
4.6 Solution of a Positive-Definite System
with Cholesky Factorization

A. Purpose

This subroutine computes the solution vector x for a
system of equations of the form

Px = d, (1)

where P is an N×N positive-definite symmetric matrix,
and d is an N-vector. This subroutine also returns the
Cholesky factor of P and thus is applicable where com-
puting the Cholesky factor is the objective.

B. Usage

B.1 Program Prototype, Double Precision

DOUBLE PRECISION P(LDP, ≥N) [LDP ≥ N],
D(≥N), U, TOL

INTEGER LDP, N, IERR

Assign values to P(,), LDP, N, D(), U, and TOL.

CALL DCHOL (P, LDP, N, D, U, TOL, IERR)

The solution vector x will be stored in D(). Additional
computed quantities that may be of interest to the user
in some situations will be stored in P(,) and U.

B.2 Argument Definitions

P(,) [inout] On entry this array must contain the N×N
symmetric positive-definite matrix P of Eq. (1). It
suffices to provide only the elements on and above
the diagonal. On return this array will contain the
N×N upper triangular matrix F defined by Eq. (2) on
and above the diagonal positions of the array P(,).
Locations of the array P(,) below the diagonal will
not be referenced or modified by this subroutine.

LDP [in] Dimension of the first subscript of the storage
array P(,). Require LDP ≥ N.

N [in] Order of the matrix P . Require N ≥ 1.

D() [inout] On entry D() must contain the vector d of
Eq. (1). On return D() contains the solution vector
x for Eq. (1).

U [inout] If U contains the number u of Eq. (10) or
(15) respectively on entry, then on return U will con-
tain the number ρ of Eq. (11) or (16) respectively.
If the user is not interested in having the number
ρ computed, U should be zero on entry and will be
unchanged on return.

TOL [in] A user-provided relative tolerance parameter
to be used in the conditioning test of Eq. (17). We
suggest setting TOL to a value of 10−(k+1) where
k = min(kA, kb). Here kA is the user’s estimate of
the number of significant decimal digits in the ele-
ments of the matrix A and kb is the corresponding
estimate for b. See Eq. (7) or (12) for the definitions
of A and b. If the TOL input is < ε, where ε is
the relative machine precision (i.e. the smallest pos-
itive number such that 1.0 + ε 6= 1.0 in the machine’s
floating point arithmetic), then ε is used for TOL
internally.

IERR [out] On return this is set to 0 if tmin defined in
Eq. (17) is greater than 0. Otherwise results are of
questionable validity and |IERR| will equal the index
of the equation that resulted in the value for tmin. See
Section E for more details.

B.3 Modifications for Single Precision

We recommend the use of double precision for this com-
putation except on machines such as the Cray that have
10−14 precision in single precision. To use single pre-
cision change DCHOL to SCHOL, and the DOUBLE
PRECISION type statement to REAL.

C. Examples and Remarks

Consider the least-squares problem Ax ' b where A
is the 3 by 2 matrix and b is the 3-vector defined by
the DATA statements in the program DRDCHOL be-
low. This program forms normal equations by comput-
ing P = ATA and d = ATb. It also computes u = bTb.
It uses the subroutine DCHOL to solve the normal equa-
tions Px = d, and to compute the quantity RNORM
= ρ = ‖b− Ax‖. Output from this program is given in
the file ODDCHOL.

For programming convenience one may prefer to store
the matrix A and the vector b together in the same ar-
ray. The code in DRDCHOL2 shows how this example
can be programmed storing A and b together in the ar-
ray AB() and using the array PDU() to hold P , d, and
u.

D. Functional Description

Given the problem Px = d, where P is an N×N positive-
definite symmetric matrix, there exists an upper trian-
gular N×N matrix F satisfying

FTF = P (2)
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Eq. (2) defines the Cholesky decomposition of P . The
upper triangular elements of F will be computed from
those of P by the following equations, where i = 1, ...,
N.

gi = pi,i −
i−1∑
k=1

f2k,i (3)

fi,i = g
1/2
i (4)

fi,j =

pi,j −
i−1∑
k=1

fk,ifk,j

fi,i
, j = i+ 1, ...,N (5)

In these formulas the summation is to be skipped when
i = 1.

