*> \brief \b ZHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZHETF2_RK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2_rk.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2_rk.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2_rk.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZHETF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX*16         A( LDA, * ), E ( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*> ZHETF2_RK computes the factorization of a complex Hermitian matrix A
*> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
*>
*>    A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
*>
*> where U (or L) is unit upper (or lower) triangular matrix,
*> U**H (or L**H) is the conjugate of U (or L), P is a permutation
*> matrix, P**T is the transpose of P, and D is Hermitian and block
*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
*>
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
*> For more information see Further Details section.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          On entry, the Hermitian matrix A.
*>            If UPLO = 'U': the leading N-by-N upper triangular part
*>            of A contains the upper triangular part of the matrix A,
*>            and the strictly lower triangular part of A is not
*>            referenced.
*>
*>            If UPLO = 'L': the leading N-by-N lower triangular part
*>            of A contains the lower triangular part of the matrix A,
*>            and the strictly upper triangular part of A is not
*>            referenced.
*>
*>          On exit, contains:
*>            a) ONLY diagonal elements of the Hermitian block diagonal
*>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*>               (superdiagonal (or subdiagonal) elements of D
*>                are stored on exit in array E), and
*>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
*>               If UPLO = 'L': factor L in the subdiagonal part of A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*>          E is COMPLEX*16 array, dimension (N)
*>          On exit, contains the superdiagonal (or subdiagonal)
*>          elements of the Hermitian block diagonal matrix D
*>          with 1-by-1 or 2-by-2 diagonal blocks, where
*>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
*>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
*>
*>          NOTE: For 1-by-1 diagonal block D(k), where
*>          1 <= k <= N, the element E(k) is set to 0 in both
*>          UPLO = 'U' or UPLO = 'L' cases.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          IPIV describes the permutation matrix P in the factorization
*>          of matrix A as follows. The absolute value of IPIV(k)
*>          represents the index of row and column that were
*>          interchanged with the k-th row and column. The value of UPLO
*>          describes the order in which the interchanges were applied.
*>          Also, the sign of IPIV represents the block structure of
*>          the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2
*>          diagonal blocks which correspond to 1 or 2 interchanges
*>          at each factorization step. For more info see Further
*>          Details section.
*>
*>          If UPLO = 'U',
*>          ( in factorization order, k decreases from N to 1 ):
*>            a) A single positive entry IPIV(k) > 0 means:
*>               D(k,k) is a 1-by-1 diagonal block.
*>               If IPIV(k) != k, rows and columns k and IPIV(k) were
*>               interchanged in the matrix A(1:N,1:N);
*>               If IPIV(k) = k, no interchange occurred.
*>
*>            b) A pair of consecutive negative entries
*>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
*>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
*>               (NOTE: negative entries in IPIV appear ONLY in pairs).
*>               1) If -IPIV(k) != k, rows and columns
*>                  k and -IPIV(k) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k) = k, no interchange occurred.
*>               2) If -IPIV(k-1) != k-1, rows and columns
*>                  k-1 and -IPIV(k-1) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k-1) = k-1, no interchange occurred.
*>
*>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
*>
*>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
*>
*>          If UPLO = 'L',
*>          ( in factorization order, k increases from 1 to N ):
*>            a) A single positive entry IPIV(k) > 0 means:
*>               D(k,k) is a 1-by-1 diagonal block.
*>               If IPIV(k) != k, rows and columns k and IPIV(k) were
*>               interchanged in the matrix A(1:N,1:N).
*>               If IPIV(k) = k, no interchange occurred.
*>
*>            b) A pair of consecutive negative entries
*>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
*>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*>               (NOTE: negative entries in IPIV appear ONLY in pairs).
*>               1) If -IPIV(k) != k, rows and columns
*>                  k and -IPIV(k) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k) = k, no interchange occurred.
*>               2) If -IPIV(k+1) != k+1, rows and columns
*>                  k-1 and -IPIV(k-1) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k+1) = k+1, no interchange occurred.
