SUBROUTINE CGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, \$ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO ) * * -- LAPACK driver routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * June 30, 1999 * 8-15-00: Improve consistency of WS calculations (eca) * * .. Scalar Arguments .. CHARACTER JOBVL, JOBVR INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), \$ BETA( * ), VL( LDVL, * ), VR( LDVR, * ), \$ WORK( * ) * .. * * Purpose * ======= * * CGGEV computes for a pair of N-by-N complex nonsymmetric matrices * (A,B), the generalized eigenvalues, and optionally, the left and/or * right generalized eigenvectors. * * A generalized eigenvalue for a pair of matrices (A,B) is a scalar * lambda or a ratio alpha/beta = lambda, such that A - lambda*B is * singular. It is usually represented as the pair (alpha,beta), as * there is a reasonable interpretation for beta=0, and even for both * being zero. * * The right generalized eigenvector v(j) corresponding to the * generalized eigenvalue lambda(j) of (A,B) satisfies * * A * v(j) = lambda(j) * B * v(j). * * The left generalized eigenvector u(j) corresponding to the * generalized eigenvalues lambda(j) of (A,B) satisfies * * u(j)**H * A = lambda(j) * u(j)**H * B * * where u(j)**H is the conjugate-transpose of u(j). * * Arguments * ========= * * JOBVL (input) CHARACTER*1 * = 'N': do not compute the left generalized eigenvectors; * = 'V': compute the left generalized eigenvectors. * * JOBVR (input) CHARACTER*1 * = 'N': do not compute the right generalized eigenvectors; * = 'V': compute the right generalized eigenvectors. * * N (input) INTEGER * The order of the matrices A, B, VL, and VR. N >= 0. * * A (input/output) COMPLEX array, dimension (LDA, N) * On entry, the matrix A in the pair (A,B). * On exit, A has been overwritten. * * LDA (input) INTEGER * The leading dimension of A. LDA >= max(1,N). * * B (input/output) COMPLEX array, dimension (LDB, N) * On entry, the matrix B in the pair (A,B). * On exit, B has been overwritten. * * LDB (input) INTEGER * The leading dimension of B. LDB >= max(1,N). * * ALPHA (output) COMPLEX array, dimension (N) * BETA (output) COMPLEX array, dimension (N) * On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the * generalized eigenvalues. * * Note: the quotients ALPHA(j)/BETA(j) may easily over- or * underflow, and BETA(j) may even be zero. Thus, the user * should avoid naively computing the ratio alpha/beta. * However, ALPHA will be always less than and usually * comparable with norm(A) in magnitude, and BETA always less * than and usually comparable with norm(B). * * VL (output) COMPLEX array, dimension (LDVL,N) * If JOBVL = 'V', the left generalized eigenvectors u(j) are * stored one after another in the columns of VL, in the same * order as their eigenvalues. * Each eigenvector will be scaled so the largest component * will have abs(real part) + abs(imag. part) = 1. * Not referenced if JOBVL = 'N'. * * LDVL (input) INTEGER * The leading dimension of the matrix VL. LDVL >= 1, and * if JOBVL = 'V', LDVL >= N. * * VR (output) COMPLEX array, dimension (LDVR,N) * If JOBVR = 'V', the right generalized eigenvectors v(j) are * stored one after another in the columns of VR, in the same * order as their eigenvalues. * Each eigenvector will be scaled so the largest component * will have abs(real part) + abs(imag. part) = 1. * Not referenced if JOBVR = 'N'. * * LDVR (input) INTEGER * The leading dimension of the matrix VR. LDVR >= 1, and * if JOBVR = 'V', LDVR >= N. * * WORK (workspace/output) COMPLEX array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,2*N). * For good performance, LWORK must generally be larger. * * If LWORK = -1, a workspace query is assumed. The optimal * size for the WORK array is calculated and stored in WORK(1), * and no other work except argument checking is performed. * * RWORK (workspace/output) REAL array, dimension (8*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * =1,...,N: * The QZ iteration failed. No eigenvectors have been * calculated, but ALPHA(j) and BETA(j) should be * correct for j=INFO+1,...,N. * > N: =N+1: other then QZ iteration failed in SHGEQZ, * =N+2: error return from STGEVC. * * ===================================================================== * * .. Parameters .. INTEGER LQUERV PARAMETER ( LQUERV = -1 ) REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), \$ CONE = ( 1.0E0, 0.0E0 ) ) * .. * .. Local Scalars .. LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR CHARACTER CHTEMP INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO, \$ IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR, \$ LWKMIN, LWKOPT REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, \$ SMLNUM, TEMP COMPLEX X * .. * .. Local Arrays .. LOGICAL LDUMMA( 1 ) * .. * .. External Subroutines .. EXTERNAL CGEQRF, CGGBAK, CGGBAL, CGGHRD, CHGEQZ, CLACPY, \$ CLASCL, CLASET, CTGEVC, CUNGQR, CUNMQR, SLABAD, \$ XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV REAL CLANGE, SLAMCH EXTERNAL LSAME, ILAENV, CLANGE, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, REAL, SQRT * .. * .. Statement Functions .. REAL ABS1 * .. * .. Statement Function definitions .. ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) ) * .. * .. Executable Statements .. * * Decode the input arguments * IF( LSAME( JOBVL, 'N' ) ) THEN IJOBVL = 1 ILVL = .FALSE. ELSE IF( LSAME( JOBVL, 'V' ) ) THEN IJOBVL = 2 ILVL = .TRUE. ELSE IJOBVL = -1 ILVL = .FALSE. END IF * IF( LSAME( JOBVR, 'N' ) ) THEN IJOBVR = 1 ILVR = .FALSE. ELSE IF( LSAME( JOBVR, 'V' ) ) THEN IJOBVR = 2 ILVR = .TRUE. ELSE IJOBVR = -1 ILVR = .FALSE. END IF ILV = ILVL .OR. ILVR * * Test the input arguments * INFO = 0 IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN INFO = -11 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN INFO = -13 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV. The workspace is * computed assuming ILO = 1 and IHI = N, the worst case.) * LWKMIN = 1 IF( INFO.EQ.0 ) THEN LWKOPT = N + N*ILAENV( 1, 'CGEQRF', ' ', N, 1, N, 0 ) LWKMIN = MAX( 1, 2*N ) WORK( 1 ) = LWKOPT IF( LWORK.LT.LWKMIN .AND. LWORK.NE.LQUERV ) \$ INFO = -15 END IF * * Quick returns * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGGEV ', -INFO ) RETURN END IF IF( LWORK.EQ.LQUERV ) RETURN IF( N.EQ.0 ) \$ RETURN * * Get machine constants * EPS = SLAMCH( 'E' )*SLAMCH( 'B' ) SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = CLANGE( 'M', N, N, A, LDA, RWORK ) ILASCL = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN ANRMTO = SMLNUM ILASCL = .TRUE. ELSE IF( ANRM.GT.BIGNUM ) THEN ANRMTO = BIGNUM ILASCL = .TRUE. END IF IF( ILASCL ) \$ CALL CLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR ) * * Scale B if max element outside range [SMLNUM,BIGNUM] * BNRM = CLANGE( 'M', N, N, B, LDB, RWORK ) ILBSCL = .FALSE. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN BNRMTO = SMLNUM ILBSCL = .TRUE. ELSE IF( BNRM.GT.BIGNUM ) THEN BNRMTO = BIGNUM ILBSCL = .TRUE. END IF IF( ILBSCL ) \$ CALL CLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR ) * * Permute the matrices A, B to isolate eigenvalues if possible * (Real Workspace: need 6*N) * ILEFT = 1 IRIGHT = N + 1 IRWRK = IRIGHT + N CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ), \$ RWORK( IRIGHT ), RWORK( IRWRK ), IERR ) * * Reduce B to triangular form (QR decomposition of B) * (Complex Workspace: need N, prefer N*NB) * IROWS = IHI + 1 - ILO IF( ILV ) THEN ICOLS = N + 1 - ILO ELSE ICOLS = IROWS END IF ITAU = 1 IWRK = ITAU + IROWS CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), \$ WORK( IWRK ), LWORK+1-IWRK, IERR ) * * Apply the orthogonal transformation to matrix A * (Complex Workspace: need N, prefer N*NB) * CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, \$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ), \$ LWORK+1-IWRK, IERR ) * * Initialize VL * (Complex Workspace: need N, prefer N*NB) * IF( ILVL ) THEN CALL CLASET( 'Full', N, N, CZERO, CONE, VL, LDVL ) CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, \$ VL( ILO+1, ILO ), LDVL ) CALL CUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL, \$ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR ) END IF * * Initialize VR * IF( ILVR ) \$ CALL CLASET( 'Full', N, N, CZERO, CONE, VR, LDVR ) * * Reduce to generalized Hessenberg form * IF( ILV ) THEN * * Eigenvectors requested -- work on whole matrix. * CALL CGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL, \$ LDVL, VR, LDVR, IERR ) ELSE CALL CGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA, \$ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR ) END IF * * Perform QZ algorithm (Compute eigenvalues, and optionally, the * Schur form and Schur vectors) * (Complex Workspace: need N) * (Real Workspace: need N) * IWRK = ITAU IF( ILV ) THEN CHTEMP = 'S' ELSE CHTEMP = 'E' END IF CALL CHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, \$ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ), \$ LWORK+1-IWRK, RWORK( IRWRK ), IERR ) IF( IERR.NE.0 ) THEN IF( IERR.GT.0 .AND. IERR.LE.N ) THEN INFO = IERR ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN INFO = IERR - N ELSE INFO = N + 1 END IF GO TO 70 END IF * * Compute Eigenvectors * (Real Workspace: need 2*N) * (Complex Workspace: need 2*N) * IF( ILV ) THEN IF( ILVL ) THEN IF( ILVR ) THEN CHTEMP = 'B' ELSE CHTEMP = 'L' END IF ELSE CHTEMP = 'R' END IF * CALL CTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL, \$ VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ), \$ IERR ) IF( IERR.NE.0 ) THEN INFO = N + 2 GO TO 70 END IF * * Undo balancing on VL and VR and normalization * (Workspace: none needed) * IF( ILVL ) THEN CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ), \$ RWORK( IRIGHT ), N, VL, LDVL, IERR ) DO 30 JC = 1, N TEMP = ZERO DO 10 JR = 1, N TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) ) 10 CONTINUE IF( TEMP.LT.SMLNUM ) \$ GO TO 30 TEMP = ONE / TEMP DO 20 JR = 1, N VL( JR, JC ) = VL( JR, JC )*TEMP 20 CONTINUE 30 CONTINUE END IF IF( ILVR ) THEN CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ), \$ RWORK( IRIGHT ), N, VR, LDVR, IERR ) DO 60 JC = 1, N TEMP = ZERO DO 40 JR = 1, N TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) ) 40 CONTINUE IF( TEMP.LT.SMLNUM ) \$ GO TO 60 TEMP = ONE / TEMP DO 50 JR = 1, N VR( JR, JC ) = VR( JR, JC )*TEMP 50 CONTINUE 60 CONTINUE END IF END IF * * Undo scaling if necessary * IF( ILASCL ) \$ CALL CLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR ) * IF( ILBSCL ) \$ CALL CLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) * 70 CONTINUE WORK( 1 ) = LWKOPT * RETURN * * End of CGGEV * END