*> \brief \b ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLANHE + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhe.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhe.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhe.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
*
*       .. Scalar Arguments ..
*       CHARACTER          NORM, UPLO
*       INTEGER            LDA, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   WORK( * )
*       COMPLEX*16         A( LDA, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLANHE  returns the value of the one norm,  or the Frobenius norm, or
*> the  infinity norm,  or the  element of  largest absolute value  of a
*> complex hermitian matrix A.
*> \endverbatim
*>
*> \return ZLANHE
*> \verbatim
*>
*>    ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*>             (
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
*>             (
*>             ( normI(A),         NORM = 'I' or 'i'
*>             (
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*>
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NORM
*> \verbatim
*>          NORM is CHARACTER*1
*>          Specifies the value to be returned in ZLANHE as described
*>          above.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          hermitian matrix A is to be referenced.
*>          = 'U':  Upper triangular part of A is referenced
*>          = 'L':  Lower triangular part of A is referenced
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHE is
*>          set to zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The hermitian matrix A.  If UPLO = 'U', the leading n by n
*>          upper triangular part of A contains the upper triangular part
*>          of the matrix A, and the strictly lower triangular part of A
*>          is not referenced.  If UPLO = 'L', the leading n by n lower
*>          triangular part of A contains the lower triangular part of
*>          the matrix A, and the strictly upper triangular part of A is
*>          not referenced. Note that the imaginary parts of the diagonal
*>          elements need not be set and are assumed to be zero.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(N,1).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*>          WORK is not referenced.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16HEauxiliary
*
*  =====================================================================
      DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          NORM, UPLO
      INTEGER            LDA, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   WORK( * )
      COMPLEX*16         A( LDA, * )
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      EXTERNAL           LSAME, DISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 20 J = 1, N
               DO 10 I = 1, J - 1
                  SUM = ABS( A( I, J ) )
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   10          CONTINUE
               SUM = ABS( DBLE( A( J, J ) ) )
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   20       CONTINUE
         ELSE
            DO 40 J = 1, N
               SUM = ABS( DBLE( A( J, J ) ) )
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
               DO 30 I = J + 1, N
                  SUM = ABS( A( I, J ) )
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   30          CONTINUE
   40       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
     $         ( NORM.EQ.'1' ) ) THEN
*
*        Find normI(A) ( = norm1(A), since A is hermitian).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 60 J = 1, N
               SUM = ZERO
               DO 50 I = 1, J - 1
                  ABSA = ABS( A( I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   50          CONTINUE
               WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
   60       CONTINUE
            DO 70 I = 1, N
               SUM = WORK( I )
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   70       CONTINUE
         ELSE
            DO 80 I = 1, N
               WORK( I ) = ZERO
   80       CONTINUE
            DO 100 J = 1, N
               SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
               DO 90 I = J + 1, N
                  ABSA = ABS( A( I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   90          CONTINUE
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  100       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 110 J = 2, N
               CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  110       CONTINUE
         ELSE
            DO 120 J = 1, N - 1
               CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  120       CONTINUE
         END IF
         SUM = 2*SUM
         DO 130 I = 1, N
            IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
               ABSA = ABS( DBLE( A( I, I ) ) )
               IF( SCALE.LT.ABSA ) THEN
                  SUM = ONE + SUM*( SCALE / ABSA )**2
                  SCALE = ABSA
               ELSE
                  SUM = SUM + ( ABSA / SCALE )**2
               END IF
            END IF
  130    CONTINUE
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      ZLANHE = VALUE
      RETURN
*
*     End of ZLANHE
*
      END