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Abstract. Extra memory allows parallel matrix multiplication to be done with asymptotically less
communication than Cannon’s algorithm and be faster in practice. “3D” algorithms arrange the p
processors in a 3D array, and store redundant copies of the matrices on each of p1/3 layers. ‘2D”
algorithms such as Cannon’s algorithm store a single copy of the matrices on a 2D array of processors.
We generalize these 2D and 3D algorithms by introducing a new class of “2.5D algorithms”. For matrix
multiplication, we can take advantage of any amount of extra memory to store c copies of the data, for
any c ∈ {1, 2, ..., �p1/3�}, to reduce the bandwidth cost of Cannon’s algorithm by a factor of c1/2 and the
latency cost by a factor c3/2. We also show that these costs reach the lower bounds, modulo polylog(p)
factors. We introduce a novel algorithm for 2.5D LU decomposition. To the best of our knowledge,
this LU algorithm is the first to minimize communication along the critical path of execution in the
3D case. Our 2.5D LU algorithm uses communication-avoiding pivoting, a stable alternative to partial-
pivoting. We prove a novel lower bound on the latency cost of 2.5D and 3D LU factorization, showing
that while c copies of the data can also reduce the bandwidth by a factor of c1/2, the latency must
increase by a factor of c1/2, so that the 2D LU algorithm (c = 1) in fact minimizes latency. We provide
implementations and performance results for 2D and 2.5D versions of all the new algorithms. Our
results demonstrate that 2.5D matrix multiplication and LU algorithms strongly scale more efficiently
than 2D algorithms. Each of our 2.5D algorithms performs over 2X faster than the corresponding 2D
algorithm for certain problem sizes on 65,536 cores of a BG/P supercomputer.

1 Introduction

Goals of parallelization include minimizing communication, balancing the work load, and reducing the mem-
ory footprint. In practice, there are tradeoffs among these goals. For example, some problems can be made
embarrassingly parallel by replicating the entire input on each processor. However, this approach may use
much more memory than necessary and require significant redundant computation. At the other extreme,
one stores exactly one copy of the data spread evenly across the processors, tries to balance the load, and
minimize communication subject to this constraint.

However, some parallel algorithms do successfully take advantage of limited extra memory to increase par-
allelism or decrease communication. In this paper, we examine the trade-off between memory usage and
communication cost in linear algebra algorithms. We introduce 2.5D algorithms (the name is explained
below), which have the property that they can utilize any available amount of extra memory beyond the
memory needed to store one distributed copy of the input and output. 2.5D algorithms use this extra memory
to provably reduce the amount of communication they perform to a theoretical minimum.

We measure costs along the critical path to make sure our algorithms are well load balanced as well as
communication efficient. In particular, we measure the following quantities along the critical path of our
algorithms (which determines the running time):

– F , the computational cost, is the number of flops done along the critical path.
– W , the bandwidth cost, is the number of words sent/received along the critical path.
– S, the latency cost, is the number of messages sent/received along the critical path.
– M , the memory footprint, is the maximum amount of memory, in words, utilized by any processor at

any point during algorithm execution.



Our communication model does not account for network topology. However, it does assume that all com-
munication has to be synchronous. So, a processor cannot send multiple messages at the cost of a single
message. Under this model a reduction or broadcast among p processors costs O(log p) messages but a one-
to-one permutation requires only O(1) messages. This model aims to capture the behavior of low-dimensional
mesh or torus network topologies. Our LU communication lower-bound is independent of the above collective
communication assumptions, however, it does leverage the idea of the critical path.

Our starting point is n-by-n dense matrix multiplication, for which there are known algorithms that minimize
both bandwidth and latency costs in two special cases:

1. Most algorithms assume that the amount of available memory, M , is enough for one copy of the in-
put/output matrices to be evenly spread across all p processors (so M ≈ 3n2/p). If this is the case, it is
known that Cannon’s Algorithm [7] simultaneously balances the load (so F = Θ(n3/p)), minimizes the
bandwidth cost (so W = Θ(n2/p1/2)), and minimizes the latency cost (so S = Θ(p1/2)) [15, 5]. We call
Cannon’s algorithm a “2D algorithm” because it is naturally expressed by laying out the matrices across
a p1/2-by-p1/2 grid of processors.

2. “3D algorithms” assume the amount of available memory,M , is enough for p1/3 copies of the input/output
matrices to be evenly spread across all p processors (so M ≈ 3n2/p2/3). Given this much memory, it
is known that algorithms presented in [8, 1, 2, 16] simultaneously balance the load (so F = Θ(n3/p)),
minimize the bandwidth cost (so W = Θ(n2/p2/3)), and minimize the latency cost (so S = Θ(log p)) [15,
5]. These algorithms are called “3D” because they are naturally expressed by laying out the matrices
across a p1/3-by-p1/3-by-p1/3 grid of processors.

The contributions of this paper are as follows.