*>
*>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
*>
*>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>
*>          < 0: If INFO = -k, the k-th argument had an illegal value
*>
*>          > 0: If INFO = k, the matrix A is singular, because:
*>                 If UPLO = 'U': column k in the upper
*>                 triangular part of A contains all zeros.
*>                 If UPLO = 'L': column k in the lower
*>                 triangular part of A contains all zeros.
*>
*>               Therefore D(k,k) is exactly zero, and superdiagonal
*>               elements of column k of U (or subdiagonal elements of
*>               column k of L ) are all zeros. The factorization has
*>               been completed, but the block diagonal matrix D is
*>               exactly singular, and division by zero will occur if
*>               it is used to solve a system of equations.
*>
*>               NOTE: INFO only stores the first occurrence of
*>               a singularity, any subsequent occurrence of singularity
*>               is not stored in INFO even though the factorization
*>               always completes.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16HEcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*> TODO: put further details
*> \endverbatim
*
*> \par Contributors:
*  ==================
*>
*> \verbatim
*>
*>  December 2016,  Igor Kozachenko,
*>                  Computer Science Division,
*>                  University of California, Berkeley
*>
*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
*>                  School of Mathematics,
*>                  University of Manchester
*>
*>  01-01-96 - Based on modifications by
*>    J. Lewis, Boeing Computer Services Company
*>    A. Petitet, Computer Science Dept.,
*>                Univ. of Tenn., Knoxville abd , USA
*> \endverbatim
*
*  =====================================================================
      SUBROUTINE ZHETF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * ), E( * )
*     ..
*
*  ======================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   EIGHT, SEVTEN
      PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
      COMPLEX*16         CZERO
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            DONE, UPPER
      INTEGER            I, II, IMAX, ITEMP, J, JMAX, K, KK, KP, KSTEP,
     $                   P
      DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, DTEMP,
     $                   ROWMAX, TT, SFMIN
      COMPLEX*16         D12, D21, T, WK, WKM1, WKP1, Z
*     ..
*     .. External Functions ..
*
      LOGICAL            LSAME
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           LSAME, IZAMAX, DLAMCH, DLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDSCAL, ZHER, ZSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZHETF2_RK', -INFO )
         RETURN
      END IF
*
*     Initialize ALPHA for use in choosing pivot block size.
*
      ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
*
*     Compute machine safe minimum
*
      SFMIN = DLAMCH( 'S' )
*
      IF( UPPER ) THEN
*
*        Factorize A as U*D*U**H using the upper triangle of A
*
*        Initilize the first entry of array E, where superdiagonal
*        elements of D are stored
*
         E( 1 ) = CZERO
*
*        K is the main loop index, decreasing from N to 1 in steps of
*        1 or 2
*
         K = N
   10    CONTINUE
*
*        If K < 1, exit from loop
*
         IF( K.LT.1 )
     $      GO TO 34
         KSTEP = 1
         P = K
*
*        Determine rows and columns to be interchanged and whether
*        a 1-by-1 or 2-by-2 pivot block will be used
*
         ABSAKK = ABS( DBLE( A( K, K ) ) )
*
*        IMAX is the row-index of the largest off-diagonal element in
*        column K, and COLMAX is its absolute value.
*        Determine both COLMAX and IMAX.
*
         IF( K.GT.1 ) THEN
            IMAX = IZAMAX( K-1, A( 1, K ), 1 )
            COLMAX = CABS1( A( IMAX, K ) )
         ELSE
            COLMAX = ZERO
         END IF
*
         IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
*
*           Column K is zero or underflow: set INFO and continue
*
            IF( INFO.EQ.0 )
     $         INFO = K
            KP = K
            A( K, K ) = DBLE( A( K, K ) )
*
*           Set E( K ) to zero
*
            IF( K.GT.1 )
     $         E( K ) = CZERO
*
         ELSE
*
*           ============================================================
*
*           BEGIN pivot search
*
*           Case(1)
*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
*           (used to handle NaN and Inf)
*
            IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
*
*              no interchange, use 1-by-1 pivot block
*
               KP = K
*
            ELSE
*
               DONE = .FALSE.
