
Scheduling Linear Algebra Operations on Multicore Processors
– LAPACK Working Note 213

Jakub Kurzak
Department of Electrical Engineering and Computer Science, University of Tennessee

Hatem Ltaief
Department of Electrical Engineering and Computer Science, University of Tennessee

Jack Dongarra
Department of Electrical Engineering and Computer Science, University of Tennessee
Computer Science and Mathematics Division, Oak Ridge National Laboratory
School of Mathematics & School of Computer Science, University of Manchester

Rosa M. Badia
Barcelona Supercomputing Center - Centro Nacional de Supercomputación

ABSTRACT

State-of-the-art dense linear algebra soft-
ware, such as the LAPACK and ScaLAPACK
libraries, suffer performance losses on mul-
ticore processors due to their inability to
fully exploit thread-level parallelism. At the
same time the coarse-grain dataflow model
gains popularity as a paradigm for program-
ming multicore architectures. This work looks
at implementing classic dense linear algebra
workloads, Cholesky factorization, QR fac-
torization and LU factorization, using dy-
namic data-driven execution. Two emerg-
ing approaches to implementing coarse-grain
dataflow are examined, the model of nested
parallelism, represented by the Cilk frame-
work, and the model of parallelism expressed
through an arbitrary Direct Acyclic Graph,
represented by the SMP Superscalar frame-
work. Performance and coding effort are ana-
lyzed and compared agains code manually par-
allelized at the thread level.

KEYWORDS: task graph, scheduling, multicore,
linear algebra, factorization, Cholesky, LU, QR

1 Introduction & Motivation

The current trend in the semiconductor industry to
double the number of execution units on a single die
is commonly referred to as the multicore discontinu-
ity. This term reflects the fact that existing soft-
ware model is inadequate for the new architectures
and existing code base will be incapable of delivering
increased performance, possibly not even capable of
sustaining current performance.

This problem has already been observed with state-
of-the-art dense linear algebra libraries, LAPACK [1]
and ScaLAPACK [2], which deliver a small fraction
of peak performance on current multicore proces-
sors and multi-socket systems of multicore processors,
mostly following Symmetric Multi-Processor (SMP)
architecture.

The problem is twofold. Achieving good perfor-
mance on emerging chip designs is a serious problem,
calling for new algorithms and data structures. Reim-
plementing existing code base using a new program-
ming paradigm is another major challenge, specifi-
cally in the area of high performance scientific com-
puting, where the level of required skills makes the
programmers a scarce resource and millions of lines
of code are in question.

1

2 Background

In large scale scientific computing, targeting dis-
tributed memory systems, the recent push towards
the PetaFlop barrier caused a renewed interest in
Partitioned Global Address Space (PGAS) languages,
such as Co-Array Fortran (CAF) [3], Unified Par-
allel C (UPC) [4] or Titanium [5], as well as emer-
gence of new languages, such as Chapel (Cray) [6],
Fortress (Sun) [7] and X-10 (IBM) [8], sponsored
through the DARPA’s High Productivity Computing
Systems (HPCS) program.

In more mainstream, server and desktop com-
puting, targeting mainly shared memory systems,
the well known dataflow model is rapidly gain-
ing popularity, where the computation is viewed
as a Direct Acyclic Graph (DAG), with nodes
representing computational tasks and edges rep-
resenting data dependencies among them. The
coarse-grain dataflow model is the main principle be-
hind emerging multicore programming environments
such as Cilk/Cilk++ [9], Intel R© Threading Building
Blocks (TBB) [10, 11], Tasking in OpenMP 3.0 [12,
13, 14, 15] and SMP Superscalar (SMPSs) [16].

All these frameworks rely on a very small set of
extensions to common imperative programming lan-
guages such as C/C++ and Fortran and involve a
relatively simple compilation stage and potentially
much more complex runtime system.

The following sections provide a brief overview
of these frameworks, as well as an overview of a
rudimentary scheduler implemented using POSIX
threads, which will serve as a baseline for perfor-
mance comparisons.

Since tasking facilities available in Threading
Building Blocks and OpenMP 3.0 closely resem-
ble the ones provided by Cilk, Cilk is chosen as a
representative framework for all three (also due to
the reason that, same as SMPSs, it is available in
open-source).

2.1 Cilk

Cilk was developed at the MIT Laboratory for Com-
puter Science starting in 1994 [9]. Cilk is an exten-
sion of the C language with a handful of keywords

(cilk, spawn, sync, inlet, abort) aimed at providing
general-purpose programming language designed for
multithreaded parallel programming. When the Cilk
keywords are removed from Cilk source code, the re-
sult is a valid C program, called the serial elision (or
C elision) of the full Cilk program. The Cilk envi-
ronment employs a source-to-source compiler, which
compiles Cilk code to C code, a standard C compiler,
and a runtime system linked with the object code to
provide an executable.

The main principle of Cilk is that the program-
mer is responsible for exposing parallelism by iden-
tifying functions free of side effects (e.g., access to
global variables causing race conditions), which can
be treated as independent tasks and executed in par-
allel. Such functions are annotated with the cilk
keyword and invoked with the spawn keyword. The
sync keyword is used to indicate that execution of
the current procedure cannot proceed until all pre-
viously spawned procedures have completed and re-
turned their results to the parent.

Distribution of work to multiple processors is han-
dled by the runtime system. Cilk scheduler uses the
policy called work-stealing to schedule execution of
tasks to multiple processors. At run time, each pro-
cessor fetches tasks from the top of its own stack - in
First In First Out (FIFO) order. However, when a
processor runs out of tasks, it picks another proces-
sor at random and ”steals” tasks from the bottom of
its stack - in Last In First Out (LIFO) order. This
way the task graph is consumed in a depth-first or-
der, until a processor runs out of tasks, in which case
it steals tasks from other processors in a breadth-first
order.

Cilk also provides the mechanism of locks. The
use of lock can, however, easily lead to deadlock.
”Even if the user can guarantee that his program is
deadlock-free, Cilk may still deadlock on the user’s
code because of some additional scheduling con-
straints imposed by Cilk’s scheduler” [17]. In par-
ticular locks cannot be used to enforce parent-child
dependencies between tasks.

Cilk is very well suited for expressing algorithms
which easily render themselves to recursive formula-
tion, e.g., divide-and-conquer algorithms. Since stack
is the main structure for controlling parallelism, the

2

model allows for straightforward implementations on
shared memory multiprocessor systems (e.g., multi-
core/SMP systems). The simplicity of the model pro-
vides for execution of parallel code with virtually no
overhead from scheduling.

2.2 OpenMP

OpenMP was born in the ’90s to bring a standard
to the different directive languages defined by sev-
eral vendors. The different characteristics of this ap-
proach: simplicity of the interface, use of a shared
memory model, and the use of loosely-coupled direc-
tives to express the parallelism of a program, make
it very well-accepted today. Due to new needs of the
parallel applications, OpenMP has been recently ex-
tended to add, in its version 3.0, a tasking model that
addresses new programming model aspects.

The new OpenMP directives allows the program-
mer to identify units of independent work (tasks),
leaving the decision to how and when to execute them
to the runtime system.

This gives the programmers a way of expressing
patterns of concurrency that do not match the work-
sharing constructs defined in the OpenMP 2.5 spec-
ification. The main difference between Cilk and
OpenMP 3.0 is that the latter can combine both types
of parallelism, worksharing and tasks: for example,
a programmer can choose to use OpenMP tasks to
exploit the parallelism of an inner loop and the tra-
ditional worksharing construct to parallelize an outer
loop.

2.3 Intel R© Threading Building Blocks

Intel R©Threading Building Blocks is a runtime-based
parallel programming model for C++ code that uses
threads. The main difference with other threading
packages is that it enables the programmer to spec-
ify tasks instead of threads and the runtime library
automatically schedules tasks onto threads in a way
that makes efficient use of a multicore processor.

Another characteristic of TBB is that it focuses
on the particular goal of parallelizing computation-
ally intensive work, while this is not always true in

general-purpose threading packages. TBB empha-
sizes data-parallel programming, enabling multiple
threads to work on different parts of a collection en-
abling scalability to larger number of cores.

The programming model is based on template
functions (parallel for, parallel reduce, etc.), where
the user specifies the range of data to be accessed,
how to partition the data, the task to be executed in
each chunk.

2.4 SMPSs

SMP Superscalar (SMPSs) [16] is a parallel pro-
gramming framework developed at the Barcelona
Supercomputer Center (Centro Nacional de Super-
computación), part of the STAR Superscalar family,
which also includes Grid Supercalar and Cell Super-
scalar [18, 19]. While Grid Superscalar and Cell Su-
perscalar address parallel software development for
Grid enviroments and the Cell processor respectively,
SMP Superscalar is aimed at ”standard” (x86 and
like) multicore processors and symmetric multipro-
cessor systems.