1. We present a new matrix multiplication algorithm that usesM ≈ 3cn2/pmemory for c ∈ {1, 2, ..., �p1/3�},
sends c1/2 times fewer words than the 2D (Cannon’s) algorithm, and sends c3/2 times fewer messages
than Cannon’s algorithm. We call the new algorithm 2.5D matrix multiplication, because it has the
2D and 3D algorithms as special cases, and effectively interpolates between them, by using a processor
grid of shape (p/c)1/2-by-(p/c)1/2-by-c. Our 2.5D matrix multiplication algorithm attains lower bounds
(modulo polylog(p) factors) on the number of words and messages communicated.
Our implementation of 2.5D matrix multiplication achieves better strong scaling and efficiency than
Cannon’s algorithm and ScaLAPACK’s PDGEMM [6]. On 2048 nodes of BG/P, our 2.5D algorithm
multiplies square matrices of size n = 65, 536 5.3X faster than PDGEMM and 1.2X faster than Cannon’s
algorithm. On 16,384 nodes of BG/P, our 2.5D algorithm multiplies a small square matrix (n = 8192),
2.6X faster than Cannon’s algorithm.

2. We present a 2.5D LU algorithm that also reduces the number of words moved by a factor of c1/2 in
comparison with standard 2D LU algorithms. 2.5D LU attains the same lower bound on the number of
words moved as 2.5D matrix multiplication Our 2.5D LU algorithm uses tournament pivoting as opposed
to partial pivoting [9, 12]. Tournament pivoting is a stable alternative to partial pivoting that was used
to minimize communication (both number of words and messages) in the case of 2D LU. We will refer to
tournament pivoting as communication-avoiding pivoting (CA-pivoting) to emphasize the fact that this
type of pivoting attains the communication lower-bounds.
We present 2.5D LU implementations without pivoting and with CA-pivoting. Our results demon-
strate that 2.5D LU reduces communication and runs more efficiently than 2D LU or ScaLAPACK’s
PDGETRF [6]. For an LU factorization of a square matrix of size n = 65, 536, on 2048 nodes of BG/P,
2.5D LU with CA-pivoting is 3.4X faster than PDGETRF with partial pivoting. Further, on 16384 nodes
of BG/P, 2.5D LU without pivoting and with CA-pivoting are over 2X faster than their 2D counterparts.

3. 2.5D LU does not, however, send fewer messages than 2D LU; instead it sends a factor of c1/2 more
messages. Under minor assumptions on the algorithm, we demonstrate an inverse relationship among
the latency and bandwidth costs of any LU algorithms. This relation yields a lower bound on the latency
cost of an LU algorithm with a given bandwidth cost. We show that 2.5D LU attains this new lower
bound. Further, we show that using extra memory cannot reduce the latency cost of LU below the
2D algorithm, which sends Ω(p1/2) messages. These results hold for LU with CA-pivoting and without
pivoting.



2 Previous work

In this section, we detail the motivating work for our algorithms. First, we recall linear algebra communi-
cation lower bounds that are parameterized by memory size. We also detail the main motivating algorithm
for this work, 3D matrix multiplication, which uses extra memory but performs less communication. The
communication complexity of this algorithm serves as a matching upper-bound for our general lower bound.

2.1 Communication lower bounds for linear algebra

Recently, a generalized communication lower bound for linear algebra has been shown to apply for a large class
of matrix-multiplication-like problems [5]. The lower bound applies to either sequential or parallel distributed
memory, and either dense or sparse algorithms. The distributed memory lower bound is formulated under
a communication model identical to that which we use in this paper. This lower bound states that for a
fast memory of size M (e.g. cache size or size of memory space local to processor) the lower bound on
communication bandwidth is

W = Ω

�
#arithmetic operations√

M

�

words, and the lower bound on latency is

S = Ω

�
#arithmetic operations

M3/2

�

messages. On a parallel machine with p processors and a local processor memory of size M , this yields the
following lower bounds for communication costs of matrix multiplication of two dense n-by-n matrices as
well as LU factorization of a dense n-by-n matrix:

W = Ω

�
n3/p√
M

�
, S = Ω

�
n3/p

M3/2

�

These lower bounds are valid for n2

p < M <
n2

p2/3 and suggest that algorithms can reduce their communication

cost by utilizing more memory. If M <
n2

p , the entire matrix won’t fit in memory. As explained in [5],

conventional algorithms, for example those in ScaLAPACK [6], mostly do not attain both these lower bounds,
so it is of interest to find new algorithms that do.

2.2 3D linear algebra algorithms

Consider we have p processors arranged into a 3D grid as in Figure 1(a), with each individual processor
indexed as Pi,j,k. We replicate input matrices on 2D layers of this 3D grid so that each processor uses

M = Ω

�
n2

p2/3

�
words of memory. In this decomposition, the lower bound on bandwidth is

W3d = Ω

�
n
2
/p

2/3
�
.

According to the general lower bound the lower bound on latency is trivial: Ω (1) messages. However, for
any blocked 2D or 3D layout,

S3d = Ω (log p) .

This cost arises from the row and column dependencies of dense matrix-multiplication-like problems. In-
formation from a block row or block column of can only be propagated to one processor with Ω(log p)
messages.



