
5.1 Eigenvalues and Eigenvectors of a Symmetric Matrix

A. Purpose

Compute the N eigenvalues and eigenvectors of an N ×
N symmetric matrix A.

B. Usage

B.1 Program Prototype, Single Precision

REAL A(LDA,≥N) [LDA ≥ N], EVAL(≥ N),
WORK(≥ N)

INTEGER LDA, N, IERR

Assign values to A(,), LDA, and N.

CALL SSYMQL(A, LDA, N, EVAL,
WORK, IERR)

Results are returned in A(,) and EVAL().

B.2 Argument Definitions

A(,) [inout] On entry the locations on and below the di-
agonal of this array must contain the lower-triangular
elements of the N × N symmetric matrix A. On re-
turn the eigenvectors of A will be stored as column
vectors in the array A(,). These N eigenvectors will
be mutually orthogonal and of unit Euclidean length.
The eigenvector stored in column J will be associated
with the eigenvalue stored in EVAL(J).

LDA [in] Dimension of the first subscript of the array
A(,). Require LDA ≥ N.

N [in] Order of the symmetric matrix A. N ≥ 1.

EVAL() [out] Array in which the N eigenvalues of A
will be stored by the subroutine. The eigenvalues will
be sorted with the algebraically smallest eigenvalue
first.

WORK() [scratch] An array of at least N locations
used as temporary space.

IERR [out] On exit this is set to 0 if the QL algorithm
converges, otherwise see Section E.

B.3 Modifications for Double Precision

Change SSYMQL to DSYMQL, and the REAL type
statement to DOUBLE PRECISION.

C. Examples and Remarks

The following symmetric matrix A is given on page 55
of [1].

A =


5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4



The eigenvalues of this matrix are 1, 2, 5, and 10. Un-
normalized eigenvectors associated with these eigenval-
ues are (1, -1, 0, 0), (0, 0, -1, 1), (-1, -1, 2, 2), and (2, 2,
1, 1), respectively.

The code in DRSSYMQL, given below, computes the
eigenvalues and eigenvectors of this matrix. Output from
this program is given in the file ODSSYMQL.

Before the call to SSYMQL, the matrix is saved in an
array ASAV() in order to compute the relative residual
matrix D defined as

D = (AW −WΛ) /γ

where W is the matrix whose columns are the computed
eigenvectors of A, Λ is the diagonal matrix of eigenval-
ues, and γ is the maximum-row-sum norm of A.

Recall that if v is an eigenvector, then so is αv for any
nonzero scalar α. More generally, if an eigenvalue, λ,
of a symmetric matrix occurs with multiplicity k, there
will be an associated k-dimensional subspace in which
every vector is an eigenvector for λ. This subroutine
will return eigenvectors constituting an orthogonal basis
for such an eigenspace.

D. Functional Description

The implicit-shift QL algorithm implemented in this sub-
routine is based on the Algol procedure given in [2],
pp. 337–383. The code combines slightly modified EIS-
PACK routines TRED2, and IMTQL2, see [3]. Mod-
ifications made are minor changes to convert the code
to take advantage of Fortran 77; they should not affect
results. TRED2 uses Householder orthogonal similarity
transformations to transform the matrix A to tridiago-
nal form. IMTQL2 uses the QL algorithm with implicit
shifts to reduce the off-diagonal elements of the tridiago-
nal matrix to a magnitude of approximately the last bit
of the largest element of A.

The resulting diagonal elements are the eigenvalues of A.
The matrix of eigenvectors is computed as the product
of the orthogonal transformation matrices used in trans-
forming A first to tridiagonal form and then to (almost)
diagonal form.

The eigenvalues are sorted in nondecreasing algebraic
order and the eigenvectors are permuted as necessary to
correspond to the ordered eigenvalues.
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June 17, 2010 Eigenvalues and Eigenvectors of a Symmetric Matrix 5.1–1



References

1. R. T. Gregory and D. L. Karney, A Collection of
Matrices for Testing Computational Algorithms,
J. Wiley and Sons, New York (1969) 153 pages.

2. A. Dubrelle, R. S. Martin, and J. H. Wilkinson, The
implicit QL algorithm, Numerische Mathematik 12
(1968).

3. B. T. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe,
V. C. Klema, and C. B. Moler, Matrix Eigensys-
tem Routines — EISPACK Guide, Lecture Notes
in Computer Science 6, Springer Verlag, Berlin (1974)
387 pages.