The principles of SMP Superscalar are similar to
the ones of Cilk. Similarly to Cilk, the programmer is
responsible for identifying parallel tasks, which have
to be side-effect-free (atomic) functions. Addition-
ally, the programmer needs to specify the direction-
ality of each parameter (input, output, inout). If the
size of a parameter is missing in the C declaration
(e.g., the parameter is passed by pointer), the pro-
grammer also needs to specify the size of the memory
region affected by the function. Unlike Cilk, however,
the programmer is not responsible for exposing the
structure of the task graph. The task graph is built
automatically, based on the information of task pa-
rameters and their directionality.

Similarly to Cilk, the programming environment
consists of a source-to-source compiler and a support-
ing runtime library. The compiler translates C code
with pragma annotations to standard C99 code with
calls to the supporting runtime library and compiles
it using the platform native compiler.

At runtime the main thread creates worker threads,
as many as necessary to fully utilize the system, and
starts constructing the task graph (populating its

3

ready list). Each worker thread maintains its own
ready list and populates it while executing tasks. A
thread consumes tasks from its own ready list in
LIFO order. If that list is empty, the thread con-
sumes tasks from the main ready list in FIFO order,
and if that list is empty, the thread steals tasks from
the ready lists of other threads in FIFO order.

The SMPSs scheduler attempts to exploit locality
by scheduling dependent tasks to the same thread,
such that output data is reused immediately. Also, in
order to reduce dependencies, SMPSs runtime is ca-
pable of renaming data, leaving only the true depen-
dencies, which is the same technique used by super-
scalar processors [20] and optimizing compilers [21].

The main difference between Cilk and SMPSs is
that, while the former allows mainly for expression
of nested parallelism, the latter handles computation
expressed as an arbitrary DAG. Also, while Cilk re-
quires the programmer to create the DAG by means
of the spawn keyword, SMPSs creates the DAG auto-
matically. Construction of the DAG does, however,
introduce overhead, which is virtually inexistent in
the Cilk environment.

2.5 Static Pipeline

The static pipeline scheduling presented here was
originally implemented for dense matrix factoriza-
tions on the CELL processor [22, 23]. This technique
is extremely simple and yet provides good locality of
reference and load balance for regular computation,
like dense matrix operations.

In this approach each task is uniquely identified by
the {m,n, k} triple, which determines the type of op-
eration and the location of tiles operated upon. Each
core traverses its task space by applying a simple for-
mula to the {m,n, k} triple, which takes into account
the id of the core and the total number of cores in the
system.

Task dependencies are tracked by a global progress
table, where one element describes progress of com-
putation for one tile of the input matrix. Each core
looks up the table before executing each task to check
for dependencies and stalls if dependencies are not
satisfied. Each core updates the progress table after
completion of each task. Access to the table does not

require mutual exclusion (using, e.g., mutexes). The
table is declared as volatile. Update is implemented
by writing to an element. Dependency stall is imple-
mented by busy-waiting on an element.

The use of a global progress table is a potential
scalability bottleneck. It does not pose a problem,
however, on small-scale multicore/SMP systems for
small to medium matrix sizes. Many alternatives are
possible. (Replicated progress tables were used on
the CELL processor [22, 23]).

As further discussed in sections 4.3 and 5.3, this
technique allows for pipelined execution of factoriza-
tions steps, which provides similar benefits to dy-
namic scheduling, namely, execution of the inefficient
Level 2 BLAS operations in parallel with the efficient
Level 3 BLAS operations.

The main disadvantage of the technique is poten-
tially suboptimal scheduling, i.e., stalling in situa-
tions where work is available. Another obvious weak-
ness of the static schedule is that it cannot accom-
modate dynamic operations, e.g., divide-and-conquer
algorithms.

3 Related Work

Dynamic data-driven scheduling is an old concept
and has been applied to dense linear operations for
decades on various hardware systems. The earliest
reference, that the authors are aware of, is the paper
by Lord, Kowalik and Kumar [24]. A little later dy-
namic scheduling of LU and Cholesky factorizations
were reported by Agarwal and Gustavson [25, 26]
Throughout the years dynamic scheduling of dense
linear algebra operations has been used in numer-
ous vendor library implementations such as ESSL,
MKL and ACML (numerous references are avail-
able on the Web). In recent years the authors of
this work have been investigating these ideas within
the framework Parallel Linear Algebra for Multicore
Architectures (PLASMA) at the University of Ten-
nessee [27, 28, 29, 30]. Noteworthy is the implemen-
tation of sparse Cholesky factorization by Irony et al.
using Cilk [31].

Seminal work leading to the tile QR algorithm
presented here was done by Elmroth et al. [32,

4

33, 34]. Gunter et al. presented an ”out-of-core”
(out-of-memory) implementation [35], Buttari et al.
an implementation for ”standard” (x86 and alike)
multicore processors [27, 28], and Kurzak et al.
an implementation for the CELL processor [22].
The LU algorithm used here was originally de-
vised by Quintana-Ort́ı et al. for ”out-of-core”
(out-of-memory) execution [45].

Seminal work on performance-oriented data lay-
outs for dense linear algebra was done by Gustavson
et al. [36, 37] and Elmroth et al. [38] and was also
investigated by Park et al. [39, 40].

4 Cholesky Factorization

The Cholesky factorization (or Cholesky decompo-
sition) is mainly used for the numerical solution of
linear equations Ax = b, where A is symmetric and
positive definite. Such systems arise often in physics
applications, where A is positive definite due to the
nature of the modeled physical phenomenon. This
happens frequently in numerical solutions of partial
differential equations.

The Cholesky factorization of an n × n real sym-
metric positive definite matrix A has the form

A = LLT ,

where L is an n × n real lower triangular matrix
with positive diagonal elements. In LAPACK the
double precision algorithm is implemented by the
DPOTRF routine. A single step of the algorithm is
implemented by a sequence of calls to the LAPACK
and BLAS routines: DSYRK, DPOTF2, DGEMM,
DTRSM. Due to the symmetry, the matrix can be
factorized either as upper triangular matrix or as
lower triangular matrix. Here the lower triangular
case is considered.

The algorithm can be expressed using either the
top-looking version, the left-looking version of the
right-looking version, the first being the most lazy al-
gorithm (depth-first exploration of the task graph)
and the last being the most aggressive algorithm
(breadth-first exploration of the task graph). The
left-looking variant is used here, with the exception

of Cilk implementations, which favor the most ag-
gressive right-looking variant.

The tile Cholesky algorithm is identical to the
block Cholesky algorithm implemented in LAPACK,
except for processing the matrix by tiles. Otherwise,
the exact same operations are applied. The algorithm
relies on four basic operations implemented by four
computational kernels (Figure 1).

DSYRK

DGEMM

DSYRK

DGEMM

DPOTRF

DGEMM

DTRSM

DGEMM DTRSM

A
T T

A

B C C

T

Figure 1: Tile operations in the tile Cholesky factor-
ization.

DSYRK: The kernel applies updates to a diagonal
(lower triangular) tile T of the input matrix, re-
sulting from factorization of the tiles A to the
left of it. The operation is a symmetric rank-k
update.

DPOTRF: The kernel performance the Cholesky
factorization of a diagonal (lower triangular) tile
T of the input matrix and overrides it with the
final elements of the output matrix.

DGEMM: The operation applies updates to an
off-diagonal tile C of the input matrix, result-
ing from factorization of the tiles to the left of
it. The operation is a matrix multiplication.

5

DTRSM: The operation applies an update to an
off-diagonal tile C of the input matrix, resulting
from factorization of the diagonal tile above it
and overrides it with the final elements of the
output matrix. The operation is a triangular
solve.

Figure 2 shows the pseudocode of the left-looking
Cholesky factorization. Figure 3 shows the task
graph of the tile Cholesky factorization of a 5 × 5
tiles matrix. Although the code is as simple as four
loops with three levels of nesting, the task graph is
far from intuitive, even for a tiny size.

FOR k = 0..TILES-1

 FOR n = 0..k-1

 A[k][k] ← DSYRK(A[k][n], A[k][k])

 A[k][k] ← DPOTRF(A[k][k])

 FOR m = k+1..TILES-1

 FOR n = 0..k-1

 A[m][k] ← DGEMM(A[k][n], A[m][n], A[m][k])

 A[m][k] ← DTRSM(A[k][k], A[m][k])

Figure 2: Pseudocode of the tile Cholesky factoriza-
tion (left-looking version).

