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Abstract. Over the last few years, it has been suggested that the popular QR algorithm for
the unsymmetric eigenvalue problem does not parallelize. In this paper, we present both positive
and negative results on this subject: In theory, asymptotically perfect speedup can be obtained.
In practice, reasonable speedup can be obtained on a MIMD distributed memory computer, for a
relatively small number of processors. However, we also show theoretically that it is impossible
for the standard QR algorithm to be scalable. Performance of a parallel implementation of the
LAPACK DLAHQR routine on the Intel Paragon™ system is reported.

1. Introduction. Distributed memory parallel algorithms for the unsymmetric eigenvalue
problem have been allusive. There are several matrix multiply-based methods currently being
studied. Auslander and Tsao [2] and Lederman, Tsao, and Turnbull [24] have a matrix multiply-
based parallel algorithm, which uses a polynomial mapping of the eigenvalues. Bai and Demmel
[4] have another parallel algorithm based on bisection with the matrix sign function. Matrix
tearing methods for finding the eigensystem of an unsymmetric Hessenberg matrix have been
proposed by Dongarra and Sidani [9]. These involve doing a rank one change to the Hessenberg
matrix to make two separate submatrices and then finding the eigenpairs of each submatrix,
followed by performing Newton’s method on these values to find the solution to the original
problem. None of the above algorithms are particularly competitive in the serial case. They
suffer from requiring more floating point operations (flops) and/or yield a loss of accuracy when
compared to efficient implementations of the QR algorithm.

Efficient sequential (and shared memory parallel) implementations of the QR algorithm use
a blocked version of the Francis double implicit shifted algorithm [13] or a variant thereof [20].
There have also been attempts at improving data reuse by increasing the number of shifts ei-
ther by using a multi-implicited shifted QR algorithm [3] or pipelining several double shifts
simultaneously [31, 32].

A number of attempts at parallelizing the QR algorithm have been made (see Boley and
Maier [7], Geist, Ward, Davis, and Funderlic [14], and Stewart [27].) Distributing the work
evenly amongst the processors has proven difficult for conventional storage schemes, especially
when compared to the parallel solution of dense linear systems [22, 23]. Communication also
becomes a more significant bottleneck for the parallel () R algorithm. As noted by van de Geijn
[29] and van de Geijn and Hudson [30], the use of a block Hankel-wrapped storage scheme can
alleviate some of the problems involved in parallelizing the () R algorithm.

In this paper, we present a number of results of theoretical significance on the subject. We
reexamine the results on the Hankel-wrapped storage schemes in the setting of a parallel im-
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plementation of a state-of-the-art sequential implementation. Theoretically we can show that
under certain conditions the described approach is asymptotically 100% efficient: if the num-
ber of processors is fixed and the problem size grows arbitrarily large, perfect speedup can be
approached. However, we also show that our approach is not scalable in the following sense:
To maintain a given level of efficiency, the dimension of the matrix must grow linearly with the
number of processors. As a result, it will be impossible to maintain performance as processors
are added, since memory requirements grow with the square of the dimension, and physical mem-
ory grows only with the number of processors. While this could be a deficiency attributable to
our implementation, we also show that for the standard implementations of the sequential QR
algorithm, it is impossible to find an implementation with better scalability properties. Finally,
we show that these techniques can indeed be incorporated into a real code by giving details of a
prototype distributed memory implementation of the serial algorithm DLAHQR [1], the LAPACK
version of the double implicit shifted QR algorithm. Full functionality of the LAPACK code
can be supported. That is, the techniques can be extended to allow for the cases of computing
the Schur vectors, computing the Schur decomposition of H, or just computing the eigenvalues
alone. We have implemented a subset of this functionality, for which the code is described and
performance results are given.

Thus this paper makes four contributions: It describes a data decomposition that allows, at
least conceptually, straight-forward implementation of the QR algorithm; It gives theoretical
limitations for parallelizing the standard QR algorithm; It describes a parallel implementation
based on the proposed techniques; It reports performance results of this proof-of-concept imple-

M

mentation obtained on the Intel Paragon™ system.

2. Sequential QR Algorithm. While we assume the reader of this paper to be fully versed
in the intricate details of the QR algorithm, we briefly review the basics in this section.

