(ose:)130 475 y Fo(Lanczos)15
Xb(bidiagonalization.)59 581 y Fp(Synopsis:)130 650 y
XFl(B)p 163 650 14 2 v 16 w(k)h(=)f(lanc)p 343 650 V 17
Xw(b)8 b(\(A,p,k,reo)o(rth\))130 719 y([U,B)p 220 719
XV 16 w(k,V])16 b(=)f(lanc)p 456 719 V 17 w(b)8 b(\(A,p,k,reo)o(rth\))59
X825 y Fp(Description:)130 894 y Fo(P)o(erforms)14 b Fl(k)h
XFo(steps)g(of)g(the)g(Lanczos)h(bidiagonalization)h(pro)q(cess)f(with)f
X(starting)g(v)o(ector)g Fl(p)p Fo(,)g(pro-)59 950 y(ducing)i(a)d(lo)o
X(w)o(er)h(bidiagonal)i(\()p Fn(k)11 b Fo(+)f(1\))g Fm(\002)g
XFn(k)16 b Fo(matrix)f Fl(B)p 997 950 V 17 w(k)p Fo(,)289
X1176 y Fl(B)p 322 1176 V 17 w(k)e Fo(=)419 1017 y Fh(0)419
X1090 y(B)419 1115 y(B)419 1140 y(B)419 1165 y(B)419 1190
Xy(B)419 1215 y(B)419 1241 y(@)463 1046 y Fn(b)483 1053
Xy Fj(11)463 1102 y Fn(b)483 1109 y Fj(21)565 1102 y Fn(b)585
X1109 y Fj(22)565 1176 y Fn(b)585 1183 y Fj(32)670 1147
Xy Fo(.)688 1159 y(.)705 1172 y(.)670 1221 y(.)688 1233
Xy(.)705 1246 y(.)793 1250 y Fn(b)813 1257 y Fg(k)q(k)766
X1306 y Fn(b)786 1313 y Fg(k)q Fj(+1)p Fg(;k)889 1017
Xy Fh(1)889 1090 y(C)889 1115 y(C)889 1140 y(C)889 1165
Xy(C)889 1190 y(C)889 1215 y(C)889 1241 y(A)948 1176 y
XFn(;)98 b Fo(suc)o(h)15 b(that)90 b Fl(A)8 b(V)14 b Fo(=)f
XFl(U)8 b(B)p 1537 1176 V 16 w(k)16 b Fn(:)59 1411 y Fo(The)f(matrix)f
XFl(B)p 332 1411 V 16 w(k)h Fo(is)g(stored)f(as)g(a)g(sparse)g(matrix.)
X19 b(The)c(matrices)f Fl(U)f Fm(2)g Fp(I)-8 b(R)1368
X1393 y Fg(m)p Fe(\002)p Fj(\()p Fg(k)q Fj(+1\))1535 1411
Xy Fo(and)15 b Fl(V)e Fm(2)g Fp(I)-8 b(R)1761 1393 y Fg(n)p
XFe(\002)p Fg(k)59 1467 y Fo(consist)15 b(of)g(the)g(left)g(and)g(righ)o
X(t)f(Lanczos)i(v)o(ectors)e(\(whic)o(h)h(are)f(orthonormal)g(in)i
X(exact)f(arithmetic\).)59 1523 y(Reorthogonalization)h(is)g(con)o
X(trolled)g(b)o(y)f(means)g(of)g Fl(reo)o(rth)f Fo(as)h(follo)o(ws:)155
X1588 y Fl(reo)o(rth)f(=)i(0)f Fo(:)49 b(no)15 b(reorthogonalization)155
X1645 y Fl(reo)o(rth)f(=)i(1)f Fo(:)49 b(reorthogonalization)15
Xb(b)o(y)h(means)f(of)f(MGS)155 1701 y Fl(reo)o(rth)g(=)i(2)f
XFo(:)49 b(Householder)16 b(reorthogonalization.)59 1766
Xy(No)f(reorthogonalization)g(is)h(assumed)f(if)h Fl(reo)o(rth)f
XFo(is)g(not)g(sp)q(eci\014ed.)59 1873 y Fp(Examples:)130
X1942 y Fo(P)o(erform)e(10)h(steps)g(of)g(Lanczos)h(bidiagonalization)h
X(without)f(reorthogonalization,)f(then)h(com-)59 1998
Xy(pute)f(the)h(singular)f(v)m(alues)i(of)d(the)h(11)7
Xb Fm(\002)i Fo(10)k(bidiagonal)j(matrix)d(and)h(compare)g(with)g(the)h
X(10)e(largest)59 2055 y(singular)j(v)m(alues)h(of)d(the)i(co)q
X(e\016cien)o(t)g(matrix)f Fl(A)p Fo(:)130 2123 y Fl(B)p
X163 2123 V 16 w(k)h(=)f(lanc)p 343 2123 V 17 w(b)8 b(\(A,b,10\);)14
Xb(s)p 596 2123 V 16 w(k)i(=)f(csvd)8 b(\(B)p 837 2123
XV 17 w(k\);)15 b(s)h(=)f(svd)8 b(\(A\);)15 b([s)p 1198
X2123 V 17 w(k,s\(1:10\)])59 2230 y Fp(Algorithm:)130
X2299 y Fo(The)i(algorithm)g(is)g(a)g(straigh)o(t-forw)o(ard)e(implemen)
Xo(tation)j(of)f(the)g(Lanczos)g(bidiagonalization)59
X2355 y(pro)q(cess)f(as)e(describ)q(ed)j(in,)f(e.g.,)e([1].)59
X2461 y Fp(See)j(also:)130 2530 y Fl(bidiag)p Fo(,)e Fl(bsvd)p
XFo(,)h Fl(lsqr)p Fo(,)f Fl(plsqr)59 2637 y Fp(References:)115
X2707 y Fo(1.)22 b(G.)g(H.)g(Golub)h(&)g(C.)g(F.)f(V)l(an)h(Loan,)h
XFk(Matrix)f(Computations)p Fo(,)i(2.)d(Ed.,)i(Johns)f(Hopkins,)173
X2764 y(Baltimore,)15 b(1989;)f(Section)i(9.3.4.)p eop
X%%Page: 69 71
X69 70 bop 59 159 a Fl(lsolve)1618 b Fo(69)p 59 178 1767
X2 v 59 304 a Fb(lsolve)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Utilit)o(y)16 b(routine)g(for)e(\\preconditioned")j(iterativ)o(e)e
X(metho)q(ds.)59 581 y Fp(Synopsis:)130 650 y Fl(x)g(=)g(lsolve)8
Xb(\(L,y)l(,W,T\))59 756 y Fp(Description:)130 825 y Fo(Computes)15
Xb(the)g(v)o(ector)849 882 y Fl(x)e Fo(=)g Fl(L)956 859
Xy Fe(y)956 895 y Fg(A)991 882 y Fl(y)j Fn(;)59 972 y
XFo(where)h Fl(L)217 949 y Fe(y)217 985 y Fg(A)262 972
Xy Fo(is)g(the)f Fn(A)p Fo(-w)o(eigh)o(ted)h(generalized)i(in)o(v)o
X(erse)e(of)f Fl(L)p Fo(.)24 b(Here,)16 b Fl(L)h Fo(is)g(a)f
XFn(p)11 b Fm(\002)g Fn(n)17 b Fo(matrix,)f Fl(W)h Fo(holds)59
X1028 y(a)h(basis)i(for)e(the)g(n)o(ull)j(space)e(of)f
XFl(L)p Fo(,)g(and)h Fl(T)f Fo(is)h(a)g(utilit)o(y)h(matrix)e(whic)o(h)i
X(should)f(b)q(e)h(computed)f(b)o(y)59 1084 y(routine)d
XFl(pinit)p Fo(.)21 b(Alternativ)o(ely)l(,)16 b Fl(L)f
XFo(is)g(square)g(and)h(dense,)f(and)h Fl(W)f Fo(and)g
XFl(T)g Fo(are)g(not)g(needed.)130 1141 y(Notice)g(that)g
XFl(x)g Fo(and)g Fl(y)g Fo(ma)o(y)g(b)q(e)h(matrices,)f(in)h(whic)o(h)g
X(case)765 1243 y Fl(x)p Fo(\(:)p Fn(;)8 b(i)p Fo(\))j(=)i
XFl(L)956 1221 y Fe(y)956 1257 y Fg(A)991 1243 y Fl(y)q
XFo(\(:)p Fn(;)8 b(i)p Fo(\))13 b Fn(:)59 1395 y Fp(Algorithm:)130
X1464 y Fo(The)j(v)o(ector)f Fl(x)h Fo(is)h(computed)f(b)o(y)g(means)g
X(of)g(the)g(follo)o(wing)h(algorithm)f(from)f([2,)g Fm(x)p
XFo(2.3.2],)f(based)59 1520 y(on)h([1]:)652 1621 y(^)653
X1622 y Fl(x)41 b Fm( )h Fl(L)p Fo(\(:)8 b Fn(;)g Fo(1:)g
XFn(p)p Fo(\))971 1604 y Fe(\000)p Fj(1)1015 1622 y Fl(y)653
X1713 y(x)41 b Fm( )802 1653 y Fh(\022)840 1684 y Fo(^)841
X1685 y Fl(x)840 1741 y Fo(0)870 1653 y Fh(\023)911 1713
Xy Fm(\000)11 b Fl(W)d(T)p Fo(\(:)g Fn(;)g Fl(1)p Fo(:)g
XFl(p)p Fo(\))f Fl(^)-23 b(x)13 b Fn(:)59 1884 y Fp(See)k(also:)130
X1952 y Fl(ltsolve)p Fo(,)e Fl(p)q(cgls)p Fo(,)h Fl(pinit)p
XFo(,)f Fl(plsqr)p Fo(,)h Fl(pnu)59 2059 y Fp(References:)115
X2130 y Fo(1.)22 b(M.)15 b(Hank)o(e,)h Fk(R)n(e)n(gularization)h(with)h
X(di\013er)n(ential)e(op)n(er)n(ators.)24 b(A)o(n)17 b(iter)n(ative)g
X(appr)n(o)n(ach)p Fo(,)g(J.)f(Nu-)173 2186 y(mer.)e(F)l(unct.)h(Anal.)h
X(Optim.)f Fp(13)h Fo(\(1992\),)d(523{540.)115 2242 y(2.)22
Xb(P)l(.)17 b(C.)f(Hansen,)i Fk(R)n(ank-De\014cient)g(and)g(Discr)n(ete)
Xf(Il)r(l-Pose)n(d)g(Pr)n(oblems.)26 b(Numeric)n(al)18
Xb(Asp)n(e)n(cts)173 2299 y(of)e(Line)n(ar)f(Inversion)p
XFo(,)f(SIAM,)h(Philadelphia,)j(1997.)p eop
X%%Page: 70 72
X70 71 bop 64 159 a Fo(70)1658 b Fl(lsqi)p 64 178 1767
X2 v 59 304 a Fb(lsqi)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Least)15 b(squares)g(minimization)i(with)e(a)g(quadratic)h
X(inequalit)o(y)h(constrain)o(t.)59 581 y Fp(Synopsis:)130
X650 y Fl([x)p 167 650 14 2 v 16 w(alpha,lamb)q(da])e(=)h(lsqi)8
Xb(\(U,s,V,b,alpha,x)p 891 650 V 16 w(0\))130 719 y([x)p
X167 719 V 16 w(alpha,lamb)q(da])15 b(=)h(lsqi)8 b(\(U,sm,X,b,alpha,x)p
X928 719 V 15 w(0\))15 b(,)60 b(sm)15 b(=)g([sigma,mu])59
X825 y Fp(Description:)130 894 y Fo(Solv)o(es)i(the)g(follo)o(wing)g
X(least)g(squares)g(minimization)i(problems)e(with)g(a)g(quadratic)g
X(inequalit)o(y)59 950 y(constrain)o(t:)430 1053 y(min)f
XFm(k)p Fn(A)8 b Fp(x)h Fm(\000)h Fl(b)p Fm(k)714 1060
Xy Fj(2)776 1053 y Fo(sub)s(ject)15 b(to)41 b Fm(k)p Fp(x)9
Xb Fm(\000)i Fl(x)p 1146 1053 V 16 w(0)p Fm(k)1205 1060
Xy Fj(2)1237 1053 y Fm(\024)i Fl(alpha)430 1122 y Fo(min)j
XFm(k)p Fn(A)8 b Fp(x)h Fm(\000)h Fl(b)p Fm(k)714 1129
Xy Fj(2)776 1122 y Fo(sub)s(ject)15 b(to)41 b Fm(k)p Fn(L)8
Xb Fo(\()p Fp(x)g Fm(\000)j Fl(x)p 1202 1122 V 16 w(0)p
XFo(\))p Fm(k)1279 1129 y Fj(2)1311 1122 y Fm(\024)h Fl(alpha)59
X1224 y Fo(where)j Fl(x)p 214 1224 V 17 w(0)f Fo(is)i(an)f(initial)i
X(guess)e(of)g(the)g(solution,)h(and)f Fl(alpha)g Fo(is)h(a)f(p)q
X(ositiv)o(e)h(constan)o(t.)j(The)c(routine)59 1280 y(requires)f(either)
Xh(the)f(compact)f(SVD)g(of)h Fn(A)f Fo(sa)o(v)o(ed)g(as)h
XFl(U)p Fo(,)f Fl(s)p Fo(,)h(and)g Fl(V)p Fo(,)g(or)f(part)g(of)g(the)h
X(GSVD)f(of)g(\()p Fn(A;)8 b(L)p Fo(\))59 1337 y(sa)o(v)o(ed)k(as)h
XFl(U)p Fo(,)g Fl(sm)p Fo(,)f(and)h Fl(X)p Fo(.)g(The)g(regularization)h
X(parameter)e Fl(lamb)q(da)h Fo(corresp)q(onding)h(to)e(the)h(solution)
X59 1393 y Fl(x)p 83 1393 V 16 w(alpha)j Fo(is)g(also)f(returned.)130
X1449 y(If)g Fl(alpha)h Fo(is)f(a)g(v)o(ector,)f(then)i
XFl(x)p 652 1449 V 16 w(alpha)g Fo(is)g(a)f(matrix)f(suc)o(h)i(that)564
X1552 y Fl(x)p 588 1552 V 16 w(alpha)d Fo(=)g([)p Fl(x)p
X800 1552 V 16 w(alpha)p Fo(\()p Fl(1)p Fo(\))p Fn(;)h
XFl(x)p 1024 1552 V 17 w(alpha)p Fo(\()p Fl(2)p Fo(\))p
XFn(;)g(:)8 b(:)g(:)e Fo(])14 b Fn(:)59 1654 y Fo(If)i
XFl(x)p 129 1654 V 16 w(0)f Fo(is)g(not)g(sp)q(eci\014ed,)i
XFl(x)p 526 1654 V 17 w(0)12 b Fo(=)h Fp(0)i Fo(is)h(used.)130
X1710 y(The)g(\\opp)q(osite")h(problem,)g(namely)g(that)f(of)g
X(minimizing)j(the)d(solution)i(\(semi\)norm)e(sub)s(ject)59
X1767 y(to)f(an)g(upp)q(er)h(b)q(ound)g(on)f(the)g(residual)i(norm,)d
X(is)i(treated)f(b)o(y)g(routine)h Fl(discrep)p Fo(.)59
X1873 y Fp(Examples:)130 1942 y Fo(Generate)j(a)f(\\noisy")i(test)e
X(problem)i(with)g(a)f(kno)o(w)f(exact)h(solution)h Fl(x)p
XFo(.)32 b(Then)20 b(compute)f(t)o(w)o(o)59 1998 y(regularized)f
X(solutions)g Fl(x1)e Fo(and)h Fl(x2)f Fo(with)h Fm(k)p
XFl(x1)p Fm(k)890 2005 y Fj(2)925 1998 y Fo(=)e(1)p Fn(:)p
XFo(1)8 b Fm(k)p Fl(x)p Fm(k)1109 2005 y Fj(2)1144 1998
Xy Fo(and)17 b Fm(k)p Fn(L)8 b Fl(x1)o Fm(k)1362 2005
Xy Fj(2)1396 1998 y Fo(=)16 b(1)p Fn(:)p Fo(1)8 b Fm(k)p
XFn(L)g Fl(x)p Fm(k)1620 2005 y Fj(2)1637 1998 y Fo(,)17
Xb(where)g Fn(L)59 2055 y Fo(is)f(an)f(appro)o(ximation)g(to)g(the)g
X(second)h(deriv)m(ativ)o(e)g(op)q(erator:)130 2124 y
XFl([A,b,x])f(=)h(sha)o(w)8 b(\(32\);)13 b(b)j(=)f(b)h(+)g(1e-3)p
XFm(\003)p Fl(randn)8 b(\(size\(b\)\);)14 b([U,s,V])h(=)h(csvd)8
Xb(\(A\);)130 2192 y(L)14 b(=)i(get)p 282 2192 V 17 w(l)8
Xb(\(32,2\);)k([UU,sm,XX])j(=)h(cgsvd)8 b(\(A,L\);)130
X2261 y(x1)14 b(=)i(lsqi)8 b(\(U,s,V,b,1.05)p Fm(\003)p
XFl(no)o(rm\(x\))o(\);)130 2330 y(x2)14 b(=)i(lsqi)8 b
X(\(UU,sm,XX,b,1.05)p Fm(\003)p Fl(no)o(rm\()o(L)p Fm(\003)p
XFl(x\))o(\);)130 2399 y(plot)g(\([x,x1,x2]\))59 2505
Xy Fp(Algorithm:)130 2574 y Fo(The)16 b(algorithm)g(uses)h(Newton)f
X(iteration)g(with)h(a)f(Heb)q(den)i(rational)e(mo)q(del)h(\(implemen)o
X(ted)h(as)59 2631 y(routine)d Fl(heb)p 284 2631 V 18
Xw(new)p Fo(\))g(to)f(solv)o(e)h(the)g(secular)g(equation)h
XFm(k)p Fn(L)8 b Fo(\()p Fp(x)1095 2638 y Fg(\025)1125
X2631 y Fm(\000)i Fl(x)p 1194 2631 V 16 w(0)p Fo(\))p
XFm(k)1271 2638 y Fj(2)1302 2631 y Fo(=)j Fl(alpha)q Fo(,)h(cf.)h([1].)k
X(The)c(initial)59 2687 y(guess)f(of)g Fn(\025)f Fo(is)h(computed)h(as)e
X(describ)q(ed)j(in)f([1].)j(Although)d(it)f(is)h(deriv)o(ed)g(for)e
X(the)h(case)g Fl(x)p 1618 2687 V 16 w(0)f Fo(=)g Fp(0)p
XFo(,)h(the)59 2744 y(idea)j(is)f(also)g(applicable)i(for)d
XFl(x)p 603 2744 V 16 w(0)e Fm(6)p Fo(=)h Fp(0)i Fo(b)q(ecause)h(the)f
X(initial)i Fn(\025)d Fo(is)h(almost)f(una\013ected)h(b)o(y)g
XFl(x)p 1665 2744 V 16 w(0)g Fo(\(since)59 2800 y Fm(k)p
XFp(x)110 2807 y Fj(0)129 2800 y Fm(k)152 2807 y Fj(2)184
X2800 y Fm(\035)d(k)p Fl(x)p 289 2800 V 16 w(0)p Fm(k)348
X2807 y Fj(2)367 2800 y Fo(,)i(where)h Fp(x)555 2807 y
XFj(0)589 2800 y Fo(is)g(the)f(unregularized)i(solution\).)p
Xeop
X%%Page: 71 73
X71 72 bop 59 159 a Fl(lsqi)1659 b Fo(71)p 59 178 1767
X2 v 59 304 a Fp(Diagnostics:)130 373 y Fo(In)17 b(rare)g(cases)g(the)g
X(iteration)g(in)h Fl(heb)p 790 373 14 2 v 17 w(new)g
XFo(con)o(v)o(erges)e(v)o(ery)h(slo)o(wly;)h(then)f(try)f(to)h(increase)
Xh(the)59 430 y(maxim)o(um)d(n)o(um)o(b)q(er)h(of)e(allo)o(w)o(ed)i
X(iterations)f(in)i Fl(heb)p 975 430 V 17 w(new)f Fo(or)f(a)g(sligh)o
X(tly)h(di\013eren)o(t)f Fl(alpha)p Fo(.)59 536 y Fp(See)i(also:)130
X605 y Fl(hebnew)p Fo(,)f Fl(discrep)59 711 y Fp(References:)115
X782 y Fo(1.)22 b(T.)12 b(F.)g(Chan,)h(J.)g(Olkin)i(&)e(D.)f(W.)g(Co)q
X(oley)l(,)i Fk(Solving)f(quadr)n(atic)n(al)r(ly)h(c)n(onstr)n(aine)n(d)
Xf(le)n(ast)g(squar)n(es)173 838 y(using)i(black)h(b)n(ox)g(unc)n(onstr)
Xn(aine)n(d)f(solvers)p Fo(,)f(BIT)h Fp(32)h Fo(\(1992\),)d(481{495.)p
Xeop
X%%Page: 72 74
X72 73 bop 64 159 a Fo(72)1653 b Fl(lsqr)p 64 178 1767
X2 v 59 304 a Fb(lsqr)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Solution)16 b(of)f(least)g(squares)g(problems)h(b)o(y)f(the)g
X(LSQR)i(algorithm)e(based)h(on)f(Lanczos)h(bidiago-)59
X531 y(nalization.)59 637 y Fp(Synopsis:)130 706 y Fl([X,rho,eta,F])e(=)
Xi(lsqr)8 b(\(A,b,k,reo)o(rth,s\))59 813 y Fp(Description:)130
X882 y Fo(P)o(erforms)17 b Fl(k)h Fo(steps)h(of)f(the)g(LSQR)i(Lanczos)f
X(bidiagonalization)h(algorithm)f(\(due)f(to)g(P)o(aige)g(&)59
X938 y(Saunders\))e(applied)h(to)d(the)h(system)781 1040
Xy(min)h Fm(k)p Fl(A)8 b Fp(x)h Fm(\000)h Fl(b)p Fm(k)1061
X1047 y Fj(2)1096 1040 y Fn(:)59 1142 y Fo(The)j(routine)g(returns)g
X(all)g Fl(k)g Fo(solutions,)g(stored)g(as)f(columns)h(of)g(the)f
X(matrix)h Fl(X)p Fo(.)19 b(The)13 b(solution)g(norms)59
X1199 y(and)i(residual)i(norms)e(are)g(returned)g(in)h
XFl(eta)g Fo(and)f Fl(rho)p Fo(,)g(resp)q(ectiv)o(ely)l(.)130
X1255 y(Reorthogonalization)g(of)e(the)i(Lanczos)f(v)o(ectors)g(is)g
X(con)o(trolled)h(b)o(y)f(means)h(of)e Fl(reo)o(rth)h
XFo(as)g(follo)o(ws:)155 1320 y Fl(reo)o(rth)g(=)i(0)f
XFo(:)49 b(no)15 b(reorthogonalization)155 1377 y Fl(reo)o(rth)f(=)i(1)f
XFo(:)49 b(reorthogonalization)15 b(b)o(y)h(means)f(of)f(MGS)155
X1433 y Fl(reo)o(rth)g(=)i(2)f Fo(:)49 b(Householder)16
Xb(reorthogonalization.)59 1498 y(No)f(reorthogonalization)g(is)h
X(assumed)f(if)h Fl(reo)o(rth)f Fo(is)g(not)g(sp)q(eci\014ed.)130
X1555 y(If)k(the)h(singular)g(v)m(alues)h Fl(s)f Fo(of)f
XFl(A)h Fo(are)f(also)g(pro)o(vided,)i(then)f Fl(lsqr)g
XFo(computes)f(the)h(\014lter)g(factors)59 1611 y(asso)q(ciated)15
Xb(with)h(eac)o(h)f(step)g(and)h(stores)e(them)h(column)o(wise)i(in)f
X(the)f(arra)o(y)f Fl(F)p Fo(.)130 1668 y(A)d(\\preconditioned")h(v)o
X(ersion)f(of)g(LSQR)h(for)f(the)g(general-form)g(problem)g(where)g(one)
Xg(minimizes)59 1724 y Fm(k)p Fn(L)d Fp(x)p Fm(k)172 1731
Xy Fj(2)205 1724 y Fo(instead)16 b(of)f Fm(k)p Fp(x)p
XFm(k)488 1731 y Fj(2)522 1724 y Fo(in)h(eac)o(h)f(step)g(is)h(implemen)
Xo(ted)h(in)f(routine)g Fl(plsqr)p Fo(.)59 1830 y Fp(Examples:)130
X1899 y Fo(P)o(erform)f(25)g(LSQR)i(iterations)f(without)g
X(reorthogonalization,)g(and)g(plot)h(the)f(corresp)q(onding)59
X1956 y(L-curv)o(e:)130 2025 y Fl([X,rho,eta])f(=)g(lsqr)8
Xb(\(A,b,25\);)14 b(plot)p 736 2025 14 2 v 17 w(lc)8 b(\(rho,eta,'o'\);)
X59 2131 y Fp(Algorithm:)130 2200 y Fl(lsqr)13 b Fo(is)g(a)g(straigh)o
X(tforw)o(ard)e(implemen)o(tation)k(of)d(the)h(algorithm)g(describ)q(ed)
Xi(in)f([1].)k(The)c(original)59 2256 y(algorithm)21 b(also)f(includes)j
X(the)d(p)q(ossibilit)o(y)j(for)d(adding)h(Tikhono)o(v)g(regularization)
Xg(with)g(a)f(\014xed)59 2313 y(regularization)g(parameter)e(to)g(the)h
X(least)f(squares)h(problem,)h(but)f(for)f(simplicit)o(y)j(this)e
X(feature)f(is)59 2369 y(not)d(included)j(in)e Ff(Regulariza)m(tion)h
X(Tools)p Fo(.)59 2475 y Fp(See)g(also:)130 2544 y Fl(bidiag)p
XFo(,)e Fl(lanc)p 350 2544 V 16 w(b)p Fo(,)h Fl(plot)p
X491 2544 V 17 w(lc)p Fo(,)e Fl(plsqr)59 2650 y Fp(References:)115
X2721 y Fo(1.)22 b(C.)14 b(C.)g(P)o(aige)g(&)h(M.)f(A.)h(Saunders,)g
XFk(LSQR:)f(an)i(algorithm)g(for)g(sp)n(arse)g(line)n(ar)e(e)n(quations)
Xi(and)173 2778 y(sp)n(arse)f(le)n(ast)h(squar)n(es)p
XFo(,)e(A)o(CM)g(T)l(rans.)h(Math.)f(Soft)o(w)o(are)g
XFp(8)h Fo(\(1982\),)e(43{71.)p eop
X%%Page: 73 75
X73 74 bop 59 159 a Fl(ltsolve)1602 b Fo(73)p 59 178 1767
X2 v 59 304 a Fb(ltsolve)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Utilit)o(y)16 b(routine)g(for)e(\\preconditioned")j(iterativ)o(e)e
X(metho)q(ds.)59 581 y Fp(Synopsis:)130 650 y Fl(x)g(=)g(ltsolve)8
Xb(\(L,y)l(,W,T\))59 756 y Fp(Description:)130 825 y Fo(Computes)15
Xb(the)g(v)o(ector)821 882 y Fl(x)e Fo(=)g(\()p Fl(L)946
X859 y Fe(y)946 895 y Fg(A)974 882 y Fo(\))992 863 y Fg(T)1019
X882 y Fl(y)j Fn(;)59 972 y Fo(where)h Fl(L)217 949 y
XFe(y)217 985 y Fg(A)262 972 y Fo(is)g(the)f Fn(A)p Fo(-w)o(eigh)o(ted)h
X(generalized)i(in)o(v)o(erse)e(of)f Fl(L)p Fo(.)24 b(Here,)16
Xb Fl(L)h Fo(is)g(a)f Fn(p)11 b Fm(\002)g Fn(n)17 b Fo(matrix,)f
XFl(W)h Fo(holds)59 1028 y(a)h(basis)i(for)e(the)g(n)o(ull)j(space)e(of)
Xf Fl(L)p Fo(,)g(and)h Fl(T)f Fo(is)h(a)g(utilit)o(y)h(matrix)e(whic)o
X(h)i(should)f(b)q(e)h(computed)f(b)o(y)59 1084 y(routine)d
XFl(pinit)p Fo(.)21 b(Alternativ)o(ely)l(,)16 b Fl(L)f
XFo(is)g(square)g(and)h(dense,)f(and)h Fl(W)f Fo(and)g
XFl(T)g Fo(are)g(not)g(needed.)130 1141 y(If)g Fl(W)g
XFo(and)h Fl(T)f Fo(are)g(not)f(sp)q(eci\014ed,)j(then)f(instead)g(the)f
X(v)o(ector)705 1243 y Fl(x)d Fo(=)h(\()p Fl(L)p Fo(\(:)8
Xb Fn(;)g Fo(1:)f Fn(p)p Fo(\))973 1224 y Fe(\000)p Fj(1)1017
X1243 y Fo(\))1035 1224 y Fg(T)1062 1243 y Fl(y)q Fo(\(1:)h
XFn(p)p Fo(\))59 1345 y(is)16 b(computed.)130 1402 y(Notice)f(that)g
XFl(x)g Fo(and)g Fl(y)g Fo(ma)o(y)g(b)q(e)h(matrices,)f(in)h(whic)o(h)g
X(case)323 1504 y Fl(x)p Fo(\(:)p Fn(;)8 b(i)p Fo(\))i(=)j(\()p
XFl(L)531 1482 y Fe(y)531 1517 y Fg(A)559 1504 y Fo(\))577
X1485 y Fg(T)604 1504 y Fl(y)q Fo(\(:)p Fn(;)8 b(i)p Fo(\))88
Xb(or)j Fl(x)p Fo(\(:)8 b Fn(;)g(i)p Fo(\))i(=)j(\()p
XFl(L)p Fo(\(:)8 b Fn(;)g Fo(1:)f Fn(p)p Fo(\))1292 1485
Xy Fe(\000)p Fj(1)1336 1504 y Fo(\))1354 1485 y Fg(T)1381
X1504 y Fl(y)q Fo(\(1:)h Fn(p;)g(i)p Fo(\))k Fn(:)59 1656
Xy Fp(Algorithm:)130 1725 y Fo(The)g(follo)o(wing)g(algorithm)g(from)f
X([2,)g Fm(x)p Fo(2)h(3)f(2])h(\(based)f(on)h([1]\))e(is)j(used.)19
Xb(If)12 b Fl(W)g Fo(and)g Fl(T)f Fo(are)h(sp)q(eci\014ed,)59
X1781 y(then)k Fl(y)f Fo(is)g(\014rst)g(up)q(dated)h(b)o(y)f(means)h(of)
Xe(the)i(relation)649 1883 y Fl(y)e Fm( )f Fl(y)q Fo(\(1:)8
Xb Fn(p)p Fo(\))f Fm(\000)k Fl(T)p Fo(\(:)d Fn(;)g Fo(1:)g
XFn(p)p Fo(\))1095 1864 y Fg(T)1120 1883 y Fl(W)1164 1864
Xy Fg(T)1191 1883 y Fl(y)16 b Fn(;)59 1985 y Fo(otherwise)f(the)f(up)q
X(date)h Fl(y)e Fm( )g Fl(y)q Fo(\(1:)8 b Fn(p)p Fo(\))k(is)j(computed.)
X20 b(The)14 b(latter)g(option)g(is)h(used)g(in)g(the)g(\\precondi-)59
X2042 y(tioned")h(iterativ)o(e)f(metho)q(ds.)20 b(Then)c
XFl(x)f Fo(is)h(computed)f(as)g(\()p Fl(L)p Fo(\(:)8 b
XFn(;)g Fo(1:)f Fn(p)p Fo(\))1254 2025 y Fe(\000)p Fj(1)1298
X2042 y Fo(\))1316 2025 y Fg(T)1343 2042 y Fp(y)q Fo(.)59
X2148 y Fp(See)17 b(also:)130 2217 y Fl(lsolve)p Fo(,)d
XFl(p)q(cgls)p Fo(,)i Fl(pinit)p Fo(,)g Fl(plsqr)p Fo(,)g
XFl(pnu)59 2323 y Fp(References:)115 2394 y Fo(1.)22 b(M.)15
Xb(Hank)o(e,)h Fk(R)n(e)n(gularization)h(with)h(di\013er)n(ential)e(op)n
X(er)n(ators.)24 b(A)o(n)17 b(iter)n(ative)g(appr)n(o)n(ach)p
XFo(,)g(J.)f(Nu-)173 2450 y(mer.)e(F)l(unct.)h(Anal.)h(Optim.)f
XFp(13)h Fo(\(1992\),)d(523{540.)115 2507 y(2.)22 b(P)l(.)17
Xb(C.)f(Hansen,)i Fk(R)n(ank-De\014cient)g(and)g(Discr)n(ete)f(Il)r
X(l-Pose)n(d)g(Pr)n(oblems.)26 b(Numeric)n(al)18 b(Asp)n(e)n(cts)173
X2563 y(of)e(Line)n(ar)f(Inversion)p Fo(,)f(SIAM,)h(Philadelphia,)j
X(1997.)p eop
X%%Page: 74 76
X74 75 bop 64 159 a Fo(74)1577 b Fl(l)p 1701 159 14 2
Xv 16 w(co)o(rner)p 64 178 1767 2 v 59 304 a Fb(l)p 77
X304 18 2 v 21 w(co)n(rner)59 406 y Fp(Purp)q(ose:)130
X474 y Fo(Lo)q(cate)15 b(the)g(\\corner")g(of)g(the)g(L-curv)o(e.)59
X577 y Fp(Synopsis:)130 645 y Fl([reg)p 205 645 14 2 v
X16 w(c,rho)p 316 645 V 16 w(c,eta)p 423 645 V 16 w(c])h(=)f(l)p
X549 645 V 16 w(co)o(rner)8 b(\(rho,eta,reg)p 913 645
XV 14 w(pa)o(ram\))130 713 y([reg)p 205 713 V 16 w(c,rho)p
X316 713 V 16 w(c,eta)p 423 713 V 16 w(c])16 b(=)f(l)p
X549 713 V 16 w(co)o(rner)8 b(\(rho,eta,reg)p 913 713
XV 14 w(pa)o(ram,U,s,b,metho)q(d,M\))130 781 y([reg)p
X205 781 V 16 w(c,rho)p 316 781 V 16 w(c,eta)p 423 781
XV 16 w(c])16 b(=)f(l)p 549 781 V 16 w(co)o(rner)8 b(\(rho,eta,reg)p
X913 781 V 14 w(pa)o(ram,U,sm,b,metho)q(d,M\))13 b(,)60
Xb(sm)14 b(=)i([sigma,mu])59 884 y Fp(Description:)130
X952 y Fl(l)p 144 952 V 16 w(co)o(rner)g Fo(lo)q(cates)i(the)f(corner)g
X(of)g(the)g(L-curv)o(e,)h(giv)o(en)f(b)o(y)h Fl(rho)e
XFo(and)i Fl(eta)p Fo(,)f(in)h Fk(lo)n(g-lo)n(g)f(sc)n(ale)p
XFo(.)25 b(It)17 b(is)59 1009 y(assumed)12 b(that)e(corresp)q(onding)j
X(v)m(alues)f(of)f Fm(k)p Fn(A)d Fp(x)s Fm(\000)s Fp(b)p
XFm(k)986 1016 y Fj(2)1004 1009 y Fo(,)k Fm(k)p Fn(L)c
XFp(x)p Fm(k)1142 1016 y Fj(2)1160 1009 y Fo(,)k(and)g(the)f
X(regularization)h(parameter)59 1065 y(are)19 b(stored)g(in)i(the)e
X(arra)o(ys)f Fl(rho)p Fo(,)i Fl(eta)p Fo(,)h(and)e Fl(reg)p
X902 1065 V 16 w(pa)o(ram)p Fo(,)g(resp)q(ectiv)o(ely)i(\(suc)o(h)e(as)h
X(the)f(output)g(from)59 1121 y(routine)g Fl(l)p 233 1121
XV 16 w(curve)p Fo(\).)29 b(If)18 b Fl(na)o(rgin)g(=)g(3)g
XFo(then)g(no)h(particular)f(metho)q(d)h(is)f(assumed,)h(and)f(if)h
XFl(na)o(rgin)f(=)g(2)59 1178 y Fo(then)e(it)f(is)h(assumed)f(that)g
XFl(reg)p 597 1178 V 15 w(pa)o(ram)f(=)i(1:length)8 b(\(rho\))p
XFo(.)130 1234 y(If)15 b Fl(na)o(rgin)d Fm(\025)h Fl(6)p
XFo(,)i(then)g(the)h(follo)o(wing)g(regularization)g(metho)q(ds)f(are)g
X(allo)o(w)o(ed:)155 1299 y Fl(metho)q(d)g(=)h('dsvd')79
Xb Fo(:)50 b(damp)q(ed)16 b(SVD)f(or)g(GSVD)155 1355 y
XFl(metho)q(d)g(=)h('mtsvd')49 b Fo(:)h(mo)q(di\014ed)16
Xb(TSVD)155 1411 y Fl(metho)q(d)f(=)h('Tikh')76 b Fo(:)50
Xb(Tikhono)o(v)15 b(regularization)155 1468 y Fl(metho)q(d)g(=)h('tsvd')
X86 b Fo(:)50 b(truncated)15 b(SVD)g(or)g(GSVD.)59 1532
Xy(If)h(no)f(metho)q(d)g(is)h(sp)q(eci\014ed,)h Fl('Tikh')e
XFo(is)g(default.)130 1589 y(An)d(eigh)o(th)h(argumen)o(t)e
XFl(M)h Fo(sp)q(eci\014es)j(an)d(upp)q(er)h(b)q(ound)g(for)f
XFl(eta)p Fo(,)h(b)q(elo)o(w)g(whic)o(h)g(the)f(corner)h(should)59
X1645 y(b)q(e)j(found.)59 1748 y Fp(Examples:)130 1816
Xy Fl(l)p 144 1816 V 16 w(co)o(rner)11 b Fo(is)i(in)o(v)o(ok)o(ed)f(b)o
X(y)g Fl(l)p 564 1816 V 16 w(curve)h Fo(if)f(an)o(y)g(output)g(argumen)o
X(ts)f(are)h(sp)q(eci\014ed)i(to)e(the)g(latter)g(routine.)59
X1873 y(Ho)o(w)o(ev)o(er,)21 b Fl(l)p 276 1873 V 16 w(co)o(rner)g
XFo(can)g(also)g(b)q(e)h(use)f(as)g(a)f(stand-alone)i(routine.)38
Xb(In)21 b(the)g(follo)o(wing)h(example,)59 1929 y Fl(rho)g
XFo(and)g Fl(eta)g Fo(come)g(from)g(the)g(LSQR)h(algorithm)f(with)h(15)e
X(iterations|so)i(the)f(regularization)59 1985 y(parameters)d(in)i
XFl(reg)p 419 1985 V 15 w(pa)o(ram)e Fo(are)g Fl(1:15)p
XFo(|and)g Fl(l)p 882 1985 V 17 w(co)o(rner)g Fo(is)h(used)g(to)f
X(compute)h(the)g(\\corner")f(of)h(the)59 2042 y(L-curv)o(e)c(asso)q
X(ciated)f(with)h Fl(rho)f Fo(and)g Fl(eta)p Fo(:)130
X2110 y Fl([A,b,x])g(=)h(sha)o(w)8 b(\(32\);)13 b(b)j(=)f(b)h(+)g(1e-3)p
XFm(\003)p Fl(randn)8 b(\(size\(b\)\);)14 b([X,rho,eta])h(=)g(lsqr)8
Xb(\(A,b,15,1\);)130 2178 y([reg)p 205 2178 V 16 w(c,rho)p
X316 2178 V 16 w(c,eta)p 423 2178 V 16 w(c])16 b(=)f(l)p
X549 2178 V 16 w(co)o(rner)8 b(\(rho,eta,1:15\);)59 2281
Xy Fp(Algorithm:)130 2349 y Fo(If)20 b Fl(metho)q(d)g
XFo(is)g(Tikhono)o(v)g(regularization)h(or)e(DSVD/DGSVD,)f(then)j(the)e
X(L-curv)o(e)i(is)f(di\013er-)59 2406 y(en)o(tiable,)i(and)e(it)g(is)g
X(straigh)o(tforw)o(ard)e(to)h(compute)h(the)f(curv)m(ature)h(and)g
X(\014nd)h(the)f(p)q(oin)o(t)g(on)g(the)59 2462 y(L-curv)o(e)15
Xb(with)g(maxim)o(um)f(curv)m(ature,)h(whic)o(h)g(is)g(then)g(de\014ned)
Xh(as)e(the)h(\\corner".)k(F)l(or)14 b(the)g(remain-)59
X2518 y(ing)19 b(metho)q(ds,)h(the)f(L-curv)o(e)g(is)g(discrete)h(and)f
X(the)g(pro)q(cedure)g(is)h(then)f(to)f(\014t)g(a)h(2D)f(spline)j(curv)o
X(e)59 2575 y(to)15 b(the)h(data)f(p)q(oin)o(ts,)h(compute)g(the)f(p)q
X(oin)o(t)h(on)g(the)g(spline)h(curv)o(e)f(with)g(maxim)o(um)g(curv)m
X(ature,)f(and)59 2631 y(then)h(de\014ne)h(the)f(\\corner")f(of)h(the)g
X(discrete)h(L-curv)o(e)f(as)g(the)g(data)f(p)q(oin)o(t)h(closest)g(to)f
X(the)h(p)q(oin)o(t)h(on)59 2688 y(the)e(spline)i(curv)o(e)f(with)f
X(maxim)o(um)g(curv)m(ature.)21 b(F)l(or)14 b(more)h(details,)h(see)f
X([2].)130 2744 y(If)g(the)h(curv)m(ature)f(of)g(the)h(L-curv)o(e)g(is)g
X(negativ)o(e)f(ev)o(erywhere,)g(then)h(the)g(leftmost)e(p)q(oin)o(t)i
X(on)g(the)59 2801 y(L-curv)o(e)h(is)g(tak)o(en)f(as)g(the)h(\\corner".)