4.1 Cilk Implementation

Figure 4 presents implementation of Cholesky factor-
ization in Cilk. The basic building blocks are the
functions performing the tile operations. dsyrk(),
dtrsm() and dgemm() are implemented by calls to
a single BLAS routine. dpotrf() is implemented by
a call to the LAPACK DPOTRF routine. The func-
tions are declared using the cilk keyword and then
invoked using the spawn keyword.

The input matrix is stored using the format re-
ferred to in literature as Square Block (SB) format
or Block Data Layout (BDL). The latter name will
be used here. In this arrangement, each function pa-
rameter is a pointer to a continuous block of mem-
ory, what greatly increases cache performance and
virtually eliminates cache conflicts between different
operations.

DPOTRF

DPOTRF

DPOTRF

DPOTRF

DPOTRF

DTRSM

DTRSM DTRSM DTRSM

DTRSM DTRSM DTRSM

DTRSM DTRSM

DTRSM

DSYRK

DSYRK DSYRK DSYRK

DSYRK DSYRK DSYRK

DSYRK DSYRK

DSYRK

DGEMMDGEMM DGEMM DGEMM DGEMM DGEMM

DGEMM DGEMM DGEMM

DGEMM

Figure 3: Task graph of the tile Cholesky factoriza-
tion (5× 5 tiles).

For implementation in Cilk the right-looking vari-
ant was chosen, where factorization of each panel is
followed by an update to all the remaining submatrix.
The code on Figure 4 presents a version, referred here
as Cilk 2D, where task scheduling is not constrained
by data reuse considerations (There are no provisions
for reuse of data between different tasks).

Each step of the factorization involves:

• factorization of the diagonal tile - spawning of
the dpotrf() task followed by a sync,

• applying triangular solves to the tiles below the
diagonal tile - spawning of the dtrsm() tasks in
parallel followed by a sync,

• updating the tiles to the right of the panel -
spawning of the dsyrk() and dgemm() tasks in
parallel followed by a sync.

6

cilk void dsyrk(double *A, double *T);
cilk void dpotrf(double *T);
cilk void dgemm(double *A, double *B, double *C);
cilk void dtrsm(double *T, double *C);

for (k = 0; k < TILES; k++) {

 spawn dpotrf(A[k][k]);
 sync;

 for (m = k+1; m < TILES; m++)
 spawn dtrsm(A[k][k], A[m][k]);
 sync;

 for (m = k+1; m < TILES; m++) {
 for (n = k+1; n < m; n++)
 spawn dgemm(A[k][n], A[m][n], A[m][k]);
 spawn dsyrk(A[k][n], A[k][k]);
 }
 sync;
}

Figure 4: Cilk implementation of the tile Cholesky
factorization with 2D work assignment (right-looking
version).

It is not possible to further improve parallelism by
pipelining the steps of the factorization. Neverthe-
less, most of the work can proceed in parallel and
only the dpotrf() task has to be executed sequentially.

Since the disregard for data reuse between tasks
may adversely affect the algorithm’s performance, it
is necessary to consider an implementation facilitat-
ing data reuse. One possible approach is processing
of the tiles of the input matrix by columns. In this
case, however, work is being dispatched in relatively
big batches and load imbalance in each step of the
factorization will affect performance. A traditional
remedy to this problem is the technique of lookahead,
where update of step N is applied in parallel with
panel factorization of step N + 1. Figure 5 shows
such implementation, referred here as Cilk 1D.

First, panel 0 is factorized, followed by a sync.
Then updates to all the remaining columns are is-
sued in parallel. Immediately after updating the first
column, next panel factorization is spawned. The
code synchronizes at each step, but panels are always
overlapped with updates. This approach implements
one-level lookahead (lookahead of depth one). Im-

void dsyrk(double *A, double *T);
void dpotrf(double *T);
void dgemm(double *A, double *B, double *C);
void dtrsm(double *T, double *C);

cilk void cholesky_panel(int k)
{
 int m;

 dpotrf(A[k][k]);

 for (m = k+1; m < TILES; m++)
 dtrsm(A[k][k], A[m][k]);
}

cilk void cholesky_update(int n, int k)
{
 int m;

 dsyrk(A[k][n], A[k][k]);

 for (m = n+1; m < TILES; m++)
 spawn dgemm(A[k][n], A[m][n], A[m][k]);

 if (n == k+1)
 spawn cholesky_panel(k+1);

}

spawn cholesky_panel(0);
sync;

for (k = 0; k < TILES; k++) {
 for (n = k+1; n < TILES; n++)
 spawn cholesky_update(n, k);
 sync;
}

Figure 5: Cilk implementation of the tile Cholesky
factorization with 1D work assignment (right-looking
version).

plementing more levels of lookahead would further
complicate the code.

4.2 SMPSs Implementation

Figure 6 shows implementation using SMPSs. The
functions implementing parallel tasks are designated
with #pragma ccs task annotations defining direc-
tionality of the parameters (input, output, inout).
The parallel section of the code is designated with
#pragma ccs start and #pragma ccs finish annota-
tions. Inside the parallel section the algorithm is
implemented using the canonical representation of
four loops with three levels of nesting, which closely

7

matches the pseudocode definition of Figure 2.

#pragma css task input(A[NB][NB]) inout(T[NB][NB])
void dsyrk(double *A, double *T);

#pragma css task inout(T[NB][NB])
void dpotrf(double *T);

#pragma css task input(A[NB][NB], B[NB][NB]) inout(C[NB][NB])
void dgemm(double *A, double *B, double *C);

#pragma css task input(T[NB][NB]) inout(B[NB][NB])
void dtrsm(double *T, double *C);

#pragma css start
for (k = 0; k < TILES; k++) {

 for (n = 0; n < k; n++)
 dsyrk(A[k][n], A[k][k]);
 dpotrf(A[k][k]);

 for (m = k+1; m < TILES; m++) {
 for (n = 0; n < k; n++)
 dgemm(A[k][n], A[m][n], A[m][k]);
 dtrsm(A[k][k], A[m][k]);
 }
}
#pragma css finish

Figure 6: SMPSs implementation of the tile Cholesky
factorization (left-looking version).

The SMPSs runtime system schedules tasks based
on dependencies and attempts to maximize data
reuse by following the parent-child links in the task
graph when possible.

4.3 Static Pipeline Implementation

As already mentioned in section 2.5 the static pipeline
implementation is a hand-written code using POSIX
threads and primitive synchronization mechanisms
(volatile progress table and busy-waiting). Figure 7
shows the implementation.

The code implements the left-looking version of the
factorization, where work is distributed by rows of
tiles and steps of the factorization are pipelined. The
first core that runs out of work in step N proceeds
to factorization of the panel in step N + 1, following
cores proceed to update in step N + 1, then to panel
in step N + 2 and so on (Figure 8).

void dsyrk(double *A, double *T);
void dpotrf(double *T);
void dgemm(double *A, double *B, double *C);
void dtrsm(double *T, double *C);

k = 0; m = my_core_id;
while (m >= TILES) {
 k++; m = m-TILES+k;
} n = 0;

while (k < TILES && m < TILES) {
 next_n = n; next_m = m; next_k = k;

 next_n++;
 if (next_n > next_k) {
 next_m += cores_num;
 while (next_m >= TILES && next_k < TILES) {
 next_k++; next_m = next_m-TILES+next_k;
 } next_n = 0;
 }

 if (m == k) {
 if (n == k) {
 dpotrf(A[k][k]);
 core_progress[k][k] = 1;
 }
 else {
 while(core_progress[k][n] != 1);
 dsyrk(A[k][n], A[k][k]);
 }
 }
 else {
 if (n == k) {
 while(core_progress[k][k] != 1);
 dtrsm(A[k][k], A[m][k]);
 core_progress[m][k] = 1;
 }
 else {
 while(core_progress[k][n] != 1);
 while(core_progress[m][n] != 1);
 dgemm(A[k][n], A[m][n], A[m][k]);
 }
 }
 n = next_n; m = next_m; k = next_k;
}

Figure 7: Static pipeline implementation of the tile
Cholesky factorization (left-looking version).

The code can be viewed as a parallel implementa-
tion of Cholesky factorization with one dimensional
partitioning of work and lookahead, where lookahead
of varying depth is implemented by processors which
run out of work.

8

DPOTRF DTRSM DSYRK DGEMM

0

1

2

3

4

5

6

7

0

1

2

3

4

5 6

Figure 8: Work assignment in the static pipeline im-
plementation of the tile Cholesky factorization.

5 QR Factorization

The QR factorization (or QR decomposition) offers
a numerically stable way of solving underdetermined
and overdetermined systems of linear equations (least
squares problems) and is also the basis for the QR
algorithm for solving the eigenvalue problem.

