
5.2 Eigenvalues and Eigenvectors of a Hermitian Complex Matrix

A. Purpose

Compute the N eigenvalues and right eigenvectors of an
N × N complex Hermitian matrix A. A complex ma-
trix is Hermitian if its diagonal elements are real and its
off-diagonal pairs ai,j and aj,i are complex conjugates
of each other. Such a matrix will have real eigenvalues.
The eigenvectors will in general be complex but can be
chosen so that the matrix V of N eigenvectors is unitary,
i.e., the conjugate transpose of V is the inverse of V .

B. Usage

B.1 Program Prototype

REAL AR(LDA,≥N), AI(LDA,≥N) [LDA≥N] ,
EVAL(≥N)

REAL VR(LDA,≥N), VI(LDA,≥N), WORK(≥3N)

INTEGER LDA, N, IERR

Assign values to AR(,), AI(,), LDA, and N.

CALL SHERQL(AR, AI, LDA, N,
EVAL, VR, VI, WORK, IERR)

Results are returned in EVAL(), VR(,), VI(,), and IERR.

B.2 Argument Definitions

AR(,), AI(,) [inout] On entry the locations on and
below the diagonal of these arrays must contain the
lower-triangular elements of the N × N complex Her-
mitian matrix A with the real part in AR(,) and the
imaginary part in AI(,). On return AR(,) and AI(,)
contain information about the unitary transforma-
tions used in the reduction of A in their lower trian-
gle. The strict upper triangles of AR(,) and AI(,),
and the diagonal of AR(,) are unaltered.

LDA [in] Dimension of the first subscript of the arrays
AR(,), AI(,), VR(,), and VI(,). Require LDA ≥ N.

N [in] Order of the complex Hermitian matrix A. N
≥ 1.

EVAL() [out] Array in which the N real eigenvalues
of A will be stored by the subroutine. The eigen-
values will be sorted with the algebraically smallest
eigenvalues first.

VR(,), VI(,) [out] On return contains the real and
imaginary parts of the eigenvectors with column k
corresponding to the eigenvalue in EVAL(k). These
N eigenvectors will be mutually orthogonal and will
have a unit unitary norm.

WORK() [scratch] An array of at least 3N locations
used as temporary space.

IERR [out] On exit this is set to 0 if the QL algorithm
converges, otherwise see Section E.

B.3 Modifications for Double Precision

Change SHERQL to DHERQL, and the REAL type
statement to DOUBLE PRECISION.

C. Examples and Remarks

Consider the following complex Hermitian matrix:

A =


25 −3 − 4i −8 + 6i 0

−3 + 4i 25 0 −8 − 6i
−8 − 6i 0 25 3 − 4i

0 −8 + 6i 3 + 4i 25


unit unitary norm associated with these eigenvalues
are column vectors with the following quadruples of
elements: (0.5i, 0.4 + 0.3i, −0.3 + 0.4i, 0.5), (−0.5i,
0.4+0.3i, 0.3−0.4i, 0.5), (−0.5i, −0.4−0.3i, −0.3+0.4i,
0.5), and (0.5i, −0.4− 0.3i, 0.3− 0.4i, 0.5), respectively.

The code in DRSHERQL, given below, computes the
eigenvalues and eigenvectors of this matrix. Output from
this program is given in the file ODSHERQL.

Before the call to SHERQL, the matrix is saved in order
to compute the relative residual matrix D defined as

C = (AW −WΛ) /γ

where W is the matrix whose columns are the computed
eigenvectors of A, Λ is the diagonal matrix of eigenval-
ues, and γ is the maximum-row-sum norm of A.

Recall that if v is an eigenvector, then so is αv for any
nonzero complex scalar α. More generally, if an eigen-
value, λ, of a complex Hermitian matrix occurs with
multiplicity k, there will be an associated k-dimensional
complex subspace in which every vector is an eigenvector
for λ. This subroutine will return eigenvectors constitut-
ing an orthogonal basis for such an eigenspace.

