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9 Future Wor k

W have recently begun work on a newversion of LAPAK Wintend to pursue all the

goal s listed above, in particul ar
e Producing a version for distributed nenory parallel nachines,
o Adding nore routines satisfying newconponentw se rel ative stability bounds,

e Adding conditionestinators and error bounds for all quantities conputable by the

library,

e Producing routines designed to exploit exception handling features of IFFE arith-

netic, and
o Producing Fortran 90 and Cversions of the software.

W hope the insight we gainedinthis project will influence future devel opers of hard-
ware, conpilers and systens sof tware so that they provide tools to facilitate devel opnent

of high quality portable nunerical software.
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small constant size subnatrix of the whole matrix. Asecond exanpleis tolet M and N
growwith N = O(M), and P and I constant. This corresponds to adding nenory to
each processor, and letting the probl emsize growproportionally. Hre the data 1ayout
requires each nenory to hold a constant fraction of the entire natrix, perhaps a grow ng
subnatrix or grow ng nunber of colums. Athird exanple is tolet P, M and N grow
with M=0O(P) and N =0(P ?), and I constant. This corresponds to keeping a constant
nunber of col urms (or rows ) per nenory. Fnally, we can keep NV and M constant and 1 et

I and P =O([1 ) grow 'This corresponds to sol vi ng nore i ndependent probl emi nstances of
the sane size, and keeping the sane sized subnatrix on each processor. Thus, depending
on what kinds of scalability we wish to support, we nay have to support many data

l ayouts.

If ever there vere a case for sem-autonaticall y generated pol yal gorithns, this nay be
it. 'The danger in choosing to support only afewof the plethora of possibilities is that the
decisionnmay turn into a self-fulfilling prophecy rendering the other nenory nappi ngs of
little use.

It is still unclear which programmng nodel is best, and how nany of these diverse

data l ayouts need to be supported.

8 Suggestions for Architectures and Progranmmi ng

Languages

W have listed a nunber of suggestions for architectures and progranmng | anguages in

earlier sections; ve summarize t hemhere:
1. Ability to express parallelismin a highlevel language.

2. Aility to pertormfloating point operations reasonably efficiently in double the
largest input precision, evenif only sinul atedin software using that input precision

excl usively. Even better is a doubled precision fornat with w der exponent range.

3. Access to efftiently inpl enented exception handling facilities, particul arly infinity
arithnetic. Trap handlers are a poor substitute.

4. Carefully i npl enented conpl ex arithnetic and BLAS.

5. Astandard set of floating point enquiries suffeient]l ydetailedto describe the features
of the last itens, and unanbi guously. Perhaps Next Ater [3is the key. W are

currentl y worki ng on a standard for these enquiries.
6. BLAS for dealing with quasi-triangul ar natrices.

Note that a conpl ete inpl enentation of [FEE arithnetic woul d satisfy suggestions 2

and 3 above.
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bis a blocking paraneter. Various exanples are shown belowfor 0 < ¢ <15; each box
represents a data item and the nunber inside is the nunber of the nenoryin whichit

is stored:

Alinone (p=1, b =1) |11/t 1|1 ][t[1 |t |1[t|1[1 /1 1]1|1]

Bocked (p =4, b =4) |1 |11 ][1]2]2]2]2[3[3[3[3[4][4][4]4]

Gyelic (p =4, b =1) 1203401234/ 1]2/3]4]1 2][3][4]

Bockeyelic (p =4, b =2) 1[1[2[2]3[3|4/4|1[1]2]2]3]344]

[rregul ar ‘1‘4‘1‘3‘2‘4‘1‘1‘3‘2‘4‘4‘1‘3‘2‘3‘

Anul tidi nensional array nay have each dinension stored in a different one of the

layouts above, as shown in the follow ng exanpl es, label ed as above:

1212 | 1212 ) 1212 | 1212 S O A A A
3434 | 3434 | 3434 | 3434 212122121222
1212 | 1212 ) 1212 | 1212 3/3/3/3(3/3 3|3
3434 | 3434 | 3434 | 3434 414141441444
1212 | 1212 ) 1212 | 1212 S O A A A
3434 | 3434 | 3434 | 3434 212122121222
1212 | 1212 ) 1212 | 1212 3/3/3/3(3/3 3|3
3434 | 3434 | 3434 | 3434 414141441444

The first version of LAPAXXwas designed to handl e sinfe pblemirstanes, e. g. a
single systemof linear equations to sol ve. Chnassively parallel nachines one can expect
users to want to sol ve nany probl ens sinul taneously. Che way to do this is to use a
mul ti-di nensional array, where two of the dinensions are the natrix di nensions and the
others index independent probl ens.

