
4.4 Sequential Preprocessing of Linear Least-Squares Data

A. Purpose

Let a linear least-squares problem be denoted by

Ax ' b

where A is a given m × n matrix with m ≥ n, b is a
given m-vector (or m× nb matrix) and it is required to
find an n-vector (or n × nb matrix), x, that is an ap-
proximate solution to this equation in the least-squares
sense. The given data for this problem can be regarded
as the composite matrix, [A : b].

The subroutine, SACCUM or DACCUM, can be used to
preprocess the data matrix, [A : b], sequentially, i.e., it
can process the matrix by individual rows or by blocks
of rows. This is useful in problems in which m is much
larger than n and the product m × n is so large that it
would be inconvenient or impossible to allocate storage
arrays of total size (m× n) + (m× nb) to hold the data
matrix, [A : b]. It is also useful if it is desired to have the
processing begin before the value of m is known. This
subroutine can function using total array storage space
as small as (n+ 2)× (n+ nb) floating-point numbers.

The result of this preprocessing is an upper-triangular
array of data defining a least-squares problem that is
equivalent to the original problem in the sense that it
has the same solution, the same covariance matrix, and
the same condition number. The transformed problem
will have at most n + 1 rows. The resulting triangu-
lar system can be solved directly if there is no concern
about the problem being ill-conditioned. Otherwise, one
can apply the subroutines of Chapters 4.2 or 4.3 to the
transformed problem.

B. Usage

B.1 Program Prototype, Single Precision

INTEGER LDA, N, LDB, NB, IR1, NROWS,
NCOUNT

REAL A(LDA, ≥N), B(LDB, ≥NB) or B(LDB)

On the initial call to SACCUM for a new problem set
LDA, N, LDB, NB, IR1= 1, and NROWS. On the initial
call and all subsequent calls accumulating data for the
same problem, set NROWS and store NROWS rows of
new data into A(,) and B(,) beginning at row IR1.

CALL SACCUM(A, LDA, N, B, LDB,
NB, IR1, NROWS, NCOUNT)

Following the call the contents of A(,) and B(,) will have
been altered reflecting the processing of the new data.
The value of IR1 may have been increased.

B.2 Argument Definitions

A(,) [inout] On each call to SACCUM the user assigns
an integer value to NROWS and places NROWS rows
of the data matrix, [A : b], into rows IR1 through
IR1 + NROWS− 1 of A(,) and B(,).

On each return the contents of A(,) and B(,) and pos-
sibly the value of IR1 will have been modified. The
output data in the first IR1 − 1 rows of A(,) and
B(,) will constitute a least-squares problem having
the same solution as the problem represented by the
data accumulated so far. The elements to the left of
the diagonal in rows 2 through IR1 − 1 of A(,) will
be zero on return.

LDA [in] The leading dimensioning parameter for the
array A(,). LDA must be at least as large as the
largest value the expression IR1 + NROWS − 1 will
ever have on entry to SACCUM during the process-
ing of the current problem. Note that IR1 will never
exceed N + 2. If µ is the largest value that will
be assigned to NROWS, then it suffices to set LDA
≥ N + 1 + µ.

N [in] Number of columns in the data matrix, A.

B(,) [inout] See discussion above for A(,).

LDB [in] Leading dimensioning parameter for the array
B(,). Must satisfy the same constraints as described
above for LDA.

NB [in] Number of columns in the right-side data ma-
trix, B. Set NB = 1 if the right-side is a single vector.
If NB = 0 the array B(,) will not be referenced.

IR1 [inout] Must be set to the value 1 before the first
call to SACCUM for a problem. On each return IR1
will be updated by SACCUM to the value min(IR1
+ NROWS, N + 2). See discussion of A(,) above for
the meaning and usage of IR1.

NROWS [in] The number of rows of new data being
provided to SACCUM on the current entry. The user
must set this value on the initial entry for a new prob-
lem. After that the user may leave it unchanged or
change it on any entry.

NCOUNT [inout] Total number of rows of data pro-
vided so far for the current problem. This is sim-
ply the sum of the values of NROWS provided on
all entries to SACCUM for the current problem. The
subroutine initializes the counting when entered with
IR1 = 1.

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 Sequential Preprocessing of Linear Least-Squares Data 4.4–1

B.3 Changes for Double Precision

For double precision usage change the REAL statement
to DOUBLE PRECISION and change the subroutine
name from SACCUM to DACCUM.

C. Examples and Remarks

As an example of the use of SACCUM the program
DRSACCUM computes a least-squares fit to a set of
twelve data points by a seventh degree polynomial. The
output is shown in ODSACCUM.

For simplicity we have chosen to process just one row
at a time. Thus NROWS has the value 1 in each call
to SACCUM. It would be more efficient to process more
rows on each call.

