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6 Al gorithms and Open Probl ems

In [8 ] a perturbationtheoremfor singular vectors of bidiagonal matrices is proven, which

shows that the appropriate conditionnumber for the i-thsingular vector is the reciprocal

of the relative di�erence betweenthe i-thsingular value andnext closest one. It wouldbe

interestingtoextendthis tothe biacyclic case.

Given the perturbation theory, it would be nice to compute the singular vectors as

accuratelyas theydeserve. Anatural candidate is inverse iteration, but eveninthe simple

case of symmetric tridiagonal matrices, open problems remain. In particular there is no

absolute guaranteethat the computedeigenvectorsareorthogonal, althoughinpractice the

algorithmcanbemade quite robust [11 ].

In the \extreme" cases of tridiagonal and arrowmatrices, we knowhowto compute

the inertia inO(log n) time, using the so-calledparallel-pre�x algorithminthe tridiagonal

case [17 , 19 ] , andmore simply in the arrowcase. The stability in the tridiagonal case

is unknown, but in practice it appears to be stable. We can extend this to the general

symmetric acyclic case in twoways. First, the tree describing the expressionwhose �nal

value is d i has atmostnleaves. From[6 ] weknowanysuchexpressiontreecanbeevaluated

inat most 4log 2 nparallel steps, althoughstabilitymaybe lost. Another approach, which

includes parallel pre�x and the algorithmin [15 ] as special cases, is based on [14 ]. The

idea is tosimplyevaluate the tree greedily, summingk leaves of asingle node inO(log 2 k)

steps whenever possible, andcollapsing a chainof k nodes intoa single node via parallel

pre�xinO(log 2 k) steps whenever possible. If we couldunderstandthe numerical stability

of parallel pre�x, we couldprobablyanalyze this more general schemeas well.

Divide andconquer [7 , 10 , 18 , 12 ] has beenwidelyusedfor the tridiagonal eigenproblem

andbidiagonal singular value decomposition. This canbe straightforwardly extended to

the acyclic case. Interms of the tree, just remove the root bya\ranktwotearing", solve

the independent childsubtrees recursivelyandinparallel, andmerge the results bysolving

the secular equation[21 ]. Anynode canbe the root, andtobe e�cient it is important that

no subtree be large. In the tridiagonal case, the rank-twotearing corresponds to zeroing

out twoadjacent o�diagonal entries; note this is slightlydi�erent fromthe algorithminthe

literature whichuses rank-one tearing, althoughthe secular equationtobe solvedis very

similar. Also inthe tridiagonal case, there are always twosubtrees of nearlyequal size. In

ageneral tree one canonlymake sure that nosubtree has more thanhalf the nodes of the

original tree (this is easilydone inO(n) time viadepth�rst search).

QRdoes not appear toextendbeyondthe tridiagonal case. The case of arrowmatrices

was analyzedin[2 ], where it was shownthat noQRalgorithmcouldexist. Asimpler proof

arises fromnoting that twosteps of LL T is equivalent to one step of QRin the positive

de�nite case, andsothe questionis whether the sparsitypatternof T 0 = LL T is the same

as that of T 1 =L TL; this is easilyseentoinclude onlytridiagonal T 0 amongall symmetric

acyclic matrices.

Finally, we conjecture that the set of symmetric acyclic matrices is the complete set of

symmetric matrices whose eigenvalues canbe computedwithtinycomponentwise relative

backwarderror independent of the values of thematrixentries.
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Theproof depends stronglyonthere not beingany�ll-inandoneacho�diagonal entry

being computable byasingle division. Since these properties hold if andonly if the graph

G0(T) is symmetricacyclic, westronglysuspect that this is theonlyclass of matrices whose

eigenvalues canalways be computedwithtinycomponentwise relative backwarderror.

We nowapply Theorem2 to compute singular values of biacyclic matrices to high

relative accuracy. So suppose B is a matrixwhose graphG(B) is acyclic. Consider the

symmetricmatrix

A =

"
0 B

BT 0

#

whose positive eigenvalues are the singular values of B. It is alsoimmediate that the graph

G0(A) =G(B). ThereforeBis biacyclic if andonly if Ais symmetric acyclic, sowe can

applythe abovealgorithmtocomputeB's singular values tohighrelative accuracy.