The Francis double implicit shifted )R algorithm has been a successful serial method for
computing the Schur decomposition H = QT'QT. Here T is upper pseudo-triangular with 1zl
or 2z2 blocks along the diagonal and @ is orthogonal. We assume for simplicity that our initial
matrix H is Hessenberg. The parallelization of the reduction to Hessenberg form is a well
understood problem, and unlike the eigenvalue problem, the Hessenberg reduction has been
shown to parallelize well [5, 10].

One step of the Francis double shift Schur decomposition is in Figure 1. Here, the Householder
matrices are symmetric orthogonal transforms of the form:

T
v
P=1-2——
vl
where v € R” and
o 0 ifj<i4+loryj>1+3
YT =it
We assume the Hessenberg matrix is unreduced, and if not, find the largest unreduced submatrix
of H. Suppose this submatrix is H(k : [,k : ). We then apply the Francis HQR Step to the rows



Francis HQR Step
e=eig(Hn—1:n,n—1:n))
Let 2 = (H —e(1)],) * (H — e(2)1,,)
Let Py € R™™"™ be a Householder matrix
s.t.
Pox is a multiple of e;.
H «— PyHPF,
fori:=1,...,n—2
Compute P; so that
P;H has zero (i + 2,1¢) and
(1 4 3,4) entries.
Update H « P,HP,
Update @ + QF,

endfor

Fia. 1. Sequential Francis HQR Step

and columns of H corresponding to the submatrix; that is,

H(k:1l,:)« PH(k:1l:)

H(k:l)«— H(: k)P

The double implicit shifts in this case are chosen to be the eigenvalues of

e=eig(HIl—-1:1,1—-1:1))

In practice, after every couple of iterations, some of the subdiagonals of H will become nu-
merically zero, and at this point the problem deflates into smaller problems.

3. Parallel QR Algorithms.

3.1. Data Decomposition. We briefly describe the storage scheme presented in [30]. Sup-
pose A € R"*"™ where n = mhp for some integers h and m and p is the number of processors.

Suppose A is partitioned as follows

Al,l Al,? Tt Al,mp—l Al,mp

A2,1 A2,2 Tt AZ,mp—l AZ,mp

A= Ash Aso oo Asppor Az
L Amnl Amn? e AMPMP—I Amp,mp J

where A;; € R"™". We denote processor k owning block A;; with a superscript Aﬁf). The one
dimensional block Hankel-wrapped storage for m = 1 assigns submatrix A; ; to processor

(1 4+ 7 —2) mod p.




000001171717172222233333
0000011,111,2222233333
000011,111,2222233333
00011,111,2222233333
0011,111,2222233333
1222223333300000
22.2223333300000
2127272137333300000]
2223333300000,

(B,B 2 2.3 333300000,

C_ 30000011111
0000011111

000011111

00011111

0011111

122222

22222

2222

222

22

Fic. 2. Data decomposition and chasing of the bulge.

That is, the distribution amongst the processors is as follows [30]:

A Al AB Al Al ]
Ab AL AL AR AT
AD) A o AD AL

3,mp—1

A(p—‘3) A(p‘—Q)

L mp,mp—1 mp,mp |

where the superscript indicates the processor assignment.

3.2. Basic Parallel Algorithm. We start describing the basic parallel QR algorithm by
considering the Francis HQR Step. The basic loop in Figure 1, indexed by 1, is generally referred
to as “chasing the bulge”. Figure 2 gives an arbitrary example of 1 = 7, in a 20 X 20 matrix, where
the integers indicate nonzero elements of the upper Hessenberg matrix, and the B’s indicate the fill
in at that stage of the loop. In the next step of Francis HQR step, a Householder transformation
P; is computed and applied from the left and the right. The affected elements are within the
dashed lines. After this application of the Householder transformation, the bulge moves down
the diagonal one position, and the next iteration starts.

Figure 2 also demonstrates the possible parallelism in the Francis HQR step: The application
of P; to the appropriate elements of H, referred to as a reflection, is perfectly distributed among
the processors, except for the processor that owns the bulge and the fill-in elements. This
processor must do slightly more work (associated with the intersection of the two boxes). [t is
the parallelism within the application of each Householder transformation that is the key to the
success of the approach.

The entire Francis HQR step now parallelizes as follows:



1. The processor(s) that holds eig(H(n — 1 : n,n — 1 : n) computes the shifts, and sends
them to the first processor. Alternatively, all processors could compute the shifts, since
it is a lower order operation.