E. Error Procedures and Restrictions

If the QL algorithm fails to converge in 30 iterations on
the J th eigenvalue the subroutine sets IERR = J. In this

case J − 1 eigenvalues and eigenvectors are computed
correctly but the eigenvalues are not ordered. If N ≤
0 on entry, IERR is set to −1. In either case an error
message is printed using IERM1 of Chapter 19.2 with an
error level of 0, before the return.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DSYMQL DIMQL, DSYMQL, ERFIN, ERMSG,
IERM1, IERV1

SSYMQL ERFIN, ERMSG, IERM1, IERV1, SIMQL,
SSYMQL

Converted by: F. T. Krogh, JPL, October 1991.

DRSSYMQL

c program DRSSYMQL
c>> 1996−05−28 DRSSYMQL Krogh Added e x t e r na l s ta tement .
c>> 1994−10−19 DRSSYMQL Krogh Changes to use M77CON
c>> 1994−09−22 DRSSYMQL CLL
c>> 1992−04−23 CLL
c>> 1992−03−04 DRSSYMQL Krogh I n i t i a l v e r s i on .
c Demonstrate symmetric e i g enva l u e / e i g env e c t o r subrou t ine SSYMQL.
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−S r ep l a c e s ”?”: DR?SYMQL, ?SYMQL, ?VECP, ?MATP, ?DOT
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer I , IERR, J , LDA, N
parameter (LDA = 4)
real A(LDA,LDA) , ASAV(LDA,LDA) , ANORM, D(LDA,LDA)
external SDOT
real SDOT, EVAL(LDA) , WORK(LDA)
data A(1 ,1 ) / 5 .0 e0 /
data (A(2 , J ) , J=1 ,2) / 4 .0 e0 , 5 . 0 e0 /
data (A(3 , J ) , J=1 ,3) / 1 .0 e0 , 1 . 0 e0 , 4 . 0 e0 /
data (A(4 , J ) , J=1 ,4) / 1 .0 e0 , 1 . 0 e0 , 2 . 0 e0 , 4 . 0 e0 /
data ANORM / 11 .0 e0 /
data N /LDA/

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
print ∗ , ’DRSSYMQL. . Demo d r i v e r f o r SSYMQL. ’

c
c F i r s t copy A() to ASAV() f o r l a t e r r e s i d u a l check .
c

do 20 I = 1 ,N
do 10 J = 1 , I

ASAV( I , J ) = A( I , J )
ASAV(J , I ) = ASAV( I , J )

10 continue
20 continue

ca l l SSYMQL(A, LDA, N, EVAL, WORK, IERR)
i f (IERR . eq . 0) then

ca l l SVECP(EVAL, N, ’ 0 Eigenva lues ’ )
ca l l SMATP(A, LDA, N, N, ’ 0 E igenvector s as column vec to r s ’ )
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c
c As a check compute D = (ASAV∗EVEC − EVEC∗EVAL) / ANORM.
c The EVEC’ s are in the array A( ) .
c Expect D to be c l o s e to machine p r e c i s i on .
c

do 40 J = 1 , N
do 30 I = 1 , N

D( I , J ) = (SDOT(N, ASAV( I , 1 ) , LDA, A(1 , J ) , 1) −
∗ A( I , J ) ∗ EVAL(J ) ) / ANORM

30 continue
40 continue

ca l l SMATP(D, LDA, N, N,
∗ ’ 0 Res idual matrix D = (A∗EVEC − EVEC∗EVAL) / ANORM’ )

else
print ’ (/a , i 5 ) ’ , ’ Convergence f a i l u r e in SSYMQL, IERR =’ ,IERR

end i f
stop
end

ODSSYMQL

DRSSYMQL. . Demo dr i v e r f o r SSYMQL.

Eigenva lues
1 TO 4 1.000000 1.999998 5.000000 10.00000

Eigenvector s as column vec to r s

COL 1 COL 2 COL 3 COL 4
ROW 1 0.7071068 3.3527613E−08 0.3162276 0.6324556
ROW 2 −0.7071068 −2.7939677E−08 0.3162276 0.6324557
ROW 3 −2.4333493E−08 0.7071068 −0.6324555 0.3162276
ROW 4 0.000000 −0.7071065 −0.6324557 0.3162278

Res idua l matrix D = (A∗EVEC − EVEC∗EVAL) / ANORM

COL 1 COL 2 COL 3 COL 4
ROW 1 2.1674417E−08 2.6415700E−08 −4.3348834E−08 0.000000
ROW 2 1.6255813E−08 3.2172956E−08 −4.3348834E−08 −4.3348834E−08
ROW 3 −1.2178032E−09 1.6255812E−07 −6.5023251E−08 1.5172091E−07
ROW 4 9.9433251E−10 −5.4186042E−08 2.1674417E−08 −4.3348834E−08
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