D. Functional Description

Householder complex unitary similarity transformations
are used to transform the matrix A to a Hermitian tridi-
agonal matrix. Additional unitary similarity transfor-
mations are used to transform the matrix to a real tridi-
agonal matrix. From this point, this subroutine uses
the same method as the subroutine SSYMQR of Chap-
ter 5.1. As was the case there, all routines are minor
modifications of EISPACK routines, [1].
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E. Error Procedures and Restrictions

If the QL algorithm fails to converge in 30 iterations on
the J th eigenvalue the subroutine sets IERR = J . In
this case J − 1 eigenvalues are computed correctly but
the eigenvalues are not ordered, and the eigenvectors are

not computed. If N ≤ 0 on entry, IERR is set to −1. In
either case an error message is printed using IERM1 of
Chapter 19.2 with an error level of 0, before the return.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DHERQL DHERQL, DIMQL, ERFIN, ERMSG,
IERM1, IERV1

SHERQL ERFIN, ERMSG, IERM1, IERV1,
SHERQL, SIMQL

Converted by: F. T. Krogh, JPL, October 1991.
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DRSHERQL

c program DRSHERQL
c>> 1996−05−28 DRSHERQL Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRSHERQL Krogh Changes to use M77CON
c>> 1994−09−23 DRSHERQL CLL
c>> 1992−04−23 CLL
c>> 1992−03−04 DRSHERQL Krogh I n i t i a l v e r s i on .
c Demonstrate Hermitian e i g enva l u e / e i g env e c t o r sub rou t ine SHERQL.
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−S r ep l a c e s ”?”: DR?HERQL, ?HERQL, ?VECP, ?MATP, ?DOT
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer I , IERR, J , LDA, LDA3, N
parameter (LDA = 4)
parameter (LDA3 = 3∗LDA)
real AR(LDA, LDA) , AI (LDA, LDA)
real ARSAV(LDA, LDA) , AISAV(LDA, LDA) , ANORM
external SDOT
real SDOT, DR(LDA,LDA) , DI (LDA,LDA) , EVAL(LDA)
real VR(LDA, LDA) , VI (LDA, LDA) , WORK(LDA3)
data AR(1 ,1 ) / 25 .0 e0 /
data (AR(2 , I ) , I =1 ,2) / −3.0e0 , 25 .0 e0 /
data (AR(3 , I ) , I =1 ,3) / −08.0e0 , 0 . 0 e0 , 25 .0 e0 /
data (AR(4 , I ) , I =1 ,4) / 0 .0 e0 , −08.0e0 , 3 . 0 e0 , 25 .0 e0 /
data AI (1 , 1 ) / 0 .0 e0 /
data (AI (2 , I ) , I =1 ,2) / 4 .0 e0 , 0 . 0 e0 /
data (AI (3 , I ) , I =1 ,3) / −06.0e0 , 0 . 0 e0 , 0 . 0 e0 /
data (AI (4 , I ) , I =1 ,4) / 0 .0 e0 , 06 .0 e0 , 4 . 0 e0 , 0 . 0 e0 /
data ANORM / 46 .0 e0 /
data N /LDA/

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
print ∗ , ’DRSHERQL. . Demo d r i v e r f o r SHERQL. ’

c
c F i r s t copy AR() and AI () to ARSAV() and AISAV() f o r l a t e r
c r e s i d u a l check .
c

do 20 I = 1 ,N
do 10 J = 1 , I

ARSAV( I , J ) = AR( I , J )
ARSAV(J , I ) = ARSAV( I , J )
AISAV( I , J ) = AI( I , J )
AISAV(J , I ) = −AISAV( I , J )

10 continue
20 continue

ca l l SHERQL(AR, AI , LDA, N, EVAL, VR, VI , WORK, IERR)
i f (IERR . eq . 0) then

ca l l SVECP(EVAL, N, ’ 0 Eigenva lues ’ )
ca l l SMATP(VR,LDA,N,N,

∗ ’ 0 Real par t s o f e i g env e c t o r s as column vec to r s ’ )
ca l l SMATP(VI ,LDA,N,N,