*
*              Loop until pivot found
*
   12          CONTINUE
*
*                 BEGIN pivot search loop body
*
*
*                 JMAX is the column-index of the largest off-diagonal
*                 element in row IMAX, and ROWMAX is its absolute value.
*                 Determine both ROWMAX and JMAX.
*
                  IF( IMAX.NE.K ) THEN
                     JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ),
     $                                     LDA )
                     ROWMAX = CABS1( A( IMAX, JMAX ) )
                  ELSE
                     ROWMAX = ZERO
                  END IF
*
                  IF( IMAX.GT.1 ) THEN
                     ITEMP = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
                     DTEMP = CABS1( A( ITEMP, IMAX ) )
                     IF( DTEMP.GT.ROWMAX ) THEN
                        ROWMAX = DTEMP
                        JMAX = ITEMP
                     END IF
                  END IF
*
*                 Case(2)
*                 Equivalent to testing for
*                 ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
*                 (used to handle NaN and Inf)
*
                  IF( .NOT.( ABS( DBLE( A( IMAX, IMAX ) ) )
     $                       .LT.ALPHA*ROWMAX ) ) THEN
*
*                    interchange rows and columns K and IMAX,
*                    use 1-by-1 pivot block
*
                     KP = IMAX
                     DONE = .TRUE.
*
*                 Case(3)
*                 Equivalent to testing for ROWMAX.EQ.COLMAX,
*                 (used to handle NaN and Inf)
*
                  ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
     $            THEN
*
*                    interchange rows and columns K-1 and IMAX,
*                    use 2-by-2 pivot block
*
                     KP = IMAX
                     KSTEP = 2
                     DONE = .TRUE.
*
*                 Case(4)
                  ELSE
*
*                    Pivot not found: set params and repeat
*
                     P = IMAX
                     COLMAX = ROWMAX
                     IMAX = JMAX
                  END IF
*
*                 END pivot search loop body
*
               IF( .NOT.DONE ) GOTO 12
*
            END IF
*
*           END pivot search
*
*           ============================================================
*
*           KK is the column of A where pivoting step stopped
*
            KK = K - KSTEP + 1
*
*           For only a 2x2 pivot, interchange rows and columns K and P
*           in the leading submatrix A(1:k,1:k)
*
            IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
*              (1) Swap columnar parts
               IF( P.GT.1 )
     $            CALL ZSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
*              (2) Swap and conjugate middle parts
               DO 14 J = P + 1, K - 1
                  T = DCONJG( A( J, K ) )
                  A( J, K ) = DCONJG( A( P, J ) )
                  A( P, J ) = T
   14          CONTINUE
*              (3) Swap and conjugate corner elements at row-col interserction
               A( P, K ) = DCONJG( A( P, K ) )
*              (4) Swap diagonal elements at row-col intersection
               R1 = DBLE( A( K, K ) )
               A( K, K ) = DBLE( A( P, P ) )
               A( P, P ) = R1
*
*              Convert upper triangle of A into U form by applying
*              the interchanges in columns k+1:N.