Ihta layout is closely related to efftiency, because it is related to scalability. 1o be
nore precise, let E(N,P, M, I ) be the efftiency of the code as a function of problemsize
N =n? (n =natrix dinension), nunber of processors P, nernory size per processor M
and nunber of independent probleminstances [ . Scalability neans that as these four
paraneters grow, £ shoul dstay acceptablylarge, say at least 0.5 (i.e. at least half as fast
as the best possible code for that nachine). Wthfour paraneters, there are several ways
they coul d grow reflecting different uses of the library. For exanple, suppose P and N
growwith N =0(P), and M and I remain constant. This corresponds to adding nore
identical processors to the systemand letting the probl emsize growproportionally to the

total nenory. This can only be done with a data 1 ayout where each nenory contains a
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ware” nodel described above recognizes that code devel oped on one nachine is often
enbedded (and hi dden) in an application on another nachine, and then used on a third.
(bnsequently, it woul d be unreasonabl e to expect a user acquiring a code tonedifyall its
subparts to ensure they run correctly on her nachine. Since no standard | anguage nech-

ani smexists yet for naki ng envi ronnental enquiries about floating point properties, etc.,
all this nmust be done at run tine. This explains if not justifies the enornous intellectual
effort that has been spent on codes like SLAMH[ 27, 21].

bvever, there is a tradeoff between this kind of portability on the one hand and
effci ency, accuracy and robustness on the other. Mst nachi nes nowsuppl y [FEE ari t h-
netic. A nentioned above, there are nunerous places where significantly faster, nore
accurate and nore robust code coul d have been written had we been abl e to assune t hat
ITFEE arithnetic avd stamod ligh levd lanuue access to its exeption hading fee
tues vere available. Uhfortunately, no such standard high level 1anguage access exists
yet. There have been attenpts at such a standard [3] 28 but they fall far short of what
is needed and coul d even nake writing effeient portable code harder by nandating a
standard envi ronnent antagoni stic to what we need.

Adel eterious by-product of the present situationis the near absence of any payoff for
t he many nanuf acturers who have supplied careful and conpl ete IEEE arithnetic inple-
nentations, because little sof tware exists that takes advantage of its features. Thless such
software is written, nanufacturers will have little incentive to inplenent these features,
whi ch then nay even di sappear fromfuture versions of the standard.

Wintend to produce TEFE expl oi ting versions of those LAPAKcodes which coul d
benefit fromspecial features of TEEE arithnetic. This includes condition estinators,
ei genvector al gorithns, and others. Not onlywill this code performmuch better than the
current portable code, but it will provide incentives to nanufacturers to inpl enent I FEE

arithnetic with full access toits exception-handling features.

7 NewGoals and Met hods: Scope

In conventional libraries, as well as in the first version of LAPAK dense rectangul ar
nmatrices are stored in essentially one standard data structure: Astatenent like “DI-
MDNSTONA( 20, 10)” used to indicate that Ais arectangul ar array stored in consecuti ve
nenory locations (or contains a natrix stored in groups of evenly spaced consecuti ve
nenory l ocations). Thisis nolonger areasonabl e nodel ondistributed nenory nachines,
because there is no longer any such standard nenory nappi ng. There are a nunber of
conpeting parallel programmng nodels (SPMDvs. MPM) SIMDvs. MM) explicit

nessage passing vs. inplicit nessage passing, send/receive vs. put/get, etc.) and alarge
nunber of ways in which data can be distributed anong nenories [22, 26 . For exanpl e,

a one- di nensional array could be laid out in at least four different regul ar ways, with

datum: stored innenory |¢ /b |nodp + 1, where p is the nunber of nenories used, and
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nanuf acturer.

