
19.5 Checking the Installed Library

A. Purpose

The programs, cdemo and cdemom, simplify compar-
ing MATH77 (or mathc90) demonstration driver results
from different machines, or from different languages or
precisions on the same machine. These programs may
also prove useful for others wishing to compare results
from running their codes on different machines.

B. Usage

B.1 Checking MATH77 and mathc90

We assume you have managed to get the source for
MATH77 or mathc90 into some directory on your ma-
chine, and have the corresponding demonstration drivers
in another directory. First check the source for amach,
see Chapter 19.1, and if necessary change it so that the
machine constants are computed correctly for your en-
vironment. Then compile the source for the library, and
make up a library so that it is easy to link in the required
MATH77 or mathc90 routines.

The support directory of the distribution contains a
number of files that are meant to aid in getting the li-
brary checked out on your machine.

cdcfg Configuration file – Described below.
cdemo Stand alone program which compares re-

sults, described below – Compile and link
this now.

cdemom Stand alone program which generates
command files, described below – Com-
pile and link this now.

xxx.t Sample template files used by cdemom, see
below.

xxx.res Results from some environments to use in
comparisons

One uses cdemom together with cdcfg (or whatever name
you put on the first line of the cdjob file) and a tem-
plate file to generate a run stream for compiling, run-
ning, and collecting the results from the demonstration
drivers. Given these results, and results from some other
environment (several are provided in the support direc-
tory of the MATH77 & mathc90 distribution), one can
use the program cdemo together with cdcfg to compare
results.

B.2 Comparing Results for Your Codes

If you are interested in comparing results you have com-
puted in two different environments for your own codes,
you should read the next section if you want some con-
trol over how the comparisons are made; otherwise you
can run cdemo without having a file cdcfg. Each section

of what you want to compare should contain a header
line of the form ‘=name · · · ’. No comparisons are done
until both result files have positioned themselves at such
lines. Thus your other results should not contain an ‘=’
in column 1. (There are ways around this, see the tem-
plate file for the Univac in Section B.5 for details.) The
only other section you need to read is Section B.6.

B.3 The Configuration File, cdcfg

The demonstration drivers distributed with MATH77 &
mathc90 generate output that is almost certain to be
different for different machines, or even on the same ma-
chine when comparing MATH77 and mathc90 results.
The configuration file contains specifications that enable
the program cdemo to distinguish which differences are
of a nature that they should be called to ones attention.
One can skip the rest of this section if one is just inter-
ested in using the configuration file as provided in the
distribution for the checkout of the MATH77 & mathc90
libraries.

In the descriptions below, items in brackets are optional,
extra spaces between tokens are not significant, and
upper and lower case letters are equivalent. For each
demonstration driver this file contains an initial line of
the form

=demonstration driver name [Fortran only]

If the ‘[Fortran only]’ appears, this demonstration driver
is not available in mathc90. (‘[C only]’ can be used for
routines that are in C, but not in Fortran.)

This line is followed by 0 or more lines that indicate spe-
cial conditions that apply to the demonstration driver
named just above. The following statements are possi-
ble.

Set Tolerances on on expression

TOL = tol expression [on on expression]

Ignore ignore list [on on expression]

Reset [on on expression]

where
tol expression a Fortran expression restricted to using

the operators ‘()*/’

the functions ‘sqrt’, and ‘max’

the operands: integers, floating point numbers (‘E’
used for the exponent), and the variable ‘TOL’.

on expression is one of the following forms (n1 and n2

integers): ‘columns n1:[n2]’, ‘lines n1:[n2]’, or a For-
tran character literal (i.e. ’string of characters’). If
the n2 is missing it is assumed to be a very large
number.

c©1997 Calif. Inst. of Technology, 2010 Math à la Carte, Inc.

June 17, 2010 Checking the Installed Library 19.5–1

ignore list is either ‘extra lines’, ’end failure’ or a
comma delimited list of one or more of the follow-
ing: ‘integer’, ‘floating’, ‘floating sign’, or ‘all’.

In addition a line with ‘C’, ‘c’ or ‘#’ as a first charac-
ter or a line starting with 8 blanks (or a blank line) is
treated as a comment line.

Two floating point numbers, x, and y, are assumed to
be sufficiently close to one another if

|x− y| ≤ max(max(1,M)× TOL, M × 101−d)

where M = max(|x|, |y|), d = min(nx, ny), and nx and
ny are the number of significant digits in x and y respec-
tively.