X22 b(This)17 b(c)o(hoice)h(is)f(the)f(most)g(natural)g(in)h(connection)
Xh(with)f(the)59 2857 y(L-curv)o(e)f(criterion)g(for)f(c)o(ho)q(osing)g
X(the)g(regularization)i(parameter.)p eop
X%%Page: 75 77
X75 76 bop 59 159 a Fl(l)p 73 159 14 2 v 16 w(co)o(rner)1577
Xb Fo(75)p 59 178 1767 2 v 59 304 a Fp(Diagnostics:)130
X373 y Fo(F)l(or)15 b(discrete)i(L-curv)o(es,)f(the)g(n)o(um)o(b)q(er)g
X(of)f(data)g(p)q(oin)o(ts)i(in)f Fl(rho)g Fo(and)g Fl(eta)g
XFo(m)o(ust)f(b)q(e)i(greater)e(than)59 430 y(four,)g(the)g(order)g(of)f
X(the)i(\014tting)f(2D)g(spline)i(curv)o(e.)130 486 y(The)j(algorithm)f
X(ma)o(y)g(sometimes)h(mistak)o(e)g(a)f(\014ne-grained)i(lo)q(cal)g
X(\\corner")e(for)h(the)f(desired)59 543 y(corner.)30
Xb(In)19 b(this)g(case,)h(the)e(user)h(ma)o(y)f(wish)h(to)f(exp)q
X(erimen)o(t)i(with)f(the)f(default)i(parameters)d Fl(deg)59
X599 y Fo(\(the)e(degree)g(of)f(a)g(lo)q(cal)i(smo)q(othing)f(p)q
X(olynomial)i(applied)f(b)q(efore)f(\014tting)g(the)g(2D)f(spline)j
X(curv)o(e\),)d Fl(q)59 656 y Fo(\(the)f(half-width)h(of)f(the)g(lo)q
X(cal)i(smo)q(othing)e(in)o(terv)m(al)h(in)g(whic)o(h)g(p)q(olynomial)h
X(smo)q(othing)e(is)g(applied\),)59 712 y(and)i Fl(o)o(rder)g
XFo(\(the)g(order)g(of)f(the)i(\014tting)f(2D)g(spline)i(curv)o(e\).)130
X768 y(The)22 b(user)g(ma)o(y)g(also)g(wish)h(to)e(increase)i(the)f
X(parameter)g Fl(s)p 1219 768 14 2 v 17 w(thr)p Fo(:)34
Xb(for)21 b(TSVD,)h(TGSVD)f(and)59 825 y(MTSVD,)e(v)m(alues)i(of)e
XFl(rho)h Fo(and)g Fl(eta)g Fo(corresp)q(onding)h(the)f(singular)g(v)m
X(alues)h Fl(s)f Fo(b)q(elo)o(w)h Fl(s)p 1596 825 V 16
Xw(thr)g Fo(are)e(not)59 881 y(used)d(in)g(the)f(searc)o(h)g(for)g(the)g
X(\\corner".)130 938 y(If)j(the)g(Spline)i(T)l(o)q(olb)q(o)o(x)e(is)h
X(not)e(a)o(v)m(ailable,)j(and)e(the)g(routine)h(is)f(called)i(with)e
XFl(na)o(rgin)g Fm(\025)g Fo(6)f(and)59 994 y Fl(metho)q(d)f
XFo(equal)g(to)e Fl('tsvd')i Fo(or)f Fl('mtsvd')p Fo(,)f(then)i(the)f
X(routine)h(returns)f(with)g(an)g(error)g(message.)59
X1101 y Fp(See)i(also:)130 1169 y Fl(l)p 144 1169 V 16
Xw(curve)59 1276 y Fp(External)h(routines)g(required:)130
X1345 y Fo(The)d(follo)o(wing)h(ten)f(routines)h(from)e(the)i(Spline)h
X(T)l(o)q(olb)q(o)o(x)e([1])g(are)f(required)j(b)o(y)e
XFl(l)p 1560 1345 V 16 w(co)o(rner)p Fo(:)130 1414 y Fl(fnder)p
XFo(,)g Fl(ppb)o(rk)p Fo(,)h Fl(pp)q(cut)p Fo(,)h Fl(ppmak)p
XFo(,)e Fl(ppual)p Fo(,)h Fl(sp2pp)p Fo(,)g Fl(so)o(rted)p
XFo(,)f Fl(spb)o(rk)p Fo(,)h Fl(spmak)p Fo(,)f Fl(sp)o(rpp)p
XFo(.)59 1520 y Fp(References:)115 1591 y Fo(1.)22 b(C.)14
Xb(de)i(Bo)q(or,)e Fk(Spline)h(T)m(o)n(olb)n(ox)p Fo(,)f(V)l(ersion)i
X(1.1,)e(The)h(Math)o(w)o(orks,)e(MA,)i(1992.)115 1647
Xy(2.)22 b(P)l(.)11 b(C.)f(Hansen)i(&)f(D.)g(P)l(.)g(O'Leary)l(,)h
XFk(The)g(use)g(of)h(the)g(L-curve)g(in)f(the)h(r)n(e)n(gularization)f
X(of)g(discr)n(ete)173 1704 y(il)r(l-p)n(ose)n(d)j(pr)n(oblems)p
XFo(,)g(SIAM)g(J.)g(Sci.)h(Comput.)e Fp(14)i Fo(\(1993\),)d(1487{1503.)p
Xeop
X%%Page: 76 78
X76 77 bop 64 159 a Fo(76)1593 b Fl(l)p 1717 159 14 2
Xv 16 w(curve)p 64 178 1767 2 v 59 304 a Fb(l)p 77 304
X18 2 v 21 w(curve)59 406 y Fp(Purp)q(ose:)130 472 y Fo(Plot)15
Xb(the)g(L-curv)o(e)h(and)f(\014nd)h(its)g(\\corner".)59
X566 y Fp(Synopsis:)130 632 y Fl([reg)p 205 632 14 2 v
X16 w(co)o(rner,rho,eta,reg)p 556 632 V 14 w(pa)o(ram])e(=)h(l)p
X777 632 V 16 w(curve)8 b(\(U,s,b,metho)q(d\))130 697
Xy([reg)p 205 697 V 16 w(co)o(rner,rho,eta,reg)p 556 697
XV 14 w(pa)o(ram])14 b(=)h(l)p 777 697 V 16 w(curve)8
Xb(\(U,sm,b,metho)q(d\))15 b(,)60 b(sm)15 b(=)g([sigma,mu])130
X763 y([reg)p 205 763 V 16 w(co)o(rner,rho,eta,reg)p 556
X763 V 14 w(pa)o(ram])f(=)h(l)p 777 763 V 16 w(curve)8
Xb(\(U,s,b,metho)q(d,L,V\))59 857 y Fp(Description:)130
X923 y Fo(Plots)17 b(the)g(L-shap)q(ed)i(curv)o(e)e(of)g
XFl(eta)p Fo(,)h(the)g(solution)g(norm)f Fm(k)p Fp(x)p
XFm(k)1244 930 y Fj(2)1280 923 y Fo(or)g(seminorm)g Fm(k)p
XFn(L)8 b Fp(x)p Fm(k)1660 930 y Fj(2)1678 923 y Fo(,)18
Xb(v)o(ersus)59 980 y Fl(rho)p Fo(,)d(the)g(residual)h(norm)f
XFm(k)p Fn(A)8 b Fp(x)h Fm(\000)i Fp(b)p Fm(k)715 987
Xy Fj(2)734 980 y Fo(,)k(for)g(the)g(follo)o(wing)h(metho)q(ds:)155
X1044 y Fl(metho)q(d)f(=)h('Tikh')76 b Fo(:)50 b(Tikhono)o(v)15
Xb(regularization)76 b(\(solid)16 b(line\))155 1101 y
XFl(metho)q(d)f(=)h('tsvd')86 b Fo(:)50 b(truncated)15
Xb(SVD)g(or)g(GSVD)49 b(\()p Fl(o)15 b Fo(mark)o(ers\))155
X1157 y Fl(metho)q(d)g(=)h('dsvd')79 b Fo(:)50 b(damp)q(ed)16
Xb(SVD)f(or)g(GSVD)83 b(\(dotted)15 b(line\))155 1213
Xy Fl(metho)q(d)g(=)h('mtsvd')49 b Fo(:)h(mo)q(di\014ed)16
Xb(TSVD)239 b(\()p Fl(x)15 b Fo(mark)o(ers\))59 1275 y(The)i(corresp)q
X(onding)h(regularization)f(parameters)f(are)g(returned)i(in)f
XFl(reg)p 1354 1275 V 16 w(pa)o(ram)p Fo(.)23 b(If)17
Xb(no)f(metho)q(d)h(is)59 1332 y(sp)q(eci\014ed,)g Fl('Tikh')e
XFo(is)h(default.)k(F)l(or)15 b(other)f(metho)q(ds,)h(use)h(routine)g
XFl(plot)p 1307 1332 V 16 w(lc)p Fo(.)130 1388 y(If)f(an)o(y)g(output)g
X(argumen)o(ts)g(are)g(sp)q(eci\014ed,)i(then)f(the)f(corner)g(of)g(the)
Xh(L-curv)o(e)g(is)g(iden)o(ti\014ed)h(\(b)o(y)59 1445
Xy(means)j(of)f(routine)i Fl(l)p 435 1445 V 16 w(co)o(rner)p
XFo(\))e(and)h(the)g(corresp)q(onding)g(regularization)h(parameter)e
XFl(reg)p 1651 1445 V 16 w(co)o(rner)g Fo(is)59 1501 y(returned)h(as)f
X(w)o(ell)i(as)e(prin)o(ted)h(on)g(the)f(plot.)33 b(This)20
Xb(is)g(the)g Fk(L-curve)g(criterion)g Fo(for)f(c)o(ho)q(osing)h(the)59
X1558 y(regularization)d(parameter.)k(Use)16 b Fl(l)p
X687 1558 V 17 w(co)o(rner)f Fo(if)h(an)g(upp)q(er)h(b)q(ound)g(on)f
XFl(eta)g Fo(is)h(required)g(when)f(\014nding)59 1614
Xy(the)f(L-curv)o(e's)h(\\corner".)59 1708 y Fp(Examples:)130
X1774 y Fo(Plot)10 b(the)h(L-curv)o(e)h(for)e(Tikhono)o(v)h
X(regularization)h(and)f(compute)g(the)g(regularization)g(parameter)59
X1831 y Fl(reg)p 121 1831 V 16 w(co)o(rner)j Fo(corresp)q(onding)j(to)d
X(the)h(\\corner":)130 1896 y Fl([A,b,x])g(=)h(sha)o(w)8
Xb(\(32\);)13 b(b)j(=)f(b)h(+)g(1e-3)p Fm(\003)p Fl(randn)8
Xb(\(size\(b\)\);)14 b([U,s,V])h(=)h(csvd)8 b(\(A\);)130
X1962 y(reg)p 192 1962 V 15 w(co)o(rner)15 b(=)h(l)p 401
X1962 V 16 w(curve)8 b(\(U,s,b\);)59 2056 y Fp(Algorithm:)130
X2122 y Fo(The)16 b(algorithm)g(for)f(computing)h(the)g(\\corner")f(of)h
X(the)g(L-curv)o(e)g(in)h(log-log)f(scale)g(is)h(describ)q(ed)59
X2179 y(in)f([1],)e(where)h(the)h(existence)g(of)f(the)g(\\corner")g(is)
Xg(also)h(discussed.)59 2273 y Fp(Diagnostics:)130 2339
Xy Fo(See)11 b(the)g(do)q(cumen)o(tation)h(for)e Fl(l)p
X666 2339 V 17 w(co)o(rner)g Fo(for)g(diagnostics.)20
Xb(If)11 b(the)g(Spline)i(T)l(o)q(olb)q(o)o(x)f(is)f(not)g(a)o(v)m
X(ailable)59 2395 y(and)18 b Fl(reg)p 212 2395 V 16 w(co)o(rner)g
XFo(is)g(requested,)h(then)f(the)g(routine)h(returns)f
XFl(reg)p 1197 2395 V 16 w(co)o(rner)f Fo(=)i Fl(NaN)f
XFo(if)g Fl(metho)q(d)h Fo(equals)59 2451 y Fl('tsvd')d
XFo(or)e Fl('mtsvd')p Fo(.)59 2545 y Fp(See)j(also:)130
X2611 y Fl(discrep)p Fo(,)f Fl(gcv)p Fo(,)e Fl(l)p 394
X2611 V 16 w(co)o(rner)p Fo(,)h Fl(plot)p 628 2611 V 17
Xw(lc)p Fo(,)f Fl(quasiopt)59 2705 y Fp(References:)115
X2758 y Fo(1.)22 b(P)l(.)11 b(C.)f(Hansen)i(&)f(D.)g(P)l(.)g(O'Leary)l
X(,)h Fk(The)g(use)g(of)h(the)g(L-curve)g(in)f(the)h(r)n(e)n
X(gularization)f(of)g(discr)n(ete)173 2814 y(il)r(l-p)n(ose)n(d)j(pr)n
X(oblems)p Fo(,)g(SIAM)g(J.)g(Sci.)h(Comput.)e Fp(14)i
XFo(\(1993\),)d(1487{1503.)p eop
X%%Page: 77 79
X77 78 bop 59 159 a Fl(maxent)1582 b Fo(77)p 59 178 1767
X2 v 59 304 a Fb(maxent)59 406 y Fp(Purp)q(ose:)130 472
Xy Fo(Maxim)o(um)15 b(en)o(trop)o(y)f(regularization.)59
X566 y Fp(Synopsis:)130 631 y Fl([x)p 167 631 14 2 v 16
Xw(lamb)q(da,rho,eta])h(=)g(maxent)8 b(\(A,b,lamb)q(da,w,x0\))59
X725 y Fp(Description:)130 791 y Fo(Computes)15 b(the)g(regularized)h
X(maxim)o(um)g(en)o(trop)o(y)e(solution)i Fl(x)p 1229
X791 V 16 w(lamb)q(da)f Fo(whic)o(h)h(minimizes)556 902
Xy Fm(k)p Fl(A)8 b Fp(x)h Fm(\000)i Fl(b)p Fm(k)746 884
Xy Fj(2)746 914 y(2)776 902 y Fo(+)f Fl(lamb)q(da)960
X884 y Fj(2)1007 850 y Fg(n)987 862 y Fh(X)989 953 y Fg(i)p
XFj(=1)1062 902 y Fn(x)1088 909 y Fg(i)1118 902 y Fo(log\()p
XFn(w)1227 909 y Fg(i)1248 902 y Fn(x)1274 909 y Fg(i)1288
X902 y Fo(\))15 b Fn(;)59 1028 y Fo(where)20 b Fm(\000)238
X996 y Fh(P)282 1009 y Fg(n)282 1039 y(i)p Fj(=1)356 1028
Xy Fn(x)382 1035 y Fg(i)411 1028 y Fo(log)q(\()p Fn(w)521
X1035 y Fg(i)542 1028 y Fn(x)568 1035 y Fg(i)582 1028
Xy Fo(\))g(is)g(the)g(en)o(trop)o(y)f(of)h(the)f(v)o(ector)h
XFp(x)p Fo(,)g(and)g Fl(w)h Fo(=)g(\()p Fn(w)1517 1035
Xy Fj(1)1536 1028 y Fn(;)8 b(:)g(:)g(:)t(;)g(w)1670 1035
Xy Fg(n)1693 1028 y Fo(\))1711 1011 y Fg(T)1758 1028 y
XFo(is)20 b(a)59 1084 y(v)o(ector)15 b(of)g(w)o(eigh)o(ts.)21
Xb(If)16 b(no)f(w)o(eigh)o(ts)g(are)h(sp)q(eci\014ed,)h(unit)f(w)o(eigh)
Xo(ts)g(are)f(used.)22 b(A)15 b(starting)g(v)o(ector)g
XFl(x0)59 1141 y Fo(for)g(the)g(iterativ)o(e)g(pro)q(cess)h(can)f(b)q(e)
Xh(sp)q(eci\014ed,)h(otherwise)e(a)g(constan)o(t)g(starting)f(v)o(ector)
Xh(is)g(used.)130 1197 y(If)g Fl(lamb)q(da)g Fo(is)h(a)f(v)o(ector,)f
X(then)h Fl(x)p 689 1197 V 17 w(lamb)q(da)g Fo(is)g(a)g(matrix)g(suc)o
X(h)h(that)504 1281 y Fl(x)p 528 1281 V 16 w(lamb)q(da)d
XFo(=)g([)8 b Fl(x)p 786 1281 V 15 w(lamb)q(da)p Fo(\()p
XFl(1)p Fo(\))o Fn(;)15 b Fl(x)p 1047 1281 V 16 w(lamb)q(da)p
XFo(\()p Fl(2)p Fo(\))o Fn(;)g(:)8 b(:)g(:)e Fo(])14 b
XFn(:)59 1402 y Fp(Examples:)130 1468 y Fo(Compare)g(maxim)o(um)h(en)o
X(trop)o(y)g(regularization)h(with)g(Tikhono)o(v)f(regularization:)130
X1533 y Fl([A,b,x])g(=)h(sha)o(w)8 b(\(32\);)13 b(b)j(=)f(b)h(+)g(1e-3)p
XFm(\003)p Fl(randn)8 b(\(size\(b\)\);)14 b([U,s,V])h(=)h(csvd)8
Xb(\(A\);)130 1599 y(lamb)q(da)15 b(=)g(logspace)8 b(\(-1,-4,12\);)130
X1665 y(X)p 163 1665 V 16 w(tikh)16 b(=)g(tikhonov)8 b(\(U,s,V,b,lamb)q
X(da\);)130 1731 y(X)p 163 1731 V 16 w(ment)16 b(=)f(maxent)8
Xb(\(A,b,lamb)q(da\);)130 1797 y(fo)o(r)14 b(i=1:12)175
X1862 y(dif\(i,1\))g(=)i(no)o(rm\(x)p Fm(\000)p Fl(X)p
X576 1862 V 15 w(tikh\(:,i\)\);)175 1928 y(dif\(i,2\))e(=)i(no)o(rm\(x)p
XFm(\000)p Fl(X)p 576 1928 V 15 w(ment\(:,i\)\);)175 1994
Xy(dif\(i,3\))e(=)i(no)o(rm\(X)p 520 1994 V 14 w(tikh)p
XFm(\000)p Fl(X)p 671 1994 V 18 w(ment\(:,i\)\);)130 2060
Xy(end)130 2126 y(loglog)8 b(\(lam)o(b)q(da,dif/no)o(rm\()o(x\)\))59
X2220 y Fp(Algorithm:)130 2285 y Fo(Routine)19 b Fl(maxent)f
XFo(uses)h(a)f(nonlinear)h(conjugate)f(gradien)o(t)g(algorithm)g([1,)g
XFm(x)p Fo(4.1])f(with)i(inexact)59 2342 y(line)14 b(searc)o(h)e(and)h
X(a)f(step-length)h(con)o(trol)f(whic)o(h)h(ensures)g(that)f(all)h
X(elemen)o(ts)g(of)f(the)h(iteration)f(v)o(ector)59 2398
Xy(are)j(p)q(ositiv)o(e.)21 b(F)l(or)14 b(more)h(details,)h(see)f
XFm(x)p Fo(2.7.5.)59 2492 y Fp(Diagnostics:)130 2558 y
XFo(Slo)o(w)22 b(con)o(v)o(ergence)g(ma)o(y)g(o)q(ccur)g(for)g(v)o(ery)g
X(small)h(v)m(alues)g(of)f(the)g(regularization)h(parameter)59
X2614 y Fl(lamb)q(da)p Fo(.)59 2708 y Fp(References:)115
X2761 y Fo(1.)f(R.)11 b(Fletc)o(her,)i Fk(Pr)n(actic)n(al)f(Metho)n(ds)h
X(of)g(Optimization.)20 b(V)m(ol.)12 b(1,)h(Unc)n(onstr)n(aine)n(d)e
X(Optimization)p Fo(,)173 2817 y(Wiley)l(,)16 b(Chic)o(hester,)f(1980.)p
Xeop
X%%Page: 78 80
X78 79 bop 64 159 a Fo(78)1606 b Fl(mtsvd)p 64 178 1767
X2 v 59 304 a Fb(mtsvd)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Regularization)16 b(b)o(y)g(means)f(of)f(mo)q(di\014ed)j(TSVD.)59
X581 y Fp(Synopsis:)130 650 y Fl([x)p 167 650 14 2 v 16
Xw(k,rho,eta])e(=)h(mtsvd)8 b(\(U,s,V,b,k,L\))59 756 y
XFp(Description:)130 825 y Fo(The)15 b(mo)q(di\014ed)i(TSVD)e(solution)h
X(is)f(de\014ned)i(as)e(the)g(solution)h(to)f(the)g(problem)446
X927 y(min)g Fm(k)p Fl(L)8 b Fp(x)p Fm(k)643 934 y Fj(2)752
X927 y Fo(sub)s(ject)15 b(to)91 b Fm(k)p Fn(A)1099 934
Xy Fa(k)1125 927 y Fp(x)10 b Fm(\000)h Fp(b)p Fm(k)1261
X934 y Fj(2)1293 927 y Fo(=)i(min)j Fn(;)59 1029 y Fo(where)f
XFn(A)224 1036 y Fa(k)259 1029 y Fo(is)h(the)f(truncated)g(SVD)g(of)g
X(the)h(matrix)e Fn(A)p Fo(.)20 b(The)c(MTSVD)e(solution)i(is)g(then)g
X(giv)o(en)f(b)o(y)798 1150 y Fl(x)p 822 1150 V 16 w(k)e
XFo(=)g Fl(V)956 1091 y Fh(\022)995 1122 y Fn(\030)1015
X1129 y Fa(k)994 1179 y Fn(\030)1014 1186 y Fj(0)1041
X1091 y Fh(\023)1080 1150 y Fn(:)59 1283 y Fo(Here,)21
Xb Fn(\030)205 1290 y Fa(k)244 1283 y Fo(de\014nes)g(the)f(usual)h(TSVD)
Xe(solution)i Fn(\030)948 1290 y Fa(k)988 1283 y Fo(=)f(\(diag)q(\()p
XFl(s)p Fo(\()p Fl(1)12 b Fo(:)g Fl(k)p Fo(\)\)\))1334
X1267 y Fe(\000)p Fj(1)1381 1283 y Fl(U)p Fo(\(:)p Fn(;)c
XFl(1)j Fo(:)h Fl(k)p Fo(\))1563 1262 y Fg(T)1591 1283
Xy Fl(b)p Fo(,)21 b(and)f Fn(\030)1761 1290 y Fj(0)1800
X1283 y Fo(is)59 1340 y(c)o(hosen)c(so)f(as)g(to)g(minimize)j(the)d
X(seminorm)h Fm(k)p Fl(L)8 b(x)931 1347 y Fa(k)949 1340
Xy Fm(k)972 1347 y Fj(2)992 1340 y Fo(.)20 b(This)c(leads)g(to)f(c)o(ho)
Xq(osing)h Fn(\030)1504 1347 y Fj(0)1539 1340 y Fo(as)f(the)h(solution)
X59 1396 y(to)f(the)g(follo)o(wing)h(least)f(squares)g(problem:)516
X1498 y(min)h Fm(k)p Fo(\()p Fl(L)8 b(V)q Fo(\(:)p Fn(;)g
XFl(k)f Fo(+)j Fl(1)j Fo(:)f Fl(n)p Fo(\)\))c Fn(\030)j
XFm(\000)g Fl(L)d(V)q Fo(\(:)p Fn(;)g Fl(1)i Fo(:)i Fl(k)p
XFo(\))c Fn(\030)1285 1505 y Fa(k)1304 1498 y Fm(k)1327
X1505 y Fj(2)1361 1498 y Fn(:)59 1601 y Fo(The)20 b(truncation)g
X(parameter)f(m)o(ust)g(satisfy)g Fl(k)i Fn(>)f(n)13 b
XFm(\000)h Fn(p)p Fo(,)20 b(where)g Fl(L)g Fm(2)g Fp(I)-8
Xb(R)1395 1582 y Fg(p)p Fe(\002)p Fg(n)1483 1601 y Fo(The)20
Xb(solution)g(and)59 1657 y(residual)d(norms)d(are)h(returned)h(in)g
XFl(eta)f Fo(and)h Fl(rho)p Fo(.)130 1713 y(If)f Fl(k)g
XFo(is)h(a)f(v)o(ector,)f(then)i Fl(x)p 573 1713 V 16
Xw(k)f Fo(is)h(a)f(matrix)g(suc)o(h)g(that)679 1816 y
XFl(x)p 703 1816 V 16 w(k)e Fo(=)g([)8 b Fl(x)p 844 1816
XV 15 w(k)p Fo(\()p Fl(1)p Fo(\))p Fn(;)15 b Fl(x)p 989
X1816 V 16 w(k)p Fo(\()p Fl(2)p Fo(\))o Fn(;)g(:)8 b(:)g(:)e
XFo(])14 b Fn(:)59 1967 y Fp(Examples:)130 2036 y Fo(Compute)h(the)g
X(MTSVD)g(solutions)g(corresp)q(onding)i(to)d Fl(k)i(=)f(5:12)p
XFo(:)130 2105 y Fl(X)g(=)h(mtsvd)8 b(\(U,s,V,b,5:12,L\);)59
X2212 y Fp(Algorithm:)130 2280 y Fo(The)14 b(algorithm)g(computes)h(one)
Xf(QR)h(factorization)f(of)g(the)g(matrix)g Fl(L)8 b(V)q
XFo(\(:)p Fn(;)g Fl(k)1471 2287 y Fj(min)1540 2280 y Fo(+)j
XFl(1)h Fo(:)g Fl(n)p Fo(\),)i(where)59 2337 y Fl(k)81
X2344 y Fj(min)155 2337 y Fo(=)f Fl(min)8 b Fo(\()p Fl(k)p
XFo(\))n(.)20 b(F)l(or)15 b(more)g(details,)g(cf.)g([1].)59
X2443 y Fp(See)i(also:)130 2512 y Fl(discrep)p Fo(,)f
XFl(lsqi)p Fo(,)f Fl(tgsvd)p Fo(,)h Fl(tikhonov)p Fo(,)f
XFl(tsvd)59 2618 y Fp(References:)115 2689 y Fo(1.)22
Xb(P)l(.)d(C.)f(Hansen,)j(T.)d(Sekii)j(&)f(H.)f(Shibahashi,)j
XFk(The)d(mo)n(di\014e)n(d)h(trunc)n(ate)n(d-SVD)g(metho)n(d)g(for)173
X2746 y(r)n(e)n(gularization)15 b(in)h(gener)n(al)f(form)p
XFo(,)h(SIAM)f(J.)g(Sci.)h(Stat.)e(Comput.)h Fp(13)g Fo(\(1992\),)e
X(1142-1150.)p eop
X%%Page: 79 81
X79 80 bop 59 159 a Fl(newton)1585 b Fo(79)p 59 178 1767
X2 v 59 304 a Fb(newton)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Newton)15 b(iteration)g(\(utilit)o(y)h(routine)g(for)e
XFl(discrep)p Fo(\).)59 581 y Fp(Synopsis:)130 650 y Fl(lamb)q(da)h(=)g
X(newton)8 b(\(lamb)q(da)p 638 650 14 2 v 17 w(0,delta,s,b)q
X(eta,omega,delta)p 1151 650 V 16 w(0\))59 756 y Fp(Description:)130
X825 y Fl(newton)16 b Fo(uses)g(Newton)f(iteration)g(to)g(\014nd)g(the)h
X(solution)g(to)e(the)i(equation)733 927 y Fm(k)p Fn(A)8
Xb Fp(x)826 934 y Fg(\025)858 927 y Fm(\000)j Fp(b)p Fm(k)956
X934 y Fj(2)988 927 y Fo(=)i Fl(delta)j Fn(;)59 1029 y
XFo(where)f Fp(x)218 1036 y Fg(\025)256 1029 y Fo(is)h(the)f(solution)h
X(de\014ned)g(b)o(y)g(Tikhono)o(v)f(regularization.)130
X1086 y(The)c(initial)j(guess)d(of)g Fn(\025)g Fo(is)h
XFl(lamb)q(da)p 732 1086 V 17 w(0)p Fo(.)18 b(The)12 b(norm)f
XFm(k)p Fn(A)d Fp(x)1098 1093 y Fg(\025)1122 1086 y Fm(\000)s
XFp(b)p Fm(k)1212 1093 y Fj(2)1243 1086 y Fo(is)k(computed)g(via)f(the)h
X(quan)o(tities)59 1142 y Fl(s)p Fo(,)j Fl(b)q(eta)p Fo(,)g
XFl(omega)p Fo(,)e(and)h Fl(delta)p 547 1142 V 17 w(0)p
XFo(.)20 b(Here,)14 b Fl(s)h Fo(holds)g(either)g(the)g(singular)g(v)m
X(alues)h(of)d Fn(A)p Fo(,)i(if)g Fn(L)d Fo(=)h Fn(I)1662
X1149 y Fg(n)1686 1142 y Fo(,)h(or)g(the)59 1199 y Fn(c;)8
Xb(s)p Fo(-pairs)17 b(of)g(the)h(GSVD)f(of)g(\()p Fn(A;)8
Xb(L)p Fo(\),)16 b(if)i Fn(L)e Fm(6)p Fo(=)g Fn(I)898
X1206 y Fg(n)922 1199 y Fo(.)26 b(Moreo)o(v)o(er,)16 b
XFl(b)q(eta)i Fo(=)f Fn(U)1364 1182 y Fg(T)1391 1199 y
XFp(b)g Fo(and)h Fl(omega)e Fo(is)i(either)59 1255 y Fn(V)96
X1239 y Fg(T)123 1255 y Fp(x)151 1262 y Fj(0)190 1255
Xy Fo(or)g(the)i(\014rst)e Fn(p)h Fo(elemen)o(ts)h(of)f
XFn(X)759 1239 y Fe(\000)p Fj(1)805 1255 y Fp(x)833 1262
Xy Fj(0)853 1255 y Fo(.)32 b(Finally)l(,)21 b Fl(delta)p
X1161 1255 V 17 w(0)e Fo(is)h(the)f(incompatibilit)o(y)j(measure)59
X1312 y Fm(k)p Fo(\()p Fn(I)120 1319 y Fg(m)163 1312 y
XFm(\000)10 b Fn(U)j(U)288 1295 y Fg(T)315 1312 y Fo(\))p
XFp(b)p Fm(k)385 1319 y Fj(2)405 1312 y Fo(.)59 1418 y
XFp(Algorithm:)130 1487 y Fo(It)e(w)o(as)g(exp)q(erimen)o(tally)i(found)
Xf(that)e(with)i(the)g(initial)h(guess)e Fl(lamb)q(da)p
X1340 1487 V 17 w(0)g Fo(from)f Fl(discrep)p Fo(,)j(Newton's)59
X1543 y(metho)q(d)e(applied)h(to)e Fm(k)p Fn(A)e Fp(x)518
X1550 y Fg(\025)541 1543 y Fm(\000)q Fp(b)p Fm(k)629 1527
Xy Fj(2)629 1555 y(2)649 1543 y Fm(\000)q Fl(delta)778
X1525 y Fj(2)808 1543 y Fo(is)j(faster)f(than)g(when)h(applied)i(to)d
XFm(k)p Fn(A)e Fp(x)1484 1550 y Fg(\025)1506 1543 y Fm(\000)q
XFp(b)p Fm(k)1594 1524 y Fe(\000)p Fj(2)1594 1556 y(2)1642
X1543 y Fm(\000)q Fl(delta)1771 1525 y Fe(\000)p Fj(2)1818
X1543 y Fo(,)59 1600 y(as)15 b(suggested)g(in)h([1].)59
X1706 y Fp(Diagnostics:)130 1775 y Fo(The)24 b(p)q(erformance)g(of)f
XFl(newton)j Fo(relies)f(to)e(some)h(exten)o(t)f(on)h(a)g(fairly)h(go)q
X(o)q(d)e(starting)h(guess)59 1831 y Fl(lamb)q(da)p 201
X1831 V 16 w(0)15 b Fo(of)g Fn(\025)p Fo(.)k(A)d(maxim)o(um)f(n)o(um)o
X(b)q(er)g(of)g(50)g(iterations)g(is)h(default.)59 1938
Xy Fp(See)h(also:)130 2007 y Fl(discrep)59 2113 y Fp(References:)115
X2184 y Fo(1.)22 b(V.)10 b(A.)h(Morozo)o(v,)f Fk(Metho)n(ds)i(for)h
X(Solving)e(Inc)n(orr)n(e)n(ctly)g(Pose)n(d)g(Pr)n(oblems)p
XFo(,)g(Springer,)h(New)f(Y)l(ork,)173 2240 y(1984;)i(Chapter)i(26.)p
Xeop
X%%Page: 80 82
X80 81 bop 64 159 a Fo(80)1674 b Fl(nu)p 64 178 1767 2
Xv 59 304 a Fb(nu)59 406 y Fp(Purp)q(ose:)130 475 y Fo(Brakhage's)14
Xb Fn(\027)s Fo(-metho)q(d.)59 581 y Fp(Synopsis:)130
X650 y Fl([X,rho,eta,F])g(=)i(nu)8 b(\(A,b,k,nu,s\))59
X756 y Fp(Description:)130 825 y Fo(P)o(erforms)14 b Fl(k)h
XFo(steps)g(of)g(Brakhage's)f Fn(\027)s Fo(-metho)q(d)i(for)f(the)g
X(problem)781 927 y(min)h Fm(k)p Fl(A)8 b Fp(x)h Fm(\000)h
XFl(b)p Fm(k)1061 934 y Fj(2)1096 927 y Fn(:)59 1029 y
XFo(The)j(routine)h(returns)f(all)h Fl(k)f Fo(solutions,)h(stored)f(as)f
X(columns)i(of)f(the)g(matrix)g Fl(X)p Fo(.)g(The)g(solution)h(norms)59
X1086 y(and)h(residual)i(norms)e(are)g(returned)g(in)h
XFl(eta)g Fo(and)f Fl(rho)p Fo(,)g(resp)q(ectiv)o(ely)l(.)130
X1142 y(If)h Fl(nu)h Fo(is)f(not)g(sp)q(eci\014ed,)i Fl(nu)f(=)g(.5)e
XFo(is)h(the)h(default)f(v)m(alue)i(whic)o(h)e(giv)o(es)h(the)f(Cheb)o
X(yc)o(hev)g(metho)q(d)59 1199 y(of)f(Nemiro)o(vskii)h(and)g(P)o(oly)o
X(ak.)130 1255 y(If)d(the)f(singular)i(v)m(alues)g Fl(s)f
XFo(are)g(also)f(pro)o(vided,)i Fl(nu)g Fo(computes)f(the)f(\014lter)i
X(factors)d(asso)q(ciated)i(with)59 1312 y(eac)o(h)i(step)h(and)f
X(stores)f(them)i(column)o(wise)g(in)g(the)f(arra)o(y)f
XFl(F)p Fo(.)130 1368 y(A)j(\\preconditioned")h(v)o(ersion)f(of)g(the)g
XFn(\027)s Fo(-metho)q(d)g(for)g(the)g(general-form)g(problem)g(where)h
X(one)59 1425 y(minimizes)f Fm(k)p Fn(L)8 b Fp(x)p Fm(k)384
X1432 y Fj(2)418 1425 y Fo(instead)16 b(of)e Fm(k)p Fp(x)p
XFm(k)700 1432 y Fj(2)734 1425 y Fo(in)i(eac)o(h)g(step)f(is)h(implemen)
Xo(ted)h(in)f(routine)f Fl(pnu)p Fo(.)59 1531 y Fp(Examples:)130
X1600 y Fo(P)o(erform)f(50)g(iterations)i(of)f(the)g Fn(\027)s
XFo(-metho)q(d)h(and)f(plot)h(the)f(corresp)q(onding)h(L-curv)o(e:)130
X1669 y Fl([X,rho,eta])f(=)g(nu)8 b(\(A,b,50\);)14 b(plot)p
X715 1669 14 2 v 17 w(lc)8 b(\(rho,eta,'o'\);)59 1775
Xy Fp(Algorithm:)130 1844 y Fl(nu)14 b Fo(is)f(a)g(straigh)o(tforw)o
X(ard)e(implemen)o(tation)j(of)f(the)g(algorithm)g(describ)q(ed)i(in)f
X([1].)k(The)13 b(iteration)59 1900 y(con)o(v)o(erges)h(only)g(if)h
XFm(k)p Fl(A)p Fm(k)477 1907 y Fj(2)509 1900 y Fn(<)e
XFo(1.)19 b(Therefore,)14 b Fl(A)g Fo(and)h Fl(b)f Fo(are)g(scaled)h(b)q
X(efore)f(the)h(iteration)f(b)q(egins)h(with)59 1957 y(a)g(scaling)i
X(factor)d(giv)o(en)j(b)o(y)e(0)p Fn(:)p Fo(99)p Fn(=)p
XFm(k)p Fn(B)r Fm(k)747 1964 y Fj(2)766 1957 y Fo(,)g(where)h
XFn(B)i Fo(is)e(a)f(bidiagonal)i(matrix)e(obtained)i(from)e(a)g(few)59
X2013 y(steps)f(of)f(the)h(Lanczos)h(bidiagonalization)h(pro)q(cess)e
X(applied)i(to)d Fl(A)h Fo(with)h(starting)e(v)o(ector)g
XFl(b)p Fo(.)20 b(Hence,)59 2070 y Fm(k)p Fn(B)r Fm(k)141
X2077 y Fj(2)176 2070 y Fo(is)c(a)f(go)q(o)q(d)g(appro)o(ximation)g(to)g
XFm(k)p Fl(A)p Fm(k)806 2077 y Fj(2)825 2070 y Fo(.)59
X2176 y Fp(See)i(also:)130 2245 y Fl(cgls)p Fo(,)e Fl(pnu)59
X2351 y Fp(References:)115 2422 y Fo(1.)22 b(H.)13 b(Brakhage,)g
XFk(On)i(il)r(l-p)n(ose)n(d)f(pr)n(oblems)g(and)h(the)g(metho)n(d)h(of)f
X(c)n(onjugate)f(gr)n(adients)p Fo(;)f(in)i(H.)e(W.)173
X2478 y(Engl)20 b(&)g(G.)e(W.)h(Gro)q(etsc)o(h)g(\(Eds.\),)g
XFk(Inverse)g(and)h(Il)r(l-Pose)n(d)f(Pr)n(oblems)p Fo(,)h(Academic)g
X(Press,)173 2535 y(New)15 b(Y)l(ork,)g(1987.)p eop
X%%Page: 81 83
X81 82 bop 59 159 a Fl(pa)o(rallax)1574 b Fo(81)p 59 178
X1767 2 v 59 304 a Fb(pa)n(rallax)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(Stellar)16 b(parallax)f(problem)h(with)g(28)e(\014xed,)i(real)
Xf(observ)m(ations.)59 581 y Fp(Synopsis:)130 650 y Fl([A,b])g(=)h(pa)o
X(rallax)8 b(\(n\))59 756 y Fp(Description:)130 825 y
XFo(The)15 b(underlying)i(problem)f(is)g(a)f(F)l(redholm)g(in)o(tegral)h
X(equation)g(of)e(the)i(\014rst)e(kind)j(with)e(k)o(ernel)568
X957 y Fn(K)s Fo(\()p Fn(s;)8 b(t)p Fo(\))k(=)819 927
Xy(1)p 769 947 124 2 v 769 993 a Fn(\033)804 955 y Fm(p)p
X842 955 51 2 v 38 x Fo(2)p Fn(\031)912 957 y Fo(exp)989
X885 y Fh( )1022 957 y Fm(\000)1070 927 y Fo(1)p 1070
X947 23 2 v 1070 989 a(2)1105 898 y Fh(\022)1141 927 y
XFn(s)e Fm(\000)g Fn(t)p 1141 947 94 2 v 1173 989 a(\033)1239
X898 y Fh(\023)1269 909 y Fj(2)1289 885 y Fh(!)59 1090
Xy Fo(with)i Fn(\033)i Fo(=)f(0)p Fn(:)p Fo(014234,)c(and)j(it)f(is)h
X(discretized)h(b)o(y)e(means)g(of)g(a)g(Galerkin)h(metho)q(d)f(with)h
XFl(n)g Fo(orthonormal)59 1146 y(basis)f(functions.)19
Xb(The)11 b(righ)o(t-hand)f(side)i Fl(b)f Fo(consists)f(of)g(a)g
X(measured)h(distribution)h(function)f(of)f(stellar)59
X1203 y(parallaxes)18 b(from)e([1],)g(and)i(its)f(length)h(is)f(\014xed)
Xh(at)f(26;)g(i.e.,)g(the)g(matrix)g Fl(A)g Fo(is)h(26)11
Xb Fm(\002)g Fl(n)p Fo(.)27 b(The)17 b(exact)59 1259 y(solution,)f(whic)
Xo(h)g(represen)o(ts)f(the)g(true)g(distribution)i(of)e(stellar)h
X(parallaxes,)f(is)h(unkno)o(wn.)59 1365 y Fp(References:)115
X1436 y Fo(1.)22 b(W.)f(M.)g(Smart,)h Fk(Stel)r(lar)g(Dynamics)p
XFo(,)h(Cam)o(bridge)f(Univ)o(ersit)o(y)g(Press,)h(Cam)o(bridge,)g
X(1938;)173 1493 y(p.)15 b(30.)p eop
X%%Page: 82 84
X82 83 bop 64 159 a Fo(82)1625 b Fl(p)q(cgls)p 64 178
X1767 2 v 59 304 a Fb(p)r(cgls)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(\\Preconditioned")15 b(conjugate)f(gradien)o(t)h(algorithm)f
X(applied)i(implicitly)i(to)c(the)g(normal)g(equa-)59
X531 y(tions.)59 637 y Fp(Synopsis:)130 705 y Fl([X,rho,eta,F])g(=)i(p)q
X(cgls)8 b(\(A,L,W,b,k,sm\))59 811 y Fp(Description:)130
X880 y Fo(P)o(erforms)19 b Fl(k)i Fo(steps)g(of)g(the)g
X(\\preconditioned")h(conjugate)f(gradien)o(t)f(algorithm)h(applied)i
X(im-)59 936 y(plicitly)d(to)e(the)f(normal)h(equations)g
XFl(A)746 920 y Fg(T)774 936 y Fl(A)8 b Fp(x)17 b Fo(=)g
XFl(A)939 920 y Fg(T)967 936 y Fl(b)h Fo(with)g(\\preconditioner")h
XFl(L)1488 914 y Fe(y)1488 950 y Fa(A)1521 936 y Fo(\()p
XFl(L)1564 914 y Fe(y)1564 950 y Fa(A)1588 936 y Fo(\))1606
X920 y Fg(T)1651 936 y Fo(and)f(with)59 999 y(starting)i(v)o(ector)g
XFp(x)404 1006 y Fj(0)443 999 y Fo(\(2.30\))f(computed)i(b)o(y)f(means)h
X(of)f(Algorithm)h(\(2.34\).)33 b(Here,)22 b Fl(L)1605
X977 y Fe(y)1605 1014 y Fa(A)1651 999 y Fo(is)f(the)f
XFl(A)p Fo(-)59 1056 y(w)o(eigh)o(ted)e(generalized)h(in)o(v)o(erse)f
X(of)f Fl(L)p Fo(.)f(Notice)i(that)f(the)h(matrix)f Fl(W)g
XFo(holding)i(a)e(basis)h(for)f(the)g(n)o(ull)59 1112
Xy(space)f(of)e Fl(L)h Fo(m)o(ust)g(also)g(b)q(e)h(sp)q(eci\014ed.)130
X1169 y(The)i(routine)g(returns)f(all)i Fl(k)f Fo(solutions,)g(stored)f
X(as)h(columns)g(of)f(the)h(matrix)f Fl(X)p Fo(.)h(The)g(solution)59
X1225 y(seminorms)d(and)h(the)f(residual)i(norms)d(are)h(returned)h(in)g
XFl(eta)g Fo(and)f Fl(rho)p Fo(,)f(resp)q(ectiv)o(ely)l(.)130
X1282 y(If)j(the)f Fn(c;)8 b(s)p Fo(-pairs)16 b Fl(sm)h
XFo(of)f(the)g(GSVD)h(of)f(\()p Fl(A)p Fn(;)8 b Fl(L)p
XFo(\))15 b(are)h(also)h(pro)o(vided,)g(then)g Fl(p)q(cgls)h
XFo(computes)f(the)59 1338 y(\014lter)f(factors)e(asso)q(ciated)h(with)h
X(eac)o(h)f(step)g(and)h(stores)e(them)h(in)h(the)g(arra)o(y)e
XFl(F)p Fo(.)130 1395 y(Reorthogonalization)22 b(of)f(the)g(normal)g
X(equation)h(residual)h(v)o(ectors)d Fl(A)1411 1378 y
XFg(T)1439 1395 y Fo(\()p Fl(A)8 b(X)p Fo(\(:)g Fn(;)g(i)p
XFo(\))k Fm(\000)i Fl(b)p Fo(\),)23 b Fn(i)f Fo(=)59 1451
Xy(1)p Fn(;)8 b(:)g(:)g(:)d(;)j Fl(k)14 b Fo(is)i(con)o(trolled)g(b)o(y)
Xf(means)g(of)g Fl(reo)o(rth)g Fo(as)f(follo)o(ws:)155
X1516 y Fl(reo)o(rth)g(=)i(0)f Fo(:)49 b(no)15 b(reorthogonalization)155
X1572 y Fl(reo)o(rth)f(=)i(1)f Fo(:)49 b(reorthogonalization)15
Xb(b)o(y)h(means)f(of)f(MGS.)59 1637 y(No)h(reorthogonalization)g(is)h
X(assumed)f(if)h Fl(reo)o(rth)f Fo(is)g(not)g(sp)q(eci\014ed.)130
X1694 y(A)g(simpler)h(v)o(ersion)g(of)f Fl(p)q(cgls)h
XFo(for)e(the)h(case)h Fl(L)c Fo(=)h Fn(I)1005 1701 y
XFg(n)1044 1694 y Fo(is)i(implemen)o(ted)i(in)f(routine)g
XFl(cgls)p Fo(.)59 1799 y Fp(Examples:)130 1868 y Fo(Cho)q(ose)f
X(minimization)j(of)d(the)h(second)g(deriv)m(ativ)o(e)h(as)e(side)h
X(constrain)o(t,)f(and)h(p)q(erform)f(20)g(iter-)59 1925
Xy(ations)g(of)g(the)g(\\preconditioned")i(conjugate)e(gradien)o(t)g
X(metho)q(d:)130 1993 y Fl([L,W])f(=)i(get)p 364 1993
X14 2 v 16 w(l)8 b(\(n,2\);)14 b(X)h(=)h(p)q(cgls)8 b(\(A,L,W,b,20\);)13
Xb(mesh)8 b(\(X\))59 2099 y Fp(Algorithm:)130 2168 y Fl(p)q(cgls)18
Xb Fo(is)g(a)f(straigh)o(tforw)o(ard)f(implemen)o(tation)i(of)f(the)h
X(algorithm)f(describ)q(ed)j(in)e([1],)f(with)h(the)59
X2224 y(necessary)d(mo)q(di\014cations)h(to)f(the)g(case)g
XFl(L)d Fm(6)p Fo(=)h Fn(I)874 2231 y Fg(n)913 2224 y
XFo(from)h([2].)19 b(The)c(computation)g(of)g(the)g(\014lter)h(factors)
X59 2280 y(is)g(also)f(describ)q(ed)i(in)f([2].)59 2386
Xy Fp(See)h(also:)130 2455 y Fl(cgls)p Fo(,)e Fl(lsqr)p
XFo(,)g Fl(nu)p Fo(,)g Fl(plsqr)p Fo(,)h Fl(pnu)59 2560
Xy Fp(References:)115 2630 y Fo(1.)173 2622 y(\027)173
X2630 y(A.)22 b(Bj\177)-23 b(orc)o(k,)24 b Fk(Numeric)n(al)f(Metho)n(ds)
Xg(for)h(L)n(e)n(ast)e(Squar)n(es)h(Pr)n(oblems)p Fo(,)g(SIAM,)g
X(Philadelphia,)173 2687 y(1996.)115 2743 y(2.)f(P)l(.)17
Xb(C.)f(Hansen,)i Fk(R)n(ank-De\014cient)g(and)g(Discr)n(ete)f(Il)r
X(l-Pose)n(d)g(Pr)n(oblems.)26 b(Numeric)n(al)18 b(Asp)n(e)n(cts)173
X2800 y(of)e(Line)n(ar)f(Inversion,)f Fo(SIAM,)h(Philadelphia,)j(1997.)p
Xeop
X%%Page: 83 85
X83 84 bop 59 159 a Fl(phillips)1591 b Fo(83)p 59 178
X1767 2 v 59 304 a Fb(phillips)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(Phillips's)17 b(\\famous")d(test)h(problem.)59
X581 y Fp(Synopsis:)130 650 y Fl([A,b,x])g(=)h(phillips)8
Xb(\(n\))59 756 y Fp(Description:)130 825 y Fo(Discretization)j(of)f
X(the)h(\\famous")e(F)l(redholm)i(in)o(tegral)g(equation)g(of)f(the)g
X(\014rst)h(kind)g(\(2.1\))e(deviced)59 882 y(b)o(y)15
Xb(D.)g(L.)g(Phillips)j([1].)h(De\014ne)c(the)h(function)597
X1016 y Fn(\036)p Fo(\()p Fn(x)p Fo(\))c(=)746 944 y Fh(\()801
X988 y Fo(1)d(+)i(cos)955 953 y Fh(\000)979 970 y Fg(\031)c(x)p
X979 977 48 2 v 994 1004 a Fj(3)1031 953 y Fh(\001)1058
X988 y Fn(;)41 b Fm(j)p Fn(x)p Fm(j)12 b Fn(<)h Fo(3)801
X1045 y(0)p Fn(;)275 b Fm(j)p Fn(x)p Fm(j)12 b(\025)h
XFo(3)1280 1016 y Fn(:)59 1149 y Fo(Then)j(the)f(k)o(ernel)h
XFn(K)s Fo(,)f(the)g(solution)h Fn(f)5 b Fo(,)15 b(and)g(the)g(righ)o
X(t-hand)h(side)g Fn(g)h Fo(are)e(giv)o(en)g(b)o(y:)359
X1251 y Fn(K)s Fo(\()p Fn(s;)8 b(t)p Fo(\))41 b(=)h Fn(\036)p
XFo(\()p Fn(s)10 b Fm(\000)g Fn(t)p Fo(\))415 1320 y Fn(f)5
Xb Fo(\()p Fn(t)p Fo(\))42 b(=)g Fn(\036)p Fo(\()p Fn(t)p
XFo(\))414 1412 y Fn(g)r Fo(\()p Fn(s)p Fo(\))f(=)h(\(6)9
Xb Fm(\000)h(j)p Fn(s)p Fm(j)p Fo(\))781 1353 y Fh(\022)811
X1412 y Fo(1)g(+)894 1382 y(1)p 894 1402 23 2 v 894 1444
Xa(2)929 1412 y(cos)998 1353 y Fh(\022)1033 1382 y Fn(\031)f(s)p
X1033 1402 57 2 v 1050 1444 a Fo(3)1095 1353 y Fh(\023)o(\023)1166
X1412 y Fo(+)1234 1382 y(9)p 1216 1402 58 2 v 1216 1444
Xa(2)f Fn(\031)1294 1412 y Fo(sin)1358 1353 y Fh(\022)1393
X1382 y Fn(\031)h Fm(j)p Fn(s)p Fm(j)p 1393 1402 82 2
Xv 1423 1444 a Fo(3)1480 1353 y Fh(\023)1518 1412 y Fn(:)59
X1535 y Fo(Both)15 b(in)o(tegration)g(in)o(terv)m(als)h(are)f([)p
XFm(\000)p Fo(6)p Fn(;)8 b Fo(6].)18 b(The)e(size)g(of)f(the)g(matrix)g
XFl(A)g Fo(is)h Fl(n)11 b Fm(\002)f Fl(n)p Fo(.)59 1641
Xy Fp(Limitations:)130 1710 y Fo(The)15 b(order)g Fl(n)h
XFo(m)o(ust)e(b)q(e)i(a)f(m)o(ultiple)i(of)e(4.)59 1816
Xy Fp(References:)115 1887 y Fo(1.)22 b(D.)17 b(L.)g(Phillips,)k
XFk(A)e(te)n(chnique)f(for)h(the)g(numeric)n(al)f(solution)g(of)h(c)n
X(ertain)f(inte)n(gr)n(al)f(e)n(quations)173 1944 y(of)f(the)h(\014rst)e
X(kind)p Fo(,)g(J.)g(A)o(CM)f Fp(9)i Fo(\(1962\),)d(84{97.)531
X2055 y
X 14432612 11188078 5262540 26773176 34995896 49731010 startTexFig
X 531 2055 a
X%%BeginDocument: testfigs/phillips.eps
X
X% MathWorks dictionary
X/mathworks 50 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/xdef {exch def} bdef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot {gsave} bdef
X/eplot {grestore} bdef
X
X% bounding box in default coordinates
X/dx 0 def
X/dy 0 def
X/sides {/dx urx llx sub def /dy ury lly sub def} bdef
X/llx 0 def
X/lly 0 def
X/urx 0 def
X/ury 0 def
X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef
X
X% orientation switch
X/por true def
X/portrait {/por true def} bdef
X/landscape {/por false def} bdef
X
X% coordinate system mappings
X/px 8.5 72 mul def
X/py 11.0 72 mul def
X/port {dx py div dy px div scale} bdef
X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef
X/csm {llx lly translate por {port} {land} ifelse} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { []        0 setdash } bdef
X/DO { [0 4]     0 setdash } bdef
X/DA { [4]       0 setdash } bdef
X/DD { [0 4 3 4] 0 setdash } bdef
X
X% macros for moveto and polyline
X/M {moveto}  bdef
X/L {{lineto} repeat stroke} bdef
X
X% font control
X/font_spec () def
X/lfont currentfont def
X/sfont currentfont def
X/selfont {/font_spec xdef} bdef
X/savefont {font_spec findfont exch scalefont def} bdef
X/LF {lfont setfont} bdef
X/SF {sfont setfont} bdef
X
X% text display
X/sh {show} bdef
X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef
X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef
X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef
X
Xcurrentdict end def %dictionary
X
Xmathworks begin
X
X% fonts for text, standard numbers and exponents
X/Times-Roman selfont
X/lfont 30 savefont
X/sfont 21 savefont
X
X%line width, line cap, and joint spec
X.5 setlinewidth 1 setlinecap 1 setlinejoin
X
Xend
X
Xmathworks begin
Xbpage
X
Xbplot
X80 407 532 756 bbox portrait csm
X
XSO
X 78.09  77.33 757.00  77.33 757.00 570.67  78.09 570.67  78.09  77.33 M 4 L
XLF
X 73.09  71.33 M (0) rsh
X 78.09 147.81  84.83 147.81 M 1 L
X750.27 147.81 757.00 147.81 M 1 L
X 73.09 141.81 M (0.1) rsh
X 78.09 218.28  84.83 218.28 M 1 L
X750.27 218.28 757.00 218.28 M 1 L
X 73.09 212.28 M (0.2) rsh
X 78.09 288.76  84.83 288.76 M 1 L
X750.27 288.76 757.00 288.76 M 1 L
X 73.09 282.76 M (0.3) rsh
X 78.09 359.24  84.83 359.24 M 1 L
X750.27 359.24 757.00 359.24 M 1 L
X 73.09 353.24 M (0.4) rsh
X 78.09 429.72  84.83 429.72 M 1 L
X750.27 429.72 757.00 429.72 M 1 L
X 73.09 423.72 M (0.5) rsh
X 78.09 500.19  84.83 500.19 M 1 L
X750.27 500.19 757.00 500.19 M 1 L
X 73.09 494.19 M (0.6) rsh
X 73.09 564.67 M (0.7) rsh
X 78.09  55.33 M (0) csh
X145.98  77.33 145.98  82.53 M 1 L
X145.98 565.47 145.98 570.67 M 1 L
X145.98  55.33 M (10) csh
X213.87  77.33 213.87  82.53 M 1 L
X213.87 565.47 213.87 570.67 M 1 L
X213.87  55.33 M (20) csh
X281.77  77.33 281.77  82.53 M 1 L
X281.77 565.47 281.77 570.67 M 1 L
X281.77  55.33 M (30) csh
X349.66  77.33 349.66  82.53 M 1 L
X349.66 565.47 349.66 570.67 M 1 L
X349.66  55.33 M (40) csh
X417.55  77.33 417.55  82.53 M 1 L
X417.55 565.47 417.55 570.67 M 1 L
X417.55  55.33 M (50) csh
X485.44  77.33 485.44  82.53 M 1 L
X485.44 565.47 485.44 570.67 M 1 L
X485.44  55.33 M (60) csh
X553.33  77.33 553.33  82.53 M 1 L
X553.33 565.47 553.33 570.67 M 1 L
X553.33  55.33 M (70) csh
X621.22  77.33 621.22  82.53 M 1 L
X621.22 565.47 621.22 570.67 M 1 L
X621.22  55.33 M (80) csh
X689.11  77.33 689.11  82.53 M 1 L
X689.11 565.47 689.11 570.67 M 1 L
X689.11  55.33 M (90) csh
X757.00  55.33 M (100) csh
X 84.88  77.33  91.67  77.33  98.46  77.33 105.25  77.33 112.04  77.33 
X118.83  77.33 125.62  77.33 132.41  77.33 139.20  77.33 145.98  77.33 
X152.77  77.33 159.56  77.33 166.35  77.33 173.14  77.33 179.93  77.33 
X186.72  77.33 193.51  77.33 200.30  77.33 207.09  77.33 213.87  77.33 
X220.66  77.33 227.45  77.33 234.24  77.33 241.03  77.33 247.82  77.33 
X254.61  77.97 261.40  81.81 268.19  89.43 274.98 100.71 281.77 115.47 
X288.55 133.48 295.34 154.46 302.13 178.06 308.92 203.93 315.71 231.66 
X322.50 260.80 329.29 290.89 336.08 321.47 342.87 352.05 349.66 382.14 
X356.45 411.28 363.23 439.01 370.02 464.88 376.81 488.48 383.60 509.46 
X390.39 527.47 397.18 542.23 403.97 553.51 410.76 561.13 417.55 564.97 
X424.34 564.97 431.12 561.13 437.91 553.51 444.70 542.23 451.49 527.47 
X458.28 509.46 465.07 488.48 471.86 464.88 478.65 439.01 485.44 411.28 
X492.23 382.14 499.02 352.05 505.80 321.47 512.59 290.89 519.38 260.80 
X526.17 231.66 532.96 203.93 539.75 178.06 546.54 154.46 553.33 133.48 
X560.12 115.47 566.91 100.71 573.70  89.43 580.48  81.81 587.27  77.97 
X594.06  77.33 600.85  77.33 607.64  77.33 614.43  77.33 621.22  77.33 
X628.01  77.33 634.80  77.33 641.59  77.33 648.37  77.33 655.16  77.33 
X661.95  77.33 668.74  77.33 675.53  77.33 682.32  77.33 689.11  77.33 
X695.90  77.33 702.69  77.33 709.48  77.33 716.27  77.33 723.05  77.33 
X729.84  77.33 736.63  77.33 743.42  77.33 750.21  77.33 757.00  77.33 
XM 99 L
Xeplot
X
Xepage
Xend
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 84 86
X84 85 bop 64 159 a Fo(84)1607 b Fl(pica)o(rd)p 64 178
X1767 2 v 59 304 a Fb(pica)n(rd)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(Visual)16 b(insp)q(ection)h(of)e(the)g(Picard)h(condition.)59
X581 y Fp(Synopsis:)130 650 y Fl(xi)f(=)g(pica)o(rd)8
Xb(\(U,s,b,d\))130 719 y(xi)15 b(=)g(pica)o(rd)8 b(\(U,sm,b,d\))14
Xb(,)60 b(sm)15 b(=)g([sigma,mu])59 825 y Fp(Description:)130
X894 y Fl(pica)o(rd)f Fo(plots)g(the)g(singular)h(v)m(alues)g
XFl(s)p Fo(,)g(the)f(absolute)g(v)m(alues)i(of)d(the)h(F)l(ourier)h(co)q
X(e\016cien)o(ts,)g Fm(j)p Fl(U)1755 878 y Fg(T)1782 894
Xy Fl(b)p Fm(j)p Fo(,)59 950 y(and)j(a)f(\(p)q(ossible)i(smo)q(othed\))e
X(curv)o(e)g(of)g(the)h(solution)g(co)q(e\016cien)o(ts)g
XFm(j)p Fo(\()p Fl(U)1333 930 y Fg(T)1360 950 y Fl(b)p
XFo(\))p Fn(:=)p Fl(s)p Fm(j)p Fo(.)26 b(If)18 b(the)f
XFn(c;)8 b(s)p Fo(-v)m(alues)59 1007 y Fl(sm)17 b(=)g([sigma,mu])e
XFo(are)i(sp)q(eci\014ed,)i(where)f Fn(\015)f Fo(=)f Fl(sigma)p
XFn(:=)p Fl(mu)f Fo(are)i(the)g(generalized)i(singular)f(v)m(alues,)59
X1063 y(then)e(the)f(routine)h(plots)f Fn(\015)s Fo(,)f
XFm(j)p Fl(U)607 1047 y Fg(T)634 1063 y Fl(b)p Fm(j)p
XFo(,)h(and)g(\(smo)q(othed\))g Fm(j)p Fo(\()p Fl(U)1089
X1042 y Fg(T)1117 1063 y Fl(b)p Fo(\))p Fn(:=)o(\015)s
XFm(j)p Fo(.)130 1120 y(The)g(smo)q(othing)g(is)h(a)f(geometric)g(mean)g
X(o)o(v)o(er)f(2)p Fl(d)c Fo(+)h(1)j(p)q(oin)o(ts.)21
Xb(If)15 b Fl(na)o(rgin)g(=)g(3)g Fo(then)h Fl(d)f(=)h(0)e
XFo(\(i.e.,)59 1176 y(no)h(smo)q(othing\).)130 1233 y(The)f(quan)o
X(tities)g(plotted)h(b)o(y)f Fl(pica)o(rd)g Fo(are)f(useful)j(for)d
X(visually)j(insp)q(ecting)g(whether)e(the)g(discrete)59
X1289 y(Picard)j(condition)g(is)g(satis\014ed)f(for)g(the)g(giv)o(en)h
X(problem:)22 b(for)16 b(the)g(large)g(singular)h(v)m(alues)h
XFl(s)p Fo(,)e(or)g(the)59 1346 y(large)f(generalized)j(singular)e(v)m
X(alues)h Fn(\015)s Fo(,)d(the)h(F)l(ourier)h(co)q(e\016cien)o(ts)g
XFm(j)p Fl(U)1278 1329 y Fg(T)1305 1346 y Fl(b)p Fm(j)g
XFo(should)g(deca)o(y)g(at)f(least)g(as)59 1402 y(fast)f(as)h(the)h
XFl(s)f Fo(and)g Fn(\015)s Fo(,)f(resp)q(ectiv)o(ely)l(.)59
X1508 y Fp(Examples:)130 1577 y Fo(Generate)g(a)g(test)g(problem,)h(add)
Xf(noise)i(to)d(the)i(righ)o(t-hand)g(side,)g(and)g(use)f
XFl(pica)o(rd)h Fo(to)f(c)o(hec)o(k)h(the)59 1634 y(discrete)h(Picard)g
X(condition)g(visually:)130 1703 y Fl([A,b,x])f(=)h(sha)o(w)8
Xb(\(32\);)13 b([U,s,V])j(=)f(csvd)8 b(\(A\);)15 b(b)h(=)g(b)f(+)h(1e-3)
Xp Fm(\003)p Fl(randn)8 b(\(size\(b\)\);)130 1772 y(pica)o(rd)g
X(\(U,s,b\);)59 1878 y Fp(See)17 b(also:)130 1947 y Fl(l)p
X144 1947 14 2 v 16 w(curve)59 2053 y Fp(References:)115
X2124 y Fo(1.)22 b(P)l(.)15 b(C.)g(Hansen,)g Fk(The)h(discr)n(ete)g(Pic)
Xn(ar)n(d)h(c)n(ondition)e(for)i(discr)n(ete)f(il)r(l-p)n(ose)n(d)g(pr)n
X(oblems)p Fo(,)f(BIT)g Fp(30)173 2180 y Fo(\(1990\),)e(658{672.)p
Xeop
X%%Page: 85 87
X85 86 bop 59 159 a Fl(pinit)1637 b Fo(85)p 59 178 1767
X2 v 59 304 a Fb(pinit)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Utilit)o(y)15 b(initialization-pro)q(ce)q(dure)i(for)d(the)h
X(\\preconditioned")h(iterativ)o(e)e(regularization)i(meth-)59
X531 y(o)q(ds.)59 637 y Fp(Synopsis:)130 706 y Fl(T)f(=)g(pinit)8
Xb(\(W,A\))130 775 y([T,x)p 211 775 14 2 v 16 w(0])15
Xb(=)g(pinit)8 b(\(W,A,b\))59 882 y Fp(Description:)130
X950 y Fl(pinit)15 b Fo(is)h(a)e(utilit)o(y)i(routine)f(used)h(for)e
X(initialization)j(inside)g(the)e(iterativ)o(e)g(regularization)h(meth-)
X59 1007 y(o)q(ds.)21 b(Giv)o(en)16 b(a)f(matrix)g Fl(W)h
XFo(whose)f(columns)h(span)g(the)g(n)o(ull)h(space)e(of)h
XFn(L)p Fo(,)f Fl(pinit)h Fo(computes)g(a)f(matrix)59
X1063 y Fl(T)g Fo(whic)o(h)h(is)g(needed)g(in)g(the)g(routines)f(for)g
X(treating)g(general-form)g(regularization)h(problems.)130
X1120 y(If)j Fl(b)g Fo(is)g(also)g(sp)q(eci\014ed)i(then)e
XFl(x)p 683 1120 V 16 w(0)p Fo(,)g(the)g(comp)q(onen)o(t)g(of)f(the)h
X(regularized)h(solution)g(in)f(the)g(n)o(ull)59 1176
Xy(space)d(of)e Fn(L)p Fo(,)h(is)h(also)f(computed.)59
X1283 y Fp(Algorithm:)130 1351 y Fl(T)g Fo(and)g Fl(x)p
X288 1351 V 16 w(0)g Fo(are)g(computed)h(b)o(y)f(the)g(follo)o(wing)h
X(pro)q(cedure:)697 1454 y Fn(S)f Fm( )e Fo(\()p Fn(A)8
Xb(W)e Fo(\))925 1435 y Fe(y)957 1454 y Fn(;)53 b Fl(T)12
Xb Fm( )i Fn(S)c Fl(A)809 1556 y(x)p 833 1556 V 17 w(0)i
XFm( )h Fl(W)8 b Fn(S)i Fl(b)16 b Fn(:)59 1639 y Fo(The)f(Matlab)g
X(command)g Fl(pinv)h Fo(is)g(used)g(to)e(compute)i(the)f(pseudoin)o(v)o
X(erse)h(\()p Fn(A)8 b(W)e Fo(\))1493 1623 y Fe(y)1510
X1639 y Fo(.)59 1745 y Fp(See)17 b(also:)130 1814 y Fl(get)p
X192 1814 V 16 w(l)59 1921 y Fp(References:)115 1991 y
XFo(1.)22 b(M.)15 b(Hank)o(e,)h Fk(R)n(e)n(gularization)h(with)h
X(di\013er)n(ential)e(op)n(er)n(ators.)24 b(A)o(n)17 b(iter)n(ative)g
X(appr)n(o)n(ach)p Fo(,)g(J.)f(Nu-)173 2048 y(mer.)e(F)l(unct.)h(Anal.)h
X(Optim.)f Fp(13)h Fo(\(1992\),)d(523-540.)115 2104 y(2.)22
Xb(P)l(.)17 b(C.)f(Hansen,)i Fk(R)n(ank-De\014cient)g(and)g(Discr)n(ete)
Xf(Il)r(l-Pose)n(d)g(Pr)n(oblems.)26 b(Numeric)n(al)18
Xb(Asp)n(e)n(cts)173 2161 y(of)e(Line)n(ar)f(Inversion,)f
XFo(SIAM,)h(Philadelphia,)j(1997.)p eop
X%%Page: 86 88
X86 87 bop 64 159 a Fo(86)1600 b Fl(plot)p 1786 159 14
X2 v 17 w(lc)p 64 178 1767 2 v 59 304 a Fb(plot)p 157
X304 18 2 v 21 w(lc)59 406 y Fp(Purp)q(ose:)130 475 y
XFo(Plot)15 b(the)g(L-curv)o(e.)59 581 y Fp(Synopsis:)130
X650 y Fl(plot)p 206 650 14 2 v 16 w(lc)8 b(\(rho,eta,ma)o(rk)o
X(er,ps,reg)p 681 650 V 13 w(pa)o(ram\))59 756 y Fp(Description:)130
X825 y Fo(Plots)15 b(the)g(L-curv)o(e,)g(i.e.,)g(the)h(L-shap)q(ed)g
X(curv)o(e)g(of)e(the)i(solution)g(norm)155 890 y Fl(eta)d
XFo(=)g Fm(k)p Fp(x)p Fm(k)348 897 y Fj(2)455 890 y Fo(if)50
Xb Fl(ps)14 b Fo(=)f(1)155 947 y Fl(eta)g Fo(=)g Fm(k)p
XFn(L)8 b Fp(x)p Fm(k)387 954 y Fj(2)455 947 y Fo(if)50
Xb Fl(ps)14 b Fo(=)f(2)59 1014 y(v)o(ersus)20 b(the)f(residual)i(norm)f
XFl(rho)g Fo(=)g Fm(k)p Fn(A)8 b Fp(x)k Fm(\000)i Fp(b)p
XFm(k)924 1021 y Fj(2)943 1014 y Fo(.)34 b(If)20 b Fl(ps)g
XFo(is)g(not)g(sp)q(eci\014ed,)i(the)e(v)m(alue)h Fl(ps)g
XFo(=)f(1)f(is)59 1071 y(assumed.)130 1127 y(The)13 b(text)g(string)h
XFl(ma)o(rk)o(er)d Fo(is)j(used)g(as)g(mark)o(er)e(for)h(the)h(L-curv)o
X(e.)20 b(If)13 b Fl(ma)o(rk)o(er)f Fo(is)i(not)f(sp)q(eci\014ed,)j(the)
X59 1184 y(mark)o(er)e Fl('{')g Fo(is)i(used,)g(giving)g(a)f(solid)h
X(line.)130 1240 y(If)g(a)h(\014fth)f(argumen)o(t)g Fl(reg)p
X581 1240 V 16 w(pa)o(ram)f Fo(is)i(presen)o(t,)g(holding)h(the)f
X(regularization)g(parameters)f(corre-)59 1296 y(sp)q(onding)k(to)e
XFl(rho)g Fo(and)h Fl(eta)p Fo(,)g(then)g(some)f(p)q(oin)o(ts)h(on)g
X(the)f(L-curv)o(e)h(are)g(iden)o(ti\014ed)h(b)o(y)f(their)g(corre-)59
X1353 y(sp)q(onding)d(regularization)h(parameter.)59 1459
Xy Fp(Diagnostics:)130 1528 y Fo(The)g(default)i(n)o(um)o(b)q(er)e(of)h
X(iden)o(ti\014ed)h(p)q(oin)o(ts)f(on)g(the)f(L-curv)o(e)i(is)f(10.)26
Xb(It)18 b(is)g(con)o(trolled)g(b)o(y)g(the)59 1585 y(parameter)c
XFl(np)j Fo(inside)g Fl(plot)p 544 1585 V 16 w(lc)p Fo(.)59
X1691 y Fp(See)g(also:)130 1760 y Fl(l)p 144 1760 V 16
Xw(curve)p eop
X%%Page: 87 89
X87 88 bop 59 159 a Fl(plsqr)1631 b Fo(87)p 59 178 1767
X2 v 59 304 a Fb(plsqr)59 406 y Fp(Purp)q(ose:)130 473
Xy Fo(\\Preconditioned")16 b(v)o(ersion)f(of)g(the)g(LSQR)i(Lanczos)f
X(bidiagonalization)h(algorithm.)59 570 y Fp(Synopsis:)130
X637 y Fl([X,rho,eta,F])d(=)i(plsqr)8 b(\(A,L,W,b,k,reo)o(rth,sm\))59
X735 y Fp(Description:)130 802 y Fo(P)o(erforms)16 b Fl(k)h
XFo(steps)g(of)g(the)g(\\preconditioned")h(LSQR)h(Lanczos)e
X(bidiagonalization)j(algorithm)59 858 y(applied)d(to)e(the)g(system)795
X915 y(min)g Fm(k)p Fl(A)8 b Fp(x)i Fm(\000)g Fl(b)p Fm(k)1075
X922 y Fj(2)59 996 y Fo(with)20 b(\\preconditioner")h
XFl(L)543 974 y Fe(y)543 1010 y Fa(A)576 996 y Fo(\()p
XFl(L)619 974 y Fe(y)619 1010 y Fa(A)644 996 y Fo(\))662
X980 y Fg(T)709 996 y Fo(and)f(with)g(starting)f(v)o(ector)h
XFp(x)1254 1003 y Fj(0)1293 996 y Fo(\(2.30\).)32 b(Here,)21
Xb Fl(L)1607 974 y Fe(y)1607 1010 y Fa(A)1652 996 y Fo(is)f(the)g
XFl(A)p Fo(-)59 1053 y(w)o(eigh)o(ted)e(generalized)h(in)o(v)o(erse)f
X(of)f Fl(L)p Fo(.)f(Notice)i(that)f(the)h(matrix)f Fl(W)g
XFo(holding)i(a)e(basis)h(for)f(the)g(n)o(ull)59 1109
Xy(space)g(of)f Fl(L)h Fo(m)o(ust)f(also)h(b)q(e)g(sp)q(eci\014ed.)27
Xb(The)17 b(routine)g(returns)g(all)h Fl(k)f Fo(solutions,)g(stored)f
X(as)h(columns)59 1165 y(of)f(the)g(matrix)f Fl(X)p Fo(.)h(The)g
X(solution)h(seminorms)f(and)g(the)g(residual)i(norms)d(are)h(returned)g
X(in)h Fl(eta)f Fo(and)59 1222 y Fl(rho)p Fo(,)f(resp)q(ectiv)o(ely)l(.)