The routine for determning floating point properties at run tine, SLAMH has
several other diffeult tasks. It must al so determne the overflowand underflowt hreshol ds
OVFL and UNFL, in particul ar wi thout overflowi ng. OVEind UNFL are usedfor scaling to
avoi d overflowor harniul underflowduring subsequent cal cul ations. Unfortunately, there
can be di flerent effecti ve over /underflowt hreshol ds dependi ng on t he operation and on t he
sof tware. tor exanple, the (tay divides a/ b essentially using reciprocal approxination
andmul tiplicationa *(1/ b ). If @ andb are bothtiny, then1/ b nayoverfloweventhough the

true quotient @ / b is quite noderateinvalue. The (fay and NECnachi nes bot h i npl enent

acthd _I_ be—ad
24d 2 (2 242"
Thus evenit the true quotient is nodest insize, the conputation canoverflowif either ¢ or

d exceeds OVFL'Y/? in nagni tude or both are sufftientlyless than UNFI2 in nagni t ude.

conplex division in the sinplest possible way, w thout branche;“s_l";—if =

This effectively cuts the exponent range in haltf. Simlarly, there is a Level 1 BLAS
routine called SNRM [29] which conputes the Fuclidean length of a vector:3T, #%)'/2.

The Gray uses this straightforward inpl enentation which can again fail unnecessarily if
any |z;| > OVFLY? or all |4 < UNFL'2. A aresult of all these and other details, and the
fact that newhardware and conpilers are constantly appearing, SLAMHis currently
2000 11ines long and growi ng.

AT told, a surprisingly large fraction of the progranmng effort and lines of code
vere devoted to clever algorithns using only the input precision to conpute various
quantities while avoi ding overflow, harntul underflowand unacceptabl e roundoff. In all
these cases, there were obvious al gorithns based on hi gher precision ad widsr exporent
rage. Sinul ating doubl ed precisionusing single canonly supply higher precision, not the
wi der exponent range. This neans the extra programmng effort to avoid over /underflow
by scaling woul dstill renain. Byfar the best sol ution woul d be the availabilityof afornat
wi th hi gher precision and wi der exponent range for the relatively fewcritical operations.
(he approach to consider infuture librariesis identifyingafewhighprecisionand/or wide
exponent range primtives fromwhich the ones we need can be built. Iike the BLAS,
one could supply (at least partly) portable versions which mght depend on precision
doubl i ng techni ques and scaling, but expect the nanufacturers to supply nore effeient
ones for each nachine.

6 NewGoals and Methods: Portability

A stated above, we can ask for portabilityof correctness (or of accuracy and robustness),
or of perfornance. W have nearly abandoned portability of perfornance because of
the need for nachine dependent BLAS and bl ock sizes. Iwever, we do supply strictly
portabl e Fortran BLAS and defaul t bl ock sizes whi ch nay provi de adequate perfornance

in sone cases, but probably not peak perfornance on many architectures.

W have tried strictly to maintain portability of correctness. The “mail order soft-



ansver, and only occasionally resort to the slower alternative. For exanple, consider
findi ng the ei genval ues of ann by n symetric tridiagonal matrix 7 with di agonal entries
ai, . ..q and offdi agonal entries{ . ..hy. Astandard bisection-based nethod uses

the fact that the nunber of ei genval ues of T' less than o is the nunber of negati vheke

di =(a; —0c) —=b_1/d-1 (we take by =0 and d o =1) [24]. Ivaluating this recurrence
straightforwardly requires O(n ) tine and is stable. [sing a parallel-prefix al gorithmthe
d; can be evaluated in O(log) tine but no stability proof exists. So we need either

a stability proof for the O(hdgal gorithmor a fast way to check the accuracy of the
conputed eigenval ues at the end of the conputation. Simlar issues arise with other
tree-based al gorithns.