*
               IF( K.LT.N )
     $            CALL ZSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ), LDA )
*
            END IF
*
*           For both 1x1 and 2x2 pivots, interchange rows and
*           columns KK and KP in the leading submatrix A(1:k,1:k)
*
            IF( KP.NE.KK ) THEN
*              (1) Swap columnar parts
               IF( KP.GT.1 )
     $            CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
*              (2) Swap and conjugate middle parts
               DO 15 J = KP + 1, KK - 1
                  T = DCONJG( A( J, KK ) )
                  A( J, KK ) = DCONJG( A( KP, J ) )
                  A( KP, J ) = T
   15          CONTINUE
*              (3) Swap and conjugate corner elements at row-col interserction
               A( KP, KK ) = DCONJG( A( KP, KK ) )
*              (4) Swap diagonal elements at row-col intersection
               R1 = DBLE( A( KK, KK ) )
               A( KK, KK ) = DBLE( A( KP, KP ) )
               A( KP, KP ) = R1
*
               IF( KSTEP.EQ.2 ) THEN
*                 (*) Make sure that diagonal element of pivot is real
                  A( K, K ) = DBLE( A( K, K ) )
*                 (5) Swap row elements
                  T = A( K-1, K )
                  A( K-1, K ) = A( KP, K )
                  A( KP, K ) = T
               END IF
*
*              Convert upper triangle of A into U form by applying
*              the interchanges in columns k+1:N.
*
               IF( K.LT.N )
     $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
     $                        LDA )
*
            ELSE
*              (*) Make sure that diagonal element of pivot is real
               A( K, K ) = DBLE( A( K, K ) )
               IF( KSTEP.EQ.2 )
     $            A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
            END IF
*
*           Update the leading submatrix
*
            IF( KSTEP.EQ.1 ) THEN
*
*              1-by-1 pivot block D(k): column k now holds
*
*              W(k) = U(k)*D(k)
*
*              where U(k) is the k-th column of U
*
               IF( K.GT.1 ) THEN
*
*                 Perform a rank-1 update of A(1:k-1,1:k-1) and
*                 store U(k) in column k
*
                  IF( ABS( DBLE( A( K, K ) ) ).GE.SFMIN ) THEN
*
*                    Perform a rank-1 update of A(1:k-1,1:k-1) as
*                    A := A - U(k)*D(k)*U(k)**T
*                       = A - W(k)*1/D(k)*W(k)**T
*
                     D11 = ONE / DBLE( A( K, K ) )
                     CALL ZHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
*
*                    Store U(k) in column k
*
                     CALL ZDSCAL( K-1, D11, A( 1, K ), 1 )
                  ELSE
*
*                    Store L(k) in column K
*
                     D11 = DBLE( A( K, K ) )
                     DO 16 II = 1, K - 1
                        A( II, K ) = A( II, K ) / D11
   16                CONTINUE
*
*                    Perform a rank-1 update of A(k+1:n,k+1:n) as
*                    A := A - U(k)*D(k)*U(k)**T
*                       = A - W(k)*(1/D(k))*W(k)**T
*                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
*
                     CALL ZHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
                  END IF
*
*                 Store the superdiagonal element of D in array E
*
                  E( K ) = CZERO
*
               END IF
*
            ELSE
*
*              2-by-2 pivot block D(k): columns k and k-1 now hold
*
*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
*
*              where U(k) and U(k-1) are the k-th and (k-1)-th columns
*              of U
*
*              Perform a rank-2 update of A(1:k-2,1:k-2) as
*
*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
*                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
*
*              and store L(k) and L(k+1) in columns k and k+1
*
               IF( K.GT.2 ) THEN
*                 D = |A12|
                  D = DLAPY2( DBLE( A( K-1, K ) ),
     $                DIMAG( A( K-1, K ) ) )
                  D11 = A( K, K ) / D
                  D22 = A( K-1, K-1 ) / D
                  D12 = A( K-1, K ) / D
                  TT = ONE / ( D11*D22-ONE )
*
                  DO 30 J = K - 2, 1, -1
*
*                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
*
                     WKM1 = TT*( D11*A( J, K-1 )-DCONJG( D12 )*
     $                      A( J, K ) )
                     WK = TT*( D22*A( J, K )-D12*A( J, K-1 ) )