The QR factorization of an m × n real matrix A
has the form

A = QR,

where Q is an m × m real orthogonal matrix and
R is an m × n real upper triangular matrix. The
traditional algorithm for QR factorization applies a
series of elementary Householder matrices of the gen-
eral form

H = I − τvvT ,

where v is a column reflector and τ is a scaling fac-
tor. In the block form of the algorithm a product of
nb elementary Householder matrices is represented in
the form

H1H2 . . .Hnb = I − V TV T ,

where V is an N × nb real matrix those columns are
the individual vectors v, and T is an nb×nb real upper
triangular matrix [41, 42]. In LAPACK the double
precision algorithm is implemented by the DGEQRF
routine.

Here a derivative of the block algorithm is used
called the tile QR factorization. The ideas behind the

tile QR factorization are very well known. The tile
QR factorization was initially developed to produce a
high-performance ”out-of-memory” implementation
(typically referred to as ”out-of-core”) [35] and, more
recently, to produce high performance implementa-
tion on ”standard” (x86 and alike) multicore proces-
sors [27, 28] and on the CELL processor [22].

The algorithm is based on the idea of annihilating
matrix elements by square tiles instead of rectangular
panels (block columns). The algorithm produces the
same R factor as the classic algorithm, e.g., the imple-
mentation in the LAPACK library (elements may dif-
fer in sign). However, a different set of Householder
reflectors is produced and a different procedure is re-
quired to build the Q matrix. Whether the Q matrix
is actually needed depends on the application. The
tile QR algorithm relies on four basic operations im-
plemented by four computational kernels (Figure 9).

DGEQRT

DTSQRT

DLARFB

DSSRFB

DLARFB

DTSQRT

DSSRFB

DSSRFB DSSRFB

R
V1

V2

R

C1

C1

C2

T

T

V1
T

T V2

Figure 9: Tile operations in the tile QR factorization.

DGEQRT: The kernel performs the QR factoriza-
tion of a diagonal tile of the input matrix and
produces an upper triangular matrix R and a
unit lower triangular matrix V containing the
Householder reflectors. The kernel also produces
the upper triangular matrix T as defined by the
compact WY technique for accumulating House-
holder reflectors [41, 42]. The R factor overrides
the upper triangular portion of the input and the
reflectors override the lower triangular portion of

9

the input. The T matrix is stored separately.

DTSQRT: The kernel performs the QR factoriza-
tion of a matrix built by coupling the R factor,
produced by DGEQRT or a previous call to DT-
SQRT, with a tile below the diagonal tile. The
kernel produces an updated R factor, a square
matrix V containing the Householder reflectors
and the matrix T resulting from accumulating
the reflectors V . The new R factor overrides the
old R factor. The block of reflectors overrides
the square tile of the input matrix. The T ma-
trix is stored separately.

DLARFB: The kernel applies the reflectors calcu-
lated by DGEQRT to a tile to the right of the
diagonal tile, using the reflectors V along with
the matrix T .

DSSRFB: The kernel applies the reflectors calcu-
lated by DTSQRT to two tiles to the right of the
tiles factorized by DTSQRT, using the reflectors
V and the matrix T produced by DTSQRT.

Naive implementation, where the full T matrix
is built, results in 25 % more floating point opera-
tions than the standard algorithm. In order to mini-
mize this overhead, the idea of inner-blocking is used,
where the T matrix has sparse (block-diagonal) struc-
ture (Figure 10) [32, 33, 34].

DGEQRT

DTSQRT

DLARFB

DSSRFB

IB

NB

Figure 10: Inner blocking in the tile QR factorization.

Figure 11 shows the pseudocode of the tile QR fac-
torization. Figure 12 shows the task graph of the tile
QR factorization for a matrix of 5×5 tiles. Orders of
magnitude larger matrices are used in practice. This
example only serves the purpose of showing the com-
plexity of the task graph, which is noticeably higher
than that of Cholesky factorization.

FOR k = 0..TILES-1

 A[k][k], T[k][k] ← DGRQRT(A[k][k])

 FOR m = k+1..TILES-1

 A[k][k], A[m][k], T[m][k] ← DTSQRT(A[k][k], A[m][k], T[m][k])

 FOR n = k+1..TILES-1

 A[k][n] ← DLARFB(A[k][k], T[k][k], A[k][n])

 FOR m = k+1..TILES-1

 A[k][n], A[m][n] ← DSSRFB(A[m][k], T[m][k], A[k][n], A[m][n])

Figure 11: Pseudocode of the tile QR factorization.

DGEQRT

DGEQRT

DGEQRT

DGEQRT

DGEQRT

DLARFBDLARFB DLARFB DLARFB

DLARFB DLARFB DLARFB

DLARFB DLARFB

DLARFB

DTSQRT

DTSQRT

DTSQRT

DTSQRTDTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DSSRFBDSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB DSSRFB DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB

DSSRFB DSSRFB

DSSRFB

Figure 12: Task graph of the tile QR factorization
(matrix of size 5× 5 tiles).

10

5.1 Cilk Implementation

The task graph of the tile QR factorization has a
much denser net of dependencies than the Cholesky
factorization. Unlike for Cholesky the tasks factor-
izing the panel are not independent and have to be
serialized and the tasks applying the update have to
follow the same order. The order can be arbitrary.
Here top-down order is used.

Figure 13 shows the first Cilk implementation, re-
ferred to as Cilk 2D, which already requires the use of
lookahead to achieve performance. The basic build-
ing block are the functions performing the tile opera-
tions. Unlike for Cholesky, none of them is a sim-
ple call to BLAS or LAPACK. Due to the use of
inner-blocking the kernels consist of loop nests con-
taining a number of BLAS and LAPACK calls (cur-
rently coded in FORTRAN 77).

The factorization proceeds in the following steps:

• Initially the first diagonal tile is factorized -
spawning of the dgeqrt() task followed by a sync.
Then the main loop follows with the remaining
steps.

• Tiles to the right of the diagonal tile are updated
in parallel with factorization of the tile immedi-
ately below the diagonal tile - spawning of the
dlarfb() tasks and the dtsqrt() task followed by
a sync.

• Updates are applied to the tiles right from the
panel - spawning of the dssrfb() tasks by rows of
tiles (sync following each row). The last dssrfb()
task in a row spawns the dtsqrt() task in the
next row. The last dssrfb() task in the last row
spawns the dgeqrt() task in the next step of the
factorization.

Although lookahead is used and factorization of
the panel is, to some extent, overlapped with ap-
plying the update, tasks are being dispatched in
smaller batches, what severely limits opportunities
for scheduling.

The second possibility is to process the tiles of the
input matrix by columns, the same as was done for
Cholesky. Actually, it is much more natural to do it
in the case of QR, where work within a column has

cilk void dgeqrt(double *RV1, double *T);
cilk void dtsqrt(double *R, double *V2, double *T);
cilk void dlarfb(double *V1, double *T, double *C1);
void dssrfb(double *V2, double *T, double *C1, double *C2);

cilk void dssrfb_(int m, int n, int k)
{
 dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);

 if (m == TILES-1 && n == k+1 && k+1 < TILES)
 spawn dgeqrt(A[k+1][k+1], T[k+1][k+1]);

 if (n == k+1 && m+1 < TILES)
 spawn dtsqrt(A[k][k], A[m+1][k], T[m+1][k]);
}

spawn dgeqrt(A[0][0], T[0][0]);
sync;

for (k = 0; k < TILES; k++) {

 for (n = k+1; n < TILES; n++)
 spawn dlarfb(A[k][k], T[k][k], A[k][n]);

 if (k+1 < TILES)
 spawn dtsqrt(A[k][k], A[k+1][k], T[k+1][k]);
 sync;

 for (m = k+1; m < TILES; m++) {
 for (n = k+1; n < TILES; n++)
 spawn dssrfb_(m, n, k);
 sync;
 }
}

Figure 13: Cilk implementation of the tile QR fac-
torization with 2D work assignment and lookahead.

to be serialized. Load imbalance comes into picture
again and lookahead is the remedy. Figure 14 shows
the implementation, referred to as Cilk 1D.

The implementation follows closely the Cilk 1D
version of Cholesky. First, panel 0 is factorized, fol-
lowed by a sync. Then updates to all the remaining
columns are issued in parallel. Immediately after up-
dating the first column, next panel factorization is
spawned. The code synchronizes at each step, but
panels are always overlapped with updates. This ap-
proach implements one-level lookahead (lookahead of
depth one). Implementing more levels of lookahead
would further complicate the code.

