SUBROUTINE DGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, \$ LDV, INFO ) * * -- LAPACK routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 1, 2001 * * .. Scalar Arguments .. CHARACTER JOB, SIDE INTEGER IHI, ILO, INFO, LDV, M, N * .. * .. Array Arguments .. DOUBLE PRECISION LSCALE( * ), RSCALE( * ), V( LDV, * ) * .. * * Purpose * ======= * * DGGBAK forms the right or left eigenvectors of a real generalized * eigenvalue problem A*x = lambda*B*x, by backward transformation on * the computed eigenvectors of the balanced pair of matrices output by * DGGBAL. * * Arguments * ========= * * JOB (input) CHARACTER*1 * Specifies the type of backward transformation required: * = 'N': do nothing, return immediately; * = 'P': do backward transformation for permutation only; * = 'S': do backward transformation for scaling only; * = 'B': do backward transformations for both permutation and * scaling. * JOB must be the same as the argument JOB supplied to DGGBAL. * * SIDE (input) CHARACTER*1 * = 'R': V contains right eigenvectors; * = 'L': V contains left eigenvectors. * * N (input) INTEGER * The number of rows of the matrix V. N >= 0. * * ILO (input) INTEGER * IHI (input) INTEGER * The integers ILO and IHI determined by DGGBAL. * 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. * * LSCALE (input) DOUBLE PRECISION array, dimension (N) * Details of the permutations and/or scaling factors applied * to the left side of A and B, as returned by DGGBAL. * * RSCALE (input) DOUBLE PRECISION array, dimension (N) * Details of the permutations and/or scaling factors applied * to the right side of A and B, as returned by DGGBAL. * * M (input) INTEGER * The number of columns of the matrix V. M >= 0. * * V (input/output) DOUBLE PRECISION array, dimension (LDV,M) * On entry, the matrix of right or left eigenvectors to be * transformed, as returned by DTGEVC. * On exit, V is overwritten by the transformed eigenvectors. * * LDV (input) INTEGER * The leading dimension of the matrix V. LDV >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * Further Details * =============== * * See R.C. Ward, Balancing the generalized eigenvalue problem, * SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. * * ===================================================================== * * .. Local Scalars .. LOGICAL LEFTV, RIGHTV INTEGER I, K * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DSCAL, DSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters * RIGHTV = LSAME( SIDE, 'R' ) LEFTV = LSAME( SIDE, 'L' ) * INFO = 0 IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND. \$ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN INFO = -1 ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( ILO.LT.1 ) THEN INFO = -4 ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN INFO = -4 ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) ) \$ THEN INFO = -5 ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN INFO = -5 ELSE IF( M.LT.0 ) THEN INFO = -8 ELSE IF( LDV.LT.MAX( 1, N ) ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGGBAK', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) \$ RETURN IF( M.EQ.0 ) \$ RETURN IF( LSAME( JOB, 'N' ) ) \$ RETURN * IF( ILO.EQ.IHI ) \$ GO TO 30 * * Backward balance * IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN * * Backward transformation on right eigenvectors * IF( RIGHTV ) THEN DO 10 I = ILO, IHI CALL DSCAL( M, RSCALE( I ), V( I, 1 ), LDV ) 10 CONTINUE END IF * * Backward transformation on left eigenvectors * IF( LEFTV ) THEN DO 20 I = ILO, IHI CALL DSCAL( M, LSCALE( I ), V( I, 1 ), LDV ) 20 CONTINUE END IF END IF * * Backward permutation * 30 CONTINUE IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN * * Backward permutation on right eigenvectors * IF( RIGHTV ) THEN IF( ILO.EQ.1 ) \$ GO TO 50 * DO 40 I = ILO - 1, 1, -1 K = RSCALE( I ) IF( K.EQ.I ) \$ GO TO 40 CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) 40 CONTINUE * 50 CONTINUE IF( IHI.EQ.N ) \$ GO TO 70 DO 60 I = IHI + 1, N K = RSCALE( I ) IF( K.EQ.I ) \$ GO TO 60 CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) 60 CONTINUE END IF * * Backward permutation on left eigenvectors * 70 CONTINUE IF( LEFTV ) THEN IF( ILO.EQ.1 ) \$ GO TO 90 DO 80 I = ILO - 1, 1, -1 K = LSCALE( I ) IF( K.EQ.I ) \$ GO TO 80 CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) 80 CONTINUE * 90 CONTINUE IF( IHI.EQ.N ) \$ GO TO 110 DO 100 I = IHI + 1, N K = LSCALE( I ) IF( K.EQ.I ) \$ GO TO 100 CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) 100 CONTINUE END IF END IF * 110 CONTINUE * RETURN * * End of DGGBAK * END