X130 1278 y(Reorthogonalization)g(of)e(the)i(Lanczos)f(v)o(ectors)g(is)g
X(con)o(trolled)h(b)o(y)f(means)h(of)e Fl(reo)o(rth)h
XFo(as)g(follo)o(ws:)155 1341 y Fl(reo)o(rth)g(=)i(0)f
XFo(:)49 b(no)15 b(reorthogonalization)155 1398 y Fl(reo)o(rth)f(=)i(1)f
XFo(:)49 b(reorthogonalization)15 b(b)o(y)h(means)f(of)f(MGS)155
X1454 y Fl(reo)o(rth)g(=)i(2)f Fo(:)49 b(Householder)16
Xb(reorthogonalization.)59 1517 y(No)f(reorthogonalization)g(is)h
X(assumed)f(if)h Fl(reo)o(rth)f Fo(is)g(not)g(sp)q(eci\014ed.)130
X1574 y(If)g(the)h Fn(c;)8 b(s)p Fo(-v)m(alues)16 b Fl(sm)f
XFo(of)g(the)g(GSVD)g(of)g(\()p Fl(A)p Fn(;)8 b Fl(L)p
XFo(\))14 b(are)h(also)g(pro)o(vided,)h(then)g Fl(plsqr)g
XFo(computes)g(the)59 1630 y(\014lter)g(factors)e(asso)q(ciated)h(with)h
X(eac)o(h)f(step)g(and)h(stores)e(them)h(column)o(wise)i(in)f(the)f
X(arra)o(y)f Fl(F)p Fo(.)130 1687 y(A)h(simpler)h(v)o(ersion)g(of)f
XFl(plsqr)g Fo(for)g(the)g(case)h Fl(L)c Fo(=)h Fn(I)1000
X1694 y Fg(n)1038 1687 y Fo(is)j(implemen)o(ted)h(in)f(routine)g
XFl(lsqr)p Fo(.)59 1784 y Fp(Examples:)130 1851 y Fo(Cho)q(ose)e
X(minimization)i(of)e(the)g(second)h(deriv)m(ativ)o(e)g(as)f(side)h
X(constrain)o(t,)f(p)q(erform)g(20)f(iterations)59 1908
Xy(of)h(the)h(\\preconditioned")h(LSQR)f(algorithm)g(with)g(no)f
X(reorthogonalization)h(including)i(computa-)59 1964 y(tion)e(of)g(the)h
X(\014lter)f(factors,)f(and)h(displa)o(y)i(the)e(\014lter)h(factors:)130
X2031 y Fl([L,W])e(=)i(get)p 364 2031 14 2 v 16 w(l)8
Xb(\(n,2\);)14 b(sm)h(=)g(gsvd)8 b(\(A,L\);)130 2098 y([X,rho,eta,F])14
Xb(=)i(plsqr)8 b(\(A,L,W,b,25,0,s\);)k(mesh)c(\(F\),)14
Xb(axis)8 b(\('ij'\))59 2195 y Fp(Algorithm:)130 2262
Xy Fl(plsqr)14 b Fo(is)f(an)h(implemen)o(tation)g(of)f(the)g(LSQR)i
X(algorithm)e([2])f(with)i(the)f(necessary)h(mo)q(di\014cations)59
X2319 y(for)h(\\preconditioning")h(describ)q(ed)i(in)e([2].)59
X2417 y Fp(See)h(also:)130 2483 y Fl(cgls)p Fo(,)e Fl(lsqr)p
XFo(,)g Fl(p)q(cgls)59 2581 y Fp(References:)115 2639
Xy Fo(1.)22 b(P)l(.)17 b(C.)f(Hansen,)i Fk(R)n(ank-De\014cient)g(and)g
X(Discr)n(ete)f(Il)r(l-Pose)n(d)g(Pr)n(oblems.)26 b(Numeric)n(al)18
Xb(Asp)n(e)n(cts)173 2696 y(of)e(Line)n(ar)f(Inversion,)f
XFo(SIAM,)h(Philadelphia,)j(1997.)115 2752 y(2.)k(C.)14
Xb(C.)g(P)o(aige)g(&)h(M.)f(A.)h(Saunders,)g Fk(LSQR:)f(an)i(algorithm)g
X(for)g(sp)n(arse)g(line)n(ar)e(e)n(quations)i(and)173
X2809 y(sp)n(arse)f(le)n(ast)h(squar)n(es)p Fo(,)e(A)o(CM)g(T)l(rans.)h
X(Math.)f(Soft)o(w)o(are)g Fp(8)h Fo(\(1982\),)e(43{71.)p
Xeop
X%%Page: 88 90
X88 89 bop 64 159 a Fo(88)1650 b Fl(pnu)p 64 178 1767
X2 v 59 304 a Fb(pnu)59 406 y Fp(Purp)q(ose:)130 473 y
XFo(\\Preconditioned")16 b(v)o(ersion)f(of)g(Brakhage's)f
XFn(\027)s Fo(-metho)q(d.)59 572 y Fp(Synopsis:)130 639
Xy Fl([X,rho,eta,F])g(=)i(pnu)8 b(\(A,L,W,b,k,nu,sm\))59
X737 y Fp(Description:)130 804 y Fo(P)o(erforms)16 b Fl(k)i
XFo(steps)g(of)f(the)h(\\preconditioned")h(v)o(ersion)f(of)f(Brakhage's)
Xg Fn(\027)s Fo(-metho)q(d)i(applied)g(to)59 861 y(the)c(system)795
X917 y(min)g Fm(k)p Fl(A)8 b Fp(x)i Fm(\000)g Fl(b)p Fm(k)1075
X924 y Fj(2)59 999 y Fo(with)20 b(\\preconditioner")h
XFl(L)543 977 y Fe(y)543 1013 y Fa(A)576 999 y Fo(\()p
XFl(L)619 977 y Fe(y)619 1013 y Fa(A)644 999 y Fo(\))662
X983 y Fg(T)709 999 y Fo(and)f(with)g(starting)f(v)o(ector)h
XFp(x)1254 1006 y Fj(0)1293 999 y Fo(\(2.30\).)32 b(Here,)21
Xb Fl(L)1607 977 y Fe(y)1607 1013 y Fa(A)1652 999 y Fo(is)f(the)g
XFl(A)p Fo(-)59 1056 y(w)o(eigh)o(ted)e(generalized)h(in)o(v)o(erse)f
X(of)f Fl(L)p Fo(.)f(Notice)i(that)f(the)h(matrix)f Fl(W)g
XFo(holding)i(a)e(basis)h(for)f(the)g(n)o(ull)59 1112
Xy(space)g(of)f Fl(L)h Fo(m)o(ust)f(also)h(b)q(e)g(sp)q(eci\014ed.)27
Xb(The)17 b(routine)g(returns)g(all)h Fl(k)f Fo(solutions,)g(stored)f
X(as)h(columns)59 1169 y(of)f(the)g(matrix)f Fl(X)p Fo(.)h(The)g
X(solution)h(seminorms)f(and)g(the)g(residual)i(norms)d(are)h(returned)g
X(in)h Fl(eta)f Fo(and)59 1225 y Fl(rho)p Fo(,)f(resp)q(ectiv)o(ely)l(.)
X130 1282 y(If)k Fl(nu)g Fo(is)h(not)e(sp)q(eci\014ed,)k
XFl(nu)e(=)f(.5)f Fo(is)h(the)g(default)h(v)m(alue)g(whic)o(h)f(giv)o
X(es)g(the)g(\\preconditioned")59 1338 y(v)o(ersion)c(of)g(the)h(Cheb)o
X(yc)o(hev)f(metho)q(d)h(of)e(Nemiro)o(vskii)j(and)e(P)o(oly)o(ak.)130
X1394 y(If)i(the)f Fn(c;)8 b(s)p Fo(-v)m(alues)18 b Fl(sm)e
XFo(of)g(the)h(GSVD)f(of)h(\()p Fl(A)p Fn(;)8 b Fl(L)p
XFo(\))15 b(are)h(also)h(pro)o(vided,)h(then)f Fl(pnu)h
XFo(computes)f(the)59 1451 y(\014lter)f(factors)e(asso)q(ciated)h(with)h
X(eac)o(h)f(step)g(and)h(stores)e(them)h(column)o(wise)i(in)f(the)f
X(arra)o(y)f Fl(F)p Fo(.)130 1507 y(A)h(simpler)h(v)o(ersion)g(of)f
XFl(pnu)h Fo(for)f(the)g(case)g Fl(L)d Fo(=)h Fn(I)979
X1514 y Fg(n)1018 1507 y Fo(is)j(implemen)o(ted)h(in)f(routine)f
XFl(nu)p Fo(.)59 1606 y Fp(Examples:)130 1673 y Fo(P)o(erform)20
Xb(50)h(iterations)g(of)g(the)h(\\preconditioned")g Fn(\027)s
XFo(-metho)q(d)h(with)e Fn(\027)26 b Fo(=)e Fn(:)p Fo(2)c(and)i(plot)g
X(the)59 1730 y(corresp)q(onding)16 b(L-curv)o(e:)130
X1797 y Fl([X,rho,eta])f(=)g(pnu)8 b(\(A,L,W,b,50,.2\);)13
Xb(plot)p 880 1797 14 2 v 17 w(lc)8 b(\(rho,eta,'o'\);)59
X1895 y Fp(Algorithm:)130 1962 y Fl(pnu)21 b Fo(is)f(a)f(straigh)o
X(tforw)o(ard)e(implemen)o(tation)k(of)e(the)h(algorithm)g(describ)q(ed)
Xh(in)f([1],)g(with)g(the)59 2019 y(necessary)g(mo)q(di\014cations)h
X(for)e(\\preconditioning")j(from)d([2].)33 b(The)20 b(iteration)g(con)o
X(v)o(erges)g(only)g(if)59 2079 y Fm(k)p Fl(A)8 b(L)145
X2057 y Fe(y)145 2094 y Fa(A)170 2079 y Fm(k)193 2086
Xy Fj(2)233 2079 y Fn(<)20 b Fo(1.)34 b(Therefore,)20
Xb Fl(A)g Fo(and)g Fl(b)h Fo(are)e(scaled)i(b)q(efore)f(the)g(iteration)
Xg(b)q(egins)h(with)f(a)g(scaling)59 2136 y(factor)c(giv)o(en)h(b)o(y)g
X(0)p Fn(:)p Fo(99)p Fn(=)p Fm(k)p Fn(B)r Fm(k)563 2143
Xy Fj(2)582 2136 y Fo(,)g(where)g Fn(B)j Fo(is)d(a)g(bidiagonal)h
X(matrix)f(obtained)g(from)g(a)f(few)h(steps)g(of)59 2197
Xy(the)c(Lanczos)h(bidiagonalization)h(pro)q(cess)e(applied)i(to)d
XFl(A)c(L)1086 2175 y Fe(y)1086 2211 y Fa(A)1124 2197
Xy Fo(with)14 b(starting)e(v)o(ector)g Fl(b)p Fo(.)20
Xb(Hence,)14 b Fm(k)p Fn(B)r Fm(k)1811 2204 y Fj(2)59
X2260 y Fo(is)i(a)f(go)q(o)q(d)g(appro)o(ximation)g(to)f
XFm(k)p Fl(A)8 b(L)698 2238 y Fe(y)698 2274 y Fa(A)723
X2260 y Fm(k)746 2267 y Fj(2)766 2260 y Fo(.)59 2359 y
XFp(See)17 b(also:)130 2426 y Fl(cgls)p Fo(,)e Fl(nu)p
XFo(,)g Fl(p)q(cgls)59 2524 y Fp(References:)115 2584
Xy Fo(1.)22 b(H.)d(Brakhage,)i Fk(On)e(il)r(l-p)n(ose)n(d)h(pr)n(oblems)
Xg(and)h(the)g(metho)n(d)g(of)g(c)n(onjugate)f(gr)n(adients)p
XFo(;)h(in)g(H.)173 2640 y(W.)15 b(Engl)h(&)h(G.)e(W.)g(Gro)q(etsc)o(h,)
Xg Fk(Inverse)h(and)h(Il)r(l-Pose)n(d)e(Pr)n(oblems)p
XFo(,)g(Academic)i(Press,)f(New)173 2697 y(Y)l(ork,)e(1987.)115
X2753 y(2.)22 b(P)l(.)17 b(C.)f(Hansen,)i Fk(R)n(ank-De\014cient)g(and)g
X(Discr)n(ete)f(Il)r(l-Pose)n(d)g(Pr)n(oblems.)26 b(Numeric)n(al)18
Xb(Asp)n(e)n(cts)173 2810 y(of)e(Line)n(ar)f(Inversion,)f
XFo(SIAM,)h(Philadelphia,)j(1997.)p eop
X%%Page: 89 91
X89 90 bop 59 159 a Fl(p)o(ythag)1594 b Fo(89)p 59 178
X1767 2 v 59 304 a Fb(p)n(ythag)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(Compute)15 b Fl(x)d Fo(=)408 437 y Fh(p)p 450
X437 137 2 v 38 x Fl(y)472 462 y Fj(2)501 475 y Fo(+)f
XFl(z)567 462 y Fj(2)586 475 y Fo(.)59 581 y Fp(Synopsis:)130
X650 y Fl(x)k(=)g(p)o(ythag)8 b(\(y)l(,z\))59 756 y Fp(Description:)130
X825 y Fl(p)o(ythag)15 b Fo(returns)g Fl(x)e Fo(=)511
X787 y Fh(p)p 553 787 V 38 x Fl(y)575 812 y Fj(2)604 825
Xy Fo(+)d Fl(z)669 812 y Fj(2)704 825 y Fo(but)15 b(is)h(careful)g(to)f
X(scale)g(to)g(a)o(v)o(oid)g(o)o(v)o(er\015o)o(w.)p eop
X%%Page: 90 92
X90 91 bop 64 159 a Fo(90)1561 b Fl(quasiopt)p 64 178
X1767 2 v 59 304 a Fb(quasiopt)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(Quasi-optimalit)o(y)16 b(criterion)g(for)f(c)o(ho)q(osing)h
X(the)f(regularization)h(parameter.)59 581 y Fp(Synopsis:)130
X650 y Fl([reg)p 205 650 14 2 v 16 w(min,Q,reg)p 410 650
XV 15 w(pa)o(ram])d(=)j(quasiopt)8 b(\(U,s,b,metho)q(d\))130
X719 y([reg)p 205 719 V 16 w(min,Q,reg)p 410 719 V 15
Xw(pa)o(ram])13 b(=)j(quasiopt)8 b(\(U,sm,b,metho)q(d\))16
Xb(,)60 b(sm)14 b(=)i([sigma,mu])59 825 y Fp(Description:)130
X894 y Fo(Plots)f(the)g(quasi-optimalit)o(y)h(function)g
XFl(Q)p Fo(,)g(cf.)e(\(2.64\),)f(for)i(the)g(follo)o(wing)h(metho)q(ds:)
X155 962 y Fl(metho)q(d)f(=)h('Tikh')49 b Fo(:)h(Tikhono)o(v)15
Xb(regularization)77 b(\(solid)16 b(line\))155 1018 y
XFl(metho)q(d)f(=)h('tsvd')59 b Fo(:)50 b(truncated)15
Xb(SVD)g(or)g(GSVD)50 b(\()p Fl(o)14 b Fo(mark)o(ers\))155
X1074 y Fl(metho)q(d)h(=)h('dsvd')52 b Fo(:)e(damp)q(ed)16
Xb(SVD)f(or)g(GSVD)84 b(\(dotted)14 b(line\))59 1140 y(If)e(no)g(metho)q
X(d)g(is)g(sp)q(eci\014ed,)i Fl('Tikh')e Fo(is)g(default.)20
Xb(Returns)12 b Fl(Q)g Fo(and)g(the)g(corresp)q(onding)h(regularization)
X59 1196 y(parameters)h(in)i Fl(reg)p 409 1196 V 16 w(pa)o(ram)p
XFo(.)130 1252 y(If)11 b(an)o(y)g(output)g(argumen)o(ts)g(are)g(sp)q
X(eci\014ed,)j(then)d(the)h(appro)o(ximate)f(minim)o(um)h(of)f
XFl(Q)h Fo(is)g(iden)o(ti\014ed)59 1309 y(and)j(the)h(corresp)q(onding)g
X(regularization)g(parameter)e Fl(reg)p 1085 1309 V 16
Xw(min)h Fo(is)h(returned.)59 1415 y Fp(Examples:)130
X1484 y Fo(Use)21 b(the)h(quasi-optimalit)o(y)h(criterion)g(to)e(\014nd)
Xh(the)g(optimal)g(regularization)g(parameter)f(for)59
X1541 y(Tikhono)o(v)15 b(regularization)h(in)h(general)e(form:)130
X1609 y Fl([A,b,x])g(=)h(sha)o(w)8 b(\(n\);)14 b(b)i(=)f(b)h(+)g
X(1e-3*randn)8 b(\(size\(b\)\);)14 b([U,s,V])h(=)h(svd)8
Xb(\(A\);)130 1678 y(lamb)q(da)p 272 1678 V 16 w(opt)16
Xb(=)f(quasiopt)8 b(\(U,s,b\);)59 1785 y Fp(Algorithm:)130
X1854 y Fo(F)l(or)k(Tikhono)o(v)g(regularization)i(and)f(damp)q(ed)g
X(SVD/GSVD,)f(200)g(logarithmically)i(distributed)59 1910
Xy(regularization)23 b(parameters)e(are)g(generated,)i(and)f
XFl(Q)g Fo(is)g(plotted)g(for)f(these)h(v)m(alues.)40
Xb(Then)23 b(the)59 1966 y(minimizer)16 b(of)d(the)g(quasi-optimalit)o
X(y)i(function)f(is)g(computed)g(via)f Fl(fmin)p Fo(,)g(using)h(the)g
X(minimizer)h(of)e Fl(Q)59 2023 y Fo(as)j(initial)i(guess.)23
Xb(F)l(or)15 b(truncated)h(SVD)g(and)g(GSVD,)g(the)g(quasi-optimalit)o
X(y)h(function)g(is)g(discrete)59 2079 y(and)g(simply)h(b)q(ecomes)f
XFl(Q)c Fo(=)g(\()p Fl(U)621 2063 y Fe(0)643 2079 y Fm(\003)d
XFl(b)p Fo(\))p Fn(:=)p Fl(s)16 b Fo(and)h Fl(Q)c Fo(=)g(\()p
XFl(U)1019 2063 y Fe(0)1041 2079 y Fm(\003)d Fl(b)p Fo(\))p
XFn(:=)p Fo(\()p Fl(sigma)p Fn(:=)p Fl(m)o(u)p Fo(\))n(,)16
Xb(resp)q(ectiv)o(ely)l(,)j(and)e(the)59 2136 y(minim)o(um)f(is)g
X(easily)g(found.)59 2242 y Fp(Limitations:)130 2311 y
XFo(The)d(metho)q(d)g(is)h(not)f(implemen)o(ted)i(for)d(MTSVD;)h(for)f
X(this)i(and)f(other)g(discrete)h(regularization)59 2367
Xy(metho)q(ds)h(use)h(the)f(relations)h Fl(Q)p Fo(\()p
XFn(k)q Fo(\))c(=)h Fm(k)p Fp(x)789 2374 y Fg(k)820 2367
Xy Fm(\000)e Fp(x)894 2374 y Fg(k)q Fe(\000)p Fj(1)960
X2367 y Fm(k)983 2374 y Fj(2)1017 2367 y Fo(and)16 b Fl(Q)p
XFo(\()p Fn(k)q Fo(\))c(=)h Fm(k)p Fn(L)8 b Fo(\()p Fp(x)1368
X2374 y Fg(k)1398 2367 y Fm(\000)j Fp(x)1472 2374 y Fg(k)q
XFe(\000)p Fj(1)1538 2367 y Fo(\))p Fm(k)1579 2374 y Fj(2)1598
X2367 y Fo(.)59 2474 y Fp(See)17 b(also:)130 2543 y Fl(gcv)p
XFo(,)d Fl(discrep)p Fo(,)i Fl(l)p 394 2543 V 16 w(curve)p
Xeop
X%%Page: 91 93
X91 92 bop 59 159 a Fl(regudemo)1536 b Fo(91)p 59 178
X1767 2 v 59 304 a Fb(regudemo)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(T)l(utorial)15 b(in)o(tro)q(duction)h(to)f Ff(Regulariza)m
X(tion)i(Tools)p Fo(.)59 581 y Fp(Synopsis:)130 650 y
XFl(regudemo)59 756 y Fp(Description:)130 825 y Fo(This)f(script)g(con)o
X(tains)g(all)g(the)g(Matlab)f(commands)h(used)g(in)g(the)g(T)l(utorial)
Xg(in)h(Section)f(3,)f(with)59 882 y(appropriate)g Fl(pause)i
XFo(statemen)o(ts)d(added.)59 988 y Fp(Diagnostics:)130
X1057 y Fo(The)h(user)h(ma)o(y)f(w)o(an)o(t)f(to)h(exp)q(erimen)o(t)h
X(with)g(other)f(seeds)h(for)f(the)h(random)f(n)o(um)o(b)q(er)h
X(generator)59 1113 y(in)g(the)f(b)q(eginning)j(of)c(the)i(script,)f(as)
Xg(w)o(ell)h(as)f(other)g(noise)h(lev)o(els.)p eop
X%%Page: 92 94
X92 93 bop 64 159 a Fo(92)1586 b Fl(regutm)p 64 178 1767
X2 v 59 304 a Fb(regutm)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Generates)14 b(random)h(test)g(matrices)g(for)g(regularization)h
X(metho)q(ds.)59 581 y Fp(Synopsis:)130 650 y Fl([A,U,V])f(=)h(regutm)8
Xb(\(m,n,s\))59 756 y Fp(Description:)130 825 y Fo(Generates)15
Xb(a)h(random)g Fl(m)10 b Fm(\002)h Fl(n)16 b Fo(matrix)g
XFl(A)h Fo(suc)o(h)f(that)g Fl(A)8 b(A)1149 809 y Fg(T)1192
X825 y Fo(and)17 b Fl(A)1312 809 y Fg(T)1339 825 y Fl(A)g
XFo(are)f(oscillating.)24 b(Hence,)59 882 y(in)16 b(the)f(SVD)h(of)e
XFl(A)p Fo(,)765 938 y Fl(A)f Fo(=)g Fl(U)8 b Fo(diag\()p
XFl(s)p Fo(\))g Fl(V)1070 919 y Fg(T)1112 938 y Fn(;)59
X1021 y Fo(the)15 b(n)o(um)o(b)q(er)h(of)f(sign)g(c)o(hanges)h(in)g(the)
Xf(column)h(v)o(ectors)e Fl(U)p Fo(\(:)8 b Fn(;)g(i)p
XFo(\))13 b(and)j Fl(V)q Fo(\(:)8 b Fn(;)g(i)p Fo(\))k(is)k(exactly)f
XFn(i)10 b Fm(\000)h Fo(1.)130 1078 y(The)22 b(third)g(argumen)o(t)f
XFl(s)h Fo(sp)q(eci\014es)h(the)f(singular)h(v)m(alues)g(of)e
XFl(A)p Fo(.)40 b(If)22 b(not)f(presen)o(t,)i(then)f Fl(s)g(=)59
X1134 y(logspace\(0,round\(log10\(eps\)\),n\))p Fo(.)59
X1241 y Fp(Algorithm:)130 1310 y Fo(If)f Fl(m)g Fo(=)h
XFl(n)g Fo(then)f Fl(U)g Fo(and)g Fl(V)h Fo(are)e(computed)i(as)e(the)h
X(left)g(and)g(righ)o(t)g(singular)h(matrices)f(of)f(a)59
X1366 y(random)14 b(bidiagonal)i Fl(n)9 b Fm(\002)g Fl(n)15
Xb Fo(matrix)g(with)f(nonnegativ)o(e)h(elemen)o(ts.)21
Xb(If)14 b Fl(m)e Fm(6)p Fo(=)h Fl(n)i Fo(then)g Fl(V)g
XFo(is)g(computed)59 1422 y(as)f(ab)q(o)o(v)o(e,)f(and)i
XFl(U)f Fo(is)g(computed)h(analogously)f(via)h(a)e(random)h
XFl(m)7 b Fm(\002)h Fl(m)14 b Fo(bidiagonal)h(matrix.)k(Finally)l(,)59
X1479 y Fl(A)d Fo(is)f(computed)h(as)f Fl(A)e Fo(=)g Fl(U)8
Xb Fo(diag\()p Fl(s)p Fo(\))g Fl(V)721 1462 y Fg(T)747
X1479 y Fo(.)59 1585 y Fp(See)17 b(also:)130 1654 y Fo(The)e(test)g
X(problem)h(routines.)59 1760 y Fp(References:)115 1831
Xy Fo(1.)22 b(P)l(.)17 b(C.)g(Hansen,)i Fk(T)m(est)e(matric)n(es)h(for)h
X(r)n(e)n(gularization)f(metho)n(ds)p Fo(,)g(SIAM)g(J.)g(Sci.)g(Comput.)
Xf Fp(16)173 1888 y Fo(\(1995\),)c(506{512.)p eop
X%%Page: 93 95
X93 94 bop 59 159 a Fl(sha)o(w)1629 b Fo(93)p 59 178 1767
X2 v 59 304 a Fb(sha)n(w)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(T)l(est)15 b(problem:)20 b(one-dimensional)e(image)d(restoration)f
X(mo)q(del.)59 581 y Fp(Synopsis:)130 650 y Fl([A,b,x])h(=)h(sha)o(w)8
Xb(\(n\))59 756 y Fp(Description:)130 825 y Fo(Discretization)16
Xb(of)f(a)g(F)l(redholm)h(in)o(tegral)g(equation)f(of)g(the)h(\014rst)f
X(kind)h(\(2.1\))e(with)i([)p Fm(\000)p Fn(\031)r(=)p
XFo(2)p Fn(;)8 b(\031)r(=)p Fo(2])59 882 y(as)21 b(b)q(oth)g(in)o
X(tegration)g(in)o(terv)m(als.)38 b(The)21 b(in)o(tegral)g(equation)h
X(is)f(a)g(one-dimensional)i(mo)q(del)f(of)f(an)59 938
Xy(image)15 b(reconstruction)h(problem)g(from)e([1].)19
Xb(The)c(k)o(ernel)h Fn(K)i Fo(and)e(the)f(solution)h
XFn(f)k Fo(are)15 b(giv)o(en)h(b)o(y)357 1072 y Fn(K)s
XFo(\()p Fn(s;)8 b(t)p Fo(\))40 b(=)i(\(cos\()p Fn(s)p
XFo(\))10 b(+)g(cos\()p Fn(t)p Fo(\)\))931 1051 y Fj(2)959
X1013 y Fh(\022)994 1042 y Fo(sin)q(\()p Fn(u)p Fo(\))p
X994 1062 118 2 v 1040 1103 a Fn(u)1116 1013 y Fh(\023)1147
X1021 y Fj(2)466 1161 y Fn(u)41 b Fo(=)h Fn(\031)17 b
XFo(\(sin)q(\()p Fn(s)p Fo(\))9 b(+)i(sin)q(\()p Fn(t)p
XFo(\)\))413 1238 y Fn(f)5 b Fo(\()p Fn(t)p Fo(\))41 b(=)h
XFn(a)634 1245 y Fj(1)669 1238 y Fo(exp)746 1191 y Fh(\020)771
X1238 y Fm(\000)p Fn(c)826 1245 y Fj(1)846 1238 y Fo(\()p
XFn(t)10 b Fm(\000)g Fn(t)951 1245 y Fj(1)972 1238 y Fo(\))990
X1219 y Fj(2)1009 1191 y Fh(\021)1044 1238 y Fo(+)g Fn(a)1113
X1245 y Fj(2)1148 1238 y Fo(exp)1225 1191 y Fh(\020)1250
X1238 y Fm(\000)p Fn(c)1305 1245 y Fj(2)1325 1238 y Fo(\()p
XFn(t)g Fm(\000)g Fn(t)1430 1245 y Fj(2)1451 1238 y Fo(\))1469
X1219 y Fj(2)1488 1191 y Fh(\021)1520 1238 y Fn(:)59 1346
Xy Fo(The)17 b(k)o(ernel)g Fn(K)i Fo(is)e(the)g(p)q(oin)o(t)g(spread)f
X(function)i(for)d(an)i(in\014nitely)i(long)e(slit.)24
Xb(The)17 b(parameters)e Fn(a)1798 1353 y Fj(1)1818 1346
Xy Fo(,)59 1402 y Fn(a)83 1409 y Fj(2)103 1402 y Fo(,)g(etc.,)f(are)h
X(constan)o(ts)f(that)h(determine)h(the)f(shap)q(e)h(of)f(the)g
X(solution)h Fn(f)5 b Fo(;)15 b(in)h(this)f(implemen)o(tation)59
X1458 y(w)o(e)i(use)h Fn(a)233 1465 y Fj(1)269 1458 y
XFo(=)f(2,)h Fn(a)399 1465 y Fj(2)435 1458 y Fo(=)f(1,)g
XFn(c)560 1465 y Fj(1)596 1458 y Fo(=)g(6,)g Fn(c)721
X1465 y Fj(2)757 1458 y Fo(=)g(2,)g Fn(t)878 1465 y Fj(1)915
X1458 y Fo(=)f Fn(:)p Fo(8,)h Fn(t)1048 1465 y Fj(2)1085
X1458 y Fo(=)g Fm(\000)p Fn(:)p Fo(5)g(giving)h(an)g Fn(f)k
XFo(with)c(t)o(w)o(o)e(di\013eren)o(t)59 1515 y(\\h)o(umps".)130
X1571 y(The)21 b(k)o(ernel)i(and)e(the)h(solution)g(are)f(discretized)j
X(b)o(y)d(simple)i(collo)q(cation)g(with)f Fl(n)f Fo(p)q(oin)o(ts)h(to)
X59 1628 y(pro)q(duce)16 b Fl(A)g Fo(and)f Fl(x)p Fo(.)20
Xb(Then)15 b(the)h(discrete)g(righ)o(t-hand)f(side)i(is)e(pro)q(duced)i
X(as)d Fl(b)g Fo(=)f Fl(A)8 b(x)o Fo(.)59 1734 y Fp(Limitations:)130
X1803 y Fo(The)15 b(order)g Fl(n)h Fo(m)o(ust)e(b)q(e)i(ev)o(en.)59
X1909 y Fp(Reference:)115 1980 y Fo(1.)22 b(C.)g(B.)g(Sha)o(w,)i(Jr.,)g
XFk(Impr)n(ovements)e(of)h(the)g(r)n(esolution)g(of)g(an)g(instrument)f
X(by)h(numeric)n(al)173 2037 y(solution)16 b(of)g(an)g(inte)n(gr)n(al)f
X(e)n(quation)p Fo(,)g(J.)g(Math.)f(Anal.)i(Appl.)g Fp(37)f
XFo(\(1972\),)e(83{112.)531 2148 y
X 13229897 10255738 5262540 26773176 34995896 49731010 startTexFig
X 531 2148 a
X%%BeginDocument: testfigs/shaw.eps
X
X% MathWorks dictionary
X/mathworks 50 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/xdef {exch def} bdef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot {gsave} bdef
X/eplot {grestore} bdef
X
X% bounding box in default coordinates
X/dx 0 def
X/dy 0 def
X/sides {/dx urx llx sub def /dy ury lly sub def} bdef
X/llx 0 def
X/lly 0 def
X/urx 0 def
X/ury 0 def
X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef
X
X% orientation switch
X/por true def
X/portrait {/por true def} bdef
X/landscape {/por false def} bdef
X
X% coordinate system mappings
X/px 8.5 72 mul def
X/py 11.0 72 mul def
X/port {dx py div dy px div scale} bdef
X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef
X/csm {llx lly translate por {port} {land} ifelse} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { []        0 setdash } bdef
X/DO { [0 4]     0 setdash } bdef
X/DA { [4]       0 setdash } bdef
X/DD { [0 4 3 4] 0 setdash } bdef
X
X% macros for moveto and polyline
X/M {moveto}  bdef
X/L {{lineto} repeat stroke} bdef
X
X% font control
X/font_spec () def
X/lfont currentfont def
X/sfont currentfont def
X/selfont {/font_spec xdef} bdef
X/savefont {font_spec findfont exch scalefont def} bdef
X/LF {lfont setfont} bdef
X/SF {sfont setfont} bdef
X
X% text display
X/sh {show} bdef
X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef
X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef
X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef
X
Xcurrentdict end def %dictionary
X
Xmathworks begin
X
X% fonts for text, standard numbers and exponents
X/Times-Roman selfont
X/lfont 30 savefont
X/sfont 21 savefont
X
X%line width, line cap, and joint spec
X.5 setlinewidth 1 setlinecap 1 setlinejoin
X
Xend
X
Xmathworks begin
Xbpage
X
Xbplot
X80 407 532 756 bbox portrait csm
X
XSO
X 78.09  77.33 757.00  77.33 757.00 570.67  78.09 570.67  78.09  77.33 M 4 L
XLF
X 73.09  71.33 M (0) rsh
X 78.09 176.00  84.83 176.00 M 1 L
X750.27 176.00 757.00 176.00 M 1 L
X 73.09 170.00 M (0.5) rsh
X 78.09 274.67  84.83 274.67 M 1 L
X750.27 274.67 757.00 274.67 M 1 L
X 73.09 268.67 M (1) rsh
X 78.09 373.33  84.83 373.33 M 1 L
X750.27 373.33 757.00 373.33 M 1 L
X 73.09 367.33 M (1.5) rsh
X 78.09 472.00  84.83 472.00 M 1 L
X750.27 472.00 757.00 472.00 M 1 L
X 73.09 466.00 M (2) rsh
X 73.09 564.67 M (2.5) rsh
X 78.09  55.33 M (0) csh
X145.98  77.33 145.98  82.53 M 1 L
X145.98 565.47 145.98 570.67 M 1 L
X145.98  55.33 M (10) csh
X213.87  77.33 213.87  82.53 M 1 L
X213.87 565.47 213.87 570.67 M 1 L
X213.87  55.33 M (20) csh
X281.77  77.33 281.77  82.53 M 1 L
X281.77 565.47 281.77 570.67 M 1 L
X281.77  55.33 M (30) csh
X349.66  77.33 349.66  82.53 M 1 L
X349.66 565.47 349.66 570.67 M 1 L
X349.66  55.33 M (40) csh
X417.55  77.33 417.55  82.53 M 1 L
X417.55 565.47 417.55 570.67 M 1 L
X417.55  55.33 M (50) csh
X485.44  77.33 485.44  82.53 M 1 L
X485.44 565.47 485.44 570.67 M 1 L
X485.44  55.33 M (60) csh
X553.33  77.33 553.33  82.53 M 1 L
X553.33 565.47 553.33 570.67 M 1 L
X553.33  55.33 M (70) csh
X621.22  77.33 621.22  82.53 M 1 L
X621.22 565.47 621.22 570.67 M 1 L
X621.22  55.33 M (80) csh
X689.11  77.33 689.11  82.53 M 1 L
X689.11 565.47 689.11 570.67 M 1 L
X689.11  55.33 M (90) csh
X757.00  55.33 M (100) csh
X 84.88  98.63  91.67 101.60  98.46 104.87 105.25 108.47 112.04 112.40 
X118.83 116.66 125.62 121.28 132.41 126.24 139.20 131.54 145.98 137.18 
X152.77 143.15 159.56 149.43 166.35 156.00 173.14 162.83 179.93 169.89 
X186.72 177.13 193.51 184.51 200.30 191.99 207.09 199.51 213.87 207.01 
X220.66 214.42 227.45 221.69 234.24 228.74 241.03 235.52 247.82 241.94 
X254.61 247.95 261.40 253.48 268.19 258.48 274.98 262.89 281.77 266.65 
X288.55 269.73 295.34 272.09 302.13 273.70 308.92 274.54 315.71 274.62 
X322.50 273.92 329.29 272.46 336.08 270.25 342.87 267.34 349.66 263.75 
X356.45 259.55 363.23 254.79 370.02 249.55 376.81 243.92 383.60 237.98 
X390.39 231.85 397.18 225.64 403.97 219.51 410.76 213.59 417.55 208.06 
X424.34 203.11 431.12 198.93 437.91 195.74 444.70 193.77 451.49 193.24 
X458.28 194.39 465.07 197.43 471.86 202.57 478.65 209.96 485.44 219.72 
X492.23 231.89 499.02 246.45 505.80 263.28 512.59 282.16 519.38 302.77 
X526.17 324.67 532.96 347.34 539.75 370.18 546.54 392.51 553.33 413.62 
X560.12 432.80 566.91 449.37 573.70 462.70 580.48 472.27 587.27 477.68 
X594.06 478.68 600.85 475.17 607.64 467.22 614.43 455.07 621.22 439.09 
X628.01 419.79 634.80 397.76 641.59 373.67 648.37 348.19 655.16 322.02 
X661.95 295.79 668.74 270.09 675.53 245.42 682.32 222.20 689.11 200.71 
X695.90 181.18 702.69 163.72 709.48 148.34 716.27 135.02 723.05 123.65 
X729.84 114.08 736.63 106.15 743.42  99.66 750.21  94.43 757.00  90.27 
XM 99 L
Xeplot
X
Xepage
Xend
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 94 96
X94 95 bop 64 159 a Fo(94)1610 b Fl(spik)o(es)p 64 178
X1767 2 v 59 304 a Fb(spik)n(es)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(T)l(est)15 b(problem)h(with)f(a)g(\\spiky")g(solution.)59
X581 y Fp(Synopsis:)130 650 y Fl([A,b,x])g(=)h(spik)o(es)8
Xb(\(n,t)p 512 650 14 2 v 17 w(max\))59 756 y Fp(Description:)130
X825 y Fo(Arti\014cially)21 b(generated)e(discrete)h(ill-p)q(osed)i
X(problem.)32 b(The)20 b(size)g(of)e(the)i(matrix)e Fl(A)i
XFo(is)f Fl(n)14 b Fm(\002)f Fl(n)p Fo(.)59 882 y(The)k(solution)g
XFl(x)g Fo(consists)g(of)f(a)h(unit)g(step)g(at)f Fn(t)f
XFo(=)h Fn(:)p Fo(5,)g(and)h(a)f(pulse)i(train)f(of)f(spik)o(es)i(of)e
X(decreasing)59 938 y(amplitude)22 b(at)d Fn(t)j Fo(=)f
XFn(:)p Fo(5)p Fn(;)14 b Fo(1)p Fn(:)p Fo(5)p Fn(;)g Fo(2)p
XFn(:)p Fo(5)p Fn(;)8 b(:)g(:)g(:)17 b Fo(The)j(parameter)f
XFl(t)p 1073 938 V 17 w(max)g Fo(con)o(trols)h(the)g(length)h(of)f(the)g
X(pulse)59 994 y(train)15 b(\(i.e.,)f(the)g(time)h(unit)g(of)g
XFl(x)f Fo(is)h Fl(t)p 699 994 V 17 w(max)o Fn(=)p Fl(n)p
XFo(\);)f Fl(t)p 902 994 V 17 w(max)f Fo(is)i(optional,)g(and)g(its)g
X(default)g(is)g(5)f(giving)i(\014v)o(e)59 1051 y(spik)o(es.)531
X1110 y
X 14432612 11188078 5262540 26773176 34995896 49731010 startTexFig
X 531 1110 a
X%%BeginDocument: testfigs/spikes.eps
X
X% MathWorks dictionary
X/mathworks 50 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/xdef {exch def} bdef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot {gsave} bdef
X/eplot {grestore} bdef
X
X% bounding box in default coordinates
X/dx 0 def
X/dy 0 def
X/sides {/dx urx llx sub def /dy ury lly sub def} bdef
X/llx 0 def
X/lly 0 def
X/urx 0 def
X/ury 0 def
X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef
X
X% orientation switch
X/por true def
X/portrait {/por true def} bdef
X/landscape {/por false def} bdef
X
X% coordinate system mappings
X/px 8.5 72 mul def
X/py 11.0 72 mul def
X/port {dx py div dy px div scale} bdef
X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef
X/csm {llx lly translate por {port} {land} ifelse} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { []        0 setdash } bdef
X/DO { [0 4]     0 setdash } bdef
X/DA { [4]       0 setdash } bdef
X/DD { [0 4 3 4] 0 setdash } bdef
X
X% macros for moveto and polyline
X/M {moveto}  bdef
X/L {{lineto} repeat stroke} bdef
X
X% font control
X/font_spec () def
X/lfont currentfont def
X/sfont currentfont def
X/selfont {/font_spec xdef} bdef
X/savefont {font_spec findfont exch scalefont def} bdef
X/LF {lfont setfont} bdef
X/SF {sfont setfont} bdef
X
X% text display
X/sh {show} bdef
X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef
X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef
X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef
X
Xcurrentdict end def %dictionary
X
Xmathworks begin
X
X% fonts for text, standard numbers and exponents
X/Times-Roman selfont
X/lfont 30 savefont
X/sfont 21 savefont
X
X%line width, line cap, and joint spec
X.5 setlinewidth 1 setlinecap 1 setlinejoin
X
Xend
X
Xmathworks begin
Xbpage
X
Xbplot
X80 407 532 756 bbox portrait csm
X
XSO
X 78.09  77.33 757.00  77.33 757.00 570.67  78.09 570.67  78.09  77.33 M 4 L
XLF
X 73.09  71.33 M (0) rsh
X 78.09 176.00  84.83 176.00 M 1 L
X750.27 176.00 757.00 176.00 M 1 L
X 73.09 170.00 M (5) rsh
X 78.09 274.67  84.83 274.67 M 1 L
X750.27 274.67 757.00 274.67 M 1 L
X 73.09 268.67 M (10) rsh
X 78.09 373.33  84.83 373.33 M 1 L
X750.27 373.33 757.00 373.33 M 1 L
X 73.09 367.33 M (15) rsh
X 78.09 472.00  84.83 472.00 M 1 L
X750.27 472.00 757.00 472.00 M 1 L
X 73.09 466.00 M (20) rsh
X 73.09 564.67 M (25) rsh
X 78.09  55.33 M (0) csh
X145.98  77.33 145.98  82.53 M 1 L
X145.98 565.47 145.98 570.67 M 1 L
X145.98  55.33 M (10) csh
X213.87  77.33 213.87  82.53 M 1 L
X213.87 565.47 213.87 570.67 M 1 L
X213.87  55.33 M (20) csh
X281.77  77.33 281.77  82.53 M 1 L
X281.77 565.47 281.77 570.67 M 1 L
X281.77  55.33 M (30) csh
X349.66  77.33 349.66  82.53 M 1 L
X349.66 565.47 349.66 570.67 M 1 L
X349.66  55.33 M (40) csh
X417.55  77.33 417.55  82.53 M 1 L
X417.55 565.47 417.55 570.67 M 1 L
X417.55  55.33 M (50) csh
X485.44  77.33 485.44  82.53 M 1 L
X485.44 565.47 485.44 570.67 M 1 L
X485.44  55.33 M (60) csh
X553.33  77.33 553.33  82.53 M 1 L
X553.33 565.47 553.33 570.67 M 1 L
X553.33  55.33 M (70) csh
X621.22  77.33 621.22  82.53 M 1 L
X621.22 565.47 621.22 570.67 M 1 L
X621.22  55.33 M (80) csh
X689.11  77.33 689.11  82.53 M 1 L
X689.11 565.47 689.11 570.67 M 1 L
X689.11  55.33 M (90) csh
X757.00  55.33 M (100) csh
X 84.88  77.33  91.67  77.33  98.46  77.33 105.25  77.33 112.04  77.33 
X118.83  77.33 125.62  77.33 132.41  77.33 139.20  77.33 145.98 570.67 
X152.77  97.06 159.56  97.06 166.35  97.06 173.14  97.06 179.93  97.06 
X186.72  97.06 193.51  97.06 200.30  97.06 207.09  97.06 213.87  97.06 
X220.66  97.06 227.45  97.06 234.24  97.06 241.03  97.06 247.82  97.06 
X254.61  97.06 261.40  97.06 268.19  97.06 274.98  97.06 281.77 254.93 
X288.55  97.06 295.34  97.06 302.13  97.06 308.92  97.06 315.71  97.06 
X322.50  97.06 329.29  97.06 336.08  97.06 342.87  97.06 349.66  97.06 
X356.45  97.06 363.23  97.06 370.02  97.06 376.81  97.06 383.60  97.06 
X390.39  97.06 397.18  97.06 403.97  97.06 410.76  97.06 417.55 176.00 
X424.34  97.06 431.12  97.06 437.91  97.06 444.70  97.06 451.49  97.06 
X458.28  97.06 465.07  97.06 471.86  97.06 478.65  97.06 485.44  97.06 
X492.23  97.06 499.02  97.06 505.80  97.06 512.59  97.06 519.38  97.06 
X526.17  97.06 532.96  97.06 539.75  97.06 546.54  97.06 553.33 156.27 
X560.12  97.06 566.91  97.06 573.70  97.06 580.48  97.06 587.27  97.06 
X594.06  97.06 600.85  97.06 607.64  97.06 614.43  97.06 621.22  97.06 
X628.01  97.06 634.80  97.06 641.59  97.06 648.37  97.06 655.16  97.06 
X661.95  97.06 668.74  97.06 675.53  97.06 682.32  97.06 689.11 136.53 
X695.90  97.06 702.69  97.06 709.48  97.06 716.27  97.06 723.05  97.06 
X729.84  97.06 736.63  97.06 743.42  97.06 750.21  97.06 757.00  97.06 
XM 99 L
Xeplot
X
Xepage
Xend
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 95 97
X95 96 bop 59 159 a Fl(spleval)1596 b Fo(95)p 59 178 1767
X2 v 59 304 a Fb(spleval)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Ev)m(aluation)16 b(of)f(a)f(spline)j(or)e(spline)i(curv)o(e.)59
X581 y Fp(Synopsis:)130 650 y Fl(p)q(oints)f(=)g(spleval)8
Xb(\(f)s(\))59 756 y Fp(Description:)130 825 y Fo(Computes)13
Xb(p)q(oin)o(ts)g(on)g(the)h(giv)o(en)g(spline)h(or)d(spline)k(curv)o(e)
Xd Fl(f)g Fo(b)q(et)o(w)o(een)h(its)f(extreme)g(breaks.)19
Xb(The)59 882 y(represen)o(tation)g Fl(f)f Fo(for)h(the)f(spline)j(is)e
X(assumed)g(to)f(b)q(e)i(consisten)o(t)f(with)g(that)f(used)h(in)h(the)e
X(Spline)59 938 y(T)l(o)q(olb)q(o)o(x)e([1].)i(Routine)f
XFl(spleval)e Fo(is)h(used)g(in)g Fl(l)p 845 938 14 2
Xv 16 w(co)o(rner)f Fo(only)l(.)59 1044 y Fp(Algorithm:)130
X1113 y Fo(Original)f(routine)g Fl(fnplt)g Fo(from)e(de)h(Bo)q(or's)f
X(Spline)j(T)l(o)q(olb)q(o)o(x;)f(mo)q(di\014ed)g(b)o(y)f(P)l(.)g(C.)f
X(Hansen)i(to)e(skip)59 1170 y(the)j(plot.)20 b(The)c(n)o(um)o(b)q(er)f
X(of)g(p)q(oin)o(ts)h(is)g(set)e(b)o(y)i Fl(np)q(oints)h
XFo(inside)g Fl(spleval)p Fo(;)e(curren)o(tly)l(,)h Fl(np)q(oints)h
XFo(=)f(300.)59 1276 y Fp(References:)115 1347 y Fo(1.)22
Xb(C.)14 b(de)i(Bo)q(or,)e Fk(Spline)h(T)m(o)n(olb)n(ox)p
XFo(,)f(V)l(ersion)i(1.1,)e(The)h(Math)o(w)o(orks,)e(MA,)i(1992.)p
Xeop
X%%Page: 96 98
X96 97 bop 64 159 a Fo(96)1560 b Fl(std)p 1729 159 14
X2 v 18 w(fo)o(rm)p 64 178 1767 2 v 59 304 a Fb(std)p
X136 304 18 2 v 22 w(fo)n(rm)59 406 y Fp(Purp)q(ose:)130
X474 y Fo(T)l(ransform)14 b(a)h(general-form)g(regularization)h(problem)
Xg(in)o(to)f(one)g(in)h(standard)f(form.)59 579 y Fp(Synopsis:)155
X643 y Fl([A)p 201 643 14 2 v 16 w(s,b)p 270 643 V 17
Xw(s,L)p 342 643 V 16 w(p,K,M])g(=)g(std)p 613 643 V 18