*
*                    Perform a rank-2 update of A(1:k-2,1:k-2)
*
                     DO 20 I = J, 1, -1
                        A( I, J ) = A( I, J ) -
     $                              ( A( I, K ) / D )*DCONJG( WK ) -
     $                              ( A( I, K-1 ) / D )*DCONJG( WKM1 )
   20                CONTINUE
*
*                    Store U(k) and U(k-1) in cols k and k-1 for row J
*
                     A( J, K ) = WK / D
                     A( J, K-1 ) = WKM1 / D
*                    (*) Make sure that diagonal element of pivot is real
                     A( J, J ) = DCMPLX( DBLE( A( J, J ) ), ZERO )
*
   30             CONTINUE
*
               END IF
*
*              Copy superdiagonal elements of D(K) to E(K) and
*              ZERO out superdiagonal entry of A
*
               E( K ) = A( K-1, K )
               E( K-1 ) = CZERO
               A( K-1, K ) = CZERO
*
            END IF
*
*           End column K is nonsingular
*
         END IF
*
*        Store details of the interchanges in IPIV
*
         IF( KSTEP.EQ.1 ) THEN
            IPIV( K ) = KP
         ELSE
            IPIV( K ) = -P
            IPIV( K-1 ) = -KP
         END IF
*
*        Decrease K and return to the start of the main loop
*
         K = K - KSTEP
         GO TO 10
*
   34    CONTINUE
*
      ELSE
*
*        Factorize A as L*D*L**H using the lower triangle of A
*
*        Initilize the unused last entry of the subdiagonal array E.
*
         E( N ) = CZERO
*
*        K is the main loop index, increasing from 1 to N in steps of
*        1 or 2
*
         K = 1
   40    CONTINUE
*
*        If K > N, exit from loop
*
         IF( K.GT.N )
     $      GO TO 64
         KSTEP = 1
         P = K
*
*        Determine rows and columns to be interchanged and whether
*        a 1-by-1 or 2-by-2 pivot block will be used
*
         ABSAKK = ABS( DBLE( A( K, K ) ) )
*
*        IMAX is the row-index of the largest off-diagonal element in
*        column K, and COLMAX is its absolute value.
*        Determine both COLMAX and IMAX.
*
         IF( K.LT.N ) THEN
            IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
            COLMAX = CABS1( A( IMAX, K ) )
         ELSE
            COLMAX = ZERO
         END IF
*
         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
*
*           Column K is zero or underflow: set INFO and continue
*
            IF( INFO.EQ.0 )
     $         INFO = K
            KP = K
            A( K, K ) = DBLE( A( K, K ) )
*
*           Set E( K ) to zero
*
            IF( K.LT.N )
     $         E( K ) = CZERO
*
         ELSE
*
*           ============================================================
*
*           BEGIN pivot search
*
*           Case(1)
*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
*           (used to handle NaN and Inf)
*
            IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
*
*              no interchange, use 1-by-1 pivot block
*
               KP = K
*
            ELSE
*
               DONE = .FALSE.
*
*              Loop until pivot found
*
   42          CONTINUE
*
*                 BEGIN pivot search loop body
*
*
*                 JMAX is the column-index of the largest off-diagonal
*                 element in row IMAX, and ROWMAX is its absolute value.
*                 Determine both ROWMAX and JMAX.
*
                  IF( IMAX.NE.K ) THEN
                     JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
                     ROWMAX = CABS1( A( IMAX, JMAX ) )
                  ELSE
                     ROWMAX = ZERO
                  END IF
*
                  IF( IMAX.LT.N ) THEN
                     ITEMP = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ),
     $                                     1 )
                     DTEMP = CABS1( A( ITEMP, IMAX ) )
                     IF( DTEMP.GT.ROWMAX ) THEN
                        ROWMAX = DTEMP
                        JMAX = ITEMP
                     END IF
                  END IF
*
*                 Case(2)
*                 Equivalent to testing for
*                 ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
*                 (used to handle NaN and Inf)
*
                  IF( .NOT.( ABS( DBLE( A( IMAX, IMAX ) ) )
     $                       .LT.ALPHA*ROWMAX ) ) THEN
*
*                    interchange rows and columns K and IMAX,
*                    use 1-by-1 pivot block
*
                     KP = IMAX
                     DONE = .TRUE.