The value used for TOL depends on four parameters:
TOLSP1, TOLDP1, TOLSP2, and TOLDP2, and ac-
tions taken with ‘TOL = · · · ’ instructions. Initially the
code sets TOLSP1 = TOLSP2 = 4×10−6, and TOLDP1
= TOLDP2 = 7×10−15. These values can be overridden
by instructions in the file cdjob described below.

Finally, these values can be overridden with the ‘Set Tol-
erances on · · · ’ command. This instruction is meant to
be used only with the demonstration driver DRMACH.
As set up in the configuration file cdcfg this command
sets these values to (33×machine ε) for the two results
being compared. There are separate values for single
and double precision being defined, and the machine ε
is defined as the smallest positive floating point number
such that 1 + ε > 1. Note that if this latter mechanism
is used, the results for DRMACH must be the first ones
given. In cdcfg as distributed this is the case, and the
remaining demonstration drivers should be given in al-
phabetical order, since cdemo assumes an alphabetical
order if it is trying to get a match on names, and there
is a mismatch with the names in the result files.

When first encountering the start of results for a demon-
stration driver, it is assumed that the results are double
precision if the third letter in the name is a ‘D’ or a ‘d’
and otherwise the results are for single precision. The
permanent value for TOL assigned to comparing results
for two demonstration drivers is then max(TOL?P1,
TOL?P2), where the ‘?’ is replaced by ‘D’ if the cor-
responding demonstration driver is in double precision,
and else is replaced by ‘S’.

A ’TOL = · · · ’ instruction without an ‘on · · · ’ part sets
the value of TOL to the value defined in the expression.
When TOL appears in the expression, its value just prior
to evaluating the expression is used. When an ’on · · · ’
clause is present the value of TOL is not changed. Rather
if two floating point numbers appear to be too large, a
check is made to see if any ‘on · · · ’ clause provides a
larger TOL, and if so that value is used to see if the
numbers are close enough.

An ‘on · · · ’ expression means that a test is to be used
only when a certain condition applies. In the case
of ‘on columns · · · ’ the exceptional case applies when
n1 ≤ i ≤ n2, where i is the column index in the first re-
sult file where the current token starts. The first result
file is the first one given in cdjob, see the description of
cdemo below.

In the case of ‘on lines · · · ’, the exceptional case applies
when n1 ≤ ` ≤ n2 where ` is the number of nonblank
lines seen in the first result file since the line containing
the header for the results for the demonstration driver,
or if there has been a ‘reset’ instruction, the number of
nonblank lines read since seeing this instruction. (Thus
the line processed just after a reset instruction caused
as a result of reading that line, will have an index of 0.)
After reading an instruction that contains ‘on lines · · · ’,
the configuration file is read no further until ` > n2, or
a ‘reset’ instruction is executed as a result of seeing an-
other line. When either of these events occurs, further
lines in the configuration file are processed.

In the case of ‘on ’string’’, the exceptional case applies
when the line from the first result file contains ’string’.
The configuration file continues to be processed, except
when the associated action is ‘Reset’, in which case pro-
cessing of the configuration file stops until the ’Reset’
action occurs or the end of output for this demonstra-
tion driver. If more than one of these is processed, only
the last has any effect.

It is possible that all three of these mechanisms indicate
that comparisons are to be done in an exceptional way.
If any one of these mechanisms would excuse a differ-
ence that would otherwise be reported, no difference is
reported.

For the ‘ignore’ instruction: ‘integer’ indicates that in-
tegers need not have the same value, ‘floating’ indicates
that every floating point number is assumed to be equal
to any other number, ‘floating sign’ indicates that float-
ing point numbers should be compared with their signs
stripped off, and ‘all’ indicates that any text matches
any other text. The ’extra lines’ means no diagnostic
is given if the files match, except that one file has some
lines embedded that are not in the other. The ’end fail-
ure’ results in extra work if the lines match except for
extra characters at the end of one line. When this oc-
curs, an attempt is made to match the extra part of the
longer line, with the start of another line at some point
below.

Finally, the ‘reset’ instruction, sets everything to the
values present just after processing the initial line for
the demonstration driver. Thus there are no exceptional
cases defined, TOL has its initial value, and the nonblank
line counter is set to 0.

19.5–2 Checking the Installed Library June 17, 2010

B.4 The Template File

You will probably need to make up your own template
file that is used to generate the command file used to
generate results. You will find various files with exten-
sions ‘.tf’ (for Fortran), and ‘.tc’ (for C), that you can
use as models. The template files use ‘#’ as an escape
character in the following ways.