2. The processor that owns the data required to compute Fy computes it, and then broad-
casts it to all other processors.

3. All processors update their portions of the matrix according to Fj.

4. for:=1,....,n —2

(a) The processor that owns the data required to compute P, computes it and then
broadcasts it to all other processors.
(b) All processors update their portions of the matrix according to P;.
Naturally, everytime the computation hits data that lies on the boundaries between processors,
a limited amount of communication is required to bring appropriate rows and columns together.

3.3. Analysis of the Simple Parallel Algorithm. Before discussing the finer details of
the parallel code, let us analyze the simple algorithm given above. This will give us an idea of
how well the basic approach works. We will restrict our analysis to a single Francis step, and
ignore shift derivation, convergence, or decoupling set up costs. We show later how this extra
O(n) work can be done without incurring excessive overhead.

For our analysis, we will use the following model: Performing a floating point computation
requires time . Sending a message of length n between two nodes requires time o 4+ nf3, where
a represents the latency, and 3 the penalty per double precision number transferred. For conve-
nience, we shall assume all communication is nearest neighbor, and hence no network conflicts
occur. Processors can send and receive simultaneously.

We start by computing the sequential expense of the algorithm: Computing a Householder
transformation from a vector of length three requires €', some small constant, flops. Applying
such a Householder transformation of size three to three rows or columns of length n requires
10n flops. Within the loop indexed by i, each transformation is applied to n — ¢ + 1 triplets
of rows and ¢ + 3 triplets of columns. Applying the transformations to the Hessenberg matrix
therefore requires 10(n + 4) flops and applying the transformations to the Schur matrix requires
10n flops. The total cost of executing a single Francis step thus becomes approximately

n—1

> (C+10(n 4+ 4) +10n) vy = 20n*y + O(n)
i=1
Turning now to the parallel implementation, contributions to the critical path are given roughly
as follows: Computing a transformation still contributes C' flops. Broadcasting this transforma-
tion requires time « + 373, since the parallel implementation can be arranged to pipeline around
the logical ring of processors. After this, the processors that computed the transformation must
update its part of the rows and columns. The row and column vectors are of length approxi-
mately n/p, with a few extra introduced by the bulge. This contributes the equivalent of about
20(n/p + 4) flops. Now, it can compute the next transformation, and the process repeats itself

n — 1 times. The total contribution becomes
n—1 2

1 > (C’y—l— 10(% +4) + 10%7+o¢—|—3ﬁ) = Cn’y—l—?()%’y—l-él()n’y + na+ 3np 4+ O(1)

=1



Here we cannot ignore O(n) terms, since if p is comparable to n, these terms matter.

Equation 1 ignores the communication required when a boundary of processors is reached,
which happens every h iterations. Each “border” row contains roughly (n — i)/p elements per
processor, and each “border” column contains roughly i /p elements per processor. Using trans-
forms of size three implies that when the boundary of processors is reached, the next transform
will also cross the boundary. Hence 2n/p items must be communicated to the right and returned.
This means that the total communication volume for “border” or boundary data is

(2) 5(45)

The communication volume in Equation 2 can be done in anywhere from one to eight messages
depending on the implementation. Eight messages are required when both rows and both columns
for the two iterations are sent separately, and returned again. One message is possible if data is
only sent rightward around the ring, and the results accumulated into a buffer and sent back in
O(1) communications at the end of the Francis step. For the purpose of our model, we assume
two communications, requiring time

(3) 2% (a + 2%@)

for a total estimated parallel time of

n2 n

2
n

(4) Test(n,p,h) = Cny + 20?7 + 40ny 4+ na 4 3nf + QEQ + 4%[3 + O(1)

On current generation architectures, the above model shows that the bulk of inefficiency comes

from the number of messages generated, since « is typically several orders of magnitude greater

than either 3 or 7. To investigate the scalability of the approach, we start by computing the

estimated speedup

Tseq(h) _ 20m? B p
Test(n,psh) 2024 +42 + 0(n) 147 +0(2)

(5) Speedupegt (1, p, h) =

If h is chosen big enough, e.g. h = n/p, the second term in the denominator also becomes O(p/n),
and we can make the following observations: if p is fixed, and n is allowed to grow, eventually
perfect speedup will be approached. Furthermore, the estimated efficiency attained is given by

1

) Bficcncyest (1., ) = Speedupest (n:p:h) = 15775

From this last equation, we can say something about the scalability of the implementation: In
order to maintain efficiency, we must grow n linearly with p. This poses a serious problem:
memory grows linearly with p, but memory requirements grow with n?. We conclude that
this approach to parallelization will not scale, since memory constraints dictate that eventually
efficiency cannot be maintained, even if the problem is allowed to grow to fill the combined
memories.