Algorithm 1: [C] = 3D-matrix-multiply(A,B,n,p)

Input: n-by-n matrix A distributed so that Pij0 owns n
p1/3

-by- n
p1/3

block Aij for each i, j

Input: n-by-n matrix B distributed so that P0jk owns n
p1/3

-by- n
p1/3

block Bjk for each j, k

Output: n-by-n matrix C = A ·B distributed so that Pi0k owns n
p1/3

-by- n
p1/3

block Cik for each i, k

// do in parallel with all processors

forall i, j, k ∈ {0, 1, ..., p1/3 − 1} do

Pij0 broadcasts Aij to all Pijk /* replicate A on each ij layer */
P0jk broadcasts Bjk to all Pijk /* replicate B on each jk layer */
Cijk := Aij ·Bjk

Pijk contributes Cijk to a sum-reduction to Pi0k

end

3D matrix multiplication. For matrix multiplication, Algorithm 1 [8, 1, 2, 16] achieves the 3D bandwidth
and latency lower bounds. The amount of memory used in this 3D matrix multiplication algorithm is M =

Θ

�
n2

p2/3

�
so the 3D communication lower bounds apply. The only communication performed is the reduction

of C and, if necessary, a broadcast to spread the input. So the bandwidth cost is W = O

�
n2

p2/3

�
, which is

optimal, and the latency cost is S = O (log p), which is a optimal for a blocked layout.

Memory efficient matrix multiplication. McColl and Tiskin [18] present a memory efficient variation
on the 3D matrix multiplication algorithm for a PRAM-style model. They partition the 3D computation
graph to pipeline the work and therefore reduce memory in a tunable fashion. However, their theoretical
model is not reflective of modern supercomputer architectures, and we see no clear way to reformulate their
algorithm to be communication optimal. Nevertheless, their research is in very similar spirit to and serves
as a motivating work for the new 2.5D algorithms we present in later sections.

Previous work on 3D LU factorization. Irony and Toledo [14] introduced a 3D LU factorization algo-
rithm that minimizes total communication volume (sum of the number of words moved over all processors),
but does not minimize either bandwidth or latency along the critical path. This algorithm distributes A and
B cyclically on each processor layer and recursively calls 3D LU and 3D TRSM routines on sub-matrices.

Neither the 3D TRSM nor the 3D LU base-case algorithms given by Irony and Toledo minimize commu-
nication along the critical path which, in practice, is the bounding cost. We define a different 2.5D LU
factorization algorithm that does minimize communication along its critical path.

Ashcraft [4, 3] suggested that total communication volume can be reduced for LU and Cholesky via the use
of aggregate data. Aggregate data is a partial sum of updates, rather than simply the matrix entries. Our
2.5D LU algorithm uses aggregate data to reduce communication by the amount Ashcraft predicted.

3 2.5D lower and upper bounds

The general communication lower bounds are valid for a range of M in which 2D and 3D algorithms hit
the extremes. 2.5D algorithms are parameterized to be able to achieve the communication lower bounds for
any valid M . Let c ∈ {1, 2, . . . , �p1/3�} be the number of replicated copies of the input matrix. Consider the

processor grid in Figure 1(b) (indexed as Pi,j,k) where each processor has local memory size M = Ω

�
cn2

p

�
.

The lower bounds on communication are

W2.5d = Ω

�
n2

√
cp

�
S2.5d = Ω

�
p1/2

c3/2

�
.

The lower bound in Section 6 of [5] is valid while c <= p1/3. When c = p1/3, the latency lower bound is trivial,
Ω(1) messages, and the bandwidth lower bound is Ω(n2/p2/3) words. If the initial data is not replicated, we



(a) 3D processor grid of dimension p1/3-by-
p1/3-by-p1/3.

(b) 2.5D processor grid of dimension (p/c)1/2-
by-(p/c)1/2-by-c (replication factor c).

Fig. 1.

claim the Ω(n2/p2/3) bandwidth lower bound also holds for c > p1/3. A total of Ω(cn2−n2) = Ω(cn2) words
must be communicated to produce the replicated copies without local entry duplicates. Therefore, some
processor must communicate Ω(cn2/p) words. When c > p1/3, this replication bandwidth cost is bound from
below by cn2/p = Ω(n2/p2/3) words.

From a performance-tuning perspective, by formulating 2.5D linear algebra algorithms, we are essentially
adding an extra tuning parameter to the algorithm. Also, as a sanity check for our 2.5D algorithms, we made
sure they reduced to practical 2D algorithms when c = 1 and to practical 3D algorithms when c = p1/3.

3.1 2.5D matrix multiplication

For matrix multiplication, Algorithm 2 achieves the 2.5D bandwidth lower bound and gets within a factor
of O(log p) of the 2.5D latency lower bound (likely optimal). Algorithm 2 generalizes Cannon’s algorithm
(set c = 1). At a high level, our 2.5D algorithm does a portion of Cannon’s algorithm on each set of copies
of matrices A and B, then combines the results. To make this possible, we adjust the initial shift done by
Cannon’s algorithm to be different for each set of copies of matrices A and B.