#1 Substitute the name of the demonstration driver
(default is lower case) for the #1.

#2 As for #1, except the name here and everywhere a
#1 appears is in upper case.

#3 This is the end of the last line for output occurring
one time at the very beginning. (#1 or #2 should
not be used prior to a #3.)

#4 This is the end of the last line that is to be output
for each of the demonstration drivers.

#5 This and the text following on the line are treated
as a comment.

The nature of the template file is probably best under-
stood by looking at an example. The following is for the
Lahey Fortran compiler running under DOS on a PC.

del pcf77l.res /n#3
echo =#1 PC - Lahey F77L >>pcf77l.res
f77l k:\math77\demo\#1, #1.obj /NS
d:\progs\link #1,,,k:\math77\
fortran\obj\math77; #1 >>pcf77l.res
del #1.* /n#4

The output for running the demonstration drivers is be-
ing sent to the file pcf77l.res, and thus we start by delet-
ing this file, since we don’t want to add to an existing
file. The #3 signals that this is all that is done one time
only.

The echo statement writes a line starting with
‘=demonstration driver name’ to the result file. The
template file must arrange to write such a message ahead
of the results for each driver. The ‘=’ serves to signal
the start of results for one demonstration driver, and the
end of the results for the previous driver.

The next four lines compile, link, run the driver, and
then delete the files that were created. Note that your
file will almost certainly require different prefixes for the
location of the source files, the location of library files,
and the prefix used to find the location of the linker.

At least on one system, Exec 8 running on a Univac,
one cannot avoid getting output from the compiling and
linking into the output. To show how this is handled,
we give the template we used for getting results on the
Univac.

When the first line containing an “=” has text preced-
ing the “=” this text is used as a sentinel that causes
the current line and following lines to be ignored as far
as making comparisons is concerned. The text after the
“=” is used as a sentinel to cause comparisons to start
being made again.

The way this file is setup, a ‘@@MSG,N =’ at the start
of a line in the output file signals that this line and any
following lines not containing a header sentinel are to be
ignored. The header sentinel is the text immediately fol-
lowing the ‘=’ on the first line that contains an ’=’. In
this case the start of output for a demonstration driver
is flagged by a line of the form

@@XQT demonstration driver name.

The ‘˜’ output in the result file indicates a blank that
occurs at the end of a line since cdemo has no way to
recognize trailing blanks on a line. Thus cdemo will
not use output in the result file that is not between a
line of the form ‘@@XQT · · · ’ and a line starting with
‘@@MSG,N =’ for the purposes of making comparisons.

@@DELETE,C UNIRES
@@ASG,PU UNIRES
@@BRKPT PRINT$/UNIRES
@@MSG,N =@@XQT˜#3
@@FTN #1
@@PREP
@@MAP,I ,#1
IN #1
LIB LIB*MATH77$
@@EOF
@@XQT #1
@@MSG,N = End of Fortran output on Univac for #1.
@@DELETE,AR #1#4
@@BRKPT PRINT$

A ‘@@MSG,N =’ at the start of a line in the output
file signals that this line and any following lines not con-
taining a header sentinel are to be ignored. The header
sentinel is the text immediately following the ‘=’ on the
first line that contains a ’=’. In this case the start of
output for a demonstration driver is flagged by a line of
the form

Finally for an HP workstation we used the following (the
demonstration drivers were compressed).

rm hpfor.res#3
echo ’=’#1 ’ HP Fortran ’ ‘date‘ >>hpfor.res
zcat /math77/demo/#1.f.Z >#1.f
f77 −o #1 +OPP #1.f −lmath77
./#1 >>hpfor.res
rm #1*#4

Something similar should work on most Unix systems.

June 17, 2010 Checking the Installed Library 19.5–3

B.5 Obtaining the Result File Using cdemom

After getting the library installed and making up the
template file for your environment, execute the program
cdemom. You will be prompted for the name of your
template file. The program reads the file cdcfg together
with your template file to generate the run stream. Lines
starting with anything other than a ‘=’ in cdcfg are
skipped. If the last character in the name of your tem-
plate file is a ‘C’ or a ‘c’, lines with ‘Fortran only’ are
also skipped. The name of the file containing the gener-
ated run stream is obtained as follows: If the file name
contains a ‘.’, the ‘.’ and all characters to the right are
deleted, and if the first characters of the template file are
‘PC’ or ‘pc’, the characters ‘.bat’ are appended. If the
file name does not contain a ’.’, an ’M’ is appended to
the name. The name used for the output file is printed
before the program stops. Execute this file to get the
result file.

