*> \brief \b ZLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an unitary similarity transformation.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLATRD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrd.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDA, LDW, N, NB
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   E( * )
*       COMPLEX*16         A( LDA, * ), TAU( * ), W( LDW, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
*> Hermitian tridiagonal form by a unitary similarity
*> transformation Q**H * A * Q, and returns the matrices V and W which are
*> needed to apply the transformation to the unreduced part of A.
*>
*> If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
*> matrix, of which the upper triangle is supplied;
*> if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
*> matrix, of which the lower triangle is supplied.
*>
*> This is an auxiliary routine called by ZHETRD.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored:
*>          = 'U': Upper triangular
*>          = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER
*>          The number of rows and columns to be reduced.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
*>          n-by-n upper triangular part of A contains the upper
*>          triangular part of the matrix A, and the strictly lower
*>          triangular part of A is not referenced.  If UPLO = 'L', the
*>          leading n-by-n lower triangular part of A contains the lower
*>          triangular part of the matrix A, and the strictly upper
*>          triangular part of A is not referenced.
*>          On exit:
*>          if UPLO = 'U', the last NB columns have been reduced to
*>            tridiagonal form, with the diagonal elements overwriting
*>            the diagonal elements of A; the elements above the diagonal
*>            with the array TAU, represent the unitary matrix Q as a
*>            product of elementary reflectors;
*>          if UPLO = 'L', the first NB columns have been reduced to
*>            tridiagonal form, with the diagonal elements overwriting
*>            the diagonal elements of A; the elements below the diagonal
*>            with the array TAU, represent the  unitary matrix Q as a
*>            product of elementary reflectors.
*>          See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N-1)
*>          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
*>          elements of the last NB columns of the reduced matrix;
*>          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
*>          the first NB columns of the reduced matrix.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array, dimension (N-1)
*>          The scalar factors of the elementary reflectors, stored in
*>          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
*>          See Further Details.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is COMPLEX*16 array, dimension (LDW,NB)
*>          The n-by-nb matrix W required to update the unreduced part
*>          of A.
*> \endverbatim
*>
*> \param[in] LDW
*> \verbatim
*>          LDW is INTEGER
*>          The leading dimension of the array W. LDW >= max(1,N).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERauxiliary
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  If UPLO = 'U', the matrix Q is represented as a product of elementary
*>  reflectors
*>
*>     Q = H(n) H(n-1) . . . H(n-nb+1).
*>
*>  Each H(i) has the form
*>
*>     H(i) = I - tau * v * v**H
*>
*>  where tau is a complex scalar, and v is a complex vector with
*>  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
*>  and tau in TAU(i-1).
*>
*>  If UPLO = 'L', the matrix Q is represented as a product of elementary
*>  reflectors
*>
*>     Q = H(1) H(2) . . . H(nb).
*>
*>  Each H(i) has the form
*>
*>     H(i) = I - tau * v * v**H
*>
*>  where tau is a complex scalar, and v is a complex vector with
*>  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
*>  and tau in TAU(i).
*>
*>  The elements of the vectors v together form the n-by-nb matrix V
*>  which is needed, with W, to apply the transformation to the unreduced
*>  part of the matrix, using a Hermitian rank-2k update of the form:
*>  A := A - V*W**H - W*V**H.
*>
*>  The contents of A on exit are illustrated by the following examples
*>  with n = 5 and nb = 2:
*>
*>  if UPLO = 'U':                       if UPLO = 'L':
*>
*>    (  a   a   a   v4  v5 )              (  d                  )
*>    (      a   a   v4  v5 )              (  1   d              )
*>    (          a   1   v5 )              (  v1  1   a          )
*>    (              d   1  )              (  v1  v2  a   a      )
*>    (                  d  )              (  v1  v2  a   a   a  )
*>
*>  where d denotes a diagonal element of the reduced matrix, a denotes
*>  an element of the original matrix that is unchanged, and vi denotes
*>  an element of the vector defining H(i).
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDW, N, NB
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   E( * )
      COMPLEX*16         A( LDA, * ), TAU( * ), W( LDW, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO, ONE, HALF
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
     $                   ONE = ( 1.0D+0, 0.0D+0 ),
     $                   HALF = ( 0.5D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IW
      COMPLEX*16         ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZGEMV, ZHEMV, ZLACGV, ZLARFG, ZSCAL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      COMPLEX*16         ZDOTC
      EXTERNAL           LSAME, ZDOTC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Reduce last NB columns of upper triangle
*
         DO 10 I = N, N - NB + 1, -1
            IW = I - N + NB
            IF( I.LT.N ) THEN
*
*              Update A(1:i,i)
*
               A( I, I ) = DBLE( A( I, I ) )
               CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
               CALL ZGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
     $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
               CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
               CALL ZLACGV( N-I, A( I, I+1 ), LDA )
               CALL ZGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
     $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
               CALL ZLACGV( N-I, A( I, I+1 ), LDA )
               A( I, I ) = DBLE( A( I, I ) )
            END IF
            IF( I.GT.1 ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(1:i-2,i)
*
               ALPHA = A( I-1, I )
               CALL ZLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) )
               E( I-1 ) = ALPHA
               A( I-1, I ) = ONE
*
*              Compute W(1:i-1,i)
*
               CALL ZHEMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
     $                     ZERO, W( 1, IW ), 1 )
               IF( I.LT.N ) THEN
                  CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
     $                        W( 1, IW+1 ), LDW, A( 1, I ), 1, ZERO,
     $                        W( I+1, IW ), 1 )
                  CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
     $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
     $                        W( 1, IW ), 1 )
                  CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
     $                        A( 1, I+1 ), LDA, A( 1, I ), 1, ZERO,
     $                        W( I+1, IW ), 1 )
                  CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
     $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
     $                        W( 1, IW ), 1 )
               END IF
               CALL ZSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
               ALPHA = -HALF*TAU( I-1 )*ZDOTC( I-1, W( 1, IW ), 1,
     $                 A( 1, I ), 1 )
               CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
            END IF
*
   10    CONTINUE
      ELSE
*
*        Reduce first NB columns of lower triangle
*
         DO 20 I = 1, NB
*
*           Update A(i:n,i)
*
            A( I, I ) = DBLE( A( I, I ) )
            CALL ZLACGV( I-1, W( I, 1 ), LDW )
            CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
     $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
            CALL ZLACGV( I-1, W( I, 1 ), LDW )
            CALL ZLACGV( I-1, A( I, 1 ), LDA )
            CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
     $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
            CALL ZLACGV( I-1, A( I, 1 ), LDA )
            A( I, I ) = DBLE( A( I, I ) )
            IF( I.LT.N ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(i+2:n,i)
*
               ALPHA = A( I+1, I )
               CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1,
     $                      TAU( I ) )
               E( I ) = ALPHA
               A( I+1, I ) = ONE
*
*              Compute W(i+1:n,i)
*
               CALL ZHEMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
     $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
               CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
     $                     W( I+1, 1 ), LDW, A( I+1, I ), 1, ZERO,
     $                     W( 1, I ), 1 )
               CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
     $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
               CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
     $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
     $                     W( 1, I ), 1 )
               CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
     $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
               CALL ZSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
               ALPHA = -HALF*TAU( I )*ZDOTC( N-I, W( I+1, I ), 1,
     $                 A( I+1, I ), 1 )
               CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
            END IF
*
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of ZLATRD
*
      END