The previous modeling extends to the overall algorithm in a simple manner. On average, to
find the eigenvalues of a matrix of size n requires 2n HQR iterations. Every other iteration, there
is usually a deflation of size one or two. Since deflation occurs less frequently in the beginning
than the end, our overall model satisfies:

Overall Flops = > 3% 20k = 20n°,
k=1

where 3 is a heuristic fudge factor. Compare, for example, [15] which uses a similar heuristic,
but different fudge factor, to suggest overall flops at 25n°.

Similarly, we can extend any of the formulas in the previous subsection. In Equation 4, the
number of communication start-ups is n 4+ 2n/h. For the overall algorithm, before the bundling
described in § 3.5.4, we can estimate

Communication Start-ups = Z 3% (k+2k/h) = (g + %)n2
k=1

3.4. Theoretical Limitations. For many dense linear algebra algorithms, better scalabil-
ity can be obtained by using a so-called two dimensional data decomposition. Examples include
the standard decomposition algorithms, like LU, QR, and Cholesky factorization [11, 16], as well
as the reduction to condensed form required for reducing a general matrix to upper Hessenberg
form [5, 10]. It is therefore natural to try to reformulate the parallel QR algorithm in an attempt
to extract an algorithm that has better scalability properties. In this section we show theoret-
ically that there is an inherent limitation to the scalability of the QR algorithm that indicates
that a more complicated data and work decomposition alone cannot improve the scalability of
the parallel implementation.

We present a simple analysis of the theoretical limitations of the QR algorithm. There is a clear
dependence in the chasing of the bulge that requires at least O(n) steps to complete one Francis
HQR step. The associated computation can be thought of as running down the diagonal of the
matrix. Moreover, the last element of the matrix must be computed before the next Francis step
can start, since it is needed to compute the shift. Since there are O(n*) computations performed
in one such step, the speedup is limited to O(n), which indicates that the maximal number of
processors that can be usefully employed is O(n). Hence, p < Cn for some constant C'.

Let us now analyze the implications of this: If efficient use of the processors is to be attained,
the equation p < Cn must hold for some constant (/. The total memory requirements for a
problem of size n is Kn?, for some constant K. Hence

. . K
Memory Requirements = Kn* > EpQ = O(p?).

Notice however that memory only grows linearly with the number of processors. We conclude
that due to memory restrictions, it is impossible to solve a problem large enough to maintain
efficiency as processors are added. In the conclusion, we indicate how it may be possible to
overcome this apparent negative result.



3.5. Refinements of the Parallel Algorithm. The above analysis shows that there is
reason to believe that trying to generalize the Hankel-wrapped mapping to yield the equivalent
of a two dimensional wrapping will not result in the same kinds of benefits as it would for a
factorization algorithm. However, there are a number of refinements that can be made that
will improve the performance of the parallel QR algorithm. Moreover, the algorithm as it was
described in Section 3.2 is far from a complete implementation.

3.5.1. Accumulating (). The algorithm in Section 3.2 ignores the accumulation of the
orthogonal matrix ¢). There is a perfect parallelism in this operation, requiring no more com-
munication than must already be performed as part of the updating of H.

Each stage of the Francis HQR step in Figure 1 requires the computation @) <+ @ P;. Since
P; is broadcasted during the update of the Hessenberg matrix, all processors already have this
information. The computation @) + @) P; reflects three columns of ). Which three get reflected
depends on i. Since () is not accessed elsewhere within the HQR kernel, we can assume () has the
best data storage possible for reflecting three columns. This data storage is a one dimensional
row mapping. With a one dimensional row mapping, the data in any row is always contained on
a single processor. Each row in a column transform can be computed independently. So there
is no extra communication required to complete the column transform, and this extra work is
embarrassingly parallel.

3.5.2. Deflation. We previously mentioned that as subdiagonal elements become numer-
ically zero, the process proceeds with unreduced submatrices on the diagonal. This process is
known as deflation. One convenient way to determine the points where such a block start and
end is to broadcast enough diagonal information during the bulge chase so that at the end of a
complete HQR step, all processors hold all information required to determine when breakpoints
occur. This requires sending six elements instead of three per transformation. While this cre-
ates a certain redundancy, the overhead is O(n), and hence in line with the cost of the total
computation.

