*  Definition:
*  ===========
*
*       SUBROUTINE CGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
*                          C, LDC, WORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER SIDE, TRANS
*       INTEGER   INFO, K, LDV, LDC, M, N, MB, LDT
*       ..
*       .. Array Arguments ..
*       COMPLEX V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGEMLQT overwrites the general real M-by-N matrix C with
*>
*>                 SIDE = 'L'     SIDE = 'R'
*> TRANS = 'N':      Q C            C Q
*> TRANS = 'C':   Q**H C            C Q**H
*>
*> where Q is a complex orthogonal matrix defined as the product of K
*> elementary reflectors:
*>
*>       Q = H(1) H(2) . . . H(K) = I - V T V**H
*>
*> generated using the compact WY representation as returned by CGELQT.
*>
*> Q is of order M if SIDE = 'L' and of order N  if SIDE = 'R'.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'L': apply Q or Q**H from the Left;
*>          = 'R': apply Q or Q**H from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N':  No transpose, apply Q;
*>          = 'C':  Transpose, apply Q**H.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines
*>          the matrix Q.
*>          If SIDE = 'L', M >= K >= 0;
*>          if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*>          MB is INTEGER
*>          The block size used for the storage of T.  K >= MB >= 1.
*>          This must be the same value of MB used to generate T
*>          in DGELQT.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*>          V is COMPLEX array, dimension
*>                               (LDV,M) if SIDE = 'L',
*>                               (LDV,N) if SIDE = 'R'
*>          The i-th row must contain the vector which defines the
*>          elementary reflector H(i), for i = 1,2,...,k, as returned by
*>          DGELQT in the first K rows of its array argument A.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the array V. LDV >= max(1,K).
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*>          T is COMPLEX array, dimension (LDT,K)
*>          The upper triangular factors of the block reflectors
*>          as returned by DGELQT, stored as a MB-by-K matrix.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T.  LDT >= MB.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX array, dimension (LDC,N)
*>          On entry, the M-by-N matrix C.
*>          On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array. The dimension of
*>          WORK is N*MB if SIDE = 'L', or  M*MB if SIDE = 'R'.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup doubleGEcomputational
*
*  =====================================================================
      SUBROUTINE CGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
     $                   C, LDC, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2017
*
*     .. Scalar Arguments ..
      CHARACTER SIDE, TRANS
      INTEGER   INFO, K, LDV, LDC, M, N, MB, LDT
*     ..
*     .. Array Arguments ..
      COMPLEX   V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFT, RIGHT, TRAN, NOTRAN
      INTEGER            I, IB, LDWORK, KF, Q
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, CLARFB
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     .. Test the input arguments ..
*
      INFO   = 0
      LEFT   = LSAME( SIDE,  'L' )
      RIGHT  = LSAME( SIDE,  'R' )
      TRAN   = LSAME( TRANS, 'C' )
      NOTRAN = LSAME( TRANS, 'N' )
*
      IF( LEFT ) THEN
         LDWORK = MAX( 1, N )
      ELSE IF ( RIGHT ) THEN
         LDWORK = MAX( 1, M )
      END IF
      IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
         INFO = -1
      ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( K.LT.0) THEN
         INFO = -5
      ELSE IF( MB.LT.1 .OR. (MB.GT.K .AND. K.GT.0)) THEN
         INFO = -6
      ELSE IF( LDV.LT.MAX( 1, K ) ) THEN
          INFO = -8
      ELSE IF( LDT.LT.MB ) THEN
         INFO = -10
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -12
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEMLQT', -INFO )
         RETURN
      END IF
*
*     .. Quick return if possible ..
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
*
      IF( LEFT .AND. NOTRAN ) THEN
*
         DO I = 1, K, MB
            IB = MIN( MB, K-I+1 )
            CALL CLARFB( 'L', 'C', 'F', 'R', M-I+1, N, IB,
     $                   V( I, I ), LDV, T( 1, I ), LDT,
     $                   C( I, 1 ), LDC, WORK, LDWORK )
         END DO
*
      ELSE IF( RIGHT .AND. TRAN ) THEN
*
         DO I = 1, K, MB
            IB = MIN( MB, K-I+1 )
            CALL CLARFB( 'R', 'N', 'F', 'R', M, N-I+1, IB,
     $                   V( I, I ), LDV, T( 1, I ), LDT,
     $                   C( 1, I ), LDC, WORK, LDWORK )
         END DO
*
      ELSE IF( LEFT .AND. TRAN ) THEN
*
         KF = ((K-1)/MB)*MB+1
         DO I = KF, 1, -MB
            IB = MIN( MB, K-I+1 )
            CALL CLARFB( 'L', 'N', 'F', 'R', M-I+1, N, IB,
     $                   V( I, I ), LDV, T( 1, I ), LDT,
     $                   C( I, 1 ), LDC, WORK, LDWORK )
         END DO
*
      ELSE IF( RIGHT .AND. NOTRAN ) THEN
*
         KF = ((K-1)/MB)*MB+1
         DO I = KF, 1, -MB
            IB = MIN( MB, K-I+1 )
            CALL CLARFB( 'R', 'C', 'F', 'R', M, N-I+1, IB,
     $                   V( I, I ), LDV, T( 1, I ), LDT,
     $                   C( 1, I ), LDC, WORK, LDWORK )
         END DO
*
      END IF
*
      RETURN
*
*     End of CGEMLQT
*
      END