*
*                 Case(3)
*                 Equivalent to testing for ROWMAX.EQ.COLMAX,
*                 (used to handle NaN and Inf)
*
                  ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
     $            THEN
*
*                    interchange rows and columns K+1 and IMAX,
*                    use 2-by-2 pivot block
*
                     KP = IMAX
                     KSTEP = 2
                     DONE = .TRUE.
*
*                 Case(4)
                  ELSE
*
*                    Pivot not found: set params and repeat
*
                     P = IMAX
                     COLMAX = ROWMAX
                     IMAX = JMAX
                  END IF
*
*
*                 END pivot search loop body
*
               IF( .NOT.DONE ) GOTO 42
*
            END IF
*
*           END pivot search
*
*           ============================================================
*
*           KK is the column of A where pivoting step stopped
*
            KK = K + KSTEP - 1
*
*           For only a 2x2 pivot, interchange rows and columns K and P
*           in the trailing submatrix A(k:n,k:n)
*
            IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
*              (1) Swap columnar parts
               IF( P.LT.N )
     $            CALL ZSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
*              (2) Swap and conjugate middle parts
               DO 44 J = K + 1, P - 1
                  T = DCONJG( A( J, K ) )
                  A( J, K ) = DCONJG( A( P, J ) )
                  A( P, J ) = T
   44          CONTINUE
*              (3) Swap and conjugate corner elements at row-col interserction
               A( P, K ) = DCONJG( A( P, K ) )
*              (4) Swap diagonal elements at row-col intersection
               R1 = DBLE( A( K, K ) )
               A( K, K ) = DBLE( A( P, P ) )
               A( P, P ) = R1
*
*              Convert lower triangle of A into L form by applying
*              the interchanges in columns 1:k-1.
*
               IF ( K.GT.1 )
     $            CALL ZSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
*
            END IF
*
*           For both 1x1 and 2x2 pivots, interchange rows and
*           columns KK and KP in the trailing submatrix A(k:n,k:n)
*
            IF( KP.NE.KK ) THEN
*              (1) Swap columnar parts
               IF( KP.LT.N )
     $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
*              (2) Swap and conjugate middle parts
               DO 45 J = KK + 1, KP - 1
                  T = DCONJG( A( J, KK ) )
                  A( J, KK ) = DCONJG( A( KP, J ) )
                  A( KP, J ) = T
   45          CONTINUE
*              (3) Swap and conjugate corner elements at row-col interserction
               A( KP, KK ) = DCONJG( A( KP, KK ) )
*              (4) Swap diagonal elements at row-col intersection
               R1 = DBLE( A( KK, KK ) )
               A( KK, KK ) = DBLE( A( KP, KP ) )
               A( KP, KP ) = R1
*
               IF( KSTEP.EQ.2 ) THEN
*                 (*) Make sure that diagonal element of pivot is real
                  A( K, K ) = DBLE( A( K, K ) )
*                 (5) Swap row elements
                  T = A( K+1, K )
                  A( K+1, K ) = A( KP, K )
                  A( KP, K ) = T
               END IF
*
*              Convert lower triangle of A into L form by applying
*              the interchanges in columns 1:k-1.