3.5.3. Determining shifts. Related to the refinement mentioned above concerning defla-
tion, 1t is convenient to also broadcast all entries of the tridiagonal of the newly formed Hessenberg
matrix, since this allows all processors access to the data required to compute the next shifts.

3.5.4. Bundling transformations. As is argued in Section 3.3, the bulk of the communi-
cation overhead is due to communication startup cost. This cost can be amortized over several
computations and applications of Householder transformations by bundling several Householder
transformations before broadcasting.

We direct the reader’s attention to Figure 3.

This picture represents the data in the block that currently holds the bulge. This block is
assumed to be completely assigned to one processor. In chasing the bulge a few positions, to
where it moves from the position indicated by “B”s to the position indicated by “b”s, a number of
Householder transformations are computed. To do so, only the computation associated with the



Fia. 3. Bundling Householder transformations and order of updates

region marked by “1” needs to be performed. ! Thus these transformations can be bundled by
performing this minimal computation, followed by the broadcast, after which the other regions,
marked by “2”7 and “3” can be updated. The net effect is that the number of startups is reduced by
the number of transformations that are bundled. Naturally, bundling across processor boundaries
becomes complicated, and has only marginal benefit.

Repeating the analysis in Subsection 3.3 above, we get the following estimates: Computing r
transformations, updating only region “1” in Figure 3 requires approximately

r(C +10(r +4))y

time. Broadcasting the transformations requires time

o+ 3rf.

Next, updating regions “2”7 and “3” on the processor that computes the transformations requires
time

n

10r(— —r)y

p

to update matrix A, and
107“27
p

to update matrix (). This is repeated n/r times, and border information must be communicated
every h transformations, giving a (very rough) total estimated time of

n2

n
20—~ 4+ Cny +40ny + —a + 3nf + 2
p r

2
n n
—a+4—p3+0(1).
h hp
1 As is noted in Henry [17, 20], the minimal information needed to determine the upcoming transforms is
roughly eighty percent of the total flops required to actually complete the entire update in region “1” of Figure 3.
This “partial” step is referred to as a lookahead step and can also be used to determine better shifts (cf. Henry

[19].)



Clearly the above estimate is only a rough estimate: It suggests that increasing bundling factor
r arbitrarily will continue to improve total time. Notice that this estimate is only reasonable
when the pipe is undisturbed. However, everytime a boundary is encountered, the boundary will
be disturbed and therefore larger bundling factors will increase load imbalance. Nonetheless, our
model gives us insight.

4. Performance Results. In this section, we report the performance of a prototype work-
ing implementation of the described parallel implementation. Our implementation is a paral-
lelization of the LAPACK [1] routine DLAHQR, and is mathematically exact except that the sequen-
tial routine applies one final rotation per converged eigenpair so that the resulting “Schur” form
has some regularity. Hence there is no need to report in detail on the numerical accuracy of the
implementation: all numerical properties of the LAPACK apply to this parallel implementation.

We report performance obtained on an Intel Paragon™ XP/S Model 140 Supercomputer,
running SUNMOS version 51.4.8. Since finding all eigenvalues of a very large matrix takes a
considerable amount of time (measured in days) we report the performance of the algorithm
during the first five iterations. For problems of size 2750 or less, and for 64 processors or less,
we saw five iterations was always within three percent of predicting overall performance. In
addition, it is hard to measure speedup with respect to a single processor, due to insufficient
memory to hold a large matrix. As a result, we measured the performance of the best known
sequential QR algorithm, and report the parallel performance with respect to that: The single
node performance of the fastest Q R algorithm (not necessarily a standard double shift algorithm
from LAPACK) peaks at 10 Mflops for the five iterations. We report scaled speedup as being the
speedup obtained with respect to the calculated time required to run a given problem on a single
node performing at 10 Mflops. In this case, actual flops within the algorithm were calculated
and used for results, and not heuristics.

