
17.2 Computation Using Partial Derivative Arrays or
Multivariate Taylor Series

A. Purpose

This set of subroutines performs computations in which
each variable is represented by its value, and its first
and second partial derivatives with respect to N inde-
pendent variables, evaluated at a specified value of these
variables. Such a set of numbers can alternatively be re-
garded as a scaled representation of the low order coeffi-
cients of the multivariate Taylor series of the dependent
variable expanded at the evaluation point.

More specifically let u(x) denote a scalar valued function
of an N-component argument vector, x. Let u0, g0, and
H0 denote, respectively, the value of u, the gradient vec-
tor, and the Hessian matrix, evaluated at x0. Then {u0,
g0, H0} is the set of data these programs carry to repre-
sent u evaluated at x0. The Taylor series for u through
second order, expanded at x0, is

u(x) = u0 + gt
0(x− x0) +

1

2
(x− x0)tH0(x− x0)

This package provides a way of computing values of the
first and second partial derivatives of a multivariate func-
tion that is defined by a sequence of computational steps
involving arithmetic and elementary functions, without
the need to derive and code expressions for the partial
derivatives.

B. Usage

Definition of a U-variable

We shall use x as the generic name of the N-dimensional
independent variable vector with respect to which all
partial derivatives are defined. The term U-variable
is used to denote a sequence of values, consisting of a
function value, values of the function’s gradient vector,
and optionally the (packed) Hessian matrix, evaluated at
some point. We assume the Hessian matrix is symmet-
ric, so only one copy of each symmetric pair of elements
needs to be stored. We store the lower triangle of the
Hessian matrix by rows. Equivalently, one could regard
this as representing the upper triangle by columns. Thus
if U() is an array containing a U-variable, {u, g, H}, its
contents are defined as follows:

U(1) = u

U(1 + j) = gj = ∂u/∂xj , j = 1, ..., N

U(1 + N + j + i(i− 1)/2) = hi,j = ∂2u/∂xi∂xj ,

i = 1, ..., N ; j = 1, ..., i.

The required dimension size for a U-variable is dimu =
N + 1 if only first partial derivatives will be requested,
and dimu = (N +2)(N + 1) / 2 if both first and second
partial derivatives are to be computed. For convenience
we list the value of dimu for the second derivative
case for some values of N:

N = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dimu = 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136

Distinguishing property of an independent vari-
able

For i in [1, N] the scalar component, xi, of the indepen-
dent variable vector, x, is distinguished by the unique
property that all of its first and second partial derivatives
are zero except its first partial derivative with respect to
xi, which has the value 1.

The variables N, M1, and M2.

N specifies the number of independent variables, and im-
plicitly specifies the storage layout of components within
a U-variable. M1 and M2 specify the lowest and highest
order of partial derivatives which the called subroutines
are to produce. A program that uses these subroutines
must initially call SUSETN (or DUSETN) to set N, M1,
and M2.

The subroutines

The subroutines of this package are described in the fol-
lowing sections:

B.1 SUSETN, Assigning values to N, M1, and M2.

B.2 SUGETN, Fetching values of N, M1, M2, L1, and
L2.

B.3 SUSET, Assigning a value to a U-variable.

B.4 The computational subroutines, except SUREV.

B.5 SUREV, series reversion, or function inversion.

B.6 Modifications for double-precision.

B.1 SUSETN, Assigning values to N, M1, and
M2

Subroutine SUSETN must be called prior to calling any
of the other subroutines of this package.

B.1.a Program Prototype, Single Precision

INTEGER N, M1, M2

Assign values to N, M1, and M2.

CALL SUSETN(N, M1, M2)
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B.1.b Argument Definitions

N [in] N specifies the number of independent variables,
and implicitly specifies the storage layout of compo-
nents within a U-variable.

M1, M2 [in] M1 and M2 specify the lowest and highest
order of partial derivatives which the called subrou-
tines are to produce. M1 and M2 must satisfy: 0 ≤
M1 ≤ M2 ≤ 2.

Most commonly one will probably choose to set (M1,
M2) = (0,0), (0,1), or (0,2), and leave the setting un-
changed throughout a computation. See Section C
for discussion of other strategies for setting (M1,M2).

B.2 SUGETN, Fetching values of N, M1, M2,
L1, and L2

B.2.a Program Prototype, Single Precision

INTEGER N, M1, M2, L1, L2

CALL SUGETN(N, M1, M2, L1, L2)

Values are returned in N, M1, M2, L1, and L2.

