*> \brief \b SORGQL
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORGQL + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgql.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgql.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgql.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SORGQL( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, K, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), TAU( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SORGQL generates an M-by-N real matrix Q with orthonormal columns,
*> which is defined as the last N columns of a product of K elementary
*> reflectors of order M
*>
*>       Q  =  H(k) . . . H(2) H(1)
*>
*> as returned by SGEQLF.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix Q. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix Q. M >= N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines the
*>          matrix Q. N >= K >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the (n-k+i)-th column must contain the vector which
*>          defines the elementary reflector H(i), for i = 1,2,...,k, as
*>          returned by SGEQLF in the last k columns of its array
*>          argument A.
*>          On exit, the M-by-N matrix Q.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The first dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is REAL array, dimension (K)
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i), as returned by SGEQLF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK. LWORK >= max(1,N).
*>          For optimum performance LWORK >= N*NB, where NB is the
*>          optimal blocksize.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument has an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERcomputational
*
*  =====================================================================
      SUBROUTINE SORGQL( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IINFO, IWS, J, KK, L, LDWORK, LWKOPT,
     $                   NB, NBMIN, NX
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARFB, SLARFT, SORG2L, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( N.EQ.0 ) THEN
            LWKOPT = 1
         ELSE
            NB = ILAENV( 1, 'SORGQL', ' ', M, N, K, -1 )
            LWKOPT = N*NB
         END IF
         WORK( 1 ) = LWKOPT
*
         IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
            INFO = -8
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORGQL', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         RETURN
      END IF
*
      NBMIN = 2
      NX = 0
      IWS = N
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
*        Determine when to cross over from blocked to unblocked code.
*
         NX = MAX( 0, ILAENV( 3, 'SORGQL', ' ', M, N, K, -1 ) )
         IF( NX.LT.K ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            LDWORK = N
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  reduce NB and
*              determine the minimum value of NB.
*
               NB = LWORK / LDWORK
               NBMIN = MAX( 2, ILAENV( 2, 'SORGQL', ' ', M, N, K, -1 ) )
            END IF
         END IF
      END IF
*
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
*        Use blocked code after the first block.
*        The last kk columns are handled by the block method.
*
         KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB )
*
*        Set A(m-kk+1:m,1:n-kk) to zero.
*
         DO 20 J = 1, N - KK
            DO 10 I = M - KK + 1, M
               A( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE
         KK = 0
      END IF
*
*     Use unblocked code for the first or only block.
*
      CALL SORG2L( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO )
*
      IF( KK.GT.0 ) THEN
*
*        Use blocked code
*
         DO 50 I = K - KK + 1, K, NB
            IB = MIN( NB, K-I+1 )
            IF( N-K+I.GT.1 ) THEN
*
*              Form the triangular factor of the block reflector
*              H = H(i+ib-1) . . . H(i+1) H(i)
*
               CALL SLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB,
     $                      A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
*
*              Apply H to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
*
               CALL SLARFB( 'Left', 'No transpose', 'Backward',
     $                      'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
     $                      A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
     $                      WORK( IB+1 ), LDWORK )
            END IF
*
*           Apply H to rows 1:m-k+i+ib-1 of current block
*
            CALL SORG2L( M-K+I+IB-1, IB, IB, A( 1, N-K+I ), LDA,
     $                   TAU( I ), WORK, IINFO )
*
*           Set rows m-k+i+ib:m of current block to zero
*
            DO 40 J = N - K + I, N - K + I + IB - 1
               DO 30 L = M - K + I + IB, M
                  A( L, J ) = ZERO
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
      END IF
*
      WORK( 1 ) = IWS
      RETURN
*
*     End of SORGQL
*
      END