Many parameters are used to describe the parallel implementation, including the number of
nodes used, p, the matrix size, n, the blocking factor, h, and the bundling factor, r. All the runs
in Table 1 were for problems of size approximately 10 to 14 Mbytes, all with blocking factors h
given by n/p, with bundling factors constant at r = 2. Qur models predict that varying s and r
impacts communication overhead incurred. However, in practice the major source of inefficiency
appears to come from the fact that row and column updates do not have the same memory access
patterns, and therefore execute at different rates. Our experiments indicate row transforms are
13 percent faster than column transforms. At each step there is a roughly even amount of work
for all the nodes, but there is not the same amount of row or column work. This means that at
each step there is a delay for a few of the nodes to complete the ring broadcast. Hence although
in our model predicts the load balance to be quite good, the different rates of execution make
it much less well balanced. This shows up in the timings given in Table 1. Notice that at best,
about 65 percent efficiency is attained.

5. Conclusion. The research described in this paper was meant as a response to claims
that no parallelism exists in the QR algorithm. The theoretical results in this paper show there
are approaches to implementing the QR algorithm that allow parallelism to be extracted in a
natural way. The actual implementation of this method on a high performance parallel computer



P n Scaled
Speedup | Efficiency

4 || 2000 2.5 .63

8 || 2800 5.2 .65

16 || 4000 10.0 .63

32 || 4800 17.1 53

48 || 6000 23.0 A48

64 || 8000 30.1 A7

96 || 9600 37.4 .39
TABLE 1

Parallel HQR

shows that in practice, parallelism can be extracted as well.

We caution the reader against misinterpreting the results in this paper as largely supporting
the notion that new methods like those developed by Bai and Demmel [4] and Dongarra and
Sidani [9] must be pursued if nonsymmetric eigenvalue problems are to be solved on massively
parallel computers. Let us address some of the arguments that can be made to support such an
interpretation and how these arguments are somewhat unsatisfactory.

No parallelism exists in the nonsymmetric QR algorithm.
We believe the major results in this paper are a counter example to this state-
ment, both in theory and practice.

The performance of even the sequential algorithm leaves something to be desired.

One argument for matrix-matrix multiplication based methods is that matrix
multiplication can achieve much higher performance rates than a kernel that ap-
plies a Householder transformation. This more than offsets the added floating
point operations required for such novel solutions. This argument is true only
because the matrix-matrix multiplication is recognized as an important kernel
that warrants highly optimized implementation. It is the data reuse available
in the matrix-matrix multiplication that allows near-peak performance to be
achieved on a large number of platforms. However, a careful analysis of reuse
of data when multiple Householder transformations are applied, which could be
exploited with bundling, shows that the performance of the sequential QR algo-
rithm could be greatly improved if such a kernel were assembly coded. Clearly
a user who can afford a massively parallel computer would be able to afford to
assembly code such a kernel.
One could argue that assembly coding this kernel would only improve the 40
percent of total time spent in useful computation and hence would actually
decrease efficiency. However, since we argue that the bulk of overhead is due to
load imbalance, the total time should benefit, not just the time spent in useful
computation.



Parallel QR algorithms cannot be scalable.

One could draw this conclusion from Section 3.4. However, notice that the anal-
ysis holds for the algorithm when only a single double-shift is used during each
iteration. If a method is parallelized that uses s shifts, the total computation per
iteration is increased to O(sn?), while the dependence during the bulge chase
only increases to O(n+s) if multiple bulges are chased in a pipelined fashion. We
conclude that the limit on speedup is now given by O(sn?)/O(n + s) ~ O(sn).
O(sn) processors can be usefully employed, leading to memory requirements

2
Memory Requirements = Kn? >= O(i_?)
As long as p/s* = O(1), i.e. s = O(/p), scalability can be achieved while
meeting the fixed memory per processor criteria.
Scalable implementations of the QR algorithm may be achievable for
parallel implementations that use s shifts simultaneously, provided the
number of shifts grows with the square-root of the number of proces-
sors.
We must note that our data decomposition inherently requires n to grow with p
and therefore it will not provide for the required parallel implementation. There-

fore, generalizations to two dimensional data decompositions will be necessary.

Notice that some of the above comments indicate that many of the observations made from
the earlier sections were merely due to the fact that we restricted ourselves in this paper to
discussing the parallel implementation of widely used () R algorithms.

We conclude by saying that the reason parallel QR algorithm implementations may not be
competitive is because insufficient resources have been allocated to study their implementation.
Those resources are currently being used to instead explore novel algorithms. If someone has
the required resources, our research points clearly to what properties a parallel implementation
must have to be successful.
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