Our 2.5D algorithm doesn’t quite generalize Algorithm 1 since C is reduced in a different dimension and
shifted initially. However, in terms of complexity, only two extra matrix shift operations are required by the
3D version of our 2.5D algorithm. Further, the 2.5D algorithm has the nice property that C ends up spread

over the same processor layer that both A and B started on. The algorithm moves W = O

�
n2
√
cp

�
words and

sends S = O

��
p/c3 + log c

�
messages. This cost is optimal according to the general communication lower

bound. The derivations of these costs are in Appendix A in [19].

We also note that if the latency cost is dominated by the intra-layer communication S = O(
�

p/c3), our 2.5D
matrix multiplication algorithm can achieve perfect strong scaling in certain regimes. Suppose we want to
multiply n×n matrices, and the maximum memory available per processor is Mmax. Then we need to use at
least pmin = Θ(n2/Mmax) processors to store one copy of the matrices. The 2D algorithm uses only one copy
of the matrix and has a bandwidth cost ofWpmin = O(n2/

√
pmin) words and latency cost of Spmin = O(

√
pmin)

messages. If we use p = c · pmin processors, with a total available memory of p ·Mmax = c · pmin ·Mmax, we
can afford to have c copies of the matrices. The 2.5D algorithm can store a matrix copy on each of c layers
of the p processors. Utilizing c copies reduces the bandwidth cost to Wp = O(n2/

√
cp) = O(n2/(c

√
pmin)) =

O(Wpmin/c) words, and the latency cost to Sp = O(
�

p/c3) = O(
√
pmin/c) = O(Spmin/c) messages. This

strong scaling is perfect because all three costs (flops, bandwidth and latency) fall by a factor of c. (up to a
factor of c = p1/3, and ignoring the log(c) latency term).



Algorithm 2: [C] = 2.5D-matrix-multiply(A,B,n,p,c)

Input: square n-by-n matrices A, B distributed so that Pij0 owns n√
p/c

-by- n√
p/c

blocks Aij and Bij for each i, j

Output: square n-by-n matrix C = A ·B distributed so that Pij0 owns n√
p/c

-by- n√
p/c

block Cij for each i, j

/* do in parallel with all processors */

forall i, j ∈ {0, 1, ...,
�

p/c− 1}, k ∈ {0, 1, ..., c− 1} do

Pij0 broadcasts Aij and Bij to all Pijk /* replicate input matrices */

s := mod (j − i+ k
�

p/c3,
�

p/c) /* initial circular shift on A */
Pijk sends Aij to Alocal on Pisk

s� := mod (i− j + k
�

p/c3,
�

p/c) /* initial circular shift on B */
Pijk sends Bij to Blocal on Ps�jk

Cijk := Alocal ·Blocal

s := mod (j + 1,
�

p/c)

s� := mod (i+ 1,
�

p/c)

for t = 1 to
�

p/c3 − 1 do

Pijk sends Alocal to Pisk /* rightwards circular shift on A */
Pijk sends Blocal to Ps�jk /* downwards circular shift on B */
Cijk := Cijk +Alocal ·Blocal

end

Pijk contributes Cijk to a sum-reduction to Pij0

end

4 2.5D LU communication lower bound

We argue that for Gaussian-elimination style LU algorithms that achieve the bandwidth lower bound, the
latency lower bound is actually much higher, namely Slu = Ω

�√
cp
�
.

Given a parallel LU factorization algorithm, we assume the algorithm must uphold the following properties

1. Consider the largest k-by-k matrix A00 factorized sequentially such that A =

�
A00 A01

A10 A11

�
(we can always

pick some A00 since at least the top left element of A is factorized sequentially), the following conditions
must hold,
(a) Ω(k3) flops must be done before A11 can be factorized (it can be updated but Gaussian elimination

cannot start).
(b) Ω(k2) words must be communication before A11 can be factorized.
(c) Ω(1) messages must be sent before A11 can be factorized.

2. The above condition holds recursively (for factorization of A11 in place of A).

We now lower bound the communication cost for any algorithm that follows the above restrictions. Any
such algorithm must compute a sequence of diagonal blocks {A00, A11, . . . , Ad−1,d−1}. Let the dimensions
of the blocks be {k0, k1, . . . , kd−1}. As done in Gaussian Elimination and as required by our conditions, the
factorizations of these blocks are on the critical path and must be done in strict sequence.

Given this dependency path (shown in Figure 2), we can lower bound the complexity of the algorithm
by counting the complexity along this path. The latency cost is Ω(d) messages, the bandwidth cost is�d−1

i=0 Ω(k2i ) words and the computational cost is
�d−1

i=0 Ω(k3i ) flops. Due to the constraint,
�d−1

i=0 ki = n, it
is best to pick all ki = k, for some k (we now get d = n/k), to minimize bandwidth and flop costs. Now we
see that the algorithmic costs are

Flu = Ω(nk2) Slu = Ω(n/k) Wlu = Ω(nk).

Evidently, if we want to do O(n3/p) flops we need k = O

�
n√
p

�
, which would necessitate S = Ω(

√
p).

Further, the cost of sacrificing flops for latency is large. Namely, if S = O

�√
p
r

�
, the computational cost is



Fig. 2. LU diagonal block dependency path. These blocks must be factorized in order and communication is required
between each block factorization.