To investigate the dependence of execution time on the
setting of NROWS we solved a 200×5 problem with two
right-side vectors using a number of different settings of
NROWS. The transformed problem was then solved us-
ing DHFTI. For comparison we also solved the problem
directly using DHFTI. We found the time for solution
processing only one row at a time was about 1.7 times
the time to solve it directly. The time to solve it pro-
cessing 10 rows at a time was about 1.2 times the direct
solution time. These ratios might differ substantially in
different computing environments.

D. Functional Description

This subroutine uses orthogonal transformations to pro-
cess the given data, producing an equivalent least-
squares problem. This method of sequential accumu-
lation is treated in detail in [1]. To avoid complications
we discuss here only the usual case in which the total
number of rows of data accumulated exceeds n. Then
the transformed problem will be of the form[

R
0

]
x '

[
y
α

]
where R is an n × n upper triangular matrix, y is an
n-vector, and α is a scalar quantity. The matrix R will
be in the array A(,) and y and α will be in B(,).

For enhanced efficiency the subroutine uses Givens or-
thogonal transformations when processing a small num-
ber of new rows of data and Householder orthogonal
transformations when processing a larger set of new
rows.

The transformed quantities are related to the data,
[A : b], by the relations, RtR = AtA, Rty = Atb, and
yty + α2 = btb.

The solution, x, for the transformed problem is also the
solution for the original least-squares problem, Ax ' b.
If the matrix A is of rank N and sufficiently well-
conditioned, the solution can be computed by solving
the triangular system, Rx = y. Alternatively the trans-
formed system can be analyzed and/or solved using sub-
routines from Chapters 4.2 or 4.3.

The residual vector for the transformed least-squares

problem is

[
0
α

]
.

The norm of this residual vector is |α| and this is also
equal to ‖b−Ax‖.

References

1. Charles L. Lawson and Richard J. Hanson, Solving
Least-Squares Problems, Prentice-Hall, Englewood
Cliffs, N. J. (1974) 340 pages.

E. Error Procedures and Restrictions

IR1 must be set to 1 on the first call to SACCUM and
must not be altered subsequently by the user during the
processing for one problem.

SACCUM will return immediately, with no error mes-
sage, if NROWS ≤ 0.

Let k = IR1 + NROWS − 1. This will be the index
of the last row of A(,) and B(,) containing new data
on entry to SACCUM. If k > LDA or k > LDB, the
subroutine will issue an error message using the error
processing routines of Chapter 19.2 with an error level
of 0 and return, doing no computation.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DACCUM DACCUM, DHTCC, DNRM2, DROTG,
ERFIN, ERMSG, IERM1, IERV1

SACCUM ERFIN, ERMSG, IERM1, IERV1,
SACCUM, SHTCC, SNRM2, SROTG

These subroutines are adaptations to the JPL MATH77
library of the algorithms that were developed by C. L.
Lawson and R. J. Hanson at JPL in 1972 and described
in detail in [1].

4.4–2 Sequential Preprocessing of Linear Least-Squares Data June 17, 2010

DRSACCUM

c program DRSACCUM
c>> 1996−06−18 DRSACCUM Krogh Spe c i a l code f o r C convers ion .
c>> 1996−05−28 DRSACCUM Krogh Added e x t e r na l s t a t e . & moved up formats
c>> 1995−09−15 DRSACCUM Krogh Remove ’0 ’ in format (again ?)
c>> 1994−10−19 DRSACCUM Krogh Changes to use M77CON
c>> 1994−08−09 DRSACCUM WVS Removed ’0 ’ in formats
c>> 1991−11−20 DRSACCUM CLL Edited f o r Fortran 90.
c>> 1987−12−09 DRSACCUM Lawson I n i t i a l Code .
c Demonstration d r i v e r f o r SACCUM.
c−−S r ep l a c e s ”?”: DR?ACCUM, ?ACCUM, ?HFTI, ?COPY, ?MPVAL
c −−

external SMPVAL
real SMPVAL
integer NMAX, LDIM, LPMAX, NB, MDATA
parameter (NMAX = 8 , LDIM = NMAX + 2 , NB = 1 , MDATA = 12)
parameter (LPMAX = NMAX + 2)
real X(MDATA) ,Y(MDATA) ,P(LPMAX)
real A(LDIM,NMAX) ,B(LDIM)
real RNORM(NB) , WORK(NMAX)
real DOF, R, SIGFAC, TAU, U, YFIT
integer I , IP (NMAX) , IR1 , IROW, J , KRANK, N, NCOUNT, NDEG, NROWS
parameter (TAU = 1.0E−5)

c −−
data X / 2 .0E0 , 4 . 0E0 , 6 . 0E0 , 8 . 0E0 , 10 .0E0 , 12 .0E0 ,
∗ 14 .0E0 , 16 .0E0 , 18 .0E0 , 20 .0E0 , 22 .0E0 , 24 .0E0/
data Y / 2 .2E0 , 4 . 0E0 , 5 . 0E0 , 4 . 6E0 , 2 . 8E0 , 2 . 7E0 ,
∗ 3 .8E0 , 5 . 1E0 , 6 . 1E0 , 6 . 3E0 , 5 . 0E0 , 2 . 0E0/
data P(1) , P(2) / 13 .0E0 , 11 .0E0 /