B.2.b Argument Definitions

N, M1, M2 [out] Returns the values that were set on
the previous call to SUSETN.

L1, L2 [out] Returns values computed from N, M1, and
M2. L1 and L2 are the indices of the first and last
locations in a U-variable array that will be subject
to change due to the settings of N, M1, and M2.

L1 =


1 if M1 = 0

2 if M1 = 1

N + 2 if M1 = 2

L2 =


1 if M1 = 0

N + 1 if M1 = 1

1 +N + ((N ∗ (N + 1))/2) if M1 = 2

B.3 SUSET, Assigning a value to a U-variable

The integer values N, M1, and M2 must be set by a call
to SUSETN before calling SUSET. SUSET will only set
partial derivatives of orders M1 through M2.

B.3.a Program Prototype, Single Precision

INTEGER KEY

REAL VAL, U(≥ dimu)
[dimu = N + 1 or (N + 2)(N + 1)/2, see above.]

Assign values to N, M1, M2, VAL, and KEY.

CALL SUSET(VAL, KEY, U)

Computed quantities are returned in U().

B.3.b Argument Definitions

VAL [in] Value to be assigned to the U-variable, U().

KEY [in] Integer in the range, [0, N]. If KEY = 0, U()
is set to represent a variable that is constant relative
to the N independent variables, i.e., all of its first
and second partial derivatives are set to zero.

If 1 ≤ KEY ≤ N, U() is set to represent the KEYth

independent variable, i.e., its KEYth first partial
derivative is set to 1.0. All of its other first partial
derivatives and all of its second partial derivatives
are set to zero.

U() [out] Array in which this subroutine will define a
U-variable having the value, VAL, and having partial
derivative values as specified by KEY. Only deriva-
tive values of orders M1 through M2 are set.

B.4 The computational subroutines, except
SUREV

The integer values N, M1, and M2 must be set by a
call to SUSETN before calling any of these subroutines.
These subroutines will only set partial derivatives of or-
ders M1 through M2. To use these subroutines with M1
> 0 read the remarks about M1 > 0 in Section C.

In describing the following subroutines, U() and V() de-
note input U-variables and Z() denotes an output U-
variable. The variables A and I are input variables that
are constant relative to x.

In most of these subroutines the output array Z() must
occupy storage locations distinct from any of the in-
put data. Exceptions to this rule are SUSUM, SUDIF,
SUPRO, SUSUM1, SUDIF1, and SUPRO1. The sub-
routine SUQUO, which computes u/v → z, permits u
and z to occupy the same storage, but v and z must
occupy distinct storage.

B.4.a Program Prototype, Single Precision

INTEGER I

REAL A, U(≥ dimu),V(≥ dimu), Z(≥ dimu)
[dimu = N + 1 or (N + 2)(N + 1)/2, see page 1.]

Assign values to I, A, U(), and V(), as appropriate.

Two-argument operations with both arguments
depending on x.

CALL SUSUM(U, V, Z) u+ v → z
CALL SUDIF(U, V, Z) u− v → z
CALL SUPRO(U, V, Z) u× v → z
CALL SUQUO(U, V, Z) u/v → z
CALL SUATN2(U, V, Z) atan2(u, v)→ z
where for atan2: −π < z ≤ π and tan(z) = u/v
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Two-argument operations with only one
argument depending on u.

CALL SUSUM1(A, V, Z) a+ v → z
CALL SUDIF1(A, V, Z) a− v → z
CALL SUPRO1(A, V, Z) a× v → z
CALL SUQUO1(A, V, Z) a/v → z
CALL SUPWRI(I, V, Z) vi → z

(See following note.)

Note: I may be positive, negative, or zero. If I = 0,
SUPWRI sets Z(1) = 1.0 and all derivative values of z
to 0.0, regardless of the given value of v. It is an error
to have v = 0.0 when I < 0.

One-argument operations with the argument
depending on x.