11

void dgeqrt(double *RV1, double *T);
void dtsqrt(double *R, double *V2, double *T);
void dlarfb(double *V1, double *T, double *C1);
void dssrfb(double *V2, double *T, double *C1, double *C2);

cilk void qr_panel(int k)
{
 int m;

 dgeqrt(A[k][k], T[k][k]);

 for (m = k+1; m < TILES; m++)
 dtsqrt(A[k][k], A[m][k], T[m][k]);
}

cilk void qr_update(int n, int k)
{
 int m;

 dlarfb(A[k][k], T[k][k], A[k][n]);

 for (m = k+1; m < TILES; m++)
 dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);

 if (n == k+1)
 spawn qr_panel(k+1);
}

spawn qr_panel(0);
sync;

for (k = 0; k < TILES; k++) {
 for (n = k+1; n < TILES; n++)
 spawn qr_update(n, k);
 sync;
}

Figure 14: Cilk implementation of the tile QR fac-
torization with 1D work assignment and lookahead.

5.2 SMPSs Implementation

Figure 15 shows implementation using SMPSs, which
follows closely the one for Cholesky. The func-
tions implementing parallel tasks are designated with
#pragma ccs task annotations defining directionality
of the parameters (input, output, inout). The par-
allel section of the code is designated with #pragma
ccs start and #pragma ccs finish annotations. Inside
the parallel section the algorithm is implemented us-
ing the canonical representation of four loops with
three levels of nesting, which closely matches the
pseudocode definition of Figure 11.

The SMPSs runtime system schedules tasks based
on dependencies and attempts to maximize data
reuse by following the parent-child links in the task

#pragma css task \
 inout(RV1[NB][NB]) output(T[NB][NB])
void dgeqrt(double *RV1, double *T);

#pragma css task \
 inout(R[NB][NB], V2[NB][NB]) output(T[NB][NB])
void dtsqrt(double *R, double *V2, double *T);

#pragma css task \
 input(V1[NB][NB], T[NB][NB]) inout(C1[NB][NB])
void dlarfb(double *V1, double *T, double *C1);

#pragma css task \
 input(V2[NB][NB], T[NB][NB]) inout(C1[NB][NB], C2[NB][NB])
void dssrfb(double *V2, double *T, double *C1, double *C2);

#pragma css start
for (k = 0; k < TILES; k++) {

 dgeqrt(A[k][k], T[k][k]);

 for (m = k+1; m < TILES; m++)
 dtsqrt(A[k][k], A[m][k], T[m][k]);

 for (n = k+1; n < TILES; n++) {
 dlarfb(A[k][k], T[k][k], A[k][n]);
 for (m = k+1; m < TILES; m++)
 dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);
 }
}
#pragma css finish

Figure 15: SMPSs implementation of the tile QR fac-
torization.

graph when possible.
There is a caveat here, however. V1 is an input

parameter of task dlarfb(). It also is an inout param-
eter of task dtsqrt(). However, dlarfb() only reads
the lower triangular portion of the tile, while dtsqrt()
only updates the upper triangular portion of the tile.
Since in both cases the tile is passed to the functions
by the pointer to the upper left corner of the tile,
SMPSs sees a false dependency. As a result, the ex-
ecution of the dlarfb() tasks in a given step will be
stalled until all the dtsqrt() tasks complete, despite
the fact that both types of tasks can be scheduled in
parallel as soon as the dgeqrt() task completes. Fig-
ure 16 shows conceptually the change that needs to
be done.

Currently SMPSs is not capable of recognizing ac-
cesses to triangular matrices. There are however mul-
tiple ways to enforce the correct behavior. The sim-

12

#pragma css task \
 inout(RV1[NB][NB]) output(T[NB][NB])
void dgeqrt(double *RV1, double *T);

#pragma css task \
 inout(R[◥], V2[NB][NB]) output(T[NB][NB])
void dtsqrt(double *R, double *V2, double *T);

#pragma css task \
 input(V1[◣], T[NB][NB]) inout(C1[NB][NB])
void dlarfb(double *V1, double *T, double *C1);

#pragma css task \
 input(V2[NB][NB], T[NB][NB]) inout(C1[NB][NB], C2[NB][NB])
void dssrfb(double *V2, double *T, double *C1, double *C2);

#pragma css start
for (k = 0; k < TILES; k++) {

 dgeqrt(A[k][k], T[k][k]);

 for (m = k+1; m < TILES; m++)
 dtsqrt(A[k][k]◥, A[m][k], T[m][k]);

 for (n = k+1; n < TILES; n++) {
 dlarfb(A[k][k]◣, T[k][k], A[k][n]);
 for (m = k+1; m < TILES; m++)
 dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);
 }
}
#pragma css finish

Figure 16: SMPSs implementation of the tile QR fac-
torization with improved dependency resolution for
diagonal tiles.

plest method, in this case, is to drop dependency
check on the V1 parameter of the dlarfb() function by
declaring it as volatile*. Correct dependency will be
enforced between the dgeqrt() task and the dlarfb()
tasks through the T parameter. This implementation
is further referred to as SMPSs*.

5.3 Static Pipeline Implementation

The static pipeline implementation for QR is very
close to the one for Cholesky. As already mentioned
in section 2.5 the static pipeline implementation is a
hand-written code using POSIX threads and prim-
itive synchronization mechanisms (volatile progress
table and busy-waiting). Figure 17 shows the imple-
mentation.

The code implements the right-looking version

void dgeqrt(double *RV1, double *T);
void dtsqrt(double *R, double *V2, double *T);
void dlarfb(double *V1, double *T, double *C1);
void dssrfb(double *V2, double *T, double *C1, double *C2);

k = 0; n = my_core_id;
while (n >= TILES) {
 k++; n = n-TILES+k;
} m = k;

while (k < TILES && n < TILES) {
 next_n = n; next_m = m; next_k = k;

 next_m++;
 if (next_m == TILES) {
 next_n += cores_num;
 while (next_n >= TILES && next_k < TILES) {
 next_k++; next_n = next_n-TILES+next_k;
 } next_m = next_k;
 }

 if (n == k) {
 if (m == k) {
 while(progress[k][k] != k-1);
 dgeqrt(A[k][k], T[k][k]);
 progress[k][k] = k;
 }
 else{
 while(progress[m][k] != k-1);
 dtsqrt(A[k][k], A[m][k], T[m][k]);
 progress[m][k] = k;
 }
 }
 else {
 if (m == k) {
 while(progress[k][k] != k);
 while(progress[k][n] != k-1);
 dlarfb(A[k][k], T[k][k], A[k][n]);
 }
 else {
 while(progress[m][k] != k);
 while(progress[m][n] != k-1);
 dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);
 progress[m][n] = k;
 }
 }
 n = next_n; m = next_m; k = next_k;
}

Figure 17: Static pipeline implementation of the tile
QR factorization.

of the factorization, where work is distributed by
columns of tiles and steps of the factorization are
pipelined. The first core that runs out of work in
step N proceeds to factorization of the panel in step
N+1, following cores proceed to update in step N+1,
then to panel in step N + 2 and so on (Figure 18).

The code can be viewed as a parallel implementa-
tion of the tile QR factorization with one dimensional

13

SGEQRT STSQRT SLARFB SSSRFB

0 1 2 3 4

5 6 7 0

1 2 3

4 5

6

Figure 18: Work assignment in the static pipeline
implementation of the tile QR factorization.

partitioning of work and lookahead, where lookahead
of varying depth is implemented by processors which
run out of work.

6 LU Factorization

The LU factorization (or LU decomposition) with
partial row pivoting of an m × n real matrix A has
the form

A = PLU,

where L is an m×n real unit lower triangular matrix,
U is an n×n real upper triangular matrix and P is a
permutation matrix. In the block formulation of the
algorithm, factorization of nb columns (the panel) is
followed by the update of the remaining part of the
matrix (the trailing submatrix) [43, 44]. In LAPACK
the double precision algorithm is implemented by the
DGETRF routine. A single step of the algorithm is
implemented by a sequence of calls to the following
LAPACK and BLAS routines: DGETF2, DLASWP,
DTRSM, DGEMM, where DGETF2 implements the
panel factorization and the other routines implement
the update.

Here a derivative of the block algorithm is used
called the tile LU factorization. Similarly to the tile
QR algorithm, the tile LU factorization originated
as an ”out-of-memory” (”out-of-core”) algorithm [45]
and was recently rediscovered for the multicore ar-
chitectures [28]. No implementation on the CELL
processor has been reported so far.

Again, the main idea here is the one of annihilating
matrix elements by square tiles instead of rectangu-

lar panels. The algorithm produces different U and
L factors than the block algorithm (e.g., the one im-
plemented in the LAPACK library) and produces a
different pivoting pattern, which is farther discussed
in more detail. The tile LU algorithm relies on four
basic operations implemented by four computational
kernels (Figure 19).