Fifth, thereis at least one inportant routine whi ch reguires doubl e the i nput precision
insoneinternedi ate cal cul ations to conpute the answer correctly|[.34lhis is the sol ution
of the so-called secul ar equation in the divide and conquer al gorithmfor the symetric
tridiagonal eigenproblem This is sonewhat surprising, since all other al gorithns for this
problemrequire only the input precision in all internediate calculations. In fact, we
must be careful to say what it neans to require double precision, since in principal all
conput ations coul d be done sinul ating arbitrary precisionusingintegers: Wneaninfact
that there is an internedi ate quantityin the al gorithmwhich nust be conputed to hi gh
rel ative accuracy despite catastrophi ¢ cancellationinorder to guarantee stability. (There
are other exanples where we were able to find an adequate single precision al gorithm
only after great effort, whereas an al gorithmusing alittle double precisionarithnetic was
obvious. So even though double precisionis not necessary in these cases, 1t woul d have
nade sof t ware design much easier.)

This requirenent for doubl e the input precisioninpacts library designas follows. Qur
original design goal was nfto use mxed precision arithnetic. This traditional goal arose
both because standard Fortran conpilers were not required to supply a double precision
conpl ex data type, and because of the desire to use the sane al gorit hmwhether the 1 nput
precision were single precision or double precision. ('The use of nixed precision woul d
have required quadruple precision for double precision input, and quadruple is rarely
available.) An alternative is to sinulate double precision using single (and quadruple
using double). Providedthe underlying arithneticis accurate enough, there are a nunber
of standard techni ques for simul ating “doubl ed precision” arithnetic using a fewsingle
precision operations [,130 34 33. However, this neans that we must either assune
the arithnetic is suffeiently accurate, not true on all nachines, or decide at run tine
whether the arithneticis sufftiently accurate and then either do the simul ated precision
doubling or return an error flag. Mking this decision at run-tine is qute challenging,
because there is no sinple characterization of whicharithnetics are suffeiently accurate.
The desired simul ation works, for exanple, with [FFE arithnetic, IBM370 arithnetic,
or VA arithnetic, but requires different correctness proofs in each case. It does not
vwork with (Gtay arithnetic. Thus it al nest appears that we nust be able to determne

the floating point architecture at run-tine in suffcient detail to determmne the nachine



intendto do soinfuture versions. This raises the questionof portability, whichwe return

to in Section 6.

5 New Goals and Methods: Accuracy and Robust-

ness

During work on LAPACKwe have found better, or at least diflerent, ways to understand

the traditional goals described in Section 2. 'The first inprovenent in accuracy and
stability invol ved repl acing the norns traditionally used for backward stability anal ysis.
For exanple, consider solving Ar =b. A we said before, traditionally we have only
guaranteed that the conputed & satisfied (A +F)y'=b +f where F and f were small in
normconpared to A and b , respectively. If A were sparse, there was no guarantee that £
woul d be sparse. Simlarly, if A had both verylarge and very snall entries, sone entries
of F could be verylarge conpared to the corresponding entries of A. Inother words, the
usual nethods did not respect the sparsity or scaling of the original problem

Instead, LAPAXK uses a nethod which (except for certain rare cases) guarantees
coprertuise 1e ative bacuwd stebility this neans that | B gl =0(e)| 4| and | £| =
O(e )kh. This respects both sparsity and scaling, and can result in a nuch nore accu-
ratex. W have done this for various problens in LAPACK including the bidi agonal
singul ar val ue deconposi tion and symmetric tridi agonal eigenproblem Fiture releases of
LAPAKwi 11 extend this to other routines as well [ 14

Second, we intend to supply condition estinators (i.e. error bounds) for every quan-
tity conputed by the library. This includes, for exanple, eigenval ues, eigenvectors and
invariant subspaces [6 Sone problens renmain for future releases (the generalized non-
symetric ei genprobl eny.

Third, we determnedthat Strassen- based matrixmul tiplicationis adequatel y accurate
to achieve traditional nornwise backward stability][.15Strassen’s nethod is not as
accurate as conventional matrixmultiplicationwhenthe matrices are badl y rowor col unm
scaled, but it either the natrices are al ready reasonably scaled or if the bad scalingis first
renoved, it is adequate. Thus it may be used in Level 3 BLAS inplenentations [23 1.