CALL SUSQRT(U, Z)
√
u→ z

CALL SUEXP(U, Z) exp(u)→ z
CALL SULOG(U, Z) log(u)→ z
CALL SUSIN(U, Z) sin(u)→ z
CALL SUCOS(U, Z) cos(u)→ z
CALL SUTAN(U, Z) tan(u)→ z
CALL SUASIN(U, Z) asin(u)→ z
CALL SUACOS(U, Z) acos(u)→ z
CALL SUATAN(U, Z) atan(u)→ z
CALL SUSINH(U, Z) sinh(u)→ z
CALL SUCOSH(U, Z) cosh(u)→ z
CALL SUTANH(U, Z) tanh(u)→ z

B.4.b Argument Definitions

A [in] Floating point value that is independent of x.

I [in] Integer value that is independent of x.

U() [in] An input U-variable. Must contain defined
values for derivatives of orders 0 through M2.

V() [in] An input U-variable. Must contain defined
values for derivatives of orders 0 through M2.

Z() [inout] If M1 > 0, this array must contain defined
values of derivatives of orders 0 through M1 − 1 on
entry. On return it will also contain computed values
of derivatives of orders M1 through M2. If M1 = 0,
no input values are required in Z().

B.5 SUREV, Series Reversion or Function In-
version

Let ui, i = 1, ..., n, be n functions of an n-vector, t.
Suppose values of the ui’s and their first and second
partial derivatives with respect to the components of t
are known for a particular value of t. Then, if the Jaco-
bian matrix of the transformation is nonsingular at this
point, one can regard the tj ’s as functions of the ui’s

in some neighborhood of this point in u-space. In this
situation this subroutine can compute values of the first
and second partial derivatives of the tj ’s with respect to
the ui’s at this point.

Given:

tj in TU(1, j), j = 1, ..., n, (1)

ui in UT(1, i), i = 1, ..., n, (2)

∂ui/∂tj in UT(1 + j, i), j = 1, ..., n; i = 1, ... n, (3)

∂2ui/∂tj∂tk in UT(1 + n+ k + j(j − 1)/2), i), (4)

j = 1, ..., n; k = 1, ..., j; i = 1, ..., n.

If the Jacobian matrix with elements ∂ui/∂tj is nonsin-
gular, this subroutine will compute the first and second
partial derivatives of the tj ’s with respect to the ui’s and
store them as

TU(1 + i, j) = ∂tj/∂ui, i = 1, ..., n; j = 1, ..., n, (5)

TU(1 + n+ k + i(i− 1)/2, j) = ∂2tj/∂ui∂uk, (6)

i = 1, ..., n; k = 1, ..., i; j = 1, ..., n,

The integer values N, M1, and M2 must be set by a call
to SUSETN before calling SUREV. N gives the value of
n for Eqs.(1–6) above. Require 0 ≤ M1 ≤ M2 ≤ 2.

If M2 = 0, SUREV returns with no action.

If M2 = 1, SUREV only computes Eq.(5), and it is not
necessary to provide the data of Eq.(4).

If M2 = 2 and M1 = 0 or 1, SUREV computes Eqs.(5–6).

If M2 = 2 and M1 = 2, it is assumed that the assignment
of Eq.(5) has already been done, and thus SUREV only
computes Eq.(6).

B.5.a Program Prototype, Single Precision

INTEGER IWORK(N), LDIM

REAL RCOND, TU(LDIM, ≥N), UT(LDIM, ≥N),
WORK(≥ 3×N2) [LDIM ≥ dimu = N + 1 or
(N + 2)({textN + 1)/2, see page 1.]

Assign values to LDIM, UT() and part of TU().

CALL SUREV( UT, TU, LDIM,
RCOND, IWORK, WORK)

Computed quantities are returned in RCOND and TU().

B.5.b Argument Definitions

UT(,) [in] Must contain the data of Eqs.(2–4) on entry,
except as noted above for certain values of M1 and
M2.

TU(,) [inout] Must contain the data of Eq.(1) on en-
try, and will have the data of Eqs.(5–6) assigned by
SUREV, except as noted above for particular values
of M1 and M2.
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LDIM [in] Leading dimension for the arrays UT(,)
and TU(,). Require LDIM ≥ dimu, where dimu =
N + 1 or (N + 2)(N + 1)/2, see page 1.

RCOND [out] Estimate of the reciprocal condi-
tion number of the Jacobian matrix with elements
∂ui/∂tj , given in UT(). Only computed when M1 ≤
1 and M2 ≥ 1. Is in the range [0.0, 1.0].

A well conditioned problem has values near 1.0. Near
zero means badly conditioned. Equal to zero means
singular, in which case the subroutine cannot com-
plete its computation.