∗ ’ 0 Imaginary par t s o f e i g env e c t o r s as column vec to r s ’ )
c
c As a check compute D = (ASAV∗EVEC − EVEC∗EVAL) / ANORM.
c Expect D to be c l o s e to the machine p r e c i s i on .
c

do 40 J = 1 , LDA
do 30 I = 1 , LDA
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DR( I , J ) = (SDOT(LDA,ARSAV( I , 1 ) ,LDA,VR(1 , J ) , 1 ) −
∗ SDOT(LDA,AISAV( I , 1 ) ,LDA, VI (1 , J ) , 1 ) −
∗ VR( I , J )∗EVAL(J ) )/ANORM

DI( I , J ) = (SDOT(LDA,ARSAV( I , 1 ) ,LDA, VI (1 , J ) , 1 ) +
∗ SDOT(LDA,AISAV( I , 1 ) ,LDA,VR(1 , J ) , 1 ) −
∗ VI( I , J )∗EVAL(J ) )/ANORM

30 continue
40 continue

ca l l SMATP(DR, LDA, N, N,
∗ ’ 0Real part o f r e s i d u a l matrix D = (A∗EVEC − EVEC∗EVAL) / ANORM’ )

ca l l SMATP(DI , LDA, N, N,
∗ ’ 0Imag part o f r e s i d u a l matrix D = (A∗EVEC − EVEC∗EVAL) / ANORM’ )
else

print ’ (/a , i 5 ) ’ , ’ Convergence f a i l u r e in SHERQL, IERR =’ ,IERR
end i f
stop
end

ODSHERQL

DRSHERQL. . Demo dr i v e r f o r SHERQL.

Eigenva lues
1 TO 4 10.00000 20.00001 30.00000 40.00000

Real par t s o f e i g env e c t o r s as column vec to r s

COL 1 COL 2 COL 3 COL 4
ROW 1 −2.9802322E−08 −2.9802322E−08 −4.4703484E−08 −4.4703484E−08
ROW 2 0.4000000 −0.3999998 0.3999999 −0.4000001
ROW 3 −0.3000000 −0.3000006 0.3000004 0.3000001
ROW 4 0.4999999 −0.4999999 −0.5000001 0.4999999

Imaginary par t s o f e i g env e c t o r s as column vec to r s

COL 1 COL 2 COL 3 COL 4
ROW 1 0.5000000 0.5000000 0.5000001 0.5000000
ROW 2 0.3000001 −0.3000001 0.3000002 −0.3000000
ROW 3 0.3999999 0.4000002 −0.3999999 −0.3999998
ROW 4 −0.000000 0.000000 0.000000 −0.000000

Real part o f r e s i d u a l matrix D = (A∗EVEC − EVEC∗EVAL) / ANORM

COL 1 COL 2 COL 3 COL 4
ROW 1 1.2957556E−09 4.9238626E−08 −5.3773757E−08 −2.5915062E−08
ROW 2 −1.0366025E−08 6.2196150E−08 4.1464101E−08 4.1464101E−08
ROW 3 4.1464101E−08 −2.0732051E−08 0.000000 −2.0732051E−08
ROW 4 −8.2928203E−08 0.000000 −2.0732051E−08 0.000000

Imag part o f r e s i d u a l matrix D = (A∗EVEC − EVEC∗EVAL) / ANORM

COL 1 COL 2 COL 3 COL 4
ROW 1 −5.1830124E−08 −1.8658845E−07 2.0732051E−08 0.000000
ROW 2 1.0366025E−08 0.000000 0.000000 0.000000
ROW 3 −4.1464101E−08 −4.1464101E−08 −2.0732051E−08 −4.1464101E−08
ROW 4 −1.2957531E−08 1.0366025E−08 0.000000 1.2957531E−08
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