F = Ω

�
r2n3

p

�
, a factor of r2 worse than optimal. Since we are very unlikely to want to sacrifice so much

computational cost to lower the latency cost, we will not attempt to design algorithms that achieve a latency
smaller than Ω(

√
p).

If we want to achieve the bandwidth lower bound we need,

Wlu = O
�
n
2
/
√
cp
�

k = O (n/
√
cp) Slu = Ω(

√
cp).

A latency cost of O(
√
cp/r), would necessitate a factor of r larger bandwidth cost. So, an LU algorithm can

do minimal flops, bandwidth, and latency as defined in the general lower bound, only when c = 1. For c > 1,
we can achieve optimal bandwidth and flops but not latency.

It is also worth noting that the larger c is, the higher the latency cost for LU will be (assuming bandwidth
is prioritized). This insight is the opposite of that of the general lower bound, which lower bounds the
latency as Ω(1) messages for 3D (c = p1/3). However, if a 3D LU algorithm minimizes the number of words
communicated, it must send Ω(p2/3) messages. This tradeoff suggests that c should be tuned to balance the
bandwidth cost and the latency cost.

5 2.5D communication optimal LU

In order to write down a 2.5D LU algorithm, it is necessary to find a way to meaningfully exploit extra
memory. A 2D parallelization of LU typically factorizes a vertical and a top panel of the matrix and updates
the remainder (the Schur complement). The dominant cost in a typical parallel LU algorithm is the update
to the Schur complement. Our 2.5D algorithm exploits this by accumulating the update over layers. However,
in order to factorize each next panel we must reduce the contributions to the Schur complement. We note
that only the panel we are working on needs to be reduced and the remainder can be further accumulated.
Even so, to do the reductions efficiently, a block-cyclic layout is required. This layout allows more processors
to participate in the reductions and pushes the bandwidth cost down to the lower bound.

Algorithm 3 (work-flow diagram in Figure 3) is a communication optimal LU factorization algorithm for the
entire range of c ∈ {1, 2, . . . , �p1/3�}. The algorithm replicates the matrix A on each layer and partitions
it block cyclically across processors with block size (n/

√
pc)-by-(n/

√
pc). Note that this block dimension

corresponds to the lower bound derivations in the previous section. Every processor owns one such block
within each bigger block of size n/c-by-n/c. We will sometimes refer to big blocks (block dimension n/c) and
small blocks (block dimension n/

√
pc) for brevity.



Algorithm 3: [L,U ] = 2.5D-LU-factorization(A,n,p,c)

Input: n-by-n matrix A distributed so that for each l,m, (n/c)-by-(n/c) block Alm is spread over Pij0 in
(n/

√
pc)-by-(n/

√
pc) blocks.

Output: triangular n-by-n matrices L, U such that A = L ·U and for each l,m, (n/c)-by-(n/c) blocks Llm, Ulm are
spread over Pij0.

Pij0 broadcasts its portion of A to each Pijk

for t = 0 to c− 1 do

[Ltt, Utt] = 2D-LU(Att) /* redundantly factorize top right (n/c)-by-(n/c) block */

[LT
t+k+1,t] = 2D-TRSM(UT

tt ,A
T
t+k+1,t) /* perform TRSMs on (n/c)-by-(n/c) blocks */

[Ut,t+k+1] = 2D-TRSM(Ltt,At,t+k+1)
Pijk broadcasts its portions of Lt+k+1,t and Ut,t+k+1 to Pijk� for all k� /* all-gather panels */

if �k
�

p/c3� ≤ j < �(k + 1)
�

p/c3� then /* broadcast sub-panels of L */
Pijk broadcasts its portion of Lt+1:c−1,t to each Pij�k for all j�

end

if �k
�

p/c3� ≤ i < �(k + 1)
�

p/c3� then /* broadcast sub-panels of U */
Pijk broadcasts its portion of Ut,t+1:c−1 to each Pi�jk for all i�

end

Pijk computes and accumulates its portion of the Schur complement update S /* multiply sub-panels */
All-reduce (sum and subtract from A) St+1:c−1,t+1, St+1,t+2:c−1 /* reduce next big block panels */

end

Fig. 3. 2.5D LU algorithm work-flow



Algorithm 3 has a bandwidth cost ofW = O

�
n2
√
cp

�
words and a latency cost of S = O

�√
cp log(p)

�
messages.

Therefore, it is asymptotically communication optimal for any choice of c (modulo a log(p) factor for latency).
Further, it is also always asymptotically computationally optimal (the redundant work is a low order cost).
These costs are derived in Appendix B in [19].

6 2.5D communication optimal LU with pivoting

Regular partial pivoting is not latency optimal because it requires Ω(n) messages if the matrix is in a 2D
blocked layout. Ω(n) messages are required by partial pivoting since a pivot needs to be determined for each
matrix column which always requires communication unless the entire column is owned by one processor.
However, tournament pivoting (CA-pivoting) [9], is a new LU pivoting strategy that can satisfy the general
communication lower bound. We will incorporate this strategy into our 2.5D LU algorithm.