IWORK() [scratch] Integer work space of size at least
N.

WORK() [scratch] Floating-point work space of size
at least 3×N2.

B.6 Modifications for Double Precision

For double-precision usage, replace the initial S in the
name of each subroutine by D, and replace the REAL
declarations by DOUBLE PRECISION.

C. Examples and Remarks

C.1 Example

As a demonstration problem, consider the following for-
mulae for transforming a set of 3-dimensional rectangu-
lar coordinates (x, y, z) to spherical coordinates (r, ϕ, θ)
and the inverse transformation formulae:

s =
√
x2 + y2

r =
√
s2 + z2

ϕ = atan2(y, x)

θ = tan−1(z/s)

x = r cos ϕ cos θ

y = r sin ϕ cos θ

z = r sin θ

The demonstration program, DRSUCOMP, performs
this mapping from (x, y, z) to (r, ϕ, θ) with computation
of all of the first and second partial derivatives of r, ϕ,
and θ with respect to x, y, and z. As a check on the com-
putation the program then transforms back to (x, y, z).
Results are shown in ODSUCOMP. Note that the final
(x, y, z) agrees with the initial (x, y, z) in the values and
the first and second partial derivatives.

To demonstrate series reversion (or function inversion)
the program assigns the values of (r, ϕ, θ) and its first
and second partial derivatives with respect to (x, y, z) to
the array UT(,), and then assigns the values of (x, y, z)
to TU(1, 1:3). It then uses SUREV to compute the first
and second partial derivatives of (x, y, z) with respect to

(r, ϕ, θ), storing these in TU(2:10, 1:3). This computa-
tion is checked by computing the same quantities in a
different way.

C.2 Omitting derivative computation

To save time when developing new code using this pack-
age, one may run with (M1, M2) = (0, 0) until one is
satisfied that the function evaluation is as desired, and
then increase M2 to activate the derivative computation.

C.3 Setting M1 > 0

There are some algorithms, such as for optimization, in
which one does not need to compute partial derivatives
at every point at which the function is evaluated. De-
pending on how significant efficiency is in a particular ap-
plication, one may wish to consider methods of separat-
ing the function and derivative computation using this
package. One can compute only the function value by
setting (M1, M2) = (0, 0), or one can compute the func-
tion value and first partial derivatives by setting (M1,
M2) = (0, 1).

If one has computed the function value at an argument
value, x, with (M1, M2) = (0, 0), and has kept all in-
termediate quantities in distinct storage locations, then
one can repeat the sequence of subroutine calls with (M1,
M2) = (1, 1) to compute the first partial derivatives at
the same point, x, without the function value being re-
computed. In general, computation with M1 > 0 is only
valid if all in and inout arrays in each subroutine call
contain values of all derivatives of orders 0 through M1
− 1 computed previously with the same x.

D. Functional Description

This U-computation package is based on the ideas pre-
sented in [1]. See the description of W-computation in
Chapter 17.1 for a summary of these ideas. Whereas
the W-computation package generalizes the order of dif-
ferentiation, this U-computation package generalizes the
number of independent variables.

Let f() be a scalar-valued function of the scalar variable
u, and use primes to denote differentiation with respect
to u. Let u depend on the N-vector x and denote partial
derivatives of u with respect to xi by appropriate sub-
scripts. This package computes first and second partial
derivatives of f() using the formulae:

∂f(u)/∂xi = f ′(u)ui

∂2f(u)/∂xi∂xj = f ′(u)ui,j + f ′′(u)uiuj
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E. Error Procedures and Restrictions

N must be positive. M1 and M2 must satisfy 0 ≤ M1
≤ M2 ≤ 2. See the discussion in Section C for cautions
regarding usage with M1 > 0. These conditions on N,
M1, and M2 are not tested by the subroutines and their
violation may cause unpredictable actions.

E.1 Invalid arguments for derivative computa-
tion

The user will likely be accustomed to avoiding sending
invalid arguments to the elementary functions, such as
a negative argument to the square root. In comput-
ing derivatives there are some additional singularities to
avoid. Note that the derivative is infinite at zero for the
square root, and at ±1 for arcsin and arccosine.