Fourth, there is possibly a tradeoff between stability and speed in certain al gorithns.
Sone nodern parallel architectures are designed to support particul ar commnication
patterns and so nmay execute one al gorithm call it AlgorithmA much less effciently
than another, Al gorithmB even though on conventional conputers Anay have been as
fast or faster than B If Al gorithmAis stable and A gorithmBis not, this neans that the
newarchi tecture will not be able to run sinul taneously as fast as possible and correctly
inall cases. Thus one is tenpted, inthe interest of speed, to use an unstable al gorithm
Since “the fast drives out the sloweven if the fast is wong”, nany users will prefer
the faster al gorithmdespite occasional inaccuracy. So we are notivated to find a way
to use unstable al gori thmB provi ded we can check quickl y whether it got an accurate



di nension, and other problemparaneters such as leading natrix di nension. W have a
nechani sm(subroutine ILAFINV) for choosing the block size based on all this inforna-
tion. But we still need a better way to choose the bl ock size. W used brute force during
beta testing of LAPACK runni ng exhaustive tests on different nachines, wth ranges of
bl ock sizes and probl emdi nensions. This has produced a |l arge vol une of test results, too
large for thorough hunan i nspection and eval uati on.

There appear to be at 1 east three ways to choose bl ock paraneters. First, we coul d take
the exhaustive tests we have done, find the optinal block sizes, and store themin tables
in subroutine ILAFNV: each nachine would require its own special tables. Second, we
coul d devise an autonatic installation procedure which could run just a fewbenchnarks
and autonatical l y produce the necessary tables. Third, we coul d devise al gorithns whi ch
tuned themsel ves at run-tine, choosing paraneters autonatically,[80. The choice of
nethod depends on the degree of portability we desire; we return to this in Section 6
bel ow:

Finally, we have determmned that floating poi nt exception handling inpacts effei ency.
Since overflowis afatal exceptionon sone nachines, conpl etel y portabl e code mist avoi d
it at all costs. This neans extra tests, branches, and scaling nust be insertedif spurious
overflowis possible at all, and these slowdown the code. For exanple, the condition
estimators in LAPAKprovi de error bounds, and nore generally warn about inaccurate
ansvers to ill-conditioned problens. It is therefore inportant that these routines resist
overflow Since their nmain operation is (generally) solving a triangul ar systemof equa-
tions, we cammot use the standard Level 2 BLAS triangul ar equation sol ver | ecause
it 1s unprotected against overflow Instead, we have another triangul ar sol ver writtenin
Fortran incl udi ng scaling in the inner loop. This gives us a double perfornance penal ty,
since we cannot use optimzed BLAS, and since we nust do nany nore floating point
operations and branches. The sane issues arise in conputing ei genvectors.

If we could assune we had [FFEE arithnetic [3], none of this would be necessary.
Instead, we would run with the usual BLAS routine. If an overflowoccurred, we could
either trap, or el se substitute an oo synbol , set an “overflowflag” and continue conputi ng
using the rul es of infinity-arithnetic. If we trapped, we coul dimedi atel y deduce that the
problemis veryill-conditioned, and termnate early returning a l arge condi tion nunber.
If we continued with infinity-arithnetic, we coul d check the overflowflag at the end of
the conputation and again deduce that the problemis very ill-conditioned. If we use
trappi ng, we need to be able to handl e the trap and resune execution, not just termnate.
To be fast, this cannot invol ve an expensive operating systemcall. Simlarly, infinity-
arithnetic must be done at nornal hardware floating point speed, not via software, lest
perfornance suffer devastation.