After computing F the subroutine solves the lower tri-
angular system of equations,

FTy = d

and then computes the vector x which satisfies Px = d
by solving the upper triangular system

Fx = y

Besides computing the solution vector x this subroutine
uses the input number u given in the Fortran variable U
to compute

ρ =
[
max(0, u− yTy)

]1/2
(6)

This number ρ is stored in U on return. If the prob-
lem Px = d arose as the system of normal equations for
a least-squares problem and if u was computed appro-
priately by the user then ρ represents the norm of the
residual vector for the least-squares problem.

Specifically if the user wishes to solve the least-squares
problem of minimizing

‖b−Ax‖ =
[
(b−Ax)

T
(b−Ax)

]1/2
(7)

then P , d, and u should be initialized as

P = ATA (8)

d = ATb (9)

u = bTb (10)

Then theoretically, the quantity, u− yTy of Eq. (6) will
be nonnegative and the number ρ of Eq. (6) will have the
interpretation

ρ = ‖b−Ax‖ (11)

More generally, if the user is solving the weighted least-
squares problem of minimizing[

(b−Ax)
T
W (b−Ax)

]1/2
(12)

where W is a positive definite symmetric matrix, then
P , d, and u should be initialized as

P = ATWA (13)

d = ATWb (14)

u = bTWb (15)

Then, theoretically, the quantity u− yTy of Eq. (6) will
be nonnegative and the number ρ of Eq. (6) will have the
interpretation

ρ =
[
(b−Ax)

T
W (b−Ax)

]1/2
(16)

The Cholesky factor matrix F will appear in the upper
triangular portion of the array P(,) on return. If IERR
≥ 0, the user can input this matrix F to the library sub-
routine DCOV2 of Chapter 4.2 to compute the unscaled
covariance matrix for the associated least-squares prob-
lem. This requires building the IP() array: IP(I) = I, for
I = 1, ..., N.

Theoretically the numbers gi of Eq. (3) will be strictly
positive for all i if and only if the symmetric matrix P
is positive-definite. If all gi are positive but the ratio
gi/pi,i is very small for some i this is an indication that
the problem is ill-conditioned. The square of the relative
tolerance parameter TOL is used to test this ratio. Let

tmin = min
1≤i≤N

{
gi − (TOL)2 × |pi,i|

}
. (17)

If tmin ≥ 0, then IERR is set to 0. Otherwise let m be
a value of i that gives the minimum value in Eq. (17).
Then IERR is set to m if gm > 0, and is set to −m
otherwise. See Section E below for more details.

If one knows or suspects that the least-squares problem
is ill-conditioned it is suggested that the Singular Value
Analysis subroutine, Chapter 4.3, be used to obtain a
more complete analysis and a more reliable solution for
the problem.

A nonnegative definite symmetric matrix has a Cholesky
factor even if it is singular. In computing a Cholesky fac-
tor for such matrices this subroutine does the following:
If gi of Eq. (3) is nonpositive, Eqs. (4–5) are replaced by

fi,j = 0, j = i, i+ 1, ...,N (18)

When solving the triangular systems below Eq. (5), if
fi,i = 0 the solution components yi and xi are set to zero.
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If P is a singular nonnegative definite matrix, the ma-
trix F produced in this way is its (nonunique) Cholesky
factor, i.e., it satisfies Eq. (2). In such a case Eq. (1) may
or may not have a solution and the vector x produced
in this way is the solution only if a solution exists.

E. Error Procedures and Restrictions

If tmin < 0 in Eq. (17), the subroutine sets IERR nonzero
as indicated above. When IERR < 0, at least one row of
the augmented matrix [upper triangle of P , D] will have
been set to zero.

If IERR 6= 0 we suggest that the user apply the Singular

Value Analysis subroutine, Chapter 4.3, to the associ-
ated least-squares problem.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DCHOL AMACH, DCHOL

SCHOL AMACH, SCHOL

Programmed by: C. L. Lawson, JPL, May 1969.

Program Revised by: F. T. Krogh, JPL, Septem-
ber 1991.