E.2 Error handling

Following is a list of error conditions the package detects
and for which error messages are issued. These errors are
fatal in the sense that the requested operation cannot be
done; however, the default action is to return after issu-
ing an error message. The user can use the MATH77
library subroutine, ERMSET of Chapter 19.2, to alter
this action to cause a STOP if desired. Error conditions
not on this list, e.g., negative argument in log, will be
handled by the usual host system error handler.

Error No.
& Program Explanation
1 SUASIN Infinite derivative when arg = −1 or +1
1 SUACOS Infinite derivative when arg = −1 or +1
2 SUSQRT Infinite derivative when arg = 0
3 SUQUO1 Zero divisor

4 SUPWRI UM is infinite when U = 0 and M < 0
5 SUQUO Zero divisor
6 SUREV Singular Jacobian matrix

F. Supporting Information

The source language is ANSI Fortran 77. All program
units reference COMMON blocks /UCOM1/ and /U-
COM2/.

All of the double precision entry points except DUREV
require files:

DUCOMP, ERFIN, ERMSG, IERM1, and IERV1.

All of the single precision entry points except SUREV
require files:

SUCOMP, ERFIN, ERMSG, IERM1, and IERV1.

DUREV requires: DASUM, DAXPY, DDOT, DGECO,
DGEFA, DGEI, DSCAL, DSWAP, DUREV, ERFIN,
ERMSG, and IDAMAX.

SUREV requires: SASUM, SAXPY, SDOT, SGECO,
SGEFA, SGEI, SSCAL, SSWAP, SUREV, ERFIN,
ERMSG, and ISAMAX.

Entries
DUACOS DUASIN DUATAN DUATN2
DUCOS DUCOSH DUDIF DUDIF1
DUEXP DUGETN DULOG DUPRO
DUPRO1 DUPWRI DUQUO DUQUO1
DUREV DUSET DUSETN DUSIN
DUSINH DUSQRT DUSUM DUSUM1
DUTAN DUTANH SUACOS SUASIN
SUATAN SUATN2 SUCOS SUCOSH
SUDIF SUDIF1 SUEXP SUGETN
SULOG SUPRO SUPRO1 SUPWRI
SUQUO SUQUO1 SUREV SUSET
SUSETN SUSIN SUSINH SUSQRT
SUSUM SUSUM1 SUTAN SUTANH

Designed by C. L. Lawson, JPL, 1971. Adapted to For-
tran 77 for the JPL MATH77 library, Aug. 1987. Added
SUREV/DUREV, February 1992. Added SUSETN,
DUSETN, SUGETN, and DUGETN August 1994.
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DRSUCOMP

c program DRSUCOMP
c>> 1994−10−19 DRSUCOMP Krogh Changes to use M77CON
c>> 1994−08−04 DRSUCOMP CLL New subrou t ine : SUSETN
c>> 1992−02−17 CLL
c>> 1990−12−13 CLL Added demo o f SUREV.
c>> 1987−12−09 DRSUCOMP Lawson I n i t i a l Code .
c Demo d r i v e r f o r the SUCOMP package , i n c l u d i n g SUREV.
c The SUCOMP package computes p a r t i a l d e r i v a t i v e s .
c SUREV does s e r i e s r e v e r s i on i n v o l v i n g 1 s t and 2nd p a r t i a l
c d e r i v a t i v e s o f N func t i on s o f N v a r i a b l e s .
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c−−S r ep l a c e s ”?”: DR?UCOMP, ?UCOMP, ?UREV, ?USETN, ?USET, ?UATN2
c−− & ?UPRO, ?USUM, ?USQRT, ?UQUO, ?UATAN, ?UCOS, ?USIN, ?COPY
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

integer I , LDIM, NMAX
parameter (NMAX = 3 , LDIM = ((NMAX+2)∗(NMAX+1))/2)
integer IWORK(NMAX)
real X(LDIM) , Y(LDIM) , Z(LDIM)
real R(LDIM) , PHI(LDIM) , THETA(LDIM)
real SSQ(LDIM) , S(LDIM) , TEMP(LDIM)
real X2(LDIM) , Y2(LDIM) , Z2 (LDIM)
real XSQ(LDIM) , YSQ(LDIM) , ZSQ(LDIM)
real XVAL, YVAL, ZVAL, RSQ(LDIM) , ZBYS(LDIM)
real SP(LDIM) , CP(LDIM) , ST(LDIM) , CT(LDIM)
real WORK(NMAX,NMAX, 3 ) , RCOND
real UT(LDIM,NMAX) , TU(LDIM,NMAX)
real X1(LDIM) , X3(LDIM) , T1(LDIM) , T2(LDIM) , T3(LDIM)
parameter (XVAL = 0.1E0 , YVAL = 0.2E0 , ZVAL = 0.3E0)

c −− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
c Set N, M1, and M2.