Xw(fo)o(rm)8 b(\(A,L,)o(b\))124 b Fo(\(metho)q(d)15 b(1\))155
X700 y Fl([A)p 201 700 V 16 w(s,b)p 270 700 V 17 w(s,L)p
X342 700 V 16 w(p,x)p 415 700 V 17 w(0])g(=)g(std)p 589
X700 V 18 w(fo)o(rm)8 b(\(A,L,)o(b,W\))92 b Fo(\(metho)q(d)15
Xb(2\))59 801 y Fp(Description:)130 869 y Fo(T)l(ransforms)f(a)h
X(regularization)h(problem)g(in)g(general)f(form)650 974
Xy(min)741 927 y Fh(n)768 974 y Fm(k)p Fl(A)8 b Fp(x)i
XFm(\000)g Fl(b)p Fm(k)958 955 y Fj(2)958 985 y(2)988
X974 y Fo(+)h Fn(\025)1061 955 y Fj(2)1087 974 y Fm(k)p
XFl(L)d Fp(x)p Fm(k)1194 955 y Fj(2)1194 985 y(2)1212
X927 y Fh(o)59 1079 y Fo(in)o(to)15 b(one)h(in)g(standard)e(form)596
X1178 y(min)687 1131 y Fh(n)715 1178 y Fm(k)p Fl(A)p 771
X1178 V 16 w(s)8 b Fp(x)837 1185 y Fg(s)865 1178 y Fm(\000)j
XFl(b)p 937 1178 V 16 w(s)q Fm(k)991 1159 y Fj(2)991 1189
Xy(2)1020 1178 y Fo(+)g Fn(\025)1093 1159 y Fj(2)1120
X1178 y Fm(k)p Fp(x)1171 1185 y Fg(s)1188 1178 y Fm(k)1211
X1159 y Fj(2)1211 1189 y(2)1231 1131 y Fh(o)1281 1178
Xy Fn(:)59 1283 y Fo(Tw)o(o)i(metho)q(ds)g(are)h(a)o(v)m(ailable,)h(and)
Xe(the)h(distinction)h(b)q(et)o(w)o(een)f(them)g(is)g(con)o(trolled)g(b)
Xo(y)g(the)f(n)o(um)o(b)q(er)59 1339 y(of)i(input)h(parameters)e(to)h
XFl(std)p 582 1339 V 18 w(fo)o(rm)p Fo(.)130 1396 y(In)j(metho)q(d)f(1,)
Xh(describ)q(ed)h(in)f([1],)f Fl(A)p 780 1396 V 17 w(s)p
XFo(,)h Fl(L)p 870 1396 V 16 w(p)p Fo(,)g Fl(K)p Fo(,)e
XFl(M)p Fo(,)h(and)h Fl(b)p 1185 1396 V 17 w(s)g Fo(are)f(computed)h(b)o
X(y)f(Eqs.)g(\(2.22\){)59 1452 y(\(2.24\).)h(In)e(particular,)f
XFl(L)p 515 1452 V 16 w(p)h Fo(is)f(the)g(pseudoin)o(v)o(erse)h(of)f
XFl(L)p Fo(,)f Fl(K)e Fo(=)h Fn(K)1212 1459 y Fg(o)1246
X1452 y Fo(has)i(columns)h(in)g(the)f(n)o(ull)h(space)59
X1509 y(of)e Fl(L)p Fo(,)f(and)h Fl(M)f Fo(=)g Fn(T)382
X1492 y Fe(\000)p Fj(1)376 1520 y Fg(o)429 1509 y Fn(H)471
X1492 y Fg(T)467 1520 y(o)498 1509 y Fo(.)19 b(Then)c(the)f
X(transformation)f(bac)o(k)h(to)f(the)h(original)i(general-form)e
X(setting)59 1565 y(is)i(giv)o(en)f(b)o(y)616 1622 y Fl(x)e
XFo(=)g Fl(L)p 726 1622 V 16 w(p)8 b(x)p 794 1622 V 16
Xw(s)j Fo(+)f Fl(K)e(M)g Fo(\()p Fl(b)h Fm(\000)h Fl(A)e(L)p
X1129 1622 V 16 w(p)g(x)p 1197 1622 V 17 w(s)p Fo(\))15
Xb Fn(:)130 1704 y Fo(In)20 b(metho)q(d)g(2,)h(describ)q(ed)g(in)g
X([2,3,4],)d(a)i(matrix)f Fl(W)h Fo(holding)i(a)d(basis)h(for)g(the)g(n)
Xo(ull)h(space)f(of)59 1760 y Fl(L)e Fo(is)g(also)h(required,)g(and)g
XFl(A)p 564 1760 V 16 w(s)p Fo(,)g Fl(L)p 654 1760 V 16
Xw(p)p Fo(,)g Fl(b)p 748 1760 V 17 w(s)p Fo(,)g(and)f
XFl(x)p 926 1760 V 17 w(0)f Fo(are)h(computed)h(b)o(y)f(Eqs.)g
X(\(2.29\){\(2.3)o(1\).)25 b(Here)59 1817 y Fl(L)p 87
X1817 V 16 w(p)18 b Fo(is)g(the)g Fl(A)p Fo(-w)o(eigh)o(ted)g
X(generalized)i(in)o(v)o(erse)e(of)f Fl(L)p Fo(,)g(and)h
XFl(x)p 1122 1817 V 16 w(0)f Fo(is)h(the)g(comp)q(onen)o(t)g(of)f(the)h
X(solution)59 1873 y(in)g(the)g(n)o(ull)h(space)f(of)f
XFl(L)g Fo(\(whic)o(h,)h(in)g(this)g(metho)q(d,)g(is)g(indep)q(enden)o
X(t)i(of)d Fp(x)1387 1880 y Fg(s)1405 1873 y Fo(\).)27
Xb(F)l(or)16 b(metho)q(d)i(2,)g(the)59 1930 y(tranformation)c(bac)o(k)h
X(to)g(the)g(general-form)g(setting)g(is)h(simply)752
X2029 y Fl(x)p 776 2029 V 16 w(s)d Fo(=)g Fl(L)p 895 2029
XV 16 w(p)8 b(x)p 963 2029 V 17 w(s)i Fo(+)h Fl(x)p 1074
X2029 V 16 w(0)k Fn(:)130 2129 y Fo(The)23 b(transformations)f(bac)o(k)h
X(to)f(general)i(form)f(can)g(b)q(e)h(p)q(erformed)f(b)o(y)g(means)g(of)
Xg(routine)59 2185 y Fl(gen)p 128 2185 V 17 w(fo)o(rm)p
XFo(.)130 2242 y(Notice)18 b(that)g(b)q(oth)h Fl(gen)p
X557 2242 V 16 w(fo)o(rm)e Fo(and)h Fl(std)p 826 2242
XV 18 w(fo)o(rm)e Fo(are)j(a)o(v)m(ailable)h(for)d(p)q(edagogical)j
X(reasons)e(only|)59 2298 y(usually)f(it)f(is)h(more)e(e\016cien)o(t)i
X(to)e(build)i(the)f(transformations)f(in)o(to)h(the)f(solution)i(pro)q
X(cess,)f(suc)o(h)g(as)59 2354 y(in)g(the)f(iterativ)o(e)h(metho)q(ds)f
XFl(p)q(cgls)p Fo(,)h Fl(plsqr)p Fo(,)f(and)h Fl(pnu)p
XFo(.)59 2459 y Fp(Examples:)130 2527 y Fo(T)l(ransform)9
Xb(a)h(general-form)g(problem)h(in)o(to)g(standard)e(form,)i(pro)q(duce)
Xg(10)f(TSVD)g(solutions,)h(and)59 2584 y(transform)17
Xb(bac)o(k)g(again,)h(using)h(metho)q(d)f(1;)g(then)h(compare)e(with)h
X(the)g(mathematically)h(iden)o(tical)59 2640 y(TGSVD)c(solutions:)130
X2709 y Fl([A)p 176 2709 V 16 w(s,b)p 245 2709 V 17 w(s,L)p
X317 2709 V 16 w(p,K,M])g(=)g(std)p 588 2709 V 18 w(fo)o(rm)8
Xb(\(A,L,)o(b\);)k([U,s,V])k(=)f(csvd)8 b(\(A)p 1200 2709
XV 17 w(s\);)130 2777 y(X)p 163 2777 V 16 w(s)16 b(=)f(tsvd)8
Xb(\(U,s,V,b)p 505 2777 V 18 w(s,1:10\);)13 b(X)i(=)h(gen)p
X841 2777 V 17 w(fo)o(rm)8 b(\(L)p 997 2777 V 13 w(p,X)p
X1077 2777 V 17 w(s,A,b,K,M\);)130 2846 y([U1,sm,X1])14
Xb(=)h(cgsvd)8 b(\(A,L\);)14 b(XX)i(=)g(tgsvd)8 b(\(U1,sm,X1,b,1:10\);)k
X(no)o(rm)c(\(X-XX\))p eop
X%%Page: 97 99
X97 98 bop 59 159 a Fl(std)p 118 159 14 2 v 18 w(fo)o(rm)1558
Xb Fo(97)p 59 178 1767 2 v 59 304 a Fp(Algorithm:)130
X373 y Fo(The)15 b(form)o(ulas)g(used)h(in)g(metho)q(d)f(1)g(are:)329
X485 y Fl(L)354 467 y Fg(T)394 485 y Fo(=)e(\()p Fn(K)499
X492 y Fg(p)533 485 y Fn(K)572 492 y Fg(o)591 485 y Fo(\))617
X426 y Fh(\022)655 457 y Fn(R)690 464 y Fg(p)670 514 y
XFo(0)717 426 y Fh(\023)800 485 y Fo(\(QR)j(factorization\))o
XFn(;)98 b Fl(L)p 1307 485 14 2 v 16 w(p)13 b Fo(=)g Fn(K)1443
X492 y Fg(p)1470 485 y Fn(R)1505 467 y Fe(\000)p Fg(T)1505
X497 y(p)309 637 y Fl(A)8 b Fn(K)386 644 y Fg(o)418 637
Xy Fo(=)13 b(\()p Fn(H)522 644 y Fg(o)548 637 y Fn(H)586
X644 y Fg(q)605 637 y Fo(\))631 578 y Fh(\022)668 609
Xy Fn(T)695 616 y Fg(o)680 665 y Fo(0)721 578 y Fh(\023)805
X637 y Fo(\(QR)j(factorization\))o Fn(;)98 b Fl(A)p 1317
X637 V 17 w(s)13 b Fo(=)g Fn(H)1451 618 y Fg(T)1447 648
Xy(q)1478 637 y Fl(A)8 b(L)p 1544 637 V 16 w(p)500 749
Xy(K)k Fo(=)h Fn(K)631 756 y Fg(o)665 749 y Fn(;)98 b
XFl(M)12 b Fo(=)h Fn(T)909 731 y Fe(\000)p Fj(1)903 761
Xy Fg(o)956 749 y Fn(H)998 731 y Fg(T)994 761 y(o)1041
X749 y Fn(;)98 b Fl(b)p 1178 749 V 17 w(s)13 b Fo(=)g
XFn(H)1312 731 y Fg(T)1308 761 y(q)1339 749 y Fl(b)i Fn(:)59
X833 y Fo(The)g(form)o(ulas)g(used)h(in)g(metho)q(d)f(2)g(are)g(the)g
X(follo)o(wing)h(\(see)g(also)f Fl(pinit)p Fo(\):)700
X935 y([)p Fl(T)p Fn(;)8 b Fl(x)p 789 935 V 15 w(0)p Fo(])k(=)h
XFl(pinit)8 b Fo(\()p Fl(W)q Fn(;)g Fl(A)p Fn(;)g Fl(b)p
XFo(\))14 b(;)541 1058 y Fl(L)p 569 1058 V 16 w(p)f Fo(=)666
X999 y Fh(\022)o(\022)734 1030 y Fn(I)754 1037 y Fg(p)743
X1087 y Fo(0)782 999 y Fh(\023)822 1058 y Fm(\000)e Fl(W)d(T)p
XFo(\(:)g Fn(;)g Fo(1:)g Fn(p)p Fo(\))1094 999 y Fh(\023)1130
X1058 y Fn(L)p Fo(\(:)g Fn(;)g Fo(1:)g Fn(p)o Fo(\))1305
X1040 y Fe(\000)p Fj(1)817 1161 y Fl(A)p 850 1161 V 17
Xw(s)13 b Fo(=)g Fl(A)8 b(L)p 1008 1161 V 16 w(p)16 b
XFn(:)59 1294 y Fp(See)h(also:)130 1363 y Fl(gen)p 199
X1363 V 16 w(fo)o(rm)59 1469 y Fp(References:)115 1540
Xy Fo(1.)22 b(L.)12 b(Eld)o(\023)-21 b(en,)13 b Fk(A)o(lgorithms)g(for)h
X(r)n(e)n(gularization)f(of)g(il)r(l-c)n(onditione)n(d)g(le)n(ast-squar)
Xn(es)f(pr)n(oblems)p Fo(,)g(BIT)173 1596 y Fp(17)j Fo(\(1977\),)e
X(134{145.)115 1653 y(2.)22 b(L.)f(Eld)o(\023)-21 b(en,)23
Xb Fk(A)f(weighte)n(d)h(pseudoinverse,)g(gener)n(alize)n(d)d(singular)i
X(values,)h(and)f(c)n(onstr)n(aine)n(d)173 1709 y(le)n(ast)15
Xb(squar)n(es)h(pr)n(oblems)p Fo(,)e(BIT)i Fp(22)f Fo(\(1982\),)e
X(487{502.)115 1766 y(3.)22 b(M.)15 b(Hank)o(e,)h Fk(R)n(e)n
X(gularization)h(with)h(di\013er)n(ential)e(op)n(er)n(ators.)24
Xb(A)o(n)17 b(iter)n(ative)g(appr)n(o)n(ach)p Fo(,)g(J.)f(Nu-)173
X1822 y(mer.)e(F)l(unct.)h(Anal.)h(Optim.)f Fp(13)h Fo(\(1992\),)d
X(523{540.)115 1879 y(4.)22 b(P)l(.)17 b(C.)f(Hansen,)i
XFk(R)n(ank-De\014cient)g(and)g(Discr)n(ete)f(Il)r(l-Pose)n(d)g(Pr)n
X(oblems.)26 b(Numeric)n(al)18 b(Asp)n(e)n(cts)173 1935
Xy(of)e(Line)n(ar)f(Inversion,)f Fo(SIAM,)h(Philadelphia,)j(1997.)p
Xeop
X%%Page: 98 100
X98 99 bop 64 159 a Fo(98)1620 b Fl(tgsvd)p 64 178 1767
X2 v 59 304 a Fb(tgsvd)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Compute)15 b(the)g(truncated)g(GSVD)g(solution.)59
X581 y Fp(Synopsis:)130 650 y Fl([x)p 167 650 14 2 v 16
Xw(k,rho,eta])g(=)h(tgsvd)8 b(\(U,sm,X,b,k\))14 b(,)60
Xb(sm)15 b(=)g([sigma,mu])59 756 y Fp(Description:)130
X825 y Fo(Computes)g(the)g(truncated)g(GSVD)g(solution,)g(de\014ned)i
X(as)411 958 y Fl(x)p 435 958 V 16 w(k)c Fo(=)595 902
Xy Fg(p)574 917 y Fh(X)531 1010 y Fg(i)p Fj(=)p Fg(p)p
XFe(\000)p Fa(k)p Fj(+1)698 927 y Fl(U)p Fo(\(:)p Fn(;)8
Xb(i)p Fo(\))815 911 y Fg(T)840 927 y Fl(b)p 698 947 167
X2 v 701 989 a(sigma)o Fo(\()p Fn(i)p Fo(\))876 958 y
XFl(X)p Fo(\(:)p Fn(;)g(i)p Fo(\))h(+)1087 905 y Fg(n)1067
X917 y Fh(X)1046 1009 y Fg(i)p Fj(=)p Fg(p)p Fj(+1)1164
X958 y Fl(U)p Fo(\(:)p Fn(;)f(i)p Fo(\))1281 939 y Fg(T)1306
X958 y Fl(b)g(X)p Fo(\(:)p Fn(;)g(i)p Fo(\))14 b Fn(:)59
X1102 y Fo(If)i Fl(k)f Fo(is)h(a)e(v)o(ector,)h(then)g
XFl(x)p 502 1102 14 2 v 16 w(k)h Fo(is)g(a)e(matrix)h(suc)o(h)h(that)679
X1204 y Fl(x)p 703 1204 V 16 w(k)d Fo(=)g([)8 b Fl(x)p
X844 1204 V 15 w(k)p Fo(\()p Fl(1)p Fo(\))p Fn(;)15 b
XFl(x)p 989 1204 V 16 w(k)p Fo(\()p Fl(2)p Fo(\))o Fn(;)g(:)8
Xb(:)g(:)e Fo(])14 b Fn(:)59 1306 y Fo(The)h(solution)h(and)g(residual)g
X(norms)f(are)g(returned)h(in)g Fl(eta)f Fo(and)h Fl(rho)p
XFo(.)59 1412 y Fp(Examples:)130 1481 y Fo(Compute)10
Xb(the)h(\014rst)f(10)g(TGSVD)g(solutions)h(to)f(an)g(in)o(v)o(erse)h
X(Laplace)h(transform)d(mo)q(del-problem:)130 1550 y Fl([A,b,x])15
Xb(=)h(ilaplace)8 b(\(n,2\);)13 b(L)i(=)h(get)p 744 1550
XV 16 w(l)8 b(\(n,1\);)14 b(b)h(=)h(b)f(+)h(1e-4)p Fm(\003)p
XFl(randn)8 b(\(size\(b\)\);)130 1619 y([U,sm,X])14 b(=)i(cgsvd)8
Xb(\(A,L\);)14 b(X)p 638 1619 V 17 w(tgsvd)i(=)f(tgsvd)8
Xb(\(U,sm,X,b,1:10\);)59 1725 y Fp(Algorithm:)130 1794
Xy Fo(Straigh)o(tforw)o(ard)16 b(use)i(of)g(the)g(ab)q(o)o(v)o(e)g
X(de\014nition)h(is)g(used)g(to)e(compute)h Fl(x)p 1438
X1794 V 16 w(k)p Fo(.)29 b(F)l(or)17 b(motiv)m(ations)59
X1851 y(for)e(the)g(TGSVD)g(solution,)g(cf.)g([1].)59
X1957 y Fp(See)i(also:)130 2026 y Fl(mtsvd)p Fo(,)e Fl(tsvd)59
X2132 y Fp(References:)115 2203 y Fo(1.)22 b(P)l(.)12
Xb(C.)h(Hansen,)g Fk(R)n(e)n(gularization,)h(GSVD)g(and)h(trunc)n(ate)n
X(d)f(GSVD)p Fo(,)e(BIT)h Fp(29)h Fo(\(1989\),)d(491{504.)p
Xeop
X%%Page: 99 101
X99 100 bop 59 159 a Fl(tikhonov)1559 b Fo(99)p 59 178
X1767 2 v 59 304 a Fb(tikhonov)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(Compute)15 b(the)g(Tikhono)o(v)g(regularized)i(solution.)59
X581 y Fp(Synopsis:)130 650 y Fl([x)p 167 650 14 2 v 16
Xw(lamb)q(da,rho,eta])e(=)g(tikhonov)8 b(\(U,s,V,b,lamb)q(da,x)p
X1060 650 V 16 w(0\))130 719 y([x)p 167 719 V 16 w(lamb)q(da,rho,eta])15
Xb(=)g(tikhonov)8 b(\(U,sm,X,b,lamb)q(da,x)p 1097 719
XV 15 w(0\))15 b(,)60 b(sm)15 b(=)g([sigma,mu])59 825
Xy Fp(Description:)130 894 y Fo(Compute)g(the)h(solution)h(b)o(y)e
X(means)h(of)g(Tikhono)o(v)f(regularization.)23 b(If)16
Xb(the)g(SVD)g(of)f Fn(A)h Fo(is)g(used,)59 950 y(i.e.)j(if)g
XFl(U)p Fo(,)g Fl(s)p Fo(,)g(and)g Fl(V)g Fo(are)g(giv)o(en)g(as)f
X(input,)j(then)e(Tikhono)o(v)g(regularization)g(in)h(standard)e(form)g
X(is)59 1007 y(used,)d(and)h Fl(x)p 288 1007 V 16 w(lamb)q(da)f
XFo(solv)o(es)h(the)f(problem)540 1114 y(min)623 1067
Xy Fh(n)651 1114 y Fm(k)p Fn(A)8 b Fp(x)h Fm(\000)h Fl(b)p
XFm(k)844 1096 y Fj(2)844 1126 y(2)874 1114 y Fo(+)h Fl(lamb)q(da)1059
X1096 y Fj(2)1079 1114 y Fm(k)p Fp(x)e Fm(\000)h Fl(x)p
X1208 1114 V 17 w(0)o Fm(k)1267 1096 y Fj(2)1267 1126
Xy(2)1287 1067 y Fh(o)1337 1114 y Fn(:)59 1224 y Fo(On)16
Xb(the)f(other)g(hand,)g(if)h(the)f(GSVD)g(of)g(\()p Fn(A;)8
Xb(L)p Fo(\))13 b(is)j(used,)g(i.e.)f(if)g Fl(U)p Fo(,)h
XFl(sm)p Fo(,)e(and)h Fl(X)h Fo(are)f(giv)o(en)g(as)g(input,)59
X1281 y(then)c(Tikhono)o(v)g(regularization)h(in)g(general)f(form)f(is)i
X(used,)g(and)f Fl(x)p 1208 1281 V 16 w(lamb)q(da)g Fo(then)g(solv)o(es)
Xg(the)g(problem)503 1388 y(min)586 1341 y Fh(n)614 1388
Xy Fm(k)p Fn(A)d Fp(x)h Fm(\000)h Fl(b)p Fm(k)807 1369
Xy Fj(2)807 1399 y(2)838 1388 y Fo(+)g Fl(lamb)q(da)1022
X1369 y Fj(2)1042 1388 y Fm(k)p Fn(L)e Fo(\()p Fp(x)g
XFm(\000)j Fl(x)p 1228 1388 V 16 w(0)p Fo(\))p Fm(k)1305
X1369 y Fj(2)1305 1399 y(2)1324 1341 y Fh(o)1374 1388
Xy Fn(:)59 1495 y Fo(If)i Fl(x)p 126 1495 V 16 w(0)f Fo(is)h(not)f(sp)q
X(eci\014ed,)j(then)e Fl(x)p 614 1495 V 16 w(0)f Fo(=)h
XFp(0)f Fo(is)h(used.)20 b(If)12 b Fl(lamb)q(da)h Fo(is)g(a)f(v)o
X(ector,)g(then)g Fl(x)p 1455 1495 V 17 w(lamb)q(da)g
XFo(is)h(a)f(matrix)59 1552 y(suc)o(h)k(that)504 1608
Xy Fl(x)p 528 1608 V 16 w(lamb)q(da)d Fo(=)g([)8 b Fl(x)p
X786 1608 V 15 w(lamb)q(da)p Fo(\()p Fl(1)p Fo(\))o Fn(;)15
Xb Fl(x)p 1047 1608 V 16 w(lamb)q(da)p Fo(\()p Fl(2)p
XFo(\))o Fn(;)g(:)8 b(:)g(:)e Fo(])14 b Fn(:)59 1692 y
XFo(The)h(solution)h(and)g(residual)g(norms)f(are)g(returned)h(in)g
XFl(eta)f Fo(and)h Fl(rho)p Fo(.)59 1798 y Fp(Examples:)130
X1867 y Fo(Solv)o(e)21 b(a)g(discrete)h(ill-p)q(osed)i(problem)e(for)e
X(three)h(v)m(alues)i(of)d(the)i(regularization)g(parameter,)59
X1923 y(namely)16 b(10)263 1907 y Fe(\000)p Fj(1)309 1923
Xy Fo(,)f(10)383 1907 y Fe(\000)p Fj(3)430 1923 y Fo(,)g(and)g(10)592
X1907 y Fe(\000)p Fj(5)639 1923 y Fo(:)130 1992 y Fl(x)p
X154 1992 V 16 w(lamb)q(da)g(=)g(tikhonov)8 b
X(\(U,s,V,b,[1e-1,1e-3,1e-5]\);)14 b(plot)8 b(\(x)p 1175
X1992 V 16 w(lamb)q(da\))59 2099 y Fp(Algorithm:)130 2167
Xy Fl(x)p 154 2167 V 16 w(lamb)q(da)15 b Fo(is)h(computed)f(b)o(y)g
X(straigh)o(tforw)o(ard)e(use)j(of)f(the)g(form)o(ulas)g(from)f(Section)
Xi(2.4.)59 2274 y Fp(See)h(also:)130 2343 y Fl(discrep)p
XFo(,)f Fl(lsqi)p Fo(,)f Fl(mtsvd)59 2449 y Fp(References:)115
X2520 y Fo(1.)22 b(A.)14 b(N.)g(Tikhono)o(v)g(&)h(V.)f(Y.)g(Arsenin,)h
XFk(Solutions)g(of)g(Il)r(l-Pose)n(d)g(Pr)n(oblems)p Fo(,)e(Winston)h(&)
Xh(Sons,)173 2576 y(W)l(ashington,)g(D.C.,)e(1977.)p eop
X%%Page: 100 102
X100 101 bop 64 159 a Fo(100)1619 b Fl(tsvd)p 64 178 1767
X2 v 59 304 a Fb(tsvd)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Compute)15 b(the)g(truncated)g(SVD)g(solution.)59
X581 y Fp(Synopsis:)130 650 y Fl([x)p 167 650 14 2 v 16
Xw(k,rho,eta])g(=)h(tsvd)8 b(\(U,s,V,b,k\))59 756 y Fp(Description:)130
X825 y Fo(Computes)15 b(the)g(truncated)g(SVD)g(solution,)h(de\014ned)g
X(as)684 964 y Fl(x)p 708 964 V 16 w(k)d Fo(=)826 911
Xy Fa(k)804 923 y Fh(X)806 1015 y Fg(i)p Fj(=1)884 933
Xy Fl(U)p Fo(\(:)p Fn(;)8 b(i)p Fo(\))1001 917 y Fg(T)1027
X933 y Fl(b)p 884 953 167 2 v 933 995 a(s)p Fo(\()p Fn(i)p
XFo(\))1063 964 y Fl(V)q Fo(\(:)p Fn(;)g(i)p Fo(\))13
Xb Fn(:)59 1100 y Fo(If)j Fl(k)f Fo(is)h(a)e(v)o(ector,)h(then)g
XFl(x)p 502 1100 14 2 v 16 w(k)h Fo(is)g(a)e(matrix)h(suc)o(h)h(that)679
X1202 y Fl(x)p 703 1202 V 16 w(k)d Fo(=)g([)8 b Fl(x)p
X844 1202 V 15 w(k)p Fo(\()p Fl(1)p Fo(\))p Fn(;)15 b
XFl(x)p 989 1202 V 16 w(k)p Fo(\()p Fl(2)p Fo(\))o Fn(;)g(:)8
Xb(:)g(:)e Fo(])14 b Fn(:)59 1304 y Fo(The)h(solution)h(and)g(residual)g
X(norms)f(are)g(returned)h(in)g Fl(eta)f Fo(and)h Fl(rho)p
XFo(.)59 1411 y Fp(Examples:)130 1480 y Fo(Compute)f(the)g(TSVD)g
X(solutions)h(for)e(the)i(truncation)f(parameters)f(3,)h(6,)f(9,)h(12,)f
X(and)i(15:)130 1548 y Fl([A,b,x])f(=)h(sha)o(w)8 b(\(n\);)14
Xb(b)i(=)f(b)h(+)g(1e-3)p Fm(\003)p Fl(rand)8 b(\(size\(b\)\);)13
Xb([U,s,V])j(=)f(csvd)8 b(\(A\);)130 1617 y(X)15 b(=)h(tsvd)8
Xb(\(U,s,V,b,[3,6,9,12,15]\);)j(plot)d(\([x,X]\))59 1724
Xy Fp(Algorithm:)130 1793 y Fo(Straigh)o(tforw)o(ard)13
Xb(use)j(of)e(the)i(de\014nition)h(is)e(used)h(to)f(compute)g
XFl(x)p 1281 1793 V 16 w(k)p Fo(.)59 1899 y Fp(See)i(also:)130
X1968 y Fl(mtsvd)p Fo(,)e Fl(tgsvd)p eop
X%%Page: 101 103
X101 102 bop 59 159 a Fl(ttls)1638 b Fo(101)p 59 178 1767
X2 v 59 304 a Fb(ttls)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(Compute)15 b(the)g(truncated)g(TLS)h(solution.)59
X581 y Fp(Synopsis:)130 650 y Fl([x)p 167 650 14 2 v 16
Xw(k,rho,eta])f(=)h(ttls)8 b(\(V1,k,s1\))59 756 y Fp(Description:)130
X825 y Fo(Computes)15 b(the)g(truncated)g(TLS)h(solution,)f(giv)o(en)h
X(b)o(y)382 927 y Fl(x)p 406 927 V 17 w(k)d Fo(=)g Fm(\000)p
XFl(V1)p Fo(\(1)f(:)g Fn(n;)c Fl(k)i Fo(+)h(1)h(:)g Fn(n)f
XFo(+)f(1\))e Fl(V1)o Fo(\()p Fn(n)i Fo(+)h(1)p Fn(;)d
XFl(k)h Fo(+)h(1)j(:)f Fn(n)e Fo(+)h(1\)\))1463 908 y
XFe(y)1495 927 y Fn(;)59 1029 y Fo(where)k Fl(V1)h Fo(is)f(the)h(righ)o
X(t)f(singular)h(matrix)f(in)h(the)f(SVD)g(of)g(the)g
XFk(c)n(omp)n(ound)i(matrix)691 1131 y Fo(\()p Fn(A)e
XFp(b)p Fo(\))d(=)h Fn(U)896 1138 y Fj(1)923 1131 y Fo(diag)q(\()p
XFl(s1)p Fo(\))8 b Fl(V1)1144 1113 y Fg(T)1186 1131 y
XFn(:)59 1234 y Fo(If)16 b Fl(k)f Fo(is)h(a)e(v)o(ector,)h(then)g
XFl(x)p 502 1234 V 16 w(k)h Fo(is)g(a)e(matrix)h(suc)o(h)h(that)679
X1336 y Fl(x)p 703 1336 V 16 w(k)d Fo(=)g([)8 b Fl(x)p
X844 1336 V 15 w(k)p Fo(\()p Fl(1)p Fo(\))p Fn(;)15 b
XFl(x)p 989 1336 V 16 w(k)p Fo(\()p Fl(2)p Fo(\))o Fn(;)g(:)8
Xb(:)g(:)e Fo(])14 b Fn(:)59 1438 y Fo(If)h Fl(k)g Fo(is)h(not)e(sp)q
X(eci\014ed,)j(the)e(default)h(v)m(alue)g(is)f Fl(k)e
XFo(=)g Fn(n)i Fo(and)g Fl(x)p 1093 1438 V 17 w(k)g Fo(is)g(then)g(the)g
X(standard)g(TLS)g(solution.)130 1494 y(The)g(solution)h(norms)f
XFm(k)p Fl(x)p 579 1494 V 16 w(k)q Fm(k)638 1501 y Fj(2)672
X1494 y Fo(and)h(the)f(corresp)q(onding)i(residual)g(norms)e
XFm(k)p Fo(\()p Fn(A)f Fp(b)p Fo(\))c Fm(\000)h Fo(\()1661
X1483 y(~)1649 1494 y Fn(A)1701 1482 y Fo(~)1698 1494
Xy Fp(b)p Fo(\))1745 1501 y Fg(k)1766 1494 y Fm(k)1789
X1501 y Fg(F)1818 1494 y Fo(,)59 1551 y(where)21 b(\()226
X1539 y(~)214 1551 y Fn(A)272 1539 y Fo(~)269 1551 y Fp(b)p
XFo(\))316 1558 y Fg(k)359 1551 y Fo(=)i Fn(U)448 1558
Xy Fj(1)468 1551 y Fo(\(:)8 b Fn(;)g Fo(1)20 b(:)i Fl(k)p
XFo(\))8 b(diag\()p Fl(s1)p Fo(\(1)22 b(:)g Fl(k)p Fo(\)\))8
Xb Fl(V1)o Fo(\(:)g Fn(;)g Fo(1)20 b(:)i Fl(k)p Fo(\))1189
X1534 y Fg(T)1217 1551 y Fo(,)g(are)e(returned)i(in)g
XFl(eta)f Fo(and)g Fl(rho)p Fo(,)59 1607 y(resp)q(ectiv)o(ely)l(.)h(The)
X15 b(singular)h(v)m(alues)h Fl(s1)e Fo(of)g(\()p Fn(A)g
XFp(b)p Fo(\))g(are)f(required)j(to)d(compute)i Fl(rho)p
XFo(.)59 1713 y Fp(Examples:)130 1782 y Fo(Compute)f(the)g(truncated)g
X(TLS)h(solutions)g(for)e Fl(k)f Fo(=)g Fn(n)d Fm(\000)h
XFo(5,)j Fn(n)d Fm(\000)f Fo(10,)k(and)i Fn(n)10 b Fm(\000)h
XFo(15:)130 1851 y Fl([U1,s1,V1])j(=)i(csvd)8 b(\([A,b],'full'\);)14
Xb(X)i(=)f(ttls)8 b(\(V1,n)p Fm(\000)p Fl([5,10,15]\);)59
X1958 y Fp(Algorithm:)130 2026 y Fl(x)p 154 2026 V 16
Xw(k)16 b Fo(is)h(computed)g(b)o(y)f(means)h(of)f(the)g(de\014nition,)i
X(using)f(the)g(follo)o(wing)g(relation)g(for)e(the)i(pseu-)59
X2083 y(doin)o(v)o(erse)f(of)e(a)h(ro)o(w)g(v)o(ector)f
XFp(v)600 2066 y Fg(T)627 2083 y Fo(:)768 2139 y(\()p
XFp(v)815 2121 y Fg(T)841 2139 y Fo(\))859 2121 y Fe(y)889
X2139 y Fo(=)f Fm(k)p Fp(v)q Fm(k)1012 2120 y Fe(\000)p
XFj(2)1012 2152 y(2)1066 2139 y Fp(v)i Fn(:)59 2223 y
XFo(The)g(norms)g(are)g(giv)o(en)h(b)o(y)517 2339 y Fm(k)p
XFl(x)p 564 2339 V 16 w(k)p Fm(k)622 2346 y Fj(2)654 2339
Xy Fo(=)702 2285 y Fh(q)p 744 2285 630 2 v 54 x Fm(k)p
XFl(V1)p Fo(\()p Fn(n)10 b Fo(+)g(1)p Fn(;)e Fl(k)h Fo(+)i(1)h(:)g
XFn(n)f Fo(+)f(1\))p Fm(k)1248 2320 y Fe(\000)p Fj(2)1248
X2351 y(2)1305 2339 y Fm(\000)g Fo(1)519 2450 y Fm(k)p
XFo(\()p Fn(A)15 b Fp(b)p Fo(\))9 b Fm(\000)i Fo(\()741
X2438 y(~)729 2450 y Fn(A)781 2438 y Fo(~)778 2450 y Fp(b)p
XFo(\))825 2457 y Fg(k)846 2450 y Fm(k)869 2457 y Fg(F)910
X2450 y Fo(=)i Fm(k)p Fl(s1)p Fo(\()p Fl(k)d Fo(+)h(1)h(:)g
XFn(n)f Fo(+)f(1\))p Fm(k)1324 2457 y Fj(2)1358 2450 y
XFn(:)59 2583 y Fp(References:)115 2654 y Fo(1.)22 b(R.)11
Xb(D.)f(Fierro,)h(G.)g(H.)g(Golub,)g(P)l(.)g(C.)g(Hansen)g(&)h(D.)e(P)l
X(.)h(O'Leary)l(,)h Fk(R)n(e)n(gularization)f(by)i(trunc)n(ate)n(d)173
X2711 y(total)j(le)n(ast)g(squar)n(es)p Fo(,)e(SIAM)h(J.)h(Sci.)f
X(Comput.)g Fp(18)g Fo(\(1997\),)e(1223{1241.)p eop
X%%Page: 102 104
X102 103 bop 64 159 a Fo(102)1599 b Fl(ursell)p 64 178
X1767 2 v 59 304 a Fb(ursell)59 406 y Fp(Purp)q(ose:)130
X475 y Fo(T)l(est)15 b(problem:)20 b(in)o(tegral)c(equation)f(with)h(no)
Xf(square)g(in)o(tegrable)h(solution.)59 581 y Fp(Synopsis:)130
X650 y Fl([A,b])f(=)h(ursell)8 b(\(n\))59 756 y Fp(Description:)130
X825 y Fo(Discretization)21 b(of)g(a)f(F)l(redholm)i(in)o(tegral)f
X(equation)g(of)g(the)g(\014rst)f(kind)i(\(2.1\))d(from)i([1])e(with)59
X882 y(k)o(ernel)d Fn(K)i Fo(and)d(righ)o(t-hand)h(side)g
XFn(g)h Fo(giv)o(en)e(b)o(y)598 1000 y Fn(K)s Fo(\()p
XFn(s;)8 b(t)p Fo(\))j(=)873 970 y(1)p 798 990 172 2 v
X798 1031 a Fn(s)g Fo(+)f Fn(t)h Fo(+)f(1)990 1000 y Fn(;)98
Xb(g)r Fo(\()p Fn(s)p Fo(\))12 b(=)h(1)i Fn(;)59 1119
Xy Fo(where)21 b(b)q(oth)g(in)o(tegration)f(in)o(terv)m(als)i(are)e([0)p
XFn(;)8 b Fo(1].)35 b(This)21 b(in)o(tegral)g(equation)g(do)q(es)g(not)f
X(satisfy)h(the)59 1176 y(Picard)e(condition)h(and)f(has)g
XFk(no)g Fo(square)f(in)o(tegrable)i(solution)f(\(hence,)h(no)f
XFl(x)g Fo(is)g(pro)q(duced\).)31 b(The)59 1232 y(size)16
Xb(of)f(the)g(matrix)g Fl(A)h Fo(is)f Fl(n)c Fm(\002)f
XFl(n)p Fo(.)59 1338 y Fp(Examples:)130 1407 y Fo(Generate)15
Xb Fl(A)g Fo(and)g Fl(b)h Fo(and)f(c)o(hec)o(k)h(the)f(discrete)h
X(Picard)g(condition:)130 1476 y Fl([A,b])f(=)h(ursell)8
Xb(\(16\);)13 b([U,s,V])j(=)g(csvd)8 b(\(A\);)15 b(pica)o(rd)8
Xb(\(U,s,b\);)59 1582 y Fp(References:)115 1653 y Fo(1.)22
Xb(F.)d(Ursell,)k Fk(Intr)n(o)n(duction)d(to)i(the)f(the)n(ory)g(of)h
X(line)n(ar)e(inte)n(gr)n(al)f(e)n(quations)p Fo(,)i(Chapter)f(1)g(in)i
X(L.)173 1710 y(M.)15 b(Delv)o(es)i(&)f(J.)h(W)l(alsh)f(\(Eds.\),)f
XFk(Numeric)n(al)i(Solution)g(of)h(Inte)n(gr)n(al)d(Equations)p
XFo(,)h(Clarendon)173 1766 y(Press,)e(Oxford,)h(1974.)p
Xeop
X%%Page: 103 105
X103 104 bop 59 159 a Fl(wing)1610 b Fo(103)p 59 178 1767
X2 v 59 304 a Fb(wing)59 406 y Fp(Purp)q(ose:)130 475
Xy Fo(T)l(est)15 b(problem)h(with)f(a)g(discon)o(tin)o(uous)h(solution.)
X59 581 y Fp(Synopsis:)130 650 y Fl([A,b,x])f(=)h(wing)8
Xb(\(n,t1,t2\))59 756 y Fp(Description:)130 825 y Fo(Discretization)18
Xb(of)f(a)f(F)l(redholm)i(in)o(tegral)g(equation)f(of)g(the)g(\014rst)g
X(kind)h(\(2.1\))e(from)g([1,)h(p.)g(109])59 882 y(with)g(b)q(oth)f(in)o
X(tegration)g(in)o(terv)m(als)h(equal)g(to)f([0)p Fn(;)8
Xb Fo(1],)13 b(with)k(k)o(ernel)g Fn(K)i Fo(and)d(righ)o(t-hand)h(side)g
XFn(g)g Fo(giv)o(en)59 938 y(b)o(y)309 1020 y Fn(K)s Fo(\()p
XFn(s;)8 b(t)p Fo(\))k(=)h Fn(t)j Fo(exp\()p Fm(\000)8
Xb Fn(s)g(t)712 1001 y Fj(2)732 1020 y Fo(\))15 b Fn(;)98
Xb(g)r Fo(\()p Fn(s)p Fo(\))11 b(=)1021 989 y(exp)q(\()p
XFm(\000)d Fn(s)g Fl(t1)1219 972 y Fj(2)1239 989 y Fo(\))i
XFm(\000)g Fo(exp)q(\()p Fm(\000)e Fn(s)g Fl(t2)1510 972
Xy Fj(2)1530 989 y Fo(\))p 1021 1009 527 2 v 1259 1051
Xa(2)g Fn(s)1568 1020 y(;)59 1114 y Fo(and)15 b(with)h(the)f(solution)h
XFn(f)21 b Fo(giv)o(en)15 b(b)o(y)639 1246 y Fn(f)5 b
XFo(\()p Fn(t)p Fo(\))12 b(=)778 1174 y Fh(\()833 1218
Xy Fo(1)p Fn(;)40 b Fo(for)45 b Fl(t1)13 b Fn(<)g(t)g(<)g
XFl(t2)833 1274 y Fo(0)p Fn(;)40 b Fo(elsewhere)p Fn(:)59
X1378 y Fo(Here,)19 b Fl(t1)f Fo(and)g Fl(t2)g Fo(are)g(constan)o(ts)f
X(satisfying)i(0)e Fn(<)g Fl(t1)h Fn(<)g Fl(t2)f Fn(<)h
XFo(1.)28 b(If)18 b(they)h(are)e(not)h(sp)q(eci\014ed,)j(the)59
X1435 y(v)m(alues)16 b Fl(t1)d Fo(=)g(1)p Fn(=)p Fo(3)h(and)i
XFl(t2)d Fo(=)g(2)p Fn(=)p Fo(3)h(are)h(used.)20 b(The)c(size)g(of)f
X(the)g(matrix)g Fl(A)g Fo(is)h Fl(n)10 b Fm(\002)h Fl(n)p
XFo(.)59 1541 y Fp(References:)115 1612 y Fo(1.)22 b(G.)11
Xb(M.)g(Wing)h(&)h(J.)f(D.)f(Zahrt,)g Fk(A)j(Primer)f(on)g(Inte)n(gr)n
X(al)f(Equations)h(of)g(the)h(First)f(Kind)p Fo(,)f(SIAM,)173
X1668 y(Philadelphia,)18 b(1991;)13 b(p.)i(109.)531 1777
Xy
X 14432612 11188078 5262540 26773176 34995896 49731010 startTexFig
X 531 1777 a
X%%BeginDocument: testfigs/wing.eps
X
X% MathWorks dictionary
X/mathworks 50 dict begin
X
X% definition operators
X/bdef {bind def} bind def
X/xdef {exch def} bdef
X
X% page state control
X/pgsv () def
X/bpage {/pgsv save def} bdef
X/epage {pgsv restore} bdef
X/bplot {gsave} bdef
X/eplot {grestore} bdef
X
X% bounding box in default coordinates
X/dx 0 def
X/dy 0 def
X/sides {/dx urx llx sub def /dy ury lly sub def} bdef
X/llx 0 def
X/lly 0 def
X/urx 0 def
X/ury 0 def
X/bbox {/ury xdef /urx xdef /lly xdef /llx xdef sides} bdef
X
X% orientation switch
X/por true def
X/portrait {/por true def} bdef
X/landscape {/por false def} bdef
X
X% coordinate system mappings
X/px 8.5 72 mul def
X/py 11.0 72 mul def
X/port {dx py div dy px div scale} bdef
X/land {-90.0 rotate dy neg 0 translate dy py div dx px div scale} bdef
X/csm {llx lly translate por {port} {land} ifelse} bdef
X
X% line types: solid, dotted, dashed, dotdash
X/SO { []        0 setdash } bdef
X/DO { [0 4]     0 setdash } bdef
X/DA { [4]       0 setdash } bdef
X/DD { [0 4 3 4] 0 setdash } bdef
X
X% macros for moveto and polyline
X/M {moveto}  bdef
X/L {{lineto} repeat stroke} bdef
X
X% font control
X/font_spec () def
X/lfont currentfont def
X/sfont currentfont def
X/selfont {/font_spec xdef} bdef
X/savefont {font_spec findfont exch scalefont def} bdef
X/LF {lfont setfont} bdef
X/SF {sfont setfont} bdef
X
X% text display
X/sh {show} bdef
X/csh {dup stringwidth pop 2 div neg 0 rmoveto show} bdef
X/rsh {dup stringwidth pop neg 0 rmoveto show} bdef
X/r90sh {gsave currentpoint translate 90 rotate csh grestore} bdef
X
Xcurrentdict end def %dictionary
X
Xmathworks begin
X
X% fonts for text, standard numbers and exponents
X/Times-Roman selfont
X/lfont 30 savefont
X/sfont 21 savefont
X
X%line width, line cap, and joint spec
X.5 setlinewidth 1 setlinecap 1 setlinejoin
X
Xend
X
Xmathworks begin
Xbpage
X
Xbplot
X80 407 532 756 bbox portrait csm
X
XSO
X 78.09  77.33 757.00  77.33 757.00 570.67  78.09 570.67  78.09  77.33 M 4 L
XLF
X 73.09  71.33 M (0) rsh
X 78.09 167.03  84.83 167.03 M 1 L
X750.27 167.03 757.00 167.03 M 1 L
X 73.09 161.03 M (0.02) rsh
X 78.09 256.73  84.83 256.73 M 1 L
X750.27 256.73 757.00 256.73 M 1 L
X 73.09 250.73 M (0.04) rsh
X 78.09 346.42  84.83 346.42 M 1 L
X750.27 346.42 757.00 346.42 M 1 L
X 73.09 340.42 M (0.06) rsh
X 78.09 436.12  84.83 436.12 M 1 L
X750.27 436.12 757.00 436.12 M 1 L
X 73.09 430.12 M (0.08) rsh
X 78.09 525.82  84.83 525.82 M 1 L
X750.27 525.82 757.00 525.82 M 1 L
X 73.09 519.82 M (0.1) rsh
X 78.09  55.33 M (0) csh
X145.98  77.33 145.98  82.53 M 1 L
X145.98 565.47 145.98 570.67 M 1 L
X145.98  55.33 M (10) csh
X213.87  77.33 213.87  82.53 M 1 L
X213.87 565.47 213.87 570.67 M 1 L
X213.87  55.33 M (20) csh
X281.77  77.33 281.77  82.53 M 1 L
X281.77 565.47 281.77 570.67 M 1 L
X281.77  55.33 M (30) csh
X349.66  77.33 349.66  82.53 M 1 L
X349.66 565.47 349.66 570.67 M 1 L
X349.66  55.33 M (40) csh
X417.55  77.33 417.55  82.53 M 1 L
X417.55 565.47 417.55 570.67 M 1 L
X417.55  55.33 M (50) csh
X485.44  77.33 485.44  82.53 M 1 L
X485.44 565.47 485.44 570.67 M 1 L
X485.44  55.33 M (60) csh
X553.33  77.33 553.33  82.53 M 1 L
X553.33 565.47 553.33 570.67 M 1 L
X553.33  55.33 M (70) csh
X621.22  77.33 621.22  82.53 M 1 L
X621.22 565.47 621.22 570.67 M 1 L
X621.22  55.33 M (80) csh
X689.11  77.33 689.11  82.53 M 1 L
X689.11 565.47 689.11 570.67 M 1 L
X689.11  55.33 M (90) csh
X757.00  55.33 M (100) csh
X 84.88  77.33  91.67  77.33  98.46  77.33 105.25  77.33 112.04  77.33 
X118.83  77.33 125.62  77.33 132.41  77.33 139.20  77.33 145.98  77.33 
X152.77  77.33 159.56  77.33 166.35  77.33 173.14  77.33 179.93  77.33 
X186.72  77.33 193.51  77.33 200.30  77.33 207.09  77.33 213.87  77.33 
X220.66  77.33 227.45  77.33 234.24  77.33 241.03  77.33 247.82  77.33 
X254.61  77.33 261.40  77.33 268.19  77.33 274.98  77.33 281.77  77.33 
X288.55  77.33 295.34  77.33 302.13  77.33 308.92 525.82 315.71 525.82 
X322.50 525.82 329.29 525.82 336.08 525.82 342.87 525.82 349.66 525.82 
X356.45 525.82 363.23 525.82 370.02 525.82 376.81 525.82 383.60 525.82 
X390.39 525.82 397.18 525.82 403.97 525.82 410.76 525.82 417.55 525.82 
X424.34 525.82 431.12 525.82 437.91 525.82 444.70 525.82 451.49 525.82 
X458.28 525.82 465.07 525.82 471.86 525.82 478.65 525.82 485.44 525.82 
X492.23 525.82 499.02 525.82 505.80 525.82 512.59 525.82 519.38 525.82 
X526.17 525.82 532.96 525.82 539.75  77.33 546.54  77.33 553.33  77.33 
X560.12  77.33 566.91  77.33 573.70  77.33 580.48  77.33 587.27  77.33 
X594.06  77.33 600.85  77.33 607.64  77.33 614.43  77.33 621.22  77.33 
X628.01  77.33 634.80  77.33 641.59  77.33 648.37  77.33 655.16  77.33 
X661.95  77.33 668.74  77.33 675.53  77.33 682.32  77.33 689.11  77.33 
X695.90  77.33 702.69  77.33 709.48  77.33 716.27  77.33 723.05  77.33 
X729.84  77.33 736.63  77.33 743.42  77.33 750.21  77.33 757.00  77.33 
XM 99 L
Xeplot
X
Xepage
Xend
X
X%%EndDocument
X
X endTexFig
X eop
X%%Page: 104 106
X104 105 bop 64 159 a Fo(104)1610 b Fl(wing)p 64 178 1767
X2 v eop
X%%Page: 105 107
X105 106 bop 59 546 a Fq(Bibliography)82 754 y Fo([1])21
Xb(R.)12 b(C.)f(Allen,)i(Jr.,)f(W.)e(R.)i(Boland,)g(V.)f(F)l(ab)q(er)g
X(&)h(G.)f(M.)f(Wing,)i Fk(Singular)g(values)h(and)f(c)n(ondition)152
X810 y(numb)n(ers)17 b(of)f(Galerkin)h(matric)n(es)f(arising)g(fr)n(om)h
X(line)n(ar)f(inte)n(gr)n(al)f(e)n(quations)i(of)f(the)h(\014rst)f(kind)
Xp Fo(,)152 867 y(J.)g(Math.)e(Anal.)h(Appl.)h Fp(109)g
XFo(\(1985\),)d(564{590.)82 963 y([2])21 b(R.)c(S.)f(Anderssen)h(&)g(P)l
X(.)e(M.)h(Pren)o(ter,)g Fk(A)h(formal)g(c)n(omp)n(arison)g(of)g(metho)n
X(ds)h(pr)n(op)n(ose)n(d)f(for)g(the)152 1020 y(numeric)n(al)h(solution)
Xf(of)h(\014rst)f(kind)g(inte)n(gr)n(al)g(e)n(quations)p
XFo(,)f(J.)h(Austral.)f(Math.)g(So)q(c.)g(\(Series)i(B\))152
X1076 y Fp(22)e Fo(\(1981\),)d(488{500.)82 1173 y([3])21
Xb(C.)15 b(T.)g(H.)g(Bak)o(er,)f Fk(Exp)n(ansion)h(metho)n(ds)p
XFo(,)g(Chapter)g(7)g(in)h([18)o(].)82 1269 y([4])21 b(C.)e(T.)f(H.)h
X(Bak)o(er,)g Fk(The)h(Numeric)n(al)f(T)m(r)n(e)n(atment)f(of)i(Inte)n
X(gr)n(al)e(Equations)p Fo(,)i(Clarendon)f(Press,)152
X1326 y(Oxford,)c(1977.)82 1423 y([5])21 b(C.)15 b(T.)g(H.)f(Bak)o(er)h
X(&)h(G.)e(F.)g(Miller)j(\(Eds.\),)d Fk(T)m(r)n(e)n(atment)h(of)h(Inte)n
X(gr)n(al)f(Equations)h(by)g(Numeric)n(al)152 1479 y(Metho)n(ds)p
XFo(,)f(Academic)h(Press,)f(New)g(Y)l(ork,)g(1982.)82
X1576 y([6])21 b(D.)14 b(M.)f(Bates,)g(M.)g(J.)h(Lindstrom,)h(G.)e(W)l
X(ah)o(ba)g(&)h(B.)g(S.)g(Y)l(andell,)h Fk(GCVP)m(A)o(CK)e({)j(r)n
X(outines)e(for)152 1632 y(gener)n(alize)n(d)h(cr)n(oss)g(validation)p
XFo(,)g(Comm)o(un.)g(Statist.-Sim)o(ula.)g Fp(16)g Fo(\(1987\),)e
X(263{297.)82 1729 y([7])21 b(M.)15 b(Bertero,)f(C.)h(De)g(Mol)g(&)h(E.)