CA-pivoting simultaneously determines b pivots by forming a tree of factorizations as follows,

1. Factorize each 2b-by-b block [A0,2k, A0,2k+1]T = PT
k LkUk for k ∈ [0, n

2b − 1] using GEPP.
2. Write Bk = Pk[A0,2k, A0,2k+1]T , and Bk = [B�

k, B
��
k ]

T . Each B�
k represents the ’best rows’ of each sub-

panel of A.
3. Now recursively perform steps 1-3 on [B�

0, B
�
1, ..., B

�
n/(2b)−1]

T until the number of total best pivot rows
is b.

For a more detailed and precise description of the algorithm and stability analysis see [9, 12].

To incorporate CA-pivoting into our LU algorithm, we would like to do pivoting with block size b = n/
√
pc.

The following modifications need to be made to accomplish this,

1. Previously, we did the big-block side panel Tall-Skinny LU (TSLU) via a redundant top block LU-
factorization and TRSMs on lower blocks. To do pivoting, the TSLU factorization needs to be done as a
whole rather than in blocks. We can still have each processor layer compute a different ’TRSM block’ but
we need to interleave this computation with the top block LU factorization and communicate between
layers to determine each set of pivots as follows (Algorithm 4 gives the full TSLU algorithm),

(a) For every small block column, we perform CA-pivoting over all layers to determine the best rows.
(b) We pivot the rows within the panel on each layer. Interlayer communication is required, since the

best rows are spread over the layers (each layer updates a subset of the rows).
(c) Each ij processor layer redundantly performs small TRSMs and the Schur complement updates in

the top big block.
(d) Each ij processor layer performs TRSMs and updates on a unique big-block of the panel.

2. After the TSLU, we need to pivot rows in the rest of the matrix. We do this redundantly on each layer,
since each layer will have to contribute to the update of the entire Schur complement.

3. We still reduce the side panel (the one we do TSLU on) at the beginning of each step but we postpone
the reduction of the top panel until pivoting is complete. Basically, we need to reduce the ’correct’ rows
which we know only after the TSLU.

Algorithm 5 details the entire 2.5D LU with CA-pivoting algorithm and Figure 4 demonstrates the work-
flow of the new TSLU with CA-pivoting. Asymptotically, 2.5D LU with CA-pivoting has almost the same
communication and computational cost as the original algorithm. Both the flops and bandwidth costs gain
an extra asymptotic log p factor (which can be remedied by using a smaller block size and sacrificing some
latency). Also, the bandwidth cost derivation requires a probabilistic argument about the locations of the
pivot rows, however, the argument should hold up very well in practice. For the full cost derivations of this
algorithm see Appendix C in [19].



Algorithm 4: [V, L, U ] = 2.5D-TSLU-pivot-factorization(A,n,m,p,c)

Let [V ] = CA-Pivotl(Al,n,b) be a function that performs CA-pivoting with block size b on A of size n-by-b and
outputs the pivot matrix V to all processors.
Input: n-by-m matrix A distributed so that for each i, j, Pijk owns m√

p/c
-by- m√

p/c
blocks Alij for

li ∈ {i, i+
�

p/c, i+ 2
�

p/c, . . . , i+ (n/m− 1)
�

p/c}.
Output: n-by-n permutation matrix V and triangular matrices L, U such that V ·A = L · U and for each i, j, Pijk

owns n√
pc -by-

n√
pc blocks Llij and Uij for each i, li, and j.

for s = 0 to
�

p/c− 1 do

Pisk compute [Vs] = CA-Pivot
k
√

p/c+i
(A

k
√

p/c+i,s
,n,m)

Pijk pivots rows between A
k
√

p/c+i,j
and each copy of Asj stored on each Psjk according to Vs

Ass := V �T
s LssUss /* factorize top left small block redundantly using GEPP */

Usj := L−1
ss V �

sAsj for j > s /* do TRSMs on top small block row redundantly */

LT
is := U−T

ss AT
is for i > s /* do TRSMs on the top part of a small block column redundantly */

LT

k
√

p/c+i,s
:= U−T

ss AT

k
√

p/c+i,s
/* do TRSMs on rest of small block column */

Pisk broadcasts Lis and L
k
√

p/c+i,s
to all Pijk

Psjk broadcasts Usj to all Pijk

Aij := Aij − Lis · Usj for i, j > s /* update top big block redundantly */
A

k
√

p/c+i,j
:= A

k
√

p/c+i,j
− L

k
√

p/c+i,s
· Usj for j > s /* update remaining big blocks */

Update V with Vs

end

Pijk broadcasts L
k
√

p/c+i,j
to Pijk� for all k�

Algorithm 5: [V, L, U ] = 2.5D-LU-pivot-factorization(A,n,p,c)

Input: n-by-n matrix A distributed so that for each l,m, (n/c)-by-(n/c) block Alm is spread over Pij0 in
(n/

√
pc)-by-(n/

√
pc) blocks.

Output: n-by-n matrices V and triangular L, U such that V ·A = L · U and for each l,m, (n/c)-by-(n/c) blocks
Llm, Ulm are spread over Pij0.