DGETRF

DTSTRF

DGESSM

DSSSSM

DGESSM

DTSTRF

DSSSSM

DSSSSM DSSSSM

U
L1

L2

U

C1

C1

C2

L1

L2
L1'L1'

P2 P2

P1P1

Figure 19: Tile operations in the tile LU factorization
with inner blocking.

DGETRF: The kernel performs the LU factoriza-
tion of a diagonal tile of the input matrix and
produces an upper triangular matrix U , a unit
lower triangular matrix L and a vector of pivot
indexes P . The U and L factors override the
input and the pivot vector is stored separately.

DTSTRF: The kernel performs the LU factoriza-
tion of a matrix build by coupling the U fac-
tor, produced by DGETRF or a previous call
to DTSTRF, with a tile below the diagonal tile.
The kernel produces an updated U factor and a
square matrix L containing the coefficients cor-
responding to the off-diagonal tile. The new U
factor overrides the old U factor. The new L
factor overrides corresponding off-diagonal tile.
New pivot vector P is created and stored sepa-
rately. Due to pivoting, the lower triangular part
of the diagonal tile is scrambled and also needs
to be stored separately as L′.

14

DGESSM: The kernel applies the transformations
produced by the DGETRF kernel to a tile to the
right of the diagonal tile, using the L factor and
the pivot vector P .

DSSSSM: The kernel applies the transformations
produced by the DTSTRF kernel to the tiles to
the right of the tiles factorized by DTSTRF, us-
ing the L′ factor and the pivot vector P .

One topic that requires further explanation is the
issue of pivoting. Since in the tile algorithm only
two tiles of the panel are factorized at a time, piv-
oting only takes place within two tiles at a time, a
scheme which could be described as block-pairwise
pivoting. Clearly, such pivoting is not equivalent to
the ”standard” partial row pivoting in the block algo-
rithm (e.g., LAPACK). A different pivoting pattern is
produced, and also, since pivoting is limited in scope,
the procedure results in a less numerically stable al-
gorithm. The numerical stability of the tile algorithm
is not discussed here. As of today the authors are not
aware of an exhaustive study of the topic.

As already mentioned earlier, due to pivoting,
the lower triangular part of the diagonal block gets
scrambled in consecutive steps of panel factorization.
Each time this happens, the tiles to the right need to
be updated, what introduces extra floating point op-
erations, not accounted for in the standard formula
for LU factorization. This is a similar situation to
tile QR factorization, where the extra operations are
caused by the accumulation of the Householder re-
flectors. For LU the impact is yet bigger, resulting
in 50 % more operations for a naive implementation.
The problem is remedied in the exact same way as for
the tile QR factorization, by using the idea of inner
blocking (Figure 19).

Another issue that comes into play is the concept of
LAPACK-style pivoting versus LINPACK-style piv-
oting. In the former case, factorization of the panel
is followed by row swaps both to the right of the panel
and to the left of the panel. When using the factor-
ization to solve the system, first permutations are
applied to the entire right hand side vector, and then
straightforward lower triangular solve is applied to
perform the forward substitution. In the latter case,

factorization of the panel is followed by row swaps
only to the right of the panel (only to the trailing
submatrix). As a result, in the forward substitution
phase of solving the system, applications of pivoting
and Gauss transforms are interleaved.

The tile algorithm combines LAPACK pivoting
within the panel, to achieve high performance for the
kernels on a cache-based system, and LINPACK piv-
oting between the steps of the factorization, to facili-
tate flexible scheduling of tile operations. The combi-
nation of the two pivoting techniques is explained in
great detail by Quintana-Ort́ı and van de Geijn [45].

6.1 Parallel Implementation

The tile LU factorization is represented by a DAG of
the exact same structure as the one for QR factoriza-
tion. In other words, the tile LU factorization is iden-
tical, in terms of parallel scheduling, to the tile QR
factorization. For that reason, the parallel implemen-
tations of the tile LU factorization are virtually iden-
tical to the parallel implementation of the tile QR fac-
torization and all the facts presented in section 5 hold
here. In the codes on Figures 11, 13, 14, 15, 16, the
DGEQRT operation is replaced by the DGETRF op-
eration, DLARFB operation by DGESSM operation,
DTSQRT by DTSTRF and DSSRFB by DSSSSM.

7 Results and Discussion

Results were collected on a 2.4 GHz quad-socket
quad-core (16 cores total) Intel Tigerton system
running Linux kernel 2.6.18. Cilk and SMPSs
codes where built using Cilk 5.4.6, SMPSs 2.0 and
GCC 4.1.2. Static pipeline codes where built using
ICC 10.1. Kernels coded in FORTRAN where com-
piled using IFORT 10.1. All codes where linked with
MKL 10.0.1. Random input matrices where used (di-
agonally dominant for Cholesky factorization). Block
Data Layout was used in all cases. Memory was al-
located using huge TLB pages of size 2 MB.

Figure 20 shows execution traces of all the im-
plementations of Cholesky factorization. The figure
shows a small run (9× 9 tiles, 1080× 1080 elements)
on a small number of cores (four). The goal here is

15

to clearly illustrate differences in scheduling by the
different approaches.

The Cilk 1D implementation performs the worst.
The 1D partitioning of work causes a disastrous load
imbalance in each step of the factorization. Despite
the lookahead, panel execution is very poorly over-
lapped with the update, in part due to the triangular
shape of the updated submatrix and quickly dimin-
ishing amount of work in the update phase.

The Cilk 2D implementation performs much better
by scheduling the dtrsm() operations in the panel in
parallel. Also, scheduling the dsyrk() and dgemm()
tasks in the update phase without constraints mini-
mizes load imbalance. The only serial task, dpotrf(),
does not cause disastrous performance losses.

Far better is the SMPSs implementation, where
tasks are continuously scheduled without gaps until
the very end of the factorization, where small stalls
occur. Data reuse is clearly visible through clusters of
dsyrk() tasks. Yet better is the static pipeline sched-
ule, where no dependency stalls occur at all. and
data reuse is exploited to the fullest.

Figure 21 shows execution traces of all the imple-
mentations of QR factorization. The same as for
Cholesky, the figure shows a small run (7 × 7 tiles,
1008 × 1008 elements) on a small number of cores
(four). Once again, the goal here is to clearly illus-
trate differences in scheduling by the different ap-
proaches. Traces for the tile LU factorization for a
similar size problem are virtually identical to the QR
traces and are not shown here. The following discus-
sion applies equally to the tile QR and the tile LU
factorization.

The situation looks a bit different for the tile QR
and LU factorizations compared to the tile Cholesky
factorization. The fine-grain Cilk 2D implementation
performs poorest, which is mostly due to the dispatch
of work in small batches. Although the tasks of panel
factorization (dgeqrt(), dtsqrt()) are overlapped with
the tasks of the update (dlarfb(), dssrfb()), synchro-
nization after each row, and related load imbalance,
contribute big number of gaps in the trace.

The Cilk 1D version performs better. Although the
number of gaps is still significant, mostly due to 1D
partitioning and related load imbalance, overall this
implementation looses less time due to dependency

stalls.
Interestingly the initial SMPSs implementation

produces almost identical schedule to the Cilk 1D ver-
sion. One difference is the better schedule at the end
of the factorization. The overall performance differ-
ence is small.

The SMPSs* implementation delivers a big jump
in performance, due to dramatic improvement in the
schedule. Here the static pipeline schedule is actually
marginally worse than SMPSs due to a few more de-
pendency stalls. More flexible scheduling of SMPSs
provides for a better schedule at the end of the factor-
ization. This advantage diminishes on larger number
of cores, where the overheads of dynamic scheduling
put the performance of the SMPSs implementation
slightly behind the one of the static pipeline imple-
mentation.

Figure 22 shows performance for the Cholesky
factorization, where Cilk implementations provide
mediocre performance, SMPSs provides much better
performance and static pipeline provides performance
clearly superior to other implementations.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

90

100

110
Tile Cholesky Factorization Performance

Matrix Size

G
flo

p/
s

Static Pipeline
SMPSs
Cilk 2D
Cilk 1D

Figure 22: Performance of the tile Cholesky factor-
ization in double precision on a 2.4 GHz quad-socket
quad-core (16 cores total) Intel Tigerton system. Tile
size nb = 120.

16

Figure 23 shows performance for the QR factor-
ization. The situation is a little different here. Per-
formance of Cilk implementations is still the poor-
est and the performance of the static pipeline is
still superior. However, performance of the initial
SMPSs implementation is only marginally better that
Cilk 1D, while performance of the improved SMPSs*
implementation is only marginally worse that static
pipeline. The same conclusions apply to the tile LU
factorization (Figure 24).

