
18.4 Sorting Data Sets too Large to Fit in Memory

A. Purpose

Sort a set of data that is too large to be contained in
main memory. The structure of the records, and the cri-
teria for ordering them, are determined by the calling
program.

B. Usage

B.1 Program Prototype

INTEGER N, L(≥N), OPTION, OUTFIL

EXTERNAL DATAOP

Assign values to N and OPTION. Require N ≥ 4.

CALL EXSORT (DATAOP, N, L,
OPTION, OUTFIL)

B.2 Argument Definitions

DATAOP [in] A SUBROUTINE subprogram that is
used to perform operations on the data. DATAOP is
referenced by CALL DATAOP (IOP, I1, I2, IFLAG),
where all arguments are integer scalars. IOP defines
the action to perform, I1 and I2 provide parameters
necessary to those actions, and IFLAG returns a sta-
tus. When I1 or I2 index a record area, we have 1 ≤
I1, I2 ≤ N.

The subroutine DATAOP must have capacity to store
at least N ≥ 4 records, and access to four external se-
quential files, such as tape or disk files. Using the ar-
gument IOP, EXSORT requests DATAOP to execute
operations such as comparing records in the internal
region, and moving records between the internal re-
gion and specified external files. These actions are
defined below.

IOP ACTION

1 Place a datum from the set to be sorted into the
record area indexed by I2. I1 is irrelevant. Set
the value of IFLAG to zero if a datum is avail-
able, or to any nonzero value if there are no
more data in the set. If there are no more data
in the set, do not modify any record areas since
EXSORT assumes they are intact, and may ask
DATAOP to output from them using IOP = 6.

2 Write the datum in the record area indexed by
I2 onto the intermediate file indexed by I1, 1 ≤
I1 ≤ 4. The value of IFLAG is irrelevant.

3 Place an end-of-sequence mark to be recognized
during performance of operation 4 below onto
the intermediate file indexed by I1. The values
of I2 and IFLAG are irrelevant.

4 Read a datum from the intermediate file indexed
by I1 into the record area indexed by I2. Set
the value of IFLAG to any nonzero value if the
end-of-sequence mark written by operation 3 is
detected, else set the value of IFLAG to zero.
If the end-of-sequence mark is detected, do not
modify any record areas.

5 Rewind the intermediate file indexed by I1. The
values of I2 and IFLAG are irrelevant. This op-
eration is the first operation performed on the
intermediate files; thus, they should be opened
here if they are not already opened.

6 If I1 is zero the next datum from the sorted
set is in the record area indexed by I2. At this
point you can print the item, save it, or pro-
cess it in some other way. If I1 is nonzero, all
of the records of the sorted set have previously
been passed to DATAOP with IOP = 6 and I1
= zero. The last action performed by EXSORT
is to invoke DATAOP with IOP = 6 and I1 6=
zero.

7 Move the datum in the record area indexed by
I1 to the record area indexed by I2. The value
of IFLAG is irrelevant.

8 Compare the datum in the record area indexed
by I1 to the datum in the record area indexed by
I2. If the datum in the record area indexed by
I1 is to appear in the sorted sequence before the
datum in the record area indexed by I2, set the
value of IFLAG to −1 or any negative integer; if
the order of the records in the areas indexed by
I1 and I2 is immaterial, set the value of IFLAG
to zero; if the record in the area indexed by I1
is to appear in the sorted sequence after the da-
tum in the record area indexed by I2, set the
value of IFLAG to +1 or any positive integer.

EXSORT does not have access to the data. Since
DATAOP is a dummy procedure, it may have any
name. Its name must appear in an EXTERNAL
statement in the calling program unit.

N [in] The maximum number of records DATAOP can
hold in its internal space. When the I1 or I2 argu-
ment of DATAOP indexes a record, its value will be
in the range from 1 to N. We must have N ≥ 4. Larger
values for N will tend to give faster sorts.

L() [scratch] An array of length at least N.

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 Sorting Data Sets too Large to Fit in Memory 18.4–1

OPTION [in] The first stage of sorting a large volume
of data consists of sorting parts of it that are as large
as can be contained in memory. These parts are then
written onto intermediate files. If the first record of
a part that has been sorted in main memory could
appear in the sorted order after the last record that
has been written onto an intermediate file, the newly
sorted part will be concatenated onto that sequence.
Thus it may happen that all of the data are contained
in a single sorted sequence on one intermediate file.
This event is called fortuitous completion.