Mny but not all nachi nes support [ FEEari thnetic. Mmny that clai mto do so support
neither the user readabl e overflowflag they shoul d nor user handl eable traps. And those
that do support these things often use intolerably slowsoftware i npl enentations. Thus,
ve di d not supply [FFE expl oi ting routines in the first versionof LAPAK Hovever, we



Besides depending upon locally inplenented Level 3 BLAS, good perfornance al so
requires knowl edge of certain nachine-dependent Wak sizes, which are the sizes of the
subnatrices processed by the Level 3 BLAS. For exanple, if the block size is 32 for the
(Ghussian Hlimnation routine on a particul ar nachi ne, then the natrix will be processed
in groups of 32 columms at a tine. Iktails of the nenory hierarchy determne the block

size that optimzes perfornance |1

4 New Goals and Methods: Efficiency

The nost inportant fact is that the Level 3 BLAS have turned out to be a satistactory
nechani smf or produci ng fast transportable code for nost dense linear al gebra conput a-
tions on hi gh perfornance shwed ramynachines. (Draling with distributed nenory

nachines is future work we describe below ) (hussian elimnation and its variants, (R
deconposition, and reductions to Hessenberg, tridiagonal and bi di agonal forns (as prepa-
ration for findi ng ei genval ues and singul ar val ues) all admt effti ent bl ockinpl enent ati ons
[1 3. Such codes are often nearly as fast as full assenbly | anguage inpl enentations for
suffci entlyl arge natrices, but approach their asynptotic speeds nore slowly. Parallelism
enbedded in the BLAS, is generally useful onlyon sufftientlylarge problens, and canin
fact slowdown processing on snall problens. This neans that the nunber of processors
exercised shoul d ideally be a function of the problemsize, sonething not al ways taken
into account by existing BLAS i npl enentations.

Hbwever, the BLAS do not deal with all problens, evenin the shared nenory worl d.
First, the real nonsymmetric eigenval ue probl eminvol ves sol ving systens with quasi-
triangul ar matrices (block triangular natrices with 1 by 1 and 2 by 2 blocks). These
are not handl ed by the BLAS and so nust be witten in Fortran. A a result, the real
nonsymmetri c ei genprobl enruns rel ati vel y sl ow y conparedto the conpl exnonsymmetric
ei genprobl em whi ch has only standard triangul ar natrices.

Second, findi ng ei genval ues of a symmetric tridiagonal natrix, and singul ar val ues of
a bidiagonal matrix, can not exploit blocking. For these problens, we invented other
net hods whi ch are potentially quite parallel [2). tbwever, since the parallelismis not
enbedded i n the BLAS, and since standard Fortran 77 cannot express parallelism these
nethods are currently inplenented only as serial codes. W intend to supply parallel
versions in future rel eases.

Third, the Hessenberg ei genval ue al gorithmhas proven quite diffeult to parallelize.
W have a partially blocked inplenentation of the (R algorithmbut the speedup is
nodest [5]. There has been quite recent progress [1%ut it renains an open probl emto
produce a highly parallel and reliably stable and convergent al gorithmfor this problem
and for the generalized Hessenberg ei genval ue probl em

Fourth is the issue of perfornance tuning, in particul ar choosing the block size pa-

raneters. In principal, the optimal block size could depend on the nachine, problem



architecture be di scovered at runtine wi thi nthe confines of a Fortran code. For exanple,
if the overflowthreshol dis i nportant to knowfor scaling purposes, it nust be di scovered at
runtine wthat overflowny, since overflowis generallyfatal. Suchdenands have resul ted
in quite large and sophisticated prograns [221 which nust be nodified continually
to deal with newarchitectures and software releases. 'The nail order software notion of
portabilityalso neans that codes generally nust be writtenfor the worst possibl e nachi ne
expected to be used, thereby of ten degradi ng perfornance on all the others.

Finally, wd saperefers to the range of input problens and data structures the code
will support. For exanple, LINPAKand FI SPAKdeal with dense natrices (storedin
a rectangul ar array), packed matrices (where only the upper or lover half of a symetric
natrix is stored), and band natrices (where only the nonzero bands are stored). In
addition, there are sone special internally used fornmats such as Househol der vectors to
represent orthogonal natrices. 'Then there are sparse nmatrices which nmay be stored in

innunerabl e ways; but in this paper wve will limt oursel ves to dense and band natri ces,

the nat henati cal types addressed by LINPAK H SPAKand LAPACK

3 LAPACK Overview

Teans at the Uni versityof (aliforniaat Berkeley, the Uhi versityof Tennessee, the Courant
Institute of Mithenatical Sciences, the Nmerical Al gorithns Goup, Itd., R ce lhiver-
sity, Argonne National Laboratory, and (hk Ridge National Laboratory are devel oping a
transportabl e linear al gebra library called LAPAXK (short for Linear A gebra Package).
The libraryis intended to provide a coordi nated set of subroutines to sol ve the nost com
non linear al gebra problens and to run effciently on a wi de range of hi gh- perfornance
conputers.