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

90

100

110
Tile QR Factorization Performance

Matrix Size

G
flo

p/
s

Static Pipeline
SMPSs*
SMPSs
Cilk 1D
Cilk 2D

Figure 23: Performance of the tile QR factorization in
double precision on a 2.4 GHz quad-socket quad-core
(16 cores total) Intel Tigerton system. Tile size nb =
144, inner block size IB = 48.

Relatively better performance of SMPSs for the
QR and LU factorizations versus the Cholesky fac-
torization can be explained by the fact that the LU
factorization is two times more expensive and the QR
factorization is four times more expensive, in terms of
floating point operations. This diminishes the impact
of various overheads for smaller size problems.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

90

100
Tile LU Factorization Performance

Matrix Size
G

flo
p/

s

Static Pipeline
SMPSs*
SMPSs
Cilk 1D
Cilk 2D

Figure 24: Performance of the tile LU factorization in
double precision on a 2.4 GHz quad-socket quad-core
(16 cores total) Intel Tigerton system. Tile size nb =
200, inner block size IB = 40.

8 Conclusions

In this work, suitability of emerging multicore pro-
gramming frameworks was analyzed for implement-
ing modern formulations of classic dense linear alge-
bra algorithms, the tile Cholesky, the tile QR and
the tile LU factorizations. These workloads are rep-
resented by large task graphs with compute-intensive
tasks interconnected with a very dense and complex
net of dependencies.

For the workloads under investigation, the con-
ducted experiments show clear advantage of the
model, where automatic parallelization is based on
construction of arbitrary DAGs. SMPSs provides
much higher level of automation than Cilk and simi-
lar frameworks, requiring only minimal programmer’s
intervention and basically leaving the programmer
oblivious to any aspects of parallelization. At the
same time it delivers superior performance through
more flexible scheduling of operations.

SMPSs still looses to hand-written code for very
regular compute-intensive workloads investigated

17

here. The gap is likely to decrease, however, with im-
proved runtime implementations. Ultimately, it may
have to be accepted as the price for automation.

9 Future Directions

Parallel programing based on the idea of repre-
senting the computation as a task graph and dy-
namic data-driven execution of tasks shows clear ad-
vantages for multicore processors and multi-socket
shared-memory systems of such processors. One of
the most interesting questions is the applicability of
the model to large scale distributed-memory systems.

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Black-
ford, J. W. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKen-
ney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, 1992. http://www.
netlib.org/lapack/lug/.

[2] L. S. Blackford, J. Choi, A. Cleary,
E. D’Azevedo, J. Demmel, I. Dhillon,
J. J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPACK Users’
Guide. SIAM, Philadelphia, PA, 1997.
http://www.netlib.org/scalapack/slug/.

[3] Co-Array Fortran. http://www.co-array.
org/.

[4] The Berkeley Unified Parallel C (UPC) project.
http://upc.lbl.gov/.

[5] Titanium project home page. http://
titanium.cs.berkeley.edu/.

[6] Cray, Inc. Chapel Language Specification
0.775. http://chapel.cs.washington.edu/
spec-0.775.pdf.

[7] Sun Microsystems, Inc. The Fortress Lan-
guage Specification, Version 1.0, 2008.

http://research.sun.com/projects/plrg/
Publications/fortress.1.0.pdf.

[8] V. Saraswat and N. Nystrom. Report
on the Experimental Language X10, Version
1.7, 2008. http://dist.codehaus.org/x10/
documentation/languagespec/x10-170.pdf.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul,
C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime sys-
tem. In Principles and Practice of Parallel Pro-
gramming, Proceedings of the fifth ACM SIG-
PLAN symposium on Principles and Practice of
Parallel Programming, PPOPP’95, pages 207–
216, Santa Barbara, CA, July 19-21 1995. ACM.
DOI: 10.1145/209936.209958.

[10] Intel Threading Building Blocks. http://www.
threadingbuildingblocks.org/.

[11] J. Reinders. Intel Threading Building Blocks:
Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly Media, Inc., 2007.
ISBN: 0596514808.

[12] OpenMP Architecture Review Board.
OpenMP Application Program Interface,
Version 3.0, 2008. http://www.openmp.org/
mp-documents/spec30.pdf.

[13] The community of OpenMP users, researchers,
tool developers and providers. http://www.
compunity.org/.

[14] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger,
Y. Lin, F. Massaioli, E. Su, P. Unnikrishnan,
and G. Zhang. A proposal for task paral-
lelism in OpenMP. In A Practical Programming
Model for the Multi-Core Era, 3rd International
Workshop on OpenMP, IWOMP 2007, Beijing,
China, June 3-7 2007. Lecture Notes in Com-
puter Science 4935:1-12. DOI: 10.1007/978-3-
540-69303-1 1.

[15] A. Duran, J. M. Perez, R. M. Ayguadé, E.
amd Badia, and J. Labarta. Extending the
OpenMP tasking model to allow dependent

18

http://www.netlib.org/lapack/lug/
http://www.netlib.org/lapack/lug/
http://www.netlib.org/scalapack/slug/
http://www.co-array.org/
http://www.co-array.org/
http://upc.lbl.gov/
http://titanium.cs.berkeley.edu/
http://titanium.cs.berkeley.edu/
http://chapel.cs.washington.edu/spec-0.775.pdf
http://chapel.cs.washington.edu/spec-0.775.pdf
http://research.sun.com/projects/plrg/Publications/fortress.1.0.pdf
http://research.sun.com/projects/plrg/Publications/fortress.1.0.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dx.doi.org/10.1145/209936.209958
http://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/
http://www.amazon.com/exec/obidos/ASIN/0596514808/
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.compunity.org/
http://www.compunity.org/
http://dx.doi.org/10.1007/978-3-540-69303-1_1
http://dx.doi.org/10.1007/978-3-540-69303-1_1

tasks. In OpenMP in a New Era of Paral-
lelism, 4th International Workshop, IWOMP
2008, West Lafayette, IN, May 12-14 2008. Lec-
ture Notes in Computer Science 5004:111-122.
DOI: 10.1007/978-3-540-79561-2 10.

[16] Barcelona Supercomputing Center. SMP Su-
perscalar (SMPSs) User’s Manual, Version 2.0,
2008. http://www.bsc.es/media/1002.pdf.

[17] Supercomputing Technologies Group, MIT Lab-
oratory for Computer Science. Cilk 5.4.6 Refer-
ence Manual, 1998. http://supertech.csail.
mit.edu/cilk/manual-5.4.6.pdf.

[18] P. Bellens, J. M. Perez, R. M. Badia, and
J. Labarta. CellSs: A programming model for
the Cell BE architecture. In Proceedings of
the 2006 ACM/IEEE conference on Supercom-
puting, Tampa, Florida, November 11-17 2006.
ACM. DOI: 10.1145/1188455.1188546.

[19] J. M. Perez, P. Bellens, R. M. Badia, and
J. Labarta. CellSs: Making it easier to pro-
gram the Cell Broadband Engine processor.
IBM J. Res. & Dev., 51(5):593–604, 2007.
DOI: 10.1147/rd.515.0593.

[20] J. E. Smith and G. S. Sohi. The microarchitec-
ture of superscalar processors. Proceedings of the
IEEE, 83(12):1609–1624, 1995.

[21] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Lea-
sure, and M. Wolfe. Dependence graphs and
compiler optimizations. In Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Prin-
ciples of Programming Languages, pages 207–
218, Williamsburg, VA, January 1981. ACM.
DOI: 10.1145/209936.209958.

[22] J. Kurzak and J. J. Dongarra. QR factorization
for the CELL processor. Scientific Programming.
(accepted).

[23] J. Kurzak, A. Buttari, and J. J. Dongarra. Solv-
ing systems of linear equation on the CELL
processor using Cholesky factorization. Trans.
Parallel Distrib. Syst., 19(9):1175–1186, 2008.
DOI: TPDS.2007.70813.

[24] R. E. Lord, J. S. Kowalik, and S. P. Ku-
mar. Solving linear algebraic equations on an
MIMD computer. J. ACM, 30(1):103–117, 1983.
DOI: 10.1145/322358.322366.

[25] R. C. Agarwal and F. G. Gustavson. A paral-
lel implementation of matrix multiplication and
LU factorization on the IBM 3090. In Proceed-
ings of the IFIP WG 2.5 Working Conference on
Aspects of Computation on Asynchronous Par-
allel Processors, pages 217–221, Stanford, CA,
August 22-25 1988. North-Holland Publishing
Company. ISBN: 0444873104.

[26] R. C. Agarwal and F. G. Gustavson. Vec-
tor and parallel algorithms for Cholesky fac-
torization on IBM 3090. In Proceedings of the
1989 ACM/IEEE conference on Supercomput-
ing, pages 225 – 233, Reno, NV, November 13-17
1989. ACM. DOI: 10.1145/76263.76287.