Xf(R.)g(Pik)o(e,)g Fk(Line)n(ar)g(inverse)h(pr)n(oblems)g(with)g(discr)n
X(ete)g(data:)22 b(II.)152 1785 y(Stability)16 b(and)g(r)n(e)n
X(gularization)p Fo(,)f(In)o(v)o(erse)g(Problems)h Fp(4)f
XFo(\(1988\),)e(573{594.)82 1882 y([8])152 1874 y(\027)152
X1882 y(A.)f(Bj\177)-23 b(orc)o(k,)12 b Fk(A)h(bidiagonalization)g
X(algorithm)h(for)g(solving)e(lar)n(ge)h(and)g(sp)n(arse)g(il)r(l-p)n
X(ose)n(d)g(systems)152 1938 y(of)k(line)n(ar)e(e)n(quations)p
XFo(,)g(BIT)g Fp(28)h Fo(\(1988\),)d(659{670.)82 2035
Xy([9])152 2027 y(\027)152 2035 y(A.)f(Bj\177)-23 b(orc)o(k,)12
Xb Fk(Numeric)n(al)h(Metho)n(ds)g(for)h(L)n(e)n(ast)e(Squar)n(es)h(Pr)n
X(oblems)p Fo(,)e(SIAM,)h(Philadelphia,)j(1996.)59 2132
Xy([10])152 2124 y(\027)152 2132 y(A.)j(Bj\177)-23 b(orc)o(k)18
Xb(&)g(L.)h(Eld)o(\023)-21 b(en,)18 b Fk(Metho)n(ds)h(in)g(numeric)n(al)
Xf(algebr)n(a)h(for)g(il)r(l-p)n(ose)n(d)f(pr)n(oblems)p
XFo(,)g(Rep)q(ort)152 2188 y(LiTH-MA)l(T-R33-1979,)d(Dept.)g(of)g
X(Mathematics,)f(Link\177)-23 b(oping)17 b(Univ)o(ersit)o(y)l(,)f(1979.)
X59 2285 y([11])21 b(H.)28 b(Brakhage,)i Fk(On)d(il)r(l-p)n(ose)n(d)g
X(pr)n(oblems)g(and)h(the)g(metho)n(d)g(of)g(c)n(onjugate)g(gr)n
X(adients)p Fo(;)33 b(in)152 2341 y(H.)21 b(W.)f(Engl)h(&)g(C.)f(W.)g
X(Gro)q(etsc)o(h)g(\(Eds.\),)h Fk(Inverse)f(and)i(Il)r(l-Pose)n(d)e(Pr)n
X(oblems)p Fo(,)h(Academic)152 2398 y(Press,)15 b(Boston,)f(1987.)59
X2494 y([12])21 b(T.)12 b(F.)g(Chan)g(&)g(P)l(.)g(C.)g(Hansen,)h
XFk(Some)g(applic)n(ations)g(of)h(the)f(r)n(ank)g(r)n(eve)n(aling)f(QR)i
X(factorization)p Fo(,)152 2551 y(SIAM)i(J.)f(Sci.)h(Stat.)e(Comput.)h
XFp(13)g Fo(\(1992\),)e(727{741.)59 2648 y([13])21 b(J.)c(A.)f(Co)q(c)o
X(hran,)g Fk(The)h(A)o(nalysis)e(of)j(Line)n(ar)e(Inte)n(gr)n(al)g
X(Equations)p Fo(,)g(McGra)o(w-Hill,)h(New)f(Y)l(ork,)152
X2704 y(1972.)59 2801 y([14])21 b(D.)14 b(Colton)g(&)h(R.)f(Kress,)g
XFk(Inte)n(gr)n(al)g(Equation)i(Metho)n(ds)f(for)h(Sc)n(attering)e(The)n
X(ory)p Fo(,)g(John)h(Wiley)l(,)152 2857 y(New)h(Y)l(ork,)e(1983.)p
Xeop
X%%Page: 106 108
X106 107 bop 64 159 a Fo(106)1334 b(BIBLIOGRAPHY)p 64
X178 1767 2 v 59 304 a([15])21 b(I.)15 b(J.)g(D.)f(Craig)g(&)h(J.)f(C.)g
X(Bro)o(wn,)g Fk(Inverse)h(Pr)n(oblems)f(in)i(Astr)n(onomy)p
XFo(,)e(Adam)g(Hilger,)h(Bristol,)152 361 y(1986.)59 453
Xy([16])21 b(J.)12 b(J.)g(M.)f(Cupp)q(en,)i Fk(A)g(Numeric)n(al)g
X(Solution)g(of)g(the)g(Inverse)f(Pr)n(oblem)h(of)g(Ele)n(ctr)n(o)n(c)n
X(ar)n(dio)n(gr)n(aphy)p Fo(,)152 510 y(Ph.)i(D.)g(Thesis,)g(Dept.)g(of)
Xg(Mathematics,)f(Univ.)i(of)f(Amsterdam,)f(1983.)59 602
Xy([17])21 b(L.)13 b(M.)f(Delv)o(es)h(&)g(J.)f(L.)h(Mohamed,)f
XFk(Computational)j(Metho)n(ds)e(for)h(Inte)n(gr)n(al)f(Equations)p
XFo(,)f(Cam-)152 659 y(bridge)17 b(Univ)o(ersit)o(y)e(Press,)g(Cam)o
X(bridge,)g(1985.)59 751 y([18])21 b(L.)14 b(M.)e(Delv)o(es)h(&)h(J.)f
X(W)l(alsh)g(\(Eds.\),)f Fk(Numeric)n(al)i(Solution)g(of)h(Inte)n(gr)n
X(al)d(Equations)p Fo(,)h(Clarendon)152 808 y(Press,)i(Oxford,)g(1974.)
X59 900 y([19])21 b(J.)16 b(B.)f(Drak)o(e,)f Fk(ARIES:)i(a)h(c)n
X(omputer)g(pr)n(o)n(gr)n(am)f(for)h(the)g(solution)f(of)h(\014rst)f
X(kind)g(inte)n(gr)n(al)f(e)n(qua-)152 957 y(tions)e(with)h(noisy)f
X(data)p Fo(,)g(Rep)q(ort)g(K/CSD/TM-43,)e(Dept.)g(of)h(Computer)g
X(Science,)i(Oak)e(Ridge)152 1013 y(National)k(Lab)q(oratory)l(,)e
X(Octob)q(er)i(1983.)59 1106 y([20])21 b(M.)h(P)l(.)g(Ekstrom)f(&)h(R.)g
X(L.)h(Rho)q(des,)h Fk(On)e(the)h(applic)n(ation)g(of)f(eigenve)n(ctor)g
X(exp)n(ansions)f(to)152 1162 y(numeric)n(al)16 b(de)n(c)n(onvolution)p
XFo(,)e(J.)h(Comp.)g(Ph)o(ys.)f Fp(14)i Fo(\(1974\),)d(319-340.)59
X1255 y([21])21 b(L.)15 b(Eld)o(\023)-21 b(en,)15 b Fk(A)o(lgorithms)g
X(for)i(r)n(e)n(gularization)e(of)h(il)r(l-c)n(onditione)n(d)f(le)n
X(ast-squar)n(es)f(pr)n(oblems)p Fo(,)g(BIT)152 1311 y
XFp(17)i Fo(\(1977\),)d(134{145.)59 1404 y([22])21 b(L.)12
Xb(Eld)o(\023)-21 b(en,)13 b Fk(A)g(pr)n(o)n(gr)n(am)g(for)g(inter)n
X(active)g(r)n(e)n(gularization)p Fo(,)e(Rep)q(ort)h(LiTH-MA)l
X(T-R-79-25,)h(Dept.)152 1460 y(of)i(Mathematics,)g(Link\177)-23
Xb(oping)17 b(Univ)o(ersit)o(y)l(,)e(Sw)o(eden,)h(1979.)59
X1553 y([23])21 b(L.)13 b(Eld)o(\023)-21 b(en,)13 b Fk(A)g(weighte)n(d)h
X(pseudoinverse,)g(gener)n(alize)n(d)e(singular)h(values,)h(and)f(c)n
X(onstr)n(aine)n(d)g(le)n(ast)152 1609 y(squar)n(es)j(pr)n(oblems)p
XFo(,)e(BIT)i Fp(22)g Fo(\(1982\),)d(487{501.)59 1702
Xy([24])21 b(L.)c(Eld)o(\023)-21 b(en,)16 b Fk(A)h(note)f(on)h(the)g(c)n
X(omputation)h(of)g(the)f(gener)n(alize)n(d)e(cr)n(oss-validation)i
X(function)f(for)152 1758 y(il)r(l-c)n(onditione)n(d)g(le)n(ast)f(squar)
Xn(es)h(pr)n(oblems)p Fo(,)e(BIT)i Fp(24)f Fo(\(1984\),)e(467{472.)59
X1850 y([25])21 b(H.)f(W.)g(Engl)h(&)f(J.)h(Gfrerer,)f
XFk(A)h(p)n(osteriori)g(p)n(ar)n(ameter)g(choic)n(e)g(for)g(gener)n(al)f
X(r)n(e)n(gularization)152 1907 y(metho)n(ds)f(for)f(solving)f(line)n
X(ar)g(il)r(l-p)n(ose)n(d)g(pr)n(oblems)p Fo(,)g(App.)g(Numerical)i
X(Math.)d Fp(4)h Fo(\(1988\),)f(395{)152 1963 y(417.)59
X2056 y([26])21 b(R.)f(D.)f(Fierro)h(&)g(J.)f(R.)h(Bunc)o(h,)i
XFk(Col)r(line)n(arity)d(and)h(total)h(le)n(ast)f(squar)n(es)p
XFo(,)f(SIAM)i(J.)e(Matrix)152 2112 y(Anal.)d(Appl.,)g(15)e(\(1994\),)f
X(pp.)j(1167{1181.)59 2205 y([27])21 b(R.)13 b(D.)f(Fierro,)g(G.)g(H.)g
X(Golub,)h(P)l(.)f(C.)g(Hansen)h(&)g(D.)f(P)l(.)g(O'Leary)l(,)h
XFk(R)n(e)n(gularization)g(by)h(trunc)n(ate)n(d)152 2261
Xy(total)j(le)n(ast)e(squar)n(es)p Fo(,)g(SIAM)g(J.)g(Sci.)h(Comput.)f
XFp(18)g Fo(\(1997\),)e(1223{1241.)59 2354 y([28])21 b(R.)h(Fletc)o
X(her,)h Fk(Pr)n(actic)n(al)f(Optimization)g(Metho)n(ds.)g(V)m(ol.)f(1,)
Xj(Unc)n(onstr)n(aine)n(d)c(Optimization)p Fo(,)152 2410
Xy(Wiley)l(,)d(Chic)o(hester,)e(1980.)59 2503 y([29])21
Xb(G.)15 b(H.)f(Golub)h(&)h(C.)e(F.)g(V)l(an)h(Loan,)g
XFk(Matrix)h(Computations)p Fo(,)f(3.)f(Ed.,)g(Johns)h(Hopkins,)h
X(Balti-)152 2559 y(more,)f(1996.)59 2652 y([30])21 b(G.)d(H.)g(Golub)h
X(&)g(U.)f(v)o(on)g(Matt,)g Fk(Quadr)n(atic)n(al)r(ly)h(c)n(onstr)n
X(aine)n(d)f(le)n(ast)g(squar)n(es)h(and)g(quadr)n(atic)152
X2708 y(pr)n(oblems)p Fo(,)c(Numer.)g(Math.)f Fp(59)h
XFo(\(1991\),)e(561{580.)59 2801 y([31])21 b(C.)c(W.)f(Gro)q(etsc)o(h,)h
XFk(The)h(The)n(ory)f(of)i(Tikhonov)e(R)n(e)n(gularization)g(for)i(F)m
X(r)n(e)n(dholm)e(Equations)h(of)152 2857 y(the)f(First)f(Kind)p
XFo(,)e(Pitman,)h(Boston,)f(1984.)p eop
X%%Page: 107 109
X107 108 bop 59 159 a Fo(BIBLIOGRAPHY)1337 b(107)p 59
X178 1767 2 v 59 304 a([32])21 b(C.)10 b(W.)g(Gro)q(etsc)o(h,)g
XFk(Inverse)h(Pr)n(oblems)g(in)g(the)h(Mathematic)n(al)g(Scienc)n(es)p
XFo(,)d(View)o(eg)i(V)l(erlag,)g(Wies-)152 361 y(baden,)16
Xb(1993.)59 460 y([33])21 b(C.)g(W.)g(Gro)q(etsc)o(h)g(&)g(C.)g(R.)h(V)l
X(ogel,)h Fk(Asymptotic)f(the)n(ory)g(of)g(\014ltering)f(for)h(line)n
X(ar)f(op)n(er)n(ator)152 517 y(e)n(quations)16 b(with)h(discr)n(ete)f
X(noisy)f(data)p Fo(,)h(Math.)e(Comp.)h Fp(49)g Fo(\(1987\),)e(499{506.)
X59 616 y([34])21 b(J.)13 b(Hadamard,)e Fk(L)n(e)n(ctur)n(es)h(on)h
X(Cauchy's)h(Pr)n(oblem)f(in)g(Line)n(ar)f(Partial)i(Di\013er)n(ential)e
X(Equations)p Fo(,)152 673 y(Y)l(ale)k(Univ)o(ersit)o(y)g(Press,)f(New)g
X(Ha)o(v)o(en,)g(1923.)59 772 y([35])21 b(M.)11 b(Hank)o(e,)h
XFk(R)n(e)n(gularization)g(with)h(di\013er)n(ential)f(op)n(er)n(ators.)h
X(A)o(n)f(iter)n(ative)g(appr)n(o)n(ach)p Fo(,)h(J.)e(Numer.)152
X829 y(F)l(unct.)16 b(Anal.)f(Optim.)h Fp(13)f Fo(\(1992\),)e(523{540.)
X59 928 y([36])21 b(M.)15 b(Hank)o(e,)g Fk(Iter)n(ative)h(solution)g(of)
Xh(under)n(determine)n(d)f(line)n(ar)f(systems)h(by)g(tr)n(ansformation)
Xg(to)152 985 y(standar)n(d)j(form;)f Fo(in)g Fk(Numeric)n(al)g
X(Mathematics)g(in)g(The)n(ory)g(and)g(Pr)n(actic)n(e)p
XFo(,)f(Dept.)f(of)h(Mathe-)152 1041 y(matics,)e(Univ)o(ersit)o(y)h(of)f
X(W)l(est)g(Bohemia,)g(Plze)q(\024)-24 b(n,)16 b(pp.)f(55{63)f
X(\(1993\).)59 1141 y([37])21 b(M.)c(Hank)o(e)h(&)g(P)l(.)f(C.)g
X(Hansen,)h Fk(R)n(e)n(gularization)g(Metho)n(ds)g(for)g(L)n(ar)n(ge-Sc)
Xn(ale)f(Pr)n(oblems)p Fo(,)g(Surv.)152 1197 y(Math.)e(Ind.)g
XFp(3)h Fo(\(1993\),)d(253{315.)59 1297 y([38])21 b(P)l(.)f(C.)g
X(Hansen,)h Fk(The)f(trunc)n(ate)n(d)h(SVD)f(as)g(a)h(metho)n(d)g(for)g
X(r)n(e)n(gularization)p Fo(,)f(BIT)h Fp(27)f Fo(\(1987\),)152
X1353 y(543{553.)59 1453 y([39])h(P)l(.)d(C.)g(Hansen,)h
XFk(Computation)g(of)g(the)h(singular)e(value)h(exp)n(ansion)p
XFo(,)e(Computing)i Fp(40)f Fo(\(1988\),)152 1509 y(185{199.)59
X1609 y([40])j(P)l(.)12 b(C.)g(Hansen,)h Fk(Perturb)n(ation)h(b)n(ounds)
Xf(for)h(discr)n(ete)f(Tikhonov)g(r)n(e)n(gularization)p
XFo(,)e(In)o(v)o(erse)i(Prob-)152 1665 y(lems)j Fp(5)g
XFo(\(1989\),)d(L41{L44.)59 1765 y([41])21 b(P)l(.)15
Xb(C.)g(Hansen,)g Fk(R)n(e)n(gularization,)g(GSVD)h(and)g(trunc)n(ate)n
X(d)g(GSVD)p Fo(,)e(BIT)i Fp(29)f Fo(\(1989\),)e(491{504.)59
X1865 y([42])21 b(P)l(.)28 b(C.)f(Hansen,)32 b Fk(T)m(runc)n(ate)n(d)26
Xb(SVD)i(solutions)f(to)h(discr)n(ete)g(il)r(l-p)n(ose)n(d)f(pr)n
X(oblems)h(with)g(il)r(l-)152 1921 y(determine)n(d)17
Xb(numeric)n(al)e(r)n(ank)p Fo(,)g(SIAM)g(J.)g(Sci.)h(Stat.)e(Comput.)h
XFp(11)g Fo(\(1990\),)e(503{518.)59 2021 y([43])21 b(P)l(.)16
Xb(C.)f(Hansen,)g Fk(R)n(elations)h(b)n(etwe)n(en)f(SVD)i(and)f(GSVD)h
X(of)f(discr)n(ete)g(r)n(e)n(gularization)g(pr)n(oblems)152
X2077 y(in)g(standar)n(d)h(and)f(gener)n(al)f(form)p Fo(,)g(Lin.)h(Alg.)
Xg(Appl.)g Fp(141)f Fo(\(1990\),)e(165{176.)59 2177 y([44])21
Xb(P)l(.)c(C.)g(Hansen,)h Fk(The)f(discr)n(ete)h(Pic)n(ar)n(d)g(c)n
X(ondition)f(for)h(discr)n(ete)g(il)r(l-p)n(ose)n(d)f(pr)n(oblems)p
XFo(,)g(BIT)g Fp(30)152 2233 y Fo(\(1990\),)d(658{672.)59
X2333 y([45])21 b(P)l(.)15 b(C.)g(Hansen,)g Fk(A)o(nalysis)f(of)i(discr)
Xn(ete)g(il)r(l-p)n(ose)n(d)f(pr)n(oblems)h(by)g(me)n(ans)f(of)h(the)h
X(L-curve)p Fo(,)d(SIAM)152 2389 y(Review)j Fp(34)e Fo(\(1992\),)e
X(561{580.)59 2489 y([46])21 b(P)l(.)12 b(C.)f(Hansen,)i
XFk(Numeric)n(al)g(to)n(ols)g(for)g(analysis)f(and)i(solution)e(of)i(F)m
X(r)n(e)n(dholm)e(inte)n(gr)n(al)g(e)n(quations)152 2545
Xy(of)17 b(the)f(\014rst)g(kind)p Fo(,)f(In)o(v)o(erse)g(Problems)g
XFp(8)h Fo(\(1992\),)d(849{872.)59 2645 y([47])21 b(P)l(.)15
Xb(C.)f(Hansen,)g Fk(R)n(ank-De\014cient)h(and)h(Discr)n(ete)f(Il)r
X(l-Pose)n(d)f(Pr)n(oblems.)h(Numeric)n(al)g(Asp)n(e)n(cts)g(of)152
X2701 y(Line)n(ar)h(Inversion)p Fo(,)d(SIAM,)i(Philadelphia,)j(1997.)59
X2801 y([48])j(P)l(.)13 b(C.)f(Hansen)h(&)g(D.)e(P)l(.)i(O'Leary)l(,)g
XFk(The)g(use)h(of)g(the)g(L-curve)g(in)f(the)h(r)n(e)n(gularization)f
X(of)h(discr)n(ete)152 2857 y(il)r(l-p)n(ose)n(d)i(pr)n(oblems)p
XFo(,)e(SIAM)i(J.)f(Sci.)h(Comput.)e Fp(14)i Fo(\(1993\),)d(1487{1503.)p
Xeop
X%%Page: 108 110
X108 109 bop 64 159 a Fo(108)1334 b(BIBLIOGRAPHY)p 64
X178 1767 2 v 59 304 a([49])21 b(P)l(.)g(C.)f(Hansen,)i(T.)e(Sekii)i(&)f
X(H.)f(Shibahashi,)j Fk(The)e(mo)n(di\014e)n(d)g(trunc)n(ate)n(d)g(SVD)g
X(metho)n(d)g(for)152 361 y(r)n(e)n(gularization)16 b(in)g(gener)n(al)f
X(form)p Fo(,)g(SIAM)h(J.)f(Sci.)h(Stat.)e(Comput.)g Fp(13)i
XFo(\(1992\),)d(1142-1150.)59 458 y([50])21 b(B.)g(Hofmann,)h
XFk(R)n(e)n(gularization)f(for)h(Applie)n(d)f(Inverse)f(and)i(Il)r
X(l-Pose)n(d)e(Pr)n(oblems)p Fo(,)h(T)l(eubner,)152 514
Xy(Leipzig,)c(1986.)59 611 y([51])k(R.)16 b(Kress,)f Fk(Line)n(ar)g
X(Inte)n(gr)n(al)g(Equations)p Fo(,)f(Springer,)i(Berlin,)g(1989.)59
X708 y([52])21 b(C.)14 b(L.)h(La)o(wson)f(&)h(R.)g(J.)f(Hanson,)g
XFk(Solving)h(L)n(e)n(ast)f(Squar)n(es)h(Pr)n(oblems)p
XFo(,)f(Pren)o(tice-Hall,)i(Engle-)152 765 y(w)o(o)q(o)q(d)f(Cli\013s,)h
X(1974.)59 862 y([53])21 b(P)l(.)h(Linz,)j Fk(Unc)n(ertainty)d(in)g(the)
Xg(solution)h(of)f(line)n(ar)g(op)n(er)n(ator)h(e)n(quations)p
XFo(,)g(BIT)g Fp(24)f Fo(\(1984\),)152 918 y(92{101.)59
X1015 y([54])f Fk(Matlab)c(R)n(efer)n(enc)n(e)d(Guide)p
XFo(,)i(The)f(MathW)l(orks,)f(Mass.,)f(1996.)59 1112 y([55])21
Xb(K.)13 b(Miller,)h Fk(L)n(e)n(ast)e(squar)n(es)i(metho)n(ds)f(for)i
X(il)r(l-p)n(ose)n(d)e(pr)n(oblems)g(with)h(a)g(pr)n(escrib)n(e)n(d)f(b)
Xn(ound)p Fo(,)f(SIAM)152 1169 y(J.)k(Math.)e(Anal.)h
XFp(1)g Fo(\(1970\),)f(52{74.)59 1266 y([56])21 b(V.)g(A.)g(Morozo)o(v,)
Xg Fk(Metho)n(ds)h(for)g(Solving)f(Inc)n(orr)n(e)n(ctly)f(Pose)n(d)h(Pr)
Xn(oblems)p Fo(,)h(Springer)g(V)l(erlag,)152 1322 y(New)16
Xb(Y)l(ork,)e(1984.)59 1419 y([57])21 b(F.)14 b(Natterer,)g
XFk(The)h(Mathematics)h(of)g(Computerize)n(d)g(T)m(omo)n(gr)n(aphy)p
XFo(,)e(John)h(Wiley)l(,)h(New)e(Y)l(ork,)152 1476 y(1986.)59
X1573 y([58])21 b(F.)15 b(Natterer,)f Fk(Numeric)n(al)i(tr)n(e)n(atment)
Xg(of)g(il)r(l-p)n(ose)n(d)g(pr)n(oblems)p Fo(,)e(in)i([65)o(].)59
X1670 y([59])21 b(D.)12 b(P)l(.)f(O'Leary)h(&)g(J.)f(A.)h(Simmons,)g
XFk(A)h(bidiagonalization-r)n(e)n(gularization)f(pr)n(o)n(c)n(e)n(dur)n
X(e)h(for)g(lar)n(ge)152 1726 y(sc)n(ale)h(discr)n(etizations)g(of)h(il)
Xr(l-p)n(ose)n(d)g(pr)n(oblems)p Fo(,)e(SIAM)h(J.)g(Sci.)g(Stat.)f
X(Comput.)g Fp(2)h Fo(\(1981\),)e(474{)152 1783 y(489.)59
X1880 y([60])21 b(C.)16 b(C.)g(P)o(aige)g(&)g(M.)g(A.)f(Saunders,)i
XFk(LSQR:)f(an)h(algorithm)h(for)f(sp)n(arse)g(line)n(ar)f(e)n(quations)
Xh(and)152 1936 y(sp)n(arse)f(le)n(ast)g(squar)n(es)p
XFo(,)e(A)o(CM)g(T)l(rans.)h(Math.)f(Soft)o(w)o(are)g
XFp(8)h Fo(\(1982\),)e(43{71.)59 2033 y([61])21 b(R.)d(L.)g(P)o(ark)o
X(er,)g Fk(Understanding)f(inverse)h(the)n(ory)p Fo(,)g(Ann.)g(Rev.)h
X(Earth)e(Planet)h(Sci.)h Fp(5)f Fo(\(1977\),)152 2090
Xy(35{64.)59 2187 y([62])j(D.)15 b(L.)g(Phillips,)i Fk(A)f(te)n(chnique)
Xf(for)h(the)h(numeric)n(al)e(solution)h(of)g(c)n(ertain)f(inte)n(gr)n
X(al)g(e)n(quations)h(of)152 2243 y(the)h(\014rst)f(kind)p
XFo(,)e(J.)h(A)o(CM)g Fp(9)g Fo(\(1962\),)e(84{97.)59
X2340 y([63])21 b(F.)h(San)o(tosa,)h(Y.-H.)f(P)o(ao,)h(W.)f(W.)g(Symes)g
X(&)h(C.)f(Holland)i(\(Eds.\),)f Fk(Inverse)e(Pr)n(oblems)i(of)152
X2397 y(A)n(c)n(oustic)16 b(and)g(Elastic)g(Waves)p Fo(,)f(SIAM,)g
X(Philadelphia,)j(1984.)59 2494 y([64])j(C.)13 b(Ra)o(y)g(Smith)h(&)f
X(W.)g(T.)f(Grandy)l(,)h(Jr.)g(\(Eds.\),)f Fk(Maximum-Entr)n(opy)k(and)e
X(Bayesian)g(Metho)n(ds)152 2550 y(in)i(Inverse)f(Pr)n(oblems)p
XFo(,)f(Reidel,)j(Boston,)d(1985.)59 2647 y([65])21 b(G.)f(T)l(alen)o
X(ti)i(\(Ed.\),)f Fk(Inverse)e(Pr)n(oblems)p Fo(,)i(Lecture)g(Notes)g
X(in)g(Mathematics)f(1225,)h(Springer)152 2704 y(V)l(erlag,)16
Xb(Berlin,)g(1986.)59 2801 y([66])21 b(H.)12 b(J.)f(J.)h(te)f(Riele,)j
XFk(A)f(pr)n(o)n(gr)n(am)g(for)h(solving)d(\014rst)i(kind)f(F)m(r)n(e)n
X(dholm)g(inte)n(gr)n(al)g(e)n(quations)h(by)g(me)n(ans)152
X2857 y(of)k(r)n(e)n(gularization)p Fo(,)d(Computer)h(Ph)o(ysics)h
X(Comm.)e Fp(36)h Fo(\(1985\),)e(423{432.)p eop
X%%Page: 109 111
X109 110 bop 59 159 a Fo(BIBLIOGRAPHY)1337 b(109)p 59
X178 1767 2 v 59 304 a([67])21 b(A.)e(N.)g(Tikhono)o(v,)h
XFk(Solution)f(of)h(inc)n(orr)n(e)n(ctly)f(formulate)n(d)h(pr)n(oblems)f
X(and)h(the)g(r)n(e)n(gularization)152 361 y(metho)n(d)p
XFo(,)13 b(Dokl.)e(Ak)m(ad.)g(Nauk.)h(SSSR)g Fp(151)g
XFo(\(1963\),)e(501{504)f(=)j(So)o(viet)g(Math.)e(Dokl.)h
XFp(4)h Fo(\(1963\),)152 417 y(1035{1038.)59 511 y([68])21
Xb(A.)16 b(N.)g(Tikhono)o(v)g(&)g(V.)f(Y.)h(Arsenin,)h
XFk(Solutions)f(of)h(Il)r(l-Pose)n(d)f(Pr)n(oblems)p Fo(,)f(Winston)h(&)
Xg(Sons,)152 568 y(W)l(ashington,)f(D.C.,)f(1977.)59 661
Xy([69])21 b(A.)f(N.)g(Tikhono)o(v)g(&)h(A.)f(V.)g(Gonc)o(harsky)l(,)g
XFk(Il)r(l-Pose)n(d)g(Pr)n(oblems)g(in)g(the)h(Natur)n(al)g(Scienc)n(es)
Xp Fo(,)152 718 y(MIR)16 b(Publishers,)h(Mosco)o(w,)c(1987.)59
X812 y([70])21 b(A.)15 b(v)m(an)h(der)g(Sluis,)g Fk(The)g(c)n(onver)n
X(genc)n(e)e(b)n(ehavior)j(of)f(c)n(onjugate)g(gr)n(adients)g(and)g(R)o
X(itz)g(values)g(in)152 868 y(various)k(cir)n(cumstanc)n(es)p
XFo(;)e(in)h(R.)g(Beau)o(w)o(ens)f(&)h(P)l(.)f(de)h(Gro)q(en)f
X(\(Eds.\),)g Fk(Iter)n(ative)g(Metho)n(ds)h(in)152 925
Xy(Line)n(ar)d(A)o(lgebr)n(a)p Fo(,)e(North-Holland,)h(Amsterdam,)g
X(1992.)59 1018 y([71])21 b(A.)e(v)m(an)h(der)f(Sluis)i(&)f(H.)e(A.)h(v)
Xm(an)h(der)f(V)l(orst,)g Fk(SIR)m(T-)g(and)h(CG-typ)n(e)g(metho)n(ds)g
X(for)g(iter)n(ative)152 1075 y(solution)15 b(of)h(sp)n(arse)e(line)n
X(ar)g(le)n(ast-squar)n(es)g(pr)n(oblems)p Fo(,)g(Lin.)h(Alg.)f(Appl.)h
XFp(130)f Fo(\(1990\),)e(257{302.)59 1169 y([72])21 b(J.)c(M.)g(V)l
X(arah,)f Fk(On)i(the)g(numeric)n(al)f(solution)h(of)g(il)r(l-c)n
X(onditione)n(d)f(line)n(ar)g(systems)g(with)h(appli-)152
X1225 y(c)n(ations)e(to)h(il)r(l-p)n(ose)n(d)e(pr)n(oblems)p
XFo(,)f(SIAM)i(J.)f(Numer.)g(Anal.)h Fp(10)f Fo(\(1973\),)e(257{267.)59
X1319 y([73])21 b(J.)c(M.)e(V)l(arah,)h Fk(A)h(pr)n(actic)n(al)g
X(examination)g(of)g(some)g(numeric)n(al)g(metho)n(ds)g(for)h(line)n(ar)
Xe(discr)n(ete)152 1375 y(il)r(l-p)n(ose)n(d)g(pr)n(oblems)p
XFo(,)e(SIAM)i(Rev.)f Fp(21)h Fo(\(1979\),)d(100{111.)59
X1469 y([74])21 b(J.)c(M.)e(V)l(arah,)h Fk(Pitfal)r(ls)g(in)h(the)g
X(numeric)n(al)g(solution)g(of)g(line)n(ar)f(il)r(l-p)n(ose)n(d)h(pr)n
X(oblems)p Fo(,)e(SIAM)i(J.)152 1526 y(Sci.)f(Stat.)e(Comput.)h
XFp(4)g Fo(\(1983\),)e(164{176.)59 1619 y([75])21 b(C.)c(R.)g(V)l(ogel,)
Xh Fk(Optimal)g(choic)n(e)g(of)g(a)h(trunc)n(ation)e(level)g(for)i(the)f
X(trunc)n(ate)n(d)g(SVD)g(solution)g(of)152 1676 y(line)n(ar)h(\014rst)g
X(kind)h(inte)n(gr)n(al)e(e)n(quations)h(when)h(data)g(ar)n(e)g(noisy)p
XFo(,)f(SIAM)g(J.)g(Numer.)f(Anal.)h Fp(23)152 1732 y
XFo(\(1986\),)14 b(109{117.)59 1826 y([76])21 b(C.)27
Xb(R.)g(V)l(ogel,)j Fk(Solving)25 b(il)r(l-c)n(onditione)n(d)h(line)n
X(ar)g(systems)g(using)h(the)g(c)n(onjugate)g(gr)n(adient)152
X1883 y(metho)n(d)p Fo(,)16 b(Rep)q(ort,)f(Dept.)g(of)f(Mathematical)i
X(Sciences,)g(Mon)o(tana)e(State)h(Univ)o(ersit)o(y)l(,)g(1987.)59
X1976 y([77])21 b(G.)c(W)l(ah)o(ba,)g Fk(Spline)g(Mo)n(dels)g(for)i
X(Observational)e(Data)p Fo(,)h(CBMS-NSF)g(Regional)g(Conference)152
X2033 y(Series)f(in)f(Applied)h(Mathematics,)d(V)l(ol.)i(59,)e(SIAM,)h
X(Philadelphi)q(a,)i(1990.)59 2127 y([78])k(G.)c(M.)g(Wing,)h
XFk(Condition)g(numb)n(ers)f(of)i(matric)n(es)f(arising)f(fr)n(om)i(the)
Xg(numeric)n(al)f(solution)g(of)152 2183 y(line)n(ar)j(inte)n(gr)n(al)e
X(e)n(quations)i(of)g(the)h(\014rst)e(kind)p Fo(,)h(J.)f(In)o(tegral)h
X(Equations)f Fp(9)h Fo(\(Suppl.\))g(\(1985\),)152 2240
Xy(191{204.)59 2333 y([79])g(G.)13 b(M.)g(Wing)g(&)h(J.)f(D.)g(Zahrt,)f
XFk(A)j(Primer)g(on)f(Inte)n(gr)n(al)f(Equations)h(of)h(the)g(First)f
X(Kind)p Fo(,)f(SIAM,)152 2390 y(Philadelphi)q(a,)k(1991.)59
X2484 y([80])k(H.)16 b(Zha)g(&)h(P)l(.)f(C.)f(Hansen,)i
XFk(R)n(e)n(gularization)f(and)i(the)f(gener)n(al)f(Gauss-Markov)i(line)
Xn(ar)e(mo)n(del)p Fo(,)152 2540 y(Math.)f(Comp.)f Fp(55)h
XFo(\(1990\),)f(613{624.)p eop
X%%Trailer
Xend
Xuserdict /end-hook known{end-hook}if
X%%EOF
END_OF_FILE
if test 2119016 -ne `wc -c <'Manual.ps'`; then
    echo shar: \"'Manual.ps'\" unpacked with wrong size!
fi
# end of 'Manual.ps'
fi
if test -f 'Contents.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'Contents.m'\"
else
echo shar: Extracting \"'Contents.m'\" \(5055 characters\)
sed "s/^X//" >'Contents.m' <<'END_OF_FILE'
X% Regularization Tools.
X% Version 3.0  16-April-98.
X% Copyright (c) 1993 and 1998 by Per Christian Hansen and IMM.
X%
X% Demonstration.
X%   regudemo  - Tutorial introduction to Regularization Tools.
X%
X% Test examples.
X%   baart     - Fredholm integral equation of the first kind.
X%   blur      - Image deblurring test problem.
X%   deriv2    - Computation of the second derivative.
X%   foxgood   - Severely ill-posed problem.
X%   heat      - Inverse heat equation.
X%   ilaplace  - Inverse Laplace transformation.
X%   parallax  - Stellar parallax problem with 28 fixed observations.
X%   phillips  - Philips' "famous" test problem.
X%   shaw      - One-dimensional image restoration problem.
X%   spikes    - Test problem with a "spiky" solution.
X%   ursell    - Integral equation with no square integrable solution.
X%   wing      - Test problem with a discontinuous solution.
X%
X% Regularization routines.
X%   cgls      - Computes the least squares solution based on k steps
X%               of the conjugate gradient algorithm.
X%   discrep   - Minimizes the solution (semi-)norm subject to an upper
X%               bound on the residual norm (discrepancy principle).
X%   dsvd      - Computes the damped SVD/GSVD solution.
X%   lsqi      - Minimizes the residual norm subject to an upper bound
X%               on the (semi-)norm of the solution.
X%   lsqr      - Computes the least squares solution based on k steps
X%               of the LSQR algorithm (Lanczos bidiagonalization).
X%   maxent    - Computes the maximum entropy regularized solution.
X%   mtsvd     - Computes the modified TSVD solution.
X%   nu        - Computes the solution based on k steps of Brakhage's
X%               iterative nu-method.
X%   pcgls     - Same as cgls, but for general-form regularization.
X%   plsqr     - Same as lsqr, but for general-form regularization.
X%   pnu       - Same as nu, but for general-form regularization.
X%   tgsvd     - Computes the truncated GSVD solution.
X%   tikhonov  - Computes the Tikhonov regularized solution.
X%   tsvd      - Computes the truncated SVD solution.
X%   ttls      - Computes the truncated TLS solution.
X%
X% Analysis routines.
X%   fil_fac   - Computes filter factors for some regularization methods.
X%   gcv       - Plots the GCV function and computes its minimum.
X%   l_corner  - Locates the L-shaped corner of the L-curve.
X%   l_curve   - Computes the L-curve, plots it, and computes its corner.
X%   lagrange  - Plots the Lagrange function ||Ax-b||^2 + lambda^2*||Lx||^2,
X%               and its derivative.
X%   picard    - Plots the (generalized) singular values, the Fourier
X%               coefficient for the right-hand side, and a (smoothed curve of)
X%               the solution's Fourier-coefficients.
X%   plot_lc   - Plots an L-curve.
X%   quasiopt  - Plots the quasi-optimality function and computes its minimum.
X%
X% Routines for transforming a problem in general form into one in
X% standard form, and back again.
X%   gen_form  - Transforms a standard-form solution back into the
X%               general-form setting.
X%   std_form  - Transforms a general-form problem into one in
X%               standard form.
X%
X% Utility routines.
X%   bidiag    - Bidiagonalization of a matrix by Householder transformations.
X%   cgsvd     - Computes the compact generalized SVD of a matrix pair.
X%   csvd      - Computes the compact SVD of an m-by-n matrix.
X%   get_l     - Produces a p-by-n matrix which is the discrete
X%               approximation to the d'th order derivative operator.
X%   lanc_b    - Performs k steps of the Lanczos bidiagonalization
X%               process with/without reorthogonalization.
X%   regutm    - Generates random test matrices for regularization methods.
X%
X% Auxiliary routines required by some of the above routines.
X%   app_hh_l  - Applies a Householder transformation from the left.
X%   gen_hh    - Generates a Householder transformation.
X%   heb_new   - Newton-Raphson iteration with Hebden's rational
X%               approximation, used in lsqi.
X%   lsolve    - Inversion with A-weighted generalized inverse of L.
X%   ltsolve   - Inversion with transposed A-weighted inverse of L.
X%   newton    - Newton iteration, used in discrep.
X%   pinit     - Initialization for treating general-form problems.
X%   pythag    - Computes sqrt(a^2 + b^2).
X%   spleval   - Computes points on a spline or spline curve.
X
X% The following three routines are not documented, since they are only used
X% internally by gcv, l_corner, and quasiopt, respectively.
X%   gcvfun    - Computes the GCV function
X%   lcfun     - Computes the curvature of the L-curve
X%   quasifun  - Computes the quasi-optimality function.
X%
X% In certain occasions (cf. the manual), the function l_corner requires the
X% following nine functions from the Spline Toolbox, Version 2.0:
X%   fnder, ppbrk, ppmak, ppual, sp2pp, sorted, spbrk, spmak, sprpp.
X% If the Spline Toolbox is not available, then the package can still be used
X% with almost full functionality, the only exception being that one is not
X% able to compute the "corner" of discrete L-curves.
END_OF_FILE
if test 5055 -ne `wc -c <'Contents.m'`; then
    echo shar: \"'Contents.m'\" unpacked with wrong size!
fi
# end of 'Contents.m'
fi
if test -f 'app_hh.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'app_hh.m'\"
else
echo shar: Extracting \"'app_hh.m'\" \(302 characters\)
sed "s/^X//" >'app_hh.m' <<'END_OF_FILE'
Xfunction A = app_hh(A,beta,v)
X%APP_HH Apply a Householder transformation.
X%
X% A = app_hh(A,beta,v)
X%
X% Applies the Householder transformation, defined by
X% vector v and scaler beta, to the matrix A; i.e.
X%     A = (eye - beta*v*v')*A .
X
X% Per Christian Hansen, IMM, 03/11/92.
X
XA = A - (beta*v)*(v'*A);
END_OF_FILE
if test 302 -ne `wc -c <'app_hh.m'`; then
    echo shar: \"'app_hh.m'\" unpacked with wrong size!
fi
# end of 'app_hh.m'
fi
if test -f 'baart.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'baart.m'\"
else
echo shar: Extracting \"'baart.m'\" \(1579 characters\)
sed "s/^X//" >'baart.m' <<'END_OF_FILE'
Xfunction [A,b,x] = baart(n)
X%BAART Test problem: Fredholm integral equation of the first kind.
X%
X% [A,b,x] = baart(n)
X%
X% Discretization of a first-kind Fredholm integral equation with
X% kernel K and right-hand side g given by
X%    K(s,t) = exp(s*cos(t)) ,  g(s) = 2*sinh(s)/s ,
X% and with integration intervals  s in [0,pi/2] ,  t in [0,pi] .
X% The solution is given by
X%    f(t) = sin(t) .
X%
X% The order n must be even.
X 
X% Reference: M. L. Baart, "The use of auto-correlation for pseudo-
X% rank determination in noisy ill-conditioned linear least-squares
X% problems", IMA J. Numer. Anal. 2 (1982), 241-247.
X
X% Discretized by the Galerkin method with orthonormal box functions;
X% one integration is exact, the other is done by Simpson's rule.
X
X% Per Christian Hansen, IMM, 09/16/92.
X
X% Check input.
Xif (rem(n,2)~=0), error('The order n must be even'), end
X
X% Generate the matrix.
Xhs = pi/(2*n); ht = pi/n; c = 1/(3*sqrt(2));
XA = zeros(n,n); ihs = [0:n]'*hs; n1 = n+1; nh = n/2;
Xf3 = exp(ihs(2:n1)) - exp(ihs(1:n));
Xfor j=1:n
X  f1 = f3; co2 = cos((j-.5)*ht); co3 = cos(j*ht);
X  f2 = (exp(ihs(2:n1)*co2) - exp(ihs(1:n)*co2))/co2;
X  if (j==nh)
X    f3 = hs*ones(n,1);
X  else
X    f3 = (exp(ihs(2:n1)*co3) - exp(ihs(1:n)*co3))/co3;
X  end
X  A(:,j) = c*(f1 + 4*f2 + f3);
Xend
X
X% Generate the right-hand side.
Xif (nargout>1)
X  si(1:2*n) = [.5:.5:n]'*hs; si = sinh(si)./si;
X  b = zeros(n,1);
X  b(1) = 1 + 4*si(1) + si(2);
X  b(2:n) = si(2:2:2*n-2) + 4*si(3:2:2*n-1) + si(4:2:2*n);
X  b = b*sqrt(hs)/3;
Xend
X
X% Generate the solution.
Xif (nargout==3)
X  x = -diff(cos([0:n]'*ht))/sqrt(ht);
Xend
END_OF_FILE
if test 1579 -ne `wc -c <'baart.m'`; then
    echo shar: \"'baart.m'\" unpacked with wrong size!
fi
# end of 'baart.m'
fi
if test -f 'bidiag.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'bidiag.m'\"
else
echo shar: Extracting \"'bidiag.m'\" \(1617 characters\)
sed "s/^X//" >'bidiag.m' <<'END_OF_FILE'
Xfunction [U,B,V] = bidiag(A)
X%BIDIAG Bidiagonalization of an m-times-n matrix with m >= n.
X%
X% B = bidiag(A)
X% [U,B,V] = bidiag(A)
X% 
X% Computes the bidiagonalization of the m-times-n matrix A with m >= n:
X%     A = U*B*V' ,
X% where B is an upper bidiagonal n-times-n matrix, and U and V have
X% orthogonal columns.  The matrix B is stored as a sparse matrix.
X
X% Reference: L. Elden, "Algorithms for regularization of ill-
X% conditioned least-squares problems", BIT 17 (1977), 134-145.
X
X% Per Christian Hansen, IMM, 06/30/97.
X
X% Initialization.
X[m,n] = size(A);
Xif (m < n), error('Illegal dimensions of A'), end
XB = sparse(n,n);
Xif (nargout> 1), U = [eye(n);zeros(m-n,n)]; betaU = zeros(n,1); end
Xif (nargout==3), V = eye(n); betaV = zeros(n,1); end
X
X% Bidiagonalization; save Householder quantities.
Xif (m > n), k_last = n; else k_last = n-1; end
Xfor k=1:k_last
X
X  [B(k,k),beta,A(k:m,k)] = gen_hh(A(k:m,k));
X  if (k < n), A(k:m,k+1:n) = app_hh(A(k:m,k+1:n),beta,A(k:m,k)); end
X  if (nargout>1), betaU(k) = beta; end
X
X  if (k < n-1)
X    [B(k,k+1),beta,v] = gen_hh(A(k,k+1:n)'); A(k,k+1:n) = v';
X    A(k+1:m,k+1:n) = app_hh(A(k+1:m,k+1:n)',beta,A(k,k+1:n)')';
X    if (nargout==3), betaV(k) = beta;, end
X  elseif (k == n-1)
X    B(n-1,n) = A(n-1,n);
X  end
X
Xend
X
X% Save bottom element if A is square.
Xif (k_last < n), B(n,n) = A(n,n); end
X
X% Compute U if wanted.
Xif (nargout>1)
X  for k=k_last:-1:1
X    U(k:m,k:n) = app_hh(U(k:m,k:n),betaU(k),A(k:m,k));
X  end
Xend
X
X% Compute V if wanted.
Xif (nargout==3)
X  for k=n-2:-1:1
X    V(k+1:n,k:n) = app_hh(V(k+1:n,k:n),betaV(k),A(k,k+1:n)');
X  end
Xend
X
Xif (nargout < 2), U = B; end
END_OF_FILE
if test 1617 -ne `wc -c <'bidiag.m'`; then
    echo shar: \"'bidiag.m'\" unpacked with wrong size!
fi
# end of 'bidiag.m'
fi
if test -f 'blur.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'blur.m'\"
else
echo shar: Extracting \"'blur.m'\" \(2346 characters\)
sed "s/^X//" >'blur.m' <<'END_OF_FILE'
Xfunction [A,b,x] = blur(N,band,sigma)
X%BLUR Test problem: digital image deblurring.
X%
X% function [A,b,x] = blur(N,band,sigma)
X%
X% The matrix A is an N*N-by-N*N symmetric, doubly block Toeplitz matrix that
X% models blurring of an N-by-N image by a Gaussian point spread function.
X% It is stored in sparse matrix format.
X%
X% In each Toeplitz block, only matrix elements within a distance band-1
X% from the diagonal are nonzero (i.e., band is the half-bandwidth).
X% If band is not specified, band = 3 is used.
X%
X% The parameter sigma controls the width of the Gaussian point spread
X% function and thus the amount of smoothing (the larger the sigma, the wider
X% the function and the more ill posed the problem).  If sigma is not
X% specified, sigma = 0.7 is used.
X%
X% The vector x is a columnwise stacked version of a simple test image, while
X% b holds a columnwise stacked version of the blurrred image; i.e, b = A*x.
X
X% Per Christian Hansen, IMM, 11/11/97.
X
X% Initialization.
Xif (nargin < 2), band = 3; end
Xband = min(band,N);
Xif (nargin < 3), sigma = 0.7; end
X
X% Construct the matrix as a Kronecker product.
Xz = [exp(-([0:band-1].^2)/(2*sigma^2)),zeros(1,N-band)];
XA = toeplitz(z);
XA = sparse(A);
XA = (1/(2*pi*sigma^2))*kron(A,A);
X
X% Generate x and b, if required.
Xif (nargout > 1)
X
X  % Start with an image of all zeros.
X  x = zeros(N,N);
X  N2 = round(N/2);
X  N3= round(N/3);
X  N6 = round(N/6);
X  N12 = round(N/12);
X
X  % Add a large ellipse.
X  T = zeros(N6,N3);
X  for i=1:N6, for j=1:N3
X    if ( (i/N6)^2 + (j/N3)^2 < 1 ), T(i,j) = 1; end
X  end, end
X  T = [fliplr(T),T];
X  T = [flipud(T);T];
X  x(2+[1:2*N6],N3-1+[1:2*N3]) = T;
X
X  % Add a smaller ellipse.
X  T = zeros(N6,N3);
X  for i=1:N6, for j=1:N3
X    if ( (i/N6)^2 + (j/N3)^2 < 0.6 ), T(i,j) = 1; end
X  end, end
X  T = [fliplr(T),T];
X  T = [flipud(T);T];
X  x(N6+[1:2*N6],N3-1+[1:2*N3]) = x(N6+[1:2*N6],N3-1+[1:2*N3]) + 2*T;
X  % Correct for overlap.
X  f = find(x==3);
X  x(f) = 2*ones(size(f));
X
X  % Add a triangle.
X  T = triu(ones(N3,N3));
X  [mT,nT] = size(T);
X  x(N3+N12+[1:nT],1+[1:mT]) = 3*T;
X
X  % Add a cross.
X  T = zeros(2*N6+1,2*N6+1);
X  [mT,nT] = size(T);
X  T(N6+1,1:nT) = ones(1,nT);
X  T(1:mT,N6+1) = ones(mT,1);
X  x(N2+N12+[1:mT],N2+[1:nT]) = 4*T;
X
X  % Make sure x is N-times-N, and stack the columns of x.
X  x = reshape(x(1:N,1:N),N^2,1);
X
X  % Compute the blurred image.
X  b = A*x;
X
Xend
END_OF_FILE
if test 2346 -ne `wc -c <'blur.m'`; then
    echo shar: \"'blur.m'\" unpacked with wrong size!
fi
# end of 'blur.m'
fi
if test -f 'cgls.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'cgls.m'\"
else
echo shar: Extracting \"'cgls.m'\" \(2725 characters\)
sed "s/^X//" >'cgls.m' <<'END_OF_FILE'
Xfunction [X,rho,eta,F] = cgls(A,b,k,reorth,s)
X%CGLS Conjugate gradient algorithm applied implicitly to the normal equations.
X%
X% [X,rho,eta,F] = cgls(A,b,k,reorth,s)
X%
X% Performs k steps of the conjugate gradient algorithm applied
X% implicitly to the normal equations A'*A*x = A'*b.
X%
X% The routine returns all k solutions, stored as columns of
X% the matrix X.  The corresponding solution and residual norms
X% are returned in the vectors eta and rho, respectively.
X%
X% If the singular values s are also provided, cgls computes the
X% filter factors associated with each step and stores them
X% columnwise in the matrix F.
X%
X% Reorthogonalization of the normal equation residual vectors
X% A'*(A*X(:,i)-b) is controlled by means of reorth:
X%    reorth = 0 : no reorthogonalization (default),
X%    reorth = 1 : reorthogonalization by means of MGS.
X
X% References: A. Bjorck, "Numerical Methods for Least Squares Problems",
X% SIAM, Philadelphia, 1996.
X% C. R. Vogel, "Solving ill-conditioned linear systems using the
X% conjugate gradient method", Report, Dept. of Mathematical
X% Sciences, Montana State University, 1987.
X 
X% Per Christian Hansen, IMM, 07/02/97.
X
X% The fudge threshold is used to prevent filter factors from exploding.
Xfudge_thr = 1e-4;
X 
X% Initialization.
Xif (k < 1), error('Number of steps k must be positive'), end
Xif (nargin==3), reorth = 0; end
Xif (nargout==4 & nargin<5), error('Too few input arguments'), end
Xif (reorth<0 | reorth>1), error('Illegal reorth'), end
X[m,n] = size(A); X = zeros(n,k);
Xif (reorth==1), ATr = zeros(n,k); end
Xif (nargout > 1)
X  eta = zeros(k,1); rho = eta;
Xend
Xif (nargin==5)
X  F = zeros(n,k); Fd = zeros(n,1); s2 = s.^2;
Xend
X
X% Prepare for CG iteration.
Xx = zeros(n,1);
Xd = A'*b;
Xr = b;
Xnormr2 = d'*d;
Xif (reorth==1), ATr(:,1) = d/norm(d); end
X
X% Iterate.
Xfor j=1:k
X
X  % Update x and r vectors.
X  Ad = A*d; alpha = normr2/(Ad'*Ad);
X  x  = x + alpha*d;
X  r  = r - alpha*Ad;
X  s  = A'*r;
X
X  % Reorthogonalize s to previous s-vectors, if required.
X  if (reorth==1)
X    for i=1:j-1, s = s - (ATr(:,i)'*s)*ATr(:,i); end
X    ATr(:,j) = s/norm(s);
X  end
X
X  % Update d vector.
X  normr2_new = s'*s;
X  beta = normr2_new/normr2;
X  normr2 = normr2_new;
X  d = s + beta*d;
X  X(:,j) = x;
X  
X  % Compute norms, if required.
X  if (nargout>1), rho(j) = norm(r); end
X  if (nargout>2), eta(j) = norm(x); end
X
X  % Compute filter factors, if required.
X  if (nargin==5)
X    if (j==1)
X      F(:,1) = alpha*s2;
X      Fd = s2 - s2.*F(:,1) + beta*s2;
X    else
X      F(:,j) = F(:,j-1) + alpha*Fd;
X      Fd = s2 - s2.*F(:,j) + beta*Fd;
X    end
X    if (j > 2)
X      f = find(abs(F(:,j-1)-1) < fudge_thr & abs(F(:,j-2)-1) < fudge_thr);
X      if (length(f) > 0), F(f,j) = ones(length(f),1); end
X    end
X  end
X
Xend
END_OF_FILE
if test 2725 -ne `wc -c <'cgls.m'`; then
    echo shar: \"'cgls.m'\" unpacked with wrong size!
fi
# end of 'cgls.m'
fi
if test -f 'cgsvd.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'cgsvd.m'\"
else
echo shar: Extracting \"'cgsvd.m'\" \(1083 characters\)
sed "s/^X//" >'cgsvd.m' <<'END_OF_FILE'
Xfunction [U,sm,X,V] = cgsvds(A,L)
X%CGSVD Compact generalized SVD of a matrix pair in regularization problems.
X%
X% sm = cgsvd(A,L)
X% [U,sm,X,V] = cgsvd(A,L) ,  sm = [sigma,mu]
X%
X% Computes the generalized SVD of the matrix pair (A,L):
X%    [ A ] = [ U  0 ]*[ diag(sigma)      0    ]*inv(X)
X%    [ L ]   [ 0  V ] [      0       eye(n-p) ]
X%                     [  diag(mu)        0    ]
X% where
X%    U  is  m-by-n ,    sigma  is  p-by-1
X%    V  is  p-by-p ,    mu     is  p-by-1
X%    X  is  n-by-n .
X%
X% It is assumed that m >= n >= p, which is true in regularization problems.
X
X% Reference: C. F. Van Loan, "Computing the CS and the generalized
X% singular value decomposition", Numer. Math. 46 (1985), 479-491.
X
X% Per Christian Hansen, IMM, 12/19/97.
X
X% Initialization.
X[m,n] = size(A); [p,n1] = size(L);
Xif (n1 ~= n | m < n | n < p)
X  error('Incorrect dimensions of A and L')
Xend
X
X% Call Matlab's GSVD routine.
X[U,V,W,C,S] = gsvd(full(A),full(L),0);
Xsm = [diag(C(1:p,1:p)),diag(S(1:p,1:p))];
X
X% Finalize.
Xif (nargout < 2)
X   U = sm;
Xelse
X   % Full decomposition.