ca l l SUSETN(NMAX, 0 , 2)
c I n i t i a l i z e independent v a r i a b l e s .

ca l l SUSET(XVAL, 1 ,X)
ca l l SUSET(YVAL, 2 ,Y)
ca l l SUSET(ZVAL, 3 ,Z)
print ’ (1x , a ) ’ ,

∗ ’DRSUCOMP. . Demo d r i v e r f o r the SUCOMP package . ’ ,
∗ ’ This demo f i r s t t rans forms (x , y , z ) to ( r , theta , phi ) , ’ ,
∗ ’ and then trans forms back , i n c l ud ing computation o f ’ ,
∗ ’ 1 s t and 2nd p a r t i a l d e r i v a t i v e s . ’
write (∗ , ’ (1x/8x ,10 a ) ’ ) ’ VALUE’ , ’ D1 ’ , ’ D2 ’ , ’ D3 ’ ,

∗ ’ D11 ’ , ’ D21 ’ , ’ D22 ’ , ’ D31 ’ , ’ D32 ’ , ’ D33 ’
write (∗ , ’ (1x/(1x , a , 10 f7 . 3 ) ) ’ )

∗ ’ X =’ ,X, ’ Y =’ , Y, ’ Z =’ ,Z
c
c Transform from (x , y , z ) to ( r , the ta , ph i )

ca l l SUATN2(Y, X, PHI)
ca l l SUPRO(X, X, XSQ)
ca l l SUPRO(Y, Y, YSQ)
ca l l SUPRO(Z , Z , ZSQ)
ca l l SUSUM(XSQ, YSQ, SSQ)
ca l l SUSUM(SSQ, ZSQ, RSQ)
ca l l SUSQRT(RSQ, R)
ca l l SUSQRT(SSQ, S)
ca l l SUQUO(Z , S , ZBYS)
ca l l SUATAN(ZBYS, THETA)

17.2–6 Computation Using Partial Derivative Arrays or Multivariate Taylor Series June 17, 2010



write (∗ , ’ (1x/(1x , a , 10 f7 . 3 ) ) ’ )
∗ ’ R =’ ,R, ’ PHI =’ ,PHI , ’THETA =’ ,THETA

c
c Transform back from ( r , the ta , ph i ) to ( x , y , z )

ca l l SUCOS(PHI , CP)
ca l l SUCOS(THETA, CT)
ca l l SUPRO(CP, CT, TEMP)
ca l l SUPRO(TEMP, R, X2)
ca l l SUSIN(PHI , SP)
ca l l SUPRO(SP , CT, TEMP)
ca l l SUPRO(TEMP, R, Y2)
ca l l SUSIN(THETA, ST)
ca l l SUPRO(ST, R, Z2 )
write (∗ , ’ (1x/(1x , a , 10 f7 . 3 ) ) ’ )

∗ ’ X =’ ,X2 , ’ Y =’ , Y2 , ’ Z =’ ,Z2
c
c Set data to c a l l SUREV.
c

ca l l SCOPY(LDIM, R, 1 , UT(1 , 1 ) , 1 )
ca l l SCOPY(LDIM, PHI , 1 , UT(1 , 2 ) , 1 )
ca l l SCOPY(LDIM, THETA,1 , UT(1 , 3 ) , 1 )
TU(1 , 1 ) = X(1)
TU(1 , 2 ) = Y(1)
TU(1 , 3 ) = Z(1)
ca l l SUREV( UT, TU, LDIM, RCOND, IWORK, WORK)

write (∗ , ’ ( a ) ’ ) ’ ’ ,
∗ ’ To demo SUREV we s t o r e (R, PHI , THETA) in c l ud ing ’ ,
∗ ’ the f i r s t and second d e r i v a t i v e s w. r . t . (X,Y,Z) in to UT( ) , ’ ,
∗ ’ and s e t TU( ) = (X, Y, Z ) . ’ ,
∗ ’ Then compute (TU1,TU2,TU3) us ing SUREV. ’ ,
∗ ’ For comparison compute (T1 ,T2 ,T3) us ing the known fun c t i o n a l ’ ,
∗ ’ d e f i n i t i o n o f (X, Y, Z) as a func t i on o f (R, PHI , THETA) . ’