One other algorithmis worthmentioning. If Ais symmetric positive de�nite andsym-

metric acyclic, then its Cholesky factor Lis biacyclic (providedwe do the elimination in

the same postorder as the algorithmCnt ), has the \lower half"of the sparsitypatternof

A. It mayoccasionally be more accurate to compute A's eigenvalues by�rst computing

L, computing its singular values bybisection, andthensquaringthe singular values toget

A's eigenvalues [4 ]. This is the case, for example, for the tridiagonal matrixwith2's onthe

diagonal and1's onthe o�-diagonal.

5 Exampl es

Wegive various examples of acyclic sparsitypatterns, beginningwithacyclicG(S). Given

any acyclic sparsity pattern, others can be generated either by permuting rows and/or

columns, or byaddingmore zeros. Since all square biacyclic matrices havemonomial (or

zero) determinants, this means we canpermute themtobe upper triangular. Inaddition

tobidiagonal matrices, some other examples are

2
666664

x x

x x

x x

x x

x

3
777775 and

2
66666664

x x

x x

x x

x x

x x

x

3
77777775

:

To get symmetric acyclic matrices A, one can always take an acyclic B and set

A=

"
0 B

BT 0

#
� �I . Some other examples are

2
666664

x x

x x

x x

x x

x x x x x

3
777775 and

2
66666664

x x

x x

x x

x x x

x x x

x x x x

3
77777775

:
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Wesee that eachentryof T is usedjust once as follows. T i i is onlyusedwhenvisiting

node i, andT i j is usedonlyonce, whenvisiting i if j is achildof i or whenvisiting j if i is

achildof j inthe postorder traversal tree.

Nowdenote the d computedwhenvisiting node i byd i. The oatingpoint operations

performedwhile visiting node i are then

di =fl

0
BBBBBB@
Ti i� x�

all children

j of i

T 2
i j

dj

1
CCCCCCA

(4:1)

To analyze this formula, we will let subscripted "'s denote independent quantities

bounded in absolute value by " M . We will also make standard approximations like

(1+ " 1)�1(1+" 2)�1 =1+2" 3.

Sincewedonot knowthenumber of terms or theorder of the suminequation(4.1), we

will maketheworstcaseassumptionthat therearev � n�1termswherev is themaximum

degree of anynode inthe graphG 0(S). This leads to

di =(1+(v+1)" ia)T ii � (1+(v+1)" ib)x�

all children

j of i

(1+(v+3)" ij)
T
2
ij

dj
(4:2)

or

di

1+(v+1)" ia
=T ii � x+(2v+2)" icx�

all children

j of i

((1+(v+2)" ij0)T ij)
2

dj
(4:3)

Let " ja be the roundo�error correspondingto" ia committedwhencomputingd j . Then

di

1+(v+1)" ia
=T ii � x+(2v+2)" icx�

all children

j of i

((1+(1:5v+2:5)" ij00)T ij)
2

dj=(1+(v+1)" ja)
(4:4)

or, �nally,

d
0
i =T ii � x+(2v+2)" icx�

all children

j of i

((1+(1:5v+2:5)" ij00)T ij)
2

d0j

(4:5)

whered 0
i =d i=(1+" ia). Equation(4.5) tells us that thed 0

i are the exact diagonal entries of

D inP (T+�T� xI)P T =LDL T . Since theyobviouslyhavethe same signs as the d i, this

proves Theorem2.
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Figure 2: Computingcount (T; x)

call Cnt (i; x; d; s) where i is anynode 1� i � n

returncount (T; x)=s

procedure Cnt (i; x; d; s)

/* i andxare input parameters, dands are output parameters */

d=T ii � x

s=0

for all childrenj of i do

call Cnt (j; x; d 0; s0)

d=d� T 2
ij=d

0

s=s+s 0

endfor

if d< 0, thens=s+1

returnd ands

endprocedure

j�T iij � (2v+2)" M j xj .