X   X = inv(W');
Xend
END_OF_FILE
if test 1083 -ne `wc -c <'cgsvd.m'`; then
    echo shar: \"'cgsvd.m'\" unpacked with wrong size!
fi
# end of 'cgsvd.m'
fi
if test -f 'csvd.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'csvd.m'\"
else
echo shar: Extracting \"'csvd.m'\" \(722 characters\)
sed "s/^X//" >'csvd.m' <<'END_OF_FILE'
Xfunction [U,s,V] = csvd(A,tst)
X%CSVD Compact singular value decomposition.
X%
X% s = csvd(A)
X% [U,s,V] = csvd(A)
X% [U,s,V] = csvd(A,'full')
X%
X% Computes the compact form of the SVD of A:
X%    A = U*diag(s)*V',
X% where
X%    U  is  m-by-min(m,n)
X%    s  is  min(m,n)-by-1
X%    V  is  n-by-min(m,n).
X%
X% If a second argument is present, the full U and V are returned.
X
X% Per Christian Hansen, IMM, 06/22/93.
X
Xif (nargin==1)
X  if (nargout > 1)
X    [m,n] = size(A);
X    if (m >= n)
X      [U,s,V] = svd(full(A),0); s = diag(s);
X    else
X      [V,s,U] = svd(full(A)',0); s = diag(s);
X    end
X  else
X    U = svd(full(A));
X  end
Xelse
X  if (nargout > 1)
X    [U,s,V] = svd(full(A)); s = diag(s);
X  else
X    U = svd(full(A));
X  end
Xend
END_OF_FILE
if test 722 -ne `wc -c <'csvd.m'`; then
    echo shar: \"'csvd.m'\" unpacked with wrong size!
fi
# end of 'csvd.m'
fi
if test -f 'deriv2.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'deriv2.m'\"
else
echo shar: Extracting \"'deriv2.m'\" \(2718 characters\)
sed "s/^X//" >'deriv2.m' <<'END_OF_FILE'
Xfunction [A,b,x] = deriv2(n,example)
X%DERIV2 Test problem: computation of the second derivative.
X%
X% [A,b,x] = deriv2(n,example)
X%
X% This is a mildly ill-posed problem.  It is a discretization of a
X% first kind Fredholm integral equation whose kernel K is the
X% Green's function for the second derivative:
X%    K(s,t) = | s(t-1)  ,  s <  t .
X%             | t(s-1)  ,  s >= t
X% Both integration intervals are [0,1], and as right-hand side g
X% and correspond solution f one can choose between the following:
X%    example = 1 : g(s) = (s^3 - s)/6          ,  f(t) = t
X%    example = 2 : g(s) = exp(s) + (1-e)s - 1  ,  f(t) = exp(t)
X%    example = 3 : g(s) = | (4s^3 - 3s)/24               ,  s <  0.5
X%                         | (-4s^3 + 12s^2 - 9s + 1)/24  ,  s >= 0.5
X%                  f(t) = | t    ,  t <  0.5
X%                         | 1-t  ,  t >= 0.5
X
X% References.  The first two examples are from L. M. Delves & J. L.
X% Mohamed, "Computational Methods for Integral Equations", Cambridge
X% University Press, 1985; p. 310.  The third example is from A. K.
X% Louis & P. Maass, "A mollifier method for linear operator equations
X% of the first kind", Inverse Problems 6 (1990), 427-440.
X
X% Discretized by the Galerkin method with orthonormal box functions.
X
X% Per Christian Hansen, IMM, 04/21/97.
X
X% Initialization.
Xif (nargin==1), example = 1; end
Xh = 1/n; sqh = sqrt(h); h32 = h*sqh; h2 = h^2; sqhi = 1/sqh;
Xt = 2/3; A = zeros(n,n);
X
X% Compute the matrix A.
Xfor i=1:n
X  A(i,i) = h2*((i^2 - i + 0.25)*h - (i - t));
X  for j=1:i-1
X    A(i,j) = h2*(j-0.5)*((i-0.5)*h-1);
X  end
Xend
XA = A + tril(A,-1)';
X
X% Compute the right-hand side vector b.
Xif (nargout>1)
X  b = zeros(n,1);
X  if (example==1)
X    for i=1:n
X      b(i) = h32*(i-0.5)*((i^2 + (i-1)^2)*h2/2 - 1)/6;
X    end
X  elseif (example==2)
X    ee = 1 - exp(1);
X    for i=1:n
X      b(i) = sqhi*(exp(i*h) - exp((i-1)*h) + ee*(i-0.5)*h2 - h);
X    end
X  elseif (example==3)
X    if (rem(n,2)~=0), error('Order n must be even'), else
X      for i=1:n/2
X        s12 = (i*h)^2; s22 = ((i-1)*h)^2;
X        b(i) = sqhi*(s12 + s22 - 1.5)*(s12 - s22)/24;
X      end
X      for i=n/2+1:n
X        s1 = i*h; s12 = s1^2; s2 = (i-1)*h; s22 = s2^2;
X        b(i) = sqhi*(-(s12+s22)*(s12-s22) + 4*(s1^3 - s2^3) - ...
X                    4.5*(s12 - s22) + h)/24;
X      end
X    end
X  else
X    error('Illegal value of example')
X  end
Xend
X
X% Compute the solution vector x.
Xif (nargout==3)
X  x = zeros(n,1);
X  if (example==1)
X    for i=1:n, x(i) = h32*(i-0.5); end
X  elseif(example==2)
X    for i=1:n, x(i) = sqhi*(exp(i*h) - exp((i-1)*h)); end
X  else
X    for i=1:n/2,   x(i) = sqhi*((i*h)^2 - ((i-1)*h)^2)/2; end
X    for i=n/2+1:n, x(i) = sqhi*(h - ((i*h)^2 - ((i-1)*h)^2)/2); end
X  end
Xend
END_OF_FILE
if test 2718 -ne `wc -c <'deriv2.m'`; then
    echo shar: \"'deriv2.m'\" unpacked with wrong size!
fi
# end of 'deriv2.m'
fi
if test -f 'discrep.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'discrep.m'\"
else
echo shar: Extracting \"'discrep.m'\" \(2889 characters\)
sed "s/^X//" >'discrep.m' <<'END_OF_FILE'
Xfunction [x_delta,lambda] = discrep(U,s,V,b,delta,x_0)
X%DISCREP Discrepancy principle criterion for choosing the reg. parameter.
X%
X% [x_delta,lambda] = discrep(U,s,V,b,delta,x_0)
X% [x_delta,lambda] = discrep(U,sm,X,b,delta,x_0)  ,  sm = [sigma,mu]
X%
X% Least squares minimization with a quadratic inequality constraint:
X%    min || x - x_0 ||       subject to   || A x - b || <= delta
X%    min || L (x - x_0) ||   subject to   || A x - b || <= delta
X% where x_0 is an initial guess of the solution, and delta is a
X% positive constant.  Requires either the compact SVD of A saved as
X% U, s, and V, or part of the GSVD of (A,L) saved as U, sm, and X.
X% The regularization parameter lambda is also returned.
X%
X% If delta is a vector, then x_delta is a matrix such that
X%    x_delta = [ x_delta(1), x_delta(2), ... ] .
X%
X% If x_0 is not specified, x_0 = 0 is used.
X
X% Reference: V. A. Morozov, "Methods for Solving Incorrectly Posed
X% Problems", Springer, 1984; Chapter 26.
X
X% Per Christian Hansen, IMM, 12/29/97.
X
X% Initialization.
X[n,p] = size(V);    [p,ps] = size(s);      ld  = length(delta);
Xx_k = zeros(n,ld);  lambda = zeros(ld,1);  rho = zeros(p,1);
Xif (min(delta)<0)
X  error('Illegal inequality constraint delta')
Xend
Xif (nargin==5), x_0 = zeros(n,1); end
Xif (ps == 1), omega = V'*x_0; else, omega = V\x_0; end
X
X% Compute residual norms corresponding to TSVD/TGSVD.
Xbeta = U'*b;
Xnb   = norm(b);
Xsnz  = length(find(s(:,1)>0));
Xif (ps == 1)
X  delta_0 = norm(b - U*beta);
X  rho(n) = delta_0^2;
X  for i=n:-1:2
X    rho(i-1) = rho(i) + (beta(i) - s(i)*omega(i))^2;
X  end
Xelse
X  delta_0 = norm(b - U*beta);
X  rho(1) = delta_0^2;
X  for i=1:p-1
X    rho(i+1) = rho(i) + (beta(i) - s(i,1)*omega(i))^2;
X  end
Xend
X
X% Check input.
Xif (min(delta) < delta_0)
X  error('Irrelevant delta < || (I - U*U'')*b ||')
Xend
X
X% Determine the initial guess via rho-vector, then solve the nonlinear
X% equation || b - A x ||^2 - delta_0^2 = 0 via Newton's method.
Xif (ps == 1)
X  s2 = s.^2;
X  for k=1:ld
X    if (delta(k)^2 >= norm(beta - s.*omega)^2 + delta_0^2)
X      x_delta(:,k) = x_0;
X    else
X      [dummy,kmin] = min(abs(rho - delta(k)^2));
X      lambda_0 = s(kmin);
X      lambda(k) = newton(lambda_0,delta(k),s,beta,omega,delta_0);
X      e = s./(s2 + lambda(k)^2); f = s.*e;
X      x_delta(:,k) = V(:,1:p)*(e.*beta + (1-f).*omega);
X    end
X  end
Xelse
X  omega = omega(1:p); gamma = s(:,1)./s(:,2);
X  x_u   = V(:,p+1:n)*beta(p+1:n);
X  for k=1:ld
X    if (delta(k)^2 >= norm(beta(1:p) - s(:,1).*omega)^2 + delta_0^2)
X      x_delta(:,k) = V*[omega;U(:,p+1:n)'*b];
X    else
X      [dummy,kmin] = min(abs(rho - delta(k)^2));
X      lambda_0 = gamma(kmin);
X      lambda(k) = newton(lambda_0,delta(k),s,beta(1:p),omega,delta_0);
X      e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e;
X      x_delta(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ...
X                               (1-f).*s(:,2).*omega) + x_u;
X    end
X  end
Xend
END_OF_FILE
if test 2889 -ne `wc -c <'discrep.m'`; then
    echo shar: \"'discrep.m'\" unpacked with wrong size!
fi
# end of 'discrep.m'
fi
if test -f 'dsvd.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'dsvd.m'\"
else
echo shar: Extracting \"'dsvd.m'\" \(1662 characters\)
sed "s/^X//" >'dsvd.m' <<'END_OF_FILE'
Xfunction [x_lambda,rho,eta] = dsvd(U,s,V,b,lambda)
X%DSVD Damped SVD and GSVD regularization.
X%
X% [x_lambda,rho,eta] = dsvd(U,s,V,b,lambda)
X% [x_lambda,rho,eta] = dsvd(U,sm,X,b,lambda) ,  sm = [sigma,mu]
X%
X% Computes the damped SVD solution defined as
X%    x_lambda = V*inv(diag(s + lambda))*U'*b .
X% If lambda is a vector, then x_lambda is a matrix such that
X%    x_lambda = [ x_lambda(1), x_lambda(2), ... ] .
X%
X% If sm and X are specified, then the damped GSVD solution:
X%    x_lambda = X*[ inv(diag(sigma + lambda*mu)) 0 ]*U'*b
X%                 [            0                 I ]
X% is computed.
X%
X% The solution and residual norms are returned in eta and rho.
X
X% Reference: M. P. Ekstrom & R. L. Rhoads, "On the application of
X% eigenvector expansions to numerical deconvolution", J. Comp.
X% Phys. 14 (1974), 319-340.
X% The extension to GSVD is by P. C. Hansen.
X
X% Per Christian Hansen, IMM, 12/22/97.
X
X% Initialization.
Xif (min(lambda)<0)
X  error('Illegal regularization parameter lambda')
Xend
Xn = size(V,1); [p,ps] = size(s);
Xbeta = U(:,1:p)'*b;
Xll = length(lambda); x_lambda = zeros(n,ll);
Xrho = zeros(ll,1); eta = zeros(ll,1);
X
X% Compute x_lambda.
Xif (ps==1)
X  for i=1:ll
X    x_lambda(:,i) = V(:,1:p)*(beta./(s + lambda(i)));
X    rho(i) = lambda(i)*norm(beta./(s + lambda(i)));
X    eta(i) = norm(x_lambda(:,i));
X  end
Xelse
X  x0 = V(:,p+1:n)*U(:,p+1:n)'*b; 
X  for i=1:ll
X    x_lambda(:,i) = V(:,1:p)*(beta./(s(:,1) + lambda(i)*s(:,2))) + x0;
X    rho(i) = lambda(i)*norm(beta./(s(:,1)./s(:,2) + lambda(i)));
X    eta(i) = norm(x_lambda(:,i));
X  end
Xend
X
Xif (nargout > 1 & size(U,1) > p)
X  rho = sqrt(rho.^2 + norm(b - U(:,1:n)*[beta;U(:,p+1:n)'*b])^2);
Xend
END_OF_FILE
if test 1662 -ne `wc -c <'dsvd.m'`; then
    echo shar: \"'dsvd.m'\" unpacked with wrong size!
fi
# end of 'dsvd.m'
fi
if test -f 'fil_fac.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'fil_fac.m'\"
else
echo shar: Extracting \"'fil_fac.m'\" \(2682 characters\)
sed "s/^X//" >'fil_fac.m' <<'END_OF_FILE'
Xfunction f = fil_fac(s,reg_param,method,s1,V1)
X%FIL_FAC Filter factors for some regularization methods.
X%
X% f = fil_fac(s,reg_param,method)
X% f = fil_fac(sm,reg_param,method)  ,  sm = [sigma,mu]
X% f = fil_fac(s,k,'ttls',s1,V1)
X%
X% Computes all the filter factors corresponding to the
X% singular values in s and the regularization parameter
X% reg_param, for the following methods:
X%    method = 'dsvd' : damped SVD or GSVD
X%    method = 'tsvd' : truncated SVD or GSVD
X%    method = 'Tikh' : Tikhonov regularization
X%    method = 'ttls' : truncated TLS.
X% If sm = [sigma,mu] is specified, then the filter factors
X% for the corresponding generalized methods are computed.
X%
X% If method = 'ttls' then the singular values s1 and the
X% right singular matrix V1 of [A,b] must also be supplied.
X%
X% If method is not specified, 'Tikh' is default.
X
X% Per Christian Hansen, IMM, 12/29/97.
X
X% Initialization.
X[p,ps] = size(s); lr = length(reg_param);
Xif (nargin==2), method = 'Tikh'; end
Xf = zeros(p,lr);
X
X% Check input data.
Xif (min(reg_param) <= 0)
X  error('Regularization parameter must be positive')
Xend
Xif ((strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4) | ...
X     strncmp(method,'ttls',4)) & max(reg_param) > p)
X  error('Truncation parameter too large')
Xend
X
X% Compute the filter factors.
Xfor j=1:lr
X  if (strncmp(method,'cg',2) | strncmp(method,'nu',2) | strncmp(method,'ls',2))
X    error('Filter factors for iterative methods are not supported')
X  elseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))
X    if (ps==1)
X      f(:,j) = s./(s + reg_param(j));
X    else
X      f(:,j) = s(:,1)./(s(:,1) + reg_param(j)*s(:,2));
X    end
X  elseif (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))
X    if (ps==1)
X      f(:,j) = (s.^2)./(s.^2 + reg_param(j)^2);
X    else
X      f(:,j) = (s(:,1).^2)./(s(:,1).^2 + reg_param(j)^2*s(:,2).^2);
X    end
X  elseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4))
X    if (ps==1)
X      f(:,j) = [ones(reg_param(j),1);zeros(p-reg_param(j),1)];
X    else
X      f(:,j) = [zeros(p-reg_param(j),1);ones(reg_param(j),1)];
X    end
X  elseif (strncmp(method,'ttls',4))
X    if (nargin==5)
X      coef = ((V1(p+1,:).^2)')/norm(V1(p+1,reg_param(j)+1:p+1))^2;
X      for i=1:p
X        k = reg_param(j);
X        f(i,j) = s(i)^2*...
X          sum( coef(1:k)./(s1(1:k)+s(i))./(s1(1:k)-s(i)) );
X        if (f(i,j) < 0), f(i,j) = eps; end
X        if (i > 1)
X          if (f(i-1,j) <= eps & f(i,j) > f(i-1,j)), f(i,j) = f(i-1,j); end
X        end
X      end
X    else
X      error('The SVD of [A,b] must be supplied')
X    end
X  elseif (strncmp(method,'mtsv',4))
X    error('Filter factors for MTSVD are not supported')
X  else
X    error('Illegal method')
X  end
Xend
END_OF_FILE
if test 2682 -ne `wc -c <'fil_fac.m'`; then
    echo shar: \"'fil_fac.m'\" unpacked with wrong size!
fi
# end of 'fil_fac.m'
fi
if test -f 'foxgood.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'foxgood.m'\"
else
echo shar: Extracting \"'foxgood.m'\" \(618 characters\)
sed "s/^X//" >'foxgood.m' <<'END_OF_FILE'
Xfunction [A,b,x] = foxgood(n)
X%FOXGOOD Test problem: severely ill-posed problem.
X%
X% [A,b,x] = foxgood(n)
X%
X% This is a model problem which does not satisfy the
X% discrete Picard condition for the small singular values.
X% The problem was first used by Fox & Goodwin.
X
X% Reference: C. T. H. Baker, "The Numerical Treatment of
X% Integral Equations", Clarendon Press, Oxford, 1977; p. 665.
X
X% Discretized by simple quadrature (midpoint rule).
X
X% Per Christian Hansen, IMM, 03/16/93.
X
X% Initialization.
Xh = 1/n; t = h*([1:n]' - 0.5);
X
XA = h*sqrt((t.^2)*ones(1,n) + ones(n,1)*(t.^2)');
Xx = t; b = ((1+t.^2).^1.5 - t.^3)/3;
END_OF_FILE
if test 618 -ne `wc -c <'foxgood.m'`; then
    echo shar: \"'foxgood.m'\" unpacked with wrong size!
fi
# end of 'foxgood.m'
fi
if test -f 'gcv.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'gcv.m'\"
else
echo shar: Extracting \"'gcv.m'\" \(4796 characters\)
sed "s/^X//" >'gcv.m' <<'END_OF_FILE'
Xfunction [reg_min,G,reg_param] = gcv(U,s,b,method)
X%GCV Plot the GCV function and find its minimum.
X%
X% [reg_min,G,reg_param] = gcv(U,s,b,method)
X% [reg_min,G,reg_param] = gcv(U,sm,b,method)  ,  sm = [sigma,mu]
X%
X% Plots the GCV-function
X%          || A*x - b ||^2
X%    G = -------------------
X%        (trace(I - A*A_I)^2
X% as a function of the regularization parameter reg_param.
X% Here, A_I is a matrix which produces the regularized solution.
X%
X% The following methods are allowed:
X%    method = 'Tikh' : Tikhonov regularization   (solid line )
X%    method = 'tsvd' : truncated SVD or GSVD     (o markers  )
X%    method = 'dsvd' : damped SVD or GSVD        (dotted line)
X% If method is not specified, 'Tikh' is default.
X%
X% If any output arguments are specified, then the minimum of G is
X% identified and the corresponding reg. parameter reg_min is returned.
X
X% Per Christian Hansen, IMM, 12/29/97.
X
X% Reference: G. Wahba, "Spline Models for Observational Data",
X% SIAM, 1990.
X
X% Set defaults.
Xif (nargin==3), method='Tikh'; end  % Default method.
Xnpoints = 200;                      % Number of points on the curve.
Xsmin_ratio = 16*eps;                % Smallest regularization parameter.
X
X% Initialization.
X[m,n] = size(U); [p,ps] = size(s);
Xbeta = U'*b; beta2 = b'*b - beta'*beta;
Xif (ps==2)
X  s = s(p:-1:1,1)./s(p:-1:1,2); beta = beta(p:-1:1);
Xend
Xif (nargout > 0), find_min = 1; else find_min = 0; end
X
Xif (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))
X   
X  % Vector of regularization parameters.
X  reg_param = zeros(npoints,1); G = reg_param; s2 = s.^2;
X  reg_param(npoints) = max([s(p),s(1)*smin_ratio]);
X  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
X  ratio = 1.2*(s(1)/reg_param(npoints))^(1/(npoints-1));
X  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end
X  
X  % Intrinsic residual.
X  delta0 = 0;
X  if (m > n & beta2 > 0), delta0 = beta2; end
X  
X  % Vector of GCV-function values.
X  for i=1:npoints
X    G(i) = gcvfun(reg_param(i),s2,beta(1:p),delta0,m-n);
X  end 
X  
X  % Plot GCV function.
X  loglog(reg_param,G,'-'), xlabel('\lambda'), ylabel('G(\lambda)')
X  title('GCV function')
X  
X  % Find minimum, if requested.
X  if (find_min)
X    [minG,minGi] = min(G); % Initial guess.
X    reg_min = fmin('gcvfun',...
X      reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),...
X      [],s2,beta(1:p),delta0,m-n); % Minimizer.
X    minG = gcvfun(reg_min,s2,beta(1:p),delta0,m-n); % Minimum of GCV function.
X    ax = axis;
X    HoldState = ishold; hold on;
X    loglog(reg_min,minG,'*',[reg_min,reg_min],[minG/1000,minG],':')
X    title(['GCV function, minimum at \lambda = ',num2str(reg_min)])
X    axis(ax)
X    if (~HoldState), hold off; end
X  end
X
Xelseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4))
X   
X  % Vector of GCV-function values.
X  rho2(p-1) = beta(p)^2;
X  if (m > n & beta2 > 0), rho2(p-1) = rho2(p-1) + beta2; end
X  for k=p-2:-1:1, rho2(k) = rho2(k+1) + beta(k+1)^2; end
X  for k=1:p-1
X    G(k) = rho2(k)/(m - k + (n - p))^2;
X  end
X  reg_param = [1:p-1]';
X  
X  % Plot GCV function.
X  semilogy(reg_param,G,'o'), xlabel('k'), ylabel('G(k)')
X  title('GCV function')
X  
X  % Find minimum, if requested.
X  if (find_min)
X    [minG,reg_min] = min(G);
X    ax = axis;
X    HoldState = ishold; hold on;
X    semilogy(reg_min,minG,'*',[reg_min,reg_min],[minG/1000,minG],'--')
X    title(['GCV function, minimum at k = ',num2str(reg_min)])
X    axis(ax);
X    if (~HoldState), hold off; end
X  end
X
Xelseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))
X
X  % Vector of regularization parameters.
X  reg_param = zeros(npoints,1); G = reg_param;
X  reg_param(npoints) = max([s(p),s(1)*smin_ratio]);
X  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
X  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end
X  
X  % Intrinsic residual.
X  delta0 = 0;
X  if (m > n & beta2 > 0), delta0 = beta2; end
X  
X  % Vector of GCV-function values.
X  for i=1:npoints
X    G(i) = gcvfun(reg_param(i),s,beta(1:p),delta0,m-n,1);
X  end
X 
X  % Plot GCV function.
X  loglog(reg_param,G,':'), xlabel('\lambda'), ylabel('G(\lambda)')
X  title('GCV function')
X  
X  % Find minimum, if requested.
X  if (find_min)
X    [minG,minGi] = min(G); % Initial guess.
X    reg_min = fmin('gcvfun',...
X      reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),...
X      [],s,beta(1:p),delta0,m-n,1); % Minimizer.
X    minG = gcvfun(reg_min,s,beta(1:p),delta0,m-n,1); % Minimum of GCV function.
X    ax = axis;
X    HoldState = ishold; hold on;
X    loglog(reg_min,minG,'*',[reg_min,reg_min],[minG/1000,minG],'--')
X    title(['GCV function, minimum at \lambda = ',num2str(reg_min)])
X    axis(ax)
X    if (~HoldState), hold off; end
X  end
X
Xelseif (strncmp(method,'mtsv',4) | strncmp(method,'ttls',4))
X
X  error('The MTSVD and TTLS methods are not supported')
X
Xelse, error('Illegal method'), end
END_OF_FILE
if test 4796 -ne `wc -c <'gcv.m'`; then
    echo shar: \"'gcv.m'\" unpacked with wrong size!
fi
# end of 'gcv.m'
fi
if test -f 'gcvfun.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'gcvfun.m'\"
else
echo shar: Extracting \"'gcvfun.m'\" \(241 characters\)
sed "s/^X//" >'gcvfun.m' <<'END_OF_FILE'
Xfunction G = gcvfun(lambda,s2,beta,delta0,mn,dsvd)
X
X% Auxiliary routine for gcv.  PCH, IMM, 12/29/97.
X
Xif (nargin==5)
X   f = (lambda^2)./(s2 + lambda^2);
Xelse
X   f = lambda./(s2 + lambda);
Xend
XG = (norm(f.*beta)^2 + delta0)/(mn + sum(f))^2;
END_OF_FILE
if test 241 -ne `wc -c <'gcvfun.m'`; then
    echo shar: \"'gcvfun.m'\" unpacked with wrong size!
fi
# end of 'gcvfun.m'
fi
if test -f 'gen_form.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'gen_form.m'\"
else
echo shar: Extracting \"'gen_form.m'\" \(1348 characters\)
sed "s/^X//" >'gen_form.m' <<'END_OF_FILE'
Xfunction x = gen_form(L_p,x_s,A,b,K,M)
X%GEN_FORM Transform a standard-form problem back to the general-form setting.
X%
X% x = gen_form(L_p,x_s,A,b,K,M)    (method 1)
X% x = gen_form(L_p,x_s,x_0)        (method 2)
X%
X% Transforms the standard-form solution x_s back to the required
X% solution to the general-form problem:
X%    x = L_p*x_s + d ,
X% where L_p and d depend on the method as follows:
X%    method = 1: L_p = pseudoinverse of L, d  = K*(b - A*L_p*x_s)
X%    method = 2: L_p = A-weighted pseudoinverse of L, d = x_0.
X%
X% Usually, the standard-form problem is generated by means of
X% function std_form.
X%
X% Note that x_s may have more that one column.
X
X% References: L. Elden, "Algorithms for regularization of ill-
X% conditioned least-squares problems", BIT 17 (1977), 134-145.
X% L. Elden, "A weighted pseudoinverse, generalized singular values,
X% and constrained lest squares problems", BIT 22 (1982), 487-502.
X% M. Hanke, "Regularization with differential operators.  An itera-
X% tive approach", J. Numer. Funct. Anal. Optim. 13 (1992), 523-540.
X
X% Per Christian Hansen, IMM, 06/12/93.
X
X% Nargin determines which method.
Xif (nargin==6)
X  [p,q] = size(x_s); [Km,Kn] = size(K);
X  if (Km==0)
X    x = L_p*x_s;
X  else
X    x = L_p*x_s + K*(M*(b*ones(1,q) - A*(L_p*x_s)));
X  end
Xelse
X  x_0 = A; [p,q] = size(x_s);
X  x = L_p*x_s + x_0*ones(1,q);
Xend
END_OF_FILE
if test 1348 -ne `wc -c <'gen_form.m'`; then
    echo shar: \"'gen_form.m'\" unpacked with wrong size!
fi
# end of 'gen_form.m'
fi
if test -f 'gen_hh.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'gen_hh.m'\"
else
echo shar: Extracting \"'gen_hh.m'\" \(552 characters\)
sed "s/^X//" >'gen_hh.m' <<'END_OF_FILE'
Xfunction [x1,beta,v] = gen_hh(x)
X%GEN_HH Generate a Householder transformation.
X%
X% [x1,beta,v] = gen_hh(x)
X%
X% Given a vector x, gen_hh computes the scalar beta and the vector v
X% determining a Householder transformation
X%    H = (I - beta*v*v'),
X% such that H*x = +-norm(x)*e_1. x1 is the first element of H*x.
X
X% Per Christian Hansen, IMM, 11/11/1997.
X
Xv = x; alpha = norm(v);
Xif (alpha==0),
X  beta = 0;
Xelse
X  beta = 1/(alpha*(alpha + abs(v(1))));
Xend
Xif (v(1) >= 0)
X  v(1) = v(1) + alpha; x1 = -alpha;
Xelse
X  v(1) = v(1) - alpha; x1 = +alpha;
Xend
END_OF_FILE
if test 552 -ne `wc -c <'gen_hh.m'`; then
    echo shar: \"'gen_hh.m'\" unpacked with wrong size!
fi
# end of 'gen_hh.m'
fi
if test -f 'get_l.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'get_l.m'\"
else
echo shar: Extracting \"'get_l.m'\" \(995 characters\)
sed "s/^X//" >'get_l.m' <<'END_OF_FILE'
Xfunction [L,W] = get_l(n,d)
X%GET_L Compute discrete derivative operators.
X%
X% [L,W] = get_l(n,d)
X%
X% Computes the discrete approximation L to the derivative operator
X% of order d on a regular grid with n points, i.e. L is (n-d)-by-n.
X%
X% L is stored as a sparse matrix.
X%
X% Also computes W, an orthonormal basis for the null space of L.
X
X% Per Christian Hansen, IMM, 02/05/98.
X
X% Initialization.
Xif (d<0), error ('Order d must be nonnegative'), end
X
X% Zero'th derivative.
Xif (d==0), L = speye(n); W = zeros(n,0); return, end
X
X% Compute L.
Xc = [-1,1,zeros(1,d-1)];
Xnd = n-d;
Xfor i=2:d, c = [0,c(1:d)] - [c(1:d),0]; end
XL = sparse(nd,n);
Xfor i=1:d+1
X  L = L + sparse(1:nd,[1:nd]+i-1,c(i)*ones(1,nd),nd,n);
Xend
X
X% If required, compute the null vectors W via modified Gram-Schmidt.
Xif (nargout==2)
X  W = zeros(n,d);
X  W(:,1) = ones(n,1);
X  for i=2:d, W(:,i) = W(:,i-1).*[1:n]'; end
X  for k=1:d
X     W(:,k) = W(:,k)/norm(W(:,k));
X     W(:,k+1:d) = W(:,k+1:d) - W(:,k)*(W(:,k)'*W(:,k+1:d));
X  end
Xend
END_OF_FILE
if test 995 -ne `wc -c <'get_l.m'`; then
    echo shar: \"'get_l.m'\" unpacked with wrong size!
fi
# end of 'get_l.m'
fi
if test -f 'heat.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'heat.m'\"
else
echo shar: Extracting \"'heat.m'\" \(1630 characters\)
sed "s/^X//" >'heat.m' <<'END_OF_FILE'
Xfunction [A,b,x] = heat(n,kappa)
X%HEAT Test problem: inverse heat equation.
X%
X% [A,b,x] = heat(n,kappa)
X%
X% A first kind Volterra integral equation with [0,1] as
X% integration interval.  The kernel is K(s,t) = k(s-t) with
X%    k(t) = t^(-3/2)/(2*kappa*sqrt(pi))*exp(-1/(4*kappa^2*t^2)) .
X% Here, kappa controls the ill-conditioning of the matrix:
X%    kappa = 5 gives a well-conditioned problem
X%    kappa = 1 gives an ill-conditioned problem.
X% The default is kappa = 1.
X%
X% An exact soltuion is constructed, and then the right-hand side
X% b is produced as b = A*x.
X
X% Reference: A. S. Carasso, "Determining surface temperatures
X% from interior observations", SIAM J. Appl. Math. 42 (1982),
X% 558-574.  See also L. Elden, "The numerical solution of a
X% non-characteristic Cauchy problem for a parabolic equation";
X% in P. Deuflhand & E. Hairer (Eds.), "Numerical Treatment of
X% Inverse Problems in Differential and Integral Equations",
X% Birkhauser, 1983.
X
X% Discretization by means of simple quadrature (midpoint rule).
X
X% Per Christian Hansen, IMM, 09/18/92.
X
X% Set default kappa.
Xif (nargin==1), kappa = 1; end
X
X% Initialization.
Xh = 1/n; t = h/2:h:1; e = ones(1,length(t));
Xc = h/(2*kappa*sqrt(pi)); d = 1/(4*kappa^2);
X
X% Compute the matrix A.
Xk = c*t.^(-1.5).*exp(-d*e./t);
Xr = zeros(1,length(t)); r(1) = k(1); A = toeplitz(k,r);
X
X% Compute the vectors x and b.
Xif (nargout>1)
X  x = zeros(n,1);
X  for i=1:n/2
X    ti = i*20/n;
X    if (ti < 2)
X      x(i) = 0.75*ti^2/4;
X    elseif (ti < 3)
X      x(i) = 0.75 + (ti-2)*(3-ti);
X    else
X      x(i) = 0.75*exp(-(ti-3)*2);
X    end
X  end
X  x(n/2+1:n) = zeros(1,n/2);
X  b = A*x;
Xend
END_OF_FILE
if test 1630 -ne `wc -c <'heat.m'`; then
    echo shar: \"'heat.m'\" unpacked with wrong size!
fi
# end of 'heat.m'
fi
if test -f 'heb_new.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'heb_new.m'\"
else
echo shar: Extracting \"'heb_new.m'\" \(2126 characters\)
sed "s/^X//" >'heb_new.m' <<'END_OF_FILE'
Xfunction lambda = heb_new(lambda_0,alpha,s,beta,omega)
X%HEB_NEW Newton iteration with Hebden model (utility routine for LSQI).
X%
X% lambda = heb_new(lambda_0,alpha,s,beta,omega)
X%
X% Uses Newton iteration with a Hebden (rational) model to find the
X% solution lambda to the secular equation
X%    || L (x_lambda - x_0) || = alpha ,
X% where x_lambda is the solution defined by Tikhonov regularization.
X%
X% The initial guess is lambda_0.
X%
X% The norm || L (x_lambda - x_0) || is computed via s, beta and omega.
X% Here, s holds either the singular values of A, if L = I, or the
X% c,s-pairs of the GSVD of (A,L), if L ~= I.  Moreover, beta = U'*b
X% and omega is either V'*x_0 or the first p elements of inv(X)*x_0.
X
X% Reference: T. F. Chan, J. Olkin & D. W. Cooley, "Solving quadratically
X% constrained least squares using block box unconstrained solvers",
X% BIT 32 (1992), 481-495.
X% Extension to the case x_0 ~= 0 by Per Chr. Hansen, IMM, 11/20/91.
X
X% Per Christian Hansen, IMM, 12/29/97.
X
X% Set defaults.
Xthr = sqrt(eps);  % Relative stopping criterion.
Xit_max = 50;      % Max number of iterations.
X
X% Initialization.
Xif (lambda_0 < 0)
X  error('Initial guess lambda_0 must be nonnegative')
Xend
X[p,ps] = size(s);
Xif (ps==2), mu = s(:,2); s = s(:,1)./s(:,2); end
Xs2 = s.^2;
X
X% Iterate, using Hebden-Newton iteration, i.e., solve the nonlinear
X% problem || L x ||^(-2) - alpha^(-2) = 0.  This version was found
X% experimentally to work slight�y better than Newton's method for
X% alpha-values near || L x^exact ||.
Xlambda = lambda_0; step = 1; it = 0;
Xwhile (abs(step) > thr*lambda & it < it_max), it = it+1;
X  e = s./(s2 + lambda^2); f = s.*e;
X  if (ps==1)
X    Lx = e.*beta - f.*omega;
X  else
X    Lx = e.*beta - f.*mu.*omega;
X  end
X  norm_Lx = norm(Lx);
X  Lv = lambda^2*Lx./(s2 + lambda^2);
X  step = (lambda/4)*(norm_Lx^2 - alpha^2)/(Lv'*Lx); % Newton step.
X  step = (norm_Lx^2/alpha^2)*step; % Hebden step.
X  lambda = lambda + step;
X  if (lambda < 0), lambda = 2*lambda_0; lambda_0 = 2*lambda_0; end
Xend
X
X% Terminate with an error if too many iterations.
Xif (abs(step) > thr*lambda), error('Max. number of iterations reached'), end
END_OF_FILE
echo shar: 1 control character may be missing from \"'heb_new.m'\"
if test 2126 -ne `wc -c <'heb_new.m'`; then
    echo shar: \"'heb_new.m'\" unpacked with wrong size!
fi
# end of 'heb_new.m'
fi
if test -f 'ilaplace.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'ilaplace.m'\"
else
echo shar: Extracting \"'ilaplace.m'\" \(1974 characters\)
sed "s/^X//" >'ilaplace.m' <<'END_OF_FILE'
Xfunction [A,b,x] = ilaplace(n,example)
X%ILAPLACE Test problem: inverse Laplace transformation.
X%
X% [A,b,x] = ilaplace(n,example)
X%
X% Discretization of the inverse Laplace transformation by means of
X% Gauss-Laguerre quadrature.  The kernel K is given by
X%    K(s,t) = exp(-s*t) ,
X% and both integration intervals are [0,inf).
X% The following examples are implemented, where f denotes
X% the solution, and g denotes the right-hand side:
X%    1: f(t) = exp(-t/2),        g(s) = 1/(s + 0.5)
X%    2: f(t) = 1 - exp(-t/2),    g(s) = 1/s - 1/(s + 0.5)
X%    3: f(t) = t^2*exp(-t/2),    g(s) = 2/(s + 0.5)^3
X%    4: f(t) = | 0 , t <= 2,     g(s) = exp(-2*s)/s.
X%              | 1 , t >  2
X
X% Reference: J. M. Varah, "Pitfalls in the numerical solution of linear
X% ill-posed problems", SIAM J. Sci. Stat. Comput. 4 (1983), 164-176.
X
X% Per Christian Hansen, IMM, 09/18/92.
X
X% Initialization.
Xif (n <= 0), error('The order n must be positive'); end
Xif (nargin == 1), example = 1; end
X
X% Compute equidistand collocation points s.
Xs = (10/n)*[1:n]';
X
X% Compute abscissas t and weights w from the eigensystem of the
X% symmetric tridiagonal system derived from the recurrence
X% relation for the Laguerre polynomials.  Sorting of the
X% eigenvalues and -vectors is necessary.
Xt = diag(2*[1:n]-1) - diag([1:n-1],1) - diag([1:n-1],-1);
X[Q,t] = eig(t); t = diag(t); [t,indx] = sort(t);
Xw = Q(1,indx).^2; clear Q
X
X% Set up the coefficient matrix A.
XA = zeros(n,n);
Xfor i=1:n
X  for j=1:n
X    A(i,j) = (1-s(i))*t(j);
X  end
Xend
XA = exp(A)*diag(w);
X
X% Compute the right-hand side b and the solution x by means of
X% simple collocation.
Xif (example==1)
X  b = ones(n,1)./(s + .5);
X  x = exp(-t/2);
Xelseif (example==2)
X  b = ones(n,1)./s - ones(n,1)./(s + .5);
X  x = ones(n,1) - exp(-t/2);
Xelseif (example==3)
X  b = 2*ones(n,1)./((s + .5).^3);
X  x = (t.^2).*exp(-t/2);
Xelseif (example==4)
X  b = exp(-2*s)./s;
X  x = ones(n,1); f = find(t<=2); x(f) = zeros(length(f),1);
Xelse
X  error('Illegal example')
Xend
END_OF_FILE
if test 1974 -ne `wc -c <'ilaplace.m'`; then
    echo shar: \"'ilaplace.m'\" unpacked with wrong size!
fi
# end of 'ilaplace.m'
fi
if test -f 'l_corner.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'l_corner.m'\"
else
echo shar: Extracting \"'l_corner.m'\" \(6982 characters\)
sed "s/^X//" >'l_corner.m' <<'END_OF_FILE'
Xfunction [reg_c,rho_c,eta_c] = l_corner(rho,eta,reg_param,U,s,b,method,M)
X%L_CORNER Locate the "corner" of the L-curve.
X%
X% [reg_c,rho_c,eta_c] =
X%        l_corner(rho,eta,reg_param)
X%        l_corner(rho,eta,reg_param,U,s,b,method,M)
X%        l_corner(rho,eta,reg_param,U,sm,b,method,M) ,  sm = [sigma,mu]
X%
X% Locates the "corner" of the L-curve in log-log scale.
X%
X% It is assumed that corresponding values of || A x - b ||, || L x ||,
X% and the regularization parameter are stored in the arrays rho, eta,
X% and reg_param, respectively (such as the output from routine l_curve).
X%
X% If nargin = 3, then no particular method is assumed, and if
X% nargin = 2 then it is issumed that reg_param = 1:length(rho).
X%
X% If nargin >= 6, then the following methods are allowed:
X%    method = 'Tikh'  : Tikhonov regularization
X%    method = 'tsvd'  : truncated SVD or GSVD
X%    method = 'dsvd'  : damped SVD or GSVD
X%    method = 'mtsvd' : modified TSVD,
X% and if no method is specified, 'Tikh' is default.  If the Spline Toolbox
X% is not available, then only 'Tikh' and 'dsvd' can be used.
X%
X% An eighth argument M specifies an upper bound for eta, below which
X% the corner should be found.
X
X% The following functions from the Spline Toolbox are needed if
X% method differs from 'Tikh' or 'dsvd':
X% fnder, ppbrk, ppmak, ppual, sp2pp, sorted, spbrk, spmak, sprpp.
X
X% Per Christian Hansen, IMM, 04/16/98.
X
X% Set default regularization method.
Xif (nargin <= 3)
X  method = 'none';
X  if (nargin==2), reg_param = [1:length(rho)]'; end
Xelse
X  if (nargin==6), method = 'Tikh'; end
Xend
X
X% Set threshold for skipping very small singular values in the
X% analysis of a discrete L-curve.
Xs_thr = eps;  % Neglect singular values less than s_thr.
X
X% Set default parameters for treatment of discrete L-curve.
Xdeg   = 2;  % Degree of local smooting polynomial.
Xq     = 2;  % Half-width of local smoothing interval.
Xorder = 4;  % Order of fitting 2-D spline curve.
X
X% Initialization.
Xif (length(rho) < order)
X  error('Too few data points for L-curve analysis')
Xend
Xif (nargin > 3)
X  [p,ps] = size(s); [m,n] = size(U);
X  if (ps==2), s = s(p:-1:1,1)./s(p:-1:1,2); U = U(:,p:-1:1); end
X  beta = U'*b; xi = beta./s;
Xend
X
X% Restrict the analysis of the L-curve according to M (if specified).
Xif (nargin==8)
X  index = find(eta < M);
X  rho = rho(index); eta = eta(index); reg_param = reg_param(index);
Xend
X
Xif (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))
X
X  % The L-curve is differentiable; computation of curvature in
X  % log-log scale is easy.
X  
X  % Compute g = - curvature of L-curve.
X  g = lcfun(reg_param,s,beta,xi);
X  
X  % Locate the corner.  If the curvature is negative everywhere,
X  % then define the leftmost point of the L-curve as the corner.
X  [gmin,gi] = min(g);
X  reg_c = fmin('lcfun',...
X    reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...
X    [],s,beta,xi); % Minimizer.
X  kappa_max = - lcfun(reg_c,s,beta,xi); % Maximum curvature.
X
X  if (kappa_max < 0)
X    lr = length(rho);
X    reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);
X  else
X    f = (s.^2)./(s.^2 + reg_c^2);
X    eta_c = norm(f.*xi);
X    rho_c = norm((1-f).*beta);
X    if (m>n), rho_c = sqrt(rho_c^2 + norm(b - U*beta)^2); end
X  end
X
Xelseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4) | ...
X        strncmp(method,'mtsv',4) | strncmp(method,'none',4))
X
X  % The L-curve is discrete and may include unwanted fine-grained
X  % corners.  Use local smoothing, followed by fitting a 2-D spline
X  % curve to the smoothed discrete L-curve.
X
X  % Check if the Spline Toolbox exists, otherwise return.
X  if (exist('spdemos')~=2)
X    error('The Spline Toolbox in not available so l_corner cannot be used')
X  end
X
X  % For TSVD, TGSVD, and MTSVD, restrict the analysis of the L-curve
X  % according to s_thr.
X  if (nargin > 3)
X    index = find(s > s_thr);
X    rho = rho(index); eta = eta(index); reg_param = reg_param(index);
X    s = s(index); beta = beta(index); xi = xi(index);
X  end
X
X  % Convert to logarithms.
X  lr = length(rho);
X  lrho = log(rho); leta = log(eta); slrho = lrho; sleta = leta;
X
X  % For all interior points k = q+1:length(rho)-q-1 on the discrete
X  % L-curve, perform local smoothing with a polynomial of degree deg
X  % to the points k-q:k+q.
X  v = [-q:q]'; A = zeros(2*q+1,deg+1); A(:,1) = ones(length(v),1);
X  for j = 2:deg+1, A(:,j) = A(:,j-1).*v; end
X  for k = q+1:lr-q-1
X    cr = A\lrho(k+v); slrho(k) = cr(1);
X    ce = A\leta(k+v); sleta(k) = ce(1);
X  end
X
X  % Fit a 2-D spline curve to the smoothed discrete L-curve.
X  sp = spmak([1:lr+order],[slrho';sleta']);
X  pp = ppbrk(sp2pp(sp),[4,lr+1]);
X
X  % Extract abscissa and ordinate splines and differentiate them.
X  % Compute as many function values as default in spleval.
X  P     = spleval(pp);  dpp   = fnder(pp);
X  D     = spleval(dpp); ddpp  = fnder(pp,2);
X  DD    = spleval(ddpp);
X  ppx   = P(1,:);       ppy   = P(2,:);
X  dppx  = D(1,:);       dppy  = D(2,:);
X  ddppx = DD(1,:);      ddppy = DD(2,:);
X
X  % Compute the corner of the discretized .spline curve via max. curvature.
X  % No need to refine this corner, since the final regularization
X  % parameter is discrete anyway.
X  % Define curvature = 0 where both dppx and dppy are zero.
X  k1    = dppx.*ddppy - ddppx.*dppy;
X  k2    = (dppx.^2 + dppy.^2).^(1.5);
X  I_nz  = find(k2 ~= 0);
X  kappa = zeros(1,length(dppx));
X  kappa(I_nz) = -k1(I_nz)./k2(I_nz);
X  [kmax,ikmax] = max(kappa);
X  x_corner = ppx(ikmax); y_corner = ppy(ikmax);
X
X  % Locate the point on the discrete L-curve which is closest to the
X  % corner of the spline curve.  Prefer a point below and to the
X  % left of the corner.  If the curvature is negative everywhere,
X  % then define the leftmost point of the L-curve as the corner.
X  if (kmax < 0)
X    reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);
X  else
X    index = find(lrho < x_corner & leta < y_corner);
X    if (length(index) > 0)
X      [dummy,rpi] = min((lrho(index)-x_corner).^2 + (leta(index)-y_corner).^2);
X      rpi = index(rpi);
X    else
X      [dummy,rpi] = min((lrho-x_corner).^2 + (leta-y_corner).^2);
X    end
X    reg_c = reg_param(rpi); rho_c = rho(rpi); eta_c = eta(rpi);
X  end
X
Xelseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))
X
X  % The L-curve is differentiable; computation of curvature in
X  % log-log scale is easy.
X
X  % Compute g = - curvature of L-curve.
X  g = lcfun(reg_param,s,beta,xi,1);
X
X  % Locate the corner.  If the curvature is negative everywhere,
X  % then define the leftmost point of the L-curve as the corner.
X  [gmin,gi] = min(g);
X  reg_c = fmin('lcfun',...
X    reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...
X    [],s,beta,xi,1); % Minimizer.
X  kappa_max = - lcfun(reg_c,s,beta,xi,1); % Maximum curvature.
X
X  if (kappa_max < 0)
X    lr = length(rho);
X    reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);
X  else
X    f = s./(s + reg_c);
X    eta_c = norm(f.*xi);
X    rho_c = norm((1-f).*beta);
X    if (m>n), rho_c = sqrt(rho_c^2 + norm(b - U*beta)^2); end
X  end
X
Xelse, error('Illegal method'), end
END_OF_FILE
if test 6982 -ne `wc -c <'l_corner.m'`; then
    echo shar: \"'l_corner.m'\" unpacked with wrong size!
fi
# end of 'l_corner.m'
fi
if test -f 'l_curve.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'l_curve.m'\"
else
echo shar: Extracting \"'l_curve.m'\" \(5010 characters\)
sed "s/^X//" >'l_curve.m' <<'END_OF_FILE'
Xfunction [reg_corner,rho,eta,reg_param] = l_curve(U,sm,b,method,L,V)
X%L_CURVE Plot the L-curve and find its "corner".
X%
X% [reg_corner,rho,eta,reg_param] =
X%                  l_curve(U,s,b,method)
X%                  l_curve(U,sm,b,method)  ,  sm = [sigma,mu]
X%                  l_curve(U,s,b,method,L,V)
X%
X% Plots the L-shaped curve of eta, the solution norm || x || or
X% semi-norm || L x ||, as a function of rho, the residual norm
X% || A x - b ||, for the following methods:
X%    method = 'Tikh'  : Tikhonov regularization   (solid line )
X%    method = 'tsvd'  : truncated SVD or GSVD     (o markers  )
X%    method = 'dsvd'  : damped SVD or GSVD        (dotted line)
X%    method = 'mtsvd' : modified TSVD             (x markers  )
X% The corresponding reg. parameters are returned in reg_param.
X% If no method is specified, 'Tikh' is default.
X%
X% If any output arguments are specified, then the corner of the L-curve
X% is identified and the corresponding reg. parameter reg_corner is
X% returned.  Use routine l_corner if an upper bound on eta is required.
X%
X% If the Spline Toolbox is not available and reg_corner is requested,
X% then the routine returns reg_corner = NaN for 'tsvd' and 'mtsvd'.
X
X% Reference: P. C. Hansen & D. P. O'Leary, "The use of the L-curve in
X% the regularization of discrete ill-posed problems", Report UMIACS-
X% TR-91-142, Dept. of Computer Science, Univ. of Maryland, 1991;
X% to appear in SIAM J. Sci. Comp.
X
X% Per Christian Hansen, IMM, 12/29/97.
X
X% Set defaults.
Xif (nargin==3), method='Tikh'; end  % Tikhonov reg. is default.
Xnpoints = 200;  % Number of points on the L-curve for Tikh and dsvd.
Xsmin_ratio = 16*eps;  % Smallest regularization parameter.
X
X% Initialization.
X[m,n] = size(U); [p,ps] = size(sm);
Xif (nargout > 0), locate = 1; else locate = 0; end
Xbeta = U'*b; beta2 = b'*b - beta'*beta;
Xif (ps==1)
X  s = sm; beta = beta(1:p);
Xelse
X  s = sm(p:-1:1,1)./sm(p:-1:1,2); beta = beta(p:-1:1);
Xend
Xxi = beta(1:p)./s;
X
Xif (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))
X
X  eta = zeros(npoints,1); rho = eta; reg_param = eta; s2 = s.^2;
X  reg_param(npoints) = max([s(p),s(1)*smin_ratio]);
X  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
X  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
X  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end
X  for i=1:npoints
X    f = s2./(s2 + reg_param(i)^2);
X    eta(i) = norm(f.*xi);
X    rho(i) = norm((1-f).*beta(1:p));
X  end
X  if (m > n & beta2 > 0), rho = sqrt(rho.^2 + beta2); end
X  marker = '-'; pos = .8; txt = 'Tikh.';
X
Xelseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4))
X
X  eta = zeros(p,1); rho = eta;
X  eta(1) = xi(1)^2;
X  for k=2:p, eta(k) = eta(k-1) + xi(k)^2; end
X  eta = sqrt(eta);
X  if (m > n)
X    if (beta2 > 0), rho(p) = beta2; else rho(p) = eps^2; end
X  else
X    rho(p) = eps^2;
X  end
X  for k=p-1:-1:1, rho(k) = rho(k+1) + beta(k+1)^2; end
X  rho = sqrt(rho);
X  reg_param = [1:p]'; marker = 'o'; pos = .75;
X  if (ps==1)
X    U = U(:,1:p); txt = 'TSVD';
X  else
X    U = U(:,1:p); txt = 'TGSVD';
X  end
X
Xelseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))
X
X  eta = zeros(npoints,1); rho = eta; reg_param = eta;
X  reg_param(npoints) = max([s(p),s(1)*smin_ratio]);
X  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));
X  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end
X  for i=1:npoints
X    f = s./(s + reg_param(i));
X    eta(i) = norm(f.*xi);
X    rho(i) = norm((1-f).*beta(1:p));
X  end
X  if (m > n & beta2 > 0), rho = sqrt(rho.^2 + beta2); end
X  marker = ':'; pos = .85;
X  if (ps==1), txt = 'DSVD'; else txt = 'DGSVD'; end
X
Xelseif (strncmp(method,'mtsv',4))
X
X  if (nargin~=6)
X    error('The matrices L and V must also be specified')
X  end
X  [p,n] = size(L); rho = zeros(p,1); eta = rho;
X  [Q,R] = qr(L*V(:,n:-1:n-p),0);
X  for i=1:p
X    k = n-p+i;
X    Lxk = L*V(:,1:k)*xi(1:k);
X    zk = R(1:n-k,1:n-k)\(Q(:,1:n-k)'*Lxk); zk = zk(n-k:-1:1);
X    eta(i) = norm(Q(:,n-k+1:p)'*Lxk);
X    if (i < p)
X      rho(i) = norm(beta(k+1:n) + s(k+1:n).*zk);
X    else
X      rho(i) = eps;
X    end
X  end
X  if (m > n & beta2 > 0), rho = sqrt(rho.^2 + beta2); end
X  reg_param = [n-p+1:n]'; txt = 'MTSVD';
X  U = U(:,reg_param); sm = sm(reg_param);
X  marker = 'x'; pos = .7; ps = 2;  % General form regularization.
X 
Xelse, error('Illegal method'), end
X
X% Locate the "corner" of the L-curve, if required.  If the Spline
X% Toolbox is not available, return NaN for reg_corner.
Xif (locate)
X  SkipCorner = ( (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4) | ...
X                  strncmp(method,'mtsv',4)) & exist('spdemos')~=2 );
X  if (SkipCorner)
X    reg_corner = NaN;
X  else
X    [reg_corner,rho_c,eta_c] = l_corner(rho,eta,reg_param,U,sm,b,method);
X  end
Xend
X
X% Make plot.
Xplot_lc(rho,eta,marker,ps,reg_param);
Xif (locate & ~SkipCorner)
X  ax = axis;
X  HoldState = ishold; hold on;
X  loglog([min(rho)/100,rho_c],[eta_c,eta_c],'--',...
X         [rho_c,rho_c],[min(eta)/100,eta_c],'--')
X  title(['L-curve, ',txt,' corner at ',num2str(reg_corner)]);
X  axis(ax)
X  if (~HoldState), hold off; end
Xend
END_OF_FILE
if test 5010 -ne `wc -c <'l_curve.m'`; then
    echo shar: \"'l_curve.m'\" unpacked with wrong size!
fi
# end of 'l_curve.m'
fi
if test -f 'lagrange.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'lagrange.m'\"
else
echo shar: Extracting \"'lagrange.m'\" \(1719 characters\)
sed "s/^X//" >'lagrange.m' <<'END_OF_FILE'
Xfunction [La,dLa,lambda0] = lagrange(U,s,b,more)
X%LAGRANGE Plot the Lagrange function for Tikhonov regularization.