write (∗ , ’ (1x/(1x , a , 10 f7 . 3 ) ) ’ )
∗ ’ TU1 =’ , (TU( I , 1 ) , I=1,LDIM) ,
∗ ’ TU2 =’ , (TU( I , 2 ) , I=1,LDIM) ,
∗ ’ TU3 =’ , (TU( I , 3 ) , I=1,LDIM)

c
c For comparison s e t X1, X2, X3, and transform them to
c T1 , T2 , T3 . These are the same opera t i ons as
c trans forming from ( r , the ta , ph i ) to ( x , y , z ) .
c

ca l l SUSET(R(1 ) , 1 ,X1)
ca l l SUSET(PHI (1 ) , 2 ,X2)
ca l l SUSET(THETA(1 ) , 3 ,X3)

c
ca l l SUCOS(X2 , CP)
ca l l SUCOS(X3 , CT)
ca l l SUPRO(CP, CT, TEMP)
ca l l SUPRO(TEMP, X1 , T1)
ca l l SUSIN(X2 , SP)
ca l l SUPRO(SP , CT, TEMP)
ca l l SUPRO(TEMP, X1 , T2)
ca l l SUSIN(X3 , ST)
ca l l SUPRO(ST, X1 , T3)
write (∗ , ’ (1x/(1x , a , 10 f7 . 3 ) ) ’ )

∗ ’ T1 =’ ,T1 , ’ T2 =’ , T2 , ’ T3 =’ ,T3
end
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ODSUCOMP

DRSUCOMP. . Demo dr i v e r f o r the SUCOMP package .
This demo f i r s t t rans forms (x , y , z ) to ( r , theta , phi ) ,
and then trans forms back , i n c l ud ing computation o f
1 s t and 2nd p a r t i a l d e r i v a t i v e s .

VALUE D1 D2 D3 D11 D21 D22 D31 D32 D33

X = 0.100 1 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000
Y = 0.200 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000
Z = 0.300 0 .000 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000

R = 0.374 0 .267 0 .535 0 .802 2 .482 −0.382 1 .909 −0.573 −1.145 0 .955
PHI = 1.107 −4.000 2 .000 0 .000 16 .000 12.000−16.000 0 .000 0 .000 0 .000

THETA = 0.930 −0.958 −1.917 1 .597 −6.297 6 .571 3 .559 0 .913 1 .825 −6.845

X = 0.100 1 .000 −0.000 −0.000 −0.000 0 .000 0 .000 −0.000 0 .000 0 .000
Y = 0.200 0 .000 1 .000 −0.000 0 .000 0 .000 0 .000 0 .000 −0.000 0 .000
Z = 0.300 0 .000 0 .000 1 .000 −0.000 −0.000 −0.000 0 .000 0 .000 −0.000

To demo SUREV we s t o r e (R, PHI , THETA) in c l ud ing
the f i r s t and second d e r i v a t i v e s w. r . t . (X,Y,Z) in to UT( ) ,
and s e t TU( ) = (X, Y, Z ) .
Then compute (TU1,TU2,TU3) us ing SUREV.
For comparison compute (T1 ,T2 ,T3) us ing the known fun c t i o n a l
d e f i n i t i o n o f (X, Y, Z) as a func t i on o f (R, PHI , THETA) .

TU1 = 0.100 0 .267 −0.200 −0.134 −0.000 −0.535 −0.100 −0.359 0 .268 −0.100
TU2 = 0.200 0 .535 0 .100 −0.268 −0.000 0 .267 −0.200 −0.717 −0.134 −0.200
TU3 = 0.300 0 .802 0 .000 0 .224 0 .000 −0.000 0 .000 0 .598 0 .000 −0.300

T1 = 0.100 0 .267 −0.200 −0.134 0 .000 −0.535 −0.100 −0.359 0 .268 −0.100
T2 = 0.200 0 .535 0 .100 −0.268 0 .000 0 .267 −0.200 −0.717 −0.134 −0.200
T3 = 0.300 0 .802 0 .000 0 .224 0 .000 0 .000 0 .000 0 .598 0 .000 −0.300
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