
2.8 Complete Elliptic Integrals K and E

A. Purpose

These subprograms compute values of the complete el-
liptic integrals of the first and second kinds which are
defined respectively by

K(m) =

∫ π/2

0

(
1−m sin2 t

)−1/2
dt, for 0 ≤ m < 1, and

E(m) =

∫ π/2

0

(
1−m sin2 t

)1/2
dt, for 0 ≤ m ≤ 1.

B. Usage

B.1 Program Prototype

REAL YK, YE, SCPLTK, SCPLTE, EM

Assign a value to EM.

To compute the K() function:

YK =SCPLTK(EM)

To compute the E() function:

YE =SCPLTE(EM)

B.2 Argument Definitions

EM [in] Value of the parameter, m. Require 0 ≤ m < 1
to compute K(m), and 0 ≤ m ≤ 1 to compute E(m).

B.3 Modifications for Double Precision

For double precision usage, change the REAL statement
to DOUBLE PRECISION and change the subroutine
names from SCPLTK and SCPLTE to DCPLTK and
DCPLTE.

C. Examples and Remarks

Example: Compute Legendre’s relation

z = π/2− (KE′ +K ′E −KK ′) = 0, where

K = K(m), K ′ = K(1−m)

E = E(m), E′ = E(1−m).

See DRSCPLTK and ODSCPLTK for an example of the
use of these subprograms to evaluate this identity.

D. Functional Description

D.1 Properties of K and E

These functions are discussed in the references.

The function K(m) increases from π/2 to infinity as m
varies from 0 to 1, and is asymptotic to 0.5 ln(16/(1−m))
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as m → 1. Although K(m) → ∞ as m → 1, the values
of K(m) for computer representable values of m close to
one are not extremely large. For example the value of
K(m) at computer representable values of m is bounded
by 10.6 on a machine having 10−8 precision and by 22.1
on a machine having 10−18 precision.

The function E(m) decreases from π/2 to 1 as m varies
from 0 to 1.

The variable m used here is generally called the
parameter of the elliptic functions. Other common pa-
rameterizations make use of the modulus, k =

√
m, or

the modular angle, α, satisfying k = sin α.

D.2 Computation of K and E

These subprograms use Chebyshev polynomial approx-
imators due to W. J. Cody, [3]. These are used in the
form

Pn(1−m)− ln(1−m)Qn(1−m)

where Pn and Qn are different polynomials for K and E,
and n is the degree of the polynomials.

The negative logarithm base ten of the maximum ab-
solute error of these approximators is given for degrees
5, 9, and 10 as follows:

Precision of Precision of
Degree n K approximator E approximator

5 9.50 9.44
9 15.87 15.84

10 17.45 17.42

The subprograms use degree n = 5 on machines for
which − log10(R1MACH(3)) < 8.2, degree n = 9 on
machines for which − log10(R1MACH(3)) < 16.2, and
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degree n = 10 on machines having more precision. The
accuracy of these subprograms is limited to 17.4 deci-
mal places even on machines having more precision. See
Chapter 19.1 for a description of R1MACH.

D.3 Accuracy Tests

Subprograms SCPLTK and SCPLTE were each tested
on an IBM compatible PC using IEEE arithmetic by
comparison with DCPLTK and DCPLTE, respectively,
at 10,000 points in the interval (0.0, 1.0). The rela-
tive precision of the IEEE single precision arithmetic is
ρ = 2−23 ≈ 1.192× 10−7.

For SCPLTK, 33% of the test points gave relative errors
less than ρ. The maximum relative error observed was
2.0ρ.

For SCPLTE, 68% of the relative errors were less than
ρ. The maximum relative error observed was 1.9ρ.
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E. Error Procedures and Restrictions

The K subprograms issue an error message if m < 0 or
m ≥ 1. The E subprograms issue an error message if
m < 0 or m > 1. On error conditions the value zero is
returned. Error messages are processed using the sub-
routines of Chapter 19.2 with an error level of zero.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DCPLTE AMACH, DCPLTE, DERM1, DERV1,
ERFIN, ERMSG

DCPLTK AMACH, DCPLTK, DERM1, DERV1,
ERFIN, ERMSG

SCPLTE AMACH, ERFIN, ERMSG, SCPLTE,
SERM1, SERV1

SCPLTK AMACH, ERFIN, ERMSG, SCPLTK,
SERM1, SERV1

Designed and programmed by E. W. Ng, JPL, 1974.
Modified by K. Stewart, JPL, 1981, C. L. Lawson and
S. Y. Chiu, JPL, 1983.