Here v� n� 1 is the maximumdegree of any node inthe graph of T. Inother words, the

computedcount (T; x) is the exact value of count (T+�T; x) where �T is boundedas above.

This is essentiallyidentical tothe standarderror analysis of Sturmsequence evaluation

for symmetric tridiagonal matrices [9 , Sec. 6] [13 ] (this is stronger thanthe result in[20 , p.

303]).

Our algorithmsimply performs symmetric Gaussian elimination on T� xI: P(T�

xI)P T =LDL T where P is a permutationmatrix, L is unit lower triangular andDis

diagonal. ThenbySylvester's Inertia Theorem[16 ], count (T; x) is simply the number of

negativediagonal entries ofD. Theorder of eliminationis thesameas apostorder traversal

of the nodes of the acyclic graph. Since leaves, whichhave degree 1, are eliminated �rst,

thereisno�ll-induringtheelimination, andall o�-diagonal entriesL ij ofLcanbecomputed

bysimplydividingL ij =T ij=D jj .

WeassumethegraphG 0(S) is connected, since otherwisethematrixcanbereorderedto

beblockdiagonal (onediagonal blockper connectedcomponentofG 0(S)), andtheinertiaof

eachdiagonal blockcanbe computedseparately. The algorithmCnt (i; x; d; s) inFigure 2

assumes the matrix is stored in graph form. It does a postorder traversal of the acyclic

graphG 0(S), andmaybe called starting at anynode 1� i � n. Inadditionto i, x is an

input parameter. The variables d ands are output parameters; onreturns is the desired

value of count (T; x).

Toprove Theorem2, we will exploit the symmetric acyclicity of T to showthat each

computed quantity andoriginal entry of T is used (directly) just once during the entire

computation, andthenuse this to\push"the roundingerror backtothe original data.
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terminthe determinant corresponds toachoice of s entries of M locatedindisjoint rows

andcolumns, andeachsuchchoice of s entries selects aperfect matchinG(M).

Nowsuppose a square submatrixMof Ahas at least two terms in its determinant.

These correspondtotwodi�erent perfect matchings. Take the symmetric di�erence of the

edges inthesematchings. This symmetricdi�erenceformsacycle, whichwegetbyfollowing

edges of the twomatchings inalternation. ThusG(M) contains acycle, andsomustG(A)

since it includes G(M).

NowsupposeG(A) containsacycle. Assumewithout loss of generalitythat it is asimple

cycle, i.e. it is connected andvisits eachnode once. Let Mbe the corresponding square

submatrix. This cycle determines twoperfect matchings inG(M), consisting of alternate

edges of the cycle. This means det (M) has at least twoterms. tu

ToprovethatProperty2implies Property1, wewill showthecontrapositive. Soassume

G(A) contains a cycle, andletMbe ans bys submatrixwhose determinant has at least

2 terms. This means we may choose all the entries of Mto be nonzero but such that

Mis exactly singular. Thus its singular values include at least one whichis exactly zero.

ScaleMso that its entryof smallest absolute value is 1, andlet � =kMk 2 � 1. Nowlet

A(M; �) denote thematrixwithsparsityS, submatrixM, andother nonzeroentries equal

to�. ThenA(M; 0) will haveat least min (m; n)� s+1zerosingular values, min (m; n)� s

fromthe zerorows andcolumns outsideM, and1fromthe singularityof M. Bystandard

perturbationtheoryA(M; �) will have at least min (m; n)� s+1singular values no larger

thanmn�. Nowchangeasmallest entryof Mfrom1to1+xtogetM x; thus x is alsothe

relative change inthis entry. Thenj det (Mx)j � x, andso� min(Mx)� j xj =(�+x) s�1. This

means � s(A(M x; �))� j xj =(�+x) s+1 �mn�, whereas � s(A(M; �))� mn�. Thus

�s(A(M x; �))

�s(A(M; �))
�

x
(�+x) s+1

�mn�

mn�
=

x

mn�(�+x) s+1
� 1 :

If Property2held, thenthis last quantitywouldbe bounded inabsolute value by1+j xj

nomatter howsmall �were, whichis impossible. This completes the proof that Property2

implies Property1, andsoalsocompletes the proof of Theorem1.