S1:n,1:n := 0 /* S will hold the accumulated Schur complemented updates to A */
Pij0 broadcasts its portion of A to each Pijk

for t = 0 to c− 1 do

[Vt, Lt:n/c−1,t, Utt] = 2.5D-TSLU-pivot-factorization(At:c−1,t,n− tn/c,n/c,p,c)
Update V with Vt

Swaps any rows as required by Vt to (A,S)t,1:c−1 /* pivot remainder of matrix redundantly */
All-reduce (sum and subtract from A) St,t+1:c−1 /* reduce big block top panel */
[Ut,t+k+1] = 2D-TRSM(Ltt,At,t+k+1) /* perform TRSMs on (n/c)-by-(n/c) blocks */
Pijk broadcasts its portion of Ut,t+k+1 to each Pijk� for all k� /* all-gather top panel */

if �k
�

p/c3� ≤ j < �(k + 1)
�

p/c3� then /* broadcast sub-panels of L */
Pijk broadcasts its portion of Lt+1:c−1,t to each Pij�k for all j�

end

if �k
�

p/c3� ≤ i < �(k + 1)
�

p/c3� then /* broadcast sub-panels of U */
Pijk broadcasts its portion of Ut,t+1:c−1 to each Pi�jk for all i�

end

Pijk computes and accumulates its portion the Schur complement update S /* multiply sub-panels */
All-reduce (sum and subtract from A) St+1:c−1,t+1 /* reduce next big block vertical panel */

end



Fig. 4. 2.5D LU with pivoting panel factorization (step A in Figure 3).

7 Performance results

We implemented 2.5D matrix multiplication and LU factorization using MPI [13] for inter-processor commu-
nication. We perform most of the sequential work using BLAS routines: DGEMM for matrix multiplication,
DGETRF, DTRSM, DGEMM, for LU. We found it was fastest to use provided multi-threaded BLAS libraries
rather than our own threading. All the results presented in this paper use threaded ESSL routines.

We benchmarked our implementations on a Blue Gene/P (BG/P) machine located at Argonne National
Laboratory (Intrepid). We chose BG/P as our target platform because it uses few cores per node (four
850 MHz PowerPC processors) and relies heavily on its interconnect (a bidirectional 3D torus with 375
MB/sec of achievable bandwidth per link). On this platform, reducing inter-node communication is vital for
performance.

BG/P also provides topology-aware partitions, which 2.5D algorithms are able to exploit. For node counts
larger than 16, BG/P allocates 3D cuboid partitions. Since 2.5D algorithms have a parameterized 3D virtual
topology, a careful choice of c allows them to map precisely to the allocated partitions (provided enough
memory).

Topology-aware mapping can be very beneficial since all communication happens along the three dimensions
of the 2.5D virtual topology. Therefore, network contention is minimized or, in certain scenarios, completely
eliminated. Topology-aware mapping also allows 2.5D algorithms to utilize optimized line multicast and line
reduction collectives provided by the DCMF communication layer [11, 17].



 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

p

2.5D MM on BG/P (n=65,536)

2.5D MM
2D MM

ScaLAPACK PDGEMM

(a) MM strong scaling

 0

 10

 20

 30

 40

 50

 60

8192 32768 131072

P
er

ce
nt

ag
e 

of
 fl

op
s 

pe
ak

n

2.5D MM on 16,384 nodes of BG/P

2D MM
2.5D MM

(b) Matrix multiplication on 16,384 nodes

Fig. 5. Performance of 2.5D MM on BG/P

We study the strong scaling performance of 2.5D algorithms on a 2048 node partition (Figures 5(a), 6(a), 7(a)).
The 2048 node partition is arranged in a 8-by-8-by-32 torus. In order to form square layers, our implementa-
tion uses 4 processes per node (1 process per core) and folds these processes into the X dimension. Now, each
XZ virtual plane is 32-by-32. We strongly scale 2.5D algorithms from 256 nodes c = Y = 1 to 2048 nodes
c = Y = 8. For ScaLAPACK we use smp or dual mode on these partitions, since it is not topology-aware.

We also compare performance of 2.5D and 2D algorithms on 16,384 nodes (65,536 cores) of BG/P. The
16,384 node partition is a 16-by-32-by-32 torus. We run both 2D and 2.5D algorithms in SMP mode. For
2.5D algorithms, we use c = 16 YZ processor layers.

7.1 2.5D matrix multiplication performance

Our 2.5D matrix multiplication implementation is a straight-forward adjustment of Cannon’s algorithm. We
assume square and correctly padded matrices, as does Cannon’s algorithm. A more general 2.5D matrix
multiplication algorithm ought to be built on top of a more general 2D algorithm (e.g. the SUMMA algo-
rithm [20]). However, our algorithm and implementation provide an idealistic and easily reproducible proof
of concept.

Figure 5(a) demonstrates that 2.5D matrix multiplication achieves better strong scaling than its 2D counter-
part. However, both run at high efficiency (over 50%) for this problem size, so the benefit is minimal. The
performance of the more general ScaLAPACK implementation lags behind the performance of our code by
a large factor.