DRSCPLTK

c DRSCPLTK
c>> 2001−06−17 DRSCPLTK Krogh Changed T computation .
c>> 1996−05−30 DRSCPLTK Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRSCPLTK Krogh Changes to use M77CON
c>> 1994−09−01 DRSCPLTK WVS Moved formats to top f o r C convers ion
c>> 1994−08−09 DRSCPLTK WVS se t up f o r CHGTYP
c>> 1992−04−29 DRSCPLTK CAO Replaced ’1 ’ in format .
c>> 1991−11−19 DRSCPLTK CLL
c>> 1987−12−09 DRSCPLTK Lawson I n i t i a l Code .
c−−S r ep l a c e s ”?”: DR?CPLTK, ?CPLTK, ?CPLTE
c
c DEMONSTRATION DRIVER FOR ELLIPTIC INTEGRALS.
c
c EVALUATE THE LEGENDRE’ S RELATION:
c Z = PI/2 − (K∗E1 + K1∗E − K∗K1) = 0
c

external R1MACH, SCPLTK, SCPLTE
real R1MACH, SCPLTK, SCPLTE
real EM(6 ) ,K,K1,E, E1 , ONE
real PI2 , T, TPRIME, Z , ZERO
integer I
data PI2 / 1.5707963267948966192313217E0 /
data EM / 0.001E0 , . 2E0 , . 4E0 , . 6E0 , . 8E0 , .999E0 /
data ZERO,ONE / 0 .E0 , 1 .E0 /
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c
200 format (5X,A2, 9X,A10 , 7X,A10 , 8X,A1/ ’ ’ )
300 format (2X, F6 . 3 , 2X, F15 . 8 , 2X, F15 . 8 , 3X,G10 . 2 )
400 format (3X,A1, 6X, F15 . 8 , 2X, F15 . 8 , 3X,G10 . 2 )
500 format (2X, F6 . 3 , 9X,A8, 2X, F15 . 8 , 3X,G10 . 2 )
600 format (/ ’ TPRIME = Machine ep s i l o n =’ ,E10 . 2 )
700 format ( ’ T = 1 . − TPRIME’ )

c
TPRIME = R1MACH(4)
T = ONE − TPRIME

c
print 200 , ’EM’ , ’SCPLTK(EM) ’ , ’SCPLTE(EM) ’ , ’Z ’
print 300 ,ZERO,SCPLTK(ZERO) ,SCPLTE(ZERO)

c
do 800 I = 1 , 6

K = SCPLTK(EM( I ) )
K1 = SCPLTK(1−EM( I ) )
E = SCPLTE(EM( I ) )
E1 = SCPLTE(1−EM( I ) )
Z = PI2 − (K∗E1 + K1∗E − K∗K1)
print 300 , EM( I ) , K, E, Z

800 continue
K = SCPLTK( T )
K1 = SCPLTK( TPRIME )
E = SCPLTE( T )
E1 = SCPLTE( TPRIME )
Z = PI2 − (K∗E1 + K1∗E − K∗K1)
print 400 , ’T ’ , K, E, Z
print 500 , ONE, ’ INFINITY ’ , SCPLTE(ONE)
print 600 , TPRIME
print 700

c
end

ODSCPLTK

EM SCPLTK(EM) SCPLTE(EM) Z

0.000 1.57079661 1.57079649
0 .001 1.57118952 1.57040381 −0.12E−06
0 .200 1.65962374 1.48903525 −0.12E−06
0 .400 1.77751958 1.39939225 −0.12E−06
0 .600 1.94956803 1.29842818 −0.12E−06
0 .800 2.25720549 1.17849004 −0.12E−06
0 .999 4.84113932 1.00217092 −0.12E−06
T 9.35748768 1.00000060 −0.60E−06
1 .000 INFINITY 1.00000012

TPRIME = Machine ep s i l o n = 0.12E−06
T = 1 . − TPRIME
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