*> \brief \b ZHET01_ROOK * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, * RWORK, RESID ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER LDA, LDAFAC, LDC, N * DOUBLE PRECISION RESID * .. * .. Array Arguments .. * INTEGER IPIV( * ) * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZHET01_ROOK reconstructs a complex Hermitian indefinite matrix A from its *> block L*D*L' or U*D*U' factorization and computes the residual *> norm( C - A ) / ( N * norm(A) * EPS ), *> where C is the reconstructed matrix, EPS is the machine epsilon, *> L' is the transpose of L, and U' is the transpose of U. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> complex Hermitian matrix A is stored: *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The original complex Hermitian matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N) *> \endverbatim *> *> \param[in] AFAC *> \verbatim *> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) *> The factored form of the matrix A. AFAC contains the block *> diagonal matrix D and the multipliers used to obtain the *> factor L or U from the block L*D*L' or U*D*U' factorization *> as computed by CSYTRF_ROOK. *> \endverbatim *> *> \param[in] LDAFAC *> \verbatim *> LDAFAC is INTEGER *> The leading dimension of the array AFAC. LDAFAC >= max(1,N). *> \endverbatim *> *> \param[in] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> The pivot indices from CSYTRF_ROOK. *> \endverbatim *> *> \param[out] C *> \verbatim *> C is COMPLEX*16 array, dimension (LDC,N) *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,N). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is DOUBLE PRECISION *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2013 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZHET01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, $ LDC, RWORK, RESID ) * * -- LAPACK test routine (version 3.5.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2013 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDAFAC, LDC, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, INFO, J DOUBLE PRECISION ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION ZLANHE, DLAMCH EXTERNAL LSAME, ZLANHE, DLAMCH * .. * .. External Subroutines .. EXTERNAL ZLASET, ZLAVHE_ROOK * .. * .. Intrinsic Functions .. INTRINSIC DIMAG, DBLE * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Determine EPS and the norm of A. * EPS = DLAMCH( 'Epsilon' ) ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK ) * * Check the imaginary parts of the diagonal elements and return with * an error code if any are nonzero. * DO 10 J = 1, N IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN RESID = ONE / EPS RETURN END IF 10 CONTINUE * * Initialize C to the identity matrix. * CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC ) * * Call ZLAVHE_ROOK to form the product D * U' (or D * L' ). * CALL ZLAVHE_ROOK( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, $ LDAFAC, IPIV, C, LDC, INFO ) * * Call ZLAVHE_ROOK again to multiply by U (or L ). * CALL ZLAVHE_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC, $ LDAFAC, IPIV, C, LDC, INFO ) * * Compute the difference C - A . * IF( LSAME( UPLO, 'U' ) ) THEN DO 30 J = 1, N DO 20 I = 1, J - 1 C( I, J ) = C( I, J ) - A( I, J ) 20 CONTINUE C( J, J ) = C( J, J ) - DBLE( A( J, J ) ) 30 CONTINUE ELSE DO 50 J = 1, N C( J, J ) = C( J, J ) - DBLE( A( J, J ) ) DO 40 I = J + 1, N C( I, J ) = C( I, J ) - A( I, J ) 40 CONTINUE 50 CONTINUE END IF * * Compute norm( C - A ) / ( N * norm(A) * EPS ) * RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( ( RESID/DBLE( N ) )/ANORM ) / EPS END IF * RETURN * * End of ZHET01_ROOK * END