Figure 5(b) shows that 2.5D matrix multiplication outperforms 2D matrix multiplication significantly for
small matrices on large partitions. The network latency and bandwidth costs are reduced, allowing small
problems to execute much faster (up to 2.6X for the smallest problem size).

7.2 2.5D LU performance

We implemented a version of 2.5D LU without pivoting. While this algorithm is not stable for general dense
matrices, it provides a good upper-bound on the performance of 2.5D LU with pivoting. The performance
of 2.5D LU is also indicative of how well a 2.5D Cholesky implementation might perform.

Our 2.5D LU implementation has a structure closer to that of Algorithm 5 rather than Algorithm 3. Pro-
cessor layers perform updates on different big-block subpanels of the matrix as each corner small block gets
factorized.
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Fig. 6. Performance of 2.5D LU without pivoting on BG/P

Our 2.5D LU implementation made heavy use of subset broadcasts (multicasts). All communication is done
in the form of broadcasts or reductions along axis of the 3D virtual topology. This design allowed our code
to utilize efficient line broadcasts on the BG/P supercomputer.

Figure 6(a) shows that 2.5D LU achieves more efficient strong scaling than 2D LU. 2D LU maps well to the
2D processor grid on 256 nodes. However, the efficiency of 2D LU suffers when we use more nodes, since
the network partition becomes 3D. On 3D partitions, the broadcasts within 2D LU are done via topology-
oblivious binomial trees and suffer from contention. For this problem configuration, 2.5D LU achieves a 2.2X
speed-up over the 2D algorithm on 2048 nodes.

Figure 6(b) demonstrates that 2.5D LU is also efficient and beneficial at a larger scale. However, the efficiency
of both 2D and 2.5D LU falls off for small problem sizes. The best efficiency and relative benefits are seen
for the largest problem size (n = 131, 072). We did not test larger problem sizes, since execution becomes
too time consuming. However, we expect better performance and speed-ups for larger matrices.

7.3 2.5D LU with CA-pivoting performance

2.5D LU performs pivoting in two stages. First, pivoting is performed only in the big-block panel. Then the
rest of the matrix is pivoted according to a larger, accumulated pivot matrix. We found it most efficient to
perform the subpanel pivoting via a broadcast and a reduction, which minimize latency. For the rest of the
matrix, we performed scatter and gather operations to pivot, which minimize bandwidth. We found that this
optimization can also be used to improve the performance of 2D LU and used it accordingly.

Figure 7(a) shows that 2.5D LU with CA-pivoting strongly scales with higher efficiency than its 2D counter-
part. It also outperforms the ScaLAPACK PDGETRF implementation. Though, we note that ScaLAPACK
uses partial pivoting rather than CA-pivoting and therefore computes a different answer.

On 16,384 nodes, 2D and 2.5D LU run efficiently only for larger problem sizes (see Figure 7(b)). The latency
costs of pivoting heavily deteriorate the performance of the algorithms when the matrices are small. Since,
2.5D LU does not reduce latency cost, not much improvement is achieved for very small matrix sizes. However,
for medium sized matrices (n = 131, 072) over 2X gains in efficiency are achieved. We expect similar trends
and better efficiency for even larger matrices.

The absolute efficiency achieved by our 2.5D LU with CA-pivoting algorithm is better than ScaLAPACK
and can be improved even further. Our implementation does not exploit overlap between communication and
computation and does not use prioritized scheduling. We observed that, especially at larger scales, processors
spent most of their time idle (waiting to synchronize). Communication time, on the other hand, was heavily
reduced by our techniques and was no longer a major bottleneck.
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Fig. 7. Performance of 2.5D LU with pivoting on BG/P

8 Future work

Preliminary analysis suggests that a 2.5D algorithm for TRSM can be written using a very similar parallel
decomposition to what we present in this paper for LU. We will formalize this analysis.

Our 2.5D LU algorithm can also be modified to do Cholesky. Thus, using Cholesky-QR we plan to formulate
many other numerical linear algebra operations with minimal communication. As an alternative, we are also
looking into adjusting the algorithms for computing QR, eigenvalue decompositions, and the SVD which use
Strassen’s algorithm [10] to using our 2.5D matrix multiplication algorithm instead. Further, we plan to look
for the most efficient and stable 2.5D QR factorization algorithms. In particular, the 2D parallel Householder
algorithm for QR has a very similar structure to LU, however, we have not found a way to accumulate
Householder updates across layers. The Schur complement updates are subtractions and therefore commute,
however, each step of Householder QR orthogonalizes the remainder of the matrix with the newly computed
panel of Q. This orthogonalization is dependent on the matrix remainder and is a multiplication, which
means the updates do not commute. Therefore it seems to be difficult to accumulate Housholder updates
onto multiple buffers.

We plan to implement a more general 2.5D MM algorithm based on SUMMA [20]. We also plan to further
tune our 2.5D LU algorithms. Incorporating better scheduling and overlap should improve the absolute
efficiency of our implementation. We hope to apply these implementations to accelerate scientific simulations
that solve distributed dense linear algebra problems. Our motivating scientific domain has been quantum
chemistry applications, which spend a significant fraction of execution time performing small distributed
dense matrix multiplications and factorizations.
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