X%
X% [La,dLa,lambda0] = lagrange(U,s,b,more)
X% [La,dLa,lambda0] = lagrange(U,sm,b,more)  ,  sm = [sigma,mu]
X%
X% Plots the Lagrange function
X%    La(lambda) = || A x - b ||^2 + lambda^2*|| L x ||^2
X% and its first derivative dLa = dLa/dlambda versus lambda.
X% Here, x is the Tikhonov regularized solution.
X%
X% If nargin = 4, || A x - b || and || L x || are also plotted.
X%
X% Returns La, dLa, and the value lambda0 of lambda for which
X% dLa has its minimum.
X
X% Per Christian Hansen, IMM, 12/22/97.
X
X% Set default number of points.
Xnpoints = 200;
X
X% Initialization.
X[m,n] = size(U); [p,ps] = size(s);
Xbeta = U'*b; beta2 = b'*b - beta'*beta;
Xif (ps==2)
X  s = s(p:-1:1,1)./s(p:-1:1,2); beta = beta(p:-1:1);
Xend
Xxi = beta(1:p)./s;
X
X% Compute the L-curve.
Xeta = zeros(npoints,1); rho = eta;
Xlambda(npoints,1) = s(p);
Xratio = (s(1)/s(p))^(1/(npoints-1));
Xfor i=npoints-1:-1:1, lambda(i) = ratio*lambda(i+1); end
Xfor i=1:npoints
X  f = fil_fac(s,lambda(i));
X  eta(i) = norm(f.*xi);
X  rho(i) = norm((1-f).*beta(1:p));
Xend
Xif (m > n & beta2 > 0), rho = sqrt(rho.^2 + beta2); end
X
X% Compute the Lagrange function and its derivative.
XLa = rho.^2 + (lambda.^2).*(eta.^2);
XdLa = 2*lambda.*(eta.^2);
X[mindLa,mindLi] = min(dLa); lambda0 = lambda(mindLi);
X
X% Plot the functions.
Xif (nargin==3)
X  loglog(lambda,La,'-',lambda,dLa,'--',lambda0,mindLa,'o')
X  legend('La','dLa/d\lambda')
Xelse
X  loglog(lambda,La,'-',lambda,dLa,'--',lambda,eta,':',lambda,rho,'-.',...
X         lambda0,mindLa,'o')
X  legend('La','dLa/d\lambda','|| L x ||_2','|| A x - b ||_2')
Xend
Xxlabel('\lambda')
Xtitle('Lagrange function La and its derivative')
END_OF_FILE
if test 1719 -ne `wc -c <'lagrange.m'`; then
    echo shar: \"'lagrange.m'\" unpacked with wrong size!
fi
# end of 'lagrange.m'
fi
if test -f 'lanc_b.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'lanc_b.m'\"
else
echo shar: Extracting \"'lanc_b.m'\" \(2761 characters\)
sed "s/^X//" >'lanc_b.m' <<'END_OF_FILE'
Xfunction [U,B_k,V] = lanc_b(A,p,k,reorth)
X%LANC_B Lanczos bidiagonalization.
X%
X% B_k = lanc_b(A,p,k,reorth)
X% [U,B_k,V] = lanc_b(A,p,k,reorth)
X%
X% Performs k steps of the Lanczos bidiagonalization process with
X% starting vector p, producing a lower bidiagonal matrix
X%           [b_11               ]
X%           [b_21 b_22          ]
X%     B_k = [     b_32 .        ]
X%           [          . b_kk   ]
X%           [            b_k+1,k]
X% such that
X%     A*V = U*B_k ,
X% where U and V consist of the left and right Lanczos vectors.
X%
X% Reorthogonalization is controlled by means of reorth:
X%    reorth = 0 : no reorthogonalization,
X%    reorth = 1 : reorthogonalization by means of MGS,
X%    reorth = 2 : Householder-reorthogonalization.
X% No reorthogonalization is assumed if reorth is not specified.
X
X% Reference: G. H. Golub & C. F. Van Loan, "Matrix Computations",
X% 3. Ed., Johns Hopkins, 1996.  Section 9.3.4.
X
X% Per Christian Hansen, IMM, 12/19/97.
X
X% Initialization.
Xif (k<1), error('Number of steps k must be positive'), end
Xif (nargin < 4), reorth = 0; end
Xif (reorth < 0 | reorth > 2), error('Illegal reorth'), end
Xif (nargout==2), error('Not enough output arguments'), end
X[m,n] = size(A);
XB_k = sparse(k+1,k);
Xif (nargout>1 | reorth==1)
X  U = zeros(m,k); V = zeros(n,k); UV = 1;
Xelse
X  UV = 0;
Xend
Xif (reorth==2)
X  if (k>=n), error('No. of iterations must satisfy k < n'), end
X  HHU = zeros(m,k); HHV = zeros(n,k);
X  HHalpha = zeros(1,k); HHbeta = HHalpha;
Xend
X
X% Prepare for Lanczos iteration.
Xv = zeros(n,1);
Xbeta = norm(p);
Xif (beta==0), error('Starting vector must be nonzero'), end
Xif (reorth==2)
X  [beta,HHbeta(1),HHU(:,1)] = gen_hh(p);
Xend
Xu = p/beta;
Xif (UV), U(:,1) = u; end
X
X% Perform Lanczos bidiagonalization with/without reorthogonalization.
Xfor i=1:k
X
X  r = A'*u - beta*v;
X  if (reorth==0)
X    alpha = norm(r); v = r/alpha;
X  elseif (reorth==1)
X    for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end
X    alpha = norm(r); v = r/alpha;
X  else
X    for j=1:i-1
X      r(j:n) = app_hh(r(j:n),HHalpha(j),HHV(j:n,j));
X    end
X    [alpha,HHalpha(i),HHV(i:n,i)] = gen_hh(r(i:n));
X    v = zeros(n,1); v(i) = 1;
X    for j=i:-1:1
X      v(j:n) = app_hh(v(j:n),HHalpha(j),HHV(j:n,j));
X    end
X  end
X  B_k(i,i) = alpha; if (UV), V(:,i) = v; end
X
X  p = A*v - alpha*u;
X  if (reorth==0)
X    beta = norm(p); u = p/beta;
X  elseif (reorth==1)
X    for j=1:i, p = p - (U(:,j)'*p)*U(:,j); end
X    beta = norm(p); u = p/beta;
X  else
X    for j=1:i
X      p(j:m) = app_hh(p(j:m),HHbeta(j),HHU(j:m,j));
X    end
X    [beta,HHbeta(i+1),HHU(i+1:m,i+1)] = gen_hh(p(i+1:m));
X    u = zeros(m,1); u(i+1) = 1;
X    for j=i+1:-1:1
X      u(j:m) = app_hh(u(j:m),HHbeta(j),HHU(j:m,j));
X    end
X  end
X  B_k(i+1,i) = beta; if (UV), U(:,i+1) = u; end
X
Xend
X
Xif (nargout==1), U = B_k; end
END_OF_FILE
if test 2761 -ne `wc -c <'lanc_b.m'`; then
    echo shar: \"'lanc_b.m'\" unpacked with wrong size!
fi
# end of 'lanc_b.m'
fi
if test -f 'lcfun.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'lcfun.m'\"
else
echo shar: Extracting \"'lcfun.m'\" \(1208 characters\)
sed "s/^X//" >'lcfun.m' <<'END_OF_FILE'
Xfunction g = lcfun(lambda,s,beta,xi,dsvd);
X
X% Auxiliary routine for l_corner; computes the NEGATIVE of the curvature.
X% Note: lambda may be a vector.  PCH, IMM, 12/29/97.
X
X% Initialization.
Xphi = zeros(size(lambda)); dphi = phi; psi = phi; dpsi = phi;
Xeta = phi; rho = phi;
X
X% Compute some intermediate quantities.
Xfor i = 1:length(lambda)
X  if (nargin==4)
X    f  = (s.^2)./(s.^2 + lambda(i)^2);
X  else
X    f  = s./(s + lambda(i));
X  end
X  cf = 1 - f;
X  eta(i) = norm(f.*xi);
X  rho(i) = norm(cf.*beta);
X  f1 = -2*f.*cf/lambda(i);
X  f2 = -f1.*(3-4*f)/lambda(i);
X  phi(i)  = sum(f.*f1.*xi.^2);
X  psi(i)  = sum(cf.*f1.*beta.^2);
X  dphi(i) = sum((f1.^2 + f.*f2).*xi.^2);
X  dpsi(i) = sum((-f1.^2 + cf.*f2).*beta.^2);
Xend
X
X% Now compute the first and second derivatives of eta and rho
X% with respect to lambda;
Xdeta  =  phi./eta;
Xdrho  = -psi./rho;
Xddeta =  dphi./eta - deta.*(deta./eta);
Xddrho = -dpsi./rho - drho.*(drho./rho);
X
X% Convert to derivatives of log(eta) and log(rho).
Xdlogeta  = deta./eta;
Xdlogrho  = drho./rho;
Xddlogeta = ddeta./eta - (dlogeta).^2;
Xddlogrho = ddrho./rho - (dlogrho).^2;
X
X% Let g = curvature.
Xg = - (dlogrho.*ddlogeta - ddlogrho.*dlogeta)./...
X      (dlogrho.^2 + dlogeta.^2).^(1.5);
END_OF_FILE
if test 1208 -ne `wc -c <'lcfun.m'`; then
    echo shar: \"'lcfun.m'\" unpacked with wrong size!
fi
# end of 'lcfun.m'
fi
if test -f 'lsolve.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'lsolve.m'\"
else
echo shar: Extracting \"'lsolve.m'\" \(889 characters\)
sed "s/^X//" >'lsolve.m' <<'END_OF_FILE'
Xfunction x = lsolve(L,y,W,T)
X%LSOLVE Utility routine for "preconditioned" iterative methods.
X%
X% x = lsolve(L,y,W,T)
X%
X% Computes the vector
X%    x = L_p*y
X% where L_p is the A-weighted generalized inverse of L.
X%
X% Here, L is a p-by-n matrix, W holds a basis for the null space of L,
X% and T is a utility matrix which should be computed by routine pinit.
X%
X% Alternatively, L is square, and W and T are not needed.
X%
X% Notice that x and y may be matrices, in which case
X%    x(:,i) = L_p*y(:,i) .
X
X% Reference: P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems.
X% Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997.
X
X% Per Christian Hansen, IMM, 07/29/97.
X
X% Initialization.
X[p,n] = size(L); nu = n-p; ly = size(y,2);
X
X% Special treatment of square L.
Xif (nu==0), x = L\y; return; end
X 
X% The general case.
Xx = L(:,1:p)\y;
Xx = [x;zeros(nu,ly)] - W*(T(:,1:p)*x);
END_OF_FILE
if test 889 -ne `wc -c <'lsolve.m'`; then
    echo shar: \"'lsolve.m'\" unpacked with wrong size!
fi
# end of 'lsolve.m'
fi
if test -f 'lsqi.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'lsqi.m'\"
else
echo shar: Extracting \"'lsqi.m'\" \(2862 characters\)
sed "s/^X//" >'lsqi.m' <<'END_OF_FILE'
Xfunction [x_alpha,lambda] = lsqi(U,s,V,b,alpha,x_0)
X%LSQI Least squares minimizaiton with a quadratic inequality constraint.
X%
X% [x_alpha,lambda] = lsqi(U,s,V,b,alpha,x_0)
X% [x_alpha,lambda] = lsqi(U,sm,X,b,alpha,x_0)  ,  sm = [sigma,mu]
X%
X% Least squares minimization with a quadratic inequality constraint:
X%    min || A x - b ||   subject to   || x - x_0 ||     <= alpha
X%    min || A x - b ||   subject to   || L (x - x_0) || <= alpha
X% where x_0 is an initial guess of the solution, and alpha is a
X% positive constant.  Requires either the compact SVD of A saved as
X% U, s, and V, or part of the GSVD of (A,L) saved as U, sm, and X.
X% The regularization parameter lambda is also returned.
X%
X% If alpha is a vector, then x_alpha is a matrix such that
X%    x_alpha = [ x_alpha(1), x_alpha(2), ... ] .
X%
X% If x_0 is not specified, x_0 = 0 is used.
X
X% Reference: T. F. Chan, J. Olkin & D. W. Cooley, "Solving quadratically
X% constrained least squares using block box unconstrained solvers",
X% BIT 32 (1992), 481-495.
X% Extension to the case x_0 ~= 0 by Per Chr. Hansen, IMM, 11/20/91.
X% Key point: the initial lambda is almost unaffected by x_0 because
X% || x_unreg || >> || x_0 ||.
X
X% Per Christian Hansen, IMM, 11/22/91.
X
X% Initialization.
X[n,p] = size(V); [p,ps] = size(s);
Xif (min(alpha)<0)
X  error('Negative inequality constraint alpha')
Xend
Xif (nargin==5), x_0 = zeros(n,1); end
Xla  = length(alpha);
Xx_k = zeros(n,la);            lambda = zeros(la,1);
Xsnz = length(find(s(:,1)>0)); beta   = U'*b;
X
X% If alpha > || x_LS - x_0 || then return x_LS, otherwise compute
X% lambda via Hebden-Newton iteration using a good initial guess.
X% The initial guess lambda_0 is a modified version of the one from
X% the Chan-Olkin-Cooley paper.
Xif (ps == 1)
X  xi = beta(1:snz)./s(1:snz); omega = V'*x_0; s2 = s.^2;
X  x_unreg = V(:,1:snz)*xi; norm_x_unreg = norm(x_unreg - x_0);
X  for k=1:la
X    if (norm_x_unreg <= alpha(k))
X      x_alpha(:,k) = x_unreg; lambda(k) = 0;
X    else
X      lambda_0 = s(snz)*(norm_x_unreg/alpha(k) - 1);
X      lambda(k) = heb_new(lambda_0,alpha(k),s,beta,omega);
X      e = s./(s2 + lambda(k)^2); f = s.*e;
X      x_alpha(:,k) = V(:,1:p)*(e.*beta + (1-f).*omega);
X    end
X  end
Xelse
X  x_u   = V(:,p+1:n)*beta(p+1:n);  ps1   = p-snz+1;
X  xi    = beta(ps1:p)./s(ps1:p,1); gamma = s(:,1)./s(:,2);
X  omega = V\x_0; omega = omega(1:p);
X  x_unreg = V(:,ps1:p)*xi + x_u;
X  norm_Lx_unreg = norm(s(ps1:p,2).*(xi - omega(ps1:p)));
X  for k=1:la
X    if (norm_Lx_unreg <= alpha(k))
X      x_alpha(:,k) = x_unreg; lambda(k) = 0;
X    else
X      lambda_0 = (s(ps1,1)/s(ps1,2))*(norm_Lx_unreg/alpha(k) - 1);
X      lambda(k) = heb_new(lambda_0,alpha(k),s,beta(1:p),omega);
X      e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e;
X      x_alpha(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ...
X                               (1-f).*s(:,2).*omega) + x_u;
X    end
X  end
Xend
END_OF_FILE
if test 2862 -ne `wc -c <'lsqi.m'`; then
    echo shar: \"'lsqi.m'\" unpacked with wrong size!
fi
# end of 'lsqi.m'
fi
if test -f 'lsqr.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'lsqr.m'\"
else
echo shar: Extracting \"'lsqr.m'\" \(4569 characters\)
sed "s/^X//" >'lsqr.m' <<'END_OF_FILE'
Xfunction [X,rho,eta,F] = lsqr(A,b,k,reorth,s)
X%LSQR Solution of least squares problems by Lanczos bidiagonalization.
X%
X% [X,rho,eta,F] = lsqr(A,b,k,reorth,s)
X%
X% Performs k steps of the LSQR Lanczos bidiagonalization algorithm
X% applied to the system
X%    min || A x - b || .
X% The routine returns all k solutions, stored as columns of
X% the matrix X.  The solution norm and residual norm are returned
X% in eta and rho, respectively.
X%
X% If the singular values s are also provided, lsqr computes the
X% filter factors associated with each step and stores them columnwise
X% in the matrix F.
X%
X% Reorthogonalization is controlled by means of reorth:
X%    reorth = 0 : no reorthogonalization (default),
X%    reorth = 1 : reorthogonalization by means of MGS,
X%    reorth = 2 : Householder-reorthogonalization.
X
X% Reference: C. C. Paige & M. A. Saunders, "LSQR: an algorithm for
X% sparse linear equations and sparse least squares", ACM Trans.
X% Math. Software 8 (1982), 43-71.
X
X% Per Christian Hansen, IMM, 05/25/93.
X
X% The fudge threshold is used to prevent filter factors from exploding.
Xfudge_thr = 1e-4;
X
X% Initialization.
Xif (k < 1), error('Number of steps k must be positive'), end
Xif (nargin==3), reorth = 0; end
Xif (nargout==4 & nargin<5), error('Too few input arguments'), end
X[m,n] = size(A); X = zeros(n,k);
Xif (reorth==0)
X  UV = 0;
Xelseif (reorth==1)
X  U = zeros(m,k); V = zeros(n,k); UV = 1;
Xelseif (reorth==2)
X  if (k>=n), error('No. of iterations must satisfy k < n'), end
X  UV = 0; HHU = zeros(m,k); HHV = zeros(n,k);
X  HHalpha = zeros(1,k); HHbeta = HHalpha;
Xelse
X  error('Illegal reorth')
Xend
Xif (nargout > 1)
X  eta = zeros(k,1); rho = eta;
X  c2 = -1; s2 = 0; xnorm = 0; z = 0;
Xend
Xif (nargin==5)
X  ls = length(s);
X  F = zeros(ls,k); Fv = zeros(ls,1); Fw = Fv;
X  s = s.^2;
Xend
X
X% Prepare for LSQR iteration.
Xv = zeros(n,1); x = v; beta = norm(b); 
Xif (beta==0), error('Right-hand side must be nonzero'), end
Xif (reorth==2)
X  [beta,HHbeta(1),HHU(:,1)] = gen_hh(b);
Xend
Xu = b/beta; if (UV), U(:,1) = u; end
Xr = A'*u; alpha = norm(r);
Xif (reorth==2)
X  [alpha,HHalpha(1),HHV(:,1)] = gen_hh(r);
Xend
Xv = r/alpha; if (UV), V(:,1) = v; end
Xphi_bar = beta; rho_bar = alpha; w = v;
Xif (nargin==5), Fv = s/(alpha*beta); Fw = Fv; end
X
X% Perform Lanczos bidiagonalization with/without reorthogonalization.
Xfor i=2:k+1
X
X  alpha_old = alpha; beta_old = beta;
X
X  % Compute A*v - alpha*u.
X  p = A*v - alpha*u;
X  if (reorth==0)
X    beta = norm(p); u = p/beta;
X  elseif (reorth==1)
X    for j=1:i-1, p = p - (U(:,j)'*p)*U(:,j); end
X    beta = norm(p); u = p/beta;
X  else
X    for j=1:i-1
X      p(j:m) = app_hh(p(j:m),HHbeta(j),HHU(j:m,j));
X    end
X    [beta,HHbeta(i),HHU(i:m,i)] = gen_hh(p(i:m));
X    u = zeros(m,1); u(i) = 1;
X    for j=i:-1:1
X      u(j:m) = app_hh(u(j:m),HHbeta(j),HHU(j:m,j));
X    end
X  end
X
X  % Compute A'*u - beta*v.
X  r = A'*u - beta*v;
X  if (reorth==0)
X    alpha = norm(r); v = r/alpha;
X  elseif (reorth==1)
X    for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end
X    alpha = norm(r); v = r/alpha;
X  else
X    for j=1:i-1
X      r(j:n) = app_hh(r(j:n),HHalpha(j),HHV(j:n,j));
X    end
X    [alpha,HHalpha(i),HHV(i:n,i)] = gen_hh(r(i:n));
X    v = zeros(n,1); v(i) = 1;
X    for j=i:-1:1
X      v(j:n) = app_hh(v(j:n),HHalpha(j),HHV(j:n,j));
X    end
X  end
X
X  % Store U and V if necessary.
X  if (UV), U(:,i) = u; V(:,i) = v; end
X
X  % Construct and apply orthogonal transformation.
X  rrho = pythag(rho_bar,beta); c1 = rho_bar/rrho;
X  s1 = beta/rrho; theta = s1*alpha; rho_bar = -c1*alpha;
X  phi = c1*phi_bar; phi_bar = s1*phi_bar;
X
X  % Compute solution norm and residual norm if necessary;
X  if (nargout > 1)
X    delta = s2*rrho; gamma_bar = -c2*rrho; rhs = phi - delta*z;
X    z_bar = rhs/gamma_bar; eta(i-1) = pythag(xnorm,z_bar);
X    gamma = pythag(gamma_bar,theta);
X    c2 = gamma_bar/gamma; s2 = theta/gamma;
X    z = rhs/gamma; xnorm = pythag(xnorm,z);
X    rho(i-1) = abs(phi_bar);
X  end
X
X  % If required, compute the filter factors.
X  if (nargin==5)
X
X    if (i==2)
X      Fv_old = Fv;
X      Fv = Fv.*(s - beta^2 - alpha_old^2)/(alpha*beta);
X      F(:,i-1) = (phi/rrho)*Fw;
X    else
X      tmp = Fv;
X      Fv = (Fv.*(s - beta^2 - alpha_old^2) - ...
X                 Fv_old*alpha_old*beta_old)/(alpha*beta);
X      Fv_old = tmp;
X      F(:,i-1) = F(:,i-2) + (phi/rrho)*Fw;
X    end
X    if (i > 3)
X      f = find(abs(F(:,i-2)-1) < fudge_thr & abs(F(:,i-3)-1) < fudge_thr);
X      if (length(f) > 0), F(f,i-1) = ones(length(f),1); end
X    end
X    Fw = Fv - (theta/rrho)*Fw;
X
X  end
X
X  % Update the solution.
X  x = x + (phi/rrho)*w; w = v - (theta/rrho)*w;
X  X(:,i-1) = x;
X
Xend
END_OF_FILE
if test 4569 -ne `wc -c <'lsqr.m'`; then
    echo shar: \"'lsqr.m'\" unpacked with wrong size!
fi
# end of 'lsqr.m'
fi
if test -f 'ltsolve.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'ltsolve.m'\"
else
echo shar: Extracting \"'ltsolve.m'\" \(1086 characters\)
sed "s/^X//" >'ltsolve.m' <<'END_OF_FILE'
Xfunction x = ltsolve(L,y,W,T)
X%LTSOLVE Utility routine for "preconditioned" iterative methods.
X%
X% x = ltsolve(L,y,W,T)
X%
X% Computes the vector
X%   x = (L_p)'*y
X% where L_p is the A-weighted generalized inverse of L.
X%
X% Here, L is a p-by-n matrix, W holds a basis for the null space of L,
X% and T is a utility matrix which should be computed by routine pinit.
X%
X% Alternatively, L is square, and W and T are not needed.
X%
X% If W and T are not specified, then instead the routine computes
X%   x = inv(L(:,1:p))'*y(1:p) .
X%
X% Notice that x and y may be matrices, in which case x(:,i)
X% corresponds to y(:,i).
X
X% Reference: P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems.
X% Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997.
X
X% Per Christian Hansen, IMM, 07/29/97.
X
X% Initialization.
X[p,n] = size(L); nu = n-p; ly = size(y,2);
X
X% Special treatment of square L.
Xif (nu==0), x = (L')\y; return; end
X 
X% Perform the first stage, if necessary.
Xif (nargin > 2), y = y(1:p) - T(:,1:p)'*(W'*y); end
X
X% Always perform the second stage.
Xx = y(1:p)'/L(:,1:p); x = x';
END_OF_FILE
if test 1086 -ne `wc -c <'ltsolve.m'`; then
    echo shar: \"'ltsolve.m'\" unpacked with wrong size!
fi
# end of 'ltsolve.m'
fi
if test -f 'maxent.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'maxent.m'\"
else
echo shar: Extracting \"'maxent.m'\" \(4642 characters\)
sed "s/^X//" >'maxent.m' <<'END_OF_FILE'
Xfunction [x_lambda,rho,eta,data,X] = maxent(A,b,lambda,w,x0)
X%MAXENT Maximum entropy regularization.
X%
X% [x_lambda,rho,eta] = maxent(A,b,lambda,w,x0)
X%
X% Maximum entropy regularization:
X%    min { || A x - b ||^2 + lambda^2*x'*log(diag(w)*x) } ,
X% where -x'*log(diag(w)*x) is the entropy of the solution x.
X% If no weights w are specified, unit weights are used.
X%
X% If lambda is a vector, then x_lambda is a matrix such that
X%    x_lambda = [x_lambda(1), x_lambda(2), ... ] .
X%
X% This routine uses a nonlinear conjugate gradient algorithm with "soft"
X% line search and a step-length control that insures a positive solution.
X% If the starting vector x0 is not specified, then the default is
X%    x0 = norm(b)/norm(A,1)*ones(n,1) .
X
X% Per Christian Hansen, IMM and Tommy Elfving, Dept. of Mathematics,
X% Linkoping University, 06/10/92.
X
X% Reference: R. Fletcher, "Practical Methods for Optimization",
X% Second Edition, Wiley, Chichester, 1987.
X
X% Set defaults.
Xflat = 1e-3;     % Measures a flat minimum.
Xflatrange = 10;  % How many iterations before a minimum is considered flat.
Xmaxit = 150;     % Maximum number of CG iterations;
Xminstep = 1e-12; % Determines the accuracy of x_lambda.
Xsigma = 0.5;     % Threshold used in descent test.
Xtau0 = 1e-3;     % Initial threshold used in secant root finder.
X
X% Initialization.
X[m,n] = size(A); x_lambda = zeros(n,length(lambda)); F = zeros(maxit,1);
Xif (min(lambda) <= 0)
X  error('Regularization parameter lambda must be positive')
Xend
Xif (nargin ==3), w  = ones(n,1); end
Xif (nargin < 5), x0 = ones(n,1); end
X
X% Treat each lambda separately.
Xfor j=1:length(lambda);
X
X  % Prepare for nonlinear CG iteration.
X  l2 = lambda(j)^2;
X  x  = x0; Ax = A*x;
X  g  = 2*A'*(Ax - b) + l2*(1 + log(w.*x));
X  p  = -g;
X  r  = Ax - b;
X
X  % Start the nonlinear CG iteration here.
X  delta_x = x; dF = 1; it = 0; phi0 = p'*g;
X  while (norm(delta_x) > minstep*norm(x) & dF > flat & it < maxit & phi0 < 0)
X    it = it + 1;
X
X    % Compute some CG quantities.
X    Ap = A*p; gamma = Ap'*Ap; v = A'*Ap;
X
X    % Determine the steplength alpha by "soft" line search in which
X    % the minimum of phi(alpha) = p'*g(x + alpha*p) is determined to
X    % a certain "soft" tolerance.
X    % First compute initial parameters for the root finder.
X    alpha_left = 0; phi_left = phi0;
X    if (min(p) >= 0)
X      alpha_right = -phi0/(2*gamma);
X      h = 1 + alpha_right*p./x;
X    else
X      % Step-length control to insure a positive x + alpha*p.
X      I = find(p < 0);
X      alpha_right = min(-x(I)./p(I));
X      h = 1 + alpha_right*p./x; delta = eps;
X      while (min(h) <= 0)
X        alpha_right = alpha_right*(1 - delta);
X        h = 1 + alpha_right*p./x;
X        delta = delta*2;
X      end
X    end
X    z = log(h);
X    phi_right = phi0 + 2*alpha_right*gamma + l2*p'*z;
X    alpha = alpha_right; phi = phi_right;
X
X    if (phi_right <= 0)
X
X      % Special treatment of the case when phi(alpha_right) = 0.
X      z = log(1 + alpha*p./x);
X      g_new = g + l2*z + 2*alpha*v; t = g_new'*g_new;
X      beta = (t - g'*g_new)/(phi - phi0);
X
X    else
X
X      % The regular case: improve the steplength alpha iteratively
X      % until the new step is a descent step.
X      t = 1; u = 1; tau = tau0;
X      while (u > -sigma*t)
X
X        % Use the secant method to improve the root of phi(alpha) = 0
X        % to within an accuracy determined by tau.
X        while (abs(phi/phi0) > tau)
X          alpha = (alpha_left*phi_right - alpha_right*phi_left)/...
X                  (phi_right - phi_left);
X          z = log(1 + alpha*p./x);
X          phi = phi0 + 2*alpha*gamma + l2*p'*z;
X          if (phi > 0)
X            alpha_right = alpha; phi_right = phi;
X          else
X            alpha_left  = alpha; phi_left  = phi;
X          end
X        end
X
X        % To check the descent step, compute u = p'*g_new and
X        % t = norm(g_new)^2, where g_new is the gradient at x + alpha*p.
X        g_new = g + l2*z + 2*alpha*v; t = g_new'*g_new;
X        beta = (t - g'*g_new)/(phi - phi0);
X        u = -t + beta*phi;
X        tau = tau/10;
X
X      end  % End of improvement iteration.
X
X    end  % End of regular case.
X    
X    % Update the iteration vectors.
X    g = g_new; delta_x = alpha*p;
X    x = x + delta_x;
X    p = -g + beta*p;
X    r = r + alpha*Ap;
X    phi0 = p'*g;
X
X    % Compute some norms and check for flat minimum.
X    rho(j,1) = norm(r); eta(j,1) = x'*log(w.*x);
X    F(it) = rho(j,1)^2 + l2*eta(j,1);
X    if (it <= flatrange)
X      dF = 1;
X    else
X      dF = abs(F(it) - F(it-flatrange))/abs(F(it));
X    end
X
X    data(it,:) = [F(it),norm(delta_x),norm(g)];
X    X(:,it) = x;
X
X  end  % End of iteration for x_lambda(j).
X
X  x_lambda(:,j) = x;
X
Xend
END_OF_FILE
if test 4642 -ne `wc -c <'maxent.m'`; then
    echo shar: \"'maxent.m'\" unpacked with wrong size!
fi
# end of 'maxent.m'
fi
if test -f 'mtsvd.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'mtsvd.m'\"
else
echo shar: Extracting \"'mtsvd.m'\" \(1608 characters\)
sed "s/^X//" >'mtsvd.m' <<'END_OF_FILE'
Xfunction [x_k,rho,eta] = mtsvd(U,s,V,b,k,L)
X%MTSVD Modified truncated SVD regularization.
X%
X% [x_k,rho,eta] = mtsvd(U,s,V,b,k,L)
X%
X% Computes the modified TSVD solution:
X%    x_k = V*[ xi_k ] .
X%            [ xi_0 ]
X% Here, xi_k defines the usual TSVD solution
X%    xi_k = inv(diag(s(1:k)))*U(:,1:k)'*b ,
X% and xi_0 is chosen so as to minimize the seminorm || L x_k ||.
X% This leads to choosing xi_0 as follows:
X%    xi_0 = -pinv(L*V(:,k+1:n))*L*V(:,1:k)*xi_k .
X%
X% The truncation parameter must satisfy k > n-p.
X%
X% If k is a vector, then x_k is a matrix such that
X%     x_k = [ x_k(1), x_k(2), ... ] .
X%
X% The solution and residual norms are returned in eta and rho.
X
X% Reference: P. C. Hansen, T. Sekii & H. Shibahashi, "The modified
X% truncated-SVD method for regularization in general form", SIAM J.
X% Sci. Stat. Comput. 13 (1992), 1142-1150.
X
X% Per Christian Hansen, IMM, 12/22/95.
X
X% Initialization.
X[m,n1] = size(U); [p,n] = size(L);
Xlk = length(k); kmin = min(k);
Xif (kmin<n-p+1 | max(k)>n)
X  error('Illegal truncation parameter k')
Xend
Xx_k = zeros(n,lk);
Xbeta = U(:,1:n)'*b; xi = beta./s;
Xeta = zeros(lk,1); rho =zeros(lk,1);
X
X% Compute large enough QR factorization.
X[Q,R] = qr(L*V(:,n:-1:kmin+1),0);
X
X% Treat each k separately.
Xfor j=1:lk
X  kj = k(j); xtsvd = V(:,1:kj)*xi(1:kj);
X  if (kj==n)
X    x_k(:,j) = xtsvd;
X  else
X    z = R(1:n-kj,1:n-kj)\(Q(:,1:n-kj)'*(L*xtsvd));
X    z = z(n-kj:-1:1);
X    x_k(:,j) = xtsvd - V(:,kj+1:n)*z;
X  end
X  eta(j) = norm(x_k(:,j));
X  rho(j) = norm(beta(kj+1:n) + s(kj+1:n).*z);
Xend
X
Xif (nargout > 1 & m > n)
X  rho = sqrt(rho.^2 + norm(b - U(:,1:n)*beta)^2);
Xend
END_OF_FILE
if test 1608 -ne `wc -c <'mtsvd.m'`; then
    echo shar: \"'mtsvd.m'\" unpacked with wrong size!
fi
# end of 'mtsvd.m'
fi
if test -f 'newton.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'newton.m'\"
else
echo shar: Extracting \"'newton.m'\" \(2005 characters\)
sed "s/^X//" >'newton.m' <<'END_OF_FILE'
Xfunction lambda = newton(lambda_0,delta,s,beta,omega,delta_0)
X%NEWTON Newton iteration (utility routine for DISCREP).
X%
X% lambda = newton(lambda_0,delta,s,beta,omega,delta_0)
X%
X% Uses Newton iteration to find the solution lambda to the equation
X%    || A x_lambda - b || = delta ,
X% where x_lambda is the solution defined by Tikhonov regularization.
X%
X% The initial guess is lambda_0.
X%
X% The norm || A x_lambda - b || is computed via s, beta, omega and
X% delta_0.  Here, s holds either the singular values of A, if L = I,
X% or the c,s-pairs of the GSVD of (A,L), if L ~= I.  Moreover,
X% beta = U'*b and omega is either V'*x_0 or the first p elements of
X% inv(X)*x_0.  Finally, delta_0 is the incompatibility measure.
X
X% Reference: V. A. Morozov, "Methods for Solving Incorrectly Posed
X% Problems", Springer, 1984; Chapter 26.
X
X% Per Christian Hansen, IMM, 12/29/97.
X
X% Set defaults.
Xthr = sqrt(eps);  % Relative stopping criterion.
Xit_max = 50;      % Max number of iterations.
X
X% Initialization.
Xif (lambda_0 < 0)
X  error('Initial guess lambda_0 must be nonnegative')
Xend
X[p,ps] = size(s);
Xif (ps==2), sigma = s(:,1); s = s(:,1)./s(:,2); end
Xs2 = s.^2;
X
X% Use Newton's method to solve || b - A x ||^2 - delta^2 = 0.
X% It was found experimentally, that this formulation is superior
X% to the formulation || b - A x ||^(-2) - delta^(-2) = 0.
Xlambda = lambda_0; step = 1; it = 0;
Xwhile (abs(step) > thr*lambda & abs(step) > thr & it < it_max), it = it+1;
X  f = s2./(s2 + lambda^2);
X  if (ps==1)
X    r = (1-f).*(beta - s.*omega);
X    z = f.*r;
X  else
X    r = (1-f).*(beta - sigma.*omega);
X    z = f.*r;
X  end
X  step = (lambda/4)*(r'*r + (delta_0+delta)*(delta_0-delta))/(z'*r);
X  lambda = lambda - step;
X  % If lambda < 0 then restart with smaller initial guess.
X  if (lambda < 0), lambda = 0.5*lambda_0; lambda_0 = 0.5*lambda_0; end
Xend
X
X% Terminate with an error if too many iterations.
Xif (abs(step) > thr*lambda & abs(step) > thr)
X  error(['Max. number of iterations (',num2str(it_max),') reached'])
Xend
END_OF_FILE
if test 2005 -ne `wc -c <'newton.m'`; then
    echo shar: \"'newton.m'\" unpacked with wrong size!
fi
# end of 'newton.m'
fi
if test -f 'nu.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'nu.m'\"
else
echo shar: Extracting \"'nu.m'\" \(2762 characters\)
sed "s/^X//" >'nu.m' <<'END_OF_FILE'
Xfunction [X,rho,eta,F] = nu(A,b,k,nu,s)
X%NU Brakhage's nu-method.
X%
X% [X,rho,eta,F] = nu(A,b,k,nu,s)
X%
X% Performs k steps of Brakhage's nu-method for the problem
X%    min || A x - b || .
X% The routine returns all k solutions, stored as columns of
X% the matrix X.  The solution norm and residual norm are returned
X% in eta and rho, respectively.
X%
X% If nu is not specified, nu = .5 is the default value, which gives
X% the Chebychev method of Nemirovskii and Polyak.
X%
X% If the singular values s are also provided, nu computes the
X% filter factors associated with each step and stores them
X% columnwise in the matrix F.
X
X% Reference: H. Brakhage, "On ill-posed problems and the method of
X% conjugate gradients"; in H. W. Engl & G. W. Groetsch, "Inverse and
X% Ill-Posed Problems", Academic Press, 1987.
X
X% Martin Hanke, Institut fuer Praktische Mathematik, Universitaet
X% Karlsruhe and Per Christian Hansen, IMM, 03/21/92.
X
X% Set parameter.
Xl_steps = 3;      % Number of Lanczos steps for est. of || A ||.
Xfudge   = 0.99;   % Scale A and b by fudge/|| A*L_p ||.
Xfudge_thr = 1e-4; % Used to prevent filter factors from exploding.
X
X% Initialization.
Xif (k < 1), error('Number of steps k must be positive'), end
Xif (nargin==3), nu = .5; end
X[m,n] = size(A); X = zeros(n,k);
Xif (nargout > 1)
X  rho = zeros(k,1); eta = rho;
Xend;
Xif (nargin==5)
X  F = zeros(n,k); Fd = zeros(n,1); s = s.^2;
Xend
XV = zeros(n,l_steps); B = zeros(l_steps+1,l_steps);
Xv = zeros(n,1); eta = zeros(l_steps+1,1);
X
X% Compute a rough estimate of the norm of A by means of a few
X% steps of Lanczos bidiagonalization, and scale A and b such
X% that || A || is slightly less than one.
Xbeta = norm(b); u = b/beta;
Xfor i=1:l_steps
X  r = A'*u - beta*v;
X  alpha = norm(r); v = r/alpha;
X  B(i,i) = alpha; V(:,i) = v;
X  p = A*v - alpha*u;
X  beta = norm(p); u = p/beta;
X  B(i+1,i) = beta;
Xend
Xscale = fudge/norm(B); A = scale*A; b = scale*b;
Xif (nargin==5), s = scale^2*s; end
X
X% Prepare for iteration.
Xx = zeros(n,1);
Xd = A'*b;
Xr = d;
Xif (nargout>1), z = b; end
X
X% Iterate.
Xfor j=0:k-1
X   
X  % Updates. 
X  alpha = 4*(j+nu)*(j+nu+0.5)/(j+2*nu)/(j+2*nu+0.5);
X  beta  = (j+nu)*(j+1)*(j+0.5)/(j+2*nu)/(j+2*nu+0.5)/(j+nu+1);
X  Ad = A*d; AAd = A'*Ad;
X  x  = x + alpha*d;
X  r  = r - alpha*AAd;
X  d  = r + beta*d;
X  X(:,j+1) = x;
X  if (nargout>1)
X    z = z - alpha*Ad; rho(j+1) = norm(z)/scale;
X  end;
X  if (nargout>2), eta(j+1) = norm(x); end;
X  
X  % Filter factors.
X  if (nargin==5)
X    if (j==0)
X      F(:,1) = alpha*s;
X      Fd = s - s.*F(:,1) + beta*s;
X    else
X      F(:,j+1) = F(:,j) + alpha*Fd;
X      Fd = s - s.*F(:,j+1) + beta*Fd;
X    end
X    if (j > 1)
X      f = find(abs(F(:,j)-1) < fudge_thr & abs(F(:,j-1)-1) < fudge_thr);
X      if (length(f) > 0), F(f,j+1) = ones(length(f),1); end
X    end
X  end
X
Xend
END_OF_FILE
if test 2762 -ne `wc -c <'nu.m'`; then
    echo shar: \"'nu.m'\" unpacked with wrong size!
fi
# end of 'nu.m'
fi
if test -f 'parallax.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'parallax.m'\"
else
echo shar: Extracting \"'parallax.m'\" \(1854 characters\)
sed "s/^X//" >'parallax.m' <<'END_OF_FILE'
Xfunction [A,b] = parallax(n)
X%PARALLAX Stellar parallax problem with 28 fixed, real observations.
X%
X% [A,b] = parallax(n)
X%
X% Stellar parallax problem with 28 fixed, real observations.
X%
X% The underlying problem is a Fredholm integral equation of the
X% first kind with kernel
X%    K(s,t) = (1/sigma*sqrt(2*pi))*esp(-0.5*((s-t)/sigma)^2) ,
X% and it is discretized by means of a Galerkin method with n
X% orthonormal basis functions.  The right-hand side consists of
X% a measured distribution function of stellar parallaxes, and its
X% length is fixed, m = 26.  The exact solution, which represents
X% the true distribution of stellar parallaxes, in not known.
X
X% Reference: W. M. Smart, "Stellar Dynamics", Cambridge
X% University Press, 1938; p. 30.
X
X% Discretized by Galerkin method with orthonormal box functions;
X% 2-D integration is done by means of the computational molecule:
X%       1   4   1
X%       4  16   4
X%       1   4   1
X
X% Per Christian Hansen, IMM, 09/16/92.
X
X% Initialization.
Xa = 0; b = 0.1; m = 26; sigma = 0.014234;
Xhs = 0.130/m; hx = (b-a)/n; hsh = hs/2; hxh = hx/2;
Xss = (-0.03 + [0:m-1]'*hs)*ones(1,n);
Xxx = ones(m,1)*(a + [0:n-1]*hx);
X
X% Set up the matrix.
XA =     16*exp(-0.5*((ss+hsh - xx-hxh)/sigma).^2);
XA = A + 4*(exp(-0.5*((ss+hsh - xx    )/sigma).^2) + ...
X           exp(-0.5*((ss+hsh - xx-hx )/sigma).^2) + ...
X           exp(-0.5*((ss     - xx-hxh)/sigma).^2) + ...
X           exp(-0.5*((ss+hs  - xx-hxh)/sigma).^2));
XA = A +   (exp(-0.5*((ss     - xx    )/sigma).^2) + ...
X           exp(-0.5*((ss+hs  - xx    )/sigma).^2) + ...
X           exp(-0.5*((ss     - xx-hx )/sigma).^2) + ...
X           exp(-0.5*((ss+hs  - xx-hx )/sigma).^2));
XA = sqrt(hs*hx)/(36*sigma*sqrt(2*pi))*A;
X
X% Set up the normalized right-hand side.
Xb = [3;7;7;17;27;39;46;51;56;50;43;45;43;32;33;29;...
X     21;12;17;13;15;12;6;6;5;5]/(sqrt(hs)*640);
END_OF_FILE
if test 1854 -ne `wc -c <'parallax.m'`; then
    echo shar: \"'parallax.m'\" unpacked with wrong size!
fi
# end of 'parallax.m'
fi
if test -f 'pcgls.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'pcgls.m'\"
else
echo shar: Extracting \"'pcgls.m'\" \(3196 characters\)
sed "s/^X//" >'pcgls.m' <<'END_OF_FILE'
Xfunction [X,rho,eta,F] = pcgls(A,L,W,b,k,reorth,sm)
X%PCGLS "Preconditioned" conjugate gradients appl. implicitly to normal equations.
X% [X,rho,eta,F] = pcgls(A,L,W,b,k,reorth,sm)
X%
X% Performs k steps of the `preconditioned' conjugate gradient
X% algorithm applied implicitly to the normal equations
X%    (A*L_p)'*(A*L_p)*x = (A*L_p)'*b ,
X% where L_p is the A-weighted generalized inverse of L.  Notice that the
X% matrix W holding a basis for the null space of L must also be specified.
X%
X% The routine returns all k solutions, stored as columns of the matrix X.
X% The solution seminorm and residual norm are returned in eta and rho,
X% respectively.
X%
X% If the generalized singular values sm of (A,L) are also provided,
X% pcgls computes the filter factors associated with each step and
X% stores them columnwise in the matrix F.
X%
X% Reorthogonalization of the normal equation residual vectors
X% A'*(A*X(:,i)-b) is controlled by means of reorth:
X%    reorth = 0 : no reorthogonalization (default),
X%    reorth = 1 : reorthogonalization by means of MGS.
X
X% References: A. Bjorck, "Numerical Methods for Least Squares Problems",
X% SIAM, Philadelphia, 1996.
X% P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems.
X% Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997.
X 
X% Per Christian Hansen, IMM and Martin Hanke, Institut fuer
X% Praktische Mathematik, Universitaet Karlsruhe, 07/02/97.
X
X% The fudge threshold is used to prevent filter factors from exploding.
Xfudge_thr = 1e-4;
X 
X% Initialization
Xif (k < 1), error('Number of steps k must be positive'), end
Xif (nargin==5), reorth = 0; end
Xif (nargout==4 & nargin<7), error('Too few input arguments'), end
Xif (reorth<0 | reorth>1), error('Illegal reorth'), end
X[m,n] = size(A); [p,n1] = size(L); X = zeros(n,k);
Xif (nargout > 1)
X  eta = zeros(k,1); rho = eta;
Xend
Xif (nargin==7)
X  F = zeros(p,k); Fd = zeros(p,1); gamma = (sm(:,1)./sm(:,2)).^2;
Xend
X
X% Prepare for computations with L_p.
X[NAA,x_0] = pinit(W,A,b);
X
X% Prepare for CG iteartion.
Xx  = x_0;
Xr  = b - A*x_0; s = A'*r;
Xq1 = ltsolve(L,s);
Xq  = lsolve(L,q1,W,NAA);
Xz  = q;
Xdq = s'*q;
Xif (nargout>2), z1 = q1; x1 = zeros(p,1); end
Xif (reorth==1), Q1n = q1/norm(q1); end
X
X% Iterate.
Xfor j=1:k
X
X  % Update x and r vectors; compute q1.
X  Az  = A*z; alpha = dq/(Az'*Az);
X  x   = x + alpha*z;
X  r   = r - alpha*Az; s = A'*r;
X  q1  = ltsolve(L,s);
X
X  % Reorthogonalize q1 to previous q1-vectors, if required.
X  if (reorth==1)
X    for i=1:j, q1 = q1 - (Q1n(:,i)'*q1)*Q1n(:,i); end
X    Q1n = [Q1n,q1/norm(q1)];
X  end
X
X  % Update z vector.
X  q   = lsolve(L,q1,W,NAA);
X  dq2 = s'*q; beta = dq2/dq;
X  dq  = dq2;
X  z   = q + beta*z;
X  X(:,j) = x;
X  if (nargout>1), rho(j) = norm(r); end
X  if (nargout>2)
X    x1 = x1 + alpha*z1; z1 = q1 + beta*z1; eta(j) = norm(x1);
X  end
X
X  % Compute filter factors, if required.
X  if (nargin==7)
X    if (j==1)
X      F(:,1) = alpha*gamma;
X      Fd = gamma - gamma.*F(:,1) + beta*gamma;
X    else
X      F(:,j) = F(:,j-1) + alpha*Fd;
X      Fd = gamma - gamma.*F(:,j) + beta*Fd;
X    end
X    if (j > 2)
X      f = find(abs(F(:,j-1)-1) < fudge_thr & abs(F(:,j-2)-1) < fudge_thr);
X      if (length(f) > 0), F(f,j) = ones(length(f),1); end
X    end
X  end
X
Xend
END_OF_FILE
if test 3196 -ne `wc -c <'pcgls.m'`; then
    echo shar: \"'pcgls.m'\" unpacked with wrong size!
fi
# end of 'pcgls.m'
fi
if test -f 'phillips.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'phillips.m'\"
else
echo shar: Extracting \"'phillips.m'\" \(1692 characters\)
sed "s/^X//" >'phillips.m' <<'END_OF_FILE'
Xfunction [A,b,x] = phillips(n)
X%PHILLIPS Test problem: Phillips' "famous" problem.
X%
X% [A,b,x] = phillips(n)
X%
X% Discretization of the `famous' first-kind Fredholm integral
X% equation deviced by D. L. Phillips.  Define the function
X%    phi(x) = | 1 + cos(x*pi/3) ,  |x| <  3 .
X%             | 0               ,  |x| >= 3
X% Then the kernel K, the solution f, and the right-hand side
X% g are given by:
X%    K(s,t) = phi(s-t) ,
X%    f(t)   = phi(t) ,
X%    g(s)   = (6-|s|)*(1+.5*cos(s*pi/3)) + 9/(2*pi)*sin(|s|*pi/3) .
X% Both integration intervals are [-6,6].
X%
X% The order n must be a multiple of 4.
X
X% Reference: D. L. Phillips, "A technique for the numerical solution
X% of certain integral equations of the first kind", J. ACM 9
X% (1962), 84-97.
X
X% Discretized by Galerkin method with orthonormal box functions.
X
X% Per Christian Hansen, IMM, 09/17/92.
X
X% Check input.
Xif (rem(n,4)~=0), error('The order n must be a multiple of 4'), end
X
X% Compute the matrix A.
Xh = 12/n; n4 = n/4; r1 = zeros(1,n);
Xc = cos([-1:n4]*4*pi/n);
Xr1(1:n4) = h + 9/(h*pi^2)*(2*c(2:n4+1) - c(1:n4) - c(3:n4+2));
Xr1(n4+1) = h/2 + 9/(h*pi^2)*(cos(4*pi/n)-1);
XA = toeplitz(r1);
X
X% Compute the right-hand side b.
Xif (nargout>1),
X  b = zeros(n,1); c = pi/3;
X  for i=n/2+1:n
X    t1 = -6 + i*h; t2 = t1 - h;
X    b(i) =   t1*(6-abs(t1)/2) ...
X           + ((3-abs(t1)/2)*sin(c*t1) - 2/c*(cos(c*t1) - 1))/c ...
X           - t2*(6-abs(t2)/2) ...
X           - ((3-abs(t2)/2)*sin(c*t2) - 2/c*(cos(c*t2) - 1))/c;
X    b(n-i+1) = b(i);
X  end
X  b = b/sqrt(h);
Xend
X
X% Compute the solution x.
Xif (nargout==3),
X  x = zeros(n,1);
X  x(2*n4+1:3*n4) = (h + diff(sin([0:h:(3+10*eps)]'*c))/c)/sqrt(h);
X  x(n4+1:2*n4) = x(3*n4:-1:2*n4+1);
Xend
END_OF_FILE
if test 1692 -ne `wc -c <'phillips.m'`; then
    echo shar: \"'phillips.m'\" unpacked with wrong size!
fi
# end of 'phillips.m'
fi
if test -f 'picard.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'picard.m'\"
else
echo shar: Extracting \"'picard.m'\" \(1276 characters\)
sed "s/^X//" >'picard.m' <<'END_OF_FILE'
Xfunction eta = picard(U,s,b,d)
X%PICARD Visual inspection of the Picard condition.
X%
X% eta = picard(U,s,b,d)
X% eta = picard(U,sm,b,d)  ,  sm = [sigma,mu]
X%
X% Plots the singular values, s(i), the abs. value of the Fourier
X% coefficients, |U(:,i)'*b|, and a (possibly smoothed) curve of
X% the solution coefficients eta(i) = |U(:,i)'*b|/s(i).
X%
X% If s = [sigma,mu], where gamma = sigma./mu are the generalized
X% singular values, then this routine plots gamma(i), |U(:,i)'*b|,
X% and (smoothed) eta(i) = |U(:,i)'*b|/gamma(i).
X%
X% The smoothing is a geometric mean over 2*d+1 points, centered
X% at point # i. If nargin = 3, then d = 0 (i.e, no smothing).
X
X% Reference: P. C. Hansen, "The discrete Picard condition for
X% discrete ill-posed problems", BIT 30 (1990), 658-672.
X
X% Per Christian Hansen, IMM, 12/22/97.
X
X% Initialization.
X[n,ps] = size(s); beta = abs(U(:,1:n)'*b); eta = zeros(n,1);
Xif (nargin==3), d = 0; end;
Xif (ps==2), s = s(:,1)./s(:,2); end
Xd21 = 2*d+1; keta = 1+d:n-d;
Xfor i=keta
X  eta(i) = (prod(beta(i-d:i+d))^(1/d21))/s(i);
Xend
X
X% Plot the data.
Xsemilogy(1:n,s,'.-',1:n,beta,'x',keta,eta(keta),'o')
Xxlabel('i')
Xtitle('Picard plot')
Xif (ps==1)
X  legend('\sigma_i','|u_i^Tb|','|u_i^Tb|/\sigma_i')
Xelse
X  legend('\sigma_i/\mu_i','|u_i^Tb|','|u_i^Tb|/\sigma_i')
Xend
END_OF_FILE
if test 1276 -ne `wc -c <'picard.m'`; then
    echo shar: \"'picard.m'\" unpacked with wrong size!
fi
# end of 'picard.m'
fi
if test -f 'pinit.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'pinit.m'\"
else
echo shar: Extracting \"'pinit.m'\" \(905 characters\)
sed "s/^X//" >'pinit.m' <<'END_OF_FILE'
Xfunction [T,x_0] = pinit(W,A,b)
X%PINIT Utility init.-procedure for "preconditioned" iterative methods.
X%
X% T = pinit(W,A)
X% [T,x_0] = pinit(W,A,b)
X%
X% Initialization for `preconditioning' of general-form problems.
X% Here, W holds a basis for the null space of L.
X%
X% Determines the matrix T needed in the iterative routines for
X% treating regularization problems in general form.
X%
X% If b is also specified then x_0, the component of the solution in
X% the null space of L, is also computed.
X
X% Reference: P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems.
X% Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997.
X
X% Per Christian Hansen, IMM, 07/29/97.
X 
X% Initialization.
X[n,nu] = size(W);
X
X% Special treatment of square L.
Xif (nu==0), T = []; x_0 = zeros(n,1); return, end
X
X% Compute T.
XS = pinv(A*W);
XT = S*A;
X
X% If required, also compute x_0.
Xif (nargin==3), x_0 = W*(S*b); end
END_OF_FILE
if test 905 -ne `wc -c <'pinit.m'`; then
    echo shar: \"'pinit.m'\" unpacked with wrong size!
fi
# end of 'pinit.m'
fi
if test -f 'plot_lc.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'plot_lc.m'\"
else
echo shar: Extracting \"'plot_lc.m'\" \(1829 characters\)
sed "s/^X//" >'plot_lc.m' <<'END_OF_FILE'
Xfunction plot_lc(rho,eta,marker,ps,reg_param)
X%PLOT_LC Plot the L-curve.
X%
X% plot_lc(rho,eta,marker,ps,reg_param)
X%
X% Plots the L-shaped curve of the solution norm
X%    eta = || x ||      if   ps = 1
X%    eta = || L x ||    if   ps = 2
X% as a function of the residual norm rho = || A x - b ||.  If ps is
X% not specified, the value ps = 1 is assumed.