*
               IF ( K.GT.1 )
     $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
*
            ELSE
*              (*) Make sure that diagonal element of pivot is real
               A( K, K ) = DBLE( A( K, K ) )
               IF( KSTEP.EQ.2 )
     $            A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
            END IF
*
*           Update the trailing submatrix
*
            IF( KSTEP.EQ.1 ) THEN
*
*              1-by-1 pivot block D(k): column k of A now holds
*
*              W(k) = L(k)*D(k),
*
*              where L(k) is the k-th column of L
*
               IF( K.LT.N ) THEN
*
*                 Perform a rank-1 update of A(k+1:n,k+1:n) and
*                 store L(k) in column k
*
*                 Handle division by a small number
*
                  IF( ABS( DBLE( A( K, K ) ) ).GE.SFMIN ) THEN
*
*                    Perform a rank-1 update of A(k+1:n,k+1:n) as
*                    A := A - L(k)*D(k)*L(k)**T
*                       = A - W(k)*(1/D(k))*W(k)**T
*
                     D11 = ONE / DBLE( A( K, K ) )
                     CALL ZHER( UPLO, N-K, -D11, A( K+1, K ), 1,
     $                          A( K+1, K+1 ), LDA )
*
*                    Store L(k) in column k
*
                     CALL ZDSCAL( N-K, D11, A( K+1, K ), 1 )
                  ELSE
*
*                    Store L(k) in column k
*
                     D11 = DBLE( A( K, K ) )
                     DO 46 II = K + 1, N
                        A( II, K ) = A( II, K ) / D11
   46                CONTINUE
*
*                    Perform a rank-1 update of A(k+1:n,k+1:n) as
*                    A := A - L(k)*D(k)*L(k)**T
*                       = A - W(k)*(1/D(k))*W(k)**T
*                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
*
                     CALL ZHER( UPLO, N-K, -D11, A( K+1, K ), 1,
     $                          A( K+1, K+1 ), LDA )
                  END IF
*
*                 Store the subdiagonal element of D in array E
*
                  E( K ) = CZERO
*
               END IF
*
            ELSE
*
*              2-by-2 pivot block D(k): columns k and k+1 now hold
*
*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
*
*              where L(k) and L(k+1) are the k-th and (k+1)-th columns
*              of L
*
*
*              Perform a rank-2 update of A(k+2:n,k+2:n) as
*
*              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
*                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
*
*              and store L(k) and L(k+1) in columns k and k+1
*
               IF( K.LT.N-1 ) THEN
*                 D = |A21|
                  D = DLAPY2( DBLE( A( K+1, K ) ),
     $                DIMAG( A( K+1, K ) ) )
                  D11 = DBLE( A( K+1, K+1 ) ) / D
                  D22 = DBLE( A( K, K ) ) / D
                  D21 = A( K+1, K ) / D
                  TT = ONE / ( D11*D22-ONE )
*
                  DO 60 J = K + 2, N
*
*                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
*
                     WK = TT*( D11*A( J, K )-D21*A( J, K+1 ) )
                     WKP1 = TT*( D22*A( J, K+1 )-DCONJG( D21 )*
     $                      A( J, K ) )
*
*                    Perform a rank-2 update of A(k+2:n,k+2:n)
*
                     DO 50 I = J, N
                        A( I, J ) = A( I, J ) -
     $                              ( A( I, K ) / D )*DCONJG( WK ) -
     $                              ( A( I, K+1 ) / D )*DCONJG( WKP1 )
   50                CONTINUE
*
*                    Store L(k) and L(k+1) in cols k and k+1 for row J
*
                     A( J, K ) = WK / D
                     A( J, K+1 ) = WKP1 / D
*                    (*) Make sure that diagonal element of pivot is real
                     A( J, J ) = DCMPLX( DBLE( A( J, J ) ), ZERO )
*
   60             CONTINUE
*
               END IF
*
*              Copy subdiagonal elements of D(K) to E(K) and
*              ZERO out subdiagonal entry of A
*
               E( K ) = A( K+1, K )
               E( K+1 ) = CZERO
               A( K+1, K ) = CZERO
*
            END IF
*
*           End column K is nonsingular
*
         END IF
*
*        Store details of the interchanges in IPIV
*
         IF( KSTEP.EQ.1 ) THEN
            IPIV( K ) = KP
         ELSE
            IPIV( K ) = -P
            IPIV( K+1 ) = -KP
         END IF
*
*        Increase K and return to the start of the main loop
*
         K = K + KSTEP
         GO TO 40
*
   64    CONTINUE
*
      END IF
*
      RETURN
*
*     End of ZHETF2_RK
*
      END