[27] A. Buttari, J. Langou, J. Kurzak, and J. J.
Dongarra. Parallel tiled QR factorization for
multicore architectures. Concurrency Compu-
tat.: Pract. Exper., 20(13):1573–1590, 2008.
DOI: 10.1002/cpe.1301.

[28] A. Buttari, J. Langou, J. Kurzak, and J. J.
Dongarra. A class of parallel tiled linear al-
gebra algorithms for multicore architectures.
Parellel Comput. Syst. Appl., 35:38–53, 2009.
DOI: 10.1016/j.parco.2008.10.002.

[29] J. Kurzak and J. J. Dongarra. Implementing
linear algebra routines on multi-core processors
with pipelining and a look ahead. In Applied
Parallel Computing, State of the Art in Sci-
entific Computing, 8th International Workshop,
PARA 2006, Ume̊a, Sweden, June 18-21 2006.
Lecture Notes in Computer Science 4699:147-
156. DOI: 10.1007/978-3-540-75755-9 18.

[30] A. Buttari, J. J. Dongarra, P. Husbands,
J. Kurzak, and K. Yelick. Multithreading
for synchronization tolerance in matrix fac-
torization. In Scientific Discovery through
Advanced Computing, SciDAC 2007, Boston,
MA, June 24-28 2007. Journal of Physics:

19

http://dx.doi.org/10.1007/978-3-540-79561-2_10
http://www.bsc.es/media/1002.pdf
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf
http://dx.doi.org/10.1145/1188455.1188546
http://dx.doi.org/10.1147/rd.515.0593
http://dx.doi.org/10.1145/209936.209958
http://dx.doi.org/10.1109/TPDS.2007.70813
http://dx.doi.org/10.1145/322358.322366
http://www.amazon.com/exec/obidos/ASIN/0444873104/
http://dx.doi.org/10.1145/76263.76287
http://dx.doi.org/10.1002/cpe.1301
http://dx.doi.org/10.1016/j.parco.2008.10.002
http://dx.doi.org/10.1007/978-3-540-75755-9_18

Conference Series 78:012028, IOP Publishing.
DOI: 10.1088/1742-6596/78/1/012028.

[31] D. Irony, G. Shklarski, and S. Toledo. Parallel
and fully recursive multifrontal sparse Cholesky.
Future Gener. Comput. Syst., 20(3):425–440,
2004. DOI: 10.1016/j.future.2003.07.007.

[32] E. Elmroth and F. G. Gustavson. Applying re-
cursion to serial and parallel QR factorization
leads to better performance. IBM J. Res. &
Dev., 44(4):605–624, 2000.

[33] E. Elmroth and F. G. Gustavson. New se-
rial and parallel recursive QR factorization al-
gorithms for SMP systems. In Applied Paral-
lel Computing, Large Scale Scientific and In-
dustrial Problems, 4th International Workshop,
PARA’98, Ume̊a, Sweden, June 14-17 1998. Lec-
ture Notes in Computer Science 1541:120-128.
DOI: 10.1007/BFb0095328.

[34] E. Elmroth and F. G. Gustavson. High-
performance library software for QR fac-
torization. In Applied Parallel Computing,
New Paradigms for HPC in Industry and
Academia, 5th International Workshop, PARA
2000, Bergen, Norway, June 18-20 2000. Lec-
ture Notes in Computer Science 1947:53-63.
DOI: 10.1007/3-540-70734-4 9.

[35] B. C. Gunter and R. A. van de Geijn.
Parallel out-of-core computation and updat-
ing the QR factorization. ACM Transactions
on Mathematical Software, 31(1):60–78, 2005.
DOI: 10.1145/1055531.1055534.

[36] F. G. Gustavson. New generalized matrix
data structures lead to a variety of high-
performance algorithms. In Proceedings of the
IFIP WG 2.5 Working Conference on Software
Architectures for Scientific Computing Appli-
cations, pages 211–234, Ottawa, Canada, Oc-
tober 2-4 2000. Kluwer Academic Publishers.
ISBN: 0792373391.

[37] F. G. Gustavson, J. A. Gunnels, and J. C. Sex-
ton. Minimal data copy for dense linear algebra

factorization. In Applied Parallel Computing,
State of the Art in Scientific Computing, 8th In-
ternational Workshop, PARA 2006, Ume̊a, Swe-
den, June 18-21 2006. Lecture Notes in Com-
puter Science 4699:540-549. DOI: 10.1007/978-
3-540-75755-9 66.

[38] E. Elmroth, F. G. Gustavson, I. Jonsson, and
B. K̊agström. Recursive blocked algorithms
and hybrid data structures for dense matrix li-
brary software. SIAM Review, 46(1):3–45, 2004.
DOI: 10.1137/S0036144503428693.

[39] N. Park, B. Hong, and V. K. Prasanna. Analy-
sis of memory hierarchy performance of block
data layout. In Proceedings of the 2002 In-
ternational Conference on Parallel Processing,
ICPP’02, pages 35–44, Vancouver, Canada,
August 18-21 2002. IEEE Computer Society.
DOI: 10.1109/ICPP.2002.1040857.

[40] N. Park, B. Hong, and V. K. Prasanna.
Tiling, block data layout, and memory
hierarchy performance. IEEE Trans. Par-
allel Distrib. Syst., 14(7):640–654, 2003.
DOI: 10.1109/TPDS.2003.1214317.

[41] C. Bischof and C. van Loan. The WY represen-
tation for products of Householder matrices. J.
Sci. Stat. Comput., 8:2–13, 1987.

[42] R. Schreiber and C. van Loan. A storage-efficient
WY representation for products of Householder
transformations. J. Sci. Stat. Comput., 10:53–
57, 1991.

[43] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and
H. A. van der Vorst. Numerical Linear Algebra
for High-Performance Computers. SIAM, 1998.
ISBN: 0898714281.

[44] J. W. Demmel. Applied Numerical Linear Alge-
bra. SIAM, 1997. ISBN: 0898713897.

[45] E. S. Quintana-Ort́ı and R. A. van de Geijn.
Updating an LU factorization with pivoting.
ACM Trans. Math. Softw., 35(2):11, 2008.
DOI: 10.1145/1377612.1377615.

20

http://dx.doi.org/10.1088/1742-6596/78/1/012028
http://dx.doi.org/10.1016/j.future.2003.07.007
http://dx.doi.org/10.1007/BFb0095328
http://dx.doi.org/10.1007/3-540-70734-4_9
http://doi.acm.org/10.1145/1055531.1055534
http://www.amazon.com/exec/obidos/ASIN/0792373391/
http://dx.doi.org/10.1007/978-3-540-75755-9_66
http://dx.doi.org/10.1007/978-3-540-75755-9_66
http://dx.doi.org/10.1137/S0036144503428693
http://dx.doi.org/10.1109/ICPP.2002.1040857
http://dx.doi.org/10.1109/TPDS.2003.1214317
http://www.amazon.com/exec/obidos/ASIN/0898714281/
http://www.amazon.com/exec/obidos/ASIN/0898713897/
http://doi.acm.org/10.1145/1377612.1377615

core 0
core 1
core 2
core 3

core 0
core 1
core 2
core 3

core 0
core 1
core 2
core 3

core 0
core 1
core 2
core 3

time

DPOTRF

DTRSM

DSYRK

DGEMM

Cilk 2D

Cilk 1D

SMPSs

Static Pipeline

Figure 20: Execution traces of the tile Cholesky factorization in double precision on four cores of a 2.4 GHz
Intel Tigerton system. Matrix size N = 1080, tile size nb = 120, total number of tasks = 140.

21

core 0
core 1
core 2
core 3

core 0
core 1
core 2
core 3

core 0
core 1
core 2
core 3

core 0
core 1
core 2
core 3

time

DGEQRT

DTSQRT

DLARFB

DSSRFB

core 0
core 1
core 2
core 3

Cilk 2D

Cilk 1D

SMPSs

Static Pipeline

SMPSs*

Figure 21: Execution traces of the tile QR factorization in double precision on four cores of a 2.4 GHz Intel
Tigerton system. Matrix size N = 1008, tile size nb = 144, inner block size IB = 48, total number of tasks
= 140.

22

	Introduction & Motivation
	Background
	Cilk
	OpenMP
	Intel® Threading Building Blocks
	SMPSs
	Static Pipeline

	Related Work
	Cholesky Factorization
	Cilk Implementation
	SMPSs Implementation
	Static Pipeline Implementation

	QR Factorization
	Cilk Implementation
	SMPSs Implementation
	Static Pipeline Implementation

	LU Factorization
	Parallel Implementation

	Results and Discussion
	Conclusions
	Future Directions