4 A b i s e c t i o n a l g o r i t h m f o r c o mp ut i n g e i g e n va

t i n b a c k wa r d e r r o r

Let " M denote the machine precision. We will assume the usual model of oating point

error, fl(a
 b) =(a
 b)(1+�) with j �j � " M , andassume neither underownor overow

occur. (Of course, a practical algorithmwould need to account for overow. This can

be done analogouslytothewayoverowis accountedfor instandardtridiagonal bisection

[13 ].)

In this section we will showhowto compute the eigenvalues of a symmetric acyclic

matrixT withtinycomponentwise relative backwarderror. Our mainresult is

Theorem 2 ThealgorithminFigure2 computes count (T; x), the number of eigenvalues of

T less thanx, with a backwarderror �T with the following properties:

j �Tijj � (1:5v+2:5)" M j Tijj wheni =j.
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It is knownthat the singular values of Aare the sameas the positive eigenvalues of the

pencil "
0 A

AT 0

#
� �I

whichare inturnthe same as the positive eigenvalues of the equivalent symmetric de�nite

pencil"
0

0

# "
0 A

AT 0

#
� �� I

"
0

0

#
=

"
0
T 0

#
� ��

"
2 0

0 2

#
� � �D

2

Nowsuppose we perturbAby changing nonzero entryA ij to A ij , resulting in the

perturbedmatrixA 0. Apply the algorithminLemma1tocompute anew 0 and 0. We

assumewithout loss of generalitythatA ij appears innumerators of i (otherwise consider

AT ). By Lemma 1 either 0
k = k or 0

k = k, and either 0
k = k or 0

k = �1
k.

Note we maymultiply byanynonzero  anddivide by without changing the fact

that A = , sowe divide by j j 1=2 andmultiply by j j 1=2 , We obtain 0 and 0

matrices eachof whose entries di�ers fromthe corresponding entryof and byfactors

of j j�1=2 . Inparticular, this implies

j j�1 �
xT 2x

xT 02x
� j j and j j�1 �

xT 2x

xT 02x
� j j

for anynonzero vector x. Let D 0 =diag ( 0; 0) as we above de�nedD=diag ( ; ).

Then

j j�1 �
y
T
D

2
y

yTD02y
� j j

for anynonzerovector y. Wemaynowapply[4 , Lemma2] toconclude that

�k(A)=min
S
k

max
x2 S

k

k xk2 =1

xT x

xTD2x

and

�k(A
0)=min

S
k

max
x2 S

k

k xk2 =1

x
T

x

xTD02x
;

where the minima are over all k+max (n; m) dimensional subspaces S k, candi�er byno

more thanafactor of . This proves that Property1implies Property2.

emma 2 et Ahave sparsity patternS, and let all its nonzero entries be independent

indeterminates. ThenG(S) is acyclic if and only if all minors of Aare either 0 or mono-

mials.

roof. Webeginbynotingthat toeachterminthe determinant of ans bys square

matrixMcorresponds a unique perfect matching in graphG(M). This is because each
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Figure 1: Computing and

if is rownode r i then

if ri is the root then

i =1

else

suppose c j is the parent of

i =1=(A ij j)

end

else ( must be columnnode c j ) then

if cj is the root then

j =1

else

suppose r i is the parent of

j =1=(A ij i)

end

endif

roof. Since G(S) is acyclic, it is a forest of trees. We may consider each tree

independently. We traverse eachtree via depth �rst search, and execute the programin

Figure 1when�rst visitingnode .

The depth�rst searchvisits eachnode once. Since the graph is bipartite, rownodes

andcolumnnodes alternate, so the parent of arownode is acolumnnode andvice versa.