If fortuitous completion occurs and OPTION = 0,
EXSORT will set OUTFIL to the index of the inter-
mediate file on which the completely sorted sequence
was discovered (1 ≤ OUTFIL ≤ 4). If fortuitous com-
pletion does not occur and OPTION = 0, EXSORT
will set OUTFIL = 0 and return the sorted records
by calling DATAOP with IOP = 6. If OPTION is not
zero EXSORT will not alter OUTFIL, and the sorted
records are always returned by calling DATAOP with
IOP = 6, even if fortuitous completion occurs.

To take advantage of fortuitous completion to pre-
vent needless copying of the sorted data, set OP-
TION = 0, arrange DATAOP to write data on the
intermediate files in the same format as they are writ-
ten on the final output file (when IOP = 6), and allow
the consumer of the sorted data to read them from a
file specified by a variable that is computed depend-
ing on the value of OUTFIL.

OUTFIL [out] See OPTION.

C. Examples and Remarks

The program DREXSORT illustrates the use of EX-
SORT to sort 10000 randomly generated real numbers.
The output should consist of the single line

“EXSORT succeeded using n compares”, where n is
about 126000.

Stability

A sorting method is said to be stable if the original rela-
tive order of equal elements is preserved. This subroutine
uses a merge sort algorithm, which is not inherently sta-
ble. To impose stability, add a sequence number to each
record, and include the sequence number as the least sig-
nificant ordering criterion when DATAOP is called with
IOP = 8.

D. Functional Description

The basic strategy of external sorting is to sort as much
of the data as possible in main memory. If the data set
is larger than can be contained in main memory, write a
sorted subset onto a file. Continue writing sorted subsets

until the entire set has been sorted into blocks that are
ordered, but elements in different blocks might not be
ordered. Then merge the sorted blocks until one sorted
sequence is produced. There are several strategies for
each of these steps.

The number of passes necessary to merge the sorted
blocks is proportional to the logarithm of the number
of blocks. Since data transfer using files is slower than
sorting in memory, one should minimize the number of
blocks by making them as large as possible.

Data are sorted using calls to INSRTX which has the
same functionality and calling sequence as INSORT
(Chapter 18.3), but the COMPAR subprogram has a dif-
ferent specification. It is a SUBROUTINE with four ar-
guments, IOP, I, J and IFLAG as described for DATAOP
above. IOP is 8, and I, J and IFLAG are used as de-
scribed for DATAOP above.

Sorted data are distributed onto two intermediate files,
with the file that receives a datum changed whenever
the datum to be put onto a file would be less than the
preceding datum. If the first datum of a sorted subset is
less than any of the last elements already recorded on in-
termediate files, but the last is greater, the sorted subset
is split, with as much as possible concatenated onto one
of the sequences under construction on an intermediate
file. As a result the number of ordered sequences on the
two intermediate files is different by at most one, but
there is no bound (other than the size of the data set)
on the difference between the numbers of records on the
intermediate files. It is also possible that only one sorted
sequence will be produced, although the data could not
all be contained in memory. See the explanation of the
argument OPTION for a discussion of this possibility.

After the data have been sorted into blocks, and dis-
tributed onto the two intermediate files, the sequences on
the intermediate files are merged repeatedly until only
one sequence remains. When more than four sequences
remain, the result of merging sequences is written to an-
other intermediate file. When four or fewer sequences
remain, the result of merging sequences is passed to
DATAOP with IOP = 6. During the merge process,
there will generally be two sequences being merged. But
when an odd sequence remains at the end of a pass it
will be merged with the first two sequences that were pro-
duced in that pass, using a three-way merge, before the
remaining sequences produced in that pass are merged
using two-way merges.

E. Error Procedures and Restrictions

EXSORT neither detects nor reports error conditions.
The only limitations are those imposed by the capacity
of external storage, and those imposed by INSRTX (see

18.4–2 Sorting Data Sets too Large to Fit in Memory June 17, 2010

Section 18.3.E).

F. Supporting Information

The source language is ANSI Fortran 77.

Designed and coded by W. V. Snyder, JPL 1974.
Adapted for MATH77, February 1990.