B.6 Comparing Two Result Files Using cdemo

One needs to make up a file named cdjob that contains
lines as follows.

Name of configuration file (blank line if none)
Name of first result file
Name of second result file
[F1 F2]

Where if F1 and F2 are given they must be floating point
numbers. This replaces the default values of TOLSP1
. . . TOLDP2 with TOLSP1 = TOLSP2 = max(F1, F2),
and TOLDP1 = TOLDP2 = min(F1, F2). These values
may in turn be overwritten by the ‘Set Tolerances on
· · · ’ instruction in the configuration file.

One then executes the program cdemo, which will print
the names of demonstration drivers as their results are
being compared, and outputs all results into the file
cdres.

If as a result of doing the comparison you find differences
there are five possibilities: there really is a problem in
MATH77 or mathc90, the problem is in your compiler
(check if the comparison is satisfactory when you turn
off all compiler optimizations), the configuration file is
not perfectly defined (we have not done an exhaustive
analysis in picking the exceptions that are defined in this
file), the result file you are comparing with is corrupted,
or cdemom has a bug.

C. Examples and Remarks

Files ending with ‘.tf’, and ’.tc.’ serve as examples of
template files. The configuration file ‘cdcfg’ can serve
as an example of a configuration file should you want
one for another purpose. The exceptions for DRDSVA il-
lustrate the use of most of the features.

=drdsva
Reset on ’(Elements of V’
Ignore FLOATING SIGN
Reset on ’INDEX SING. VAL.’
Ignore FLOATING SIGN
TOL = TOL * 10 on lines 4:4
TOL = TOL * 100 on lines 5:5
· · ·

Reset on ’1 Earth’
TOL = TOL * 10 on columns 25:38
TOL = TOL * 100 on columns 40:53
TOL = TOL * 1.E5 on columns 54:
Reset on ’1 Earth’
TOL = TOL * 1.E7

D. Functional Description

When comparing DRMACH on the PC with that on
the Hewlett Packard workstation, the following line is
printed.

drmach PC Lahey F77L == drmach HP Fortran
FCOMP = 10

The ‘FCOMP’ refers to the number of comparisons that
were made by computing and checking two floating point
numbers. (Identical numbers are compared as text, and
don’t get counted in this comparison.) If the programs
had differences, the ‘==’ would have been replaced by
‘/=’, and the FCOMP result would have been printed on
a separate line after all the results for comparing these
drivers had been printed. The result of the comparison
in this case is a listing of the lines in the result files that
were different. Those from the first file have a ‘1)’ in
the first two columns followed by the line number in the
file, a ‘:‘ and then the line from the file. Those from
the second file are similar except for starting with ‘2)’.
If the difference was due to floating point errors a line
something like the following is printed

F1=−3.3...E−13 F2=2.0...E−12 DIFF=−2.3...E−12

The F1 refers to a number in the first result file, the F2
to a number in the second result file, and DIFF to their
difference. These numbers are printed from the value of
the numbers and thus will typically not be formatted in
the same way as they are in the result files. When num-
bers have extremely large exponents, the number printed
may have a exponent that is less by 100. This allows re-
sults from a machine with an extremely large exponent
range to be checked on a machine with a much smaller
range. Also if one has an ‘Ignore FLOATING SIGN’ ac-
tive, then the sign on one of the numbers may have been
changed so that F1 and F2 have the same sign.

19.5–4 Checking the Installed Library June 17, 2010

E. Error Procedures and Restrictions

If an error condition occurs, a Fortran ‘STOP’ is exe-
cuted with a message describing the nature of the prob-
lem. Errors in the configuration file will also print the
line causing the problem with an indication of where the
problem was diagnosed.

F. Supporting Information

The source language is ANSI Fortran 77.

Program Required Files

CDEMO none

CDEMOM none

Design and code due to F. T. Krogh, 1995.

June 17, 2010 Checking the Installed Library 19.5–5

	Checking the Installed Library
	Purpose
	Usage
	Checking MATH77 and mathc90
	Comparing Results for Your Codes
	The Configuration File, cdcfg
	The Template File
	Obtaining the Result File Using cdemom
	Comparing Two Result Files Using cdemo

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