LAPACKwi 11 provide routines for sol ving systens of sinultaneous linear equations,
least-squares solutions of linear systens of equations, eigenvalue problens and singul ar
val ue problens. 'The associated matrix factorizations (LU Cholesky, (R SV Schur,
generalized Schur) will also be provided, as will related conputations such as reordering
of the Schur factorizations and estinating condi tion nunbers. IEnse and banded natrices
will be handl ed, but not general sparse matrices. Inall areas, simlar functionalitywll be
provided for real and conplex natrices, in both single and double precision. LAPACK
will be inthe public donain and available fromNetlib sone tine in 1991.

The library is witten in standard Fortran 77. 'The hi gh perfornance is attained by
calls to block matrix operations, such as matrix-mltiply, in the i nnernost 1oops[.14
These operations are standardized as Fortran subroutines called the Level 3 BLAS (Basic
linear A gebra Subprograns [16]). Athough standard Fortran inpl enentations of the
Level 3 BLAS are available on Netlib, high perfornance can generally be attained only
by using inpl enentations optimzed for each particular architecture. In particular, all
parallelism(if any) is enbeddedin the BLAS and invisible to the user.



e vide scope.

Let us consider these innore detail inthe context of libraries for nunerical linear al gebra,
particul arl y LINPAOKand FISPACK The terns have traditional interpretations:

Inlinear al gebra, stdilityrefers specifically to baduwwd stdility wth respet to orm
as devel oped by Wlkinson [35 24 . In the context of solving a linear systemAxz =b, for
exanpl e, this neans that the conputed sol utionz’sol ves a perturbed system( A +E£) =
b +f where ||[E|| =0(e)||A|l and ||f || =O(e )||bY].Simlarly, in finding ei genval ues of
a matrix A the conputed eigenval ues are the exact eigenvalues of A +F where again
|IE]| =0(e )||A||.? Bhwstressthe abilityof a conputer programto detect and gracefully
recover fromabnornal situations without unnecessary interruption of the conputer run
such as in overflows and dangerous underflows. In particular, i1t neans that if the inputs
are “far” fromover /underflow, and the true answer is far fromover /underflow, then the
programshoul d not overflow(whi ch general 1y hal ts execution) or underflowin such a way
that the answer is muchless accurate thaninthe presence of roundoff al one. For exanpl e,
in standard Ghussian elimmnation with pivoting, internediate underflows do not change
the bounds for ||E|| and || f || above so long as A, b and x are far enough fromunderflow
thensel ves [13.

Anong other things, effidenyneans that the perfornance (floating point operations
per second, or flops) shoul d not degrade for large problens; this property is frequently
called saddility Wen using direct nethods as in LINPAK and FISPAX it also
neans that the runni ng tine shoul d not vary greatly for problens of the sane size (though
occasional exanples where this occurs are sonetines dismssed as “pathol ogi cal cases”).
Mintai ni ng perfornance on large problens neans, for exanple, avoiding unnecessary
page faults. This was a problemw th FISPAK and was fixed i n LI NPAOK by using
col umm oriented code which accesses nmatrix entries in consecutive nenory locations in
colums (since Fortran stores matrices by columm) instead of by rows. Rumming tine
depends alnost entirely on a problenis dinension alone, not just for algorithns wth
fixed operation counts like Ghaussian elimmnation, but also for routines that iterate (to
find ei genval ues). Wy this should be so for sone eigenroutines is still not conpletely
understood; worse, sone nonconvergent exanpl es have been di scovered only recentl y][.8

Prtdilityin its nost inclusive sense neans that the code is witten in a standard
l anguage (say Fortran), and that the source code can be conpiledon an arbi trary nachine
with an arbitrary Fortran conpiler to produce a programthat will run correctly and
efftiently. W call this the “nail order software” nodel of portability, since it reflects
the nodel used by software servers like Netlib |18 This notion of portabilityis quite
denanding. It denands that all relevant properties of the conputer’s arithnetic and

!The constants in O(¢) depend on di mensionalityin a way that is i mportant in practice but not here.

