
2.11 Finite Legendre Series

A. Purpose

This subroutine computes the value of a finite sum of
Legendre polynomials,

y =

N∑
j=0

ajPj(x)

for a specified summation limit, N, argument, x, and se-
quence of coefficients, aj . The Legendre polynomials are
defined in [1].

B. Usage

B.1 Program Prototype, Single Precision

INTEGER N

REAL X, Y, A(0 : m ≥ N)

Assign values to X, N, and A(0), A(1), ... A(N).

CALL SLESUM (S, N, A, Y)

The sum will be stored in Y.

B.2 Argument Definitions

X [in] Argument of the polynomials.

N [in] Highest degree of polynomials in sum.

A() [in] The coefficients must be given in A(J), J = 0,
..., N.

Y [out] Computed value of the sum.

B.3 Modifications for Double Precision

For double precision usage, change the REAL statement
to DOUBLE PRECISION and change the subroutine
name from SLESUM to DLESUM.

C. Examples and Remarks

See DRSLESUM and ODSLESUM for an example of the
usage of SLESUM. DRSLESUM evaluates the following
identity, the coefficients of which were obtained from Ta-
ble 22.9, page 798, of [1].

z = y − w = 0,

where

y = 0.07P0(x) + 0.27P1(x) + 0.20P2(x)

+ 0.28P3(x) + 0.08P4(x) + 0.08P5(x),

and

w = 0.35x4 + 0.63x5.

D. Functional Description

The sum is evaluated by the following algorithm:

bN+2 = 0, bN+1 = 0,

bk =
2k + 1

k + 1
bk+1x−

k + 1

k + 2
bk+2 + ak, k = N, ..., 0,

y = b0.

For an error analysis applying to this algorithm see [2]
and [3]. The first four Legendre polynomials are

P0(x) = 1, P1(x) = x,

P2(x) = 1.5x2 − 0.5, P3(x) = 2.5x3 − 1.5x.

For k ≥ 2 the Legendre polynomials satisfy the recur-
rence

kPk(x) = (2k − 1)xPk−1(x)− (k − 1)Pk−2(x).

The Legendre polynomials are orthogonal relative to in-
tegration over the interval [−1, 1] and are normally used
only with an argument, x, in this interval.
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E. Error Procedures and Restrictions

The subroutine will return Y = 0 if N < 0. It is recom-
mended that x satisfy |x| ≤ 1.

F. Supporting Information

The source language is ANSI Fortran

Entry Required Files

DLESUM DLESUM

SLESUM SLESUM

Based on a 1974 program by E. W. Ng, JPL. Present
version by C. L. Lawson and S. Y. Chiu, JPL, 1983.
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DRSLESUM

c DRSLESUM
c>> 1995−05−28 DRSLESUM Krogh Changes to use M77CON
c>> 1994−08−09 DRSLESUM WVS Set up f o r CHGTYP
c>> 1994−07−14 DRSLESUM CLL
c>> 1992−04−29 DRSLESUM CAO Replaced ’1 ’ in format .
c>> 1991−11−19 DRSLESUM CLL
c>> 1987−12−09 DRSLESUM Lawson I n i t i a l Code .
c−−S r ep l a c e s ”?”: ?LESUM, DR?LESUM
c
c Demonstration d r i v e r f o r e va l ua t i on o f a Legendre s e r i e s .
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer j
real x , a ( 0 : 5 ) , y ,w, z
data a /0 .07 e0 , 0 .27 e0 , 0 .20 e0 , 0 .28 e0 , 0 .08 e0 , 0 .08 e0/

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
print ’ (1x , 3 x , a1 ,14 x , a1 ,17 x , a1 /) ’ , ’ x ’ , ’ y ’ , ’ z ’
do 20 j = −10 ,10 ,2

x = real ( j ) /10 . e0
ca l l slesum (x , 5 , a , y )
w = 0.35 e0 ∗ ( x∗∗4) + 0.63 e0 ∗ ( x∗∗5)
z = y − w
print ’ (1x , f 5 . 2 , 5 x , g15 . 7 , g15 . 2 ) ’ , x , y , z

20 continue
end

ODSLESUM

x y z

−1.00 −0.2800000 0 .0
−0.80 −0.6307840E−01 0 .22E−07
−0.60 −0.3628805E−02 0 .37E−08
−0.40 0.2508797E−02 −0.33E−08
−0.20 0.3583953E−03 −0.48E−08
0 .00 0.000000 0 .0
0 .20 0.7616058E−03 0 .57E−08
0 .40 0.1541121E−01 0 .11E−07
0 .60 0.9434883E−01 0 .22E−07
0 .80 0.3497985 0 .30E−07
1 .00 0.9800001 0 .12E−06
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