DRDCHOL

c program DRDCHOL
c>> 1996−06−17 DRDCHOL Krogh Minor format change f o r C convers ion .
c>> 1996−05−28 DRDCHOL Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRDCHOL Krogh Changes to use M77CON
c>> 1994−08−09 DRDCHOL WVS remove ’0 ’ from formats
c>> 1992−03−04 DRDCHOL Krogh I n i t i a l v e r s i on .
c Demonstration d r i v e r f o r DCHOL
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−D rep l a c e s ”?”: DR?CHOL, ?CHOL, ?DOT
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer LDP, M, N
parameter (M = 3 , N = 2 , LDP = 2)
integer I , IERR, J
double precision A(M,N) , B(M)
external DDOT
double precision P(LDP,LDP) , D(LDP) , U, DDOT
data A( 1 , 1 ) , A( 1 , 2 ) , B(1 ) / 0 .7D0 , 0 . 6D0 , 1 .726D0 /
data A( 2 , 1 ) , A( 2 , 2 ) , B(2 ) / −0.8D0 , 0 . 5D0 , −5.415D0 /
data A( 3 , 1 ) , A( 3 , 2 ) , B(3 ) / 0 .6D0 , −0.7D0 , 5 .183D0 /

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
U = DDOT(M, B, 1 , B, 1)
do 20 I = 1 , N

D( I ) = DDOT(M, A(1 , I ) , 1 , B, 1)
do 10 J = 1 , N

P( I , J ) = DDOT(M, A(1 , I ) , 1 , A(1 , J ) , 1)
10 continue
20 continue

ca l l DCHOL(P, LDP, N, D, U, 0 .0 d0 , IERR)
print ’ ( ’ ’ X( ) = ’ ’ ,2 f15 . 6 ) ’ , D( 1 ) , D(2)
print ’ ( ’ ’ RNORM = ’ ’ , f15 . 6 ) ’ , U
i f (IERR . ne . 0) print ’ (

∗ ’ ’ Matrix f a i l e d c o n d i t i o n i n g t e s t in DCHOL, IERR = ’ ’ , I3 ) ’ ,IERR
end

ODDCHOL

X( ) = 5.000000 −3.000000
RNORM = 0.121614
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DRDCHOL2

c program DRDCHOL2
c>> 1996−06−17 DRDCHOL2 Krogh Minor format change f o r C convers ion .
c>> 1996−05−28 DRDCHOL2 Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRDCHOL2 Krogh Changes to use M77CON
c>> 1993−02−18 DRDCHOL2 CLL.
c>> 1992−03−04 DRDCHOL2 Krogh I n i t i a l v e r s i on .
c Demonstration d r i v e r f o r DCHOL
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−D rep l a c e s ”?”: DR?CHOL2, ?CHOL, ?DOT
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer LDPDU, M, N, NP1
parameter (M = 3 , N = 2 , NP1 = N+1, LDPDU = 3)
integer I , IERR, J
double precision AB(M,NP1)
external DDOT
double precision PDU(LDPDU,LDPDU) , DDOT
data AB( 1 , 1 ) , AB( 1 , 2 ) , AB(1 , 3 ) / 0 .7D0 , 0 . 6D0 , 1 .726D0 /
data AB( 2 , 1 ) , AB( 2 , 2 ) , AB(2 , 3 ) / −0.8D0 , 0 . 5D0 , −5.415D0 /
data AB( 3 , 1 ) , AB( 3 , 2 ) , AB(3 , 3 ) / 0 .6D0 , −0.7D0 , 5 .183D0 /

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
do 20 I = 1 , NP1

do 10 J = 1 , NP1
PDU( I , J ) = DDOT(M, AB(1 , I ) , 1 , AB(1 , J ) , 1)

10 continue
20 continue

ca l l DCHOL(PDU, LDPDU, N, PDU(1 ,NP1) , PDU(NP1,NP1) , 0 . 0 d0 , IERR)
print ’ ( ’ ’ X( ) = ’ ’ ,2 f15 . 6 ) ’ , PDU(1 ,NP1) , PDU(2 ,NP1)
print ’ ( ’ ’ RNORM = ’ ’ , f15 . 6 ) ’ , PDU(NP1,NP1)
i f (IERR . ne . 0) print ’ (

∗ ’ ’ Matrix f a i l e d c o n d i t i o n i n g t e s t in DCHOL, IERR = ’ ’ , I3 ) ’ ,IERR
end

ODDCHOL2

X( ) = 5.000000 −3.000000
RNORM = 0.121614
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