c
c −−

N = NMAX
NDEG = N − 1
IR1 = 1
NROWS = 1

c
do 20 IROW = 1 ,MDATA

U = (X(IROW)−P(1)) / P(2)
I = IR1
A(I , 1) = 1 .
do 10 J = 2 , NDEG+1

A(I , J) = A(I , J−1)∗U
10 continue

B(I) = Y(IROW)
ca l l SACCUM(A, LDIM, N, B, LDIM, NB, IR1 , NROWS, NCOUNT)

20 continue
c

print ∗ , ’DRSACCUM. . Demo d r i v e r f o r SACCUM. ’
print ’ (1x , a , i4 , a , i 4) ’ , ’MDATA = ’ ,MDATA, ’ , NCOUNT = ’ ,NCOUNT
ca l l SHFTI(A,LDIM, IR1−1,N,B,LDIM,NB,TAU,KRANK,RNORM,WORK, IP)
print ’ (1x , a , I4) ’ , ’KRANK = ’ ,KRANK

c
c The f o l l ow i n g stmt does a type convers ion .

DOF = NCOUNT − N
SIGFAC = RNORM(1) / sq r t (DOF)
ca l l SCOPY(N, B, 1 , P(3) , 1)

c++ Code f o r .C. i s i n a c t i v e

June 17, 2010 Sequential Preprocessing of Linear Least-Squares Data 4.4–3

c%% p r i n t f (
c%% ”\n NDEG =%2l d RNORM =%8.4 f SIGFAC =%8.4 f ” ,
c%% ndeg , Rnorm [1] , s i g f a c) ;
c%% p r i n t f (
c%% ”\n\n P(1) ,P(2) = %15.5 f %15.5 f \n\n P(3) , . . . ,P(NDEG+3) =”,
c%% p [0] , p [1]) ;
c%% fo r (i = 2 ; i < (n + 2) ; i+=3){
c%% fo r (j = i ; j <= (i < n ? i+2 : n+1); j++)
c%% p r i n t f (”%15.5 f ” , p [j]) ;
c%% i f (i < n−1) p r i n t f (”\n ”) ;}
c%% p r i n t f (”\n”) ;
c++ Code f o r ˜ .C. i s a c t i v e

print
∗ ’ (/ ’ ’ NDEG =’ ’ , I2 , 10X, ’ ’RNORM =’ ’ ,F8 . 4 , 10X, ’ ’SIGFAC =’ ’ ,F8 .4//
∗ ’ ’ P(1) ,P(2) =’ ’ ,9X, 2 F15 .5// ’ ’ P (3) , . . . , P(NDEG+3) =’ ’ ,3F15 .5/
∗(21X,3 F15 . 5)) ’ , NDEG,RNORM(1) ,SIGFAC, (P(I) , I=1,N+2)

c++ End
print ’ (1X/ ’ ’ I X Y YFIT R=Y−YFIT ’ ’ /1X) ’
do 30 I=1,MDATA

YFIT=SMPVAL(P,NDEG,X(I))
R=Y(I)−YFIT
print ’ (1X, I2 , F6 . 0 , 2F9 . 3 , F10 . 3) ’ , I ,X(I) ,Y(I) ,YFIT ,R

30 continue
stop

c
end

ODSACCUM

DRSACCUM. . Demo d r i v e r f o r SACCUM.
MDATA = 12 , NCOUNT = 12
KRANK = 8

NDEG = 7 RNORM = 0.4432 SIGFAC = 0.2216

P(1) ,P(2) = 13.00000 11.00000

P (3) , . . . , P(NDEG+3) = 3.04312 5.42386 16.15689
−23.08771 −28.52199 36.65454
11.42051 −19.09685

I X Y YFIT R=Y−YFIT

1 2 . 2 .200 2 .205 −0.005
2 4 . 4 .000 3 .959 0 .041
3 6 . 5 .000 5 .147 −0.147
4 8 . 4 .600 4 .333 0 .267
5 10 . 2 .800 3 .028 −0.228
6 12 . 2 .700 2 .699 0 .001
7 14 . 3 .800 3 .651 0 .149
8 16 . 5 .100 5 .156 −0.056
9 18 . 6 .100 6 .196 −0.096

10 20 . 6 .300 6 .187 0 .113
11 22 . 5 .000 5 .048 −0.048
12 24 . 2 .000 1 .992 0 .008

4.4–4 Sequential Preprocessing of Linear Least-Squares Data June 17, 2010

	Sequential Preprocessing of Linear Least-Squares Data
	Purpose
	Usage
	Program Prototype, Single Precision
	Argument Definitions
	Changes for Double Precision

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

