*> \brief \b CGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGETF2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetf2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetf2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetf2.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, M, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            A( LDA, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGETF2 computes an LU factorization of a general m-by-n matrix A
*> using partial pivoting with row interchanges.
*>
*> The factorization has the form
*>    A = P * L * U
*> where P is a permutation matrix, L is lower triangular with unit
*> diagonal elements (lower trapezoidal if m > n), and U is upper
*> triangular (upper trapezoidal if m < n).
*>
*> This is the right-looking Level 2 BLAS version of the algorithm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the m by n matrix to be factored.
*>          On exit, the factors L and U from the factorization
*>          A = P*L*U; the unit diagonal elements of L are not stored.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (min(M,N))
*>          The pivot indices; for 1 <= i <= min(M,N), row i of the
*>          matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -k, the k-th argument had an illegal value
*>          > 0: if INFO = k, U(k,k) is exactly zero. The factorization
*>               has been completed, but the factor U is exactly
*>               singular, and division by zero will occur if it is used
*>               to solve a system of equations.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexGEcomputational
*
*  =====================================================================
      SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      REAL               SFMIN
      INTEGER            I, J, JP
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      INTEGER            ICAMAX
      EXTERNAL           SLAMCH, ICAMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGERU, CSCAL, CSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGETF2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Compute machine safe minimum
*
      SFMIN = SLAMCH('S')
*
      DO 10 J = 1, MIN( M, N )
*
*        Find pivot and test for singularity.
*
         JP = J - 1 + ICAMAX( M-J+1, A( J, J ), 1 )
         IPIV( J ) = JP
         IF( A( JP, J ).NE.ZERO ) THEN
*
*           Apply the interchange to columns 1:N.
*
            IF( JP.NE.J )
     $         CALL CSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
*
*           Compute elements J+1:M of J-th column.
*
            IF( J.LT.M ) THEN
               IF( ABS(A( J, J )) .GE. SFMIN ) THEN
                  CALL CSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
               ELSE
                  DO 20 I = 1, M-J
                     A( J+I, J ) = A( J+I, J ) / A( J, J )
   20             CONTINUE
               END IF
            END IF
*
         ELSE IF( INFO.EQ.0 ) THEN
*
            INFO = J
         END IF
*
         IF( J.LT.MIN( M, N ) ) THEN
*
*           Update trailing submatrix.
*
            CALL CGERU( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ),
     $                  LDA, A( J+1, J+1 ), LDA )
         END IF
   10 CONTINUE
      RETURN
*
*     End of CGETF2
*
      END