?This is one version of backwardstability. More generally one can say that an al gorithmis backwar
stable 1f the answer is scarcely worse than what woul d be be computed exactly from a slightlyperturb
input, even if one cannot construct this slightly perturbed input.



Wsay “transportabl e” instead of “portable” because for fastest possible perfornance
LAPACKrequi res that hi ghl y opti mzed bl ock natrix operations be al ready i npl enented
on each nachi ne by t he nanuf acturers or soneone el se. In other words the correctness of
the code is portable, but high perfornanceis not if welimt oursel ves toasingle (Fortran)
source code. Thus we have nodi fied t he tradi tional and honorabl e goal of portabilityinuse
anong nunerical 11ibrary designers, where both correctness and perfornance vere retai ned
as the source code was noved to newnachi nes, because it is no longer appropriate on
nodern architectures.

Portability is just one of the nany traditional design goals of nunerical software li-
braries we reconsidered and sonetines nodified in the course of designing LAPACK
Qher goals are numerical stability (or accuracy), robustness against over/underflow,
portability of correctness (in contrast to portability of performance), and scope (which
input data structures to support). Recent changes in conputer architectures and nuner-
ical nethods have permtted us to to strengthen these goals in nany cases, resulting in
a library nore capable than before. 'These changes include the availability of nassive
parallelism TEFE floating point arithnetic, new hi gh accuracy al gorithns, and better
condi tion estination techniques. W have also identified tradeoffs anong the goals, as
vell as certain architectural and language features whose presence (or absence) nakes
achi eving these goal s easier.

Section 2 reviews traditional goals of library design. Section 3 gives an overview of
the LAPAKIibrary. 'The next three sections discuss howtraditional design goals and
net hods have been nodi fied: Section 4 deals with effeiency, section5 with stability and
robustness, section 6 with portability, and section 7 with scope. Section 8 lists particul ar
architectural and programmng | anguage features that bear upon the goals. Section 9
describes future work on distributed nenory nachi nes.

W will use the notation || || to refer to the largest absol ute conponent of the vector
x, and ||A]| to be the correspondi ng natrix norm(the naxi numabsol ute rowsun). ¢ will
denote the nachi ne roundoff, UNFL the underflowthreshol d (snallest positive nornalized
floating poi nt nunber) and OVFL the overflowthreshol d (the largest finite floating point
nunber ).

The breadth of naterial we will cover does not permt us to describe or justify all our

claing indetail. Instead we give an overview and relegate details to future papers.

2 Traditional Li brary Design Goals

The traditional goals of good library design are the follow ng:
e stability and robustness,
o cffei ency,

e portability, and
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Abstract

High quality portable numerical libraries have existed for many years. These
libraries, such as LINPACK and EISPACK, were designed to be accurate, robust,
efficient and portable in a Fortran environment of conventional uniprocessors, di-
verse floating point arithmetics, and limited input data structures. These libraries
are no longer adequate on modern high performance computer architectures. We de-
scribe their inadequacies and how we are addressing them in the LAPACK project,
a library of numerical linear algebra routines designed to supplant LINPACK and
EISPACK. We shall show how the new architectures lead to important changes in
the goals as well as the methods of library design.

1 Introduction

The original goal of the JAPACKddtdwas to moderni ze the wi del yused LI!
[ 1]l and EI SPACK,| 2B numerical linear algebralibraries to make themr:
on shared menory vector and parallel processors. On these machines
EI SPACKare i neffici ent because their memory access patterns disregar
menory hierarchies of the machines, therebyspending too muchti me mo
of doing useful floating point operations. LAPACKtries to cure this
algorithms to use block matrix operations. These block operations «
each architecture to account for the memory hierarchy, and so provi

way to achieve high effici ency on di verse modern machines.
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