Since eachnode is visited once, the above programis executedonce for eachedge in the

tree, i.e. once for eachnonzero entryA ij , corresponding to the edge connecting nodes r i

andc j . Thus each i and j is set exactlyonce. Since the i; j entryof A is iAij j , we

see immediatelyfromtheway i and j are de�nedthat this quantityis 1 if A ij =0(and

0otherwise). Since eachA ij is usedonce during the graphtraversal, each i and j must

be be a quotient of monomials. If A ij is �rst used in i, then the formulas in the above

programandthe fact the rowandcolumnnodes alternate meanthatA ij will onlyappear

indenominators of entries of andnumerators of entries of . Alternatively, if A ij is �rst

used in j , thenA ij will only appear in denominators of entries of andnumerators of

entries of . tu

The rest of the proof that Property1 implies Property2mimics that of [4 , Thm. 1].

Let be thematrixof ones andzeroswithsparsityS, sothat A = . Write =S j j

where j j is thematrixof absolute values of , andS is adiagonal matrixwithj S j =I.

Similarlywrite =S C j j . Then

A= �1 �1 =S �1 j j�1 j j�1 S�1C =S �1 j Aj S�1C

sothatAis relatedto j Aj bypre- andpostmultiplicationbydiagonal orthogonal matrices.

Inparticular, Aandj Aj havethe same singular values. Wewill henceforthassumewithout

loss of generalitythatAis nonnegative andso and are alsononnegative.

4



for the singular values of biacyclic matrices, andsection3proves it. Section4shows how

to compute eigenvalues of symmetric acyclic matrices with tiny componentwise relative

backwarderror, and applies this to compute the singular values of biacyclic matrices to

high relative accuracy. Section 5 give some examples of matrices with acyclic sparsity

patterns. Section6discusses algorithms andopenproblems.

t a t e me n t o f Pe r t u r b a t i o n h e o r e m f o r i n g u l

In this sectionwe de�ne twoproperties of sparsitypatterns of matrices, one about graph

theory andone about perturbation theory. Our mainresult, whichwe prove in the next

section, is that these properties are equivalent.

LetAbe anmbynmatrixwitha�xedsparsitypatternS.

ro ert . G(S) is acyclic.

ro ert 2 . GivensparsitypatternS, let Abeanymatrix withthis sparsity, andA ij any

nonzeroentry. et beanynonzeroconstant. et A 0 =Aexcept forA 0
ij = A ij . Thenfor

all singular values � k(A 0)

min (j j ; j�1 j )�k(A)� � k(A
0)� max (j j ; j�1 j )�k(A)

If entries of Aare simultaneously perturbed by possibly di�erent factors , all of

which satisfy j � 1j � � 1, Property 2 can be applied times to showno singular

value can change by a factor outside the interval from(1� j �j ) p =1� j �j � O(� 2) to

(1+j �j )p =1+ j �j +O(� 2). Since the maximumnumber of nonzeros is m+n� 1, the

relative perturbationinanysingular value is boundedby(m+n� 1)j �j +O(� 2).

Our mainresult is

Theorem Properties 1 and 2 of a sparsity patternS are e uivalent.

One couldask if aweaker perturbationpropertythanProperty2might hold for even

more sparsitypatterns thanbiacyclic ones. Inparticular, we couldconsider restricting the

conditionsothat must be close to1 for some relative perturbationboundtohold. One

canstill showthatevenaskingfor this restrictedperturbationpropertylimits us tobiacyclic

matrices.

Pr o o f o f Pe r t u r b a t i o n h e o r e m f o r i n g u l a r

First wewill prove that Property1implies Property2, andthenthe converse.

emma et Ahave sparsity patternS, and suppose G(S) is acyclic. Then there are

diagonal matrices and such that each entry of A is either 0 or 1. Each diagonal

entry i of or j of is a uotient of monomials inthe entries of A. Ineachmonomial

each distinct factor A ij which appears has unit exponent. Each A ij can appear only in

numerators of entries of anddenominators of entries of , or viceversa, indenominators

of entries of and numerators of entries of .
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is simple: a sparsitypatternhas this propertyif andonly if its associatedbipartite graph

is acyclic.