X%
X% The text string marker is used as marker.  If marker is not
X% specified, the marker '-' is used.
X%
X% If a fifth argument reg_param is present, holding the regularization
X% parameters corresponding to rho and eta, then some points on the
X% L-curve are identified by their corresponding parameter.
X
X% Per Christian Hansen, IMM, 12/29/97.
X
X% Set defaults.
Xif (nargin==2), marker = '-'; end  % Default marker.
Xif (nargin < 4), ps = 1; end       % Std. form is default.
Xnp = 10;                           % Number of identified points.
X
X% Initialization.
Xif (ps < 1 | ps > 2), error('Illegal value of ps'), end
Xn = length(rho); ni = round(n/np);
X
X% Make plot.
Xloglog(rho(2:end-1),eta(2:end-1)), ax = axis;
Xif (max(eta)/min(eta) > 10 | max(rho)/min(rho) > 10)
X  if (nargin < 5)
X    loglog(rho,eta,marker), axis(ax)
X  else
X    loglog(rho,eta,marker,rho(ni:ni:n),eta(ni:ni:n),'x'), axis(ax)
X    HoldState = ishold; hold on;
X    for k = ni:ni:n
X      text(rho(k),eta(k),num2str(reg_param(k)));
X    end
X    if (~HoldState), hold off; end
X  end
Xelse
X  if (nargin < 5)
X    plot(rho,eta,marker), axis(ax)
X  else
X    plot(rho,eta,marker,rho(ni:ni:n),eta(ni:ni:n),'x'), axis(ax)
X    HoldState = ishold; hold on;
X    for k = ni:ni:n
X      text(rho(k),eta(k),num2str(reg_param(k)));
X    end
X    if (~HoldState), hold off; end
X  end
Xend
Xxlabel('residual norm || A x - b ||_2')
Xif (ps==1)
X  ylabel('solution norm || x ||_2')
Xelse
X  ylabel('solution semi-norm || L x ||_2')
Xend
Xtitle('L-curve')
END_OF_FILE
if test 1829 -ne `wc -c <'plot_lc.m'`; then
    echo shar: \"'plot_lc.m'\" unpacked with wrong size!
fi
# end of 'plot_lc.m'
fi
if test -f 'plsqr.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'plsqr.m'\"
else
echo shar: Extracting \"'plsqr.m'\" \(5329 characters\)
sed "s/^X//" >'plsqr.m' <<'END_OF_FILE'
Xfunction [X,rho,eta,F] = plsqr(A,L,W,b,k,reorth,sm)
X%PLSQR "Preconditioned" version of the LSQR Lanczos bidiagonalization algorithm.
X%
X% [X,rho,eta,F] = plsqr(A,L,W,b,k,reorth,sm)
X%
X% Performs k steps of the `preconditioned' LSQR Lanczos
X% bidiagonalization algorithm applied to the system
X%    min || (A*L_p) x - b || ,
X% where L_p is the A-weighted generalized inverse of L.  Notice
X% that the matrix W holding a basis for the null space of L must
X% also be specified.
X%
X% The routine returns all k solutions, stored as columns of
X% the matrix X.  The solution seminorm and the residual norm are
X% returned in eta and rho, respectively.
X%
X% If the generalized singular values sm of (A,L) are also provided,
X% then glsqr computes the filter factors associated with each step
X% and stores them columnwise in the matrix F.
X%
X% Reorthogonalization is controlled by means of reorth:
X%    reorth = 0 : no reorthogonalization (default),
X%    reorth = 1 : reorthogonalization by means of MGS,
X%    reorth = 2 : Householder-reorthogonalization.
X
X% References: C. C. Paige & M. A. Saunders, "LSQR: an algorithm for
X% sparse linear equations and sparse least squares", ACM Trans.
X% Math. Software 8 (1982), 43-71.
X% P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems.
X% Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997.
X
X% Per Christian Hansen, IMM, 05/26/93.
X
X% The fudge threshold is used to prevent filter factors from exploding.
Xfudge_thr = 1e-4;
X
X% Initialization
Xif (k < 1), error('Number of steps k must be positive'), end
Xif (nargin==5), reorth = 0; end
Xif (nargout==4 & nargin<7), error('Too few input arguments'), end
X[m,n] = size(A); X = zeros(n,k); [pp,n1] = size(L);
Xif (n1 ~= n | m < n | n < pp)
X  error('Incorrect dimensions of A and L')
Xend
Xif (reorth==0)
X  UV = 0;
Xelseif (reorth==1)
X  U = zeros(m,k); V = zeros(pp,k); UV = 1;
Xelseif (reorth==2)
X  if (k>=n), error('No. of iterations must satisfy k < n'), end
X  UV = 0; HHU = zeros(m,k); HHV = zeros(pp,k);
X  HHalpha = zeros(1,k); HHbeta = HHalpha;
Xelse
X  error('Illegal reorth')
Xend
Xif (nargout > 1)
X  eta = zeros(k,1); rho = eta;
X  c2 = -1; s2 = 0; xnorm = 0; z = 0;
Xend
Xif (nargin==7)
X  [ls,ms] = size(sm);
X  F = zeros(ls,k); Fv = zeros(ls,1); Fw = Fv;
X  s = (sm(:,1)./sm(:,2)).^2;
Xend
X
X% Prepare for computations with L_p.
X[NAA,x_0] = pinit(W,A,b);
X
X% By subtracting the component A*x_0 from b we insure that
X% the corrent residual norms are computed.
Xb = b - A*x_0;
X
X% Prepare for LSQR iteration.
Xv = zeros(pp,1); x = v; beta = norm(b);
Xif (beta==0), error('Right-hand side must be nonzero'), end
Xif (reorth==2)
X  [beta,HHbeta(1),HHU(:,1)] = gen_hh(b);
Xend
Xu = b/beta; if (UV), U(:,1) = u; end
Xr = ltsolve(L,A'*u,W,NAA); alpha = norm(r);
Xif (reorth==2)
X  [alpha,HHalpha(1),HHV(:,1)] = gen_hh(r);
Xend
Xv = r/alpha; if (UV), V(:,1) = v; end
Xphi_bar = beta; rho_bar = alpha; w = v;
Xif (nargin==7), Fv = s/(alpha*beta); Fw = Fv; end
X
X% Perform Lanczos bidiagonalization with/without reorthogonalization.
Xfor i=2:k+1
X
X  alpha_old = alpha; beta_old = beta;
X
X  % Compute (A*L_p)*v - alpha*u.
X  p = A*lsolve(L,v,W,NAA) - alpha*u;
X  if (reorth==0)
X    beta = norm(p); u = p/beta;
X  elseif (reorth==1)
X    for j=1:i-1, p = p - (U(:,j)'*p)*U(:,j); end
X    beta = norm(p); u = p/beta;
X  else
X    for j=1:i-1
X      p(j:m) = app_hh(p(j:m),HHbeta(j),HHU(j:m,j));
X    end
X    [beta,HHbeta(i),HHU(i:m,i)] = gen_hh(p(i:m));
X    u = zeros(m,1); u(i) = 1;
X    for j=i:-1:1
X      u(j:m) = app_hh(u(j:m),HHbeta(j),HHU(j:m,j));
X    end
X  end
X
X  % Compute L_p'*A'*u - beta*v.
X  r = ltsolve(L,A'*u,W,NAA) - beta*v;
X  if (reorth==0)
X    alpha = norm(r); v = r/alpha;
X  elseif (reorth==1)
X    for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end
X    alpha = norm(r); v = r/alpha;
X  else
X    for j=1:i-1
X      r(j:pp) = app_hh(r(j:pp),HHalpha(j),HHV(j:pp,j));
X    end
X    [alpha,HHalpha(i),HHV(i:pp,i)] = gen_hh(r(i:pp));
X    v = zeros(pp,1); v(i) = 1;
X    for j=i:-1:1
X      v(j:pp) = app_hh(v(j:pp),HHalpha(j),HHV(j:pp,j));
X    end
X  end
X
X  % Store U and V if necessary.
X  if (UV), U(:,i) = u; V(:,i) = v; end
X
X  % Construct and apply orthogonal transformation.
X  rrho = pythag(rho_bar,beta); c1 = rho_bar/rrho;
X  s1 = beta/rrho; theta = s1*alpha; rho_bar = -c1*alpha;
X  phi = c1*phi_bar; phi_bar = s1*phi_bar;
X
X  % Compute solution norm and residual norm if necessary;
X  if (nargout > 1)
X    delta = s2*rrho; gamma_bar = -c2*rrho; rhs = phi - delta*z;
X    z_bar = rhs/gamma_bar; eta(i-1) = pythag(xnorm,z_bar);
X    gamma = pythag(gamma_bar,theta);
X    c2 = gamma_bar/gamma; s2 = theta/gamma;
X    z = rhs/gamma; xnorm = pythag(xnorm,z);
X    rho(i-1) = abs(phi_bar);
X  end
X
X  % If required, compute the filter factors.
X  if (nargin==7)
X
X    if (i==2)
X      Fv_old = Fv;
X      Fv  = Fv.*(s - beta^2 - alpha_old^2)/(alpha*beta);
X      F(:,i-1) = (phi/rrho)*Fw;
X    else
X      tmp = Fv;
X      Fv = (Fv.*(s - beta^2 - alpha_old^2) - ...
X                 Fv_old*alpha_old*beta_old)/(alpha*beta);
X      Fv_old = tmp;
X      F(:,i-1) = F(:,i-2) + (phi/rrho)*Fw;
X    end
X    if (i > 3)
X      f = find(abs(F(:,i-2)-1) < fudge_thr & abs(F(:,i-3)-1) < fudge_thr);
X      if (length(f) > 0), F(f,i-1) = ones(length(f),1); end
X    end
X    Fw = Fv - (theta/rrho)*Fw;
X
X  end
X
X  % Update the solution.
X  x = x + (phi/rrho)*w; w = v - (theta/rrho)*w;
X  X(:,i-1) = lsolve(L,x,W,NAA) + x_0;
X
Xend
END_OF_FILE
if test 5329 -ne `wc -c <'plsqr.m'`; then
    echo shar: \"'plsqr.m'\" unpacked with wrong size!
fi
# end of 'plsqr.m'
fi
if test -f 'pnu.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'pnu.m'\"
else
echo shar: Extracting \"'pnu.m'\" \(3359 characters\)
sed "s/^X//" >'pnu.m' <<'END_OF_FILE'
Xfunction [X,rho,eta,F] = pnu(A,L,W,b,k,nu,sm)
X%PNU "Preconditioned" version of Brakhage's nu-method.
X%
X% [X,rho,eta,F] = pnu(A,L,W,b,k,nu,sm)
X%
X% Performs k steps of a `preconditioned' version of Brakhage's
X% nu-method for the problem
X%    min || (A*L_p) x - b || ,
X% where L_p is the A-weighted generalized inverse of L.  Notice
X% that the matrix W holding a basis for the null space of L must
X% also be specified.
X%
X% The routine returns all k solutions, stored as columns of
X% the matrix X.  The solution seminorm and residual norm are returned
X% in eta and rho, respectively.
X%
X% If nu is not specified, nu = .5 is the default value, which gives
X% the Chebychev method of Nemirovskii and Polyak.
X%
X% If the generalized singular values sm of (A,L) are also provided,
X% then pnu computes the filter factors associated with each step and
X% stores them columnwise in the matrix F.
X
X% Reference: H. Brakhage, "On ill-posed problems and the method of
X% conjugate gradients"; in H. W. Engl & G. W. Groetsch, "Inverse and
X% Ill-Posed Problems", Academic Press, 1987.
X 
X% Martin Hanke, Institut fuer Praktische Mathematik, Universitaet
X% Karlsruhe and Per Christian Hansen, IMM, 06/25/92.
X
X% Set parameters.
Xl_steps = 3;      % Number of Lanczos steps for est. of || A*L_p ||.
Xfudge   = 0.99;   % Scale A and b by fudge/|| A*L_p ||.
Xfudge_thr = 1e-4; % Used to prevent filter factors from exploding.
X 
X% Initialization.
Xif (k < 1), error('Number of steps k must be positive'), end
Xif (nargin==5), nu = .5; end
X[m,n] = size(A); [p,n1] = size(L); X = zeros(n,k);
Xif (nargout > 1)
X  rho = zeros(k,1); eta = rho;
Xend;
Xif (nargin==7)
X  F = zeros(n,k); Fd = zeros(n,1); s = (sm(:,1)./sm(:,2)).^2;
Xend
XV = zeros(p,l_steps); B = zeros(l_steps+1,l_steps);
Xv = zeros(p,1); eta = zeros(l_steps+1,1);
X 
X% Prepare for computations with L_p.
X[NAA,x_0] = pinit(W,A,b); x1 = x_0;
X
X% Compute a rough estimate of || A*L_p || by means of a few
X% steps of Lanczos bidiagonalization, and scale A and b such
X% that || A*L_p || is slightly less than one.
Xb_0 = b - A*x_0; beta = norm(b_0); u = b_0/beta;
Xfor i=1:l_steps
X  r = ltsolve(L,A'*u,W,NAA) - beta*v;
X  alpha = norm(r); v = r/alpha;
X  B(i,i) = alpha; V(:,i) = v;
X  p = A*lsolve(L,v,W,NAA) - alpha*u;
X  beta = norm(p); u = p/beta;
X  B(i+1,i) = beta;
Xend
Xscale = fudge/norm(B); A = scale*A; b = scale*b;
Xif (nargin==7), s = scale^2*s; end
X
X% Prepare for iteration.
Xx  = x_0;
Xz  = -scale*b_0;
Xr  = A'*z;
Xd1 = ltsolve(L,r);
Xd  = lsolve(L,d1,W,NAA);
Xif (nargout>2), x1 = L*x_0; end
X
X% Iterate.
Xfor j=0:k-1
X   
X  % Updates.
X  alpha = 4*(j+nu)*(j+nu+0.5)/(j+2*nu)/(j+2*nu+0.5);
X  beta  = -(j+nu)*(j+1)*(j+0.5)/(j+2*nu)/(j+2*nu+0.5)/(j+nu+1);
X  Ad  = A*d; AAd = A'*Ad;
X  x   = x - alpha*d;
X  r   = r - alpha*AAd;
X  rr1 = ltsolve(L,r);
X  rr  = lsolve(L,rr1,W,NAA);
X  d   = rr - beta*d;
X  X(:,j+1) = x;
X  if (nargout>1 )
X    z = z - alpha*Ad; rho(j+1) = norm(z)/scale;
X  end;
X  if (nargout>2)
X    x1 = x1 - alpha*d1; d1 = rr1 - beta*d1;
X    eta(j+1) = norm(x1);
X  end;
X  
X  % Filter factors.
X  if (nargin==7)
X    if (j==0)
X      F(:,1) = alpha*s;
X      Fd = s - s.*F(:,1) + beta*s;
X    else
X      F(:,j+1) = F(:,j) + alpha*Fd;
X      Fd = s - s.*F(:,j+1) + beta*Fd;
X    end
X    if (j > 1)
X      f = find(abs(F(:,j)-1) < fudge_thr & abs(F(:,j-1)-1) < fudge_thr);
X      if (length(f) > 0), F(f,j+1) = ones(length(f),1); end
X    end
X  end
X
Xend
END_OF_FILE
if test 3359 -ne `wc -c <'pnu.m'`; then
    echo shar: \"'pnu.m'\" unpacked with wrong size!
fi
# end of 'pnu.m'
fi
if test -f 'pythag.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'pythag.m'\"
else
echo shar: Extracting \"'pythag.m'\" \(314 characters\)
sed "s/^X//" >'pythag.m' <<'END_OF_FILE'
Xfunction x = pythag(y,z)
X%PYTHAG Computes sqrt( y^2 + z^2 ).
X%
X% x = pythag(y,z)
X%
X% Returns sqrt(y^2 + z^2) but is careful to scale to avoid overflow.
X
X% Christian H. Bischof, Argonne National Laboratory, 03/31/89.
X
Xrmax = max(abs([y;z]));
Xif (rmax==0)
X  x = 0;
Xelse
X  x = rmax*sqrt((y/rmax)^2 + (z/rmax)^2);
Xend
END_OF_FILE
if test 314 -ne `wc -c <'pythag.m'`; then
    echo shar: \"'pythag.m'\" unpacked with wrong size!
fi
# end of 'pythag.m'
fi
if test -f 'quasifun.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'quasifun.m'\"
else
echo shar: Extracting \"'quasifun.m'\" \(206 characters\)
sed "s/^X//" >'quasifun.m' <<'END_OF_FILE'
Xfunction Q = quasifun(lambda,s,xi,dsvd)
X
X% Auxiliary routine for quasiopt.  PCH, IMM, 12/29/97.
X
Xif (nargin==3)
X   f = (s.^2)./(s.^2 + lambda^2);
Xelse
X   f = s./(s + lambda);
Xend
X
XQ = norm((1 - f).*f.*xi);
END_OF_FILE
if test 206 -ne `wc -c <'quasifun.m'`; then
    echo shar: \"'quasifun.m'\" unpacked with wrong size!
fi
# end of 'quasifun.m'
fi
if test -f 'quasiopt.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'quasiopt.m'\"
else
echo shar: Extracting \"'quasiopt.m'\" \(3607 characters\)
sed "s/^X//" >'quasiopt.m' <<'END_OF_FILE'
Xfunction [reg_min,Q,reg_param] = quasiopt(U,s,b,method)
X%QUASIOPT Quasi-optimality criterion for choosing the regularization parameter.
X%
X% [reg_min,Q,reg_param] = quasiopt(U,s,b,method)
X% [reg_min,Q,reg_param] = quasiopt(U,sm,b,method)  ,  sm = [sigma,mu]
X%
X% Plots the quasi-optimality function Q for the following methods:
X%    method = 'Tikh' : Tikhonov regularization   (solid line )
X%    method = 'tsvd' : truncated SVD or GSVD     (o markers  )
X%    method = 'dsvd' : damped SVD or GSVD        (dotted line)
X% If no method is specified, 'Tikh' is default.
X%
X% If any output arguments are specified, then the minimum of Q is
X% identified and the corresponding reg. parameter reg_min is returned.
X
X% Per Christian Hansen, IMM, 12/29/97.
X
X% Set defaults.
Xnpoints = 200;  % Number of points for 'Tikh' and 'dsvd'.
Xif (nargin==3), method = 'Tikh'; end   % Default method.
X
X% Initialization.
X[m,n] = size(U); [p,ps] = size(s);
Xif (ps==2), s = s(p:-1:1,1)./s(p:-1:1,2); U = U(:,p:-1:1); end
Xxi = (U'*b)./s;
Xif (nargout > 0), find_min = 1; else find_min = 0; end
X
X% Compute the quasioptimality function Q.
Xif (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))
X   
X  % Compute a vector of Q-values.
X  Q = zeros(npoints,1); reg_param = Q;
X  reg_param(npoints) = s(p);
X  ratio = (s(1)/s(p))^(1/(npoints-1));
X  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end
X  for i=1:npoints
X    Q(i) = quasifun(reg_param(i),s,xi);
X  end
X 
X % Find the minimum, if requested.
X if (find_min)
X   [minQ,minQi] = min(Q); % Initial guess.
X   reg_min = fmin('quasifun',...
X     reg_param(min(minQi+1,npoints)),reg_param(max(minQi-1,1)),...
X     [],s,xi); % Minimizer.
X   minQ = quasifun(reg_min,s,xi); % Minimum of function.
X end
X
Xelseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))
X   
X  % Compute a vector of Q-values.
X  Q = zeros(npoints,1); reg_param = Q;
X  reg_param(npoints,1) = s(p);
X  ratio = (s(1)/s(p))^(1/(npoints-1));
X  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end
X  for i=1:npoints
X    Q(i) = quasifun(reg_param(i),s,xi,1);
X  end
X 
X % Find the minimum, if requested.
X if (find_min)
X   [minQ,minQi] = min(Q); % Initial guess. 
X   reg_min = fmin('quasifun',...
X     reg_param(min(minQi+1,npoints)),reg_param(max(minQi-1,1)),...
X     [],s,xi,1); % Minimizer.
X   minQ = quasifun(reg_min,s,xi,1); % Minimum of function.
X end
X
Xelseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4))
X   
X  % Compute the quasi-optimality function.
X  Q = abs(xi); reg_param = [1:p]';
X  
X  % Find the minimum, if requested.
X  if (find_min)
X    [minQ,minQi] = min(Q); reg_min = reg_param(minQi);
X  end
X
Xelse, error('Illegal method'), end
X
X% Plot the function.
Xif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4))
X  semilogy(reg_param,Q,'o'), xlabel('k'), ylabel('Q(k)')
X  title('Quasi-optimality function')
X  if (find_min)
X    ax = axis;
X    HoldState = ishold; hold on;
X    semilogy([reg_min,reg_min],[minQ,minQ/1000],'--')
X    axis(ax);
X    if (~HoldState), hold off; end
X    title(['Quasi-optimality function, minimum at ',num2str(reg_min)])
X  end
Xelse
X  if (method(1:4)=='Tikh' | method(1:4)=='tikh' | ...
X      method(1:4)=='dsvd' | method(1:4)=='dgsv'      )
X    loglog(reg_param,Q), xlabel('\lambda'), ylabel('Q(\lambda)')
X  else
X    loglog(reg_param,Q,':'), xlabel('\lambda'), ylabel('Q(\lambda)')
X  end
X  title('Quasi-optimality function')
X  if (find_min)
X    ax = axis;
X    HoldState = ishold; hold on;
X    loglog([reg_min,reg_min],[minQ,minQ/1000],'--')
X    axis(ax)
X    if (~HoldState), hold off; end
X    title(['Quasi-optimality function, minimum at ',num2str(reg_min)])
X  end
Xend
END_OF_FILE
if test 3607 -ne `wc -c <'quasiopt.m'`; then
    echo shar: \"'quasiopt.m'\" unpacked with wrong size!
fi
# end of 'quasiopt.m'
fi
if test -f 'regudemo.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'regudemo.m'\"
else
echo shar: Extracting \"'regudemo.m'\" \(4752 characters\)
sed "s/^X//" >'regudemo.m' <<'END_OF_FILE'
X%REGUDEMO Tutorial script for Regularization Tools.
X
X% Per Christian Hansen, IMM, 12/19/97.
X
Xecho on, clf
X
X% Part 1.  The discrete Picard condition
X% --------------------------------------
X%
X% First generate a "pure" test problem where only rounding
X% errors are present.  Then generate another "noisy" test
X% problem by adding white noise to the right-hand side.
X%
X% Next compute the SVD of the coefficient matrix A.
X%
X% Finally, check the Picard condition for both test problems
X% graphically.  Notice that for both problems the condition is
X% indeed satisfied for the coefficients corresponding to the
X% larger singular values, while the noise eventually starts to
X% dominate.
X
X[A,b_bar,x] = shaw(32);
Xrandn('seed',41997);
Xe = 1e-3*randn(size(b_bar)); b = b_bar + e;
X[U,s,V] = csvd(A);
Xsubplot(2,1,1); picard(U,s,b_bar);
Xsubplot(2,1,2); picard(U,s,b);
Xpause, clf
X
X% Part 2.  Filter factors
X% -----------------------
X%
X% Compute regularized solutions to the "noisy" problem from Part 1 
X% by means of Tikhonov's method and LSQR without reorthogonalization.
X% Also, compute the corresponding filter factors.
X%
X% A surface (or mesh) plot of the solutions clearly shows their dependence
X% on the regularization parameter (lambda or the iteration number).
X
Xlambda = [1,3e-1,1e-1,3e-2,1e-2,3e-3,1e-3,3e-4,1e-4,3e-5];
XX_tikh = tikhonov(U,s,V,b,lambda);
XF_tikh = fil_fac(s,lambda);
Xiter = 30; reorth = 0;
X[X_lsqr,rho,eta,F_lsqr] = lsqr(A,b,iter,reorth,s);
Xsubplot(2,2,1); surf(X_tikh), title('Tikhonov solutions'), axis('ij')
Xsubplot(2,2,2); surf(log10(F_tikh)), axis('ij')
X                title('Tikh filter factors, log scale')
Xsubplot(2,2,3); surf(X_lsqr(:,1:17)), title('LSQR solutions'), axis('ij')
Xsubplot(2,2,4); surf(log10(F_lsqr(:,1:17))), axis('ij')
Xtitle('LSQR filter factors, log scale')
Xpause, clf
X
X% Part 3.  The L-curve
X% --------------------
X%
X% Plot the L-curves for Tikhonov regularization and for
X% LSQR for the "noisy" test problem from Part 1.
X%
X% Notice the similarity between the two L-curves and thus,
X% in turn, by the two methods.
X
Xsubplot(1,2,1); l_curve(U,s,b); axis([1e-3,1,1,1e3])
Xsubplot(1,2,2); plot_lc(rho,eta,'o'); axis([1e-3,1,1,1e3])
Xpause, clf
X
X% Part 4.  Regularization parameters
X% ----------------------------------
X%
X% Use the L-curve criterion and GCV to determine the regularization
X% parameters for Tikhonov regularization and truncated SVD.
X%
X% Then compute the relative errors for the four solutions.
X
Xlambda_l = l_curve(U,s,b);   axis([1e-3,1,1,1e3]),      pause
Xk_l = l_curve(U,s,b,'tsvd'); axis([1e-3,1,1,1e3]),      pause
Xlambda_gcv = gcv(U,s,b);     axis([1e-6,1,1e-9,1e-1]),  pause
Xk_gcv = gcv(U,s,b,'tsvd');   axis([0,20,1e-9,1e-1]),    pause
X
Xx_tikh_l   = tikhonov(U,s,V,b,lambda_l);
Xx_tikh_gcv = tikhonov(U,s,V,b,lambda_gcv);
Xif isnan(k_l)
X  x_tsvd_l = zeros(32,1); % Spline Toolbox not available.
Xelse
X  x_tsvd_l = tsvd(U,s,V,b,k_l);
Xend
Xx_tsvd_gcv = tsvd(U,s,V,b,k_gcv);
X[norm(x-x_tikh_l),norm(x-x_tikh_gcv),...
X norm(x-x_tsvd_l),norm(x-x_tsvd_gcv)]/norm(x);
Xpause, clf
X
X% Part 5.  Standard form versus general form
X% ------------------------------------------
X%
X% Generate a new test problem: inverse Laplace transformation
X% with white noise in the right-hand side.
X%
X% For the general-form regularization, choose minimization of
X% the first derivative.
X%
X% First display some left singular vectors of SVD and GSVD; then
X% compare truncated SVD solutions with truncated GSVD solutions.
X% Notice that TSVD cannot reproduce the asymptotic part of the
X% solution in the right part of the figure.
X
Xn = 16; [A,b,x] = ilaplace(n,2);
Xb = b + 1e-4*randn(size(b));
XL = get_l(n,1);
X[U,s,V] = csvd(A); [UU,sm,XX] = cgsvd(A,L);
XI = 1;
Xfor i=[3,6,9,12]
X  subplot(2,2,I); plot(1:n,V(:,i)); axis([1,n,-1,1])
X  xlabel(['i = ',num2str(i)]), I = I + 1;
Xend
Xsubplot(2,2,1), text(12,1.2,'Right singular vectors V(:,i)'), pause
Xclf
XI = 1;
Xfor i=[n-2,n-5,n-8,n-11]
X  subplot(2,2,I); plot(1:n,XX(:,i)), axis([1,n,-1,1]);
X  xlabel(['i = ',num2str(i)]), I = I + 1;
Xend
Xsubplot(2,2,1)
Xtext(10,1.2,'Right generalized singular vectors XX(:,i)')
Xpause, clf
X
Xk_tsvd = 7; k_tgsvd = 6;
XX_I = tsvd(U,s,V,b,1:k_tsvd);
XX_L = tgsvd(UU,sm,XX,b,1:k_tgsvd);
Xsubplot(2,1,1);
X  plot(1:n,X_I,1:n,x,'x'), axis([1,n,0,1.2]), xlabel('L = I')
Xsubplot(2,1,2);
Xplot(1:n,X_L,1:n,x,'x'), axis([1,n,0,1.2]), xlabel('L \neq I')
Xpause, clf
X
X% Part 6.  No square integrable solution
X% --------------------------------------
X%
X% In the last example there is no square integrable solution to
X% the underlying integral equation (NB: no noise is added).
X%
X% Notice that the discrete Picard condition does not seem to
X% be satisfied, which indicates trouble!
X
X[A,b] = ursell(32); [U,s,V] = csvd(A);
Xpicard(U,s,b); pause
X
X% This concludes the demo.
Xecho off
END_OF_FILE
if test 4752 -ne `wc -c <'regudemo.m'`; then
    echo shar: \"'regudemo.m'\" unpacked with wrong size!
fi
# end of 'regudemo.m'
fi
if test -f 'regutm.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'regutm.m'\"
else
echo shar: Extracting \"'regutm.m'\" \(1227 characters\)
sed "s/^X//" >'regutm.m' <<'END_OF_FILE'
Xfunction [A,U,V] = regutm(m,n,s)
X%REGUTM Test matrix for regularization methods.
X%
X% [A,U,V] = regutm(m,n,s)
X%
X% Generates a random m-times-n matrix A such that A*A' and A'*A
X% are oscillating.  Hence, in the SVD of A,
X%    A = U*diag(s)*V',
X% the number of sign changes in U(:,i) and V(:,i) is exactly i-1.
X%
X% The third argument s specifies the singular values of A.  If not
X% present, then s = logspace(0,round(log10(eps)),n).
X
X% Reference: P. C. Hansen, "Test matrices for regularization methods",
X% SIAM J. Sci. Comput. 16 (1995), 506--512.
X
X% Per Christian Hansen, IMM, 07/30/97.
X
X% Initialization.
Xif (nargin==1), n = m; end
Xif (nargin<3), s = logspace(0,round(log10(eps)),min(m,n)); end
X
X% Special treatment of the case m < n.
Xif (m < n), [A,V,U] = regutm(n,m,s); A = A'; return, end
X
X% Generate random bidiagonal matrix with nonnegative elements.
Xif (n < 100), mu = .222*n + .0278*n^2; else mu = 3*n; end
XB = abs(diag(randn(n,1)+mu) + diag(randn(n-1,1)+mu,1));
X
X% Compute the SVD of B.
X[U,dummy,V] = svd(B); clear dummy
X
X% Repeat if m > n.
Xif (m > n)
X  clear U
X  B = abs(diag(randn(m,1)+mu) + diag(randn(m-1,1)+mu,1));
X  [U,dummy,dummyV] = svd(B); clear dummy dummyV, U = U(:,1:n);
Xend
X
X% Compute A.
XA = U*diag(s)*V';
END_OF_FILE
if test 1227 -ne `wc -c <'regutm.m'`; then
    echo shar: \"'regutm.m'\" unpacked with wrong size!
fi
# end of 'regutm.m'
fi
if test -f 'shaw.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'shaw.m'\"
else
echo shar: Extracting \"'shaw.m'\" \(1401 characters\)
sed "s/^X//" >'shaw.m' <<'END_OF_FILE'
Xfunction [A,b,x] = shaw(n)
X%SHAW Test problem: one-dimensional image restoration model.
X%
X% [A,b,x] = shaw(n)
X%
X% Discretization of a first kind Fredholm integral equation with
X% [-pi/2,pi/2] as both integration intervals.  The kernel K and
X% the solution f, which are given by
X%    K(s,t) = (cos(s) + cos(t))*(sin(u)/u)^2
X%    u = pi*(sin(s) + sin(t))
X%    f(t) = a1*exp(-c1*(t - t1)^2) + a2*exp(-c2*(t - t2)^2) ,
X% are discretized by simple quadrature to produce A and x.
X% Then the discrete right-hand b side is produced as b = A*x.
X%
X% The order n must be even.
X
X% Reference: C. B. Shaw, Jr., "Improvements of the resolution of
X% an instrument by numerical solution of an integral equation",
X% J. Math. Anal. Appl. 37 (1972), 83-112.
X
X% Per Christian Hansen, IMM, 08/20/91.
X
X% Check input.
Xif (rem(n,2)~=0), error('The order n must be even'), end
X
X% Initialization.
Xh = pi/n; A = zeros(n,n);
X
X% Compute the matrix A.
Xco = cos(-pi/2 + [.5:n-.5]*h);
Xpsi = pi*sin(-pi/2 + [.5:n-.5]*h);
Xfor i=1:n/2
X  for j=i:n-i
X    ss = psi(i) + psi(j);
X    A(i,j) = ((co(i) + co(j))*sin(ss)/ss)^2;
X    A(n-j+1,n-i+1) = A(i,j);
X  end
X  A(i,n-i+1) = (2*co(i))^2;
Xend
XA = A + triu(A,1)'; A = A*h;
X
X% Compute the vectors x and b.
Xa1 = 2; c1 = 6; t1 =  .8;
Xa2 = 1; c2 = 2; t2 = -.5;
Xif (nargout>1)
X  x =   a1*exp(-c1*(-pi/2 + [.5:n-.5]'*h - t1).^2) ...
X      + a2*exp(-c2*(-pi/2 + [.5:n-.5]'*h - t2).^2);
X  b = A*x;
Xend
END_OF_FILE
if test 1401 -ne `wc -c <'shaw.m'`; then
    echo shar: \"'shaw.m'\" unpacked with wrong size!
fi
# end of 'shaw.m'
fi
if test -f 'spikes.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'spikes.m'\"
else
echo shar: Extracting \"'spikes.m'\" \(1190 characters\)
sed "s/^X//" >'spikes.m' <<'END_OF_FILE'
Xfunction [A,b,x] = spikes(n,t_max)
X%SPIKES Test problem with a "spiky" solution.
X%
X% [A,b,x] = spikes(n,t_max)
X%
X% Artificially generated discrete ill-posed problem.
X%
X% The solution x consists of a unit step at t = .5, and a pulse train
X% of spikes of decrasing magnitude at t = .5, 1.5, 2.5, ...
X%
X% The parameter t_max is optional; its default value is 5.
X% It controls the length of the pulse train.
X
X% Per Christian Hansen, IMM, 04/21/97.
X
X% Initialization.
Xif (nargin == 1), t_max = 5; end
Xt = t_max*[1:n]/n; del = t_max/n;
X
X% Compute the matrix A.
X[t,sigma] = meshgrid(del:del:t_max,del:del:t_max);
XA = sigma./(2*sqrt(pi*t.^3)).*exp(-(sigma.^2)./(4*t));
X
X% Compute the right-hand side b and the solution x.
Xif (nargout > 1)
X  heights = 2*ones(t_max,1); heights(1) = 25;
X  heights(2) = 9; heights(3) = 5; heights(4) = 4; heights(5) = 3;
X  x = zeros(n,1); n_h = 1;
X  peak = 0.5/t_max; peak_dist = 1/t_max;
X  if (peak < 1)
X    n_peak = round(peak*n); x(n_peak) = heights(n_h);
X    x(n_peak+1:n) = ones(n-n_peak,1);
X    peak = peak + peak_dist; n_h = n_h + 1;
X  end
X  while (peak < 1)
X    x(round(peak*n)) = heights(n_h);
X    peak = peak + peak_dist; n_h = n_h + 1;
X  end
X  b = A*x;
Xend
END_OF_FILE
if test 1190 -ne `wc -c <'spikes.m'`; then
    echo shar: \"'spikes.m'\" unpacked with wrong size!
fi
# end of 'spikes.m'
fi
if test -f 'spleval.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'spleval.m'\"
else
echo shar: Extracting \"'spleval.m'\" \(560 characters\)
sed "s/^X//" >'spleval.m' <<'END_OF_FILE'
Xfunction points = spleval(f)
X%SPLEVAL Evaluation of a spline or spline curve.
X%
X% points = spleval(f)
X%
X% Computes points on the given spline or spline curve f between
X% its extreme breaks.
X
X% Original routine fnplt by C. de Boor / latest change: Oct. 25, 1997
X% Simplified by Per Christian Hansen, IMM, 04/16/98.
X
X% Set default number of points.
Xnpoints = 300;
X
Xif (f.form(1)=='B') f = sp2pp(f); end
X
X[breaks,coefs,l,k,d] = ppbrk(f);
Xx = breaks(1) + [0:npoints]*((breaks(l+1)-breaks(1))/npoints);
Xv=ppual(f,x);
X
Xif (d==1), points=[x;v]; else, points = v; end
END_OF_FILE
if test 560 -ne `wc -c <'spleval.m'`; then
    echo shar: \"'spleval.m'\" unpacked with wrong size!
fi
# end of 'spleval.m'
fi
if test -f 'std_form.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'std_form.m'\"
else
echo shar: Extracting \"'std_form.m'\" \(2261 characters\)
sed "s/^X//" >'std_form.m' <<'END_OF_FILE'
Xfunction [A_s,b_s,L_p,K,M] = std_form(A,L,b,W)
X%STD_FORM Transform a general-form reg. problem into one in standard form.
X%
X% [A_s,b_s,L_p,K,M] = std_form(A,L,b)      (method 1)
X% [A_s,b_s,L_p,x_0] = std_form(A,L,b,W)    (method 2)
X%
X% Transforms a regularization problem in general form
X%    min { || A x - b ||^2 + lambda^2 || L x ||^2 }
X% into one in standard form
X%    min { || A_s x_s - b_s ||^2 + lambda^2 || x_s ||^2 } .
X%
X% Two methods are available.  In both methods, the regularized
X% solution to the original problem can be written as
X%    x = L_p*x_s + d
X% where L_p and d depend on the method as follows:
X%    method = 1: L_p = pseudoinverse of L, d  = K*M*(b - A*L_p*x_s)
X%    method = 2: L_p = A-weighted pseudoinverse of L, d = x_0.
X%
X% The transformation from x_s back to x can be carried out by means
X% of the subroutine gen_form.
X
X% Reference: P. C. Hansen, "Rank-Deficient and Discrete Ill-PosedProblems.
X% Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997.
X
X% Per Christian Hansen, IMM, 07/29/97.
X
X% Nargin determines which method.
Xif (nargin==3)
X
X  % Initialization for method 1.
X  [m,n] = size(A); [p,np] = size(L);
X  if (np~=n), error('A and L must have the same number of columns'), end
X
X  % Special treatment of the case where L is square.
X  if (p==n)
X    L_p = inv(L); K = []; M = []; A_s = A/L; b_s = b;
X    return
X  end
X
X  % Compute a QR factorization of L'.
X  [K,R] = qr(full(L')); R = R(1:p,:);
X
X  % Compute a QR factorization of A*K(:,p+1:n)).
X  [H,T] = qr(A*K(:,p+1:n)); T = T(1:n-p,:);
X
X  % Compute the transformed quantities.
X  L_p = (R\(K(:,1:p)'))';
X  K   = K(:,p+1:n);
X  M   = T\(H(:,1:n-p)');
X  A_s = H(:,n-p+1:m)'*A*L_p;
X  b_s = H(:,n-p+1:m)'*b;
X
Xelse
X
X  % Initialization for method 2.
X  [m,n] = size(A); [p,nl] = size(L); nu = n-p;
X  if (nl~=n), error('A and L must have the same number of columns'), end
X
X  % Special treatment of the case where L is square.
X  if (p==n)
X    L_p = inv(L); A_s = A/L; b_s = b;
X    x_0 = zeros(n,1); K = x_0; % Fix output name.
X    return
X  end
X
X  % Compute T and x_0;
X  [T,x_0] = pinit(W,A,b);
X  b_s = b - A*x_0;
X
X  % Compute the transformed quantities.
X  L1 = inv(L(:,1:p));
X  L_p = [L1;zeros(nu,p)] - W*(T(:,1:p)*L1);
X  A_s = A*L_p;
X
X  % Fix output name.
X  K = x_0;
X
Xend
END_OF_FILE
if test 2261 -ne `wc -c <'std_form.m'`; then
    echo shar: \"'std_form.m'\" unpacked with wrong size!
fi
# end of 'std_form.m'
fi
if test -f 'tgsvd.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'tgsvd.m'\"
else
echo shar: Extracting \"'tgsvd.m'\" \(1301 characters\)
sed "s/^X//" >'tgsvd.m' <<'END_OF_FILE'
Xfunction [x_k,rho,eta] = tgsvd(U,sm,X,b,k)
X%TGSVD Truncated GSVD regularization.
X%
X% [x_k,rho,eta] = tgsvd(U,sm,X,b,k) ,  sm = [sigma,mu]
X%
X% Computes the truncated GSVD solution
X%            [ 0              0                 0    ]
X%    x_k = X*[ 0  inv(diag(sigma(p-k+1:p)))     0    ]*U'*b .
X%            [ 0              0             eye(n-p) ]
X% If k is a vector, then x_k is a matrix such that
X%    x_k = [ x_k(1), x_k(2), ... ] .
X%
X% The solution and residual norms are returned in eta and rho.
X
X% Reference: P. C. Hansen, "Regularization, GSVD and truncated GSVD",
X% BIT 29 (1989), 491-504.
X
X% Per Christian Hansen, IMM, 12/21/97.
X
X% Initialization.
Xn = size(X,1); p = length(sm(:,1)); lk = length(k);
Xif (min(k)<0 | max(k)>p)
X  error('Illegal truncation parameter k')
Xend
Xx_k = zeros(n,lk);
Xeta = zeros(lk,1); rho = zeros(lk,1);
Xbeta = U(:,1:n)'*b;
Xxi = beta(1:p)./sm(:,1);
X
X% Treat each k separately.
Xif (p==n)
X  x_0 = zeros(n,1);
Xelse
X  x_0 = X(:,p+1:n)*(U(:,p+1:n)'*b);
Xend
Xfor j=1:lk
X  i = k(j); pi1 = p-i+1;
X  if(i==0)
X    x_k(:,j) = x_0;
X  else
X    x_k(:,j) = X(:,pi1:p)*xi(pi1:p) + x_0;
X end
X  if (nargout>1), rho(j) = norm(beta(1:p-i)); end
X  if (nargout==3), eta(j) = norm(x_k(:,j)); end
Xend
X
Xif (nargout > 1 & size(U,1) > p)
X   rho = sqrt(rho.^2 + norm(b - U(:,1:n)*beta)^2);
Xend
END_OF_FILE
if test 1301 -ne `wc -c <'tgsvd.m'`; then
    echo shar: \"'tgsvd.m'\" unpacked with wrong size!
fi
# end of 'tgsvd.m'
fi
if test -f 'tikhonov.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'tikhonov.m'\"
else
echo shar: Extracting \"'tikhonov.m'\" \(2449 characters\)
sed "s/^X//" >'tikhonov.m' <<'END_OF_FILE'
Xfunction [x_lambda,rho,eta] = tikhonov(U,s,V,b,lambda,x_0)
X%TIKHONOV Tikhonov regularization.
X%
X% [x_lambda,rho,eta] = tikhonov(U,s,V,b,lambda,x_0)
X% [x_lambda,rho,eta] = tikhonov(U,sm,X,b,lambda,x_0) ,  sm = [sigma,mu]
X%
X% Computes the Tikhonov regularized solution x_lambda.  If the SVD
X% is used, i.e. if U, s, and V are specified, then standard-form
X% regularization is applied:
X%    min { || A x - b ||^2 + lambda^2 || x - x_0 ||^2 } .
X% If, on the other hand, the GSVD is used, i.e. if U, sm, and X are
X% specified, then general-form regularization is applied:
X%    min { || A x - b ||^2 + lambda^2 || L (x - x_0) ||^2 } .
X%
X% If x_0 is not specified, then x_0 = 0 is used.
X%
X% If lambda is a vector, then x_lambda is a matrix such that
X%    x_lambda = [ x_lambda(1), x_lambda(2), ... ] .
X%
X% The solution and residual norms are returned in eta and rho.
X
X% Per Christian Hansen, IMM, 12/23/97.
X
X% Reference: A. N. Tikhonov & V. Y. Arsenin, "Solutions of
X% Ill-Posed Problems", Wiley, 1977.
X
X% Initialization.
Xif (min(lambda)<0)
X  error('Illegal regularization parameter lambda')
Xend
Xn = size(V,1); [p,ps] = size(s);
Xbeta = U(:,1:p)'*b;
Xzeta = s(:,1).*beta;
Xll = length(lambda); x_lambda = zeros(n,ll);
Xrho = zeros(ll,1); eta = zeros(ll,1);
X
X% Treat each lambda separately.
Xif (ps==1)
X  if (nargin==6), omega = V'*x_0; end
X  for i=1:ll
X    if (nargin==5)
X      x_lambda(:,i) = V(:,1:p)*(zeta./(s.^2 + lambda(i)^2));
X      rho(i) = lambda(i)^2*norm(beta./(s.^2 + lambda(i)^2));
X   else
X      x_lambda(:,i) = V(:,1:p)*...
X        ((zeta + lambda(i)^2*omega)./(s.^2 + lambda(i)^2));
X      rho(i) = lambda(i)^2*norm((beta - s.*omega)./(s.^2 + lambda(i)^2));
X    end
X    eta(i) = norm(x_lambda(:,i));
X  end
Xelse
X  gamma2 = (s(:,1)./s(:,2)).^2;
X  if (nargin==6), omega = V\x_0; omega = omega(1:p); end
X  if (p==n)
X    x0 = zeros(n,1);
X  else
X    x0 = V(:,p+1:n)*U(:,p+1:n)'*b; 
X  end
X  for i=1:ll
X    if (nargin==5)
X      x_lambda(:,i) = V(:,1:p)*(zeta./(s(:,1).^2 + lambda(i)^2*s(:,2).^2)) + x0;
X      rho(i) = lambda(i)^2*norm(beta./(gamma2 + lambda(i)^2));
X    else
X      x_lambda(:,i) = V(:,1:p)*...
X         (((zeta + lambda(i)^2*(s(:,2).^2).*omega)./...
X         (s(:,1).^2 + lambda(i)^2*s(:,2).^2))) + x0;
X      rho(i) = lambda(i)^2*norm((beta - s(:,1).*omega)./(gamma2 + lambda(i)^2));
X    end
X    eta(i) = norm(x_lambda(:,i));
X  end
Xend
Xif (nargout > 1 & size(U,1) > p)
X  rho = sqrt(rho.^2 + norm(b - U(:,1:n)*[beta;U(:,p+1:n)'*b])^2);
Xend
X
END_OF_FILE
if test 2449 -ne `wc -c <'tikhonov.m'`; then
    echo shar: \"'tikhonov.m'\" unpacked with wrong size!
fi
# end of 'tikhonov.m'
fi
if test -f 'tsvd.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'tsvd.m'\"
else
echo shar: Extracting \"'tsvd.m'\" \(865 characters\)
sed "s/^X//" >'tsvd.m' <<'END_OF_FILE'
Xfunction [x_k,rho,eta] = tsvd(U,s,V,b,k)
X%TSVD Truncated SVD regularization.
X%
X% [x_k,rho,eta] = tsvd(U,s,V,b,k)
X%
X% Computes the truncated SVD solution
X%    x_k = V(:,1:k)*inv(diag(s(1:k)))*U(:,1:k)'*b .
X% If k is a vector, then x_k is a matrix such that
X%    x_k = [ x_k(1), x_k(2), ... ] .
X%
X% The solution and residual norms are returned in eta and rho.
X
X% Per Christian Hansen, IMM, 12/21/97.
X
X% Initialization.
X[n,p] = size(V); lk = length(k);
Xif (min(k)<0 | max(k)>p)
X  error('Illegal truncation parameter k')
Xend
Xx_k = zeros(n,lk);
Xeta = zeros(lk,1); rho = zeros(lk,1);
Xbeta = U(:,1:p)'*b;
Xxi = beta./s;
X
X% Treat each k separately.
Xfor j=1:lk
X  i = k(j);
X  if (i>0)
X    x_k(:,j) = V(:,1:i)*xi(1:i);
X    eta(j) = norm(xi(1:i));
X    rho(j) = norm(beta(i+1:p));
X  end
Xend
X
Xif (nargout > 1 & size(U,1) > p)
X  rho = sqrt(rho.^2 + norm(b - U(:,1:p)*beta)^2);
Xend
END_OF_FILE
if test 865 -ne `wc -c <'tsvd.m'`; then
    echo shar: \"'tsvd.m'\" unpacked with wrong size!
fi
# end of 'tsvd.m'
fi
if test -f 'ttls.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'ttls.m'\"
else
echo shar: Extracting \"'ttls.m'\" \(1477 characters\)
sed "s/^X//" >'ttls.m' <<'END_OF_FILE'
Xfunction [x_k,rho,eta] = ttls(V1,k,s1)
X%TTLS Truncated TLS regularization.
X%
X% [x_k,rho,eta] = ttls(V1,k,s1)
X%
X% Computes the truncated TLS solution
X%    x_k = - V1(1:n,k+1:n+1)*pinv(V1(n+1,k+1:n+1))
X% where V1 is the right singular matrix in the SVD of the matrix
X%    [A,b] = U1*diag(s1)*V1' .
X%
X% If k is a vector, then x_k is a matrix such that
X%    x_k = [ x_k(1), x_k(2), ... ] .
X% If k is not specified, k = n is used.
X%
X% The solution norms and TLS residual norms corresponding to x_k are
X% returned in eta and rho, respectively.  Notice that the singular
X% values s1 are required to compute rho.
X
X% Reference: R. D. Fierro, G. H. Golub, P. C. Hansen and D. P. O'Leary,
X% "Regularization by truncated total least squares", SIAM J. Sci. Comput. 18
X% (1997), 1223-1241,
X
X% Per Christian Hansen, IMM, 03/18/93.
X
X% Initialization.
X[n1,m1] = size(V1); n = n1-1;
Xif (m1 ~= n1), error('The matrix V1 must be square'), end
Xif (nargin == 1), k = n; end
Xlk = length(k);
Xif (min(k) < 1 | max(k) > n)
X  error('Illegal truncation parameter k')
Xend
Xx_k = zeros(n,lk);
Xif (nargout > 1)
X  if (nargin < 3)
X    error('The singular values must also be specified')
X  end
X  ns = length(s1); rho = zeros(lk,1);
Xend
Xif (nargout==3), eta = zeros(lk,1); end
X
X% Treat each k separately.
Xfor j=1:lk
X  i = k(j);
X  v = V1(n1,i+1:n1); gamma = 1/(v*v');
X  x_k(:,j) = - V1(1:n,i+1:n1)*v'*gamma;
X  if (nargout > 1), rho(j) = norm(s1(i+1:ns)); end
X  if (nargout == 3), eta(j) = sqrt(gamma - 1); end
Xend
END_OF_FILE
if test 1477 -ne `wc -c <'ttls.m'`; then
    echo shar: \"'ttls.m'\" unpacked with wrong size!
fi
# end of 'ttls.m'
fi
if test -f 'ursell.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'ursell.m'\"
else
echo shar: Extracting \"'ursell.m'\" \(1024 characters\)
sed "s/^X//" >'ursell.m' <<'END_OF_FILE'
Xfunction [A,b] = ursell(n)
X%URSELL Test problem: integral equation wiht no square integrable solution.
X%
X% [A,b] = ursell(n)
X%
X% Discretization of a first kind Fredholm integral equation with
X% kernel K and right-hand side g given by
X%    K(s,t) = 1/(s+t+1) ,  g(s) = 1 ,
X% where both integration itervals are [0,1].
X%
X% Note: this integral equation has NO square integrable solution.
X
X% Reference: F. Ursell, "Introduction to the theory of linear
X% integral equations", Chapter 1 in L. M. Delves & J. Walsh (Eds.),
X% "Numerical Solution of Integral Equations", Clarendon Press, 1974.
X
X% Discretized by Galerkin method with orthonormal box functions.
X
X% Per Christian Hansen, IMM, 09/16/92.
X
X% Compute the matrix A.
Xfor k = 1:n
X  d1 = 1 + (1+k)/n; d2 = 1 + k/n; d3 = 1 + (k-1)/n;
X  c(k) = n*(d1*log(d1) + d3*log(d3) - 2*d2*log(d2));
X  e1 = 1 + (n+k)/n; e2 = 1 + (n+k-1)/n; e3 = 1 + (n+k-2)/n;
X  r(k) = n*(e1*log(e1) + e3*log(e3) - 2*e2*log(e2));
Xend
XA = hankel(c,r);
X
X% Compute the right-hand side b.
Xb = ones(n,1)/sqrt(n);
END_OF_FILE
if test 1024 -ne `wc -c <'ursell.m'`; then
    echo shar: \"'ursell.m'\" unpacked with wrong size!
fi
# end of 'ursell.m'
fi
if test -f 'wing.m' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'wing.m'\"
else
echo shar: Extracting \"'wing.m'\" \(1312 characters\)
sed "s/^X//" >'wing.m' <<'END_OF_FILE'
Xfunction [A,b,x] = wing(n,t1,t2)
X%WING Test problem with a discontinuous solution.
X%
X% [A,b,x] = wing(n,t1,t2)
X%
X% Discretization of a first kind Fredholm integral eqaution with
X% kernel K and right-hand side g given by
X%    K(s,t) = t*exp(-s*t^2)                       0 < s,t < 1
X%    g(s)   = (exp(-s*t1^2) - exp(-s*t2^2)/(2*s)  0 < s   < 1
X% and with the solution f given by
X%    f(t) = | 1  for  t1 < t < t2
X%           | 0  elsewhere.
X%
X% Here, t1 and t2 are constants satisfying t1 < t2.  If they are
X% not speficied, the values t1 = 1/3 and t2 = 2/3 are used.
X
X% Reference: G. M. Wing, "A Primer on Integral Equations of the
X% First Kind", SIAM, 1991; p. 109.
X
X% Discretized by Galerkin method with orthonormal box functions;
X% both integrations are done by the midpoint rule.
X
X% Per Christian Hansen, IMM, 09/17/92.
X
X% Initialization.
Xif (nargin==1)
X  t1 = 1/3; t2 = 2/3;
Xelse
X  if (t1 > t2), error('t1 must be smaller than t2'), end
Xend
XA = zeros(n,n); h = 1/n; sh = sqrt(h);
X
X% Set up matrix.
Xsti = ([1:n]-0.5)*h;
Xfor i=1:n
X  A(i,:) = h*sti.*exp(-sti(i)*sti.^2);
Xend
X
X% Set up right-hand side.
Xif (nargout > 1)
X  b = sqrt(h)*0.5*(exp(-sti*t1^2)' - exp(-sti*t2^2)')./sti';
Xend
X
X% Set up solution.
Xif (nargout==3)
X  I = find(t1 < sti & sti < t2);
X  x = zeros(n,1); x(I) = sqrt(h)*ones(length(I),1);
Xend
END_OF_FILE
if test 1312 -ne `wc -c <'wing.m'`; then
    echo shar: \"'wing.m'\" unpacked with wrong size!
fi
# end of 'wing.m'
fi
echo shar: End of shell archive.
exit 0

 Michela Redivo-Zaglia
 Universita` di Padova - Dipartimento di Elettronica e Informatica
 Via G. Gradenigo 6/A  - 35131 Padova - Italy
  
 Phone ++39-49-8277625                    e-mail: michela@dei.unipd.it
 Fax   ++39-49-8277699