Entry Required Files

EXSORT EXSORT, INSTRX, PVEC

DREXSORT

c>> 1996−06−24 DREXSORT Krogh Added code f o r convers ion to C.
c>> 1995−05−28 DREXSORT Krogh Converted SFTRAN to Fortran
c>> 1990−02−09 DREXSORT Snyder I n i t i a l code .
c
c Test d r i v e r f o r EXSORT.
c
c Sort LDATA=10000 random numbers us ing EXSORT.
c Check whether they are in order .
c

integer LENBUF
parameter (LENBUF=1000)
integer L(1 :LENBUF) ,OPTION,OUTFIL
parameter (OPTION=1)
external DATAOP
real R(1 :LENBUF)
common /RCOM/ R

c
ca l l ex so r t (dataop ,LENBUF, l , option , o u t f i l)
stop
end

subroutine DATAOP (IOP , I , J , IFLAG)
integer LDATA, LENBUF
parameter (LDATA=10000 , LENBUF=1000)
integer IOP , I , J , IFLAG
log ica l ISopen (4)
save ISOPEN
integer NCOMP, NDATA
log ica l OK
save NCOMP, NDATA, OK
real PREV,R(1 :LENBUF) ,SRANU
save PREV
external SRANU
common /RCOM/ R
data ISOPEN, NCOMP, NDATA, OK, PREV /4∗ .FALSE. , 0 , 0 , .TRUE. , −1./

c++ CODE fo r .C. i s i n a c t i v e
c%% s t a t i c f l o a t end o f s e q [1] = {−1.0e0 } ;
c%% s t a t i c char ∗ fname [4]={” scra t ch1 ” ,” sc ra t ch2 ” ,” sc ra t ch3 ” ,” sc ra t ch4 ”} ;
c%% s t a t i c FILE ∗ f p [4] ;
c++ END
c

go to (10 , 20 , 30 , 40 , 50 , 60 , 70 , 80) , IOP
return

c case 1 @ i n i t i a l input in t o record J
10 continue

ndata = ndata + 1
i f (ndata . l e .LDATA) then

r (j)=sranu ()
i f l a g=0

else

June 17, 2010 Sorting Data Sets too Large to Fit in Memory 18.4–3

i f l a g=1
end i f
return

c case 2 @ wr i t e s c ra t ch from J onto f i l e I
20 continue

c%% fw r i t e (&rcom . r [j −1] , s i z e o f (rcom . r [0]) , 1L , fp [i −1]) ;
write (i +10) r (j)
return

c case 3 @ wr i t e end−of−sequence onto f i l e I
30 continue

c%% fw r i t e (end o f s eq , s i z e o f (rcom . r [0]) , 1L , fp [i −1]) ;
write (i +10) −1.0E0
return

c case 4 @ read sc ra t ch in t o J from f i l e I
40 continue

c%% fread (&rcom . r [j −1] , s i z e o f (rcom . r [0]) , 1L , fp [i −1]) ;
read (i +10) r (j)
i f l a g=0
i f (r (j) . l t . 0 . 0) i f l a g=1
return

c case 5 @ rewind f i l e I
50 continue

i f (. not . i sopen (i)) then
c%% fp [i −1] = fopen (fname [i −1] , ”wb+”);

open (i +10, status=’ sc ra t ch ’ , form=’ unformatted ’)
i sopen (i)=. t rue .

end i f
c%% rewind (fp [i −1]) ;

rewind (i +10)
return

c case 6 @ output from record J
60 continue

i f (i . ne . 0) then
i f (ok) then

print ’ (’ ’ EXSORT succeeded us ing ’ ’ , i7 , ’ ’ compares ’ ’) ’ ,
1 ncomp

else
print ∗ , ’EXSORT f a i l e d ’

end i f
else

i f (r (j) . l t . prev) ok=. f a l s e .
prev=r (j)

end i f
return

c case 7 @ move record I to record J
70 continue

r (j)=r (i)
return

c case 8 @ i f l a g e I and J
80 continue

ncomp=ncomp+1
i f (r (i)−r (j)) 110 ,120 ,130

110 i f l a g=−1
return

120 i f l a g=0
return

130 i f l a g=+1
return

c

18.4–4 Sorting Data Sets too Large to Fit in Memory June 17, 2010

end

June 17, 2010 Sorting Data Sets too Large to Fit in Memory 18.4–5

	Sorting Data Sets too Large to Fit in Memory
	Purpose
	Usage
	Program Prototype
	Argument Definitions

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