We de�ne this undirected graphas follows. Let S be a sparsity pattern for mbyn

matrices; inother words, S is a list of the entries permittedto be nonzero. Let G(S) be

a bipartite graphwith one groupof nodes r 1; . . .; rm representing themrows andone

group c 1; . . .; cn representing the ncolumns. There is anedge betweenr i andc j if and

only if A ij is permitted to be nonzero. We will sometimes write G(A) instead of G(S),

where S is the sparsitypatternof A. We will call amatrixAand its sparsitypatternS

biacyclic if the graphG(S) is acyclic.

Wealsopresent another equivalent perturbationpropertyof biacyclic matrices whichis

quite strong: multiplying anysingle matrix entrybyanyfactor =0 cannot increase or

decrease anysingular value bymore thanafactor of .

Sparsitypatterns with this property have at most n+m� 1 nonzero entries. There

are agreat manysuchsparsitypatterns. Let us consider onlymbyn sparsitypatterns S

whichcannot be permutedintoblockdiagonal form(this meansG(S) is connected). Then

the number of di�erent suchsparsitypatterns is equal tothe number of spanning trees on

connectedbipartite graphs withm+nvertices; this number ism n�1 nm�1 [5, p. 38] [3 ]. If

we onlywishtocount sparsitypatterns whichcannot be made identical byreordering the

rows andcolumns, averysimple lower boundonthe number of suchequivalence classes is

mn�1 nm�1 =(n!m!). In the square case n=m, Stirling's formula lets us approximate this

lower boundbye 2n=(2�n 3), whichgrows quickly.

Since we knowthe singular values of these biacyclic matrices are determined to high

relative accuracy by the data, it makes sense to try to compute themthis accurately.

We present a bisection algorithmwhichdoes this. The same algorithmcan compute the

eigenvalues of arbitrary \symmetric acyclic" matrices with tiny componentwise relative

error. We de�ne symmetric acyclicity of a symmetric matrixas follows. Givena sparsity

patternSof annbynsymmetricmatrix, wede�ne anundirectedgraphG 0(S) bytakingn

nodes, andconnectingnode i withnode j =i if andonlyif the (i; j) entryis nonzero. The

matrixAand its symmetric sparsitypatternS are called symmetric acyclic if the graph

G0(S) is acyclic. (Wewill sometimes writeG 0(A) insteadof G 0(S) where S is the sparsity

patternof A.) The algorithmevaluates the inertia of suchamatrix bydoing symmetric

Gaussianelimination, withthe order of eliminationdeterminedbyapostorder traversal of

G0(S).

Insummary, thewell-knownattractiveproperties of bidiagonal matricesBandsymmet-

ric tridiagonal matrices T, that the singular values of Bcanbe computedtohighrelative

accuracy and the eigenvalues of T computedwith tiny componentwise relative backward

error, havebeenextendedtobiacyclic andsymmetric acyclic matrices. Inthe case of com-

puting singular values, we have shownthat this extension is complete: no other sparsity

patterns have this property. We conjecture that the set of symmetric acyclic matrices is

also the complete set of symmetricmatrices whose eigenvalues canbe computedwithtiny

componentwise relative backwarderror independent of the values of thematrixentries.

Other algorithms for the special case of \arrow"matrices are discussedin[1 , 2, 15 , 22 ].

Thisworkgeneralizes theadaptationsof bisectiontoarrowmatrices, andis almost certainly

more stable thanthe QRbasedschemes.

Therest of this paper is organizedas follows. Section2states the perturbationtheorem
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n t r o d u c t i o n

In [9 ] it was shownthat small relative perturbations in the entries of a bidiagonal matrix

Bonly cause small relative perturbations in its singular values. This is true independent

of the values of the nonzero entries of B. This property justi�es trying to compute the

singular values of Btohighrelative accuracy, andis essential to the error analyses of the

correspondingalgorithms [9 ].

Since this attractivepropertyof bidiagonal matrices is independent of the values of the

nonzero entries, it is really just a functionof the sparsitypatternof bidiagonal matrices.

In this paper we completely characterize those sparsity patterns with the property that

independent of the values of the nonzeroentries, small relative perturbations of thematrix

entries onlycause small relative perturbations of the singular values. The characterization
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